Non-Stationary Time Series, Cointegration and Spurious Regression

Heino Bohn Nielsen

1 of 32

Motivation: Regression with Non-Stationarity

- What happens to the properties of OLS if variables are non-stationary?
- Consider two presumably unrelated variables:

CONS Danish private consumption in 1995 prices.

BIRD Number of breeding cormorants (skarv) in Denmark.

And consider a static regression model

$$\log(\mathsf{CONS}_t) = \beta_0 + \beta_1 \cdot \log(\mathsf{BIRD}_t) + u_t.$$

We would expect (or hope) to get $\widehat{\beta}_1 \approx 0$ and $\mathbb{R}^2 \approx 0$.

 \bullet Applying OLS to yearly data 1982-2001 gives the result:

$$\log(\text{CONS}_t) = 12.145 + 0.095 \cdot \log(\text{BIRD}_t) + u_t,$$
(80.90)

with $R^2 = 0.688$.

• It looks like a reasonable model. But it is complete nonsense: spurious regression.

- ullet The variables are non-stationary. The residual, u_t , is non-stationary and standard results for OLS do not hold.
- In general, regression models for non-stationary variables give spurious results.

 Only exception is if the model eliminates the stochastic trends to produce stationary residuals: Cointegration.
- For non-stationary variables we should always think in terms of cointegration.

 Only look at regression output if the variables cointegrate.

3 of 32

Outline

Definitions and concepts:

- $(1) \ \ Combinations \ of \ non-stationary \ variables; \ Cointegration \ defined.$
- (2) Economic equilibrium and error correction.

Engle-Granger two-step cointegration analysis:

- (3) Static regression for cointegrated time series.
- $\left(4\right)$ Residual based test for no-cointegration.
- (5) Models for the dynamic adjustment.

Cointegration analysis based on dynamic models:

- (6) Estimation in the unrestricted ADL or ECM model.
- (7) PcGive test for no-cointegration.

What if variables do not cointegrate?

(8) Spurious regression revisited.

Cointegration Defined

• Let $X_t = (X_{1t} \ X_{2t})'$ be two I(1) variables, i.e. they contain stochastic trends:

$$X_{1t} = \sum_{i=1}^t \epsilon_{1i} + ext{initial value} + ext{stationary process}$$
 $X_{2t} = \sum_{i=1}^t \epsilon_{2i} + ext{initial value} + ext{stationary process}.$

• In general, a linear combination of X_{1t} and X_{2t} will also have a random walk. Define $\beta = (1 - \beta_2)'$ and consider the linear combination:

$$\begin{split} Z_t &= \beta' X_t = \left(\begin{array}{cc} 1 & -\beta_2 \end{array} \right) \left(\begin{array}{c} X_{1t} \\ X_{2t} \end{array} \right) = X_{1t} - \beta_2 X_{2t} \\ &= \sum_{i=1}^t \epsilon_{1i} - \beta_2 \sum_{i=1}^t \epsilon_{2i} + \text{initial value} + \text{stationary process}. \end{split}$$

• Important exception: There exist a β , so that Z_t is stationary: We say that X_{1t} and X_{2t} co-integrate with cointegration vector β .

5 of 32

Remarks:

- (1) Cointegration occurs if the stochastic trends in X_{1t} and X_{2t} are the same so they cancel, $\sum_{i=1}^t \epsilon_{1i} = \beta_1 \cdot \sum_{i=1}^t \epsilon_{2i}$. This is called a common trend.
- (2) You can think of an equation eliminating the random walks in X_{1t} and X_{2t} :

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t. {(\dagger)}$$

If u_t is I(0) (mean zero) then $\beta=(\begin{array}{cc} 1 & -\beta_2 \end{array})'$ is a cointegrating vector.

(3) The cointegrating vector is only unique up to a constant factor. If $\beta' X_t \sim I(0)$. Then so is $\widetilde{\beta}' X_t = b\beta' X_t$ for $b \neq 0$. We can choose a normalization

$$\beta = \left(\begin{array}{c} 1 \\ -\beta_2 \end{array} \right) \quad \text{or} \quad \widetilde{\beta} = \left(\begin{array}{c} -\widetilde{\beta}_1 \\ 1 \end{array} \right).$$

This corresponds to different variables on the left hand side of (†)

(4) Cointegration is easily extended to more variables. The variables in $X_t = \begin{pmatrix} X_{1t} & X_{2t} & \cdots & X_{pt} \end{pmatrix}'$ cointegrate if

$$Z_t = \beta' X_t = X_{1t} - \beta_2 \cdot X_{2t} - \dots - \beta_p \cdot X_{pt} \sim I(0).$$

6 of 32

Cointegration and Economic Equilibrium

• Consider a regression model for two I(1) variables, X_{1t} and X_{2t} , given by

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t. \tag{*}$$

The term, u_t , is interpretable as the deviation from the relation in (*).

• If X_{1t} and X_{2t} cointegrate, then the deviation

$$u_t = X_{1t} - \mu - \beta_2 X_{2t}$$

is a stationary process with mean zero.

Shocks to X_{1t} and X_{2t} have permanent effects. X_{1t} and X_{2t} co-vary and $u_t \sim I(0)$. We can think of (*) as defining an equilibrium between X_{1t} and X_{2t} .

• If X_{1t} and X_{2t} do not cointegrate, then the deviation u_t is I(1). There is no natural interpretation of (*) as an equilibrium relation.

7 of 32

Empirical Example: Consumption and Income

- Time series for log consumption, C_t , and log income, Y_t , are likely to be I(1). Define a vector $X_t = (C_t \ Y_t)'$.
- Consumption and income are cointegrated with cointegration vector $\beta=(\begin{array}{cc} 1 & -1 \end{array})'$ if the (log-) consumption-income ratio,

$$Z_t = \beta' X_t = (1 -1) \begin{pmatrix} C_t \\ Y_t \end{pmatrix} = C_t - Y_t,$$

is a stationary process. The consumption-income ratio is an equilibrium relation.

How is the Equilibrium Sustained?

- There must be forces pulling X_{1t} or X_{2t} towards the equilibrium.
- Famous representation theorem: X_{1t} and X_{2t} cointegrate if and only if there exist an error correction model for either X_{1t} , X_{2t} or both.
- As an example, let $Z_t = X_{1t} \beta_2 X_{2t}$ be a stationary relation between I(1) variables. Then there exists a stationary ARMA model for Z_t . Assume for simplicity an AR(2):

$$Z_t = \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \epsilon_t, \qquad \theta(1) = 1 - \theta_1 - \theta_2 > 0.$$

This is equivalent to

$$(X_{1t} - \beta_2 X_{2t}) = \theta_1 (X_{1t-1} - \beta_2 X_{2t-1}) + \theta_2 (X_{1t-2} - \beta_2 X_{2t-2}) + \epsilon_t$$

$$X_{1t} = \beta_2 X_{2t} + \theta_1 X_{1t-1} - \theta_1 \beta_2 X_{2t-1} + \theta_2 X_{1t-2} - \theta_2 \beta_2 X_{2t-2} + \epsilon_t,$$

or

$$\Delta X_{1t} = \beta_2 \Delta X_{2t} + \theta_2 \beta_2 \Delta X_{2t-1} - \theta_2 \Delta X_{1t-1} - (1 - \theta_1 - \theta_2) \left\{ X_{1t-1} - \beta_2 X_{2t-1} \right\} + \epsilon_t.$$

In this case we have a common-factor restriction. That is not necessarily true.

9 of 32

More on Error-Correction

• Cointegration is a system property. Both variables could error correct, e.g.:

$$\Delta X_{1t} = \delta_1 + \Gamma_{11} \Delta X_{1t-1} + \Gamma_{12} \Delta X_{2t-1} + \alpha_1 \left(X_{1t-1} - \beta_2 X_{2t-1} \right) + \epsilon_{1t}$$

$$\Delta X_{2t} = \delta_2 + \Gamma_{21} \Delta X_{1t-1} + \Gamma_{22} \Delta X_{2t-1} + \alpha_2 \left(X_{1t-1} - \beta_2 X_{2t-1} \right) + \epsilon_{2t},$$

• We may write the model as the so-called vector error correction model,

$$\begin{pmatrix} \Delta X_{1t} \\ \Delta X_{2t} \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_2 \end{pmatrix} + \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} \begin{pmatrix} \Delta X_{1t-1} \\ \Delta X_{2t-1} \end{pmatrix} + \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} (X_{1t-1} - \beta_2 X_{2t-1}) + \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix},$$
 or simply

$$\Delta X_t = \delta + \Gamma \Delta X_{t-1} + \alpha \beta' X_{t-1} + \epsilon_t.$$

- Note that $\beta' X_{t-1} = X_{1t-1} \beta_2 X_{2t-1}$ appears in both equations.
- For X_{1t} to error correct we need $\alpha_1 < 0$. For X_{2t} to error correct we need $\alpha_2 > 0$.

Consider a simple model for two cointegrated variables:

$$\left(\begin{array}{c} \Delta X_{1t} \\ \Delta X_{2t} \end{array}\right) = \left(\begin{array}{c} -0.2 \\ 0.1 \end{array}\right) (X_{1t-1} - X_{2t-1}) + \left(\begin{array}{c} \epsilon_{1t} \\ \epsilon_{2t} \end{array}\right).$$

OLS Regression with Cointegrated Series

ullet In the cointegration case there exists a eta_2 so that the error term, u_t , in

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t. \tag{**}$$

is stationary.

- OLS applied to (**) gives consistent results, so that $\widehat{\beta}_2 \to \beta_2$ for $T \to \infty$.
- Note that consistency is obtained even if potential dynamic terms are neglected. This is because the stochastic trends in X_{1t} and X_{2t} dominate. We can even get consistent estimates in the reverse regression

$$X_{2t} = \delta + \gamma_1 X_{1t} + v_t.$$

• Unfortunately, it turns out that $\widehat{\beta}_2$ is not asymptotically normal in general. The normal inferential procedures do not apply to $\widehat{\beta}_2$!

We can use (**) for estimation-not for testing.

Super-Consistency

- ullet For stationary series, the variance of $\widehat{\beta}_1$ declines at a rate of T^{-1} .
- ullet For cointegrated I(1) series, the variance of \widehat{eta}_1 declines at a faster rate of T^{-2} .
- Intuition: If $\widehat{\beta}_1 = \beta_1$ then u_t is stationary. If $\widehat{\beta}_1 \neq \beta_1$ then the error is I(1) and will have a large variance. The 'information' on the parameter grows very fast.

13 of 32

Test for No-Cointegration, Known β_1

- Suppose that X_{1t} and X_{2t} are I(1). Also assume that $\beta = (1 - \beta_2)'$ is known.
- The series cointegrate if

$$Z_t = X_{1t} - \beta_2 X_{2t}$$

is stationary.

ullet This can be tested using an ADF unit root test, e.g. the test for H_0 : $\pi=0$ in

$$\Delta Z_t = \delta + \sum_{i=1}^k \Delta Z_{t-i} + \pi Z_{t-1} + \eta_t.$$

The usual DF critical values apply to $t_{\pi=0}$.

• Note, that the null, H_0 : $\pi=0$, is a unit root, i.e. no cointegration.

Test for No-Cointegration, Estimated β_1

- Engle-Granger (1987) two-step procedure.
- If $\beta = (1 \beta_2)'$ is unknown, it can be (super-consistently) estimated in

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t. \tag{***}$$

 \widehat{eta} is a cointegration vector if $\widehat{u}_t = X_{1t} - \widehat{\mu} - \widehat{eta}_2 X_{2t}$ is stationary.

ullet This can be tested using a DF unit root test, e.g. the test for H_0 : $\pi=0$ in

$$\Delta \widehat{u}_t = \sum_{i=1}^k \Delta \widehat{u}_{t-i} + \pi \widehat{u}_{t-1} + \eta_t.$$

Remarks:

- (1) The residual \widehat{u}_t has mean zero. No deterministic terms in DF regression.
- (2) The critical value for $t_{\pi=0}$ still depends on the deterministic regressors in (***).
- (3) The fact that $\widehat{\beta}_1$ is estimated also changes the critical values. OLS minimizes the variance of \widehat{u}_t . Look 'as stationary as possible'. Critical value depends on the number of regressors.

15 of 32

• Critical values for the Dickey-Fuller test for no-cointegration are given by:

Case 1: A constant term in (***).

1				
Number of estimated	Significance level			
parameters	1%	5%	10%	
0	-3.43	-2.86	-2.57	
1	-3.90	-3.34	-3.04	
2	-4.29	-3.74	-3.45	
3	-4.64	-4.10	-3.81	
4	-4.96	-4.42	-4.13	

Case 2: A constant and a trend in (***).

Number of estimated	Significance level		
parameters	1%	5%	10%
0	-3.96	-3.41	-3.13
1	-4.32	-3.78	-3.50
2	-4.66	-4.12	-3.84
3	-4.97	-4.43	-4.15
4	-5.25	-4.72	-4.43

17 of 32

Dynamic Modelling

Given the estimated cointegrating vector we can define the error correction term

$$\operatorname{ecm}_t = \widehat{u}_t = X_{1t} - \widehat{\mu} - \widehat{\beta}_2 X_{2t},$$

which is, per definition, a stationary stochastic variable.

• Since $\widehat{\beta}_2$ converges to β_2 very fast we can treat it as a fixed regressor and formulate an error correction model conditional on ecm_{t-1} , i.e.

$$\Delta X_{1t} = \delta + \lambda_1 \Delta X_{1t-1} + \kappa_0 \Delta X_{2t} + \kappa_1 \Delta X_{2t-1} - \alpha \cdot \mathbf{ecm}_{t-1} + \epsilon_t,$$

where $\alpha > 0$ is consistent with error-correction.

• Given cointegration, all terms are stationary, and normal inference applies to δ , λ , κ_0 , κ_1 , and α .

Outline of an Engle-Granger Analysis

- (1) Test individual variables, e.g. X_{1t} and X_{2t} , for unit roots.
- (2) Run the static cointegrating regression

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t.$$

Note that the t-ratios cannot be used for inference.

- (3) Test for no-cointegration by testing for a unit root in the residuals, \widehat{u}_t .
- (4) If cointegration is not rejected estimate a dynamic (ECM) model like

$$\Delta X_{1t} = \delta + \lambda_1 \Delta X_{1t-1} + \kappa_0 \Delta X_{2t} + \kappa_1 \Delta X_{2t-1} - \alpha \widehat{u}_{t-1} + \epsilon_t.$$

All terms are stationary. Remaining inference is standard.

19 of 32

Empirical Example: Danish Interest Rates

• Consider two Danish interest rates:

 r_t : Money market interest rate

 b_t : Bond Yield

for the period t = 1972 : 1 - 2003 : 2.

• Test for unit roots in r_t and b_t (5% critical value is -2.89):

$$\widehat{\Delta r}_{t} = 0.00638118 - 0.126209 \cdot \Delta r_{t-1} - 0.234330 \cdot \Delta r_{t-4} - 0.0826987 \cdot r_{t-1} - 0.126209 \cdot \Delta r_{t-1} - 0.234330 \cdot \Delta r_{t-1} - 0.0826987 \cdot r_{t-1}$$

$$\widehat{\Delta b}_t = 0.00116558 + 0.395115 \cdot \Delta b_{t-1} - 0.0128941 \cdot b_{t-1}$$

• We cannot reject unit roots. Test if $s_t = r_t - b_t$ is I(1) (5% crit. value is -2.89):

$$\widehat{\Delta s}_t = -0.00848594 + 0.207606 \cdot \Delta s_{t-3} - 0.379449 \cdot s_{t-1}.$$

It is easily rejected that b_t and r_t are not cointegrating.

21 of 32

 \bullet Instead of assuming $\beta_1=1$ we could estimate the coefficient

Modelling IMM by OLS (using PR0312.in7)
The estimation sample is: 1974 (3) to 2003 (2)

C	oefficient	Std.Error	t-value	t-prob	<pre>Part.R^2</pre>
Constant -	0.00468506	0.005545	-0.845	0.400	0.0062
IBZ	0.845524	0.04495	18.8	0.000	0.7563
sigma	0.0224339	RSS	0.	05737386	344
R^2	0.756314	F(1,114) =	353.8	[0.000]	**
log-likelihood	276.885	DW		0.	.82
no. of observations	116	no. of par	ameters		2
mean(IMM)	0.0919727	var(IMM)		0.002029	967

• We could test for a unit root in the residuals (5\% crit. value is -3.34):

$$\Delta \widehat{\epsilon}_t = 0.230210 \cdot \Delta \widehat{\epsilon}_{t-3} - 0.499443 \cdot \widehat{\epsilon}_{t-1}.$$

Again we reject no-cointegration.

• Finally we could estimate the error correction models based on the spread:

$$\widehat{\Delta r}_{t} = -0.00774026 + 1.17725 \cdot \Delta b_{t} - 0.406456 \cdot (r_{t-1} - b_{t-1})$$

$$\widehat{\Delta b}_{t} = -0.00181602 + 0.438970 \cdot \Delta b_{t-1} - 0.0673997 \cdot \Delta r_{t} - 0.0638286 \cdot (r_{t-1} - b_{t-1})$$

Note that the short-rate, r_t , error corrects, while the bond-yield, b_t , does not.

23 of 32

Estimation of β In the ADL/ECM

- ullet The estimator of eta_2 from a static regression is super-consistent...but
 - (1) $\widehat{\beta}_2$ is often biased (due to ignored dynamics).
 - (2) Hypotheses on β_2 cannot be tested.
- An alternative estimator is based on an unrestricted ADL model, e.g.

$$X_{1t} = \delta + \theta_1 X_{1t-1} + \theta_2 X_{1t-2} + \phi_0 X_{2t} + \phi_1 X_{2t-1} + \phi_2 X_{2t-2} + \epsilon_t,$$

where ϵ_t is IID. This is equivalent to an error correction model:

$$\Delta X_{1t} = \delta + \lambda_1 \Delta X_{1t-1} + \kappa_0 \Delta X_{2t} + \kappa_1 \Delta X_{2t-1} + \gamma_1 X_{1t-1} + \gamma_2 X_{2t-1} + \epsilon_t.$$

An estimate of $\boldsymbol{\beta}_2$ can be found from the long-run solutions:

$$\widehat{\beta}_2 = \frac{-\widehat{\gamma}_2}{\widehat{\gamma}_1} = \frac{\widehat{\phi}_0 + \widehat{\phi}_1 + \widehat{\phi}_2}{1 - \widehat{\theta}_1 - \widehat{\theta}_2}.$$

• The main advantage is that the analysis is undertaken in a well-specified model. The approach is optimal if only X_{1t} error corrects. Inference on $\widehat{\beta}_2$ is possible.

Testing for No-Cointegration

- Due to representation theorem, the null hypothesis of no-cointegration corresponds to the null of no-error-correction. Several tests have been designed in this spirit.
- The most convenient is the so-called PcGive test for no-cointegration.
- Consider the unrestricted ADL or ECM:

$$\Delta X_{1t} = \delta + \lambda_1 \Delta X_{1t-1} + \kappa_0 \Delta X_{2t} + \kappa_1 \Delta X_{2t-1} + \gamma_1 X_{1t-1} + \gamma_2 X_{2t-1} + \epsilon_t. \quad (\#)$$

Test the hypothesis

$$H_0: \gamma_1 = 0$$

against the cointegration alternative, $\gamma_1 < 0$.

ullet This is basically a unit root test (not a N(0,1)). The distribution of the t-ratio,

$$t_{\gamma_1=0}=\frac{\widehat{\gamma}_1}{\mathsf{SE}(\widehat{\gamma}_1)},$$

depends on the deterministic terms and the number of regressors in (#).

25 of 32

• Critical values for the PcGive test for no-cointegration are given by:

Case 1: A constant term in (#).

Number of variables	Significance level			
in X_t	1%	5%	10%	
2	-3.79	-3.21	-2.91	
3	-4.09	-3.51	-3.19	
4	-4.36	-3.76	-3.44	
5	-4.59	-3.99	-3.66	

Case 2: A constant and a trend in (#).

Number of variables	Significance level			
in X_t	1%	5%	10%	
2	-4.25	-3.69	-3.39	
3	-4.50	-3.93	-3.62	
4	-4.72	-4.14	-3.83	
5	-4.93	-4.34	-4.03	

Outline of a (One-Step) Cointegration Analysis

- (1) Test individual variables, e.g. X_{1t} and X_{2t} , for unit roots.
- (2) Estimate an ADL model

$$\Delta X_{1t} = \delta + \lambda_1 \Delta X_{1t-1} + \kappa_0 \Delta X_{2t} + \kappa_1 \Delta X_{2t-1} + \gamma_1 X_{1t-1} + \gamma_2 X_{2t-1} + \epsilon_t.$$

- (3) Test for no-cointegration with $t_{\gamma_1=0}$. If cointegration is found, the cointegrating relation is the long-run solution.
- (4) Derive the long-run solution

$$X_{1t} = \widehat{\mu} + \widehat{\beta}_2 X_{2t}.$$

Inference on β_2 is standard (under some conditions).

27 of 32

Empirical Example: Interest Rates Revisited

Estimation based on a ADL model. The significant terms are:

Modelling IMM by OLS (using PR0312.in7)

The estimation sample is: 1973 (4) to 2003 (2)

(Coefficient	Std.Error	t-value	t-prob	Part.R^2
IMM_1	0.615152	0.07909	7.78	0.000	0.3447
Constant	-0.00250456	0.004573	-0.548	0.585	0.0026
IBZ	1.19928	0.2347	5.11	0.000	0.1851
IBZ_1	-0.865763	0.2648	-3.27	0.001	0.0851
sigma	0.0182398	RSS 0.0382594939			939
R^2	0.841437	F(3,115) =	203.4	[0.000]	**
log-likelihood	309.674	DW		2.	16
no. of observations	s 119	no. of parameters 4		4	
mean(IMM)	0.092754	var(IMM)		0.002027	764

The long-run solution is given in PcGive as

Solved static long-run equation for IMM

Coefficient Std.Error t-value t-prob
Constant -0.00650791 0.01184 -0.550 0.584
IBZ 0.866611 0.09491 9.13 0.000

Long-run sigma = 0.0473948

Here the t-values can be used for testing! β_2 is not significantly different from unity. The test for no-cointegration is given by (critical value -3.69):

PcGive Unit-root t-test: -4.8661

The impulse responses $\partial X_{1t}/\partial X_{2t}$, $\partial X_{1t}/\partial X_{2t-1}$, ... and the cumulated $\sum \partial X_{1t}/\partial X_{2t-i}$ can be graphed.

29 of 32

Spurious Regression Revisited

- Recall that cointegration is a special case where all stochastic trends cancel. From an empirical point of view this an exception.
- What happens if the variables do not cointegrate?
- Assume that X_{1t} and X_{2t} are two totally unrelated I(1) variables. Then we would like the static regression

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t, \tag{\$}$$

to reveal that $\beta_2=0$ and $R^2=0.$

- ullet This turns out not to be the case! The standard regression output will indicate a relation between X_{1t} and X_{2t} . This is called a spurious regression or nonsense regression result.
- With non-stationary data we always have to think in terms of cointegration.

Simulation: Stationary Case

• Consider first two independent IID variables:

$$X_{1t} = \epsilon_{1t}$$
 where $\begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$,

for T = 50, 100, 500.

Here, we get standard results for the regression model

$$X_{1t} = \mu + \beta_2 X_{2t} + u_t.$$

31 of 32

2

4

Simulation: I(1) Spurious Regression

Now consider two independent random walks

$$\begin{array}{ll} X_{1t} = X_{1t-1} + \epsilon_{1t} \\ X_{2t} = X_{2t-1} + \epsilon_{2t} \end{array} \quad \text{where} \quad \left(\begin{array}{c} \epsilon_{1t} \\ \epsilon_{2t} \end{array} \right) \sim N \left(\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \right),$$

for T = 50, 100, 500.

• Under the null hypothesis, $\beta_2 = 0$, the residual is I(1). The condition for consistency is not fulfilled.

