
Changing Credit Limits,

Changing Business Cycles∗

Henrik Jensen
University of Copenhagen and CEPR

Søren Hove Ravn
University of Copenhagen

Emiliano Santoro†

University of Copenhagen

October 2017

Abstract

In the last half-century, capital markets across the industrialized world have un-

dergone massive deregulation, involving large increases in the loan-to-value (LTV)

ratios of households and firms. We study the business-cycle implications of this phe-

nomenon in an estimated dynamic general equilibrium model with multiple credit-

constrained agents. A progressive relaxation of credit constraints initially leads to

both higher macroeconomic volatility and stronger comovement between debt and

real activity. This pattern reverses at LTV ratios not far from those currently ob-

served in many advanced economies, due to credit constraints becoming non-binding

more often. The non-monotonic relationship between credit market conditions and

macroeconomic fluctuations carries important lessons for regulatory and macropru-

dential policymakers. While reducing the average LTV ratio may unintentionally

increase macroeconomic volatility, a countercyclical LTV ratio proves to be suc-

cessful in dampening business cycle fluctuations and, most importantly, avoiding

dramatic output drops.
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liberalization, macroprudential policy.
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1 Introduction

Credit flows are crucial for the functioning of an economy where inhabitants want to alter

the profile of purchases over time. Consumers may want to smooth consumption and

finance their purchases of durable goods. Likewise, firms may desire to obtain funds for

investment projects that only pay offlater. Such intertemporal trades are typically plagued

by informational problems leading to a multitude of financial market imperfections. One

implication is that households and firms become credit constrained, and often have to

provide collateral to obtain loans. Under such circumstances, the degree to which credit

constraints bind is influential for the economy’s response to various disturbances. The

main purpose of this paper is to study the business-cycle properties of a conventional

DSGE model with credit constraints à la Kiyotaki and Moore (1997) under different credit

conditions. Since credit availability is largely determined by how much an agent can

borrow against his collateral– the loan-to-value (LTV) ratio– we model changes in credit

conditions as changing LTV ratios.

Capital markets have undergone massive deregulation across the industrialized world in

the past half-century. Looking at the credit market, one dimension of this phenomenon has

consisted in a large increase of both household and corporate debt secured by some form of

collateral. This has been documented, among others, by Jordá et al. (2017) for households

and Graham et al. (2014) for firms. Figure 1 shows loans relative to assets for households

and firms in the US in the post-war period. The observed secular increases are consistent

with increased credit availability through higher LTV ratios.1 To study the effects of this

structural transformation on the U.S. business cycle, we incorporate collateral constraints

into a real business cycle model with heterogeneous agents, in the vein of Iacoviello (2005),

Liu et al. (2013), Justiniano et al. (2015); inter alia. A durable good, land, is used for

both consumption purposes and production. In addition, land serves as collateral for

“impatient”, credit-constrained households, as well as for entrepreneurs. The lenders in

the economy are “patient”, financially unconstrained households. In contrast to most of

the existing business cycle literature, we explore the implications of credit constraints not

1As we discuss in Appendix A, the aggregate ratios of loans to assets reported in Figure 1 are likely
to understate the actual LTV requirements faced by the marginal borrower. However, while alternative
measures may yield higher levels of LTV ratios, they give rise to the same conclusions about the devel-
opment over time of these ratios. See also Taylor (2015), who documents the rise of household and firm
borrowing in a sample of 17 advanced economies dating back to 1870.
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Figure 1: The ratio of liabilities to assets for households and firms in the United States,
1945Q4—2016Q2.
Source: Flow of Funds data from the U.S. Federal Reserve. See Appendix A for details.

binding at all points in time.2 To ensure that the model matches key features of the U.S.

economy, we estimate it using the Simulated Method of Moments. This approach allows

us to account for the non-linearities arising from occasionally binding constraints.

Our main findings are that macroeconomic volatility and co-movement between debt

and real variables display a hump-shaped pattern in response to changes in the LTV ratio.

Starting from relatively low LTV ratios, higher credit limits allow financially constrained

agents to succumb to their relatively higher impatience and engage in debt-financed con-

sumption and investment. This reinforces the macroeconomic repercussions of shocks

affecting the borrowing capacity of these agents. As a result, output fluctuations be-

come larger and credit issuance becomes more procyclical with a deepening of financial

markets. Eventually, a further increase in the LTV ratio reverses this pattern. While

credit constraints remain binding after negative shocks to the economy, higher LTV ratios

increase the likelihood that credit constraints become non-binding in the face of expansion-

ary shocks. In such cases, the consumption and investment decisions of households and

2See Guerrieri and Iacoviello (2017) and Maffezzoli and Monacelli (2015) for two recent contributions
which also incorporate occasionally binding credit constraints.
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entrepreneurs are delinked from changes in the value of the collateral assets, dampening

the volatility of aggregate economic activity and the co-movement between debt and real

activity.

The non-monotonic relationship between credit market conditions and macroeconomic

fluctuations poses important challenges for regulatory and macroprudential policies. In

fact, our analysis establishes a macroeconomic volatility tradeoff that arises from collateral

constraints not binding at all points in time. On one hand, a reduction of credit limits

may succeed in dampening the asset price sensitivity of those borrowers who remain credit

constrained before and after the intervention. This effect is widely acknowledged and

represents the main theoretical underpinning of macroprudential policy strategies that

have suggested to curb LTV ratios after the 2007—2008 financial crisis (see IMF, 2011

for an extensive survey). On the other hand, lower credit limits increase the frequency

at which credit constraints bind, increasing borrowers’sensitivity to fluctuations in credit

availability. From a policy perspective, the non-linear relationship between macroeconomic

volatility and credit limits questions the adequacy of measures aimed at imposing caps on

the LTV ratio. In fact, a macroprudential policymaker might unintentionally raise output

volatility by lowering credit limits in a situation where equity requirements are particularly

lax.

By contrast, we demonstrate that imposing a countercyclical LTV ratio not only re-

duces macroeconomic volatility, but is particularly effective at dampening the size of eco-

nomic contractions, when credit constraints generally bind. Consistent with common

definitions of Value-at-Risk, we construct a measure of GDP-at-risk, defined as the maxi-

mum negative deviation of output from steady state occurring within the top 95 percent

of the distribution of output observations (see De Nicolò and Lucchetta, 2013). A counter-

cyclical LTV ratio avoids large output drops and reduces GDP-at-risk by increasing credit

availability when it is needed the most: At the turning point of the business cycle, when

collateral values drop, an automatic relaxation of credit constraints reduces the necessary

deleveraging by households and firms.

A notable property of our model is that shocks to land demand only play a minor

role for output fluctuations, while acting as the main drivers of land prices. By contrast,

technology and financial shocks account for most of output variability. Liu et al. (2013)

report that entrepreneurial collateralized borrowing greatly amplifies shocks to patient
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households’land demand, which emerge as a key driver of investment and, in turn, output

fluctuations. In our model, three main factors reduce the quantitative impact of a positive

land-demand shock on output: i) whereas in Liu et al. (2013) households feature an infinite

elasticity of labor supply, we allow for a finite Frisch elasticity– in line with both micro

and macro data– thus observing a muted response of both types of consumers’ labor

hours; ii) the rise of patient households’ labor supply is counteracted by a drop in the

labor supply of impatient households– who experience sizeable income and wealth effects

through the relaxation of their borrowing constraint– dampening the marginal product

of land and capital; iii) financially constrained households increase their land holdings

in a very persistent manner. Therefore, land is ‘tied up’away from productive use on a

larger scale than in Liu et al. (2013), where there are no financially constrained households.

Altogether, these factors contribute to an attenuation of the effects of land-demand shocks

on entrepreneurial investment in collateral assets and, thus, on output.

Another key structural feature of our framework is that technology shocks are amplified

by collateral constraints. This is noteworthy, since previous studies have reported that

collateral constraints have little or no role in amplifying and propagating shocks to firm

productivity; see, e.g., Cordoba and Ripoll (2004) and Liu et al. (2013). In this respect,

we first show that the nature of the technology shock is of key importance. A permanent

technology shock– as that primarily analyzed by Liu et al. (2013)– entails a substantial

increase in the lifetime income and consumption of patient households, thus generating

a strong income effect that reduces labor supply. Due to the complementarity between

production factors, this exerts a downward pressure on the rental rates of land and capital,

and thus on the entrepreneurial holdings of these assets. In the case of a transitory shock

we consider, instead, the income effect on labor supply is much weaker, thus facilitating the

amplification of such shocks. As for the specific role of collateral constraints in amplifying

transitory technology shocks, our analysis reveals that the dual role of land as a production

factor and collateral asset is crucial.

The rest of the paper is organized as follows. The next subsection reviews some relevant

literature. Section 2 presents our model, while our solution method, calibration, and

estimation are described in Section 3. Section 4 contains the presentation and discussion of

our results. Section 5 offers some policy prescriptions to deal with the non-monotonicity of

output volatility with respect to the degree of credit market tightness. Section 6 concludes.
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1.1 Related literature

Our paper connects to recent contributions that deal with time-variation in the quantity

dimension of credit conditions, as measured by the maximum LTV ratio. Some examples

are Mendicino (2012a, 2012b) and Walentin (2014). However, these papers do not consider

the possibility of financial constraints being only occasionally binding. In two recent pa-

pers, Justiniano et al. (2014, 2015) examine the factors behind the expansion of household

debt between 2000 and 2007, as well as its subsequent decline. They show that drivers

affecting house prices directly, along with changes in the credit supply to households, can

account for most of the rise in household leverage during the pre-crisis boom, while higher

credit limits only played a limited role. However, as they focus on very recent develop-

ments in the credit market, they only consider increases in the LTV ratio from a relatively

high level (above 0.8). Likewise, Guerrieri and Iacoviello (2017) focus on the recent boom-

bust cycle in the U.S. housing market, demonstrating that the macroeconomic sensitivity

to house price changes is much smaller during booms– when house prices are high and

collateral constraints are therefore likely to be non-binding– than during recessions, when

credit constraints typically bind. As a key point of departure from these studies, we do

not specifically aim at providing an explanation of the recent macroeconomic and financial

turmoil. Instead, we consider the business cycle implications of a secular increase of both

household and corporate leverage, as that documented in Figure 1, devising a setup where

both households and firms are credit constrained. In fact, we show that corporate debt

plays a decisive role in determining non-linearities in both macroeconomic volatility and

the cyclicality of private debt. This finding is in line with Maffezzoli and Monacelli (2015),

who demonstrate that the macroeconomic effects of financial shocks are highly non-linear

in the level of accumulated corporate debt.3

Our findings are consistent with some recent empirical studies on the nature of business

cycles in a high-leverage environment. Jordà et al. (2013) have demonstrated that large

build-ups in household and corporate credit during a boom are associated with more severe

subsequent recessions. In related work, Schularick and Taylor (2012) have documented that

the real effects of financial crises have been significantly larger in modern times as compared

to the pre-World War II era, when leverage ratios were low, while Taylor (2015) shows

3The model of Maffezzoli and Monacelli (2015) does not feature credit-constrained households. For
models in which credit constraints apply to both households and firms, see Iacoviello (2005, 2015).
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that the strength of the recovery after financially driven recessions– relative to normal

recessions– has been much more subdued after World War II, when LTV ratios have been

much higher. In line with these empirical results, higher LTV ratios make our model

economy more fragile to adverse economic shocks, including financial ones. Combined

with the fact that credit constraints tend to remain binding during downturns, this means

that higher leverage generally leads to deeper recessions. As a direct implication, business

cycle asymmetry increases with higher credit limits. In related work we document that, in

recent decades, higher credit limits in the U.S. have indeed been accompanied by a more

negatively skewed business cycle; cf. Jensen et al. (2017). Finally, Jordá et al. (2017) have

recently documented that the correlation between the growth rate of real credit and that

of output and its main components is higher when aggregate leverage is relatively high; a

result broadly in line with our findings concerning business cycle co-movement, although

these authors do not study potential non-linearities in this relationship.

The empirical literature has produced no firm consensus on the link between financial

deepening and macroeconomic volatility. In support of our findings, Alatrash et al. (2014)

document an inverse U-shaped relationship between the volatility of output growth and

the ratio of private credit to GDP in countries with a high-quality financial sector, with

the peak of volatility being reached at credit-to-GDP ratios of around 130 percent. Other

studies, however, have reached different conclusions, with Acemoglu et al. (2003) and

Beck et al. (2006) finding no significant effect of financial development on macroeconomic

volatility; Denizer et al. (2002), Dabla-Norris and Srivisal (2013), and Mallick (2014)

reporting that financial deepening tends to dampen business-cycle volatility, and Easterly

et al. (2000) uncovering a U-shaped relationship between the amount of private credit

and output growth volatility. Our contribution is also connected to a large literature

suggesting that innovation in the credit market– especially in consumer credit and home

mortgages– might have played a role in the so-called Great Moderation; see den Haan and

Sterk (2010) for a critical review. According to this view, higher credit limits may have

contributed to the decrease in macroeconomic volatility in the period spanning from the

mid-1980s until the start of the recent financial crisis. Jordá et al. (2017) document that

since World War II, and especially since the beginning of the 1970s, the large increase in

the ratio of private credit to GDP observed across their sample of advanced economies

has coincided with a decline in the volatility of real output and its main components. In
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our setup, we only observe such a decline beyond relatively high LTV ratios. However, it

is important to keep in mind that none of the factors to which the Great Moderation is

typically ascribed are featured in our model.4

2 The model

We devise a real business cycle model with heterogeneous agents and credit limits in the

vein of Iacoviello (2005), Liu et al. (2013), Justiniano et al. (2015); inter alia. The econ-

omy is populated by entrepreneurs and two types of households. Agents are differentiated

by their discount factors. Patient households have the highest discount factor, effectively

making them lenders in the economy. Impatient households and entrepreneurs have lower

discount factors, and can only borrow up to some proportion of the present value of their

assets. Both patient and impatient households work, consume non-durable goods and

(durable) land, where the latter can be interpreted as related to housing services. Entre-

preneurs only consume non-durable goods, and accumulate both land and physical capital,

which they rent to producers. These operate in a perfectly competitive sector, where firms

combine labor from both types of households as well as capital and land from entrepre-

neurs, so as to produce non-durable consumption goods and new capital goods. All types

of agents have unit mass.

2.1 Patient and impatient households

The preferences of the households are defined over non-durable consumption, Ci
t , the stock

of land, H i
t , and the fraction of time devoted to labor, N

i
t , where i ∈ {P, I} refers to patient

and impatient households, respectively. Household i maximizes

E0

{ ∞∑
t=0

(
βi
)t [

log
(
Ci
t − ρiCi

t−1
)

+ εt logH i
t +

νi

1− ϕi
(
1−N i

t

)1−ϕi]}
, ϕi 6= 1, (1)

where εt is a land-demand shock satisfying

log εt = log ε+ ρε (log εt−1 − log ε) + ut, 0 < ρε < 1, (2)

4These factors include better monetary policy (Boivin and Giannoni, 2006), a drop in the volatility of
economic shocks (Stock and Watson, 2003), and smaller dependence on oil (Nakov and Pescatori, 2010).
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where ε > 0 denotes the steady-state value of εt, and where ut ∼ N (0, σ2ε). Moreover,

0 < βi < 1 is the discount factor, and νi > 0 and ϕi > 0 denote, respectively, the

utility weight and the coeffi cient of relative risk aversion associated with leisure, whereas

0 ≤ ρi < 1 measures the degree of habit formation in consumption. Households’different

impatience is captured by the assumption that βP > βI . This ensures that, in the steady

state, patient and impatient households act as lenders and borrowers, respectively; cf.

Woodford (1986). Utility maximization is subject to the following budget constraint:

Ci
t +Qt

(
H i
t −H i

t−1
)

+Rt−1B
i
t−1 = Bi

t +W i
tN

i
t , (3)

where Bi
t is the stock of one-period debt held at the end of period t, Rt is the gross real

interest rate on debt, Qt is the price of land in units of consumption goods, and W i
t is

the real wage. Moreover, impatient households are subject to a collateral constraint on

borrowing:

BI
t ≤ st

Et {Qt+1}HI
t

Rt

, (4)

which states that the maximum borrowable resources equal a fraction st of the expected

present value of durable goods holdings at the end of period t. This constraint can be

rationalized in terms of limited enforcement; cf. Kiyotaki and Moore (1997) and Iacoviello

(2005). Lenders are assumed to pay a cost (1− st)Et {Qt+1}HI
t in period t + 1 if they

are to repossess the collateral in case of default; hence, they will not lend more than

stEt {Qt+1}HI
t /Rt in period t.

The term st, the loan-to-value ratio, is assumed to satisfy

log st = log s+ ρs (log st−1 − log s) + vt, 0 < ρs < 1, (5)

where vt ∼ N (0, σ2s). As our aim is to examine the implications of institutional changes in

credit conditions, including regulatory measures, we interpret s, which denotes the steady-

state loan-to-value (LTV) ratio, as a proxy for the average stance of credit availability.

Patient households’optimal behavior is described by the standard first-order condi-
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tions:

1

CP
t − ρPCP

t−1
− βρP

Et
{
CP
t+1

}
− ρPCP

t

= λPt , (6)

νP
(
1−NP

t

)−ϕP
= λPt W

P
t , (7)

λPt = βPRtEt
{
λPt+1

}
, (8)

Qt =
εt

λPt H
P
t

+ βPEt

{
λPt+1
λPt

Qt+1

}
, (9)

where λPt is the multiplier associated with (3) for i = P . Similarly, optimal behavior of

impatient households is described by

1

CI
t − ρICI

t−1
− βρI

Et
{
CI
t+1

}
− ρICI

t

= λIt , (10)

νI
(
1−N I

t

)−ϕI
= λItW

I
t , (11)

λIt − µIt = βIRtEt
{
λIt+1

}
, (12)

Qt =
εt

λItH
I
t

+ βIEt

{
λIt+1
λIt

Qt+1

}
+ st

µIt
λIt

Et {Qt+1}
Rt

, (13)

where λIt is the multiplier associated with (3) for i = I, and µIt is the multiplier associated

with (4). Additionally, the complementary slackness condition

µIt

(
BI
t − st

Et {Qt+1}HI
t

Rt

)
= 0, (14)

must hold along with µIt ≥ 0 and (4).

2.2 Entrepreneurs and firms

The representative entrepreneur has preferences defined over non-durables only (cf. Ia-

coviello, 2005 or Liu et al., 2013), and maximizes

E0

{ ∞∑
t=0

(
βE
)t

log
(
CE
t − ρECE

t−1
)}

, (15)

where CE
t is non-durable consumption, 0 ≤ ρE < 1 denotes consumption habits, and where

we assume that βE < βP . This ensures that the entrepreneurs are borrowers in the steady
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state. Their budget constraint reads as:

CE
t + It +Qt

(
HE
t −HE

t−1
)

+Rt−1B
E
t−1 = BE

t + rKt−1Kt−1 + rHt−1H
E
t−1, (16)

where It denotes investment in physical capital, Kt−1 is the physical capital stock rented

to firms at the end of period t− 1, and HE
t−1 is the stock of land rented to firms. Finally,

rKt−1 and r
H
t−1 are the rental rates on capital and land, respectively. Capital accumulation

is given by the law of motion

Kt = (1− δ)Kt−1 +

[
1− Ω

2

(
It
It−1
− 1

)2]
It, 1 > δ > 0, Ω > 0, (17)

where we have assumed quadratic investment adjustment costs.

Like impatient households, entrepreneurs are credit constrained, and they borrow using

capital and land as collateral:5

BE
t ≤ stEt

{
QK
t+1Kt +Qt+1H

E
t

Rt

}
, (18)

where QK
t denotes the price of installed capital in consumption units. For simplicity, we

assume that households and entrepreneurs are subject to common credit limits.6

The optimal behavior of the entrepreneurs is characterized by the first-order conditions

1

CE
t − ρECE

t−1
− βρE

Et
{
CE
t+1

}
− ρECE

t

= λEt , (19)

λEt − µEt = βERtEt
{
λEt+1

}
, (20)

−λEt +ψEt

[
1− Ω

2

(
It
It−1
− 1

)2
− Ω

It
It−1

(
It
It−1
− 1

)]
= βEEt

{
ψEt+1Ω

(
It+1
It

)2(
1− It+1

It

)}
,

(21)

5The importance of real estate as collateral for business loans has recently been emphasized by Chaney
et al. (2012) and Liu et al. (2013).

6The ratios of loans to assets in Figure 1 do not suggest large differences between households and
firms. In Iacoviello (2005), the LTV ratio faced by entrepreneurs (0.89) is much higher than that faced
by impatient households (0.55), while the opposite is the case in Gerali et al. (2010), who set 0.35 for
entrepreneurs and 0.7 for households. In sum, in lack of conclusive evidence that LTV ratios faced by firms
are systematically higher or lower than those faced by households, we assume that they are equal. As for
the stochastic part of the LTV ratio, our main results carry through, both qualitatively and quantitatively,
if we estimate the model with orthogonal credit-limit shocks for different agents.
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ψEt = βErKt Et
{
λEt+1

}
+ βE (1− δ)Et

{
ψEt+1

}
+ µEt st

Et
{
QK
t+1

}
Rt

, (22)

Qt = βErHt Et

{
λEt+1
λEt

}
+ βEEt

{
λEt+1
λEt

Qt+1

}
+ st

µEt
λEt

Et {Qt+1}
Rt

, (23)

where λEt , µ
E
t and ψ

E
t are the multipliers associated with (16), (18) and (17), respectively.

Moreover,

µEt

(
BE
t − stEt

{
QK
t+1Kt +Qt+1H

E
t

Rt

})
= 0, (24)

holds along with µEt ≥ 0 and (18). Finally, the definition of QK
t implies that

QK
t = ψEt /λ

E
t . (25)

Firms operate competitively under a constant-returns-to-scale technology. They rent

capital and land from entrepreneurs and hire labor from both types of households, so as

to maximize profits. The production technology for output, Yt, is given by

Yt = At

[(
NP
t

)α (
N I
t

)1−α]γ [(
HE
t−1
)φ
K1−φ
t−1

]1−γ
, 0 < α, φ, γ < 1, (26)

with total factor productivity At evolving according to

logAt = logA+ ρA (logAt−1 − logA) + zt, 0 < ρA < 1, (27)

where A > 0 is the steady-state value of At, and zt ∼ N (0, σ2A). Optimal factor-demand

relations follow from the first-order conditions:

αγYt/N
P
t = W P

t , (28)

(1− α) γYt/N
I
t = W I

t , (29)

(1− γ) (1− φ)Et {Yt+1} /Kt = rKt , (30)

(1− γ)φEt {Yt+1} /HE
t = rHt . (31)

2.3 Equilibrium

We consider a competitive equilibrium where the markets for labor, capital, loans and land

all clear. As its supply is held fixed at H, equilibrium in the the market for land implies
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that

H = HP
t +HI

t +HE
t . (32)

Also, the economy-wide net financial position is zero, such that

BP
t +BI

t +BE
t = 0. (33)

The aggregate resource constraint can be written as

Yt = CP
t + CI

t + CE
t + It. (34)

An equilibrium is then defined as sequences of quantities and prices, {Yt, CP
t , C

I
t , C

E
t , It,

HP
t , H

I
t , H

E
t , Kt, NP

t , N
I
t , B

P
t , B

I
t , B

E
t }∞t=0 and {λPt , λIt , λEt , µIt , µEt , ψEt , rKt , rHt , QK

t ,

Qt, W P
t , W

I
t , Rt}∞t=0, respectively, which conditional on a sequence of shocks {At, εt, st}

∞
t=0

and initial conditions, satisfies the optimality conditions [(6), (7), (8), (9), (10), (11), (12),

(13), (19), (20), (21), (22), (23), (25), (28), (29), (30), and (31)], the budget and credit

constraints [(3) for i = P, I, (4), and (18)], as well as the technological constraints and

market-clearing conditions [(17), (26), (32), (33), and (34)].

3 Model solution and parameterization

In Appendix B we detail the steady state of the model, while Appendix C describes the log-

linearized version, which is solved numerically. Given our assumptions about the discount

factors, βP > βI and βP > βE, both collateral constraints are binding in the steady state.

This follows from (20), which pins down the steady-state real interest rate as R = 1/βP .

However, the optimal level of debt of one or both agents may fall short of the credit limit

when the model is not at its steady state (say, in case of a large favorable shock), in which

case the collateral constraint will be non-binding. In other words, our model features

occasionally binding constraints. To account for this, we explicitly treat the collateral

constraints as inequalities, and include the complementary slackness conditions, (14) and

(24), in the model.

In practice, we follow the approach of Holden and Paetz (2012), who develop a solution

method for log-linearized DSGE models featuring inequalities. Building on Laséen and
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Svensson (2011), the central idea is to introduce a set of “shadow price shocks”, which

ensure that each of the complementary slackness conditions is satisfied in each period. If

the conditions are violated, the shadow price shocks take on values exactly large enough

to make the bounded variables, i.e. the debt levels of credit-constrained agents, equal to

their (temporarily) unconstrained value. If the borrowing constraints are already binding,

the shadow price shocks are zero. To ensure compatibility with rational expectations,

the shocks are added to the model as “news shocks”, i.e., they are fully anticipated. We

present the details of the solution method in Appendix D.7

3.1 Calibration and estimation

We parameterize the model to match the quantitative characteristics of the U.S. business

cycle. To this end, we first calibrate a subset of the parameters, and then estimate the

remaining parameters using the simulated method of moments (SMM, hereafter). SMM

is particularly well-suited for DSGE models involving non-binding constraints or other

non-linearities, as these preclude the use of the Kalman filter and thus substantially com-

plicate the application of Bayesian methods.8 Ruge-Murcia (2012) studies the properties

of SMM estimation of non-linear DSGE models, and finds that this method is computa-

tionally effi cient and delivers accurate parameter estimates. Ruge-Murcia (2007) performs

a comparison of SMM with other widely used estimation techniques applied to a basic

RBC model, and shows that SMM fares quite well in terms of accuracy and computing

effi ciency, and is less prone to misspecification issues than Maximum Likelihood-based

methods.

3.1.1 Calibrated parameters

We choose to calibrate a subset of the model parameters that can be pinned down using a

combination of existing studies and first moments of the data. We interpret one period as a

quarter. Therefore, we set βP = 0.99, implying an annualized steady-state rate of interest

of about 4%. Moreover, we have assumed that impatient households and entrepreneurs

7We have verified that our solution method yields identical results to those obtained with the recent
approach of Guerrieri and Iacoviello (2015).

8See Fernández-Villaverde et al. (2016) for a discussion of the particle filter as a potential replacement
for the Kalman filter in such cases, or Guerrieri and Iacoviello (2017) for a different filtering scheme based
on the extended path algorithm of Fair and Taylor (1983), which facilitates a Bayesian estimation of their
model.
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have lower discount factors than patient households. In the ballpark of available estimates,

we set βI = βE = 0.97, implying a rather conservative choice about the relative impatience

of borrowers and lenders. We set the steady-state LTV ratio s = 0.7, in line with values

typically reported in the literature (e.g., Calza et al., 2013 use 0.6, Liu et al., 2013 report

0.75, while Justiniano et al., 2014 set a value of 0.8). The Frisch elasticity of labor supply

is given by the inverse of ϕi times the steady-state ratio of leisure to work. We calibrate

the latter to 3, and then set ϕi = 9, i = {P, I}, implying a Frisch elasticity of labor supply

of 1/3, which is broadly in line with empirical estimates (see, e.g., Herbst and Schorfheide,

2014). We use νi = 0.27 for i = {P, I}, which implies, as desired, that patient households

work 1/4 of their time in steady state, and impatient households slightly more. We set

the labor income share of patient households to α = 0.7: Iacoviello (2005) obtains an

estimate of 0.64 by matching impulse responses from his model with those from a VAR,

while Iacoviello and Neri (2010) find a value of 0.79 using Bayesian estimation.

The remaining part of the calibration ensures that the model reproduces a set of “big

ratios”of the U.S. economy for the post-1980 period. We set the weight of land in the

utility function, ε, so as to match a steady-state ratio of residential land to output of

1.45 (at the annual frequency), as reported by Liu et al. (2013). This requires a value of

ε = 0.0811. Likewise, we set the parameter φ (which multiplied by (1− γ) measures land’s

share of inputs) to obtain a ratio of commercial land to output of 0.65, reported by the

same authors. The implied value of φ = 0.1693 is somewhat higher than estimated by Liu

et al. (2013). We finally set the parameters γ and δ to match an average capital-output

ratio of 1.22 and an average ratio of private nonresidential investment to GDP of 0.13

in the U.S. for the period 1980—2015.9 This requires a value of γ = 0.7466, implying a

non-labor share in the production function close to 1/4, and a capital depreciation rate of

δ = 0.0266. The calibrated parameters are summarized in Panel A of Table 1.

3.1.2 Estimated parameters

We rely on SMM to estimate the remaining model parameters, which include the invest-

ment adjustment cost parameter Ω, the parameters measuring habit formation in con-

9We use the current-cost net stock of fixed private non-residential assets, obtained from Table 1.1 in
the Fixed Assets accounts of the Bureau of Economic Analysis. We obtain the corresponding measure for
investment from Table 1.5. We use annual GDP at current prices obtained from the Federal Reserve’s
FRED database.
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sumption, ρi, and the parameters governing the persistence and volatility of the shocks;

ρA, ρs, ρε, σA, σs, and σε. Since we observe only aggregate consumption in the data, we as-

sume that the habit formation parameter is the same for all agents; ρi = ρ, i = {P, I, E}.10

In the estimation, we use five macroeconomic time series for the U.S. economy spanning the

sample period 1980:Q1—2016:Q2: Real GDP, real private consumption, real non-residential

investment, real house prices, and the average of the two LTA series reported in Figure 1.

We use the HP filter to detrend the data series. We plot the data and provide more details

in Appendix E. To estimate the model, the following data moments are used: The stan-

dard deviations and first-order autoregressive parameters of each of the five variables, as

well as the correlation of consumption, investment, and house prices with output.11 This

gives a total of 13 moment conditions to estimate eight parameters. We match these data

moments to their corresponding moments from the model, obtained from a 2000-periods

simulation.12 In the estimation, we impose only very general bounds on parameter values:

All parameters are bounded below at zero, and the habit formation parameter along with

all AR(1)-coeffi cients are bounded above at 0.99. We use an identity weighting matrix,

since Altonji and Segal (1996) have shown that the use of an optimal weighting matrix

leads to biased parameter estimates when method-of-moments estimation is applied to

covariances, as is the case here, whereas equally weighted method-of-moments estimation

avoids this bias. Finally, standard errors are computed using an application of the delta

method. Appendix E contains further details about our estimation strategy.

10Unlike the other estimated parameters, ρ also affects the steady state of the model. To account for
this, we use the following iterative procedure: We first calibrate the model based on the starting value
for ρ used to initiate the estimation (ρ = 0.7), cf. Appendix E. Upon estimation, we then recalibrate the
model for the estimated value of ρ. As it turns out, this only leads to very small changes in the values of
ε and φ, while the remaining parameters are virtually unaffected.
11We do not include the correlation of the LTA series with output in the estimation. In the data, this

correlation is strongly negative, reflecting that when output declines, the denominator of the LTA series
drops much faster than the numerator (see, e.g., the spike in the LTA ratios around 2008 observed in
Figure 1). In the model, instead, the LTV series is exogenous, and thus not affected by fluctuations in
output.
12Our simulated sample is thus more than 13 times longer than the actual dataset (which spans 146

quarters). Ruge-Murcia (2012) finds that SMM is quite accurate already when the simulated sample is
five or ten times longer than the actual data.
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Table 1: Parameter values

Panel A: Calibrated parameters

Parameter Description Value

βP Discount factor, patient households 0.99

βi, i = {I, E} Discount factor, impatient agents 0.97

ϕi, i = {P, I} Curvature of utility of leisure 9

νi, i = {P, I} Weight of labor disutility 0.27

ε Weight of land utility 0.0811

γ Labor share of production 0.7466

α Income share of patient households 0.7

φ Land’s share of non-labor input 0.1693

δ Capital depreciation rate 0.0266

Panel B: Estimated parameters

Parameter Description Value

Ω Investment adjustment cost parameter 2.7025
(1.3103)

ρ Habit formation in consumption 0.2121
(0.0410)

ρA Persistence of technology shock 0.9781
(0.0823)

ρs Persistence of credit-limit shock 0.9781
(0.0107)

ρε Persistence of land-demand shock 0.99
(0.0110)

σA Std. dev. of technology shock 0.0075
(0.0006)

σs Std. dev. of credit-limit shock 0.0187
(0.0004)

σε Std. dev. of land-demand shock 0.0444
(0.0327)

Note: For estimated parameters, standard errors are reported in brackets.

The estimated parameters are reported in the Panel B of Table 1. These are generally

in line with the existing literature on estimated DSGE models. The estimated value of Ω

is well within the span of empirical estimates, which ranges from nearly zero in Liu et al.

(2013) to above 10 in Christiano et al. (2014). The parameter measuring habit formation,

ρ, is somewhat lower than the available estimates, which are typically in the range between

0.5 and 0.7; see, e.g., Liu et al. (2013) or Guerrieri and Iacoviello (2017). The volatility
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and persistence of the technology shock are close to the estimates of Jermann and Quadrini

(2012), and generally in line with values applied in the real business cycle literature (see,

e.g., Mandelman et al., 2011). The persistence of the credit-limit shock is close to the

estimates of Jermann and Quadrini (2012) and Liu et al. (2013), while we find this shock

to be somewhat more volatile than that reported by these authors. The standard deviation

and persistence of the land-demand shock are broadly in line with previous studies; see,

e.g., Iacoviello and Neri (2010). The implied business cycle moments and their empirical

counterparts are shown in Table 2 in Appendix E. In general, the estimated model succeeds

in delivering a close match with the empirical moments, although some variables display

less persistence than in the data.

4 Business cycles and credit limits

We now focus on the behavior of key business cycle statistics under different credit limits.

We first devise a ‘comparative statics’exercise to understand the effects of a relaxation of

credit market tightness on the propagation of shocks to the economy. To this end, we let s

vary over the range [0.5,0.9], while leaving other parameters at their calibrated/estimated

value.13

According to Figure 2, output volatility increases in the average LTV ratio up to

s ≈ 0.8, a value in line with the credit conditions on mortgage loans in a number of

advanced countries (see, e.g., Calza et al., 2013). An increase in the average LTV ratio

implies that, ceteris paribus, credit-constrained agents acquire a higher borrowing capacity,

so as to satisfy their relative impatience. As a result, financially-constrained households

and entrepreneurs experience a proportionally larger expansion in their leverage in reaction

to shocks that inflate their collateral values, as well as a more dramatic deleveraging in

the face of contractionary shocks. This inevitably translates into larger fluctuations in

debt-financed consumption and investment choices, as compared with economies featuring

relatively lower credit limits.

Beyond s ≈ 0.8, however, output volatility declines in the LTV ratio. This drop results

13We discretize this interval for 9 different values of s. We set the upper bound of this range so that,
given the standard deviation of the process for st, the actual LTV ratio is bounded from above by 1
with about 90% probability. At each value of s, we simulate the model for 2000 periods, 501 times, and
compute medians for a range of statistics of interest.

17



Figure 2: Standard deviation of output for different LTV ratios.
Note: Numbers are median values from 501 stochastic model simulations of 2000 periods.

from the increasing frequency of episodes in which borrowers face a slack financial con-

straint. To support this claim, Figure 3 shows that borrowers find themselves financially

unconstrained more and more often beyond a certain agent-specific threshold (about 0.5

for the entrepreneurs and 0.8 for impatient households). In fact, entrepreneurs (impa-

tient households) become unconstrained as much as two thirds (one fifth) of the time at

the upper end of the support for s. Looser credit conditions imply that, ceteris paribus,

ex-ante constrained agents face a higher probability of behaving– at least temporarily–

as standard consumption smoothers. This translates into dampened fluctuations of both

consumption and investment choices.14 As a result, we observe lower output volatility at

relatively high values of s, as well as weaker co-movement between credit and economic

activity, as we will discuss in Subsection 4.3.15

To examine the non-linear behavior of macroeconomic volatility in further detail, we

14Figure G.1 in Appendix G shows that an inverse U-shaped pattern emerges also for the volatility of
investment and aggregate consumption.
15By contrast, Mendicino (2012a) finds that the amplification of technology shocks through collateral

constraints increases in the credit limit, but tends to vanish as the LTV ratio approaches one, while con-
straints keep binding. This happens as the economy becomes near effi cient when such full debt enforcement
is possible in her simple Kiyotaki and Moore (1997) model.
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Figure 3: Frequency of episodes of non-binding constraints for each agent.
Note: See the notes to Figure 2.

turn next to the propagation of different shocks. We first report and discuss a set of numer-

ical results that account for the increase in volatility observed in Figure 2. Thereafter, we

examine the reversal in output volatility. To this end, we study the propagation of ‘large’

shocks, which bear a higher potential of making the borrowing constraints non-binding.

4.1 Dynamics of the model

We begin by contrasting the responses of output to our model’s shocks under alternative

degrees of credit market tightness. These are shown in Figure 4.16We also report analogous

responses under an alternative model, where the credit limits of credit-constrained agents

are fixed at their respective steady-state levels of debt. Generally, higher steady-state LTV

ratios are associated with larger responses of output to shocks of a given size. In other

words, the endogenous amplification of shocks in our model is stronger when LTV ratios

are higher, explaining the initial increase in volatility observed in Figure 2. The exception

from this rule is that the output response to a land-demand shock is dampened at very

16See also Figures G.2-G.4 in Appendix G, which show the responses of six key variables to all our
shocks.
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Figure 4: Impulse responses of output (in percentage deviation from steady state) to a one
standard deviation positive technology shock (row 1), a positive land-demand shock (row
2), and a positive credit-limit shock (row 3) for three different LTV ratios; s = 0 .5 (left
column), s = 0 .7 (center), and s = 0 .9 (right column).
Notes: Solid lines denote the baseline model, dashed lines denote the model with fixed credit limits.

Light-grey periods are ones in which the entrepreneurs become unconstrained. Impatient households

always remain constrained in these experiments. In the case of credit-limit shocks, only the endogenous

part of the credit limit is kept at its steady state.

high LTV ratios. This is discussed in detail in Subsection 4.1.2.

In light of the existing literature, the propagation of technology and land-demand

shocks presents us with some intriguing aspects. We therefore devote the next two subsec-

tions to these shocks. Credit-limit shocks, on the other hand, display a more conventional

propagation: Figure 4 illustrates that these are associated with a sizeable amplification of

the effect on output due to their direct impact on constrained agents’borrowing capacity.

This type of shock gives rise to the largest differences between the responses under an

endogenous relative to an exogenous credit limit, the main reason being a conventional

“financial accelerator”mechanism working through the relaxation of credit constraints.

For an average LTV ratio of s = 0.9, a positive financial shock makes the entrepreneurs

temporarily unconstrained for 3 periods. Section 4.2 digs deeper into this point.
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4.1.1 Technology shocks and amplification

It is worth noting that endogenous credit limits tend to amplify technology shocks, as

compared with the alternative economy where endogenous collateral effects are shut off,

and more so as the average LTV ratio increases. This result contrasts with the business

cycle literature finding little or no amplification of income or technology shocks through

credit constraints; cf. Kocherlakota (2000) and Cordoba and Ripoll (2004), inter alia.

More recently, Liu et al. (2013) have reported analogous findings. To explain why our

results stand in contrast with these contributions, it is crucial to highlight the role of two

factors: i) first, the nature of the technology shock; ii) second, the dual role of land as a

production factor and collateral asset.

As for point i), it is important to stress that Liu et al. (2013) report and analyze the

transmission and amplification of the permanent component of their TFP shock, despite

their model also featuring a transitory component. A permanent technology shock entails a

sizeable increase in the lifetime income of patient households, thus boosting their expected

consumption growth. All else equal, this reduces their labor supply through strong income

and wealth effects. Due to the complementarity between production factors, this tends

to lower the rental rates of land and capital, and the entrepreneurs’ holdings of these

assets, so that their borrowing capacity drops under the endogenous credit constraint.

Concurrently, a permanent shock reduces households’incentive to save, exerting an upward

pressure on the interest rate, thus reducing the present value of collateralizable assets

further. In combination, these effects imply a muted role of collateral constraints for the

amplification of permanent technology shocks in their model. In the case of a transitory

shock, instead, the effect on households’lifetime income is much smaller, leading to weaker

income and wealth effects on labor supply and a stronger incentive to save. This exerts

an upward force on the marginal products of land and capital and their rental rates, thus

positively stimulating the entrepreneurs’willingness to invest in both factors. These effects

enhance the borrowing capacity of the entrepreneurs, thus facilitating the amplification of

temporary shocks through the endogenous credit constraint, as compared with the fixed

credit limit. In fact, the model of Liu et al. (2013) features a substantial amplification of

transitory technology shocks via collateral constraints.17 To have a full understanding of

17This is documented in Figure G.6 in Appendix G, where we report the effects of both a permanent
and a transitory technology shock in the model of Liu et al. (2013), using their codes.
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Figure 5: Impulse responses (in percentage deviation from steady state) of output (left
panel) and of land holdings of entrepreneurs in percent of total stock of land (right panel)
to a one standard deviation positive technology shock at s = 0 .7 .
Notes: Solid lines denote the baseline model, dashed lines denote the model with no land in production,

dotted lines denote the model with no land in entrepreneurs’collateral constraint.

why this is the case, though, we need to examine point ii).

The dual role of land as a production factor and collateral asset plays a crucial role both

in our setting and in that of Liu et al. (2013), explaining the key differences with respect

to the earlier literature. To see this, the left panel of Figure 5 reports the response of out-

put to a positive technology shock in three different model versions: our baseline model, a

model with no land in production, and a model with no land in the collateral constraint of

the entrepreneur. As the figure illustrates, the presence of land in the production function

and in the collateral constraint is crucial to obtain a sizeable amplification: When land

appears in the production function, a positive technology shock leads to an increase in its

marginal product. This raises the rental rate of land, inducing the entrepreneurs to raise

land investment. As it is also discussed in Liu et al. (2013), the price of land is effectively

determined by patient households via their land Euler equation; see Equation (9). How-

ever, as pointed out by Barsky et al. (2007), this means that these agents’land-demand

schedule is almost flat: Since they display an almost infinite intertemporal elasticity of

substitution, they are willing to sell land to the entrepreneurs, who therefore increase
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their land holdings substantially. This implies that, while the price of land is relatively

insensitive to a technology shock, the quantity of land held by the entrepreneurs responds

strongly, as shown in the right panel of Figure 5. As a consequence, the entrepreneurial

collateral value increases, provided that land is featured in the collateral constraint. In

turn, this allows entrepreneurs to raise investment, thus fostering output growth.

In the alternative model versions displayed in Figure 5, either the marginal product of

land is not directly affected by the technology shock, or the increase in the land holdings of

the entrepreneurs has no bearing on their borrowing capacity. In either case, the collateral

constraints lead to no amplification of technology shocks, like under a fixed credit limit.18

4.1.2 The role of land-demand shocks

Figure 4 reveals a striking feature of the transmission of land-demand shocks. Com-

pared with other sources of exogenous perturbation, these shocks have a rather small and

short-lived impact on aggregate activity, eventually becoming contractionary despite a

substantial persistence of the shock itself. This pattern, which is particularly evident at

very high LTV ratios, contrasts with the findings of Liu et al. (2013). These authors

obtain much larger and more persistent positive effects of land-demand shocks on output,

investment, and other aggregate variables.

Explaining this discrepancy crucially rests on the role played by the response of hours

worked by each type of household: In our setup, a land-demand shock leads to an increase

in the hours worked by patient households, and a decline in the labor hours of impatient

households. In the model of Liu et al. (2013), the first effect is greatly amplified, as they

impose an infinite Frisch elasticity of labor supply; by contrast, the second effect is absent,

by virtue of impatient households not being featured in their model. As a result, they

obtain a much larger increase in aggregate labor hours, and thus in the other production

factors and output itself. To illustrate this argument, Figure 6 reports the responses of

18As mentioned, earlier literature has emphasized a lack of amplification by collateral constraints in
related models. Kocherlakota (2000) finds little amplification of a negative income shock in a small open
economy. Important differences with our setup are that he assumes a fixed stock of land for production and
collateral, and amplification is analyzed in a linearization around a steady state with a non-binding credit
constraint. Cordoba and Ripoll (2004) examine a positive productivity shock in an extended Kiyotaki and
Moore (1997), model, and find that, even in the case where constrained producers manage to accumulate
substantially more capital, the aggregate output effects are small, as any redistribution of capital from
low- to high-productivity producers has minor aggregate effects for technological reasons. This differs
from our setup, where an increase in a productive input does not come at the cost of reduced inputs
elsewhere.
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the labor inputs and output to a land-demand shock in two different model versions: i)

our baseline model, and ii) an alternative model featuring an income share of impatient

households close to zero and a Frisch elasticity of 10.19 Thus, model ii) closely resembles

the framework of Liu et al. (2013).

In our baseline model, patient households decide to work more in order to smooth

their purchases of non-durable goods and land, following a positive shock. By contrast,

impatient households experience a relaxation of their borrowing constraint through higher

land prices. In other words, the combination of the wealth and income effects for these

agents is such that they reduce their labor supply. However, since their income share

is only 30% of total labor income, this drop is dominated by the increase in the labor

supply of patient households. As a result, the total labor input displays an expansion,

albeit limited.20 In the alternative model, instead, the higher Frisch elasticity of labor

supply leads to a much larger increase in the labor input of patient households, whereas

the labor input of impatient households is almost invariant, as a result of imposing a very

low income share. The ensuing increase in total labor hours exerts an upward force on

output, which further expands due to the rise in the marginal products of land and capital,

thus stimulating the investment in these factors of production.

In addition to these effects, the presence of impatient households in our setup implies a

further weakening of the transmission mechanism of land-demand shocks. In response to

a shock of this type, these agents increase their land holdings in a very persistent manner,

due to their attitude towards accumulating durables for both utility and collateralization

motives. This implies that land is effectively diverted away from entrepreneurs, and thus

from productive use, explaining the modest effect on output.

We find it important to point out that our modeling choices, albeit different from those

of Liu et al. (2013), find ample support in the empirical literature. Credit constraints in

the household sector have been documented, among others, by Jappelli and Pagano (1989)

19In practice, this is accomplished by setting 1 − α = 0.01 along with ϕ = 0.3 for both types of
households. At the same time, we recalibrate the value of νi, i = {P, I} , so as to maintain a steady-state
labor share of 0.25, as in the original calibration.
20At very high LTV ratios, though, the wealth effect induced by an increase in the collateral value is so

strong that the contraction in impatient households’labor supply overcomes the rise in patient households’
supply of labor, thus driving down total labor hours. As diplayed in Figure 4, this eventually implies a
small output response under the endogenous collateral constraint at s = 0.9. While this effect in isolation
tends to dampen business cycle volatility at very high LTV ratios, even in the absence of occasionally
non-binding credit constraints, it plays no role for our main results, since land-demand shocks account for
virtually no variation in output at high LTV ratios.
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Figure 6: Impulse responses of selected variables (in percentage deviation from steady state)
to a one standard deviation positive land-demand shock at s = 0 .7 .
Notes: Solid lines denote the baseline model, dashed lines denote the alternative model with high Frisch

elasticity and very low income share of impatient households. “Labor input”indicates the impulse-response

of labor multiplied by the relevant income share.

and Campbell and Mankiw (1989), and are routinely featured in business-cycle models.

Regarding the value of the Frisch elasticity, the surveys by Chetty et al. (2011, 2013)

report that values above 1 are inconsistent with microeconometric evidence, while much

of the recent macroeconomic literature on estimated DSGE models finds Frisch elasticities

between 0 and 2 (e.g., Smets and Wouters, 2007; Justiniano et al., 2013). Our finding of

a limited amplification of land-demand shocks is robust to values of the Frisch elasticity

along this interval.

4.1.3 Relative importance of shocks

A complementary route to assess the role of each specific shock for aggregate dynamics is

to compute their relative contribution to output fluctuations. To this end, it is possible

to devise a simple measure of our three structural shocks’ relative contribution to the

volatility of various aggregates. For a generic variable x, we define the contribution of
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Figure 7: Contribution to output fluctuations of each of the three shocks in the model, for
different LTV ratios.
Note: See the notes to Figure 2.

shock ξ to its variance as

V (x, ξ) ≡
var [x]− var [x]−ξ

3var [x]−
∑

ξ var [x]−ξ
, ξ = A, ε, s, (35)

where var[x]−ξ is the unconditional variance of x, when the structural shock ξ is turned

off.21

Technology and financial shocks respectively account for about 81% and 19% of output

volatility, at our baseline calibration of s = 0.7. Figure 7 shows that technology shocks

emerge as the main driver of real activity, while financial shocks play a significant role

mainly at levels of the average LTV ratio close to the calibrated value.22 In fact, their

importance increases over the range of LTV ratios up to s ≈ 0.7. Beyond this point,

the contribution of financial shocks reduces, consistent with credit constraints becoming

21We use this measure since our numerical solution method does not allow us to carry out a standard
variance decomposition. However, for a linear model, the V(x, ξ)s are equal to the ratios found by
conventional variance decompositions, as we show in Appendix F.
22As expected on a priori grounds, financial shocks are the predominant driver of debt fluctuations, no

matter the average LTV value, cf. Figure G.5 in Appendix G.
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non-binding more frequently. Importantly, land-demand shocks contribute very little to

the volatility of output at relatively low values of the average LTV ratio, and not at all at

higher credit limits.23 While this property is distinct from the findings of Liu et al. (2013),

where this shock is shown to account for a substantial fraction of output fluctuations, it

is intimately linked to its limited effects on output and most other aggregate variables

discussed in the previous subsection.24

4.2 Responses to ‘large’shocks

In this subsection we perturb the model with large shocks of each type. Figure 8 displays

the response of output to a set of 3-standard deviations, positive shocks, as well as the

mirror image of the response to equally-sized negative shocks, under alternative values of

the average LTV ratio. This exercise is aimed at building intuition on the functioning

of occasionally binding constraints, conditional on each separate shock. In our stochastic

simulations, instead, combinations of shocks of ‘regular’ size are suffi cient to make the

constraints non-binding.

At low LTV ratios, collateral constraints remain binding at all times. Therefore, the

model economy is still linear, with positive and negative shocks producing the same ab-

solute effect on output. However, as the average LTV ratio increases, this generally raises

the likelihood of financial constraints becoming slack in the face of expansionary shocks,

as indicated by the grey areas in Figure 8. Notably, positive financial shocks bear a high

potential of making the constraint non-binding– and more so for entrepreneurs– due to

their direct impact on the credit limit. However, at s = 0.9 all types of shocks lead to

episodes of non-binding constraints. This is in line with the implications of Figure 3.

Episodes of non-binding credit constraints dampen the magnitude of the resulting

boom, as impatient households and entrepreneurs choose not to exhaust their increased

borrowing capacity. The ensuing attenuation of economic expansions is the key driving

force behind the drop in macroeconomic volatility at high average LTV ratios documented

23However, as Figure G.5 in Appendix G shows, land-demand shocks represent the main source of
variation in the land price.
24Land-demand shocks are found to be more persistent in Liu et al. (2013) than in our model. If

we extend the alternative model of Subsection 4.1.2, which features a very high Frisch elasticity and
a negligible income share of impatient households, with their AR(1)-parameter of 0.9997, we obtain a
quantitative role of land-demand shocks in line with that reported by Liu et al. (2013): At our baseline
calibration of s = 0.7, land-demand shocks then account for more than 20% of output fluctuations.
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Figure 8: Impulse responses of output to large (3 standard deviations) shocks to technology
(row 1), land demand (row 2), and credit limits (row 3) for three different LTV ratios;
s = 0 .5 (left column), s = 0 .7 (center), and s = 0 .9 (right column).
Notes: Light-grey periods are ones where the entrepreneurs are unconstrained; dark-grey periods are ones

where both agents are unconstrained. Solid lines are the impulse response to a positive shock, dashed

lines are the mirror image (i.e., the negative) of a similar-sized negative shock.

in Figure 2. On the other hand, in the face of contractionary shocks both types of borrowers

remain financially constrained at all levels of the average LTV ratio, making their debt

reduction increasingly burdensome.25 As a result, economic contractions generally become

deeper at high average LTV ratios. An implication of this finding is that the business cycle

becomes more negatively skewed. In related work (Jensen et al., 2017), we present evidence

that the U.S. business cycle has in fact become increasingly negatively skewed over the

last decades, suggesting that looser credit conditions may indeed have been a driver of this

tendency.

25In our stochastic simulations, however, at high LTV ratios episodes of non-binding constraints may
occur also during contractions, contributing further to the reduction in macroeconomic volatility. Such
situations may arise if, e.g., a negative technology shock coincides with a positive credit-limit shock that
makes the borrowing constraint slack.
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Figure 9: Correlation coeffi cient between output and aggregate debt for different LTV ratios.
Notes: See the notes to Figure 2.

4.3 Co-movement between debt and output

Both the theoretical and the empirical literature have emphasized the role of co-movement

between real activity and credit to understand the effect of financial liberalization on the

business cycle (den Haan and Sterk, 2010; Campbell and Hercowitz, 2011). This subsection

examines the connection between credit limits and the degree of procyclicality of private

debt. It turns out that the enhanced ability of impatient households and entrepreneurs to

engage in debt-financed consumption and investment has important implications for the

co-movement between credit and real economic activity.

Figure 9 plots the correlation between aggregate debt and output: This increases in the

average LTV ratio up to s ≈ 0.7, thus reverting as s approaches its upper bound and credit

constraints become non-binding more frequently. To understand this pattern, it is useful to

study how each type of agent makes consumption and investment decisions under different

credit limits. Focusing on entrepreneurs, Figure 10 shows that the correlation between

their consumption and debt is high when s is relatively low, but declines at higher average

LTV ratios. At relatively low values of s, a marginal relaxation of the collateral constraint
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Figure 10: Correlation coeffi cients between key variables for different LTV ratios.
Notes: See the notes to Figure 2.

allows this type of agent to increase its consumption by accessing more credit. However,

as s increases, entrepreneurs find themselves unconstrained more and more often. This

reduces the correlation between entrepreneurial consumption and debt, as occasionally

non-binding constraints produce a delinking between debt and consumption dynamics.

A similar reasoning applies to the co-movement between debt and investment in capital

goods, although the correlation between these variables displays less sizeable changes.

Like the entrepreneurs, also impatient households exploit higher credit limits to in-

crease debt-financed consumption. However, we have seen that impatient households find

themselves financially unconstrained less often, even at the upper end of the support of

the average LTV ratio. As a result, the correlation between consumption and debt of im-

patient households increases monotonically, albeit more slowly as s approaches its upper

limit; cf. Figure 10. It is worth noting that impatient households behave in accordance

with the “financial labor supply accelerator”channel of Campbell and Hercowitz (2009,

2011), according to which looser credit conditions weaken the co-movement between BI
t

and N I
t : As credit constraints become more lax, households are no longer forced to work
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longer hours in order to increase their spending in response to a generic positive shock, but

may instead rely on access to credit. In our model with multiple agents and input factors,

however, this effect does not translate into a weakened co-movement between aggregate

debt and output.26

The intertemporal choices of patient households mirror those of their credit-constrained

counterparts in the debt market. Indeed, starting from low average LTV ratios, the correla-

tion between consumption and savings (i.e., aggregate credit) declines up to s ≈ 0.65. This

indicates that patient households are increasingly willing to postpone consumption, while

lending their available resources. Beyond this point, as down-payment requirements drop

further and credit constraints are relaxed, borrowers’demand for additional credit slows

down, and so does patient households’propensity to save. This reverses the correlation

pattern. Finally, Figure 10 shows that the co-movement between aggregate consumption

and debt displays a pattern roughly similar to that between output and debt.

5 Macroprudential policy implications

In the face of the 2007—2008 financial crisis, several authorities have reacted by introduc-

ing limits to the LTV ratios for mortgages (IMF, 2011). Cerutti et al. (2017) survey the

use of macroprudential policy tools in 119 countries, and report that around one fifth of

these have enforced restrictions on LTV ratios. Among other countries, Hong Kong, the

Netherlands, New Zealand, Singapore, and Sweden have imposed limits to the LTV ratio

as the main macroprudential tool; cf. Darbar and Wu (2016).27 However, the non-linear

relationship between macroeconomic volatility and credit limits highlighted in Figure 2

questions the adequacy of such measures, as it implies that macroprudential policymak-

ers might unintentionally raise output volatility by lowering the LTV ratio in situations

characterized by lax down-payment requirements. On one hand, a reduction of credit

limits may succeed in dampening the asset price sensitivity of borrowers’spending and

investment decisions when they are credit constrained before and after the intervention.

26This contrasts with the framework of Campbell and Hercowitz (2009, 2011), where labor of credit-
constrained households equals output, and there is no endogenous asset price.
27Jácome and Mitra (2015) examine the implementation of LTV limits (along with limits to the debt-

service-to-income ratio) in six countries, showing that they were effective in reducing loan-growth and
improving debt-servicing performances of borrowers, while experiencing more diffi culties in curbing house
price growth.
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On the other hand, lower credit limits increase the frequency at which credit constraints

bind, subjecting borrowers more heavily to fluctuations in credit availability. At very high

LTV ratios, we have seen that the latter effect dominates.

As an alternative to imposing a cap on the LTV ratio, several academics and policy-

makers have suggested to reduce the amplitude of housing and financial boom-bust cycles

through the introduction of a countercyclical financial sector regulation. In fact, both

the Basel Committee on the Global Financial System (2010) and the IMF (2011) have

suggested that the LTV ratio could be envisaged as an automatic stabilizer to be adjusted

countercyclically around a certain cap, while Lambertini et al. (2013) have shown that

such a policy can be effective in curbing fluctuations in output as well as household debt.

This view is supported by widespread evidence showing that the institutional character-

istics of mortgage finance strongly contribute to the procyclicality of the housing market

(see, e.g., Calza et al., 2013).

We now examine the stabilizing properties of this type of policy in our model. To

this end, we expand (5), so as to account for a systematic response of the LTV ratio to

log-deviations of output from its steady state:

log st = log s− ω log

(
Yt
Y

)
+ ρs (log st−1 − log s) + vt, ω > 0, (36)

where ω indexes the degree of countercyclicality. The left-hand panel of Figure 11 reports

the results of our policy exercise for different values of the steady-state LTV ratio and

alternative degrees of countercyclicality. As expected, output volatility decreases in ω, at

all values of the average LTV ratio. Moreover, the non-monotonic relationship between

output volatility and the LTV ratio vanishes at high values of ω, implying that the rule is

effective at defusing the effects of occasionally binding constraints. This is confirmed by the

right-hand panel of Figure 11, which focuses on the relative volatility of expansionary and

contractionary episodes by reporting the interquartile range of the distributions of each of

these: In the baseline scenario the volatility of expansions is considerably lower than that of

contractions, and declines over a wide range of average credit limits, whereas the volatility

of contractions declines only at the very end of the support for s. Notably, implementing

(36) is effective at reducing the amplitude of contractions by more than that of expansions,

counteracting the macroeconomic asymmetry caused by occasionally binding constraints.
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Figure 11: Left panel: Standard deviation of output for different degrees of countercyclical
LTV ratios. Right panel: Interquartile range for output contractions (green lines) and
expansions (blue lines) for different degrees of countercyclical LTV ratios.
Notes: In the right panel we split our simulated samples into expansions and contractions based on whether

output is above or below its steady-state level, after which we compute the interquartile range for each of

the two subsamples. See also the notes to Figure 2.

In fact, for a suffi ciently countercyclical rule, contractions and expansions become almost

symmetric.

Arguably the key objective of macroprudential policy is to minimize the likelihood of

large output drops, rather than smoothing output fluctuations in either direction. For this

reason, we now focus our policy analysis on a measure of GDP-at-risk, as in De Nicolò and

Lucchetta (2013). Consistent with common definitions of Value-at-Risk, we define GDP-

at-risk as the maximum negative deviation of output from steady state occurring within

the top 95 percent of the distribution of output observations. We therefore look at the 5th

percentile of the distribution of output in our stochastic simulations, which– rescaled by

the steady-state level of output– is displayed in Figure 12 for a range of steady-state LTV

ratios and degrees of countercyclicality. At the baseline value of s = 0.7, GDP-at-risk

in our baseline model is 2.18 percent of steady-state output. The implementation of a

countercyclical LTV ratio leads to a quantitatively important attenuation of GDP-at-risk

at all steady-state LTV ratios, while alleviating its hump-shaped pattern observed under

a constant LTV ratio. In fact, depending on the degree of countercyclicality, this policy

33



Figure 12: GDP-at-risk for different degrees of countercyclical LTV ratios.
Note: See the notes to Figure 2.

reduces GDP-at-risk by between 7 and 24 percent at s = 0.7. In other words, the state-

contingent rule (36) avoids large output drops by increasing credit availability when it is

needed the most: As the onset of an economic contraction leads to a decline in asset prices

and collateral values, an automatic relaxation of credit constraints reduces the necessary

deleveraging by households and firms.

6 Concluding remarks

We construct a DSGE model with heterogeneous agents and multiple credit constraints,

and show that looser credit conditions initially generate increasing business cycle volatility

and stronger co-movement between private debt and real economic activity. The pattern

reverses at LTV ratios not far from those currently observed in many advanced economies.

These non-monotonic relationships are intertwined with the possibility of credit constraints

becoming non-binding the higher are credit limits. While this pattern implies that a

simple cap on the average LTV ratio may increase macroeconomic volatility, we show that

a countercyclical LTV ratio dampens volatility and reduces the risk of large output drops.
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Appendices

A Assets and liabilities in the US
Figure 1 shows the ratio of liabilities to assets for households and firms in the United States,
respectively. All data are taken from FRED (Federal Reserve Economic Data), Federal Reserve
Bank of St. Louis. The primary source is Flow of Funds data from the Board of Governors of
the Federal Reserve System. For business liabilities we use the sum of debt securities and loans
of nonfinancial corporate and noncorporate businesses. As assets we follow Liu et al. (2013)
and use data on both sectors’ equipment and software as well as real estate at market value.
For households and nonprofit organizations, we again use the sum of debt securities and loans
as data for liabilities and use as assets both groups’real estate at market value and equipment
and software of nonprofit organizations.28 For the years 1945—1951, data is only available on an
annual basis. For these years, we use linear interpolation to compute quarterly observations.

The ratios reported in Figure 1 are aggregate measures, and may therefore not reflect actual
loan-to-value (LTV) requirements for the marginal borrower. Nonetheless, we report these figures
since the flow of funds data delivers a continuous measure of LTV ratios covering the entire period
1945—2016. For households, the aggregate ratio of credit to assets in the economy is likely to
understate the actual down-payment requirements faced by households applying for a mortgage
loan, since loans and assets are not uniformly distributed across households. In our model,
we distinguish between patient and impatient households, and we assume that only the latter
group is faced with a collateral constraint. In the data, we have not made this distinction,
so that the LTV ratio for households reported in Figure 1 represents an average of the LTV of
“patient”households, who are likely to have many assets and small loans, and that of “impatient”
households, who on average have larger loans and fewer assets. Justiniano et al. (2014) use the
Survey of Consumer Finances to make this distinction, and identify borrowers as households
with liquid assets of a value less than two months of their income. Based on the surveys from
1992, 1995, and 1998, they arrive at an average LTV ratio for this group of around 0.8. Another
approach, following Duca et al. (2011), is to focus on first-time home-buyers, who are likely
to fully exploit their borrowing capacity. Using data from the American Housing Survey, these
authors report LTV ratios approaching 0.9 towards the end of the 1990s; reaching a peak of
almost 0.95 before the onset of the recent crisis. While these alternative approaches are thus
likely to result in higher levels of LTV ratios, we are interested in the development over time
of these ratios. While we believe the Flow of Funds data provide the most comprehensive and
consistent time series evidence in this respect, substantial increases over time in LTV ratios faced
by households have been extensively documented; see, e.g., Campbell and Hercowitz (2009), Duca
et al. (2011), Favilukis et al. (2017), Boz and Mendoza (2014), and Jordá et al. (2017). It should
be noted that for households, various government-sponsored programs directed at lowering the
down-payment requirements faced by low-income or first-time home buyers have been enacted
by different administrations (Chambers et al., 2009). These are likely to have contributed to the
increase in the ratio of loans to assets illustrated in the left panel of Figure 1.

Likewise, the aggregate ratio of business loans to assets in the data may cover for a disparate
distribution of credit and assets across firms. In general, the borrowing patterns and conditions
of firms are more diffi cult to characterize than those of households, as their credit demand is
more volatile, and their assets less uniform and often more diffi cult to assess. Liu et al. (2013)
also use Flow of Funds data to calibrate the LTV ratio of entrepreneurs, and arrive at a value
of 0.75. This ratio is based on an assumption that commercial real estate enters with a weight

28Until 2015, debt securities and loans were aggregated under the title “Credit market instruments”for
businesses as well as households in the Financial Accounts of the United States.

42



of 0.5 in the asset composition of firms. In contrast, the ratio we report in Figure 1 assigns a
weight of 1 to commercial real estate. While the transformation of Liu et al. (2013) would result
in higher LTV ratios at any point in time, it would not affect the finding of rising LTV ratios
over time. The secular increase in firm leverage over the second half of the 20th century has also
been documented by Graham et al. (2014) using data from the Compustat database.29,30 These
authors report loan-to-asset ratios that are broadly in line with those we present. More generally,
an enhanced access of firms to credit markets over time has been extensively documented in the
literature. This involves, for instance, the emergence of a market for high-risk, high-yield bonds
(Gertler and Lown, 1999), increased flexibility in firms’financing decisions, and the resulting
immoderation in financial quantities (Jermann and Quadrini, 2009).

29It should be mentioned that they also show a Flow of Funds-based measure of debt to total assets at
historical cost (or book value) for firms. The increase over time in this measure is smaller. However, we
believe that the ratio of debt to pledgeable assets at market values (as shown in Figure 1) is the relevant
measure for firms’access to collateralized loans, and hence more appropriate for our purposes.
30We emphasize that Figure 1 reports a gross measure of firm leverage. Bates et al. (2009) report that

firm leverage net of cash holdings has been declining since 1980, but that this decline is entirely due to a
large increase in cash holdings.
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B The steady state (not intended for publication)
The deterministic steady state of our model is described in the following, where variables without
time subscripts are the steady-state values. We first consider the implications of the patient
households’optimality conditions. From (6) and (7), we get

1− βPρP
(1− ρP )CP

= λP , (B.1)

and
νP
(
1−NP

)−ϕP
= λPWP , (B.2)

respectively. The steady-state gross interest rate on loans is recovered from (8):

βPRλP = λP ,

R =
1

βP
, (B.3)

emphasizing that it is the time preference of the most patient individual that determines the
steady-state rate of interest. From (9) we find

ε

HP
+ βPλPQ = λPQ,

HP =
ε

QλP
(
1− βP

) . (B.4)

Turning to the impatient households, (10) and (11), leads to

1− βIρI
(1− ρI)CI = λI , (B.5)

and
νI
(
1−N I

)−ϕI
= λIW I , (B.6)

respectively. From (12) we obtain the steady-state value of the multiplier on the credit constraint:

µI = λI
(
1− βIR

)
,

which by use of (B.3) yields

µI = λI
(

1− βI

βP

)
. (B.7)

From (B.7), we see that in steady state µI > 0 since βP > βI , which proves that the credit
constraint (4) is binding in steady state. In a similar fashion, we get from (20):

µE = λE
(

1− βE

βP

)
. (B.8)
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Hence, µE > 0 since βP > βE , implying that the entrepreneurs’credit constraints, (18), are also
binding in steady state. From (13) we get

ε

HI
+ βIλIQ+ µIs

Q

R
= λIQ,

HI =
ε

QλI
[
1− βI − µI

λI
s

1

R

] ,
HI =

ε

QλI
[
1− βI −

(
1− βI

βP

)
sβP

] ,
HI =

ε

QλI
[
1− βI −

(
βP − βI

)
s
] , (B.9)

where the next-to-last line makes use of (B.3) and (B.7).
Turning to the remaining optimality conditions of the entrepreneurs, (19) gives

1− βEρE
(1− ρE)CE

= λE , (B.10)

and (21) implies

ψE

[
1− Ω

2

(
I

I
− 1

)2]
− ψEΩ

I

I

(
I

I
− 1

)
+ βEψEΩ

(
I

I

)2(I
I
− 1

)
= λE

leading to
ψE = λE . (B.11)

This reflects that there are no investment adjustment costs in steady state in our no-growth
model. Therefore, the shadow value of a unit of capital equals the shadow value of wealth.
Combining this with (25), we readily obtain

QK = 1. (B.12)

From (22) we obtain

βErKλE + βE (1− δ)ψE + µEs
QK

R
= ψE

βEλErK + βE (1− δ)ψE + λE
(

1− βE

βP

)
s
QK

R
= ψE

1 + rK − δ =
1−

(
βP − βE

)
sQK

βE
, (B.13)

where the second line uses (B.8), and the last uses (B.3) and (B.11), respectively. From (23) we
find:

rH =

(
1− βE

)
Q

βE
− µEs

λEβE
Q

R
. (B.14)

We then turn to the remaining equilibrium conditions in steady state. As we saw above, the
two credit constraints are binding in steady state. Hence,

BI =
sQHI

R
, (B.15)

45



BE = s
QKK +QHE

R
. (B.16)

The production function is

Y =
[(
NP
)α (

N I
)1−α]γ [(

HE
)φ
K1−φ

]1−γ
. (B.17)

The steady-state versions of the firms’first-order conditions, (28)—(31), taking market clearing
conditions into account are

αγ
Y

NP
= WP , (B.18)

(1− α) γ
Y

N I
= W I , (B.19)

(1− γ) (1− φ)
Y

K
= rK , (B.20)

(1− γ)φ
Y

HE
= rH . (B.21)

In steady state, the law of motion for capital implies

I = δK. (B.22)

We have the following steady-state resource constraints:

Y = CP + CI + CE + I, (B.23)

H = HP +HI +HE , (B.24)

BP +BI +BE = 0. (B.25)

Also, we have the steady-state versions of the agents’budget constraints:

CP = WPNP − (R− 1)BP , (B.26)

CI = W IN I − (R− 1)BI , (B.27)

CE + I = rKK + rHHE − (R− 1)BE (B.28)

(One of these is redundant by Walras’law.)
We therefore have that the steady state is characterized by the vector[

Y,CP , CI , CE , I,HP , HI , HE ,K,NP , N I , BP , BI , BE ,

Q,QK , R, rK , rH ,WP ,W I , λP , λI , λE , µI , µE , ψE

]
.

These 27 variables are determined by the 27 equations (B.1), (B.2), (B.3), (B.4), (B.5), (B.6),
(B.7), (B.8), (B.9), (B.10), (B.11), (B.13), (B.14), (B.15), (B.16), (B.17), (B.18), (B.19), (B.20),
(B.21), (B.22), (B.23), (B.24), (B.25), (B.26), (B.27), and (B.12).

We now briefly proceed with a characterization of the steady state, wherein we compute some
variables in ratios to output in closed form. Then we reduce the system to one of seven equations
in central quantities, which is solved numerically, conditional on these ratios. The remaining 19
variables then follow explicitly from the characterizations given above. First, combine (B.20)
and (B.13) to get an expression for capital-output ratio:

K

Y
=

βE (1− γ) (1− φ)

1−
(
βP − βE

)
s− βE (1− δ)

, (B.29)

46



where we have used that QK = 1 by (B.12), Then we combine (B.14) and (B.21) to get an
expression for entrepreneurs’land-output ratio:

(1− γ)φ
Y

HE
=

(
1− βE

)
Q

βE
− µEs

λEβE
Q

R
,

Y

HE
=

(
1− βE

)
QλER− µEsQ

(1− γ)φβEλER
,

QHE

Y
=

(1− γ)φβE(
1− βE

)
−
(
βP − βE

)
s
, (B.30)

where the last line uses (B.8). Again using that QK = 1, the borrowing constraint for entrepre-
neurs (B.16) can be rewritten in terms of ratios to output as

BE

Y
=

s

R

(
K

Y
+
QHE

Y

)
,

which by use of (B.29), (B.30) and (B.3) imply

BE

Y
= βP s

(
βE (1− γ) (1− φ)

1−
(
βP − βE

)
s− βE (1− δ)

+
(1− γ)φβE(

1− βE
)
−
(
βP − βE

)
s

)
(B.31)

This closed-form solution of the entrepreneurs’ steady-state loan-to-output ratio is central in
setting up a subsystem of seven central variables. First, it can be used with the entrepreneur’s
budget constraint, (B.28), in ratio to output:

CE

Y
+
I

Y
= rK

K

Y
+ rH

HE

Y
− (R− 1)

BE

Y
,

which by use of (B.22) becomes

CE

Y
=
(
rK − δ

) K
Y

+ rH
HE

Y
− (R− 1)

BE

Y
.

Using (B.13) and (B.21) we get

CE

Y
=

(
1− βE −

(
βP − βE

)
s

βE

)
K

Y
+ (1− γ)φ− (R− 1)

BE

Y
,

which by use of (B.29) provides the entrepreneurs’consumption-to-output ratio:

CE

Y
=

(1− γ) (1− φ)
[
1− βE −

(
βP − βE

)
s
]

1−
(
βP − βE

)
s− βE (1− δ)

+ (1− γ)φ− 1− βP

βP
BE

Y
, (B.32)

Then turn to the impatient households. In ratio to output, their budget constraint is, cf.
(B.27),

CI

Y
=
W IN I

Y
− (R− 1)

BI

Y
,

which, by use of (B.19) and (B.3), becomes

CI

Y
= (1− α) γ − 1− βP

βP
BI

Y
.
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Likewise, the patient households’budget constraints are written as, cf. (B.26),

CP

Y
=
WPNP

Y
− (R− 1)

BP

Y
,

which by use of (B.18) and (B.3) becomes

CP

Y
= αγ − 1− βP

βP
BP

Y
.

Adding these constraints gives

CI + CP

Y
= γ +

1− βP

βP
BE

Y
, (B.33)

where (B.25) has been invoked. Note that the right-hand-side of (B.33) is known by (B.31).
Combining (B.1), (B.2) and (B.18) gives the steady-state equilibrium condition for the labor

market for patient households:

νP
(
1−NP

)−ϕP
CP

1− ρP

1− βPρP
= αγ

Y

NP
. (B.34)

Similarly, (B.5), (B.6) and (B.19) characterize the labor-market equilibrium for impatient house-
holds:

νI
(
1−N I

)−ϕI
CI

1− ρI

1− βIρI
= (1− α) γ

Y

N I
. (B.35)

Combining the two households’land-demand expressions, (B.4) and (B.9), gives

HI

HP
=

λP
(
1− βP

)
λI
[
1− βI −

(
βP − βI

)
s
] .

Eliminating the multipliers by (B.1) and (B.5), and eliminating HP by (B.24), we obtain the
following land-market equilibrium characterization:

HI

H −HI −HE
=

1−βP ρP
(1−ρP )CP

(
1− βP

)
1−βIρI
(1−ρI)CI

[
1− βI −

(
βP − βI

)
s
] ,

HI

H −HI −HE

CP

CI
=

(
1− βPρP

) (
1− ρI

)
(1− ρP )

(
1− βIρI

) (
1− βP

)[
1− βI −

(
βP − βI

)
s
] . (B.36)

We also take the impatient households’borrowing constraint into consideration. Using (B.15) to
eliminate BI in the budget constraint, it becomes

CI

Y
= (1− α) γ − 1− βP

βP
sQHI

Y R
,

= (1− α) γ −
(
1− βP

) sQHI

Y
. (B.37)

We can use that (B.9) implies

QHI =
ε

λI
[
1− βI −

(
βP − βI

)
s
]
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and thus, again using (B.5),

QHI =

ε(1−ρI)
1−βIρI C

I

1− βI −
(
βP − βI

)
s
, (B.38)

Q =

ε(1−ρI)
1−βIρI C

I

HI
[
1− βI −

(
βP − βI

)
s
] . (B.39)

We then use (B.38) to rewrite the consumption-output ratio for impatient households (B.37) as:

CI

Y
= (1− α) γ −

(
1− βP

) sQHI

Y

= (1− α) γ −
(
1− βP

) s
Y

ε(1−ρI)
1−βIρI C

I

1− βI −
(
βP − βI

)
s
. (B.40)

Likewise, we rewrite the entrepreneurs’land to output ratio by using (B.39) to eliminate Q from
(B.30):

HE

Y
=

(1− γ)φβE

1− βE −
(
βP − βE

)
s

HI
[
1− βI −

(
βP − βI

)
s
]

ε(1−ρI)
1−βIρI C

I
. (B.41)

Finally, the production function (B.17) is rewritten as a function of the derived ratios:

Y γ = A
[(
NP
)α (

N I
)1−α]γ [(HE

Y

)φ(
K

Y

)1−φ]1−γ
,

Using (B.29), we finally obtain

Y = A
1
γ
(
NP
)α (

N I
)1−α (HE

Y

)φ(
βE (1− γ) (1− φ)

1−
(
βP − βE

)
s− βE (1− δ)

)1−φ
1−γ
γ

. (B.42)

We have now reduced the steady-state to a matter of finding the vector[
Y,CP , CI , HI , HE , NP , N I

]
,

which satisfies the equations (B.33), (B.34), (B.35), (B.36), (B.40), (B.41) and (B.42), given
the solution for BE/Y , (B.31), and given all parameters and exogenous variables of the model.
We compute the vector numerically using fsolve in Matlab. The remaining 19 variables then
follow analytically from the steady-state equations presented above.
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C The log-linearized model (not intended for publi-
cation)

We log-linearize the model around the steady state found in the previous section. In the following,
we let X̂t denote the log-deviation of a generic variable Xt from its steady state value X, except
for the following variables. For the interest rates, R̂t ≡ Rt−R, r̂Ht ≡ rHt −rH and r̂Kt ≡ rKt −rK ,
and for debt, B̂i

t ≡
(
Bi
t −Bi

)
/Y , i = P, I, E. We first derive the log-linear versions of the

agents’optimality conditions and conclude with the expressions for market clearing.

C.1 Optimality conditions of the patient households
Equations (6), (7) and (8) readily becomes

βPρPEt
{
ĈPt+1

}
−
(

1 + βP
(
ρP
)2)

ĈPt + ρP ĈPt−1 =
(
1− ρP

) (
1− βPρP

)
λ̂
P

t , (C.1)

ϕP
NP

1−NP
N̂P
t = λ̂

P

t + ŴP
t (C.2)

βP R̂t + Et
{
λ̂
P

t+1

}
= λ̂

P

t , (C.3)

Log-linearization of (9) yields

ε

HP

(
ε̂t − ĤP

t

)
+ βPλPQEt

{
λ̂
P

t+1 + Q̂t+1

}
= λPQ

(
λ̂
P

t + Q̂t

)
.

Now use steady-state equation (B.4) to get

−QλP
(
1− βP

)
ĤP
t +QλP

(
1− βP

)
ε̂t + βPλPQEt

{
λ̂
P

t+1 + Q̂t+1

}
= λPQ

(
λ̂
P

t + Q̂t

)
,

and thereby

βPEt
{
λ̂
P

t+1 + Q̂t+1

}
−
(
1− βP

)
ĤP
t +

(
1− βP

)
ε̂t = λ̂

P

t + Q̂t. (C.4)

Moreover, the log-linearized budget constraint holds:

CP

Y
ĈPt +

QHP

Y

(
ĤP
t − ĤP

t−1

)
+
BP

Y
R̂t−1 +

1

βP
B̂P
t−1

= B̂P
t + αγ

(
ŴP
t + N̂P

t

)
.

where we have used (B.18). This constraint, however, does not feature in our Matlab codes
(we use the impatient households’and entrepreneurs’budget constraint and the economy-wide
resource constraint).

C.2 Optimality conditions of the impatient households
From (10), (11) and (12) we obtain

βIρIEt
{
ĈIt+1

}
−
(

1 + βI
(
ρI
)2)

ĈIt + ρIĈIt−1 =
(
1− ρI

) (
1− βIρI

)
λ̂
I

t , (C.5)

ϕI
N I

1−N I
N̂ I
t = λ̂

I

t + Ŵ I
t , (C.6)
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and
βIλIR̂t + βIRλIEt

{
λ̂
I

t+1

}
+ µI µ̂It = λI λ̂

I

t ,

respectively. The last expression is rewritten by use of (B.7):

βIR̂t + βIREt
{
λ̂
I

t+1

}
+

(
1− βI

βP

)
µ̂It = λ̂

I

t . (C.7)

Furthermore, (13) becomes

ε

HI

(
ε̂t − ĤI

t

)
+ βIλIQEt

{
λ̂
I

t+1 + Q̂t+1

}
+µI

sQ

R

[
µ̂It + ŝt + Et

{
Q̂t+1

}
− βP R̂t

]
= λIQ

(
λ̂
I

t + Q̂t

)
,

which by use of (B.7) and (B.9) becomes

QλI
[
1− βI −

(
βP − βI

)
s
] (
ε̂t − ĤI

t

)
+ βIλIQEt

{
λ̂
I

t+1 + Q̂t+1

}
+λI

(
1− βI

βP

)
sQ

R

[
µ̂It + ŝt + Et

{
Q̂t+1

}
− βP R̂t

]
= λIQ

(
λ̂
I

t + Q̂t

)
,

βIEt
{
λ̂
I

t+1 + Q̂t+1

}
−
[
1− βI − s

(
βP − βI

)]
ĤI
t

+
[
1− βI −

(
βP − βI

)
s
]
ε̂t

+s
(
βP − βI

) [
µ̂It + ŝt + Et

{
Q̂t+1

}
− βP R̂t

]
= λ̂

I

t + Q̂t. (C.8)

where we have again used (B.3). The budget constraint becomes

CI

Y
ĈIt +

QHI

Y

(
ĤI
t − ĤI

t−1

)
+
BI

Y
R̂t−1 +

1

βP
B̂I
t−1 = B̂I

t + (1− α) γ
(
Ŵ I
t + N̂ I

t

)
, (C.9)

where we have used (B.19). Finally, the log-linearized version of (4) holds:

Y

BI
B̂I
t ≤ ŝt + Et

{
Q̂t+1

}
+ ĤI

t − βP R̂t. (C.10)

Note that while the credit constraint binds in steady state, cf. (B.15), we allow it to be non-
binding outside steady state.

C.3 Optimality conditions of the entrepreneurs
From (B.8) and (20) we get

βEρEEt
{
ĈEt+1

}
−
(

1 + βE
(
ρE
)2)

ĈEt + ρEĈEt−1 =
(
1− ρE

) (
1− βEρE

)
λ̂
E

t , (C.11)

βER̂t + βEREt
{
λ̂
E

t+1

}
+

(
1− βE

βP

)
µ̂Et = λ̂

E

t . (C.12)
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From (21) we derive

ψ̂
E

t − Ω
(
1 + βE

)
Ît + ΩÎt−1 + βEΩEt

{
Ît+1

}
= λ̂

E

t , (C.13)

where we have made use of (B.11). Equation (22) becomes

βE r̂Kt + βErKEt
{
λ̂
E

t+1

}
+ (1− δ)βEEt

{
ψ̂
E

t+1

}
+
(
βP − βE

)
sQK

(
µ̂Et + ŝt + Et

{
Q̂Kt+1

}
− βP R̂t

)
= ψ̂

E

t (C.14)

where we have used (B.11) and (B.3). Moreover, (25) becomes

ψ̂
E

t = λ̂
E

t + Q̂Kt . (C.15)

Finally, (23) is approximated as

βEQ
(
Et
{
λ̂
E

t+1

}
+ Et

{
Q̂t+1

})
+ βErH

(
Et
{
λ̂
E

t+1

}
+

1

rH
r̂Ht

)
+
(
βP − βE

)
sQ
(
µ̂Et + ŝt + Et

{
Q̂t+1

}
− βP R̂t

)
= Q

(
λ̂
E

t + Q̂t

)
. (C.16)

Furthermore, the budget constraint for entrepreneurs becomes

CE

Y
ĈEt +

I

Y
Ît +

QHE

Y

(
ĤE
t − ĤE

t−1

)
+
BE

Y
R̂t−1 +

1

βP
B̂E
t−1

= B̂E
t +

K

Y
r̂Kt−1 +

HE

Y
r̂Ht−1 + (1− γ)φĤE

t−1 + (1− γ) (1− φ) K̂t−1. (C.17)

where we have used (B.20) and (B.21). The borrowing constraint must be satisfied:

Y B̂E
t ≤ s

(
K +QHE

)
R

ŝt −
s

R2
(
K +QHE

)
R̂t +

sK

R
Et
{
Q̂Kt+1

}
+
sK

R
K̂t +

sQHE

R
Et
{
Q̂t+1

}
+
sQHE

R
ĤE
t .

Dividing by the steady-state values on both sides:

Y

BE
B̂E
t ≤ ŝt − βP R̂t

+
K

K +QHE
Et
{
Q̂Kt+1

}
+

K

K +QHE
K̂t +

QHE

K +QHE
Et
{
Q̂t+1

}
+

QHE

K +QHE
ĤE
t ,

yielding

Y

BE
B̂E
t ≤ ŝt− βP R̂t +

K

K +QHE

(
Et
{
Q̂Kt+1

}
+ K̂t

)
+

QHE

K +QHE

(
Et
{
Q̂t+1

}
+ ĤE

t

)
. (C.18)
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C.4 Optimality conditions of the firms
The first-order conditions of firms, (28), (29), (30) and (31), are readily rewritten as

Ŷt − N̂P
t = ŴP

t , (C.19)

Ŷt − N̂ I
t = Ŵ I

t , (C.20)

Et
{
Ŷt+1

}
− K̂t =

(
rK
)−1

r̂Kt , (C.21)

Et
{
Ŷt+1

}
− ĤE

t =
(
rH
)−1

r̂Ht , (C.22)

respectively.

C.5 Market clearing and resource constraints
From the law of motion for capital, (17), we get:

K̂t = (1− δ) K̂t−1 + δÎt. (C.23)

where we have used (B.22). Moreover, from the resource constraint, (34), we have:

Ŷt =
CP

Y
ĈPt +

CI

Y
ĈIt +

CE

Y
ĈEt + δ

K

Y
Ît. (C.24)

We also have the linearized versions of (26), (32) and (33):

Ŷt = Ât + αγN̂P
t + (1− α) γN̂ I

t + (1− γ) (1− φ) K̂t−1 + (1− γ)φĤE
t−1, (C.25)

0 = HP ĤP
t +HIĤI

t +HEĤE
t , (C.26)

0 = B̂P
t + B̂I

t + B̂E
t . (C.27)

Finally, we have the shock processes. For the technology shock, we have from (27):

Ât = ρAÂt−1 + zt. (C.28)

Furthermore, we have from (2):
ε̂t = ρεε̂t−1 + ut. (C.29)

Finally, we have from (5) that
ŝt = ρsŝt−1 + vt, (C.30)

which completes our list of log-linearized equations.
The log-linearized system consists of 30 equations: 18 first-order conditions, 2 budget con-

straints, 2 credit constraints, 1 production function, 3 market clearing conditions, 1 capital
accumulation equation, and 3 shock processes. The 30 variables of the system are given by the
vector [

ĈPt , Ĉ
I
t , Ĉ

E
t , λ̂

P

t , λ̂
I

t , λ̂
E

t , ψ̂
E

t , µ̂
I
t , µ̂

E
t , R̂t, N̂

P
t , N̂

I
t , Ŵ

P
t , Ŵ

I
t ,

ĤP
t , Ĥ

I
t , Ĥ

E
t , Q̂t, Q̂

K
t , r̂

H
t , r̂

K
t , K̂t, Ît, Ŷt, B̂

P
t , B̂

I
t , B̂

E
t , Ât, ε̂t, ŝt

]
,

and are determined by equations (C.1)-(C.30).
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D The solution method
As discussed in the main text, we treat the collateral constraints as inequalities when we solve
the model, and add two complementary slackness conditions; (14) and (24), respectively. We
then adopt the solution method of Holden and Paetz (2012), on which this appendix builds. In
turn, Holden and Paetz (2012) expand on previous work by Laséen and Svensson (2011). With
first-order perturbations, the solution method is equivalent to the piecewise linear approach
developed by Guerrieri and Iacoviello (2015), as discussed by these authors and confirmed by our
own numerical exercises.31 Finally, Holden and Paetz (2012) and Guerrieri and Iacoviello (2015)
evaluate the accuracy of their respective methods against a global solution based on projection
methods. This is done for a very simple model with a borrowing constraint, for which a highly
accurate global solution can be obtained and used as a benchmark. They find that the non-linear
local approximations are very accurate. For the model used in this paper, the large number of
state variables (14 endogenous state variables and 3 shocks) renders the use of global solution
methods impractical due to the curse of dimensionality typically associated with such methods.

The collateral constraints put an upper bound on the borrowing of each of the two constrained
agents. While the constraints are binding in the steady state, this may not be the case outside
the steady state, where the constraints may be only occasionally binding. Observe that we can
reformulate the collateral constraints in terms of restrictions on each agent’s shadow value of
borrowing; µit, i = {I, E}: We know that µit ≥ 0 if and only if the optimal debt level of agent
i is exactly at or above the credit limit. In other words, we need to ensure that µit ≥ 0. If
this restriction is satisfied with inequality, the constraint is binding, so the slackness condition
is satisfied. If it holds with equality, the collateral constraint becomes non-binding, but the
slackness condition is still satisfied. If instead µit < 0, agent i’s optimal level of debt is lower
than the credit limit, so that treating his collateral constraint as an equality implies that we are
forcing him to borrow “too much.”In this case, the slackness condition is violated. We then need
to add shadow price shocks so as to “push”µit back up until it exactly equals its lower limit of
zero and the slackness condition is satisfied. The idea of adding such shocks to the model derives
from Laséen and Svensson (2011), who use such an approach to deal with pre-announced paths
for the interest rate setting of a central bank. The contribution of Holden and Paetz (2012) is
to develop a numerical method to compute the size of these shocks that are required to obtain
the desired level for a given variable in each period, and to make this method applicable to a
general class of potentially more complicated problems than the relatively simple experiments
conducted by Laséen and Svensson (2011).

We first describe how to compute impulse responses to a single shock, e.g., a technology shock.
The first step is to add independent sets of shadow price shocks to each of the two log-linearized
collateral constraints. To this end, we need to determine the number of periods T in which we
conjecture that the collateral constraints may be non-binding. This number may be smaller than
or equal to the number of periods for which we compute impulse responses; T ≤ T IRF . For each
period t ≤ T , we then add shadow price shocks which hit the economy in period t but become
known at period 0, that is, at the same time the economy is hit by the technology shock. In
other words, the log-linearized collateral constraints become:

Y

BI
B̂I
t = ŝt + Et

{
Q̂t+1

}
+ ĤI

t − βP R̂t −
T−1∑
j=0

εSP,Ij,t−j ,

31These authors also emphasize the equivalence between these two approaches and the widely used
extended path algorithm of Fair and Taylor (1983).

54



Y

BE
B̂E
t = ŝt−βP R̂t+

K

K +QHE

(
Et
{
Q̂Kt+1

}
+ K̂t

)
+

QHE

K +QHE

(
Et
{
Q̂t+1

}
+ ĤE

t

)
−
T−1∑
j=0

εSP,Ej,t−j ,

where εSP,ij,t−j is the shadow price shock that hits agent i in period t = j, and is anticipated by all
agents in period t = t− j = 0 ensuring consistency with rational expectations. We let all shadow
price shocks be of unit magnitude. We then need to compute two sets of weights αµI and αµE
to control the impact of each shock on µIt and µ

E
t . The “optimal”sets of weights ensure that µ

I
t

and µEt are bounded below at exactly zero. The weights are computed by solving the following
quadratic programming problem:

α∗ ≡
[
α∗′µI α∗′µE

]′
= arg min

[
α′µI α′µE

] [[ µI + µ̃I,A

µE + µ̃E,A

]
+

[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

][
αµI
αµE

]]
,

subject to
α′µi ≥ 0,

µi + µ̃i,A + µ̃i,ε
SP,j

αµi + µ̃i,ε
SP,k

αµk ≥ 0,

i = {I, E}. Here, µi and µ̃i,A denote, respectively, the steady-state value and the unrestricted
relative impulse response of µi to a technology shock, that is, the impulse-response of µi when

the collateral constraints are assumed to always bind. In this respect, the vector
[
µI + µ̃I,A

µE + µ̃E,A

]
contains the absolute, unrestricted impulse responses of the two shadow values stacked. Further,
each matrix µ̃i,ε

SP,k

contains the relative impulse responses of µi to shadow price shocks to agent
k’s constraint for i, k = {I, E}, in the sense that column s in µ̃i,εSP,k represents the response of the
shadow value to a shock εSP,ij,t−j , i.e. to a shadow price shock that hits in period j but is anticipated

at time 0, as described above.32 The off-diagonal elements of the matrix
[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

]
take into account that the impatient household may be affected if the collateral constraint of the
entrepreneur becomes non-binding, and vice versa. Following the discussion in Holden and Paetz
(2012), a suffi cient condition for the existence of a unique solution to the optimization problem is

that the matrix
[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

]
+

[
µ̃I,ε

SP,I

µ̃I,ε
SP,E

µ̃E,ε
SP,I

µ̃E,ε
SP,E

]′
is positive definite. We have checked

and verified that this condition is in fact always satisfied.
We can explain the nature of the optimization problem as follows. First, note that µi+ µ̃i,A+

µ̃i,ε
SP,i

αµi + µ̃i,ε
SP,k

αµk denotes the combined response of µ
i
t to a given shock (here, a technology

shock) and a simultaneous announcement of a set of future shadow price shocks for a given set of
weights. Given the constraints of the problem, the objective is to find a set of optimal weights so
that the impact of the (non-negative) shadow-price shocks is exactly large enough to make sure
that the response of µit is never negative. The minimization ensures that the impact of the shadow
price shocks will never be larger than necessary to obtain this. Finally, we only allow for solutions
for which the value of the objective function is zero. This ensures that at any given horizon,
positive shadow price shocks occur if and only if at least one of the two constrained variables,
µIt and µ

E
t , are at their lower bound of zero in that period. As pointed out by Holden and Paetz

(2012), this can be thought of as a complementary slackness condition on the two inequality

32Each matrix µ̃j,ε
SP,k

needs to be a square matrix, so if the number of periods in which we guess the
constraints may be non-binding is smaller than the number of periods for which we compute impulse
responses, T < T IRF , we use only the first T rows of the matrix, i.e., the upper square matrix.
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Figure D.1: The importance of occasionally non-binding credit constraints.
Notes: The figure illustrates the effect on output volatility of taking non-binding constraints into account.

Numbers are median values from 501 stochastic model simulations of 2000 periods.

constraints of the optimization problem. Once we have solved the minimization problem, it is
straightforward to compute the bounded impulse responses of all endogenous variables by simply
adding the optimally weighted shadow price shocks to the unconstrained impulse responses of
the model in each period.

We rely on the same method to compute dynamic simulations. In this case, however, we
need to allow for more than one type of shock. For each period t, we first generate the shocks
hitting the economy. We then compute the unrestricted path of the endogenous variables given
those shocks and given the simulated values in t − 1. The unrestricted paths of the bounded
variables (µIt and µ

E
t ) then take the place of the impulse responses in the optimization problem.

If the unrestricted paths of µIt and µ
E
t never hit the bounds in future periods, our simulation for

period t is fine. If the bounds are hit, we follow the method above and add anticipated shadow
price shocks for a suffi cient number of future periods. We then compute restricted values for all
endogenous variables, and use these as our simulation for period t. Note that, unlike the case
for impulse responses, in our dynamic simulations not all anticipated future shadow price shocks
will eventually hit the economy, as other shocks may occur before the realization of the expected
shadow price shocks and push the restricted variables away from their bounds.

As discussed in the main text, taking occasionally binding constraints into account is im-
portant also from a quantitative viewpoint, as entrepreneurs become unconstrained as much as
66% of the time for the highest LTV ratios we consider. To shed further light on this aspect,
Figure D.1 displays output volatility as a function of the steady-state LTV ratio, as in Figure 2 in
the main text, along with the corresponding statistics without accounting for occasionally bind-
ing constraints, i.e., from a counterfactual model in which the collateral constraints are simply
treated as equalities. As the average LTV ratio is raised, the approximation error arising from
treating the constraints as always binding increases substantially. In particular, output volatility
increases monotonically with the average LTV ratio when credit constraints are treated as always
binding. As described in the main text, raising the average LTV ratio involves a tradeoff between
increasing the exposure of constrained agents to fluctuations in the value of their collateral and
decreasing the frequency with which these agents are constrained. An approximation that treats
collateral constraints as always binding misses the second leg of this tradeoff.
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E Data and estimation
This appendix contains details about the data used for the estimation of the model, as well as
the estimation procedure itself.

E.1 Data description
As described in the main text, we use data for the following five macroeconomic variables of the
U.S. economy spanning the period 1980:Q1-2016Q2: Real GDP, real private consumption, real
non-residential investment, real house prices, and the average of the two LTA series reported in
Figure 1. All data series are taken from the Federal Reserve’s FRED database. The series are
the following:

• Real Gross Domestic Product, billions of chained 2009 dollars, seasonally adjusted, annual
rate (series name: GDPC1).

• Real Personal Consumption Expenditures, billions of chained 2009 dollars, seasonally ad-
justed, annual rate (series name: PCECC96).

• Real private fixed investment: Nonresidential (chain-type quantity index), index 2009=100,
seasonally adjusted (series name: B008RA3Q086SBEA).33

• FHFA All Transactions House Price Index, index 1980Q1=100, not seasonally adjusted
(series name: USSTHPI).

— To obtain the house price in real terms, this series is deflated using the GDP de-
flator (Gross Domestic Product: Implicit Price Deflator, index 2009=100, seasonally
adjusted, series name: GDPDEF).

• LTA data: See Appendix A. We use the average of the two series displayed in Figure 1
from 1980:Q1 onwards.

We detrend all data series before estimation using a standard HP filter (with λ = 1600). In
Figure E.1, we display all the detrended variables used in the estimation.

E.2 Estimation strategy
We use 13 empirical moments in the SMM estimation: The standard deviations and first-order
autoregressive parameters of each of the five variables described above, and the correlation of
consumption, investment, and house prices with output. These moments are matched to their
simulated counterparts from the theoretical model. Our estimation procedure seeks to minimize
the sum of squared deviations between empirical and simulated moments. As some of the mo-
ments are measured in different units (e.g., standard deviations and correlations), we use the
percentage deviation from the empirical moment in each case. In order for the minimization
procedure to converge, it is crucial to use the same set of shocks repeatedly, making sure that
the only change in the simulated moments from one iteration to the next is that arising from
updating the parameter values. In practice, since the list of parameter values to be estimated
includes the variance of the shocks in the model, we draw from the standard normal distribution
with zero mean and unit variance, and then scale the shocks by the variance of each of the three

33The most recent observations of this series, not yet available in the FRED database, have been
collected directly from the Bureau of Economic Analysis, Table 5.3.3 in the NIPA tables.
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Figure E.1: Data used in the estimation. The sample period is 1980Q1—2016Q2.
Source: See text.

shock processes, allowing us to estimate the latter. We use a draw of 2000 realizations of each of
the three shocks in the model, thus obtaining simulated moments for 2000 periods. To make sure
that the draw of shocks used is representative of the underlying distribution, we make 501 draws
of potential shock matrices, rank these in terms of the standard deviations of each of the three
shocks, and select the shock matrix closest to the median in all cases. This matrix of shocks is
then used in the estimation.

To initiate the estimation procedure a set of initial values for the estimated parameters are
needed. These are chosen based on values reported in the existing literature. It is important to
state that the estimation results proved robust to changes in the set of initial values, as long as
these remain within the range of available estimates. Based on the empirical studies discussed
in Section 3, we set the initial values of the investment adjustment cost parameter (Ω) and the
habit formation in consumption (ρ) to 4 and 0.7, respectively. For the technology shock, we
choose values similar to those used in most of the real business cycle literature, ρA = 0.97 and
σA = 0.005 (see., e.g., Mandelman et al., 2011). For the credit-limit shock, we set the persistence
parameter ρs = 0.98, while the standard deviation is set to σs = 0.01, consistent with the values
estimated by Jermann and Quadrini (2012) and Liu et al. (2013). Finally, for the land-demand
shock, we set ρε = 0.96 and σε = 0.06, broadly in line with Iacoviello and Neri (2010); inter alia.

As discussed in the main text, we abstain from using an optimal weighting matrix in our
estimation. Instead, we use the identity matrix, thus weighing all moment conditions equally.
This is motivated by the findings of Altonji and Segal (1996), who show that when GMM is
used to estimate covariance structures and, potentially, higher-order moments such as variances,
the use of an optimal weighting matrix causes a severe downward bias in estimated parameter
values. Similar concerns apply to SMM as to GMM. The bias arises because the moments used
to fit the model itself are correlated with the weighting matrix, and may thus be avoided by
the use of equally weighted minimization. Altonji and Segal (1996) demonstrate that equally
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weighted minimization schemes clearly dominate optimally weighted ones in such circumstances,
and we therefore use equal weights, as we are interested in estimating, among other things, the
covariance between macroeconomic variables. Ruge-Murcia (2012) points out that parameter
estimates remain consistent when the identity matrix is used, and finds that the accuracy and
effi ciency gains associated with an optimal weighting matrix are not overwhelming.

When computing standard errors, we rely on a version of the delta method, as described,
e.g., in Hamilton (1994). We approximate the numerical derivative of the moments with respect
to the estimated parameters using the secant that can be computed by adding and subtracting
ε to/from the estimates, where ε is a very small number. The covariance (or spectral density)
matrix is estimated using the Newey-West estimator. As shown in Panel B of Table 1 in the
main text, most parameters are fairly precisely estimated, with the exceptions of the investment
adjustment cost parameter, Ω, and the standard deviation of the land-demand shock, σε. These
two parameters are crucial for the model’s ability to match the standard deviations of investment
and the house price, respectively, but relatively unimportant for all other moments, penalizing
them when the delta method is applied.

Table 2: Empirical and simulated moments

Standard deviations (percent)
Model simulations US data, 1980—2016

Output 1.30 1.31
Consumption 1.05 1.06
Investment 4.57 4.59
House price 2.26 2.16
LTV ratio 2.45 2.55

Autocorrelations
Output 0.78 0.84
Consumption 0.68 0.82
Investment 0.93 0.91
House price 0.67 0.92
LTV ratio 0.72 0.93

Correlations with output
Consumption 0.92 0.87
Investment 0.79 0.80
House price 0.52 0.51
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F Variance decomposition measure (not intended for
publication)

Our measure of relative variance contributions is defined as follows. For a generic variable x, we
define the contribution of shock ξ to its variance as

V (x, ξ) ≡
var [x]− var [x]−ξ

3var [x]−
∑

ξ var [x]−ξ
, ξ = A, ε, s, (F.1)

where var[x]−ξ is the unconditional variance of x when the structural shock ξ is turned off. Note
that V (x, ξ) measures how much a given shock ξ adds to the variable’s total variance (numerator)
relative to the sum of each shock’s addition (denominator). In a linear model, the unconditional
variance of a variable is a weighted sum of the shock variances. With the shocks we consider,
this is

var [x] = (aA)2 σ2A + (aε)
2 σ2ε + (as)

2 σ2s, (F.2)

where aξ is a coeffi cient. The contribution to the variance of a shock ξ is therefore

(aξ)
2 σ2ξ

var [x]
. (F.3)

Our measure V (x, ξ) coincides with the standard measure (F.3) in the linear case. To see this,
consider the shock A. Use (F.2) in (F.1) to obtain

V (x,A) =

(aA)2 σ2A + (aε)
2 σ2ε + (as)

2 σ2s −
[
(aε)

2 σ2ε + (as)
2 σ2s

]
3
[
(aA)2 σ2A + (aε)

2 σ2ε + (as)
2 σ2s

]
−
[
(aε)

2 σ2ε + (as)
2 σ2s

]
−
[
(aA)2 σ2A + (as)

2 σ2s

]
−
[
(aA)2 σ2A + (aε)

2 σ2ε

]

=
(aA)2 σ2A

(aA)2 σ2A + (aε)
2 σ2ε + (as)

2 σ2s
,

=
(aA)2 σ2A
var [x]

,

which is the standard measure (F.3). The equivalence holds for the other shocks as well.
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G Additional figures

Figure G.1: Standard deviations of main variables for different LTV ratios.
Note: See the notes to Figure 2.
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Figure G.2: Impulse responses of selected key variables to a positive one standard deviation
technology shock.

Figure G.3: Impulse responses of selected key variables to a positive one standard deviation
land-demand shock.
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Figure G.4: Impulse responses of selected key variables to a positive one standard deviation
credit limit shock.

Figure G.5: Contribution to fluctuations of key variables of each of the three shocks in the
model, for different LTV ratios.
Note: See the notes to Figure 2.
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Figure G.6: Impulse responses of output to a permanent (left panel) and transitory (right
panel) technology shock of one standard deviation in the model of Liu et al. (2013).
Notes: Solid lines denote the baseline model, dashed lines denote the model with fixed credit limits.

The model is simulated using their codes. All parameters are set at their baseline values (calibrated or

estimated), as reported by the authors.
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