Endogenous growth through R\&D

Carl-Johan Dalgaard
Lecture notes
May[2007

Final goods sector

Firm is technology

$$
Y_{i}=A L_{i}^{1-\alpha} \sum_{j}^{N} x_{i j}^{\alpha}
$$

assume for a moment $x_{i j}=x_{i} \Rightarrow Y_{i}=A L_{i}^{1-\alpha} x_{i}^{\alpha} N$. Observe

1. CRTS in $\mathrm{N}=\#$ int. goods $=\#$ "ideas". $\mathrm{N} \uparrow$ could be thought to capture specialization.
2. Increasing x would not allow for perpetual growth. Diminishing returns
3. CRTS in x and L (rival inputs)

Final goods sector (Cont'ned)

The max problem is to choose

$$
\left\{\left\{x_{j i}\right\}_{j=1}^{N}, L_{i}\right\}=\arg \max A L_{i}^{1-\alpha} \sum_{j}^{N} x_{i j}^{\alpha}-w L_{i}-\sum^{N} p_{j} x_{i j}
$$

FOC

$$
\begin{gathered}
(1-\alpha) \frac{Y_{i}}{L_{i}}=w \\
\alpha A L_{i}^{1-\alpha} x_{i j}^{\alpha-1}=p_{j} \text { for all } j
\end{gathered}
$$

Notice the demand for the j th intermediate good is the same across all
i. So aggregate demand for j the intermediate good

$$
x_{j}^{d}=\sum_{i} x_{i j}=\sum\left(\frac{\alpha A}{p_{j}}\right)^{\frac{1}{1-\alpha}} L_{i}=\left(\frac{\alpha A}{p_{j}}\right)^{\frac{1}{1-\alpha}} \underbrace{\sum_{i} L_{i}}_{=L}
$$

Intermediate good sector

Use 1 unit of output to produce 1 unit of the intermediate good

$$
\max _{p_{j}, x_{j}}\left(p_{j}-1\right) x_{j}
$$

s.t $\alpha A L^{1-\alpha} x_{j}^{\alpha-1}=p_{j}$.

Total revenue:

$$
p_{j} x_{j}=\alpha A L^{1-\alpha} x_{j}^{\alpha}
$$

So

$$
M R=\alpha^{2} A L^{1-\alpha} x_{j}^{\alpha-1}=M C=1
$$

Hence, optimal quantity

$$
x_{j}=\alpha^{\frac{2}{1-\alpha}} A^{\frac{1}{1-\alpha}} L=\bar{x} \text { for all } j
$$

Intermediate good sector (Cont'ned)

Monopoly price (substitute into demand curve)

$$
p_{j}=\alpha A L^{1-\alpha}\left(\alpha^{\frac{2}{1-\alpha}} A^{\frac{1}{1-\alpha}} L\right)^{\alpha-1}=\alpha^{-1}=\bar{p} \text { for all } j
$$

Observe $p>M C$, so α basically paramterizes the mark-up.
Profits:

$$
\pi_{j}=\left(p_{j}-1\right) x_{j}=\left(\frac{1}{\alpha}-1\right) \bar{x}=\bar{\pi}
$$

Finally, total value of a patent

$$
V(t)=\int_{t}^{\infty} \bar{\pi} e^{-\int_{t}^{v} r_{\tau} d \tau} d v
$$

R\&D sector

Aggregate production technology

$$
\dot{N}=Y^{R} / \eta
$$

or: using 1 unit of output creates $1 / \eta$ ideas.
Now, we could define $\sigma_{R} Y=Y^{R}$. Then we have

$$
\dot{N}=\left[\sigma_{R} / \eta\right] Y
$$

which is basically a "MRW" assumption; now for R\&D. "Lab equipment" approach. Also, note that given symmetrical equilibrium:

$$
\dot{N}=\left[\sigma_{R} / \eta\right] Y=\left[\sigma_{R} / \eta\right] A L^{1-\alpha} N \bar{x}^{\alpha} .
$$

Another way to think about the assumption: $R \& D$ uses σ^{R} fraction of economy's resources (L, x)

R\&D sector (cont'ned)

To produce 1 idea, use η units of output.
Value of 1 idea: $V(t)$.
For equilibrium $V(t)=\eta$. (suppose otherwise)
Given this

$$
\eta=V(t)=\int_{t}^{\infty} \bar{\pi} e^{-\int_{t}^{v} r_{\tau} d \tau} d v
$$

which implies $r_{\tau}=r$. Thus (solving the integral)

$$
\frac{\bar{\pi}}{\eta}=r,
$$

the equilibrium return. Complete solution for the real rate of interest

$$
r=\frac{\bar{\pi}}{\eta}=\frac{1-\alpha}{\alpha \eta} \alpha^{\frac{2}{1-\alpha}} A^{\frac{1}{1-\alpha}} L
$$

Households

$$
\max \int_{0}^{\infty} \frac{c_{t}^{1-\theta}}{1-\theta} L e^{-\rho t}
$$

s.t.

$$
\begin{gathered}
c(t) \geq 0 \\
\dot{b}=r b+w-c, b_{0} \text { given } \\
\lim _{t \rightarrow \infty} b_{t} e^{-r t} \geq 0
\end{gathered}
$$

Standard problem, leads to the FOC

$$
\dot{c} / c=\frac{1}{\theta}(r-\rho), \quad \lim _{t \rightarrow \infty} b_{t} \lambda_{t}=0
$$

Equilibrium

First, note that we can aggregate so as to get GDP

$$
\begin{aligned}
Y_{i} & =A L_{i}^{1-\alpha} \sum_{j}^{N} x_{i j}^{\alpha} \underset{\text { sym. eq }}{=} A L_{i}^{1-\alpha} N \bar{x}_{i}^{\alpha} \\
& =A\left(\frac{L_{i}}{\bar{x}_{i}}\right)^{-\alpha} N L_{i}
\end{aligned}
$$

since all firms face same factor prices w, p_{j} and use the same technology $\left(\frac{L_{i}}{\overline{x_{i}}}\right)^{-\alpha}$ is the same

$$
Y=\sum_{i} Y_{i}=A\left(\frac{L_{i}}{\bar{x}_{i}}\right)^{-\alpha} N \sum L_{i}=A \bar{x}^{\alpha} N L^{1-\alpha}
$$

Note: "AK model". No transitional dynamics + balanced growth.

Equilibrium

The Keynes-Ramsey rule pins down the growth rate then

$$
\gamma=\frac{1}{\theta}(r-\rho)=\frac{1}{\theta}\left(\frac{\bar{\pi}}{\eta}-\rho\right)=\frac{1}{\theta}\left(\frac{11-\alpha}{\eta} \bar{x}-\rho\right)
$$

where $\bar{x}=\alpha^{\frac{2}{1-\alpha}} A^{\frac{1}{1-\alpha}} L$.
Hence, at any given point in time, income per capita

$$
\begin{aligned}
Y / L & =A \bar{x}^{\alpha} L^{-\alpha} N \\
& =A\left(\alpha^{\frac{2}{1-\alpha}} A^{\frac{1}{1-\alpha}} L\right)^{\alpha} L^{-\alpha} N \\
Y / L & =A^{\frac{1}{1-\alpha}} \alpha^{\frac{2 \alpha}{1-\alpha}} N(0) e^{\gamma t}
\end{aligned}
$$

Observations: (1) $\eta \uparrow \Rightarrow \gamma \downarrow$. (2) $L \uparrow \Rightarrow \gamma \uparrow$.

Planner problem

$$
\max \int_{0}^{\infty} \frac{c_{t}^{1-\theta}}{1-\theta} L e^{-\rho t}
$$

s.t.

$$
c(t) \geq 0, x \geq 0
$$

the resource constraint

$$
Y=c L+N x+\eta \dot{N} \Leftrightarrow \dot{N}=\frac{1}{\eta}[Y-c L-N x]
$$

aggregate production function

$$
\begin{gathered}
Y=A L^{1-\alpha} x^{\alpha} N \\
N \geq 0 \text { for all } t
\end{gathered}
$$

Planner problem (cont'ned)

Hamiltonian:

$$
\begin{aligned}
H(c, x, N, \lambda, t) & =\frac{c_{t}^{1-\theta}}{1-\theta} L e^{-\rho t}+\lambda \frac{1}{\eta}[Y-c L-N x] \\
c & : c^{-\theta} L e^{-\rho t}=\frac{\lambda}{\eta} L \\
x & : \frac{\lambda}{\eta}\left[\frac{\partial Y}{\partial x}-N\right]=0 \\
N & : \lambda \frac{1}{\eta}\left[\frac{\partial Y}{\partial N}-x\right]=-\dot{\lambda}
\end{aligned}
$$

+TVC. As usual, we can use FOC wrt c,N to derive the K-R rule

$$
\frac{\dot{c}}{c}=\frac{1}{\theta}\left[\frac{1}{\eta}\left(\frac{Y}{N}-x\right)-\rho\right]
$$

Planner problem (cont'ned)

From the FOC wrt $x: \frac{\partial Y}{\partial x}-N=0$, or

$$
\frac{\partial Y}{\partial x}=\alpha \frac{Y}{x}=N \Leftrightarrow \frac{Y}{N}=\frac{x}{\alpha}
$$

inserted into the K-R rule

$$
\left(\frac{\dot{c}}{c}\right)^{s p}=\frac{1}{\theta}\left[\frac{1}{\eta}\left(\frac{1-\alpha}{\alpha}\right) x^{s p}-\rho\right]
$$

structurally identical to the decentralized solution; x 's level will differ however.

Use the production function

$$
\frac{Y}{N}=A L^{1-\alpha} x^{\alpha}=A L^{1-\alpha}\left(\alpha \frac{Y}{N}\right)^{\alpha} \Leftrightarrow \frac{Y}{N}=A^{\frac{1}{1-\alpha}} \alpha^{\frac{\alpha}{1-\alpha}} L
$$

Finally, by $\frac{Y}{N}=\frac{x}{\alpha}$

$$
x^{s p}=\alpha A^{\frac{1}{1-\alpha}} \alpha^{\frac{\alpha}{1-\alpha}} L=A^{\frac{1}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} L
$$

Planner problem (cont'ned)

The full solution

$$
\gamma^{s p}=\frac{1}{\theta}\left[\frac{1}{\eta}\left(\frac{1-\alpha}{\alpha}\right) x^{s p}-\rho\right]
$$

where $x^{s p}=A^{\frac{1}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} L$. Output

$$
\begin{aligned}
(Y / L)^{s p} & =A\left(x^{s p}\right)^{\alpha} L^{-\alpha} N=A\left(A^{\frac{1}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} L\right)^{\alpha} L^{-\alpha} N \\
& =A^{\frac{1}{1-\alpha}} \alpha^{\frac{\alpha}{1-\alpha}} N
\end{aligned}
$$

the market solution

$$
\gamma^{m}=\frac{1}{\theta}\left(\frac{11-\alpha}{\eta} \bar{x}-\rho\right)
$$

where $\bar{x}=A^{\frac{1}{1-\alpha}} \alpha^{\frac{2}{1-\alpha}} L$,

$$
(Y / L)^{m}=A^{\frac{1}{1-\alpha}} \alpha^{2 \cdot \frac{\alpha}{1-\alpha}} N
$$

Planner problem (cont'ned): Comparison

Key thing to notice: $x^{s p} \cdot \alpha^{1 /(1-\alpha)}=\bar{x}$.
So, since

$$
r^{m}=\frac{1-\alpha}{\alpha} \bar{x}
$$

it follows that $r^{m}<r^{s p}$, and therefore $\gamma^{m}<\gamma^{s p}$. In addition: the level is off as well.

1. Static monopoly distortion: To few intermediate goods are produced, $\bar{x}<x^{s p}$. Level of output too low.
2. Also implies too low a real rate of return; dynamic distortion.

Policy

Key thing to fix: $\bar{x}=x^{s p}$. This will ensure both static and dynamic efficiency since $\bar{x}=x^{s p} \Rightarrow r^{m}=r^{s p}, \gamma^{m}=\gamma^{s p}$ and in additon $(Y / L)^{s p}=(Y / L)^{m}$.
EX: subsidies final goods production.
Modified profit maximization problem

$$
\left\{\left\{x_{j i}\right\}_{j=1}^{N}, L_{i}\right\}=\arg \max (1+\tau) A L_{i}^{1-\alpha} \sum_{j}^{N} x_{i j}^{\alpha}-w L_{i}-\sum^{N} p_{j} x_{i j}
$$

where τ is the subsidy. Demand for good j

$$
(1+\tau) \alpha x_{i j}^{\alpha-1} A L_{i}^{1-\alpha}=p_{j} .
$$

As before, all firms face same demand, so aggregate demand:

$$
(1+\tau) \alpha x_{j}^{\alpha-1} A L^{1-\alpha}=p_{j} .
$$

Policy

Consider intermediate goods. Total revenue

$$
(1+\tau) \alpha x_{j}^{\alpha} A L^{1-\alpha}=p_{j} x_{j}
$$

Marginal revenue $=$ marginal cost (optimal quantity)

$$
M R=(1+\tau) \alpha^{2} x_{j}^{\alpha-1} A L^{1-\alpha}=M C=1
$$

thus

$$
x_{j}=\bar{x}=\left(\alpha^{2}(1+\tau)\right)^{\frac{1}{1-\alpha}} A^{\frac{1}{1-\alpha}} L .
$$

So $\bar{x}=x^{s p}=A^{\frac{1}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} L$ obviously require

$$
\alpha^{2}(1+\tau)=\alpha \Rightarrow \tau=\frac{1-\alpha}{\alpha}
$$

finance by lump sum taxes.
Alternative: Subsidize purchases of $x_{j}:(1+\tau) A L_{i}^{1-\alpha} \sum_{j}^{N} x_{i j}^{\alpha}-$ $w L_{i}-(1-\tau) \sum^{N} p_{j} x_{i j}$. Here you'll find $\tau=(1-\alpha)$.

A Policy which doesn't work

R\&D subsidy. Imagine you subsidize R\&D outlays. So, in order to produce 1 idea, now requires $(1-\tau) \eta$ units of output. This means

$$
r^{m}=\frac{\bar{\pi}}{\eta(1-\tau)}=\left(\frac{1-\alpha}{\alpha}\right) \frac{\bar{x}}{\eta(1-\tau)},
$$

where $\bar{x}=\alpha^{\frac{2}{1-\alpha}} A^{\frac{1}{1-\alpha}} L$. Clearly, we can choose τ such that $r^{m}=r^{s p}=$ $\frac{1}{\eta}\left(\frac{1-\alpha}{\alpha}\right) A^{\frac{1}{1-\alpha}} \alpha^{\frac{1}{1-\alpha}} L$.

But, the monopoly distortion is still there $\bar{x}<x^{s p}$.
As a result: $(Y / L)^{m}<(Y / L)^{s p}$. R\&D subsidies fix the dynamic inefficiency, but not the static monopoly distortion.

