THE UZAWA LUCAS MODEL

Carl-Johan Dalgaard

May 2007

SOCIAL PLANNER PROBLEM

In this version of the model (Cf B\&S 5.2.2) there are no externalities. Hence, we go straight at the Social planner problem

$$
\begin{gathered}
\max \int_{0}^{\infty} \ln c_{t} e^{-\rho t} d t \\
c_{t} \geq 0, u_{t} \geq 0 \\
\dot{K}=Y-C-\delta K \\
Y=K^{\alpha}(u H)^{1-\alpha} \\
\dot{H}=B(1-u) H-\delta H \\
K_{t} \geq 0, H_{t} \geq 0 \text { for all } \mathrm{t}
\end{gathered}
$$

Control v.:
State v.:

The Hamiltonian

$$
\begin{aligned}
& H\left(c, u, H, K, \lambda_{K}, \lambda_{H}, t\right) \\
= & \ln c_{t} e^{-\rho t}+\lambda_{K}\left[K^{\alpha}(u H)^{1-\alpha}-C-\delta K\right]+\lambda_{H}[B(1-u) H-\delta H]
\end{aligned}
$$

FOC

$$
\begin{gathered}
c: \frac{1}{c} e^{-\rho t}=\lambda_{k} \\
u: \lambda_{k}(1-\alpha) \frac{Y}{u}=\lambda_{H} B H \\
H: \lambda_{K}(1-\alpha) \frac{Y}{H}+\lambda_{H}[B(1-u)-\delta]=-\dot{\lambda}_{H} \\
K: \lambda_{K}\left[\alpha \frac{Y}{K}-\delta\right]=-\dot{\lambda}_{K}
\end{gathered}
$$

Usual manipulations lead to the K-R rule

$$
\frac{\dot{C}}{C}=\gamma_{C}=\alpha \frac{Y}{K}-\delta-\rho
$$

in addition we have

$$
\gamma_{H}=B(1-u)-\delta
$$

and

$$
\gamma_{K}=\frac{Y}{K}-\frac{C}{K}-\delta
$$

A Balanced growth path is quantities $\{Y, C, H, K, u\}_{0}^{\infty}$ and prices $\left\{\lambda_{K}, \lambda_{H}\right\}_{0}^{\infty}$ such that $\gamma_{j}=\gamma_{i}$ for all $i \neq j$ where $i, j=Y, C, H, K$; $\lambda_{K} / \lambda_{H}$ is constant and $u=$ constant.
Our strategy is simply to impose this requirement, and derive the growth rate of the economy as well as $u=u^{*}$.

Step 1: Find $\alpha(Y / K)^{*}$
Use H_{u}^{\prime} :

$$
\frac{\lambda_{k}}{\lambda_{H}}=\frac{B u H}{(1-\alpha) Y}
$$

and H_{H}^{\prime}

$$
\begin{aligned}
-\gamma_{\lambda_{H}} & =\frac{\lambda_{K}}{\lambda_{H}}(1-\alpha) \frac{Y}{H}+B(1-u)-\delta \\
& =\frac{B u H}{(1-\alpha) Y}(1-\alpha) \frac{Y}{H}+B(1-u)-\delta=B-\delta
\end{aligned}
$$

Finally, imposed balanced growth: $\gamma_{\lambda_{H}}=\gamma_{\lambda_{K}}$ and use H_{K}^{\prime}

$$
-\gamma_{\lambda_{K}}=\alpha\left(\frac{Y}{K}\right)^{*}-\delta=-\gamma_{\lambda_{H}}=B-\delta
$$

Hence

$$
\alpha\left(\frac{Y}{K}\right)^{*}=B
$$

Observe that this implies $\gamma_{K}^{*}=\gamma_{Y}^{*}$, and that the growth rate of C

$$
\gamma_{C}^{*}=B-\delta-\rho .
$$

Step 2: Show $\gamma_{K}^{*}=\gamma_{C}^{*}=\gamma_{Y}^{*}$. This follows since:

$$
\gamma_{K}^{*}=\left(\frac{Y}{K}\right)^{*}-\left(\frac{C}{K}\right)^{*}-\delta
$$

so $\gamma_{K}^{*}=\gamma_{C}^{*}=\gamma_{Y}^{*}$.

Step 3: get u^{*}
Begin by noting that (from H_{c}^{\prime})

$$
\frac{\lambda_{k}}{\lambda_{H}}=B \frac{u H}{(1-\alpha) Y}
$$

So $\frac{\lambda_{k}}{\lambda_{H}}=$ constant requires H / Y to be constant, for u constant. Hence $\gamma_{H}^{*}=\gamma_{Y}^{*}=\ldots=\gamma_{c}^{*}$.
Next, use \dot{H} equation

$$
\gamma_{H}^{*}=B\left(1-u^{*}\right)-\delta=\gamma_{Y}^{*}=B-\delta-\rho
$$

Which leads to

$$
u^{*}=\rho / B
$$

which completes the solution for the balanced growth path

Some remarks on transitional dynamics

Consider the imbalance effect noted in the "simple" Uzawa-Lucas model. We need to figure out the transitional dynamics of Y / K; then we will know how C behaves, and as it turns out, $Q \equiv Y+\lambda_{H} \dot{H}$
From the production function we find that

$$
\frac{Y}{K}=\left(\frac{u H}{K}\right)^{1-\alpha}
$$

in addition H_{u} gives us

$$
\begin{aligned}
\frac{\lambda_{k}}{\lambda_{H}} & =B \frac{u H}{(1-\alpha) Y}=B \frac{u H / K}{(1-\alpha) Y / K}=B \frac{(Y / K)^{1 /(1-\alpha)}}{(1-\alpha) Y / K} \\
& =\frac{B}{1-\alpha}(Y / K)^{\frac{\alpha}{1-\alpha}}
\end{aligned}
$$

Hence, $\gamma_{\frac{\lambda_{k}}{\lambda_{H}}}=\frac{\alpha}{1-\alpha} \gamma_{Y / K}$.

Now $-\gamma_{\lambda_{H}}=B-\delta$ and $-\gamma_{\lambda_{K}}=\alpha \frac{Y}{K}-\delta$. Hence, using this and the fact that $\gamma_{\frac{\lambda_{k}}{\lambda_{H}}}=\frac{\alpha}{1-\alpha} \gamma_{Y / K}$:

$$
\gamma_{\lambda_{K}}-\gamma_{\lambda_{H}}=\frac{\alpha}{1-\alpha} \gamma_{Y / K}=-\alpha \frac{Y}{K}+\delta+B-\delta
$$

so

$$
\gamma_{Y / K}=\frac{1-\alpha}{\alpha}\left[B-\alpha \frac{Y}{K}\right]=(1-\alpha)\left[\frac{B}{\alpha}-\frac{Y}{K}\right]
$$

