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Abstract

This note does three things. First, we derive an estimation equation
for the Solow model assuming we are in the vicinity of steady state and
show briefly how important parameters can be obtained from the MRW
study. As we go along we derive the rate of convergence to the steady
state. Second, we provide details on Mankiw, Romer and Weil’s back-of-
the-envelope calculation to derive a prior for human capital’s share in
total income, i.e. “β". Third, we derive the rate of convergence in the
augmented Solow model.

1 Estimating the Solow Model

We begin by noting that production in efficiency units, when the production

function is Cobb-Douglas, can be written:

y = kα.

where y ≡ Y/AL, k ≡ K/AL. For brievity, we’ll use the notation

x̂ ≡ ẋ

x

whenever we wish to denote a relative growth rate. Accordingly, the growth

rate of income per efficiency unit of labor is:

ŷ = αk̂. (1)

Now, the dynamical system governing capital in efficiency units is given by:

k̇ = sy − (n+ δ + x) k.
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Substituting this expression back into equation (1) yields

ŷ = α
³
s
y

k
− (n+ δ + x)

´
.

Next, we use that y = kα ⇔ y1/α = k. Inserting this fact into the equation

above leads to

ŷ = α

µ
s
y

y
1
α

− (n+ δ + x)

¶
ŷ = α

³
sy−

1−α
α − (n+ δ + x)

´
. (2)

This equation holds at all points in time, and indicate that, given structural

charactaristics, richer countries will grow slower than initially poorer economies.

While this is fine in general, we are preoccupied with deriving an equation for

estimation purposes. And insofar as we would like to press the OLS bottom,

then the equation better be linear.1 This is the reason why we’ll perform a

log-linearization of the model around the steady state.

So here is a small trick. We note that

y = eln y.

Using this fact in equation (2):

ŷ = α
³
se−

1−α
α ln y − (n+ δ + x)

´
≡ φ (ln y) .

Now we perform the Taylor approximation:

ŷln y=ln y∗ ≈ φ (ln y∗) + φ0ln y (ln y∗) (ln y − ln y∗) (3)

First, φ (ln y∗) = s (y∗)−
1−α
α − (n+ δ + x). In the steady state, this thing is

zero. So

φ (ln y∗) = 0

Second term:

φ0ln y (ln y∗) =

µ
−1− α

α

¶
αse−

1−α
α ln y∗

= − (1− α) se−
1−α
α ln y∗

= − (1− α) s (y∗)−
1−α
α .

But in the steady state φ (ln y∗) = 0⇔ s (y∗)−
1−α
α = (n+ δ + x). So

s (y∗)−
1−α
α = (n+ δ + x) ,

1Can’t you do nonlinear estimation of this thing? Well, yes. Steve Dowrick goes through
this exercise. His note can be downloaded from http://ecocomm.anu.edu.au/economics/
staff/dowrick/de-linear.pdf .

2



hence

φ0ln y (ln y∗) = − (1− α) (n+ δ + x) .

Substituting these results back into equation (3) yields.

ŷ ≈ − (1− α) (n+ δ + x) (ln y − ln y∗) . (4)

The rate of of convergence (RoC) tells us how quickly the economy is

approaching its steady state. Specifically, its defined as the proportional change

in the growth rate of income (per efficiency unit) from a change in income

dŷ

d ln y
= − (1− α) (n+ δ + x) ≡ λ.

A few remarks on RoC : The rate of convergence declines (nummerically)

when α rises, and vice versa. Why? Suppose α is relatively large, the aggregate

production function is then less sharply curbed, and diminishing returns sets in

slowly. As a result, the average product of capital will change only “little" if we

increase the capital stock (in efficiency units), which implies that the induced

change in the growth rate, from a change in the capital stock is small: the rate

of convergence is therefore low. The rate of convergence also depends on n and

δ. A high rate of growth in the labor force, will lower the steady state level

of capital per efficiency unit of labor and will therefore increase the average

product of capital in the vicinity of the steady state. As a result, near the

steady state growth in capital per efficiency unit of labor will be more sensitive

to changes in the capital stock, the rate of convergence is higher. A high δ or x

leads to relatively quick convergence for exactly the same reason.

But we are not done yet. What we ultimately are looking for is an equation

of the form

ln

µ
Y (t)

L (t)

¶
− ln

µ
Y (0)

L (0)

¶
= β0+ β1 ln

µ
Y (0)

L (0)

¶
+ β2 ln s+ β2 (n+ x+ δ) . (5)

In order to accomplish this task a few more calculations are needed.

Maybe its already obvious that equation (4) is just a first order differential

equation with constant coefficient? To be sure, define

ln y = x

ŷ = ẋ

λ ≡ (1− α) (n+ δ + x)

b = (1− α) (n+ δ + x) ln y∗,

and we are left with is the following equation:

ẋ (t) = −λx (t) + b,
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This we can solve easily

x (t) = x (0) e−λt +
b

λ

¡
1− e−λt

¢
Reinserting the stuff we got rid of:2

ln y (t) = ln y (0) e−λt + ln y∗
¡
1− e−λt

¢
In terms of a growth rate

ln y (t)− ln y (0) = ¡e−λt − 1¢ ln y (0) + ¡1− e−λt
¢
ln y∗.

Finally, using our knowledge of the steady state level of income per efficiency

unit: y∗ =
³

s
n+δ+x

´ α
1−α

, it follows that

ln y (t)− ln y (0) =
¡
e−λt − 1¢ ln y (0) + ¡1− e−λt

¢
ln y∗

⇓
using that ln y (t)− ln y (0) = ln

µ
Y (t)

L (t)

¶
− ln

µ
Y (0)

L (0)

¶
− lnA (t) + lnA (0)

⇓
ln

µ
Y (t)

L (t)

¶
− ln

µ
Y (0)

L (0)

¶
=

£
xt+ lnA (0)

¡
1− e−λt

¢¤− ¡1− e−λt
¢
ln

Y (0)

L (0)

+
¡
1− e−λt

¢ α

1− α
ln

µ
s

n+ δ + x

¶
If we define £

xt+ lnA (0)
¡
1− e−λt

¢¤ ≡ β0

− ¡1− e−λt
¢ ≡ β1¡

1− e−λt
¢ α

1− α
≡ β2,

we have equation (5) .

Recovering the structural parameters. Taking this equation to the

data leads to the results reported in MRW Table IV p. 426. Specifically, in the

intermediate sample (column 2):

β̂1 = −0.228,
2 In class we used the capital stock rather than output to make a quantitative assess-

ment of how long economies tend to be outside the steady state: ln y (t) = ln y (0) e−λt +
ln y∗ 1− e−λt ⇔ ln y (t) − ln y∗ = (ln y (0)− ln y∗) e−λt. The time it takes (t1/2) to move
half way to the steady state

ln y t1/2 − ln y∗
ln y (0)− ln y∗ =

1

2
= e−λt

or, taking logs and rearrangeing terms:

ln (1/2)

−λ = t1/2.

Accordingly, the statements that we made holds here as well.
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on this basis we can derive the rate of convergence implied by the regression.

Being firm believers in the structural model, and using the fact that t = 25

(=85-60):

− ¡1− e−λ·25
¢
= −0.228
⇓

λ ≈ 0.01.

Next, note that
β2
−β1

=
α

1− α
,

which mean that we can recover α from (again, using the intermediate sample

results)
β̂2

β̂1
=
0.644

0.228
= 2.8 =

α

1− α
,

implying that

α ≈ 0.7.
Using the estimate for ln (n+ δ + x) leads to essentially the same result (0.67).

Three things are worth noting. First, we will not be able to reject the

restriction that the coefficient (numerically) on the investment rate equals that

of ln (n+ δ + x). The 95% confidence interval for the estimate related to ln s

is 0.644 ± 0.104 while that for ln (n+ δ + x) is 0.464 ± 0.307. Clearly they

intersect. Second, however, α = .7 is a value too high to be consistent with

national accounts data, where capital’s share is roughly 1/3. This result mirrors

the conclusion from the levels-regression (Table I). Third, note that λ = 0.01 is

far too low a rate of convergence to be consistent with priors. Using “standard

parameter values" for the parameters entering λ we would expect something

like:

λ = (1− α) (n+ x+ δ) =
2

3
(0.01 + 0.02 + 0.05) ≈ 0.05.

2 The Augmented Solow Model: Guesstimating
Human Capitals’ Share

In Mankiw et al (1992) we are working with a production function of the fol-

lowing form

Y = KαHβ (AL)1−α−β (6)
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Note that we maintain CRTS in all rival inputs, now including human capital.

Since we maintain perfect competition we have that

Y = compensation for physical capital

+ compensation for labor input,

where the latter includes compensation for both human capital and raw labor

(brains and brawn). Since

compensation for physical capital=
dY
dKK

Y
= α

it follows that

compensation for labor input = 1− α.

At the lectures we’ve talked about the fact that α = 1/3 might be a reasonable

rule-of-thumb. The problem is however, that we now have to distribute the

remaining 2/3 between compensation for human capital, and compensation for

“raw" labor, as

compensation for labor input =
dY
dHH

Y
+

dY
dLL

Y
= β + (1− α− β) .

Mankiw et al make the following back-of-the envelope calculation to establish

a prior regarding the value of human capital’s share:

β ≈ (1− α)

µ
1− minimum wage

average wage in manufacturing

¶
,

where the minimum wage is to be thought of as a proxy for the wage of an

individual (virtually) without any human capital. But where does this approx-

imation come from?

We begin by rewriting the production function somewhat

Y = Kα (eL)
1−α

, (7)

where the efficiency of each unit of labor, e, is

e =

µ
H

L

¶ β
1−α

A
1−α−β
1−α , (8)

i.e. consists of human capital per person (H/L ≡ h) along with technology A.

You can check that equations (8) and (7) together are equivalent to equation

(6). Its further convenient, to rewrite (7) to yield3

Y

L
=

µ
K

Y

¶ α
1−α

e.

3The steps in the rewrite are: first divide equation (7) through by L. Next divide and
multiply on the right hand side by (Y/L)α. Isolating Y/L on the left hand side leads to the
stated result.
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Now, under perfect competition, the wage is given by

w =
dY

dL
= (1− α)

Y

L
= (1− α)

µ
K

Y

¶ α
1−α

e

= (1− α)

µ
K

Y

¶ α
1−α

h
β

1−αA
1−α−β
1−α .

Hence, we are implicitly assuming that human capital and labor are supplied

simultanously. Accordingly, each unit of labor is accompinied by h units of

human capital; higher levels of human capital per person are associated with a

higher wage.

Next, imagine that we are comparing two workers at different skill levels,

i.e. equipped with different levels of human capital: hs and hu (skilled and

unskilled, respectively). Imagine further more, that they work with the same

capital and technology. The wage of a worker of type i = s, u is

wi = (1− α)

µ
K

Y

¶ α
1−α ¡

hi
¢ β
1−α A

1−α−β
1−α .

Take logs and calculate the difference in implied wage

lnwu − lnws =
β

1− α
(lnhu − lnhs)

which is the same as
wu − ws

ws
=

β

1− α

hu − hs

hs

or
ws − wu

ws
=

µ
1− wu

ws

¶
=

β

1− α

µ
hs − hu

hs

¶
=

β

1− α

µ
1− hu

hs

¶
.

Now imagine that the unskilled laborer has very few units of human capital —

are virtually, but not entirely, without skills. Then we may assume that

hu

hs
≈ 0.

We thus have µ
1− wu

ws

¶
(1− α) = β.

MRW argue that the minimum wage is a sensible approximation for the wage

of an unskilled worker, wu, while the average wage in manufacturing serves as

a proxy for the skilled worker. They posit that

wu

ws
∈ (0.3, 0.5) .

If α = 1/3 it follows that

β ∈
µ
(1− 0.5) 2

3
, (1− 0.3) 2

3

¶
,

or ranges from 1/3 to roughly 1/2.
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3 The Rate of Convergence in the Augmented
Solow Model

This is going to be slightly more painfull since we have two differential equations.

But the methodology is basically the same.

We begin with the production function:

y = kαhβ,

where h = H/AL. As before, note that the growth rate in income per efficiency

units of labor is given by

ŷ = αk̂ + βĥ. (9)

The two fundamental laws of motion are

ḣ = shy − (n+ δ + x)h,

k̇ = sky − (n+ δ + x)h.

Substituting these back into equation (9):

ŷ = α
h
sk

³y
k

´
− (n+ δ + x)

i
+β

h
sh

³y
h

´
− (n+ δ + x)

i
⇔

ŷ = α
£
skk

α−1hβ − (n+ δ + x)
¤

+β
£
shk

αhβ−1 − (n+ δ + x)
¤
.

As before, we’ll do a log-linearization, for exactly the same reason as above:

ŷ = α
h
ske

(α−1) ln k+β lnh − (n+ δ + x)
i

+β
h
she

α ln k+(β−1) lnh − (n+ δ + x)
i
≡ θ (ln k, lnh)

So approximately

ŷ ≈ θ (ln k∗, lnh∗) + θ0ln k (ln k
∗, lnh∗) (ln k − ln k∗) (10)

+θ0lnh (ln k
∗, lnh∗) (lnh− lnh∗) .

Now we have to calculate θ (ln k∗, lnh∗), θ0ln k (ln k
∗, lnh∗) and θ0lnh (ln k

∗, lnh∗).

Here we go.

It should be clear that

θ (ln k∗, lnh∗) = 0.
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(Why?)

Next:

θ0ln k (ln k, lnh) = αsk (α− 1) e(α−1) ln k+β lnh

+βαshe
α ln k+(β−1) lnh

imposing steady state:

θ0ln k (ln k
∗, lnh∗) = α (α− 1) ske(α−1) ln k∗+β lnh∗

+βαshe
α ln k∗+(β−1) lnh∗ ,

and noting that ske(α−1) ln k
∗+β lnh∗ = sk

¡
y
k

¢∗
= (n+ δ + x) , she

α ln k∗+(β−1) lnh∗ =

sh
¡
y
h

¢∗
= (n+ δ + x), mean that

θ0ln k (ln k
∗, lnh∗) = (α− 1)α (n+ δ + x)+βα (n+ δ + x) = (β + α− 1) (n+ δ + x)α.

On for the next one. Same steps:

θ0lnh (ln k, lnh) = αskβe
(α−1) ln k+β lnh

+β (β − 1) sheα ln k+(β−1) lnh

Imposing steady state:

θ0lnh (ln k
∗, lnh∗) = αβske

(α−1) ln k∗+β lnh∗ + β (β − 1) sheα ln k∗+(β−1) lnh∗

Since ske(α−1) ln k
∗+β lnh∗ = (n+ δ + x) , she

α ln k∗+(β−1) lnh∗ = (n+ δ + x), so

θ0lnh (ln k
∗, lnh∗) = βα (n+ δ + x) + β (β − 1) (n+ δ + x)

= β (α+ β − 1) (n+ δ + x)

Inserting θ (ln k∗, lnh∗), θ0ln k (ln k∗, lnh∗) and θ0lnh (ln k∗, lnh∗) into equation

(10):

ŷ ≈ 0 + (β + α− 1) (n+ δ + x)α (ln k − ln k∗)
+β (α+ β − 1) (n+ δ + x) (lnh− lnh∗) .

Collecting terms:

ŷ ≈ (β + α− 1) (n+ δ + x) [α (ln k − ln k∗) + β (lnh− lnh∗)] .

From the production function y = hβkα it follows that

ln y − ln y∗ = α (ln k − ln k∗) + β (lnh− lnh∗)

so

ŷ ≈ (β + α− 1) (n+ δ + x) [ln y − ln y∗] . (11)
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Consequently, the rate of convergence is

∂ŷ

∂ ln y
= − (1− β − α) (n+ δ + x) ≡ λMRW .

Exercise: derive equation (16) in Mankiw, Romer and Weil (1992). Hint:

start by solving the differential equation (11); this gives you equation (14) in

their paper. Next, use what you know about y∗, to end up with their equation

16.
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