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Abstract
The OLS estimator is not always the Best Linear Unbiased Esti-

mator. This note, aimed at readers without prior knowledge of the
issues at hand, explains why the OLS estimate becomes “biased" when
relevant regressors are either (i) measured with error, (ii) endogenous
or, (iii) omitted from the equation being estimated.

1 A Few Definitions

Before we begin we need to have a few definitions in place. First, the mean

of a variable, x, is denoted x̄:

x̄ =
1

N

NX
i

xi

where N is the number of observations and i denotes the individual observa-

tion (each country if you like). Second, the estimated variance of the same

variable is calculated as

var (xi) =
1

N

X
(xi − x̄)2 .

Third the estimated covariance between x and y is calculated as

cov (xi, yi) =
1

N

NX
i

(y − ȳ) (x− x̄) .
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2 The OLS estimator

Consider the following regression model, relating growth in country i, to

human capital in country i, hi

gi = α0 + α1hi + ui, (1)

where α0 and α1 are the structural parameters we wish to estimate. ui is an

error term, which is assumed to fulfill: E (ui) = 0 and var (ui) = σ2; where

E (.) is the expectation operator.

When we proceed to estimate (1) we will a priori be strong believers in

it being the “right" model. Hence, equation (1) will be referred to as “the

true" model. Now, “the true model" may, upon closer reflection, change as

we proceed. But for now, that’s what the world looks like.

OLS estimation involves choosing α0 and α1 such that the squared resid-

uals are minimized. So the problem is to choose

{α0, α1} = argmin
NX
(gi − α0 − α1hi)

2 .

Solving the two first order conditions for α0 and α1 yields the OLS estimators

for α0 and α1, i.e. α̂0 and α̂1, respectively

α̂0 = ḡ − α̂1h̄ (2)

α̂1 =
cov (gi, hi)

var (hi)
=

PN (gi − ḡ)
¡
hi − h̄

¢PN ¡hi − h̄
¢2 . (3)

In what follows we’ll focus attention on α̂1, since its typically the case that

we’re preoccupied with assessing the possible causal effect of control variables,

like human capital, on growth. In the present case, α1 reflect the “true"

causal effect of human capital on growth. Does OLS allow us to identify this

important parameter?

To answer this question, its useful to note that the numerator of equation
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(3) can be rewritten, using equation (1), to yield

=
NX¡

α0 + α1hi + ui −
¡
α0 + α1h̄

¢¢ ¡
hi − h̄

¢
=

NX¡
α1
¡
hi − h̄

¢
+ ui

¢ ¡
hi − h̄

¢
= α1

NX¡
hi − h̄

¢2
+

NX
ui
¡
hi − h̄

¢
.

Next, substituting this equation back into equation (3)

α̂1 =
cov (gi, hi)

var (hi)
=

α1
PN ¡hi − h̄

¢2
+
PN ui

¡
hi − h̄

¢PN ¡hi − h̄
¢2

α̂1 =
cov (gi, hi)

var (hi)
= α1 +

PN ui
¡
hi − h̄

¢PN ¡hi − h̄
¢2 ,

which could also be stated, using the definitions from Section 1

α̂1 =
cov (gi, hi)

var (hi)
= α1 +

cov (ui, hi)

var (hi)
. (4)

Accordingly, OLS is dead on target if cov (ui, hi) = 0. But when is this

assumption violated?

2.1 Measurement Error

We assumed above — based on theory — that human capital affects growth.

The problem is that we cannot measure “human capital" directly. Thus, in

order to proceed we need some other variable which can proxy for what we

really have in mind. A candidate is (average) years of schooling in the pop-

ulation, e, since - conceivably - formal training builds up skills and thereby

human capital. But e may not capture the theoretical concept of human

capital fully. Accordingly, when we use e as a measure of human capital we

are probably making an error in measuring human capital. To formalize this,

let

ei = hi + vi, (5)
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where vi is white noise with variance σ2v. Observe that we maintain the

assumption that e is a reasonable proxy for h, in the sense that it “gets it

right" on average: ē = h̄.

Now suppose we substitute equation (5) into our true model, equation

(1) :

gi = α0 + α1 (ei − vi) + ui ≡ α0 + α1ei + ηi (6)

where the new error term is

ηi ≡ ui − α1vi.

The key thing to notice is that ηi depends on the measurement error vi. As

a consequence, if we estimate equation (6) we get (invoking formula (4) ):

α̂1 = α1 +
cov (ηi, ei)

var (ei)

= α1 +
cov (ui − α1vi, ei)

var (hi) + σ2v
,

where we have calculated var (ei) using equation (5).1 To push this issue

a little further we could proceed to calculate cov (ui − α1vi, ei). But at this

point it is easy to make out the sign of the covariance. First, suppose human

capital spur growth, so that α1 > 0. Now, if vi is positive, ui − α1vi is

“small", while ei becomes “large" (Cf. equation (5)). So the covariance

cov (ui − α1vi, ei) is negative. As a result: The OLS estimate becomes biased

towards zero, since α̂1 < α1.2

Is it always the case that measurement error imply that the OLS estimate

is biased towards zero? This is a question of some practical importance.

Suppose you are going over an empirical study. You quickly realize that

measurement error might be an issue in the case at hand. But the (OLS)

estimation results reveal that the parameters of interest are significantly dif-

ferent from zero. If indeed measurement error always leads to a downward

1In general, if we have the equation yi = ai + bxi it holds that var (yi) = var (ai) +
b2var (xi). The present case is the simpler one where b = 1.

2Notice that our assumption of α1 > 0 is completely unimportant for this conclusion.
If α1 < 0, the covariance will be positive, and the estimate is still biased towards zero.
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bias, you might feel inclined to conclude that the (true) causal effect is likely

to be even stronger than what the estimate reveal and certainly significant.

This can, however, be the wrong conclusion.

The concept of measurement error was illustrated above by the case where

a proxy variable is adopted. That is, a scenario where we cannot directly

measure the variable our theory tells us is relevant. In general, however,

measurement error arises as soon as data is of poor quality. In the interest

of clarity, imagine that ei isn’t a proxy variable at all. In stead, suppose

our theory tells us that ei is exactly the right hand side variable to use.

Consequently, we’ll entertain the idea that the “true model" is:

gi = α0 + α1ei + ui,

where ui is white noise. Even so, we might still be in “hot water" since

the data on years of schooling could be flawed, plain and simple. Perhaps

because the statistical agencies do not have the necessary micro data (ideally,

information on schooling for all citizens). Consequently, denote by ei the true

observation of years of schooling, while êi is the data the statistician hand

us. The difference between the two is a pure measurement error, vi (again,

white noise)

êi = ei + vi.

Now, suppose we go no further in making assumptions. If we go through

the exact same steps as above, in assessing the bias of the OLS estimate, we

would reach exactly the same conclusion: the OLS estimate will be biased

towards zero. (If this is not obvious, you should take a few minutes to

convince yourself that this statement is correct, before you proceed.)

So let’s try to make matters a bit “worse" in order to show how a new con-

clusion may emerge. Specifically, suppose there is some underlying variable,

zi, with the following properties

(A1)Wherever zi is “large", the measurement error, vi, is “small": v0i (zi) <

0.

(A2) Wherever zi is “large", the level of schooling, ei, is “large": e0i (zi) >

0.

5



(A3) zi is completely independent of the growth rate gi. That is, zi is

neither a determinant of growth, gi, nor is it affected by income growth.

If (A3) is violated we will be faced with other problems aside from the

measurement error — omitted variables and endogenous regressors, respec-

tively. We turn to such issues momentarily. But for now we would like to

side-step such complications.

The final assumption we make is that

∂ê

∂zi
= e0i (z) + v0i (z) > 0, (A4)

i.e. e0i (z) is larger in absolute value than v0i (z).

Our OLS estimate of α1 is

α̂1 = α1 +
cov (ui − α1vi (zi) , êi)

var (ei)
.

Under A1-A4; if we increase zi (i.e. move from a country with a low value for

z to another country with a high value) we will increase both ui−α1vi (zi) and
êi. Consequently the estimate will be biased upward, rather than towards

zero.

Hence if measurement error is not entirely random, the OLS estimate may

in fact be biased away from zero and thus overestimates the effect from — in

this case — years of schooling on growth. The case where the measurement

error is random is often referred to as "classical" measurement error.

2.2 Endogenous Regressors

Suppose we are able to wink the measurement error problem away. That

is, suppose e is the correct variable to use (theoretically), and that we can

measure it perfectly.

In stead, consider the possibility that people’s desire to attend school is

affected by how fast the economy is growing. Specifically, imagine that we

have the following true system

gi = α0 + α1ei + ui, (7)
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ei = β0 + β1gi + vi. (8)

Both ui and vi are white noise; in addition we’ll assume (to focus on the

main point) that they are completely independent of one another.

If we simply press the OLS bottom, estimating equation (7), while ignor-

ing equation (8) entirely, we get the following

α̂1 = α1 +
cov (ui, ei)

var (ei)
, (9)

our “standard result". But since ei is in fact endogenous (depends on gi),

the last term is non-zero. To see this, solve the system (7)-(8) for ei and you

obtain

ei =
β0 + β1α0 + β1ui + vi

1− α1β1
. (10)

Clearly, ei is not independent of ui. This is because of the feed back loop from

growth to education. If ui rises (for some reason) it will imply an increase in

gi which will work to raise ei through equation (8).

Gaining some geometrical intuition for this result might be illuminating.

Consider Figure 1, where the system (7)-(8) is illustrated in a (g, e) diagram.

Accordingly, g (e) represents equation (7), while e (g) represents equation

(8). For this illustration we assume that the slope of g (e) is greater than the

slope of e (g) ; α1 > 1/β1. Now, we can think of the picture as representing the

"equilibrium" outcome in a country in the sample, thus reflecting a specific

draw of the noise terms; ui = vi = 0, say. This gives us 1 data point:

(g∗, e∗) . Next imagine you were to draw another picture, for another country.

The difference would be that the values for u, v are different. As a result,

the equilibrium would lie somewhere else in the diagram. For example, if

ui > 0 while vi < 0 then it will be situated south-east of (g∗, e∗) . More

generally we know that g (e) will be shifting up and down with different

realizations of u, bounded by a maximum and a minimum value for u (and

therefore, the variance of u).3 Similarily the exact location of e (g) differ

across countries depending on the realization of v. The outer boundaries for

3The variance may be as large as you want, as long as it is finite.
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Figure 1: Schooling and growth when causality runs both ways.

the two functions (thus corresponding to the smallest and largest observation

of u and v, respectively) are illustrated by the dotted curves in Figure 2.

Now, suppose every observed data point correspond to an intersection point

between the two curves. That is, assume "reality" is an equilibrium outcome.

Then every data point will fall in the diamond shaped set: ABCD. The OLS

estimator then selects an interscept and slope such that the sum of deviations

from the associated line as small as possible. In practice this means a lineare

function similar to the "OLS- line" depicted in Figure 2. As you can see,

the slope will essentially be a convex combination of the slope of g (e) and

e (g); α1 and 1/β1, repectively. The weight on α1 and 1/β1 will in practice

depend on which of the two error terms exhibits the greater variance.4 Since

we don’t know the variances, there is no way we can recover α1 or β1.

Can we at least say something about the direction of the bias of α1?

4Figure 2 is essentially the case where the variance of u and v are identical. If the
variance of, say u, is greater than that of v the "diamond" changes shape. You can
convince yourself that the OLS slope estimate will be numerically smaller in this case.
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Figure 2: Getting nothing right using OLS.

Unfortunately, in general the answer is in the negative. The intuition can be

obtained geometrically. The case illustrated in Figure 2 is where the slope of

g (e) is larger than the slope of e (g) — α1 > 1/β1 > 0. Since the OLS estimate

is a convex combination of the two, our OLS estimate α̂1 ∈
³
1
β1
, α1
´
. In this

case we are clearly underestimating the "true" impact from e on growth.

But if 0 < α1 < 1/β1 the opposite is the case! The OLS estimate α̂1 will be

smaller than its "true value". Hence, without strong priors as to the relative

magnitude of education’s effect on growth and vice versa, we are unable to

assess whether the effect from education on growth is over- or underestimated

by OLS.5

In sum, if two variables are jointly endogenous OLS is no longer BLUE.

The direction of the bias, however, is often difficult to assess.

5Alternatively we can recover the same insight by looking at equation (10). It is
immediately clear that the sign of the covariance between e and u depends on the sign of
(1− α1β1)

−1. And the latter is positive (negative) iff α1 < 1/β1 (α1 > 1/β1), which (cf
equation (9)) implies that α̂1 > α1 (α̂1 < α1).
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2.3 Omitted Variables

Suppose education is in no way affected by growth, there is no measurement

error issues either. Are we home free? Not necessarily, unfortunately.

Another sort of bias, which however boils down to exactly the same thing

(i.e. the covariance between the right hand side variable and the disturbances

is non-zero), arises when we forget a variable which should have been in the

model.

To illustrate, while staying with out education example, suppose quality,

q, matters for growth as well. Hence, consider the possibility that the true

model is

gi = α0 + α1ei + α2qi + ui.

Next, suppose we ignore qi when we estimate the equation. Then, in effect,

the model we are estimating is

gi = α0 + α1ei + ηi

where ηi ≡ α2qi + ui contains the influence from quality. Our OLS estimate

for α1 is

α̂1 = α1 +
cov (ηi, ei)

var (ei)

= α1 +
cov (α2qi + ui, ei)

var (ei)
.

Now if the quality of the educational system tends to be higher in places

with more formal schooling then cov (α2qi + ui, ei) > 0, and we are overesti-

mating the importance of ei for growth. Of course, if the omitted variable

is negatively correlated with variables entering the right hand side variables,

then the opposite is the case — OLS will be biased downward.
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