Chained Financial Frictions and Credit Cycles: Technical Appendix

Federico Lubello^{*} Ivan Petrella[†] Emiliano Santoro[‡]

July 14, 2017

Appendix A. Proofs

Proof of Proposition 1

As borrowers' marginal product of capital equals one in the steady state, we restrict our analysis to the impact of ξ on mpk^{I} :

$$\frac{\partial mpk^{I}}{\partial \xi} = \frac{\partial mpk^{I}}{\partial R^{B}} \frac{\partial R^{B}}{\partial \xi}.$$
(1)

As for the partial derivative of bankers' marginal product of capital with respect to the loan rate:

$$\frac{\partial mpk^{I}}{\partial R^{B}} = -\frac{\varkappa \omega \beta^{B}}{\kappa^{2} R^{S} \beta^{I}},\tag{2}$$

where $\kappa \equiv R^F (1 - \beta^F) - \omega (1 - \beta^F R^F) > 0$ and $\varkappa \equiv R^S (1 - \beta^I) - \chi (1 - \beta^I R^S) > 0$, so that $\partial mpk^I / \partial R^B < 0$.

As for $\partial R^B / \partial \xi < 0$, this is negative, in light of assuming $\beta^I R^S < 1$:

$$\frac{\partial R^B}{\partial \xi} = -\frac{\chi \left(1 - \beta^I R^S\right)}{\beta^I R^S}.$$
(3)

Thus, both factors on the right-hand side of (1) are negative and, since $\partial \Delta / \partial \xi = -\partial m p k^I / \partial \xi$, increasing ξ inevitably reduces the productivity gap.

Proof of Proposition 2

We first prove that increasing ξ attenuates the impact of the technology shock on borrowers' capital-holdings. According to Equation (35) in the main text, v quantifies the pass-through of $\hat{\alpha}_t$ on \hat{k}_t^B . In turn, the marginal impact of ξ on v can be computed as:

$$\frac{\partial v}{\partial \xi} = \frac{(\lambda - \phi)(1 - \rho)\rho}{(1 - \lambda)(1 - \phi\rho)}\frac{\partial \eta}{\partial \xi} + \frac{(\lambda\rho - 1)(1 - \rho)\rho}{(1 - \phi\rho)^2}\frac{\partial \phi}{\partial \xi},\tag{4}$$

^{*}Banque Centrale du Luxembourg. *Address*: 2, Boulevard Royal, L-2983 Luxembourg. *E-mail*: federico.lubello@bcl.lu.

[†]Warwick Business School and CEPR. *Addrress:* Warwick Business School, The University of Warwick, Coventry, CV4 7AL, UK. *E-mail*: i.petrella@wbs.ac.uk.

[‡]Department of Economics, University of Copenhagen. *Address*: Østerfarimagsgade 5, Building 26, 1353 Copenhagen, Denmark. *E-mail*: emiliano.santoro@econ.ku.dk.

where:

$$\frac{\partial \eta}{\partial \xi} = \frac{\partial \eta}{\partial k^B} \frac{\partial k^B}{\partial R^B} \frac{\partial R^B}{\partial \xi} \quad \text{and} \quad \frac{\partial \phi}{\partial \xi} = \frac{\partial \phi}{\partial R^B} \frac{\partial R^B}{\partial \xi}.$$
(5)

Focusing on the second term on the right-hand side of (4), we can show this is negative, as: (i) $\frac{(\lambda \rho - 1)(1-\rho)\rho}{(1-\phi\rho)^2} < 0$, given that $\lambda \rho < 1$; (ii) $\partial \phi / \partial R^B = -\omega / (R^B)^2 < 0$; (iii) $\partial R^B / \partial \xi < 0$, as implied by (3).

As for the first term on the right-hand side of (4): $\frac{(\lambda-\phi)(1-\rho)\rho}{(1-\lambda)(1-\phi\rho)} > 0$. Furthermore:

$$\frac{\partial \eta}{\partial k^B} = -\frac{1}{\left(1-\mu\right)\left(k^B\right)^2} < 0$$

and

$$\frac{\partial k^B}{\partial R^B} = \frac{\omega}{\kappa R^B \left(\mu - 1\right)} \left(\frac{1}{\mu} \frac{R^B \beta^B \varkappa}{R^S \beta^I \kappa}\right)^{\frac{1}{\mu - 1}} < 0,\tag{6}$$

where $\kappa \equiv R^B (1 - \beta^B) - \omega (1 - \beta^B R^B)$ and $\varkappa \equiv R^S (1 - \beta^I) - \chi (1 - \beta^I R^S)$. As $\partial R^B / \partial \xi < 0$, also the first term on the right-hand side of (4) is negative. Therefore, ν is a negative function of ξ .

As for the impact of technology shocks on the capital price:

$$\frac{\partial\gamma}{\partial\xi} = \frac{\partial\gamma}{\partial\phi}\frac{\partial\phi}{\partial\xi}.$$
(7)

As for $\partial \gamma / \partial \phi$:

$$\frac{\partial\gamma}{\partial\phi} = -\frac{1-\rho}{\left(1-\phi\rho\right)^2}\rho < 0,\tag{8}$$

while we already know that $\partial \phi / \partial \xi > 0$. Therefore, the overall effect of ξ on γ is negative.

Proof of Proposition 3

We know that $G'(k^I)$ is a decreasing function of θ . Thus, we aim to prove that the gap between bankers' and borrowers' marginal product of capital is greater than zero at $\theta = 0$. To this end, we combine the capital Euler equations of bankers and borrowers, obtaining:

$$G'(k^{I})\Big|_{\theta=0} = \frac{R^{B}\beta^{B}\left(R^{S}-1\right)}{\left(1-\beta^{B}\right)R^{B}-\omega\left(1-\beta^{B}R^{B}\right)}$$

We then impose $\left. G'(k^I) \right|_{\theta=0} < 1$ to obtain

$$R^B > \frac{\omega}{1 - \beta^B \left(R^S - \omega \right)}.$$

As $R^B|_{\theta=0} = \frac{R^S(1+\beta^I)-1}{\beta^I}$, all we need to prove is that

$$\frac{R^{S}\left(1+\beta^{I}\right)-1}{\beta^{I}} > \frac{\omega}{1-\beta^{B}\left(R^{S}-\omega\right)}$$

which can be manipulated to obtain

$$(1 - \beta^B R^S) \left[\beta^I \left(R^S - \omega\right) + R^S - 1\right] + \left(R^S - 1\right) \beta^B \omega > 0$$

As $\beta^B R^S < 1$, it is immediate to verify that both terms on the left-hand side of the last inequality are positive.

Appendix B. The Model with Capital Requirements

Preliminary, note that combining the capital requirement with the definition of equity returns the following constraint: $b_t^S \leq q_t k_t^I + (1 - \theta) b_t^B$. Thus, the Lagrangian for bankers' optimization may be written as:

$$\mathcal{L}_{t}^{I} = E_{0} \sum_{t=0}^{\infty} \left(\beta^{I}\right)^{t} \left\{ c_{t}^{I} - \vartheta_{t}^{I} [c_{t}^{I} + R^{S} b_{t-1}^{S} + b_{t}^{B} + q_{t} (k_{t}^{I} - k_{t-1}^{I}) - b_{t}^{S} - R^{B} b_{t-1}^{B} - \alpha_{t} G(k_{t-1}^{I})] - \delta_{t} \left[b_{t}^{S} - q_{t} k_{t}^{I} - (1-\theta) b_{t}^{B} \right] \right\},$$
(9)

where $\vartheta_t^I = 1$ and δ_t are the multipliers associated with bankers' budget constraint and the capital requirement constraint, respectively. The first-order conditions are:

$$\frac{\partial \mathcal{L}_t^I}{\partial b_t^S} = 0 \Rightarrow -R^S \beta^I E_t \vartheta_{t+1}^I + \vartheta_t^I - \delta_t = 0; \tag{10}$$

$$\frac{\partial \mathcal{L}_t^I}{\partial b_t^B} = 0 \Rightarrow R^B \beta^I E_t \vartheta_{t+1}^I - \vartheta_t^I + (1-\theta) \,\delta_t = 0; \tag{11}$$

$$\frac{\partial \mathcal{L}_{t}^{I}}{\partial k_{t}^{I}} = 0 \Rightarrow -\vartheta_{t}^{I} q_{t} + \beta^{I} E_{t} \left[\vartheta_{t+1}^{I} q_{t+1} \right] + \beta^{I} E_{t} \left[\vartheta_{t+1}^{I} \alpha_{t+1} G'(k_{t}^{I}) \right] + \delta_{t} q_{t} = 0.$$
(12)

In light of these conditions we can derive expressions for both R_t^B and q_t in the presence of a binding capital requirement constraint:

$$R^B = \frac{R^S - (1-\theta)\left(1 - \beta^I R^S\right)}{\beta^I},\tag{13}$$

$$q_t = \frac{1}{R^S} E_t q_{t+1} + \frac{1}{R^S} E_t \left[\alpha_{t+1} I'(k_t^I) \right].$$
(14)

Appendix C. Robustness Exercises

Notes. Figure C.1 graphs ϖ as a function of ξ (y-axis) and μ (x-axis), and for different values of χ and ω , under the following parameterization: $\beta^S = 0.99$, $\beta^I = 0.98$, $\beta^B = 0.97$, $\rho = 0.95$. The white area denotes inadmissible equilibria where bankers' capital-holdings are virtually negative.