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The problem at hand (time indices suppresed):
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Standard calculations leads to
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i.e. the Keynes-Ramsey rule. But what about 9Y/0G and, equally important,
Y /OK?
Total differentiation of the production function yields:
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Isolate dY:




noting that
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implies that:
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First, we thereby have
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Denote the G/Y ratio which fulfills this equation by 7°7

fr@n)y A =7P) = f(r7).
Next, regarding dY/dK :
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Using that 7 = 7°P
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and that from dY/dG =1
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it follows that
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If we insert this into the Keynes-Ramsey rule

1=5 (=TT ) =6 ).

where 7°P fulfills, to repeat
F e ATy = f (7).

The latter condition is exatly equal to the condition ensuring "maximum"
growth in the market economy, since the market solution is

1=5 (A=) —5-p)
and 5
=l A+ ()=0
thus
L=7)f () = F (). (2)

Comparing equation (1) with equation(2) immediately yield the insight that
TP = 1%,

Botton line: The market solution (where 7 is selected such that it maximizes
growth, 7 = 7*) equals the planners solution, where 7 = 75P.



