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Abstract

The note touches upon the main difficulty involved in making “A" endogenous, and outlines
various strategies for accomplishing this task. In addition, some empirical studies on productivity
gains from internal and external learning, one plausible reason why endogenous growth may arise,
are summarized.

1 Making Growth Endogenous

We have made two important modelling choices up until now when developing growth

models. First, we have assumed that an aggregate production function exists, and that it

exhibits constant returns to scale (CRTS) to “rival" factors of production (capital and hu-

man input) while increasing returns to rival and non-rival factors (including "technology",

A):

Y = F (K,AL) , λY = F (λK,AλL) for λ > 0.

We based the assumption of CRTS to rival factors of production on the replication ar-

gument. Second, we have assumed that perfect competition in goods and factor markets

prevail.

Together these two assumptions imply that

Y = FLAL+ FKK = wL+RK, (1)

where w and R represents the wage and the return on capital, respectively. The first

equality follows from Eulers’ theorem on homogenous functions, while the second uses

that firm’s maximize profits, and that perfect competition prevail.

Endogenous growth requires us essentially to make “A” endogenous. But, there is

a sticky issue here: Who is going to pay for changes in A? Under CRTS and perfect

competition, compensating conventional factors of production exhausts output, as is clear
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from equation (1). Accordingly, firms will not be able to pay for it directly. How do we

deal with this problem?

Conceptually, there are five approaches to “solving" this dilemma.

1. Deviate from perfect competition. Models of endogenous growth through

(privately funded) research and development fall into this catagory. By allowing for

imperfect competition we may be able to motivate firm into paying for the required R&S

costs. This sort of an approach is discussed in B&S Ch. 6-8.

2. Households pay for it directly. In this case we may think of “A” as human

capital. Households invest in it, so as to increase their earning capabilities. In this process

endogenous growth may arise. Such theories are discussed in B&S Ch. 5.

3. Forget "A"! Employ Y = F (K,L) and assume that capital is a sufficiently

powerful growth engine: limk→∞ f 0 (k) > 0. As shown in B&S Ch. 4 this will work in

the sense that perpetual growth in income per capita is possible.1 Perfect competition is

consistent with this approach. But there are a couple of major drawbacks. First, recall

that limk→∞ f 0 (k) > 0 implies that limk→∞
f 0(k)k
f(k) = 1. The latter limit tells us that,

asymptotically, the production function exhibits CRTS in the reproducible production

factor: Capital. However, since markets are competitive f 0(k)k
f(k) = rk

y , capitals’ share in

total income. Hence, this formulation will lead to the problematic prediction that capitals’

share should approach one in the limit.

4. The government is paying (thus households, indirectly). Using tax revenue

for investments in infrastructure or to finance public research, the government could

ensure the expansion of A. This possibility is examined in B&S Ch. 4.4.

5. A rises as a by-product of investment and production effort. That is, when

perfectly competitive firm’s maximize profits, invest and produce, productivity rises as

a (welcome) “side effect". So the solution is: "no-one really pays for it." Nevertheless,

the evolution of A will be endogenous in that preferences and policies will determine its

path. For example, policies that affect the incentive to produce and invest, will through

the externality affect "technological knowledge" as well. A plausible source of such exter-

nal productivity gains is learning-by-doing (LBD). Models’ featuring endogenous growth

through LBD is examined in B&S Ch. 4.3. In the next section we look a some evidence

which suggest that LBD is a significant source of productivity growth.

2 Evidence on Learning

A very famous case study on learning, comes from the ship building industry. Specifically,

from the construction of the so-called Liberty ship during World War II. This cargo

vessel was produced on a number of independent ship yards over the period 1941-45.

Importantly for present purposes the specifications of the vessel was unaltered throughout

the war.
1Given certain additional assumptions on parameters and per period utility; as detailed at the lectures.
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Figure 1: Source: Lucas (1993) “Making a Miracle”. Econometrica, 61, 251-72

Figure 1 shows the relationship between the number of hours used to produce a Liberty

ship and the cumulated production for two separate yards. As is visually obvious, the

number of man-hours used to produce a ship declined rather dramatically as production

matured. Arguably, this decline can be ascribed to an improved ability of workers’ to

assemble the ships — i.e., be a consequence of learning-by-doing.

Still, a scatter-plot is not altogether convincing. For example, suppose more capital

(cranes and what not) were installed at the various yards during the war. This should

make workers more productive, and reduce the amount of hours required to produce a

ship. In addition, technological improvements — unrelated to learning — could be at work

(better cranes). To look at the "Liberty Ship miracle" a bit more carefully one would

have to resort to regression analysis.

2.1 Rapping’s study

Rapping (1965) attempts to quantify the gains from learning by estimating a Cobb-

Douglas production function on a pooled data set encompassing 15 ship yards for the

period 1941-45. Accordingly, he assume that total production at shipyard i, Yi, is a func-

tion of "technology", Ai, capital input, Ki (approximated by the number of "shipbuilding

ways" at each yard)2 and labor input, Li, (measured by hours worked):

Yi = AiK
φ
i L

δ
i ,

2A "shipbuilding way" refers to the location where the hulls are being assembled. One would expect
that other capital equipment might be correlated with the number of shipbuilding ways at any given
yard.
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where "technology" — or perhaps more fittingly : "productive knowledge" — depends on

cumulated production within each yard, Ỹ , exogenous technical change Tt = T0e
xt, and

a stochastic component, εi:

Ai = Ỹ β
i Ttεi.

The error term ln εi is assumed to be noise with the usual properties needed to estimate

the equation by OLS. Hence, taking logs and collecting terms yield the following equation

which may form the basis for estimation:

lnYi = λ0 + λ1 · time+ λ2 lnKi + λ3 lnLi + λ4 ln Ỹi + ui (2)

where the parameters to be estimated are:

λ0 ≡ lnT0;λ1 ≡ x;λ2 ≡ φ;λ3 ≡ δ;λ4 ≡ β,

while ui ≡ ln εi is the error term. The particularly interesting point estimate is λ̂4, which
measures how much learning contributed to output, i.e. the size of β.3 Before we review

the results a few cautious remarks are in order.

First, one should expect that measurement error is an issue in the present context;

both capital input and learning are undoubtedly measured with error. In isolation this

will tend to bias both λ̂2 and λ̂4 towards zero.

Second, we are not controlling for the quality of the labor force. Hence, we are

probably faced with an omitted variable problem as well. This too will bias our estimates

of, in particular, φ and δ.4 For example, if more capital were allocated to yards with a

better educated labor force, φ will be biased upward.

Finally, K and L could be endogenously determined in their own right. Specifically,

suppose that the yards were optimizing and imagine that a yard recives a positive pro-

ductivity chock (a "high" realization of εi). This should work so as to increase labor

demand and thus labor input. But this implies that the covariance between Li and the

error terms, ln εi, is non-zero (positive, as it were). If indeed this is the case then δ̂ will

tend to be overestimated, compared with its "true" value. A similar argument goes for φ

of course.

Bearing these considerations in mind, Figure 2 shows Rappings results. Row (7) and

(8) are comparable to the specification (2). The difference between (7) and (8) lies in the

measure used for Ỹ . Rapping measures cumulated output in three ways, corresponding

to his variables C1, C2 and C3. C1t ≡
Ps=t

s=0 Ys, C3t ≡
Ps=t−1

s=0 Ys, whereas C2 in a

convex combination of the two. Now if C1 is used, then Yt enters both the right hand

side, and the left hand side of the regression, which is likely to produce a spurious relation

between output and the learning variable. This is probably why Rapping focuses on C2

and C3. In row (7) the point estimate for β is reported to be 0.34. Its highly significant
3A “ ^" signifies the OLS estimator for the variable.
4It doesn’t seem terribly likely that the quality of the labor force (measured in terms of schooling)

would change very much over the relatively short period under consideration. Still, if it did, this trend
would affect the estimate for x and β.
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Figure 2: Source: Rapping, 1965.

and robust to the inclusion of a time trend. Indeed the time trend comes out negative.

The parameter values for δ and φ are 0.9 and 0.07 respectively. Both seem implausible.

As mentioned above, there might be several reasons why δ̂ and φ̂ should be biased in

either direction. The impact from measurement error might be very dominant, forcing φ̂

downward, whereas if L were endogenously determined (exhibiting a positive correlation

with ε), this could motivate the very high point estimate for its share.

From row (8) its clear that the point estimate is reduced by a factor of nearly three

when the measure of learning is changed from C2 to C3. It is still significant, however,

whereas the trend now is insignificant. The estimate φ̂ rises to a somewhat more plausible

level, while δ̂ remains essentially unchanged. In sum, Rappings results are clearly consis-

tent with the notion that learning took place at the Liberty ship yards; even controlling

for exogenous technical change and capital. Still, one may worry about the data used to

measure capital, and moreover, about the risk of omitted variables of various kinds.

A more recent study of the Liberty Ship yards is conducted by Thompson (2001).

The key innovations of the Thompson study are two fold. First, better data for capital

is collected, and he moreover attempts to correct for the utilization of capital over time.

Secondly, Thompson uses panel data techniques, which allow Ai to vary across yards. This

would in theory mediate the problem of omitted — slow moving — variables. Thompson

obtains δ̂ = 0.253 while φ̂ = 0.78; both of which seem much more plausible than Rapping’s

original estimates, and roughly consistent with constant returns to capital and labor.
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Interestingly, his point estimate for β is close to being an average of Rappings: 0.26.

Taken together Rapping’s study, and the more recent work of Thompson do seem

to imply that learning mattered for productivity. But how much? A common way of

expressing the size of the learning gain is in terms of learning rates.

2.2 Learning rates

Suppose we use the production function above, imposing constant returns δ = 1 − φ.

Then we know that the cost of producing one unit of output is given by the unit cost

function:5

MC =
1

A

³w
δ

´δ µ R

1− δ

¶1−δ
=

¡
w
δ

¢δ ³ R
1−δ

´1−δ
Ỹ β
i Tt

,

where the second equality follows from substituting for A, while ignoreing the error term,

εi.

Now, suppose you fix
¡
w
δ

¢δ ³ R
1−δ

´1−δ
and Tt. Then you can answer the following

question: "how much does marginal cost decline if cumulated output, Ỹ , doubles?" This

number represents the learning rate. In formal terms

MCỸ=2

MCỸ=1

= 2−β

or

1− MCỸ=2

MCỸ=1

=
MCỸ=1 −MCỸ=2

MCỸ=1

= 1− 2−β ≡ LR.

The estimated learning rate, LR̂, based on Thompson’s estimate of β is:

1− 2−0.26 ≈ 0.16.

Hence, every time output doubles, marginal costs decline by approximately 16 percent.

2.3 Dimensions of Learning, and the need for more evidence

Ultimately we would like to argue that LBD is of macroeconomic importance. Moreover,

if we are to be able to maintain our assumption of perfect competition, firm’s should

not internalize the gains from learning.6 If the productivity of a firm depends on own

learning (i.e. own cumulated output), then one speaks of internal learning. The work

of Thompson and Rapping suggest, that this form of learning was indeed significant in

the Liberty shipyards. Their studies have bearing solely on internal learning, since the

measure of learning used in both is the cumulated output within each shipyard. Now,

Liberty shipyards may or may not have internalized these gains. But is seems plausible

that most firm’s operating under less special circumstances will (ultimately at least) pick

up on this mechansim. Hence, albeit suggestive, the two studies above do not document

learning effects of a nature that can motivate our theoretical approach.
5C.f. the Appendix.
6Remember that we have increasing returns to K,L and A; where A will capture learning. Perfect

competition and increasing returns are hard to reconcile.
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In stead we need to find evidence in favor of external learning, i.e. production experi-

ence of one firm spills over to other firms, operating in the same industry within the same

country, or even in another country. Its much harder to argue convincingly that firms

systematically will internalize external learning. Consequently, if external learning can

be documented then this would provide us with some empirical foundations for arguing

that firms’ take LBD gains as given, and ultimately, that the market solution may be

inefficient.

The next section summarizes the basic approach and (some of the) main results from

an empirical study aimed at gauging the size of such external learning gains. This entails

a change of scenery, however, from the ship yards of the second world war, to the high

tech semiconductor industry of the present day.

2.4 Irwin and Klenow’s study

Irwin and Klenow (1994) work with a panel data set comprising 32 firms, situated in var-

ious countries, and producing various kinds of chips during the period 1974-92. Focusing

on the production of semiconductor chips has the advantage that, like the liberty ship,

the nature of the product is obervable and can be held fixed in the analysis. Whereas

Rapping and Thompson has a production function as point of departure for their analysis,

Irwin and Klenow goes through prices, and costs directly.

To fix ideas, suppose we are working with the same production function that Rapping

introduced. Then, marginal costs are

MCt =
1

At

³wt

δ

´δ µ Rt

1− δ

¶1−δ
≡ Ψt

At
.

If learning increases A, then this should work to reduce marginal costs — given Ψ. The

problem is that marginal costs are not observable. But Irwin and Klenow argue that they

can be inferred, under certain assumptions. Specifically, suppose all semiconductor firms

are maximzing profits, but that imperfect competition prevail, and that firms engange in

Cournot competition. Then the following relationsship between marginal costs and the

price should hold7

MCi = p

µ
1 +

si
η

¶
,

where p is the market price of any given chip, si is the market share of firm i and η is

the elasticity of demand. Now, for empirical purposes, p and si are both observables, and

estimates for η can be obtained. In most of their analysis Irwin and Klenow work with

η = −1.8 (but they argue that their results are not sensitive to plausible variation in this
parameter). In sum, all the variables on the right hand side of the equation above are

observables (or obtainable). Combining them allow one to infer MC. So putting the two

above equations together yield

p

µ
1 +

si
η

¶
=
Ψ

A
.

7See e.g. Tirole, 1993. "Industrial Organization", MIT press, Ch. 5.4.
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Irwin and Klenow do not have data on Ψ, i.e factor prices. In order to approximate

the level of costs associated with conventional inputs they use the consumer price index

(CPI).

Now we need to specify A; total factor productivity. Irwin and Klenow assume that

Ait = viE
β
ite

uit ,

where vi is a (firm specific) constant, Ei refers to production experience while uit is

specified as a stochastic process exhibiting a trend, ment to capture exogenous technical

changes.8 As for Ei they assume

Eit = Ỹi + α
³
Ỹc − Ỹi

´
+ γ

³
Ỹw − Ỹc

´
.

Ỹi represents cumulated output within firm i, whereas Ỹc and Ỹw refers to cumulated

output within the same industry and country, and to cumulated output world wide,

respectively. Accordingly, α and γ refers to external learning across firms in any given

country (α), and across countries (γ). Putting all of this together leads to the following

specification:

ln

pt

³
1 + sit

η

´
CPIt

 = λ0 + λ1 ln
³
Ỹit + λ2

³
Ỹct − Ỹit

´
+ λ3

³
Ỹwt − Ỹct

´´
+ uit

where the parameters to be estimated relate to the underlying model in the following way

λ0 = − ln vi;λ1 = −β;λ2 = α;λ3 = γ,

while uit includes a time trend and the error term. This is not a lineare expression,

so Irwin and Klenow invoke an iterative estimation approach known as nonlineare least

squares. Their estimates for β,α and γ are presented in the Table below (standard errors

in parenthesis). First, it is interesting to note that the estimated elasticity of production

experience wrt to costs (β) tend to be in the ball park of what the estimates obtained by

Thompson and Rapping for the Liberty Ship yards: between 0.2 and 0.4. Note also that

external learning tend to be a significant source of cost reduction in the semi-conductor

industry. Indeed, even world cumulated output seems to impact on individual firm costs —

the marginal impact is about as high as the spillover from firms within the same country.

Consequently, the Irwin and Klenow study supports the view that learning spillovers are

in fact a significant source of increased productivity.

appendix: the cost function

The objective is to minimize total costs, subject to the production technology:

minTC = RK + wL

8For exact details on this term see the paper which is downloadable from the course web-site.
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Figure 3: Source: Irwin and Klenow (1994)

st

Y = AKαL1−α.

The lagrangian:

L = RK + wL+ λ
¡
Y −AKαL1−α

¢
We have three first order conditions:

∂L
∂K

: λαKα−1L1−α = α
Y

K
= R

m
K = λα

Y

r

∂L
∂L

: λ (1− α)KαL−α = λ (1− α)
Y

L
= w

m
L = λ (1− α)

Y

w

and

Y = AKαL1−α.

Substituting ∂L
∂K and ∂L

∂L into the production function

Y = A

µ
λ
αY

R

¶αµ
λ
(1− α)Y

w

¶1−α
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allows us to solve for λ:

λ =

¡
R
α

¢α ³ w
(1−α)

´1−α
A

.

substituting this back into ∂L
∂K and ∂L

∂L¡
R
α

¢α ³ w
(1−α)

´1−α
A

α
Y

K
= r

¡
R
α

¢α ³ w
(1−α)

´1−α
A

(1− α)
Y

L
= w

and finally using that

TC = wL+ rK =


¡
R
α

¢α ³ w
(1−α)

´1−α
A

(1− α)
Y

L

L+


¡
R
α

¢α ³ w
(1−α)

´1−α
A

α
Y

K

K

=

¡
R
α

¢α ³ w
(1−α)

´1−α
A

(1− α)Y +

¡
R
α

¢α ³ w
(1−α)

´1−α
A

αY

We get

TC =

¡
R
α

¢α ³ w
(1−α)

´1−α
A

Y.

Marginal cost are

MC =
∂TC

∂Y
=

¡
R
α

¢α ³ w
(1−α)

´1−α
A

,

and independent of the level of production, by virtue of CRTS.
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