The Wage Effects of Offshoring: Evidence from Danish Matched Worker-Firm Data

By David Hummels, Rasmus Jørgensen, Jakob Munch, and Chong Xiang

We employ data that match the population of Danish workers to the universe of private-sector Danish firms, with product-level trade flows by origin- and destination-countries. We document new stylized facts about offshoring and instrument for offshoring and exporting. Within job spells, offshoring increases (decreases) the high-skilled (low-skilled) wage; exporting increases the wages of all skill-types; the net wage-effect of trade varies substantially within the same skill-type; conditional on skill, the wage-effect of offshoring varies across task characteristics. We estimate the overall effects of offshoring on workers’ present and future income streams by constructing pre-offshoring-shock worker-cohorts and tracking them over time. (JEL F14, F16, J24, J31, L24)

A key feature of global trade in the new century is the rapid growth of offshoring (Feenstra and Hanson 2003) and trade in intermediate goods (Hummels, Ishii, and Yi 2001). How has offshoring affected workers’ wages? The answer to this question is not theoretically obvious. At some level purchasing an input from a foreign source must replace a task previously done by a domestic worker, which would suggest displacement and lower wages (Feenstra and Hanson 1996, 1997). However the ability to use foreign inputs may lower a firm’s costs and raise its productivity, allowing it to expand output and employment and raise wages (Grossman and Rossi-Hansberg 2007, 2008). Nor is the causality easy to sort out empirically. The literature on heterogeneous firms (e.g., Bernard and Jensen 1999, Melitz 2003) suggests that high
productivity firms are more likely to pay higher wages, export more, and buy more imported inputs.

In this paper we employ matched worker-firm data from Denmark that is linked to firm-level data on imports and exports. Our worker-firm data cover the universe of private-sector Danish firms and the population of the Danish labor force during 1995–2006, allowing us to consistently track virtually every person in the Danish economy over time, regardless of his/her employment status or employer identity.

Much of the literature has focused on how offshoring affects wages at the industry level, or how it affects the average wage bill of a firm. Our data allow us to assess whether a change in the extent of offshoring affects wages of a specific worker within a given job spell (i.e., during that worker’s tenure with a specific firm), and how these wage changes depend on the worker’s characteristics, including education and occupation. Our estimates also provide evidence on the wage effects of exporting; even if wages are dampened by offshoring they may still rise with growing trade if exports boost labor demand. Finally, we assess the dynamic effects of offshoring following workers during and after exposure to an increase in imported inputs at their initial place of employment.

Our trade data include detailed information on the inputs each firm imports (by HS-6 digit product and source country) and on firm sales (by HS-6 digit product and destination). In this period, the aggregate value of imports and exports by Danish manufacturing firms doubled, but there is substantial variation across firms in both the level of trade and changes in trade over time. Firms concentrate their import purchases and export sales in a narrow but stable set of goods that are largely unique to each firm. For example, 92 percent of import purchases by the typical firm are concentrated in just five inputs, and the typical input is purchased by a single Danish firm. Exporting behavior shows similar patterns.

These findings suggest an input-output structure that is highly specific to individual firms, and it allows us to solve a significant identification problem in relating wage change to offshoring at the firm level. The literature on heterogeneous firms shows that high productivity firms are systematically different from other firms: larger, more capital-intensive, and critically for this paper, more likely to pay higher wages and both export more and buy more imported inputs. To correct for simultaneity bias in estimating the impact of trade on wages, we need instruments that are correlated with a firm’s decision to increase offshoring and/or exporting, but are not correlated with the firm’s ability or wage setting.

We use shocks to Denmark’s trading environment that are time varying and specific to each partner country × product being traded. These include transportation costs and world-wide shocks to export supply and import demand for the relevant partner country × product, and contain rich variation across partner countries and across products. While these shocks are exogenous to Danish firms, their impact varies markedly across firms precisely because the firms have few or no inputs in common. That is, if only one Danish firm buys titanium hinges from Japan, idiosyncratic shocks to the supply or transport costs of those hinges affects just that one firm. Finally, the stability of sourcing patterns over time allows us to use pre-sample

2 The former mainly exploit short-run fluctuations (e.g., yearly movements in oil and fuel prices), and the latter capture long-term shocks (see Section IV for details).
information about the inputs purchased and products exported when constructing our instruments. As a consequence, our estimates are unaffected by contemporaneous shocks to technology that affect both the types of inputs used and wage setting.

We begin by examining how exogenous shocks to trade are correlated with firm-level variables. Offshoring and exporting are positively correlated with firm sales, accounting profits and the average wage bill. Exporting is positively correlated with employment, but offshoring is associated with contractions in employment, primarily through a reduction in low-skill workers. These correlation patterns are consistent with the pattern of wage changes within job spells. We find that for low-skilled workers, the wage elasticity of offshoring is about -0.022. Importantly, we find these results only if we instrument for offshoring. For high-skilled workers, offshoring has a wage elasticity of about $+0.03$ within job spells. These results suggest that offshoring tends to increase the skill premium within firms, which complements findings on offshoring and skill premium at the industry level (e.g., Feenstra and Hanson 1997, 1999). On the exporting side, we find a low-skilled wage elasticity of about $+0.05$, and similar estimates for high-skilled wage elasticity.

Since we estimate wage elasticities for both offshoring and exporting, we can characterize the net wage effects of trade (within job spells). These effects vary across workers of the same skill type, depending on how their employers change their exposure to trade. For example, we find that roughly half of low-skilled workers have positive net wage changes, despite the negative wage elasticity estimate for offshoring. These results complement recent theoretical and empirical work that emphasizes increased within-group inequality following trade liberalization (e.g., Goldberg and Pavcnik 2007; Helpman, Itskhoki, and Redding 2010).

We then consider two extensions of our estimation framework. First, we assess how wage effects differ by task characteristics, conditional on skill type. We find that workers whose occupations involve routine tasks (as in Autor, Levy, and Murnane 2003) experience larger wage drops with offshoring. In contrast, the occupations that intensively employ knowledge sets from mathematics, social science, and languages systematically gain from offshoring shocks, while those that employ knowledge sets from natural sciences and engineering do not. Our results complement recent studies on wages and task characteristics. For example, Ebenstein et al. (forthcoming) find that wage losses from offshoring are more pronounced for the workers who perform routine tasks. Ottaviano, Peri, and Wright (2013) find that offshoring pushes native US workers toward more communication-intensive tasks and immigrant workers away from them. Relative to these studies, we focus on firm rather than industry-level changes, look at wage changes within job spells and address endogeneity of both offshoring and exporting at the firm level.

Finally, offshoring can affect wages within job spells but can also lead to displacement, unemployment, and wage change for workers who reattach to new firms and

3 This literature typically examines the effects on the relative wage or demand for high-skilled labor. We show the effects on the levels of both low- and high-skilled wages. These elasticity estimates reflect the effects of both long-term and short-term shocks on wages since our instruments reflect both types of shocks (see footnote 2). They also capture the effects manifested through occupational changes within a given job spell.

4 Specific kinds of correlated demand shocks might be an issue for our world-import-demand instruments for exports (see Section IIB). Therefore, while we can make a strong case for identifying the causal effects of offshoring on wages, the case for exports might be weaker, and the results for exports should be viewed with more caution.
new industries. To capture the overall effects of offshoring we construct cohorts of all workers (of each skill type) employed by the firm in a year prior to an offshoring shock. We then track the average wage of this cohort to see the effect of offshoring on the entire cohort over a five year period. We find that unskilled worker cohorts suffer persistent average wage losses. For a firm that doubles its offshoring, its unskilled workers can expect a present discounted value of wage losses equal to 11.5 percent over five years, while its skilled workers have a more modest loss of 1.44 percent.

Our paper is related to the literature on offshoring and wages, including older work that uses industry level data\(^5\) and more recent work that employs firm-level or matched worker firm data\(^6\). Our paper is also related to the literature on exporting and skill premium\(^7\). We complement both bodies of work by employing matched worker-firm data with worker and firm characteristics including detailed trade data. This allows us to instrument for trade shocks, to separate wage changes for individual workers from changes in the composition of the workforce within a firm or industry, to analyze the distribution of changes within a skill type, and to analyze the overall effects of offshoring, combining wage changes within job spells and wage changes due to displacement. More broadly, our paper fits into the literature on globalization and income inequality (as surveyed by Goldberg and Pavcnik 2007).

In what follows, Section I describes our data and presents stylized facts about offshoring. Section II outlines a simple model to guide our empirical work and discusses our specification and our instruments for offshoring and exporting at the firm level. Section III looks at changes in firm outcome variables. Section IV estimates within-job-spell wage effects by skill type and presents the net wage effects of trade. Section V analyzes how offshoring effects vary across task characteristics and Section VI analyzes the overall effects of offshoring on worker cohorts. Section VII concludes.

I. Data Description and Stylized Facts

In this section we explain the main features of the Danish labor market and the main sources of our data. We then discuss the new stylized facts about offshoring that our data reveal.

A. The Danish Labor Market

Denmark is a good candidate country for studying the effect of labor demand shocks on wages. Botero et al. (2004) systematically examine labor market regulations in many countries. They classify Denmark as having one of the most flexible labor markets in the world, comparable to the United States\(^8\). Unlike many

5The seminal contributions are Feenstra and Hanson (1997, 1999). Feenstra and Hanson (2003) survey earlier empirical work, most of which uses industry-level data; e.g., Hsieh and Woo (2005) examine how offshoring affects the relative high-skilled demand for Hong Kong.

6Harrison, McLaren, and McMillan (2011) survey recent empirical work that uses firm-level or matched worker-firm data. Important examples include Amiti and Davis (2012), Martins and Oprea (2009), and Krishna, Poole, and Senses (2011).

8There is evidence that even the most flexible labor markets have substantial frictions, such as specific human capital, search costs, and wage bargaining (e.g., Manning 2011).
continental European countries, employment protection is weak in Denmark, and
Danish firms may adjust employment with relative ease. This labor market model
has led to turnover rates and an average tenure which are in line with those of the
Anglo-Saxon countries. In 1995 the average tenure in Denmark was the lowest in
continental Europe at 7.9 years, similar to the level in UK (7.8 years) and lower
than Germany (9.7 years). As compensation for high job turnover workers receive
relatively generous unemployment benefits, but incentives to search for jobs dur-
ing unemployment are reinforced through monitoring and sanction. Together these
ingredients form what has been called the “flexicurity” model.

The flexibility of the Danish labor market may seem surprising as over three quar-
ters of all workers are union members. Decades ago the private labor market was
dominated by the Standard-Rate System of bargaining which set wages at the indus-
try level. However, the Danish labor market has undergone a process of decentral-
ization so that by the start of our sample in 1995, only 16 percent of the private labor
market was still covered by the Standard-Rate System. The majority of wage con-
tracts are now negotiated at the worker-firm level. Decentralization has increased
wage dispersion in the Danish labor market (Dahl, le Maire, and Munch 2013),
implying that wages better reflect worker and firm characteristics, such as individual
workers’ marginal productivity. Between 1980 and 2000, the 90/10 wage ratio in
Denmark increased from 2.1 to 2.35, suggesting a mild rise in wage inequality.
While the wage structure is still more compressed in Denmark than in the United
States, wage formation in Denmark has become significantly more flexible.

B. Data Sources

In this subsection we outline our data sources and data construction. More details
are in the online Data Appendix. Our data on firms, workers, and trade are drawn
from several administrative registers in Statistics Denmark. Our firm data comes
from the Firm Statistics Register, or FirmStat, which covers the universe of private
sector Danish firms for the years 1995–2006. FirmStat associates each firm with a
unique identifier, and provides annual data on many of the firm’s activities, such as
number of full-time employees and industry affiliation (six-digit NACE code). We
supplement FirmStat with additional data from other firm registers.

Our worker data is extracted from the Integrated Database for Labor Market
Research, or IDA, which covers the entire Danish population aged 15–74, including
the unemployed and those who do not participate in the labor force. The IDA associates
each person with his/her unique identifier, and provides annual data on many of the
individual’s socioeconomic characteristics, such as hourly wage, education, and occu-
pation. IDA also records labor market status (employed, unemployed or out of the labor
force) in week 48 each year. We focus on full-time workers. We measure the hourly
wage rate as annual labor income plus mandatory pension fund payments divided by
annual hours. We classify a worker as high-skilled if he/she has a tertiary education
corresponding to the two highest categories (5 and 6) in the International Standard
Classification of Education (ISCED). We classify all the other workers as low-skilled.

To match our firm data with our worker data we draw on the Firm-Integrated
Database for Labor Market Research, or FIDA, which links every firm in FirmStat with
every worker in IDA who is employed by that firm in week 48 of each year, including
temporary workers. Using our matched worker-firm data, we can consistently track virtually every person in the Danish economy over time regardless of his/her employment status or employer identity. This allows us to condition our identification on the changes within a given worker-firm match (i.e., we control for job-spell fixed effects), and to track the effects of offshoring on the average income of a fixed cohort of workers over time. The high quality of the match results from two features of the data. One, the IDA and FIDA are administrative data and the worker identifier used there remains unchanged throughout 1995–2006. Two, the Danish informal sector is almost non-existent, unlike in some developing countries such as Brazil and Mexico that have been previously used in matched worker-firm studies.

Our trade data comes from the Danish Foreign Trade Statistics Register. For each firm in each year 1990–2006 we have imports disaggregated by origin and product and exports disaggregated by destination and product. The Trade Statistics Register uses the same firm identifier as FirmStat and FIDA, so we match product-level trade data with our worker-firm data on an annual basis. Trade flows are recorded according to the eight-digit Combined Nomenclature, but we aggregate these flows to the roughly 5,000 products in the six-digit Harmonized System (HS) to be compatible with the COMTRADE data used to construct our instruments. For each trade flow we observe its value in Danish Kroner (DKK) and weight in kilos. Compared with the official import statistics, our data account for 90–95 percent of all imports in every year.

After merging data on manufacturing workers, firms, and trade flows, we trim our sample in several ways to ensure the quality of our data. We drop worker-firm-year observations if the employment relationship, or job spell, lasts for a single year. We drop smaller firms (fewer than 50 employees and less than 0.6 million DKK in imports) which tend to have imputed balance sheet variables and to have missing intra-EU trade data (see the online Data Appendix for more details).

We include firms in the sample only in the years in which they both import and export, a restriction that is necessary in order to implement our IV strategy (see Section IIB). If a firm begins trading sometime within our sample years we treat its first year of trading as the pre-sample and focus our estimation on subsequent changes in importing and exporting behavior. In this way we focus on within-firm changes in the intensity of trade rather than on discrete changes from zero to positive foreign purchases. That is, our estimates do not reflect wage changes occurring in the year that a firm transitions from no offshoring to positive offshoring. We do capture changes in wages resulting from continuous changes in offshoring subsequent to that initial transition.

9 Firms that discretely change their trade status have initial year offshoring and exporting values that are smaller than subsequent years. The share in total import of these entry years varies from 0 to 5.2 percent for a given year, averaging 1.3 percent across all years. The year on year change for the first year is comparable in magnitude to that for subsequent years for offshoring, exports, and employment. Related, the summary statistics of the workers and firms in our estimation sample are similar to the full sample, with the firms in our estimation sample being somewhat larger and employing slightly more experienced workers with somewhat higher wages (see Table A2 and related discussions in the online Appendix).

10 We experimented with using a balanced panel of only those firms with positive imports and exports in the sample in all years and obtained qualitatively similar results. The main difference is that we lose about 40 percent of our observations in the balanced-panel sample and cannot fit the log-exports regression as well in the first-stage IV. We also experimented with incorporating firms that offshore but do not export, and got similar results for the wage effects of offshoring (see Table A4 and related discussions in the online Appendix).
Our final sample has about 1.95 million worker-firm-year and 9,800 firm-year observations. This represents between 50 percent and 70 percent of all manufacturing employment in Denmark, depending on the year, and roughly 20 percent of all private sector employment. Table 1 contains summary statistics for the data in our sample.

C. Stylized Facts about Imports, Exports, and Offshoring

We begin by clarifying how we define offshoring and then provide a series of stylized facts about the foreign trade activities of Danish firms. In national and industry trade statistics, imports include both intermediate inputs for production and final goods for consumption. We are primarily interested in the extent to which firms are engaged in offshoring and the impact this has on workers employed by the firm. This raises the question of whether the firm-level imports we observe are final goods or inputs into production, and also whether these inputs are potentially substitutes for labor within the firms. We address these questions by distinguishing manufacturing
from service firms, by comparing our approach to input-output tables, and by distinguishing narrow versus broad measures of offshoring in line with the literature.

Our data sample focuses on manufacturing firms, but all Danish firms including those in service industries are required to report trade activity. The manufacturing firms in our sample account for 21 percent of total Danish imports and they supply 50 percent of Danish exports, with service industry firms comprising the remainder. Service firms are distinctive in that they report reselling, with no value-added by the firm, a large fraction of their import purchases. We call this fraction the “retail share.” For the manufacturing firms the median retail share is 2.9 percent, whereas for the service firms the median retail share is 35.5 percent (or 86.4 percent if we exclude those service firms who do not report inputs in this category). This gives us confidence that the manufacturing versus service industry distinction is useful for identifying imports used as production inputs by Danish firms, rather than imports purchased for direct consumption by Danish consumers. We have also done spot checks of particular manufacturing firms, and confirmed that the import product categories make sense as likely input purchases given the goods they are making.

A second concern is that manufacturing firms are purchasing foreign inputs but these inputs may not substitute for labor within the firm. We define “broad offshoring” to be the total value of imports by a given manufacturing firm in a given year. This total could include raw materials, which represent 7.8 percent of manufacturing firms’ imports or manufactured inputs that the firm would be unlikely to produce itself. In the literature Feenstra and Hanson (1999) define “narrow offshoring” as purchases of inputs belonging to the same industry as that of producing firms. The idea is that the closer the inputs are to the final outputs, the more likely it is that labor within the firm could have produced those inputs.

We apply this idea more specifically to individual firms, defining narrow offshoring to be the sum of imports in the same HS4 category as goods sold by the firm (either domestically or in exports). Table 2 shows that our narrow offshoring measure captures 71 percent of a firm’s imports. Imports of raw materials are then counted in broad offshoring, but are omitted from narrow offshoring. A related concern is that imports of machinery may capture access to foreign technology, which may affect labor demand and wages through a different channel. Machinery and machinery parts combined represent nearly 17 percent of imports, but as we show in the online Appendix, this is primarily machinery parts and not finished machines.

11 We base this distinction on the industry classification of the firms, and drop firms whose classification switches between manufacturing and service industries.
12 The “retail share” variable is available only from 2003 onwards so we cannot use it as an additional control in our manufacturing firm panel. The service firms who report no inputs in this category likely correspond to firms that sell no goods at all.
13 For example, we examined import purchases by the largest five firms selling in HS 9021 “Orthopedic appliances, artificial body parts, and hearing aids.” The largest single input, representing one third of imports, was HS 8518 “Microphones, loud speaker and sound amplifiers.”
14 We define raw materials as imports in HS categories 01–15, 25–27, 31 and 41.
15 That is, imports of computer microchips by the electronics industry would be classified as narrow offshoring, but those same imports by the automobile industry would not.
16 Eighty-seven percent of all imports are in the same HS2 category as sales and offshoring measures based on HS2 categories yields similar results.
17 Papers relevant to this point include Hanson and Harrison (1999); Caselli and Coleman (2001); Amiti and Konings (2007); Verhoogen (2008); and Bustos (2011).
Finished machines account for a small share of imports, and are excluded from narrow offshoring for all firms except those firms producing machines themselves.

We can now characterize the trading activities of the firms in our sample. During our sample period 1995–2006, both imports and exports more than doubled. The regional pattern of trade has been largely stable over this period. European partners dominate Danish trade, providing 85 percent of imports (and buying 75 percent of exports) in contrast to 6 percent of imports (and 9 percent of exports) from North America. Asia as a source of imports has grown in significance (its share going from 5 percent to 8.5 percent) but remains a small portion of the total. Narrow offshoring grew slightly faster than broad offshoring, and had a similar regional composition.

Table 1 reports the importance of trade at the firm level. Narrow offshoring represents 12 percent of gross output and 27 percent of total (imported plus domestic) material purchases for the average firm. Broad offshoring represents 19 percent of gross output, and 43 percent of total material purchases for the average firm. Exports are 45 percent of gross output for the average firm. The standard deviations indicate that these values all vary significantly across firm-years in our sample. Our data also exhibit substantial time series variation in trade for a given firm. For narrow offshoring, 55 percent of the firm-year observations are either 30 percent above or 30 percent below the firm mean. The rich variation in within-firm changes for both offshoring and exports will be key to identifying their effects on wages.

We distinguish inputs both by exporting country and HS-6 digit product code. The firms in our sample buy many foreign inputs (roughly 2,000 firms importing 13,500 distinct origin-HS6 inputs in a typical year), with the median firm reporting purchases in 20 distinct exporter-HS6 categories. However, these purchases are concentrated in just a few key inputs. Table 2 reveals that the top two exporter-HS6 categories comprise 67.9 percent of imports for the median firm, and the top five exporter-HS6 categories account for 92.1 percent of median firm imports. The pattern is similar for exports, with

Table 2—Some Patterns of Offshoring and Exports (in percent)

<table>
<thead>
<tr>
<th>Share of import value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw materials</td>
<td>7.8</td>
</tr>
<tr>
<td>Machinery and machinery parts</td>
<td>16.9</td>
</tr>
<tr>
<td>Narrow offshoring, same HS2 as sales</td>
<td>87.4</td>
</tr>
<tr>
<td>Narrow offshoring, same HS4 as sales</td>
<td>70.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Share of trade</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 2 products in imports</td>
<td>67.9</td>
</tr>
<tr>
<td>Top 5 products in imports</td>
<td>92.1</td>
</tr>
<tr>
<td>Top 2 products in exports</td>
<td>51.3</td>
</tr>
<tr>
<td>Top 5 products in exports</td>
<td>77.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-sample flows</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In-sample share of imports</td>
<td>64.4</td>
</tr>
<tr>
<td>In-sample share of exports</td>
<td>77.7</td>
</tr>
</tbody>
</table>

Notes: The data used for Table 2 has firm-year-product-source-country observations for import flows, and firm-year-product-destination-country observations for export flows. The panel titled “Share of import value” shows the fractions of total import value accounted for by various categories; e.g. the sum of raw-materials imports across all observations is 7.8 percent of the sum of import values across all observations in our sample. The “Share of trade” panel shows the fractions of total import/export value accounted for by the top 2/5 products of a given firm-year. The “Pre-sample flows” panel shows the fractions of total import/export values accounted for by the firm-product-country flows that appear in the pre-sample years.
the median firm reporting 19 distinct importer-HS6 export categories, 51.3 percent of which comes from the top two categories and 77.0 percent from the top five categories.

In the literature it is common to use industry level input-output tables to provide information on the types of inputs a firm is likely to import. We do not follow this approach because, even within industries, Danish firms have relatively few inputs and relatively few outputs in common. In a typical year we have roughly 2,000 firms importing 13,500 distinct origin-HS6 inputs. For each of these inputs we calculate the number of Danish manufacturers that import that input and examine the distribution. For the median product, just 1 firm out of 2,000 buys the input, while a product in the ninetieth percentile has three purchasers. The distribution of the number of firms who export the same product to the same destination country tells a similar story: the median is one firm and the ninetieth percentile three sellers. This highly specific input-output structure implies that a given shock to foreign buyers and sellers will have markedly different impacts across Danish firms. This feature of our data allows us to construct instrument variables for offshoring and exports, and we revisit this point in Section IIB.

II. Framework, Specification, and Instruments

The literature has identified many channels through which importing and exporting could potentially affect the activities of the firm. Rather than focusing on one specific channel, we outline a production function framework to help us interpret how changes in import use and export sales affect labor demand and wages. We then describe the resulting specification, and our instrumental variables approach to estimation.

A. Framework and Specification

Let j index firms and t index years. We assume that firm j faces an upward-sloping supply curve for both unskilled and skilled labor. This is due to frictions in the labor market that may arise for a number of reasons. It takes time and effort for workers to change jobs because information about the labor market is imperfect or because jobs are differentiated in terms of commuting distances or other non-monetary aspects. Bargaining, wage setting mechanisms such as efficiency wages, and the accumulation of firm-specific human capital also create rents in the employment relationship. See Manning (2011) for a recent review of theory and empirics for imperfect labor markets. We briefly explore how human capital specificity is related to the variation of the wage effects of offshoring in Section V.

To motivate labor demand consider the production function for firm j in year t:

$$ Y_{jt} = A_{jt} K_{jt}^\alpha H_{jt}^\beta C_{jt}^{1-\alpha-\beta}, \quad \text{where } C_{jt} = \left(L_{jt}^\theta + M_{jt}^\theta\right)^{1/\theta}, \quad \text{and } \theta = \frac{\sigma - 1}{\sigma}. $$

18 Input purchases in our data are highly specific to individual firms and so are poorly represented using industry aggregates. Further, IO tables provide industry-time variation in input use, but since we employ industry-time fixed effects to control for demand shocks our estimates require the use of firm-time variation in inputs. See the online Data Appendix for more details and more discussions.

19 In a trade context several theoretical papers with imperfections in the labor market have recently emerged. The imperfections modeled include rent sharing (Amiti and Davis 2012), efficiency wages (Davis and Harrigan 2011), fair wages (Egger and Kreickemeier 2009) and search costs (Helpman, Itskhoki, and Redding 2010).
In equation (1), Y_j is output, A_{jt} is productivity, K_{jt} is capital, and H_{jt} is skilled labor. C_{jt} is a CES composite input using unskilled labor, L_{jt}, and imported inputs, M_{jt}, and $\sigma > 0$ is the substitution elasticity for unskilled labor and imported inputs.\footnote{Imported inputs correspond to offshoring in our data. Let ψ_{jt} be a reduced-form representation for the demand for firm j’s output (e.g., if the output market is perfectly competitive ψ_{jt} is the price for firm j’s output). Using equation (1) we can derive the demand for unskilled labor by firm j in year t,}

$$
\frac{\partial Y_{jt}}{\partial L_{jt}} = \psi_{jt} (1 - \alpha - \beta) A_{jt} K_{jt}^\alpha H_{jt}^\beta C_{jt}^{\frac{1}{\sigma}} \frac{1}{\sigma} L_{jt}^{\frac{1}{\sigma} - \alpha - \beta}.
$$

Equation (2) says that if $1/\sigma - (\alpha + \beta) < 0$ (i.e., if unskilled labor and imported inputs are close substitutes), an increase in imported inputs lowers unskilled labor demand. Given an upward-sloping labor supply curve facing the firm, this reduces the unskilled-labor wage.\footnote{Equation (2) also illustrates an important endogeneity issue in estimating the effect of offshoring on wages. An increase in either firm productivity A_{jt} or output demand ψ_{jt} will raise the demand for unskilled labor (and its wage), but it will also raise the demand for imported inputs. Variation in productivity and output demand across firms or within firms over time will induce a positive correlation in the data between imported materials and unskilled labor demand. We address this problem by using instruments to identify exogenous shifts in offshoring, and by using instrumented shocks to exports to capture movements in ψ_{jt}.}

We show in the online Appendix that the upward-sloping labor supply curve and equations (1) and (2) imply that

$$
\ln w_{ijt} = b_{L,M} \ln M_{jt} + b_{M1} S_i \ln M_{jt} + b_{L,X} \ln \psi_{jt} + b_{X1} S_i \ln \psi_{jt} + x_{it} \beta + b_h K_{jt} + b_h H_{jt} + \ln A_{jt} + \eta_{ij} + \varepsilon_{ijt},
$$

where i indexes workers. In equation (3), w_{ijt} is the wage of worker i employed by firm j in year t, S_i is a dummy variable that equals 1 if worker i is high-skilled, x_{it} represents worker i’s productivity in year t, and η_{ij} is unobserved ability specific to the worker-firm match (Abowd, Kramarz, and Margolis 1999). $b_{L,M}$ is the elasticity of unskilled wage with respect to offshoring, and $b_{H,M} = b_{L,M} + b_{M1}$ is the elasticity of high-skilled wage with respect to offshoring (see the online Appendix for an explicit representation of $b_{L,M}$). We also allow shocks to output demand $\ln \psi_{jt}$ to have different effects across skilled and unskilled worker types in (3).

\footnote{We have skilled and unskilled labor entering asymmetrically to illustrate the difference between labor types that are substitutes for or complements to imported inputs. We explore generalizations in the online Theory Appendix. We could also include domestic materials purchased from other Danish firms as part of the composite input, but this changes none of the conclusions.}

\footnote{The empirical exercises we can be agnostic about the structure of firm j’s output market, though we will treat an exogenous rise in firm j’s exports as a positive demand shift for firm j’s output.}

\footnote{When labor and imported inputs are poor substitutes, however, demand for unskilled labor could actually increase. In our empirical work we allow for the possibility that labor of different types could be substitutes or complements for foreign materials. See also footnote 20.}
To implement (3) in the data, we add the following. We incorporate year-by-industry and region fixed effects ($\varphi_{IND,t}$ and φ_R) to control for those respective components of A_{jt} and ψ_{jt}. We use job-spell fixed effects to absorb η_{ij}. The job-spell fixed effects also absorb the components of A_{jt} and ψ_{jt} that are worker-firm specific. Time varying shocks to worker productivity are captured by including a vector \mathbf{x}_{it} of worker-level characteristics, such as experience, union status, and marital status, that change over time. To capture time varying shocks to ψ_{jt} we use \mathbf{X}_{jt}, the value of firm j’s exports in year t.

Firms may have time varying shocks to productivity that are correlated with both offshoring and exporting activities and with worker wages. Accordingly, we will instrument for both offshoring and exporting as discussed in the next subsection. Finally, we include a vector \mathbf{z}_{jt} of firm-control variables (output, employment, capital, the skilled worker share of employment). These modifications yield the following estimating equation

$$
\ln w_{ijt} = b_{L,M} \ln M_{jt} + b_{M_1} S_i \ln M_{jt} + b_{L,X} \ln X_{jt} + b_{X_1} S_i \ln X_{jt} \\
+ \mathbf{x}_{it} \beta_1 + \mathbf{z}_{jt} \beta_2 + \alpha_{ij} + \varphi_{IND,t} + \varphi_R + \varepsilon_{ijt}.
$$

Because it incorporates a vector of firm controls, the estimation of equation (4) corresponds to the direct effect of offshoring on wages, holding these firm variables constant. The trade literature suggests that offshoring may raise productivity or lower production costs and as a result increase firm output and inputs of all types.\(^{23}\) We show in the online Theory Appendix that the wage response inclusive of this productivity effect can be estimated by simply eliminating the firm controls from equation (4):

$$
\ln w_{ijt} = b_{L,M}^* \ln M_{jt} + b_{M_1} S_i \ln M_{jt} + b_{L,X}^* \ln X_{jt} + b_{X_1} S_i \ln X_{jt} \\
+ \mathbf{x}_{it} \beta_1 + \alpha_{ij} + \varphi_{IND,t} + \varphi_R + \varepsilon_{ijt}.
$$

By comparing the coefficient estimates of regressions (4) and (5) we can determine whether the productivity effect boosts labor demand and wages.\(^{24}\) Note that this same reasoning explains why we use levels of offshoring and exports as opposed to measures that are scaled by firm size. Time invariant differences in firm size are absorbed in the fixed effects, but changes in firm size over time may be the result of changing imports and exports. If we scale trade variables by firm size we eliminate a channel through which trade can affect wages and employment over time. Instead we estimate regressions with and without firm size as a control variable.

It is useful to compare the identification assumption of (4) and (5) with the literature that examines firm- and worker-specific components of wages using matched worker-firm data (e.g., Abowd and Kramarz 1999). Because that literature uses worker fixed effects and firm fixed effects, the identification is based on the workers who switch employers, and so requires the assumption that worker mobility is random.

\(^{23}\) We can then think of the direct effect of offshoring on labor demand as a move along a given isoquant, and the indirect or “productivity” effect of offshoring as a move to a higher isoquant. We are grateful to Gene Grossman for pointing out this distinction.

\(^{24}\) This comparison requires the assumption that our excluded instruments are uncorrelated with the residuals in the wage equation regardless of whether the wage equation includes additional firm control variables.
conditional on worker and firm fixed effects (and other observable worker and firm controls). Krishna, Poole, and Senses (2011) show that this assumption is at odds with data, and that worker mobility is systematically correlated with time-invariant but worker-firm match-specific factors (i.e., job-spell fixed effects). Because we control for job-spell fixed effects in equations (4) and (5), we have addressed Krishna, Poole, and Senses’ (2011) critique. Equations (4) and (5) require the weaker identification assumption that worker mobility is random conditional on job-spell fixed effects (and other observable worker and firm controls). We return to this issue in Section VI.

B. Instruments

In our empirical specifications we will relate time varying labor market outcomes to time varying firm-level measures of trade. The identification challenge we face is that firm-level shocks to demand or productivity will affect both trade and wage setting. To address this problem, we construct instruments that are correlated with the value of imports and exports for a firm-year but are uncorrelated with changes in the firm’s productivity and wage structure. The offshoring instruments are world export supply and transport costs. The exports instruments are world import demand and transport costs.25

World export supply WES_{ckt} is country c’s total supply of product k to the world market, minus its supply to Denmark, in period t. These data are constructed from COMTRADE bilateral trade data at the HS6 level. WES captures changes in comparative advantage for the exporting country, arising from changes in production price, product quality, or variety.26 Similarly, world import demand WID_{ckt} is country c’s total purchases of product k from the world market (less purchases from Denmark) at time t. A rise in WID could result from shocks to demand (either consumer tastes or industrial uses of particular products) or reflect a loss of comparative advantage by c in product k.

Changes in transport costs capture shocks to the delivered price of particular inputs purchased by Denmark. To get transportation costs we first estimate cost functions using US imports data following Hummels (2007). We then use the estimated coefficients plus pre-sample information on the destination, bulk, and modal use for Danish imports to construct $c-k-t$ varying cost measures, $t_{c,k,t}$. Full details on this estimation are in the online Data Appendix, but the key source of variation is an interaction between distance, modal use, and oil prices. In our sample period real oil prices fell from $20 to $11 per barrel between 1995 and 1998, and then rose sharply to $45 per barrel in 2005 (see Figure A1 of the online Appendix). These fuel prices have an especially strong effect on goods air shipped long distances and a very weak effect on goods moved short distances via train. This implies that changes over time

25 Other studies of offshoring exploit variation in tariff or changes in tariff due to a liberalization episode. In our context, tariffs have little explanatory power in the first stage because the bulk of Danish imports arrive duty free from Europe and there are few changes to the tariff structure in this period. We had exchange rates as an additional instrument in the working paper version and obtained very similar results.

26 In the online Appendix we derive an expression relating import values explicitly to WES and transport costs (plus other variables) using our framework in Section IIA. Using an IV strategy similar to our WES, Autor, Dorn, and Hanson (2013) instrument US imports from China by Chinese exports to other high-income, non-US countries.
in fuel prices affect the level of costs, the relative cost of employing air versus ocean versus land transport and the relative cost of distant versus proximate partners.

The instruments have country-product-time variation. To get a single value for each firm-year we aggregate as follows. Let \(I_{ckt} \) represent instrument \(I \in (tc, WES) \) for exporting country \(c \), selling HS 6 product \(k \), at time \(t \), and let \(s_{jck} \) represent the share of \(c-k \) in total materials imports for firm \(j \) in the pre-sample year (1994).

Then to construct a time varying instrument for firm \(j \) we have
\[
I_{jt} = \sum_{c,k} s_{jck} I_{ckt}.
\]

The idea behind this strategy is the following. For some reason firm \(j \) sources a particular input \(k \) from country \(c \). Firm \(j \) may have a long standing business relationship with a firm in \(c \), or the inputs that \(c \) makes might be a particularly good fit for firm \(j \). For example, manufacturers of air pumps require German pressure gauges, which are of no use to producers of artificial knees who instead require Japanese titanium hinges. That relationship is set in the pre-sample and is fairly consistent over time.

Table 2 reports that 64.4 percent of \(c-k \) import flows purchased by firms in-sample also appeared in the pre-sample (conversely, roughly one-third of in-sample import purchases were not represented in the pre-sample).

Over time there are shocks to the desirability of purchasing input \(k \) from country \(c \). Transportation costs become more favorable or country \(c \) experiences changes in its production costs, variety or quality that are exogenous to firm \(j \), and these are reflected in changing export supply to the world as a whole. Because firm \(j \) uses input \(k \) from country \(c \) more than other firms it disproportionately benefits from these changes. Recall from Section IC that firms have very few inputs in common and that in most cases, firm \(j \) is the only firm that buys input \(k \) from country \(c \). Since these shocks vary across-\(k \) across-\(c \), their impacts vary across firm \(j \), even within the same industry. Our strategy for instrumenting exports is similar, only focused on world import demand (country \(c \)'s total imports of product \(k \) at time \(t \) from the world less Denmark) and transport costs on Danish exports, and using the firm’s pre-sample share of exports to \(c-k \).

To summarize, we instrument for offshoring (exporting) using the weighted averages of world export supply (world import demand), and transport costs. The shocks are external to Denmark and they vary across partner country \(\times \) product. The weights are pre-sample import (export) shares, and they differ significantly across firms. Following Wooldridge (2002), we instrument for the interaction between high-skill and offshoring (exports) using the interactions between high-skill and the instruments for offshoring (exports).

We can now discuss threats to identification. We need instruments that are correlated with offshoring (or exporting) and orthogonal to changes in within-job-spell wage setting by the firm. We first consider possible problems with the instruments \(I_{ckt} \) themselves, and then consider possible problems with the firm share weighting \(s_{jck} \).

Shocks to transport costs may affect both the cost of inputs and the ability to export from Denmark. If we only included instrumented offshoring in equations (4) and (5), this would be problematic, but since we also include instrumented exporting by the firm, we are capturing this channel. Oil price shocks figure prominently in our transport cost measure and this can have an overall effect on the macromonomy.

27 Some of our firms either enter or begin offshoring within sample. For these firms we use sourcing patterns in their first year of offshoring and employ data from year 2 and onwards for the wage and firm outcome regressions.
and labor demand. Recall however that our wage regressions also control for region and industry \times time fixed effects. These controls should absorb shocks to demand via oil prices (e.g., changes in industry prices in response to oil shocks).

Similarly, suppose a rise in world export supply for a particular c-k input is due not only to supply shocks but also reflects shocks to demand around the world and in Denmark. For example, rising exports of computer memory chips likely reflects growth in both supply and demand for electronics. If the firm using that memory chip input produces a good that experiences that same demand shock it may be correlated with wage setting. We deal with this issue in three ways. One, by incorporating industry by time fixed effects and firm outputs, we control for time-varying shocks to demand for particular industries and firms within Denmark. Two, by incorporating firm exports, we control for time-varying demand shocks outside of Denmark. Three, in Section IV we experiment with dropping the industries that one may consider especially susceptible to demand shocks in this period (e.g., computers, construction supplies), in a manner similar to Autor, Dorn, and Hanson (2013).

The problem of correlated domestic and foreign demand shocks is potentially more of a concern for our exporting instruments, especially if these demand shocks are firm-year specific, wide-spread, and not adequately captured by firm output. In this sense, our case for identifying the causal effects of exports on wages is weaker than for offshoring and our results for exports merit more caution in interpretation.

An additional possibility is that shocks originating with Danish firms could affect product prices in the markets of their foreign suppliers or foreign customers. This could be an issue for a large country like the United States, but Denmark is a small country of less than six million people and represents a small share of trade, both in the aggregate and for individual partners and products. For the median exporter-product, Denmark represents 0.79 percent of purchases and for the median importer-product, Denmark represents 0.73 percent of sales. This suggests that individual Danish firms are unlikely to exert a large influence over the trade volumes of Denmark’s trade partners. In addition, in the online Appendix we experiment with dropping any c-k-t trade flow where Denmark has a greater than 1 percent share and obtain similar results.

A second set of concerns relate to the share-weighting of the instruments for each input. One might worry that there are differences in the types of technology used by firms, and differences in technology affect wage setting and the types of inputs purchased. Recall that all our wage regressions are within job spells so that time invariant differences across firms in technology and input use are absorbed into the fixed effects. It might be that there are changes over time in the level or the type of technology (and therefore both imports and wages), but this is precisely why we use pre-sample data on input use, in order to prevent technological change from impacting input use and wages.

28To the extent that demand shocks are not completely purged from our estimation they are likely to bias our results against finding negative wage effects of offshoring. This is because rising demand for a firm’s product implies rising offshoring and rising wages.

29For each exporter c-HS 6 product k-time t we compute Denmark’s share of purchases (conditional on the share being positive). The median is calculated over all c-k-t.

III. Preliminary Analyses: The Effect of Trade on Firm Outcomes

In this section we describe firm outcome variables and their correlation with importing and exporting behavior in Table 3. The first column reports the result of simple regressions at the firm level using all manufacturing firms in Denmark. The dependent variable is a firm \(j \), year \(t \) characteristic (employment, output, average wage bill, etc.) and the explanatory variable is an indicator for whether the firm is engaged in offshoring (according to our narrow definition). Offshoring firms are different in almost every respect—they have higher sales, more employment, a larger capital/worker ratio, are more profitable, and pay a higher average wage.

Some of this may reflect time invariant differences across firms, and our identification will work off within firm changes. The second column restricts the sample to only those firms engaged in offshoring and repeats these regressions with firm fixed effects in order to relate within-firm changes in outcomes to changes in offshoring over time. Rising offshoring is positively correlated with rising employment, sales, capital per worker, average wage bills, and accounting profits. This is the heart of the identification problem. It may be that growth in offshoring causes these firms to be larger, more profitable, and able to pay higher wages. Or it may be that all these outcomes are jointly determined as a result of time-varying shocks to the firm’s productivity or demand for their products. If so, the positive correlations between offshoring and firm outcomes (e.g., employment) could be driven by simultaneity bias.

We repeat this exercise, this time using predicted values for our trade variables. That is, we regress offshoring and exports on the instruments discussed previously, construct predicted values, and correlate these with firm outcomes. (We discuss the first stage in greater depth below.) In column 3 we report the coefficients from firm outcome regressions in which we include only predicted imports. As in the
preceding columns, an exogenous increase in imports leads to a sharp rise in sales, accounting profits, capital per worker, and average wage bill. However, we now see a steep decline in employment, with an elasticity of -0.10, which occurs primarily through reducing the numbers of low-skill workers. The rising share of high-skill workers suggests that the large increase in average wage bill per worker is driven by compositional changes within the firm. We will use within-job-spell wage regressions to account for compositional changes in our main estimation.

In columns 4 and 5 we report coefficients from including predicted imports and predicted exports together as explanatory variables. The coefficients on imports are similar to what we had in column three, though the employment effects are now larger. Rising exports lead to increases in all firm outcome variables.

In this table we can see many of the key features of our simple model in Section II. When we correlate firm outcomes with indicators for importing status, or with within-firm changes in the extent of importing, we find that “better” firms import and that importing is correlated with increases in employment. However, when we isolate exogenous shocks to the importing decision that are uncorrelated with firm’s productivity in levels or in changes then we see a very different picture. Exogenous increases in importing improve sales and profitability outcomes for the firm, but lead to contractions in employment and a shift away from low-skill labor.

Does the rise in imported materials represent increased offshoring by the firm, or something else? Consider three reasons that a firm might increase foreign purchases. One, the firm may be expanding sales due to rising productivity and/or increased demand for its goods and require more inputs of all types, including imported inputs. Two, the firm might be substituting foreign inputs for inputs previously purchased from another Danish firm. Three, the firm might be substituting foreign inputs for inputs previously produced within the firm, that is to say, offshoring. Our IV strategy rules out the first possibility and the estimated employment effects rule out the second possibility. Put another way, switching from a domestic to a foreign supplier may well have important benefits for the firm in terms of sales and profitability, but it should not have a negative effect on employment within the firm. We should only observe a reduction in employment if the firm is substituting foreign inputs for its own labor.

IV. The Effect of Trade on Worker Wages Within Job Spells

Having established that imported materials are likely to substitute for labor within the firms, we now present the results of our main estimation. Our empirical strategy is to relate changes in individual worker’s wages to exogenous changes in importing and exporting activity by the firms that employ them, after controlling for worker-firm “job-spell” fixed effects and time varying characteristics of the worker. We estimate equations (4) and (5) basing identification on within-firm, over-time variation in imports and exports and include only those workers staying in the firm. Including firm variables controls for changes in labor demand arising from a productivity effect, that is, the measured wage elasticity is net of the productivity effect. Excluding these variables allows for time-varying changes to firm outcome variables as a result of the import and export shocks and so produces the wage elasticity estimate inclusive of the productivity effect.
Table 4—First-Stage FE-IV Regressions

<table>
<thead>
<tr>
<th></th>
<th>log(offshoring)</th>
<th>× high skill</th>
<th>log(exports)</th>
<th>× high skill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>log WES,</td>
<td>0.1928***</td>
<td>0.3087***</td>
<td>-0.0428***</td>
<td>-0.0255***</td>
</tr>
<tr>
<td>offshoring</td>
<td>[2.70]</td>
<td>[4.38]</td>
<td>[-5.74]</td>
<td>[-3.61]</td>
</tr>
<tr>
<td>log transport costs,</td>
<td>-17.1988***</td>
<td>-19.7103***</td>
<td>0.2078</td>
<td>-0.3583</td>
</tr>
<tr>
<td>offshoring</td>
<td>[-3.04]</td>
<td>[-3.41]</td>
<td>[0.40]</td>
<td>[-0.75]</td>
</tr>
<tr>
<td>log WID,</td>
<td>-0.0839</td>
<td>0.0778</td>
<td>-0.0541***</td>
<td>-0.0253***</td>
</tr>
<tr>
<td>exports</td>
<td>[-0.66]</td>
<td>[0.62]</td>
<td>[-5.37]</td>
<td>[-3.03]</td>
</tr>
<tr>
<td>log transport costs,</td>
<td>22.1646***</td>
<td>23.5056***</td>
<td>-2.7704***</td>
<td>-2.1234***</td>
</tr>
<tr>
<td>exports</td>
<td>[3.18]</td>
<td>[3.34]</td>
<td>[-2.98]</td>
<td>[-2.50]</td>
</tr>
</tbody>
</table>

Interactions with high skill dummy

<table>
<thead>
<tr>
<th></th>
<th>log WES,</th>
<th>× high skill</th>
<th>log exports</th>
<th>× high skill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>log WES,</td>
<td>-0.0564</td>
<td>-0.0827</td>
<td>0.3551***</td>
<td>0.3495***</td>
</tr>
<tr>
<td>offshoring</td>
<td>[-0.83]</td>
<td>[-1.29]</td>
<td>[4.66]</td>
<td>[4.62]</td>
</tr>
<tr>
<td>log transport costs,</td>
<td>1.0166</td>
<td>-0.6953</td>
<td>-17.6820***</td>
<td>-18.288***</td>
</tr>
<tr>
<td>offshoring</td>
<td>[0.27]</td>
<td>[-0.18]</td>
<td>[-3.09]</td>
<td>[-3.19]</td>
</tr>
<tr>
<td>log WID,</td>
<td>0.0519</td>
<td>0.1489</td>
<td>0.3585***</td>
<td>0.3750***</td>
</tr>
<tr>
<td>exports</td>
<td>[0.58]</td>
<td>[1.61]</td>
<td>[4.55]</td>
<td>[4.74]</td>
</tr>
<tr>
<td>log transport costs,</td>
<td>-2.7041</td>
<td>-4.4856</td>
<td>26.2738***</td>
<td>25.9308***</td>
</tr>
<tr>
<td>exports</td>
<td>[-0.77]</td>
<td>[-1.25]</td>
<td>[-4.42]</td>
<td>[-4.35]</td>
</tr>
<tr>
<td>Additional firm controls</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Additional worker controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1,928,599</td>
<td>383,035</td>
<td>1,928,599</td>
<td>383,035</td>
</tr>
<tr>
<td>Number of job-spell fixed effects</td>
<td>383,035</td>
<td>383,035</td>
<td>1,950,896</td>
<td>384,257</td>
</tr>
<tr>
<td>R^2</td>
<td>0.146</td>
<td>0.107</td>
<td>0.074</td>
<td>0.063</td>
</tr>
<tr>
<td>F-statistics</td>
<td>4.379</td>
<td>30.040</td>
<td>5.300</td>
<td>19.330</td>
</tr>
</tbody>
</table>

Notes: Table 4 presents the first stage regressions for log offshoring, log exports, and their skill interactions, using world export supply (WES), world import demand (WID), and transport costs as excluded instruments. Only these excluded instruments are reported. All specifications include job-spell, industry-year, and regional fixed effects. Additional firm controls are log output, log employment, log capital–labor ratio, and the share of high-skilled workers. Additional worker controls include experience, experience squared, and dummies for union membership and marriage. Robust t-statistics in brackets. Standard errors clustered at firm-year levels.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

In equations (4) and (5), we have four endogenous variables, (narrow) offshoring and exports, and the interaction of each with the high-skill dummy. Following Wooldridge (2002), we include the full set of instruments in the first-stage regressions for each endogenous variable. For each endogenous variable we estimate both with and without firm controls, for a total of eight first stage regressions. In each case, the regression is fitting predicted offshoring at the worker-firm-year level (following, e.g., Angrist and Pischke 2009), and includes job-spell fixed effects. We report the results in Table 4, clustering the standard errors at the firm-year level. In the offshoring regressions, changes in world export supply and transportation costs have the predicted sign and are significantly correlated with growth in imports for
In Table 5 we estimate within-job spell wage regressions in which we pool over all workers. The dependent variable is the log hourly wage rate of worker i employed by firm j in year t, and we again cluster standard errors at the firm-year level. We provide fixed effect, and fixed effect-IV estimates both with and without additional firm controls. In the fixed effect specifications we exploit only within worker-firm variation but ignore the potential simultaneity problem where unobserved firm productivities drive both wages and offshoring. In contrast, the fixed effect-IV specification includes job-spell fixed effects and corrects for this simultaneity bias.

Notes: Table 5 presents the results from worker-level Mincer regressions, using either log hourly wage or log annual labor income as dependent variables. All specifications include job-spell, industry-year, and regional fixed effects. log offshoring, log exports, and their skill interactions are instrumented using world export supply (WES), world import demand (WID) and transport cost in the FE-IV columns. Robust t-statistics in brackets. Standard errors clustered at firm-year levels. We report 100 times the coefficient estimates for experience^2 and marital status.

* ***Significant at the 1 percent level.
** **Significant at the 5 percent level.
* *Significant at the 10 percent level.
In the fixed effect specification we find very small wage effects from both importing and exporting. In contrast, when we instrument we find effects that are roughly ten times larger in magnitude. Offshoring lowers an unskilled worker’s wage (elasticity -0.022), so that being in a firm that doubles its offshoring has an effect similar in magnitude to losing 1.5 year’s experience on the job. In contrast, offshoring raises a skilled workers wage (elasticity 0.03). These results suggest that offshoring tends to raise the skill premium within the firm. In the theory section we noted that running these regressions with firm controls is equivalent to a move along an isoquant while omitting firm controls allows for the possibility of a productivity effect—that output and capital will rise in response to an offshoring shock and boost the demand for labor. We see evidence weakly consistent with this conjecture in that wage gains for skilled workers are smaller when we control for the productivity effect. Though these differences are small they are consistent with the idea that offshoring produces both labor substitution and productivity responses, with the former clearly dominating.

Turning to the export interactions, we see that rising exports are a rising tide that lifts all boats, with a low-skill wage elasticity of 0.049 to 0.053, and no significant difference for high-skill labor. This is consistent with a view that offshoring and exporting shocks represent very different changes within the firm. Offshoring induces input substitution toward skilled labor and away from unskilled labor while exporting increases input use across the board.

We also explore the response of total labor income to offshoring and exports, as workers might increase or decrease their hours depending on how strong the income effect (higher wages lead to higher income, more leisure, and less hours) is relative to the substitution effect (higher wages lead to more hours and less leisure). Columns 5–6 of Table 5 report these results. We find similar coefficient patterns on offshoring for both high- and low-skilled workers, but smaller magnitudes in both cases. The primary difference from the wage regressions is the large positive interaction between exports and high-skilled workers.31

The coefficient estimates in Table 5 alone are not sufficient for calculating the net wage effects of trade, because firms are engaged in both importing and exporting, and as we discussed in Section IC, both are rising fast. Given the conflicting signs on offshoring and exports, the net wage effect for an unskilled worker depends on whether exports or offshoring are rising faster within their firm.

To see an example of these effects, consider the following shock to oil prices. Between 1998 and 2000 crude oil prices rose 210 percent while jet fuel prices rose 52 percent. Using the fitted transport cost functions described in the online Appendix, and the fitted values for the first stage estimation in Table 4, we calculate that the average firm would decrease offshoring by 16 percent and decrease exports by 10 percent, *ceteris paribus*. Using the point estimates in Table 5, this translates to a 0.17 percent (-16 percent $\times (0.0228) - 10$ percent $\times 0.0531$) decline in wages for unskilled workers and a 1.02 percent decline in wages for skilled workers. However, the impact of the oil price change varies considerably depending on what the firm is trading and with whom. For the firm with a cost shock one standard deviation above the mean, offshoring declines by 28 percent,

31 One reason for the larger income response of skilled workers could be that skilled workers have more flexibility in setting their hours (e.g., Dahl, le Maire, and Munch 2013).
while exporting declines by only 16 percent. For a firm with this profile, the unskilled wage would fall by 0.21 percent and the skilled wage by 1.71 percent.

Of course, oil prices are just one factor that moves trade and we employ several instruments. Table 6 considers the full distribution of changes in trade that occur in our sample, and the corresponding change in wages. In panel A of Table 6 we divide firm-years into bins on the basis of year on year percentage changes in offshoring (down) and exports (across) for that firm. We then report, in each bin, the share of the low-skill workforce (in normal font), and the median wage changes (in boldface) experienced by the workers as predicted using the coefficient estimates of Table 5. Consider the bin in the top right corner. This corresponds to firm-years where imports are at least 30 percent below the previous year, and where exports are at least 30 percent above the previous year. That bin represents 2.2 percent of the low-skill workforce and given the estimates in Table 5, we predict that these workers will experience a median wage increase of 6.60 percent relative to the previous year. In contrast, the bottom left corner represents firm-years with rapidly rising imports and rapidly falling exports. That is 1.5 percent of the low-skill workforce and the median predicted wage loss is 6.15 percent relative to the previous year.

Overall, the median wage change for unskilled workers is close to 0, with 56 percent of low-skill workers experiencing wage losses and 44 percent wage gains.

Table 6—Net Effect of Trade on Wages

<table>
<thead>
<tr>
<th>Annual percent-change in exports</th>
<th>Min</th>
<th>−30</th>
<th>0</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Low-skilled workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual percent-change in offshoring</td>
<td>Min</td>
<td>−30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>−30</td>
<td>3.1</td>
<td>6.7</td>
<td>5.6</td>
<td>2.2</td>
</tr>
<tr>
<td>−0.92</td>
<td>0.73</td>
<td>2.06</td>
<td>6.60</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>13.7</td>
<td>9.7</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>−2.12</td>
<td>−0.17</td>
<td>0.74</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>9.8</td>
<td>15.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>−2.90</td>
<td>−0.78</td>
<td>0.25</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>5.3</td>
<td>13.3</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>−6.15</td>
<td>−1.96</td>
<td>−0.72</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>Panel B. High-skilled workers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual percent-change in offshoring</td>
<td>Min</td>
<td>−30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>−30</td>
<td>3.2</td>
<td>6.3</td>
<td>4.5</td>
<td>1.4</td>
</tr>
<tr>
<td>−7.08</td>
<td>−2.38</td>
<td>−1.00</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>15.1</td>
<td>10.9</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>−3.10</td>
<td>−0.66</td>
<td>0.17</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>11.3</td>
<td>16.4</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>−2.16</td>
<td>−0.05</td>
<td>0.95</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>5.0</td>
<td>12.4</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>−1.28</td>
<td>1.11</td>
<td>2.20</td>
<td>5.68</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table 6 presents the net effect of trade, including both offshoring and exports, on worker-level hourly wages. For panel A we group the firm-year observations into 16 bins according to the annual changes in offshoring and export values, and these bins correspond to the 16 cells. For each cell we report two numbers. The bold-faced number is the predicted median hourly wage change for low-skilled workers (calculated using the wage-elasticity estimates from Table 5), and the normal-fonted figure is the fraction of low-skilled workers in this cell. For example, for the firm-year observations for which offshoring decreases by more than 30 percent (first row) and exports increase by more than 30 percent (last column), the median predicted hourly wage for low-skilled workers rises by 6.60 percent, and these low-skilled workers account for 2.2 percent of the low-skilled workforce in our sample. Panel B is similarly structured for high-skilled workers.
Just over 10 percent of workers have wage losses greater than 2 percent, and 12 percent of workers have wage gains greater than 2 percent. Panel B of Table 6 reports predicted wage changes for high-skilled workers. The majority (55 percent) of high-skilled workers have positive predicted wage changes, as both offshoring and exporting tend to increase high-skilled wage. Twenty-six percent of skilled workers have predicted wage gains above 1.9 percent and 13 percent have wage losses of 2 percent or more.

Summarizing, Table 6 shows that even within the same skill type, there is substantial variation in the net wage effects of trade, as employers change both their offshoring and exporting over time. These results complement recent theoretical and empirical findings that emphasize an increase in within-group inequality following trade liberalization (e.g., Goldberg and Pavcnik 2007; Helpman, Itskhoki, and Redding 2010).

Table 7 reports a set of robustness checks. For each check we estimate two regressions, one with firm controls and one without (corresponding to equations (4) and (5), respectively). First, we employ only those job spells lasting at least seven years, which is close to the average job duration in Denmark (7.9 years). This cuts our sample in half, but gives us more observations per job spell to identify trade shocks. We find results that are similar to those in Table 5. These results confirm that the source of our identification is within-job-spell changes, and that having long job spells in the data is important for the identification strategy to work.

<table>
<thead>
<tr>
<th>Robustness check</th>
<th>I. 7+ year job spells</th>
<th>II. High-income countries</th>
<th>III. 3-year MAs (WID/WES)</th>
<th>IV. Drop computers and building supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(offshoring)</td>
<td>(0.0105) [1.64]</td>
<td>(-0.0155***) [2.83]</td>
<td>(-0.0168**) [2.53]</td>
<td>(-0.0190***) [3.67]</td>
</tr>
<tr>
<td>log(offshoring)</td>
<td>(0.0510***) [7.06]</td>
<td>(0.0536***) [7.24]</td>
<td>(0.0271***) [4.94]</td>
<td>(0.0269***) [4.88]</td>
</tr>
<tr>
<td>log(exports)</td>
<td>(0.0065***) [6.21]</td>
<td>(0.00621***) [7.46]</td>
<td>(0.0464***) [4.52]</td>
<td>(0.0492***) [7.14]</td>
</tr>
<tr>
<td>log(exports)</td>
<td>(0.0055) [0.48]</td>
<td>(0.0026) [0.22]</td>
<td>(0.0344***) [3.87]</td>
<td>(0.0370***) [4.28]</td>
</tr>
</tbody>
</table>

First stage IV F-statistics:
- log offshoring: 7.21 [7.21]
- log exports: 5.79 [5.79]
- log high skill: 17.54 [17.54]
- Other firm-level controls: Yes [Yes]

Observations: 967,053
No. job spells: 103,989

Notes: Table 7 presents the results from worker-level Mincer regressions, using log hourly wage as the dependent variable. All specifications include job spell, industry-year, and regional fixed effects. log offshoring, log exports, and their skill interactions are instrumented using world export supply (WES), world import demand (WID), and transport costs. “MAs” stand for moving-averages. Robust t-statistics in brackets. Standard errors clustered at firm-year levels.

***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
It may seem puzzling that although most of Danish trade is with other high-income countries, offshoring tends to reduce the wage of low-skilled workers. To investigate whether our results are driven by Danish trade with low-income countries, we restrict our sample to only include Danish trade with high-income partners. We find a similar sign pattern for offshoring. The estimated wage elasticities with respect to exports are now quite different, with high-skill workers enjoying a larger wage gain than low-skill workers. Ideally, we would run a similar specification for Danish trade with low-income partners. Unfortunately, these trade flows tend to be small and exhibit much fluctuation, and so they are less compatible with the use of pre-sample shares in our IV estimation.

Our trade variables exploit year on year variation relative to the firm mean and we further explore whether they represent more permanent or transitory shocks. We follow Bertrand (2004) and replace our WES/WID instruments with their 3-year moving averages. We find very similar wage effects to those in Table 5. These results suggest that our WES/WID instruments capture permanent shocks, similar to Autor, Dorn, and Hanson (2013). Our transport-cost instrument, on the other hand, exploits annual fluctuations in oil and fuel prices and captures short-run shocks. Finally, in our threats to identification section we described two potential problems. First, one might worry that our world export supply instrument is capturing shocks to world demand for products as well as supply. During our sample period, many high-income countries, including Denmark, experienced booms in the technology and housing sectors. Following Autor, Dorn, and Hanson (2013) we drop the industries that include computers, steel, flat glass, and cement. This does not change the sign pattern of coefficients, though it makes the wage losses for unskilled workers and the wage gains for skilled workers larger.

Table 7 suggests that our basic findings in Table 5 are robust to alternative specifications. Below, we apply our estimation framework to explore particular occupations or task characteristics.

V. Wage Effects by Occupation and Task Characteristics

Our data identify the occupation of each worker, which allows us to examine whether occupations having particular task characteristics are especially affected by trade. Conceptually, our approach is the same as that laid out in Section II, in which workers of different types may be substitutes or complements for foreign materials.

32 Burstein and Vogel (2011) show that North-North trade can increase skill premium if productivity is complementary with skill, and their results also hold for North-North offshoring. To see this, consider the following simple extension of their framework. There are two countries with the same factor composition but different productivities for tasks. A firm offshores a task if the foreign country is more productive in the task, which reduces the range of less productive tasks performed in the economy. If productivity and skilled labor are complementary, this will raise the relative demand for high-skilled labor and the skill premium.

33 As in Bertrand (2004) we use contemporaneous and 2-year-moving-average values for the first and last two years of data.

34 We have also experimented with the following alternatives, and obtained similar results (see the online Data Appendix for more details): (i) break low-skilled workers into medium-skilled and very low-skilled. They have similar wage elasticity estimates; (ii) use the top two categories or top five categories of pre-sample trade flows; (iii) employ only the job spells longer than five years; (iv) define narrow offshoring as imports within the same HS2 categories as sales; (v) use broad offshoring instead of narrow offshoring; (vi) dropping the trade flows where Denmark accounts for over 1 percent, 10 percent, or 25 percent of trade with that partner and product; and (vii) adding Danish trade to WES and WID.
Instead of only grouping workers by educational attainment, we also group them by the characteristics of the particular tasks they do. That is, we augment equation (4) with the interaction between an occupational characteristic (OCC) and offshoring to see whether offshoring effects on wages are different across task characteristics within a skill type. For estimation we use fixed effects-IV similar to Table 5, where we also instrument for the additional OCC \times offshoring interaction. To get a clean identification, we drop the workers who switch occupations during job spells.

We obtain occupational characteristics data from O*NET version 13, 2008 (see the online Data Appendix for more details). For categories of task characteristics we first follow Autor, Levy, and Murnane (2003) and consider routine and non-routine tasks. For each category we pick the O*NET characteristics that most closely match the ones used in Autor, Levy, and Murnane (2003) and compute the principal component.35 We normalize the principal components to have mean 0 and standard deviation 1.

We report the results in Table 8. The workers with average routineness scores (Z = 0) are little affected by offshoring (the coefficients of offshoring and offshoring \times high-skill are both insignificant).36 Conditional on skill type, workers with above-the-average routineness (Z > 0) suffer larger wage losses (the coefficient of offshoring \times Z is negative and significant). In contrast, non-routine tasks interact positively with offshoring. The non-routine category is a composite of mathematics and other characteristics (see the online Appendix for the list). When we drop math

35 Autor, Levy, and Murnane (2003) use historical task data. Examples of routine tasks are manual dexterity and finger dexterity, and of non-routine tasks, mathematics, and thinking creatively. Details in the online Data Appendix.

36 The negative interaction between offshoring and the high-skill indicator do not contradict Table 5 because educational attainment is negatively correlated (−0.54) with routine-ness.
characteristics as a component of the non-routine category, we find that the remaining aspects of non-routine tasks interact negatively with offshoring. In other words, it is mathematics and not non-routineness more generally that drives the positive interaction with offshoring.

These results motivate us to examine tasks that intensively employ characteristics corresponding to other broad categories of college education: communication and language, social sciences and natural sciences. High-skilled workers (high skill = 1) whose jobs require social-science skills 1 standard deviation above the mean (Z = 1) see an additional wage elasticity of 3.8 percent, for a total of 5.2 percent. Put another way, there is a “social-science premium”: college-educated workers with strong social-science skills enjoy larger wage increases from offshoring than other college-educated workers. Similarly, the “communication premium” is 4.5 percent, implying that for a college educated (high skill = 1) director or chief executive (communication = 2, or 2 standard deviations above average), the wage elasticity is 2 × 4.5 percent = 9.0 percent with respect to offshoring. Natural sciences, however, have little interaction with offshoring.

Finally, as we discussed in Section II, firms could face upward-sloping labor supply curves for a variety of reasons including specific human capital, search costs, or bargaining. We explore whether differences in specific human capital across workers lead to differences in the wage effects of offshoring. We follow Parent (2000) and measure industry-specific experience for worker i as the number of years worker i has worked in a given industry and interact i’s industry experience with offshoring. We report the results in the last column of Table 8. The industry-experience-offshoring interaction term has a negative coefficient but it is small in magnitude and insignificant. We leave it to future research to distinguish which of these mechanisms is at work.

VI. Worker Mobility and Cohort-Based Analysis

In Sections IV and V we examine the wage effects of offshoring within job spells, that is, for the workers who remain employed within the same firm. In this section, we extend the analysis to include the entire cohort of workers employed in a firm prior to an offshoring shock, and we follow this cohort of workers for five years. This approach, which we adapt from Walker (2013), has two benefits. First, it enables us to examine wage and income effects for all workers, including changes occurring within the firm, earnings losses associated with unemployment and earnings changes related to change of firm, industry or occupation. We can then calculate the effect of offshoring on the expected future income stream for all workers. Second, the cohort-approach allows us to examine concerns about sample selection that arise when employing within-job-spell wage regressions or when focusing only on workers who are displaced.

To elaborate, in Sections IV and V we find that offshoring tends to increase skill premium (i.e., the relative wage of skilled workers), and our regressions assume that

37 Examples of social sciences are economics and accounting. Natural sciences include engineering and technology. Examples of communication tasks include persuasion and negotiation. Details in the online Appendix.
38 We trace the workers’ industry affiliations back to 1988. We do not make use of occupation-specific experience (e.g., Kambourov and Manovskii 2009) because data on occupations are non-existent or of poor quality before 1995. We do not pursue hypotheses related to wage-bargaining and search costs because we lack relevant measures.
worker mobility is random conditional on job-spell fixed effects (plus other observable worker and firm controls). Suppose instead that there are time-varying and individual-specific shocks to worker productivity that happen to correspond to the offshoring event. If there is a systematic relationship between these time varying shocks and the sample of workers who remain employed within the firm, and if high- and low-skilled workers have opposite selection patterns (i.e., the high-skilled workers with positive shocks stay but the low-skilled workers with positive shocks leave), then selection could imply a positive relationship between offshoring and skill premium.

We can gauge the importance of selection in our data by examining the pattern of worker mobility in response to offshoring shocks. For ease of display, we define a positive offshoring shock as an increase in predicted offshoring of more than 10 percent between year t and $t+1$.

Table 9 shows that the average low-skilled leaver is younger and less experienced, and has a 3.7 percent lower wage than the average low-skilled worker, and that similar patterns hold for high-skilled workers. These results suggest that there is indeed selection (conditional on observables) in our data, and that such selection is unlikely to drive a positive correlation between offshoring and skill premium.

Table 9, however, does not address selection conditional on unobservables. By examining the evolution of wages and earnings for an entire cohort of workers, stayers and leavers, our cohort-based analysis addresses these selection issues.

Consider all the low-skilled workers employed by firm j in a base year v (e.g., $v = 1995$). Call them cohort jv, and consider the average wage for the cohort. Suppose that in year $v+1$ (e.g., $v+1 = 1996$) firm j increases offshoring for exogenous reasons. Some fraction of the cohort-jv workers remain employed with firm j in year $v+1$, while other workers are displaced. Displaced workers may be unemployed or reattach to the labor force in a new firm. Both stayers and leavers figure into the cohort

<table>
<thead>
<tr>
<th>Variables:</th>
<th>High-skilled</th>
<th>Low-skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Leavers</td>
</tr>
<tr>
<td>Hourly wage rate</td>
<td>244.03</td>
<td>235.19</td>
</tr>
<tr>
<td>Experience</td>
<td>15.17</td>
<td>12.51</td>
</tr>
<tr>
<td>Tenure</td>
<td>4.78</td>
<td>3.17</td>
</tr>
<tr>
<td>Union status</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Age</td>
<td>39.21</td>
<td>36.69</td>
</tr>
<tr>
<td>Female</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Married</td>
<td>0.63</td>
<td>0.56</td>
</tr>
<tr>
<td>Observations</td>
<td>75,964</td>
<td>9,045</td>
</tr>
</tbody>
</table>

Notes: Table 9 compares the pre-shock characteristics of the workers who separate from their employers (“Leavers”) after a positive offshoring shock with those of the full set of workers (“All”), including the leavers and those who stay. To be specific, an offshoring shock is an increase in predicted offshoring of more than 10 percent annually, where the predicted values are obtained as in Section IV. For each firm with a positive offshoring shock we consider the workers employed by this same firm two years prior to the shock.

39 Predicted values are obtained using instruments as before. Similar results hold when we use a 20 or 30 percent threshold.
average wage in $v + 1$. By fixing the composition of the cohort prior to the offshoring shock, and by consistently tracking this same group of workers for five years, we capture the overall effects of offshoring on the time path of the cohort-average wage.

We use the same firm sample as in Sections I–V and include all workers employed in the base year. Since offshoring is not a discrete event in our data and firms are subject to multiple shocks (changes in the extent of offshoring) over time, we define multiple cohorts for each firm, corresponding to the set of workers employed in the firm in each base year v. For each firm j by base year v (v is 1995–2001) we form two cohorts, all the high-skilled workers and all the low-skilled workers employed with j in v. In total there are 9,000 such cohorts.

For each cohort constructed from firm j for base year v, its offshoring shock in year $v + 1$ is the percentage change in the predicted offshoring of firm j between v and $v + 1$, $\Delta \log \text{OFF}_{j,v+1} = \log(\text{OFF}_{j,v+1}/\text{OFF}_{j,v})$, a continuous variable. We calculate the predicted values of offshoring using our first-stage IV regressions from Section IV, and we use predicted values to ensure that the shocks are exogenous to the firms and workers. The cohort-outcome variables we examine are cohort-average wages, earnings, and gross earnings. Wages and earnings are defined as in the previous sections. Gross earnings are the sum of earnings, unemployment insurance benefits, and social assistance.

Using these data we estimate

$$
(6) \quad \Delta \log y^{j}_{vt} = \alpha_v + \alpha_t + (\Delta x^{j}_{vt})\beta + \sum_{k=1}^{5}\delta_k(\Delta \log \text{OFF}^{j}_{v+1})D_{k+v} + \varepsilon_{vt},
$$

where y^{j}_{vt} is the outcome variable of a firm j cohort with base year v at time t, where $t = v + 1, \ldots, v + 5$. α_v represents cohort fixed effects, α_t year fixed effects, and x^{j}_{vt} the vector of control variables. In equation (6) we define $\Delta \log y^{j}_{vt}$ and Δx^{j}_{vt} as changes relative to the base year in order to match the expression for the offshoring shock. The control variables x^{j}_{vt} include the change in cohort-average experience, and the percentage change in the predicted exports of firm j, calculated from the first-stage IV regressions of Section IV; D_{k+v} are dummies for the kth years after base year v, where $k = 1, \ldots, 5$. The coefficients of interest in equation (6) are the δ_k; δ_1 is the contemporaneous effect of the offshoring shock, δ_2 is the 1-year-post-shock effect, etc. Finally we weight the regressions by the number of cohort members, and we cluster standard errors by firm-j-year-t, given that a single firm j has multiple cohorts.

We estimate regression (6) separately for low-skilled and high-skilled cohorts, and report the estimates of the δ_k in Table 10. The second column shows the results for the cohort-average wages for low-skilled workers. In the year of the offshoring shock, the elasticity of cohort wages with respect to offshoring is -0.0274. This means that for an average low-skilled worker, the overall effect (including both wage and displacement) of being employed by a firm that doubles offshoring for exogenous reasons is a 2.74 percent loss in income in the year of the offshoring

40 To ensure that the cohort members do not enter the retirement age of 61 we impose the additional restriction that the workers’ ages are 20–54 in one of the base years 1995–2001. This reduces the sample by 9.6 percent. In our sample workers do not exit unless they die or emigrate outside of Denmark. In the rare cases of exits (0.8 percent of the observations) we set the outcome variables to zero.

41 We set to zero the hourly wages and earnings of non-employed workers since they are unobserved.
Table 10—The Overall Effects of Offshoring

<table>
<thead>
<tr>
<th></th>
<th>Wages</th>
<th>Earnings</th>
<th>Gross earnings</th>
<th>First-year leavers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High-skilled</td>
<td>Low-skilled</td>
<td>High-skilled</td>
<td>Low-skilled</td>
</tr>
<tr>
<td>Offs. shock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year 1</td>
<td>−0.0097*</td>
<td>−0.0274***</td>
<td>0.0144***</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>[−1.76]</td>
<td>[−3.61]</td>
<td>[2.89]</td>
<td>[0.29]</td>
</tr>
<tr>
<td>Offs. shock</td>
<td>−0.0126**</td>
<td>−0.0394***</td>
<td>0.0085</td>
<td>−0.0152***</td>
</tr>
<tr>
<td>year 2</td>
<td>[−2.22]</td>
<td>[−5.95]</td>
<td>[1.56]</td>
<td>[−3.72]</td>
</tr>
<tr>
<td>Offs. shock</td>
<td>−0.0047</td>
<td>−0.0253***</td>
<td>0.0022</td>
<td>−0.0188***</td>
</tr>
<tr>
<td>year 3</td>
<td>[−0.74]</td>
<td>[−4.85]</td>
<td>[0.41]</td>
<td>[−5.46]</td>
</tr>
<tr>
<td>Offs. shock</td>
<td>−0.0012</td>
<td>−0.0197***</td>
<td>0.0082</td>
<td>−0.0124***</td>
</tr>
<tr>
<td>year 4</td>
<td>[−0.19]</td>
<td>[−3.49]</td>
<td>[1.42]</td>
<td>[−3.61]</td>
</tr>
<tr>
<td>Offs. shock</td>
<td>0.0150**</td>
<td>−0.0109*</td>
<td>0.0203***</td>
<td>0.0005</td>
</tr>
<tr>
<td>year 5</td>
<td>[2.07]</td>
<td>[−1.86]</td>
<td>[3.06]</td>
<td>[0.11]</td>
</tr>
<tr>
<td>Five year</td>
<td>−0.0144</td>
<td>−0.1155**</td>
<td>0.0492**</td>
<td>−0.0415**</td>
</tr>
<tr>
<td>PDV</td>
<td>0.64</td>
<td>[4.89]</td>
<td>[2.26]</td>
<td>[2.96]</td>
</tr>
</tbody>
</table>

Notes: This table reports the overall effects of offshoring, including both wages and displacement, on workers’ present and future income streams using regression (6). All regressions include cohort fixed effects, year fixed effects, and the change in log predicted exports and the change in average experience as control variables. First-year leaves are workers who are no longer employed by the firm in the year after the base year. The five-year PDV is the discounted sum of coefficients using a 4 percent discount rate. The regressions are weighted by the base year cohort size and these weights are reflected in the reported observation numbers. t-statistics in square brackets. Standard errors clustered at firm-year levels. The reported standard errors for the five year PDVs are calculated using the delta method.

** Significant at the 1 percent level.
*** Significant at the 5 percent level.
* Significant at the 10 percent level.

Shock. This result is consistent with our findings in Section IV that offshoring tends to reduce low-skilled workers’ wages within job spells.

In addition, Table 10 shows that the negative effect of offshoring persists over time: it becomes larger in magnitude one year post-shock (elasticity −0.0394) and remains negative until four years post-shock (elasticity −0.011). In order to summarize the accumulated wage losses for low-skilled workers, Table 10 computes the present discounted value (PDV) of the wage changes over the five-year window using a 4 percent discount value, as well as the t-statistics of the PDV. To interpret the PDV of −0.1155, suppose a firm doubles offshoring. Then the PDV suggests that the average low-skilled workers of the firm can expect a total loss of 11.55 percent of their pre-offshoring wages in the course of five years.

Turning to high-skilled workers, offshoring tends to increase their wages within job spells (as we show in Section IV), but if they get displaced after offshoring their wages are likely to drop. This means that the overall effect of offshoring can be either positive or negative for the cohort-average wages of high-skilled workers. The first column of Table 10 reports the overall effect of offshoring on high-skilled workers. In the year of the offshoring shock, the overall effect is −0.0097, suggesting that the wage losses suffered by displaced workers dominate the within-job-spell wage effect. The overall effect of offshoring becomes larger in magnitude (elasticity −0.0126) one year post-shock, remains negative (but insignificant) for two more years, and then turns positive (elasticity +0.015) four years post-shock. The PDV for cohort-average wages for high-skilled workers is a small (and insignificant) −0.0144.
Columns 3–6 report the overall effects of offshoring where we measure income using cohort-average earnings and gross earnings for low-skilled and high-skilled workers. For low-skilled workers these overall effects are qualitatively similar to the overall effects for cohort-average wages but they are smaller in magnitudes. The PDVs for cohort-average earnings and gross earnings are -0.0415 and -0.0404, respectively. For high-skilled workers, however, these overall effects tend to be positive. The PDVs for cohort-average earnings and gross earnings are 0.0492 and 0.0457, respectively.

The last two columns of Table 10 show the effect of a base year offshoring shock on average log earnings for the first-year leavers (i.e., the workers who leave in the year of the offshoring shock). It is clear that the first-year leavers suffer large and persistent earnings losses when hit by offshoring shocks, and this holds for both high- and low-skilled workers. Figure 1 displays the size of the earnings changes for the first-year leavers, using the earnings effects for all workers as the benchmark for comparison.

Why are wage effects larger in magnitude for first-year leavers than for all workers? It may be that the first-year leavers are a selected sample. Alternatively, it may be that offshoring leads to the loss of specific human capital. In related work, Hummels et al. (2011), we use the framework of Jacobson, LaLonde, and Sullivan (1993) to show, conditional on worker fixed effects, large earnings losses for mass-layoff workers displaced due to offshoring. These losses are considerably larger than the losses for other mass-layoff workers, suggesting that specific human capital losses may be especially important in the case of offshoring. Further, in Hummels et al. (2012) we focus on transitions to new employment after displacement, and show that the mass-layoff workers displaced due to offshoring take longer to reattach to the workforce than other mass-layoff workers, suggesting that search costs may play an especially important role for these workers.

VII. Conclusions

We employ a unique matched worker-firm dataset from Denmark to measure how offshoring shocks affect wages at the worker level. Our data reveal new stylized facts about offshoring activities at the firm level. Because we observe the specific products and source countries for imported inputs purchased by Danish firms we can construct instruments for offshoring decisions that are time varying and uncorrelated with the wage setting and productivity of the firm. In addition, because we can consistently track virtually every person in the Danish economy over time, we can condition our identification on variation within specific worker-firm matches (i.e., job spells).

Our key findings are these. One, controlling for the endogeneity of trade events is critical. Instrumental variables estimates of the effect of imports and exports on wages

42 One may wonder why the first-year effects on the low-skilled workers’ earnings are insignificant, given our findings in Table 5 that offshoring reduces low-skilled workers’ earnings within job spells. This is likely because Table 10 is based on a different specification than Table 5 (e.g., regression (6) does not control for job-spell fixed effects but regressions (4) and (5) do).

43 Selection could matter because firms use the occasion of offshoring to lay off high wage workers (which is not consistent with Table 9) or to lay off low-productivity workers who were collecting rents. In either case, we would expect that first-year leavers experience especially large wage losses.
yield much larger effects than those that ignore endogeneity. Two, offshoring has considerably different wage effects across educational groups, raising skilled labor wages (elasticity +0.03) and lowering unskilled labor wages (elasticity −0.022). These estimates likely reflect the causal effects of offshoring on wages. We also find that export has similar wage effects across education groups (elasticity +0.05), with the caveat that these estimates likely have a weaker causal interpretation than the estimates for offshoring. Three, the net effect of trade on wages depends on the wage elasticity estimates and how firms change exposure to trade, and this exhibits substantial variation across workers of the same skill type. For example, 26 percent (12 percent) of high-skilled (low-skilled) workers have net wage changes above 2 percent per year while 13 percent (10 percent) of high-skilled (low-skilled) workers have annual changes below −2 percent.

Figure 1. The Overall Effects of Offshoring
We then extend our estimation framework in two ways. First, exploring occupational characteristics allows us to identify several additional and unique relationships. Conditional on skill type, routine tasks suffer wage losses from offshoring. Occupations that intensively employ knowledge sets from math, social science, and languages gain from offshoring shocks, while those that employ knowledge sets from natural sciences and engineering are no more or less insulated from offshoring shocks than the average manufacturing worker. These results suggest that not all degrees are created equal.

Finally, we construct worker cohorts prior to offshoring shocks and track cohort members consistently over time. Since we fix the cohort compositions by construction we are able to capture the overall effect, both in within-job-spell wages and displacement, on workers’ present and future income streams when their employer increases offshoring for exogenous reasons. Our results imply that if a firm doubles offshoring, an average low-skilled worker of this firm can expect a net loss between 4.04 percent and 11.55 percent in the present-discounted value (PDV) of his/her income in the next five years, while an average high-skilled worker sees a more modest change between -1.44 percent and $+4.92$ percent for his/her 5-year PDV. When we focus on the (admittedly selected) subsample of workers who leave the firm in the first year of the offshoring shock, we find very large earnings losses. For both high- and low-skilled workers employed in firms who double offshoring, the 5-year PDV of earnings losses accumulates to over 50 percent of their pre-displacement earnings.

REFERENCES

