
Technical Change and the Distribution of Firm

Growth∗

Roberta Distante† Ivan Petrella‡ Emiliano Santoro§

April 1, 2014

Abstract

We examine the effects of aggregate technology shocks on U.S. quoted com-

panies’ growth rates of real sales. Technical change does not affect all firms in

the same way, but it reflects a marked reallocation of probability mass over the

growth domain. This fact has major implications for the amplification of shocks ‘in

the aggregate’. We also highlight some distinctive features of the transmission of

consumption-specific and investment-specific technology improvements to the cross

section of company growth rates.
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1 Introduction

Over the last two decades increasing interest has been devoted to understanding how

microeconomic decisions affect the macroeconomy. Caballero (1992) has argued that

probability theory imposes strong restrictions on the joint behavior of a large number

of units that are less than fully synchronized. More recently, a number of authors have

acknowledged the importance of tracking the business cycle behavior of firm-level dis-

persion over several economic dimensions, such as investment, sales growth, productivity

and price-setting. Complementing the study of major macroeconomic aggregates with

the analysis of the business cycle from the cross section has proven to be an impor-

tant disciplining device for heterogeneous firm models (see, e.g., Bachmann and Bayer,

2011). This paper examines the transmission of aggregate shocks to firms’technology on

their growth dynamics. It does so by estimating the quantiles of U.S. quoted companies’

growth rates of real sales, conditioning them on both firm-specific characteristics and al-

ternative measures of technical change. Unlike the traditional approach —which focuses

on a restricted subset of unconditional moments —we characterize the cyclical behavior

of the entire density of firm growth, as well as its response to shocks that are commonly

regarded as important drivers of the business cycle. According to our evidence, shifts and

contortions in the density of firm growth play a crucial role in shaping macroeconomic

fluctuations, making a strong case for business cycle models that emphasize the role of

microeconomic adjustment for aggregate dynamics (e.g., Caballero et al., 1995, Caballero

and Engel, 1999, Bachmann et al., 2013).

Historically, a great deal of attention has been devoted to exploring the static prop-

erties of the distributions of firm size and growth. A number of theoretical and empirical

contributions have focused on the assessment of the theoretical proposition known as

Gibrat’s law (Gibrat, 1931), which predicts randomness of firm growth rates.1 Until re-

cently, this literature has never taken a business cycle standpoint, so as to examine the

role of firm-level size and growth in the genesis and propagation of business fluctuations.

In this respect, Gabaix (2011) represents a remarkable exception, as he shows how idio-

syncratic shocks to a handful of large firms explain a non-trivial fraction of aggregate
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fluctuations if the distribution of firm size is fat-tailed and the central limit theorem

breaks down. The present paper takes a different path, exploring the transmission of

aggregate technology shocks to the entire cross-section of firms in the COMPUSTAT

dataset. In doing so, we acknowledge the importance of allowing for asymmetric time-

variation in the density of company growth rates, as it is warranted by recent findings of

Holly, Petrella, and Santoro (2013). According to this study, systematic changes in the

density display leading properties with respect to the business cycle, so that shifts in the

probability mass may propagate and amplify macroeconomic fluctuations, as originally

hinted by Caballero (1992) and Caballero and Engel (1992, 1993).

We appreciate marked heterogeneity in the response of firms to productivity shocks.

Technical change induces a divergence between the median and the mean growth rate,

with the latter displaying greater responsiveness. The resulting swings in the skewness

reflect a substantial reallocation of probability mass on either side of the density, so that

aggregate disturbances do not simply reflect into a spread preserving shift in the mean

of the distribution. We also highlight sizeable differences in the cross-sectional respon-

siveness to changes in consumption goods technology and investment goods technology.

From an aggregate viewpoint, we report evidence in line with Basu, Fernald, Fisher, and

Kimball (2013), who show that consumption-technology improvements tend to be expan-

sionary, while investment-technology improvements are contractionary at short horizons.

Conditional quantiles help interpreting these facts. While a technological advance in the

production of consumption goods initially tends to favor a wider group of firms, positive

shocks to investment goods technology only benefit a relatively small part of the popu-

lation of firms —those which perform the best. Such differences point to the existence of

implementation lags and fixed costs entailed in the adoption of a new technology for the

production of investment goods.

A large body of theoretical and empirical literature is expanding around the analysis

of the business cycle from the cross section.2 In this respect, the importance of our

results traces back to the core implications for designing and validating heterogeneous

firm business cycle models. From an empirical viewpoint, we show that resorting to
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methods that go “beyond the mean”may unveil relevant information when firm-level

heterogeneity is pervasive and matters for the transmission of aggregate disturbances.

We demonstrate that neither shifts in the location of the density nor scale shifts (i.e.,

changes in the degree of dispersion) play a key role in the amplification of technology

shocks. By contrast, technical change may produce major aggregate effects to the extent

it is capable of inverting the asymmetry of the density of firm growth. Formulating

models that emphasize the role of heterogeneity in amplifying and propagating aggregate

technology shocks should start from this fact.

The remainder of the paper is laid out as follows: Section 2 introduces the quan-

tile regression framework and reports some preliminary evidence on the dynamics of the

density of firm growth; Section 3 explores the transmission of alternative measures of

technical change on the cross-section of firm growth and the associated aggregate dy-

namics; Section 4 discusses the implications of our results for the theoretical literature

on heterogeneous firm business cycle models; Section 5 concludes.

2 Quantile Regression Analysis

The ultimate scope of our study is to understand whether changes in the density may

propagate and amplify technology shocks. To address this task, estimation methods that

“go beyond the mean”have to be used. In fact, there is no reason to anticipate that the

marginal effects of certain covariates on the shape of the density are invariant over the

spectrum of growth. Conditional quantile regressions have become increasingly popular

and may usefully serve our purpose (Koenker and Bassett, 1978 and Koenker, 2005).

Quantile regressions are especially useful when dealing with non-identically distributed

data. In these situations, one should expect to observe significant discrepancies in the

estimated ‘slopes’at different quantiles with respect a given set of covariates (Machado

and Mata, 2000). Such discrepancies may reflect not just into shifts in the location of

the density, but also into scale shifts (i.e., changes in the degree of dispersion) and/or

asymmetry reversals (i.e., changes in the sign of the skewness).
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The τ th quantile of the distribution of a generic variable y, given a vector of covariates

x, is:

Qτ (y|x) = inf {y|F (y|x) ≥ τ} , τ ∈ (0, 1) , (1)

where F (y|x) denotes the conditional distribution function. A least squares estimator

of the mean regression model would be concerned with the dependence of the conditional

mean of y on the covariates. The quantile regression estimator tackles this issue at each

quantile. In other words, instead of assuming that covariates shift only the location or

the scale of the density, quantile regressions look at the potential effects on the whole

shape of the distribution.

The statistical model we opt for specifies the τ th conditional quantile of firms’growth

rate as a linear function of the vector of covariates, xit, as well as time effects, γt,τ :
3

Qτ

(
git|γt,τ ,xit

)
= γt,τ + x′itβτ , τ ∈ (0, 1) , (2)

where git is the growth rate of the ith firm. As discussed by Koenker (2005), the marginal

change in the jth element of x produces a marginal change in the τ th quantile that does

not represent the impact of the covariate of interest on the quantiles of the unconditional

distribution of firm growth. Quantile estimation is influenced only by the local behavior

of the conditional distribution of the response near a given quantile. Therefore, no para-

metric form of the error distribution is assumed. Estimates depend on the signs of the

residuals: outliers in the values of the response variables influence the model’s fit to the

extent that they are above or below the fitted hyperplane.

2.1 Data and Preliminary Evidence

We employ annual accounting COMPUSTAT data over the 1950-2010 period. Nominal

sales are deflated by the GDP deflator.4 The resulting measure of real sales is taken as

a proxy for firm size, which is denoted by sit.5 We then compute firm i’s growth rate

as git ≡ (sit − sit−1) / [(sit + sit−1)/2].6 This definition has become standard, as it shares

some useful properties of log differences and has the advantage of accommodating entry
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and exit (Haltiwanger et al., 2013).7

Holly, Petrella, and Santoro (2013) have extensively reported that the empirical dis-

tribution of growth rates in the US displays shifts and contortions that are correlated

with the business cycle.8 Table 1 summarizes their key findings, reporting different mea-

sures of co-movement between the sample moments9 and the rate of growth of real GDP.

All statistics show that standard deviation and skewness behave counter-cyclically, while

kurtosis follows a marked pro-cyclical pattern. These features have been originally doc-

umented by Higson et al. (2002, 2004)10 and may be usefully summarized in Figure 1,

where we sketch the typical shape of the density during contractions and expansions in

economic activity. An economic slowdown generally translates into a density that shifts

to the left and a relative increase in the probability mass on the left-hand side of the

mode (LHS henceforth). From a visual viewpoint the right-hand side of the resulting

density (RHS henceforth) assumes a characteristic tent shape, which is typical of Laplace

benchmark. By contrast, the LHS is more bell-shaped and resembles a Gaussian density.

This picture reverses during expansions, though we appreciate lower dispersion about

the modal rate of growth, as compared with contractions. Section 4 will discuss the

implications of these properties for the transmission of productivity shocks.

Insert Table 1 here

Insert Figure 1 here

Figure 2 shows the time path of the distribution quantiles. The visual inspection

confirms that heterogeneity is pervasive at business cycle frequencies. This tendency is

clearly at odds with the view that aggregate fluctuations must reflect a spread preserving

shift in the mean of the density of firm growth, which would instead imply all quantiles

displaying the same cyclical behavior. The density has also become more sparse over time,

as documented by Comin and Philippon (2006) and Comin and Mulani (2006), among

others. However, a key aspect may be appreciated: increasing dispersion emerges as a

phenomenon that primarily hinges on the evolution of firms in the tails of the distribution,

while the interquantile range displays very moderate trending behavior. Once more, this

result emphasizes the importance of employing quantile-based techniques to deal with the
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cross-sectional dynamics of firm growth, so as disentangle the heterogeneous behavior of

different parts of the density.

Insert Figure 2 here

2.2 Time-variation and Firm Growth

The preliminary analysis imposes us to account for both the cyclicality of higher moments

and trending dispersion of the distribution of firm growth. In light of this, we first specify

a quantile regression framework that aims at providing deeper insights into the behavior

of the cross section of firm growth at both business cycle and secular frequencies. To this

end, the set of covariates includes a business cycle indicator (∆yt) and a time trend (t),

along with firm-specific (lagged) size and age. This amounts to set γt,τ = ατ∆yt + δτ t in

(2). The resulting framework generalizes the first order Galton—Markov model that has

traditionally been used to explore the relationship between firm size and growth in the

context of empirical tests of Gibrat’s law.11

Insert Figure 3 here

Figure 3 graphs the estimates of ατ and δτ .12 The quantile treatment effect (QTE

hereafter) associated with the time trend is symmetric, though it is not centered at zero.

This pattern is typical of a location and scale shift of the distribution. According to this

picture, not only dispersion increases over time, but also the median growth rate does,

though at a very small pace. This finding may be seen as providing indirect support to

Davis and Kahn (2008) and Davis, Faberman, Haltiwanger, Jarmin, and Miranda (2010),

according to whom upward trending dispersion in the distribution of public companies

might be driven by a marked shift in the selection of publicly traded firms occurred in

the early 1980s. In fact, the secular pattern of the median growth rate is compatible with

including in the sample relatively small but rapidly-growing companies.

Some important aspects emerge from inspecting the QTE associated with GDP growth.

Overall, the QTE displays a marked U-shaped pattern, confirming that skewness is neg-

atively correlated with the cycle. Most importantly, poor performing firms are the ones
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that react the most to marginal changes in the real GDP, as compared with those located

in the right tail of the density. This is consistent with the prediction that, during con-

tractionary episodes, dispersion mostly increases on the LHS, as exemplified in Figure 1

and previously reported by Holly, Petrella, and Santoro (2013).

The key element we retrieve from this picture is that the business cycle primarily

acts as a treatment capable of inverting the skewness of the density.13 This aspect cer-

tainly deserves closer attention. In fact, the literature on heterogeneous firm models

has fundamentally underestimated the role of higher moments in the transmission of ag-

gregate disturbances, while focusing almost exclusively on the cyclical behavior of the

cross-sectional dispersion over several dimensions of firm-level activity. Nevertheless, it

is important to acknowledge that the right-hand panel of Figure 3 summarizes relevant

information on the unconditional co-movement between the distribution of firm growth

and the business cycle. To dig deeper into this aspect, in the next section we condition the

growth quantiles to aggregate shocks that have been classically considered as potential

drivers of macroeconomic fluctuations.

3 The Transmission of Technology Shocks

The analysis so far has revealed varying degrees of co-movement between different parts

of the distribution of firm growth and the business cycle. As it stands, this picture does

not tell us much as to whether changes in the density may influence aggregate dynamics,

or whether such movements are to be seen as simple cross-sectional projections of the

business cycle. The next step in the analysis explicitly addresses these issues by exploring

the transmission of structural shocks onto the cross-section of firm growth and, in turn,

aggregate dynamics. To this end, we make use of local projections as indicated by Jorda

(2005). This represents a very convenient methodology in our setting, as it does not

require specifying a model and extrapolating responses from increasingly distant horizons.

The response to a generic shock can directly be computed from predictive regressions.
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Specifically, we estimate the following quantile regressions, one at each horizon h:

Qτ (git+h|zit) = x′itβh,τ + φh,τvt, τ ∈ (0, 1) , h = 0, 1, ..., H, (3)

where Qτ (git+h|zit) denotes the time t+h quantile estimate, conditional on zit = [x′it, vt],

with xit denoting a generic set of covariates14 and vt ∼ iid (0, σ2v) representing the shock

of interest. Following Jorda (2005), we can compute the impulse response function for

the τ th quantile as the difference between two conditional forecasts:

IRFτ (h, σν) = E [Qτ (git+h|zit) |vt = σν ]− E [Qτ (git+h|zit) |vt = 0] , (4)

where we have implicitly assumed a one-standard deviation shock. Since the forecasts are

directly computed from the predictive regression (3), at each horizon we can compute the

impulse response function for the τ th quantile as IRFτ (h, σν) = φh,τσν . This methodol-

ogy allows us to retrieve the response of the entire cross-section of firm growth. Thus,

we can appreciate whether the shock is uniformly transmitted to the entire distribution

—in which case we would assist to a simple location shift —or it affects the shape of the

distribution. In the second case we could face two possible scenarios: the shock might

just translate into a change in the scale of the density — in which case the conditional

distribution would remain symmetric —or it might also affect its skewness. As we discuss

in Section 3.1, the second scenario may have major implications for aggregate dynamics.

We consider alternative measures of technical change as computed by Fernald (2012).15

Technology shocks are retrieved from adjusting the Total Factor Productivity (TFP

henceforth) for factor utilization, as indicated by Basu, Fernald, and Kimball (2006).

The series are then decomposed into utilization-adjusted TFP series for equipment in-

vestment, denoted by TFP I
t , and consumption (intended as everything other than equip-

ment investment and consumer durables), which is denoted by TFPC
t . Figure 5 reports

the QTE at each period after the shock has occurred. The upper panel graphs the re-

sponses to a TFPC
t shock. Overall, we detect strong cross-sectional heterogeneity. A

first striking finding is that, on impact (i.e., h = 0), the QTE is negative for the first few
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quantiles, while the others only display moderately positive responses. The reaction of

lower quantiles gradually increases after the initial shock, implying that the response at

the lower end of the distribution of firm growth takes some time to build up. As time

goes by, lower quantiles are the ones benefiting the most from the technological advance.

At h = 2 the QTE reflects an asymmetry reversal: it is in this period that the shock

exerts the strongest impact, with the tails denoting much stronger reactiveness, as com-

pared with the central part of the density. Over the last two periods the lower end of

the density is still the most reactive, but the shock gradually absorbs, and so dispersion

does, as signalled by the fact that the QTE mostly lies in the negative quadrant.

The responses to TFP I
t are reported in the bottom panel of Figure 5. A crucial differ-

ence with the case of consumption-technology improvements is that "good performers"

are the ones that initially benefit the most from the technological impulse. This reflects

the potential existence of implementation lags and fixed costs entailed by the adoption of

the new technology. As in the case of a TFPC
t shock, the overall density reaches its peak

response when asymmetry reverts, at h = 2. At this point the upper end of the density

is still the most responsive. Otherwise, from h = 3 onwards the maximum response is

attained at the poor hand. This signals that relatively worse performers take much longer

to pick up an investment-specific technological advance, while they are more responsive

to shocks that do not entail major adjustments in the rate of capital utilization.

Insert Figure 5 here

3.1 Implications for Aggregate Dynamics

Section 3 has shown that the business cycle acts as a treatment capable of inverting the

asymmetry of the distribution of firm growth. Also technology shocks have the power of

changing the sign of the skewness and, importantly, they do so when the overall cross-

sectional response reaches its peak after the initial impulse has taken place. In light of

this, it seems relevant to pose the following question: once we look at the aggregate, do

asymmetry reversals play any role in amplifying technology shocks? To address this point,

we first need to define an overall measure of the density response to technical change.

10



In this respect, the ‘average’impulse response function appears as the most appropriate

statistics:

IRF (h, σν) =

∫
IRF (h, σν) f (gt+h) dgt+h. (5)

The latter can be conveniently computed as N−1
∑N

τ=1 φh,τσν , where N denotes the num-

ber of bins between the 5th and the 95th quantile. In turn, if we denote with φh,50 the

treatment effect associated with the median quantile, we can decompose the average re-

sponse into N−1
(∑N

τ=1,τ 6=50 φh,τ + φh,50

)
σν . Thus, it is immediate to derive the following

condition:

IRF50 (h, σν) R IRF (h, σν)⇔ φh,50 R φ̄h,−50, (6)

where IRF50 (h, σν) is the impulse response function associated with the median, while

φ̄h,−50 ≡ (N − 1)−1
∑N

τ=1,τ 6=50 φh,τ . According to (6) the mean response is greater than

the median one whenever φh,50 is smaller than the average of all other treatments. This

condition allows us to compare the overall response of the density with a reliable measure

of central tendency, while keeping track of the degree of skewness.

Both φ̄h,−50 and φh,50 are reported in each panel of Figure 5: importantly, in the first

few periods after the shock has occurred the inequality φ̄h,−50 > φh,50 consistently holds

true. In particular, the median response tends to lie well below φ̄h,−50 when the QTE

implies an asymmetry reversal, due to the tails of the density displaying much greater

responsiveness. Figure 6 confirms that treatments capable of altering the asymmetry

of the distribution imply a substantial amplification of the mean response, as compared

with the median one. It must be stressed that scale shifts are not crucial to this result.

In fact, the amplification of the mean response relative to the median one could also be

appreciated with a symmetric, yet U-shaped, QTE. Note also that greater swings of the

mean growth rate in the presence of asymmetry reversals are necessarily compatible with

the mean lying at the left (right) of the median during contractions (expansions). In

fact, the rule of thumb according to which positive (negative) skewness implies a mean

lying at the right (left) of the median is often violated in the case under scrutiny. This

is due to the skewed part of the density being highly leptokurtic, as compared with its
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counterpart on the other side of the mode.16

Figure 6 also retains important information about differences in the effect of changes

in consumption goods technology and investment goods technology. As to TFPC
t , both

the mean and the median rate feature a positive reaction in the first three years after

the shock occurs. By contrast, TFP I
t induces a negative reaction a year after the shock

hits. Both findings are in line with the evidence of Basu, Fernald, Fisher, and Kimball

(2013), who show that investment-technology improvements are contractionary at short

horizons, while consumption-technology improvements tend to be expansionary. It is also

important to note that contractionary movements in the mean/median growth rate that

follow investment-technology improvements are not due to changes in the asymmetry of

the distribution. In fact, Figure 5 shows that at h = 1 the density only presents a location

and scale shift: in fact, the mean and the median response tend to overlap in this period,

implying that there are no changes in the degree of skewness. This amounts to say that

the time h = 1 contraction in Figure 6 is predominantly driven by both an increase in the

dispersion in the growth performance and a shift of the entire distribution towards the

left over the growth spectrum. However, no major reallocation of the probability mass

from one side of the distribution to the other takes place, as changes in investment goods

technology initially tend to favor only a small part of the population of firms, those that

perform the best.

Insert Figure 6 here

4 Connection with the Existing Literature

Over the last two decades the business cycle literature has been seeking for alternative

forms of non-linear micro adjustment that, combined with micro-level heterogeneity, may

be relevant to aggregate outcomes. The basic premise of these contributions is that

firm-level heterogeneity in terms of output, employment and investment implies a large,

continuous pace of reallocation of real activity across production sites. In turn, such an

adjustment process may involve substantial frictions, so that the ultimate impact of an
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aggregate shock depends on the location of individual firms with respect to their adjust-

ment thresholds, which determines time-varying elasticities of macroeconomic aggregates

to aggregate shocks (King and Thomas, 2006). Under such circumstances representative

agent frameworks necessarily suffer from a “fallacy of composition”, as they do not dis-

tinguish between statements that are valid at the individual level and those that only

apply to the aggregate (Caballero, 1992). Heterogeneous firm models have emerged to

address these issues. Nevertheless, a clear consensus on the relevance of microeconomic

decisions for the aggregate economy is far from being reached. To give a quick account of

how the debate has evolved around these issues, we find it indicative to focus on firm-level

investment. After a first generation of partial equilibrium models that have supported the

importance of lumpy investment for the macroeconomy (Caballero et al., 1995, Caballero

and Engel, 1999), Thomas (2002), Veracierto (2002) and Kahn and Thomas (2003, 2008)

have shown that, in a general equilibrium setting, investment lumpiness is irrelevant to

the cyclical properties of aggregate dynamics. More recently, this view has been ques-

tioned by Bachmann, Caballero, and Engel (2013) upon methodological grounds that

mark the distinction between partial and general equilibrium components of the impact

of aggregate shocks on aggregate endogenous variables (investment, in the specific case

under scrutiny).

Regardless of the specific structure of the model economy, our study makes a strong

case for business cycle frameworks that emphasize the importance of microeconomic ad-

justment for aggregate dynamics. We go even further, indicating that non-convexities

and lumpy adjustment at different margins of firm-level decisions should be tailored on

some specific cross-sectional criteria. In fact, our evidence suggests that technical change

should not simply induce a spread preserving shift in the mean of the density, nor do scale

shifts play a major role in propagating and amplifying technology shocks. By contrast,

mechanisms that are capable of inverting the skewness of the density are to be seen as

promising avenues to impose sound empirical restrictions on heterogeneous firm models.

So far plant-level dispersion over several domains of firm activity has represented a key

disciplining device. However, replicating the cyclical behavior of firm growth volatility
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—mostly in the form of counter-cyclical scale shifts —does not ensure per se a power-

ful propagation and amplification of technology shocks. Furthermore, we should stress

that asymmetry reversals are likely to enhance the capacity of heterogeneous firm mod-

els embedding non-convexities along different margins of plant-level activity to generate

counter-cyclical volatility of gross production (see, e.g., Šustek, 2011). This should be

seen as a promising avenue to reproduce non-trivial business cycle asymmetries (see,

among others, Neftci, 1984; Hamilton, 1989; Sichel, 1993; Morley and Piger, 2012).

A final word is due on the interaction of aggregate shocks with the moments of the

cross-sectional distribution. In this respect, Caballero and Engel (1993) have formulated

increasing-hazard models where larger variance leads to larger responses of aggregate

employment to aggregate shocks, due to direct interaction. The intuition behind this

result is that more weight on the tails of the distribution reflects higher average hazard,

so that the fraction of firms that hire workers is proportionally larger (and so the one

that fire workers) when the shock is large. There is a close connection between this

property of partial adjustment frameworks and the behavior of conditional quantiles.

Asymmetry reversals imply higher responsiveness of the tails, regardless of the size of the

shock. Therefore, more weight on the tails of the density means greater reallocation of

probability mass following an aggregate technology shock, due to a non-zero net flow of

production units from one hand of the distribution to the other.

5 Concluding Remarks

Recent years have borne witness to the development of various heterogeneous agent frame-

works whose main goal is to understand whether the dynamics of major macroeconomic

aggregates is non-trivially affected by the decisions of different microeconomic actors. At

the firm-level, a number of researchers have regarded higher moments of company growth

rates as important elements to discipline and validate business cycle models. This paper

has combined quantile regression techniques with projection methods to show that shifts

and contortions in the density of firm growth of real sales matter for the transmission
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of aggregate disturbances. Projection methods allow us to extrapolate the responses of

each quantile of firm growth to different sources of technical change, so that we charac-

terize the behavior of the entire density in the face of aggregate perturbations to firm

technology. The analysis highlights a deep connection between systematic changes in the

skewness and the amplification of aggregate disturbances, as well as distinctive traits in

the transmission of shocks to consumption goods technology and investment goods tech-

nology. The formulation of heterogeneous firm models that aim at describing business

cycle dynamics should account for these facts.
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Figures and Tables

FIGURE 1. FIRM GROWTH DENSITIES
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Notes: Figure 1 sketches the density of firm growth during contractions (LHS panel) and expansions (RHS

panel). Contractions are generally characterized by positive skewness and higher dispersion about the

modal rate of growth, while expansions tend to translate into positive skewness and lower cross-sectional

dispersion.
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FIGURE 3. QUANTILE TREATMENT EFFECTS (GDP Growth and Time Trend)
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Notes: Figure 3 graphs the estimated QTE associated with real GDP growth (left panel) and a time

trend (right panel), together with the 95% confidence interval.
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FIGURE 5. MEDIAN AND MEAN RESPONSE TO A TECHNOLOGY SHOCK
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Notes: Figure 5 graphs the median QTE associated with a TFP shock (continuous line) and the mean

response to the same disturbance (dashed line). The left hand panel graphs the responses to a TFP

consumption shock, while the right hand panel considers a TFP series for equipment investment.
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TABLE 1. SUMMARY STATISTICS

Corr. Dyn. Corr. Conc.

Location Q0.50 0.6508 0.7023 0.5423

Scale (Q0.75−Q0.25)/(Q0.75+Q0.25) −0.6954 −0.7138 0.3898

Skewness (Q0.75+Q0.25−2Q0.50)/(Q0.25−Q0.75) −0.7019 −0.6885 0.3220

Kurtosis (Q0.90−Q0.10)/(Q0.75−Q0.25) 0.7824 0.8131 0.6271

Notes: Corr. is the correlation of the moment with the real GDP growth rate. Dyn. Corr. is a measure

of dynamic correlation (Croux et al., 2001), which accounts for correlation at a specific frequency band:

in the present case we choose the business cycle frequency in the range [π/4, 3π/4], which corresponds

to a cycle of 6− 32 quarters. Conc. stands for the business cycle concordance indicator of Harding and

Pagan (1999): this is bounded between 0 and 1 and indicates independence between two given series

whenever it equals 0.5.
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Appendix (Not intended for publication)

Appendix A: Statistical Evidence

TABLE A1. COMPUSTAT DESCRIPTIVES

Variable Mean SD Min Q0.25 Q0.50 Q0.75 Max

Real sales s (mln $) 1,298.66 5,814.29 0.001 31.75 141.61 602.64 267,265.90

Growth rate g 0.059 0.229 -1.00 -0.040 0.053 0.155 1.00

Age 15.70 11.66 2 7 12 21 61

Note: 216,282 observations for 10,478 firms over 60 years between 1951 and 2010. We kept only

observations for which the growth rate of real sales was included in the interval (−1, 1), dropping about

5,500 observations.

TABLE A2. SECTORAL REPRESENTATION

Sector Frequency Percent

Agriculture 718 0.33

Mining 8,294 3.83

Construction 2,303 1.07

Manufacturing (durables) 36,284 16.78

Manufacturing (nondurables) 62,370 28.84

Transportation 29,032 13.42

Trade 22,857 10.57

Financial and Other Services 54,424 25.16

TOTAL 216,282 100.00
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TABLE A3. COMPUSTAT DESCRIPTIVES BY SECTOR

Agriculture Mining

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 342.54 787.21 1.67 7,313.79 Real Sales 698.61 2241.36 0.003 32,044.04

Growth 0.051 0.239 -0.882 0.991 Growth 0.063 0.310 -0.997 1.00

Age 14.15 0.4002 2 50 Age 14.64 10.55 2 61

Construction Manufacturing (durables)

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 733.25 1372.09 0.002 13,718.21 Real Sales 2,032.68 8,542.48 0.001 267,265.90

Growth 0.043 0.289 -0.984 0.994 Growth 0.053 0.208 -0.998 0.998

Age 15.54 11.09 2 61 Age 17.01 12.60 2 61

Manufacturing (nondurables) Transportation

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 1,050.65 5,445.49 0.001 149,939.4 Real Sales 1,555.49 4,432.01 0.003 78,068.14

Growth 0.053 0.242 -1.00 1.00 Growth 0.059 0.175 -0.997 0.998

Age 15.97 11.69 2 61 Age 19.40 14.07 2 61

Trade Financial and Other Services

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 1,648.62 7,104.13 0.003 253,339.4 Real Sales 937.54 4296.52 0.001 111,911.2

Growth 0.062 0.200 -0.995 0.996 Growth 0.068 0.248 -1.00 1.00

Age 14.71 10.87 2 61 Age 13.17 9.14 2 61
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Appendix B: Pooling vs. Panel Estimates

FIGURE B1. QUANTILE TREATMENT EFFECTS (Size): PANEL VS. POOLED ESTIMATES
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Notes: Figure B1 graphs the estimated QTE associated with lagged firm-level real sales.

FIGURE B2. QUANTILE TREATMENT EFFECTS (Size and Age)
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Notes: Figure B2 graphs the estimated QTE associated with firm-specific lagged real sales (left panel)

and age (right panel), together with the 95% confidence interval.
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