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1 Introduction

Whether comparing countries, firms or other economic entities, it is well established that
institutions typically vary across different settings. The reason for these differences is less
clear. On the one hand, institutional differences may simply arise through a combination
of random chance and path dependence. On the other hand, it may be that the observed
differences in institutions across settings reflect optimal responses to differences in the
underlying preferences, technology or other fundamentals. Distinguishing between these
possible explanations is of first order importance for providing policy prescriptions. In
particular, if differences in institutions are largely caused by random chance, we can expect
large gains from identifying and transplanting successful institutions from one context
to another. Understanding the relationship between fundamentals and institutions is a
challenging task, however, as institutions are complex objects and fundamentals often
differ in a myriad of ways across economic settings.

To study the interplay between fundamentals and adopted institutions, this paper
analyzes the specific case of institutional choice across the “Big Four” US sports leagues:
the National Football League (NFL), the National Basketball Association (NBA), the Na-
tional Hockey League (NHL), and Major League Baseball (MLB).1 Each of these leagues
currently consists of about 30 teams that make hiring decisions and play games against
each other to generate revenue from fans and media contracts. To regulate this process
each league decides on a set of institutions. In particular the league chooses the extent to
which it will regulate teams’ hiring of players, either through the use of direct constraints
such as a salary cap, or through redistributive policies such as revenue sharing or various
forms of payroll taxes.

The US sports leagues are particularly well suited as a case study for understanding
the relationship between institutions and fundamentals. All leagues face very similar
fundamental conditions regarding revenue generation. They all draw most of their fans
from the U.S. population, negotiate broadcasting contracts with the same networks, and
operate under the same legal system.2 At the same time, the four US sports leagues
exhibit large differences in their choice of institutions. At one end, the NFL features both
a hard cap on salaries and extensive revenue sharing across teams. At the other end,
the MLB has significantly less revenue sharing and only a modest payroll tax. These
differences in institutions have periodically led league officials and commentators to argue

1Except for the NFL, all these leagues have at least one team in a Canadian city so a more precise
description might be “North American” sports. For brevity we refer to them as US sports however.

2An outlier is the NHL which has seven teams in Canadian cities (NBA and MLB each have only one
Canadian team).
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that institutions should be transplanted across leagues.3 Importantly, however, the four
leagues differ in terms of one fundamentally basic premise: the rules of the sports that
they play. In this paper we show that the observed differences in institutions across
sports leagues can in part be rationalized as reflecting optimal responses of the leagues to
differences in the fundamental rules of the underlying sports.

Our analysis starts from a standard off-the-shelf league model from the sports litera-
ture. In the model, each team in the league invests in a one-dimensional input, called skill
or talent, which increases its chance of winning a given game, and thus the championship.
Given this investment, the team will attract fans and viewers, from whom it will collect
revenue. Relative to the standard model, we introduce two simple modifications. First,
to allow leagues’ institutions to influence the total amount of skills hired by teams, we do
away with the assumption of a fixed supply of talent. Second, we allow for heterogeneity
in the rules of the game reflected in one parameter, the elasticity of the odds of winning a
match with respect to the relative skills of the playing teams. We denote this parameter
the productivity of skills.

We analyze teams’ individual hiring decisions and compare the competitive allocation
of talent to the choice made by a planner that maximizes total league profits. Externalities
arise because each team’s talent level affects the revenue and win probabilities of other
teams. As a result teams will in general not hire the efficient amount of skills.4 These
externalities thus provide a rationale for leagues to introduce regulatory and redistributive
institutions. When teams have an incentive to hire more skills than the efficient amount,
revenue sharing can increase aggregate profits by depressing teams’ hiring incentives.
Moreover, the strength of these externalities depends on the productivity of skills, as the
incentives to hire increase when skills have a stronger effect on win probability. As a
result, it is optimal for leagues that play sports with a higher productivity of skills to
introduce a higher level of revenue sharing and other regulatory institutions that affect
hiring incentives.

We use recent data on match outcomes and team payrolls to provide estimates of the
productivity of skills across the four major US sports leagues. We find large differences
across the four leagues. The elasticity of the odds of winning a match with respect to the
relative skills ranges from about 1.54 in the NBA, to about 0.16 in MLB. Comparing these
estimated productivity of skills with the institutions actually observed in the different
leagues, we find that the main prediction from our theoretical model fit the data well:

3As an example of the former see Levin et al. (2000). Examples of the latter are Rogers (2015) and
Gordon (2012).

4We refer to efficiency with respect to the objective of maximization of league-wide profits.
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leagues where the productivity of skills is higher have more revenue sharing and other
regulatory institutions relative to leagues with lower productivity of skills. The only
slight exception is the NFL which has the highest level of revenue sharing and arguable
the strongest regulatory institutions but where the estimated productivity of skills is only
the second highest of the four sports. As an additional validation exercise, we show
that our model makes an additional prediction regarding the relationship between the
productivity of skills and the dispersion of payrolls, which is also in line with what we
observe in the data.5 We conclude that the observed differences in institutions across
sports leagues can be explained as optimal responses to differences in the fundamentals
of the underlying sports.

Our paper contributes to the existing literature on the economics of sports (for re-
views of this literature see Downward and Dawson 2000; Andreff and Szymanski 2006;
Downward, Dawson, and Dejonghe 2009). Relative to this literature, our model high-
lights the importance of a parameter, the productivity of skills, that has not been studied
so far. Its main advantage is that, being related to match level data, it represents an
intrinsic characteristic of a given sport that is largely unaffected by league institutions
and regulations. In contrast, most existing comparisons across sports consider outcome
measures that respond endogenously to institutions, such as the probability of winning
the championship. Thus, the productivity of skills provides a microfoundation for the
observed pay-performance sensitivity across sports highlighted in Szymanski (2003).

There is an academic literature that rationalizes some of the differences in revenue
redistribution policies between leagues. For example, Peeters (2015) argues that U.S.
leagues should not adopt the same revenue-sharing policies because the underlying mar-
kets characteristics are not homogenous. In particular, local sharing should be higher if
teams in the league serve more homogeneous local markets. Salaga et al (2014) focus on
the relative attractiveness of sharing media revenues versus stadium revenues. They show
that revenue sharing policies differ between leagues because of differences in revenue gen-
eration mechanisms and magnitudes. In contrast, our focus is on explaining the observed
differences in revenue sharing arrangements between leagues based on the differences in
the marginal productivity of skills, which is an intrinsic characteristic of the sport. Thus,
to emphasize our proposed mechanism, we assume revenue generation and underlying

5In Gonzalez-Eiras et al. (2018) we also allow the league to choose season length, and find that the
model’s implication regarding the relation between productivity of skills and season length is consistent
with the data: In the model leagues with low productivity of skills choose longer season length. MLB
has the lowest productivity of skills, and its teams play 162 games per season, significantly more than in
the other sports.
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markets’ characteristics to be the same across leagues.6

At the broader level, our paper also contributes to the literature on the optimal design
of institutions by highlighting the crucial role of fundamentals in shaping institutions,
at least in the context of professional sports. In particular, our results suggest that the
common practice of advocating the transplant of institutions across contexts should be
taken with a pinch of salt.7 Similar arguments have been made in the existing literature
and debate. For example, much of the recent critique of the Washington Consensus can
be viewed as arguing for more focus on differences in fundamentals across countries.8

The paper continues as follows. Section 2 describes the context and institutions across
the four major US sports leagues. Section 3 develops the model, while Section 4 presents
the data and reports the results. Section 5 concludes.

2 US sports leagues

Professional sports in North America are dominated by the so-called “Big Four” leagues:
NFL, NBA, NHL and MLB.9 The first professional league, for baseball, was founded in
1875, and the last, for basketball, was founded in 1946. Average attendance (and yearly
revenues), as of 2015, is 17,500 (3.7 billion dollars) in the NHL, 17,800 (5.2 billion dollars)
in the NBA, 30,500 (9.5 billion dollars) in the MLB, and 68,200 (13 billion dollars) in
the NFL. In North America, the sports market was worth $63.5 billion in 2015, and the
sports industry contributes approximately 500,000 jobs.10

Each of the four sports leagues comprise a stipulated number of teams, also known as
franchises. Currently, the NFL has 32 teams, while the NBA, NHL, and MLB have 30
teams each. Although franchises are corporate entities separated from their leagues, they
operate only under league auspices. The formal structure of the leagues is the cooperative

6In contrast to Peeters (2015), our model predicts that an increase in local market heterogeneity should
lead to an increase in revenue sharing. This can explain why a secular increase in revenue sharing has
taken place alongside league expansions in recent decades.

7Attempts to transplant institutions across contexts is a common policy prescription. As examples of
actual reform from above we have the dissemination of the English, French and German legal traditions
through conquest, colonization or imitation in the 19th century. Japan in 1945 imported many of US
institutions, and in 2004 Dubai adopted common law for its International Finance Centre. Transplanting
institutions was in large part the essence of the Washington Consensus and, more recently, suggestions
that the US should adopt some Scandinavian institutions have surfaced several times in the 2016 presi-
dential primaries.

8See for example Stiglitz (2008). Relatedly, Acemoglu et al. (2017) uses a similar argument to criticize
the idea of exporting Scandinavian institutions to other countries.

9It should be noted that the MLB is actually composed of two leagues, NL and AL, that have slightly
different rules.

10See Heitner (2015).
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association of team owners. All strategic questions of league-wide relevance are decided by
majority voting, and only franchise owners are allowed to vote (Downward and Dawson
2000). The Big Four leagues have franchises placed nationwide, and all leagues grant
territorial exclusivity to their owners, precluding the addition of another team in the
same area unless the current team’s owners consent. All four major leagues have strict
rules regarding who may own a team, and generally do not allow anyone to own a stake
in more than one franchise, to prevent the perception of being in a conflict of interest.

Viewed as economic entities, the activities of the Big Four leagues are very similar.
Once a year a season takes place in which the teams of a league play games against each
other in the respective sports. Teams make decisions about player hiring and coaching,
most of them in-between seasons, which influence the outcome of the games. At the
end of the season the most successful team is crowned as the winner (champion) of the
league.11 This process generates revenue for teams. Major revenue sources are admissions
and tickets (35% of revenue), television and broadcasting rights fees (30%), advertising,
sponsorships, and endorsement fees (10%), and concessions and merchandise sales (5%).12

All leagues use institutions that regulate the behavior of teams in various regards.
In this paper we focus on regulatory institutions that affect teams’ incentives to hire
players, either through redistribution or direct constraints on team behavior. The simplest
example of such a regulatory institution is “revenue sharing”, which is essentially the sports
league version of redistributive taxation. Assuming (reasonably) that hiring better players
increases team revenue, revenue sharing depresses teams’ hiring incentives.

The Big Four leagues all use revenue sharing, though they do so to very different
degrees. In the NFL teams share close to 61% of all league related revenues. For instance,
all the revenue generated from broadcasting deals is shared equally among all teams,
and a significant share of net gate income goes to the visiting team. Even licensing
deals, such as income generated from jerseys and posters, is shared. In the NBA, all
teams contribute annually a fixed percentage of their total local revenue, roughly 50%,
into a revenue-sharing pool. Each team then receives an allocation equal to the league’s
average team payroll for that season from the revenue pool. In the MLB all teams share
national broadcasting revenue equally and contribute 34% of their local TV revenue into

11All major sports leagues use a similar type of regular season schedule with a playoff tournament after
the regular season ends. The best teams in the regular season reach the playoffs, and the winner of the
playoffs is crowned champion of the league

12National TV rights are sold collectively by the league, and all Big Four leagues have launched a
network of their own, NBA TV in 1999, the NFL Network in 2003, the NHL Network in Canada in 2001,
and in the U.S. in 2007, and the MLB Network in 2009. In all leagues but the NFL, individual teams
negotiate with local broadcasters to air most of their games (NFL teams do not negotiate local broadcast
contracts, but are allowed to negotiate their own television deals for pre-season games).
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a shared fund which is divided equally among all teams, and teams can keep all other
revenue for themselves (this leads to an estimate of teams sharing approximately 15%
of all revenues).13 The NHL has a revenue sharing program that allocates 6% of total
league revenue, primarily away from the top 10 revenue-generating teams, to financially
struggling teams. Thus, the effective revenue sharing tax would be above 6%.14

Closely related to revenue sharing is the “luxury tax” (sometimes called a competitive-
balance tax). This is a payroll tax that typically only kicks in when the total payroll of a
team exceeds a predetermined threshold, thus there is a tax levied on money spent above
a predetermined limit set by the corresponding sports league.15 For every dollar a team
spends above the tax threshold, those exceeding the limit must also pay some fraction to
the league, with the tax increasing with the number of times in which the club exceeds the
threshold. The money derived from this tax is distributed among the teams with smaller
payrolls. The first luxury tax in professional sports was introduced in 1996 by MLB as
part of its Collective Bargaining Agreement (CBA). This luxury tax forces MLB teams
with high payrolls to pay a dollar-for-dollar penalty. These funds go into a central MLB
fund and it is used for marketing programs. In 1999, the NBA also introduced a luxury
tax.

While revenue sharing and luxury taxes affect teams incentives to hire players, a more
forceful institution that affects hiring is a “salary cap”. This is a limit on the amount of
money a club can spend on players’ salaries that is negotiated in CBAs between players’
unions and team owners. The cap is usually defined as a percentage of average annual
revenues and limits a club’s investment in playing talent. In 1984, the NBA became the
first league to introduce salary cap provisions.16 Salary caps can be either hard or soft.
Under a hard salary cap, the league sets a maximum amount of money allowed for player
salaries, and no team can exceed that limit. The NFL and the NHL currently have hard
salary caps. A soft salary cap sets a limit to players’ salaries, but there are exceptions
that allow teams to exceed the cap. In the NBA, for example, teams can exceed the salary
cap when keeping players that are already on the team (Dietl et al., 2010). MLB has no
salary cap.

13NFL revenue sharing was obtained from http://money.cnn.com. NBA revenue sharing was ob-
tained from http://sportsbusinessdaily.com. MLB revenue sharing was calculated using data from
http://awfulannouncing.com and http://forbes.com.

14A maximum of 50% of the redistribution commitment is drawn from the top 10 highest-grossing
teams based on pre-season and regular season revenue. Each team’s contribution is based on how much
they earn over and above the 11th-ranked team (implying that the teams in the 8-10 spots contribute
less than the top three). NHL revenue sharing was obtained from http://ontheforecheck.com.

15See Dietl et al. (2010).
16For details, see Fort and Quirk (1995), Szymanski (2003), and Vrooman (1995)
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Finally, another common institution is the “draft”. This is a process used to allocate
certain players to teams. In a draft, teams take turns selecting from the pool of new
players that want to start playing in the league, with the order being determined (partly)
by teams performance last season so that worse performing teams go first. A draft could
therefore affect teams incentives to hire good players because good performance one year
affects draft order the next year.17 Together with the “player reservation” system, the draft
can potentially perform similar functions as revenue sharing by distributed income from
strong to weak teams through selling players. Free agency, which was first introduced in
1976 in MLB and shortly afterwards in the other sports, however, has greatly undermined
the impact of the draft as an institution that affects the allocation of talent across teams.
18

Table 1 summarizes the different regulatory institutions in the Big Four US sports
leagues. Hard salary caps were binding for between 6 and 18 teams in NFL, and for
between 5 and 13 teams in NHL between 2011 and 2015. In that period between 5 and
6 teams in NBA and between 1 and 4 teams in MLB paid luxury taxes. A fairly clear
ranking of the four leagues arises in terms of the amount of regulatory institutions affecting
teams hiring of players. The NFL has the strongest regulatory institutions, followed by
the NBA and the NHL. MLB has the least regulatory institutions.19

17The effect of a draft on teams incentive to hire skills depends on what is assumed about wage setting.
If wage setting is competitive, the order in which teams get to choose the specific players is unimportant
because better players will also receive higher wages. If wages are not competitive, however, the draft
order may matter, which will affect teams incentives to hire good players because good performance one
year affects draft order the next year. Whether the draft increases or decreases incentives to hire good
players is still unclear, however, and depend on whether early or late draft picks offer “better deals”
relative to the wages they are paid. Conventional wisdom seems to assume that picking early in the draft
allows teams to get better players at a lower cost, however, empirical work by Massey and Thaler (2012)
have suggested that in the NFL draft, players drafted later actually offer greater value relative to the
salaries they are paid.

18The reserve clause was devised in the National Baseball League in 1879 to restrict competition on
hiring of superstar players. Each team in the league was allowed to “reserve” five of its players, implying
that other owners could not attempt to hire them in the end-of-season market. On the revenue sharing
implications of the reservation and draft system see Fort and Quirk (1995).

19As a check on this ranking, we informally polled several known sports economists regarding the
regulatory rank of the Big Four leagues. The answers we received confirmed the ranking, with the only
slight point of disagreement being the relative standing of the two “in-between” leagues, NBA and NHL.
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Table 1: Regulations across US sports leagues

League Revenue Salary Luxury
shared (%) cap tax

NFL 61 hard no
NBA 50 soft yes
NHL 6 hard no
MLB 15 no yes

3 The Model

3.1 Teams and competition

The league consists of N (N ≥ 2) teams that compete in a tournament. Teams play
against each other once, which determines the number of games, (N − 1). We take N as
exogenous, and most of the analysis will consider N = 2.20

The role of teams in a league is to hire, and coach, players. We model this by assuming
that teams invest in a one-dimensional input called skill or talent, S, that will influence
their probability of winning as well as the entertainment value of each game. Teams
choose S to maximize expected profits, taking league rules and institutions, and other
teams’ hiring decisions as given.

3.2 Team revenue

Following the sports literature we assume that team i’s revenue is proportional to the
(exogenously given) size of its local fan base or population, Fi, and to the number of
games played, (N − 1), while also depending on the team’s probability of winning the
tournament, wi, as well as the quality of the league, captured by the aggregate amount of
talent of competing teams, S̄ ≡

∑N
i=1 Si, through some function R(S̄, wi).21 Total team

revenue is thus (N − 1)FiR(S̄, wi). We make the following standard assumptions on the
revenue function, R:

20In Gonzalez-Eiras et al. (2018) we allow the league to choose season length and thus have teams
playing against each other n times. See Christenfeld (1996) for a critical comparison of season length
across several sports.

21The probability of winning the tournament, wi, is a function of (S1, . . . , SN ). We describe this in
section 3.4.
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Assumption 1.

∂R

∂S̄
≥ 0,

∂2R

∂S̄2
≤ 0, lim

S̄→∞

∂R

∂S̄
= 0

∂R

∂wi
|wi= 1

N
> 0,

∂2R

∂w2
i

< 0,
d2R

dS2
i

< 0.

This reduced-form revenue function can be rationalized as capturing two sources of
income to teams, as in Vrooman (1995). First, there is the prize that the winner of the
championship earns, and therefore increases with win probability. This could include
direct rewards as well as the monetary value of qualifying for the playoffs. Second, there
is broadcasting revenue. This increases with the overall quality of the league which is why
revenue increases with S̄.22

The broadcasting revenue, however, also depends on the “suspense” of the outcome.
As wi gets too large, suspense obviously goes down, which is why the function is strictly
concave in win probability.23 We allow this second effect to possibly dominate, and
thus only require that the marginal effect of win probability be positive when team i’s
probability of winning, wi, is average, 1

N
. To guarantee a unique solution to teams’

optimization problem we require that the revenue function be concave in own skills.
For tractability we assume the following revenue function to derive some results.24

Assumption 2.
R(S̄, wi) = k + log(wi).

Where k =
∑

i log(Fi) is chosen such that revenue per game is positive for the efficient
allocation. Since revenues under assumption 2 do not directly depend on the level of
skills, S̄, we further assume that in order to generate positive revenues it must be the case
that S̄ ≥ S̄∗, with S̄∗ > 0. The rationale for this additional assumption will become clear
when deriving the efficient allocation from the perspective of the league in 6.1.

22See Falconieri et al. (2004).
23Several empirical studies have documented that the demand for match tickets peaks at a point in

which the home team is about twice as likely to win as the away team. See Szymanski (2003) for a
survey of these results, as well as inconclusive evidence on seasonal uncertainty. In a recent contribution,
Bizzozero et al. (2016) use data from professional tennis and report that both suspense and “surprise”
positively affect live TV audience figures.

24We will explicitly point out which results require assumption 2. Importantly, our main results in
proposition 5 do not require it. Note that this revenue function satisfies d2R

dS2
i
< 0, as required in assumption

1.
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3.3 The supply of talent

The sports literature usually assumes that there is a fixed exogenous supply of skills.
We deviate from this assumption for two reasons. First, it seems highly questionable in
modern sports, especially in the long run. The share of people participating in competitive
sports has increased significantly over time, suggesting that the total supply of skilled
players is not fixed over time.25 Moreover, the observation of a large number of foreign
players in many sports leagues suggests that the pool of talent is not fixed at the national
league level in the short run.26 Second, for studying the choice of league institutions, it is
important that different institutions have an effect on the total amount of talent hired by
teams, as this is a significant determinant of aggregate profits. This is of course precluded
if the supply of talent is exogenously fixed.27

Instead of a fixed supply of skills, we will here assume a perfectly elastic supply
such that teams can hire as much talent as they want at a constant per game cost of
c. To be clear, this assumption ignores many features of real world labor markets. In
practice, the labor market for sport talent has many complications, as players are obviously
indivisible and wages typically being set through complicated bargaining with individual
players and/or player unions. While the assumption of a constant marginal cost of talent
simplifies the analysis, it is not essential to the main mechanisms at work in our model or
the empirical results we present later. The only requirement we need is that the complex
hiring process is in the aggregate well approximated by a constant cost per unit of talent
across teams at a given point in time. Since all the sports we study have adopted free
agency, we view this as a reasonable approach.28

3.4 Win probability

The second deviation of our model from the standard assumptions in the sports literature
is on how teams’ talents are translated into winning probability. Usually the probability
of winning the championship is related to the distribution of skills across teams. Since we

25See Rossi and Ruzzier (2018).
26The proportion of foreign players is approximately 30% in the MLB and the NBA, 25% in the NHL

(considering Canadian players as nationals), and 3.5% in the NFL.
27We also note that El-Hodiri and Quirk (1971) and Fort and Quirk (1995) show that, with an exogenous

supply of skills, revenue sharing has no impact on the distribution of skills, and only reduces players’
salaries.

28A number of studies show that, under free agency, players are paid their marginal productivity. See,
for example, Scully (1974) and Rosen and Sanderson (2001). Moreover, note that a salary cap restricts
the total level of talent that a team can hire, but does not affect the fact that the former is proportional
to payroll for all teams.
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are interested in examining how differences in the fundamental rules of different sports
may affect the choice of institutions, we will instead model the probability of winning
individual games.

In particular, we assume that the probability that team i defeats team j in a match
is given by:

Assumption 3.

wij =
Sαi

Sαi + Sαj
.

This formulation has been widely used in the contest literature.29 Skaperdas (1996)
shows that assumption 3 is the only formulation that depends on the ratio of skills and
satisfies a series of basic axioms, including independence of irrelevant alternatives. The
parameter α reflects how much skills matter for the win probability. We therefore refer
to it as the productivity of skills. More formally, since the odds of winning is given by
the ratio of the probability of winning to the probability of losing, α corresponds to the
elasticity of the odds of winning to the ratio of skills Si

Sj
.

The parameter α will depend on the fundamental rules of the sport that teams are
playing. As an extreme and trivial example, if the sport being played simply involved
flipping a coin to declare a winner, α would equal 0 as the win probability would always
be a half. Conversely, if the sport involved comparing players average height, α would
equal infinity as the team with more talent (taller players) would always win for sure. In
reality the level of α depends on many details of the rules, such as the number of times
each team gets to be on the offensive in a given game and the amount of randomness
involved in scoring. In section 4.3 we estimate this elasticity for each of the major four
North American sports and show that it differs significantly, going from 0.16 for baseball
to 1.54 for basketball.

It is worth noting that the previous literature on comparing different sports usually
focuses on ex post outcomes, such as the probability of winning the championship, or
the dispersion of wage bills across teams. These measures are clearly influenced by the
institutions adopted by the leagues and therefore do not represent a fundamental charac-
teristic of the corresponding sports.30 In contrast, the elasticity of the odds of winning to
the ratio of skills describes a characteristic of sports that is practically invariant to their
corresponding institutions.

29For applications in the sports literature for the probability of winning the championship see Szyman-
ski’s (2003) analysis of pay-performance sensitivity.

30For example, the dispersion of wage bills is affected by the degree of revenue sharing. The probability
of winning the league is also a function of season length (see Christenfeld (1996)).
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Given the above formulation for the probability of winning a game, we assume that
the team that wins the championship is simply the team that wins the most games
each season.31 The probability of winning the tournament, which determines revenue, is
then given by a complex relation between the skills of team i, skills of other teams, and
parameter α. For now, we simply represent this relation by32

wi = W (Si, ~S, α).

3.5 Team’s hiring decision without regulatory institutions

In the “laissez-faire” case, when there are no regulatory institutions in place, each team
decides how much talent, Si, to hire by maximizing profits, πi (Si), taking as given the
amount of talent hired by the other teams, Sj:

max
Si

πi (Si) = (N − 1)FiR(S̄,W (Si, ~S, α))− c(N − 1)Si.

Under assumption 2, the first-order condition for team i is

1

wi

dwi
dSi
− c

Fi
≤ 0. (1)

This first-order condition holds as an equality if Si > 0.

3.6 League’s objective and efficient allocation

We assume the league wants to maximize aggregate expected profits.∑
i

πi (Si) .

If a planner were able to perfectly dictate teams’ choice of skills ~S, it would solve the
31In practice of course, the leagues we consider use a play-off format. We abstract from this and

consider qualifying to the playoffs as the reward to “winning” teams.
32We use vector notation such that ~S ≡ (S1, S2, . . . , SN ).
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following problem:

max
~S

N∑
i=1

πi (Si)

= (N − 1)
N∑
i=1

FiR(S̄,W (Si, ~S, α))− c(N − 1)S̄.

Note that we can reparameterize the planner’s problem as choosing S̄, and N − 1 win
probabilities, wi. We now characterize the profit maximizing league-wide allocation of
talent.

Proposition 1. Under mild concavity assumptions on total revenue (a sufficient condition
being ∂2R

∂S̄∂wi
= 0) there is a unique profit maximizing outcome that solves the planner’s

problem, ~SP . Furthermore S̄P ≡
∑N

i=1 S
P
i , and wPi do not depend on α.

Proof. All proofs are in the appendix.

3.7 Decentralized equilibrium allocation

Henceforth we will restrict the analysis to a two-team league, N = 2. Note that with
w1 = w12 given by assumption 3, w2 = 1− w1, ∂w1

∂S1
= −S2

S1

∂w1

∂S2
, and ∂w1

∂S1
= −∂w2

∂S1
.

We now turn to comparing the decentralized outcome to the allocation that maxi-
mizes league-wide profits. We start by showing existence and uniqueness of the Nash
equilibrium.

Proposition 2. Under assumption 2, there exists a threshold α such that sports with
α < α do not generate revenues. If α ≥ α, there exists a unique Nash equilibrium.

A useful way of understanding whether and how the decentralized equilibrium differs
from the profit maximizing league-wide allocation is to examine the first-order conditions
for the planner and team 1 with respect to S1. The first order condition for the planner
is given by:

F1
∂R(S̄, w1)

∂S̄
+ F2

∂R(S̄, w2)

∂S̄
+ F1

∂R(S̄, w1)

∂w1

dw1

S1

− F2
∂R(S̄, w2)

∂w2

dw1

S1

= c.

The first order condition for team 1 is given by:

F1
∂R(S̄, w1)

∂S̄
+ F1

∂R(S̄, w1)

∂w1

dw1

S1

= c.
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Comparing the first-order conditions for the team’s problem to the first-order condi-
tions for the planner’s problem, we see that they are the same, except that the marginal
profit from hiring an additional unit of skill includes two additional terms in the planner’s
case: F2

∂R(S̄,w2)

∂S̄
and −F2

∂R(S̄,w2)
∂w2

dw1

S1
. These two terms reflect two externalities that teams

fail to incorporate when choosing skill investments. The first is positive and reflects the
fact that when team 1 increases its skill level, this increases team 2’s revenue through
its effect on total league talent. This creates a common pool problem. The failure of
team 1 to internalize this externality implies that it will tend to hire less skill than what
is optimal for the league as a whole. The second term is negative and reflects the fact
that when team 1 employs more skill and raises its own win probability this lowers the
win probability of team 2 because winning is a zero sum game. The failure of team 1 to
internalize this externality implies that it will tend to hire more skill than what is optimal
for the league.

Importantly, the strength of the zero sum externality, and thus a team’s incentive to
hire skills, depends crucially on the productivity of skills, α. In particular we have the
following proposition.

Proposition 3. There exists α(F1, F2) > 0, with limF2→∞ α(F1, F2) = 0, such that for
α > α(F1, F2) the equilibrium levels S∗1 and S∗2 are increasing in α.

Proposition 3 highlights the first insight of the model: under reasonable assumptions
(i.e. when α > α(F1, F2)), teams’ hiring incentives are increasing in the productivity of
skills, α. The intuition behind the result is simple. When α is high, the effect of an
additional unit of skills on the probability of winning, and thus on revenue, is stronger.
The reason for the restriction α > α(F1, F2) has to do with the tail behavior of the win
probability function when one of the skill levels is close to zero (see appendix 6.3).

Figure 1 provides numerical results that illustrate the main insights of Proposition 3.
Using the functional form from assumption 2 and a given set of other model parameters,
it shows the teams’ best response functions, the associated Nash equilibrium as well as
the efficient allocation when α = 0.6 and α = 1. From the figure, we see that at these
parameters, α = 0.6 is high enough that the “zero sum” externality dominates and the
Nash equilibrium involves both teams choosing higher levels of skills than the efficient
outcome. As discussed above, a higher α strengthens the “zero sum” externality, which
causes the best response functions to shift outward and upward, thereby increasing the
equilibrium level of skills for the two teams. In contrast, the efficient level of total talent
is independent of α so the efficient allocation only moves along the negatively sloped
45-degree line.
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Figure 1: Decentralized Nash equilibria and efficient outcomes

Model outcomes for α = 0.6 and α = 1:
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The graph shows numerical results from the model under assumption 2. Solid and long-dashed lines shows teams’ best
response functions and circles show Nash equilibria. Stars show efficient allocations, while the short-dashed lines shows
allocations involving the efficient level of total talent. Note that the efficient level of total talent is independent of α. The
additional parameter values used are F1 = 2, F2 = 1, S̄∗ = 2.2, and c = 1.
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3.8 The role of regulation and redistributive taxation

In the previous section, we saw that the decentralized Nash equilibrium in the league
generally does not maximize total league profits as teams hire too much (or too little)
skill. This suggests that the league may centrally want to introduce regulatory institutions
that affect hiring incentives.

We will focus on revenue sharing since it is the canonical example of a redistributive,
regulatory institution in team sports. In addition, we assume the league can introduce a
salary tax that only affects one team. The motivation for this is that league revenue de-
pends on choices by both teams, thus it is generically not possible to implement the profit
maximizing allocation using only a single policy instrument. Introducing an asymmetric
hiring tax solves this issue allowing us to characterize first-best institutions.33

Following the literature we introduce revenue sharing by assuming that each team
keeps 1 − τ of its own revenues and receives τ

N
of aggregate team’s revenues (including

own revenue). Since sports leagues always have a relatively modest amount of teams we
also follow the sports literature in assuming that teams are not myopic but take into
account that their decisions affect aggregate shared league revenues.34 For the strong
team we introduce a hiring tax at rate s whose proceeds are rebated lump sum to both
teams.In this case, team i’s problem becomes:

max
Si

πi (Si) =
(

1− τ

2

)
FiR (Si + Sj, wi) +

τ

2
FjR (Si + Sj, wj)− c(1 + s1i=1)Si + Ti,

where the indicator function tells us that for team 1 the per unit cost of skills is now
c(1 + s), and Ti are the lump sum transfers, T1 + T2 = csS∗1 . We are interested in
examining how regulations affect total league revenue. We begin by establishing that the
model has a unique Nash equilibrium when regulatory institutions are introduced.

Proposition 4. Under assumption 2, the model has a unique Nash equilibrium.

Next we analyze the effect of regulations on team behavior and their role in increasing
33For the same reason, in a two-team league other institutions that directly or indirectly affect teams’

hiring of talent are likely to implement the profit maximizing allocation.
34It is worth noting that under this non-myopic assumption, an easy way for the planner to always

implement the efficient outcome is to implement full profit sharing. With non-myopic teams and full profit
sharing each team will choose their own skill so as to maximize league profits. We view full profit sharing
as infeasible in practice, however, because teams in the real world can spend money on things other than
talent. Under full profit sharing, teams would therefore have the incentive to incur unnecessary costs to
lower their own profits. For example, the owner may hire a relative into an overpaid consultant position.
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total league profits. The first-order condition for team i is:(
1− τ

2

)
Fi

(
∂R

∂Si
+
∂R

∂wi

dwi
dSi

)
+
τ

2
Fj

(
∂R

∂Si
+
∂R

∂wj

dwj
dSi

)
− c(1 + s1i=1) ≤ 0. (2)

Comparing this new first-order condition with the one without regulations, we see that
the terms corresponding to the effect of additional skill on the other team now appear,
although only with a weight of τ

2
. In addition, the terms corresponding to the effect of

additional skill on team i’s own revenue now only enter with a weight of 1− τ
2
. Intuitively

this shows that revenue sharing has two effects: a) it gets teams to partially internalize
the externalities from before, and b) it tends to lower the incentive to invest in skill
because teams now only get to keep 1 − τ

2
of own revenue. The hiring tax reduces team

1’s incentive to hire skills (or increases it if the tax is negative), while having no effect on
team 2.

When the decentralized equilibrium involves teams choosing too high skill levels, this
suggests that (higher levels of) revenue sharing can improve league profits by causing
teams to lower the amount of skill they hire in equilibrium. In particular we have the
following proposition.

Proposition 5. When the decentralized equilibrium involves teams choosing too high skill
levels, there exists a policy (τ ∗(α), s∗(α)) that leads to the profit maximizing allocation,
and dτ∗(α)

dα
≥ 0. An increase in α reduces the dispersion of talent across teams. An

increase in the dispersion of fan bases, F1

F2
, increases revenue sharing. Alternatively, the

profit maximizing allocation can be achieved with revenue sharing τ ∗(α) and a binding
salary cap on team 1.

Proposition 5 shows that regulatory institutions can achieve the profit-maximizing
outcome if sports have a sufficiently high α. Moreover, leagues for sports that involve
higher levels of α will optimally want to introduce higher levels of revenue sharing to
counter the externalities discussed above. This is the second main insight of our model.
In other words, in sports where teams’ win probabilities are more sensitive to relative
skill, teams have inefficiently strong incentives to hire talent. Leagues authorities in these
sports therefore choose to introduce higher levels of revenue sharing to dampen teams’
individual incentives. While proposition 5 is silent about the case when the decentralized
equilibrium features too low skill levels, in Gonzalez-Eiras et al. (2018) we show that in
this case leagues have an incentive to increase season length.35

35Basically, increasing the number of times that two teams play against each other increases the “effec-
tive” productivity of skills, the elasticity of winning at least half the matches with respect to skills.
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Proposition 1 showed that, conditional on fan bases, all sports have the same profit-
maximizing win probability, wP1 . Since this allocation is attainable to all sports for which
the decentralized equilibrium involves teams choosing too high skill levels, and given that
w1

w2
=

Sα1
Sα2

, sports with a higher α tend to produce more dispersed win probabilities for a
given distribution of talent. Thus, as the productivity of skills is increased, to attain wP1
talent has to be more evenly distributed across teams. If we increase the dispersion of fan
bases, which would happen when the league expands incorporating cities with lower fan
bases, the incentives to redistribute revenue increase.

Figure 2 illustrates these points. For a given set of other model parameters and α =

0.6, the black lines and circle show the best response functions and the Nash equilibrium
without revenue sharing. The black asterisk shows the efficient outcome. The Nash
equilibrium has the two teams hiring more talent than what is efficient. There is thus
scope for improving efficiency by introducing revenue sharing. The blue lines and markers
therefore show the effect of introducing a revenue sharing of 40% (τ = 0.40). As discussed
above, revenue sharing reduces team’s individual incentives to hire skills and, as a result,
shifts the best response functions and the equilibrium level of skills for both teams inwards
so that they are much closer to the efficient levels.

Note that in figure 2 introduction of revenue sharing alone is not enough for the
league to implement the efficient allocation. To do this, the league must also introduce an
additional instrument that affects hiring decisions. Figure 3 shows how the optimal level
of revenue sharing, τ , varies with the level of α assuming that the league also introduces
an optimally set hiring tax, or a binding salary cap, for the strong team. As the figure
illustrates revenue sharing is increasing in the productivity of skills when α is high, and
there is no revenue sharing when α is low.

4 Empirical results

In this section we use data on match outcomes and players’ payroll to estimate how the
productivity of skills differs across the sports played in the Big Four US leagues. We then
relate this to the use of regulatory institutions in the different leagues.

4.1 Data

The first piece of data we need is information about team skills. As discussed in detail in
the next section, this data will be based on team’s total payroll (skill expenditure). Since
our objective is to make comparisons across the different sports’ leagues, it is important
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Figure 2: Effects of introducing revenue sharing

Improving efficiency with revenue sharing, α = 0.6:
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The graph shows numerical results from the model. Solid and long-dashed lines shows teams’ best response functions and
a circles show Nash equilibria. A star shows the efficient allocation. Black lines correspond to outcomes without revenue
sharing, while blue lines correspond to outcomes with 40% revenue sharing. The additional parameter values used are
F1 = 2, F2 = 1, S̄∗, c = 1 and s = 0.
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Figure 3: Optimal revenue sharing
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The graph shows numerical results from the model. The line shows the optimal level of revenue
sharing, τ , as a function of α, when the league simultaneously introduces an optimally set wage
subside s. The additional parameter values used are F1 = 2, F2 = 1, σ = 0.5, n = 1 and K = 2,
c = 1.
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that the payroll data we use is comparable across the different leagues. For this reason
we use salary data from the yearly Global Sports’ Salaries Survey (GSSS). The GSSS
reports team salaries for a range of different sports leagues, including the NFL, NBA,
NHL and MLB. Importantly, the GSSS data is constructed explicitly with the aim of
making comparisons across different sports’ leagues.

We base our measure of total team skill expenditure on the GSSS definition of player
salaries, which includes both players’ base salaries and any performance bonuses that have
been paid out.36 From the 2012-2015 GSSS data, we construct total yearly team payrolls
for each team for each season.37

From these base payroll data we make one correction that aims to deal with a phe-
nomenon paticular to the NFL, namely quarterback injuries. Relative to the other sports,
the quarterback on an NFL team makes up a very large fraction of the yearly payroll.
Combined with the high incidence of injuries in the NFL, (Hootman et al., 2007) this
creates a particularly strong measurement error issue when the yearly payroll is used to
measure skills in individual games: In games where the starting quarterback is injured,
the yearly payroll figure will vastly overstate the team’s actual skill expenditure. Accord-
ingly, we use game starter rosters from Pro Football Reference and quarterback salaries
from Over the Cap to subtract out the salary of the starter quarterback in games where
he is injured.38 The validity of this adjustment is strongly supported in our data: If we do
not adjust the NFL data for quarterback injuries the empirical results in the next section
show no significant effect of skills on win probability for the NFL.39

The second piece of data we use is data on game outcomes in each of the sports leagues.
For each league we collected data on all regular season games during the four seasons that
correspond to our salary data.40

36We include bonus payments in our measure of skill expenditures for two reasons: First, the key choice
variable in our model is how much teams choose to spend in total on talent, regardless of whether this is
paid out as base salary or as performance related bonuses. Second, as a purely practical consideration,
we are unaware of any data source on team payrolls which makes it possible to separate out bonus and
performance pay in a consistent way across multiple sports. Note that GSSS reports salaries before
the end of the playing season so some performance bonuses, those of the most succesful teams, are not
included.

37The GSSS reports data on average player salary. We convert this to total team payrolls by multiplying
by the typical number of players on a team in each of the four leagues (53 in the NFL, 29 in MLB, 25 in
the NHL and 15 in the NBA). To the extent that not all teams within a league carry the same number
players on the roster for the full year, this will introduce some measurement error.

38Data taken from https://www.pro-football-reference.com and https://overthecap.com.
39Without correcting for quarterback injures, our estimate of αNFL in Table 3 is never signficantly

different from zero.
40For the NFL, NBA and NHL, where seasons run from the Fall of year t to the Spring of year t+ 1,

these are: 2011-2012, 2012-2013, 2013-2014, 2014-2015. For the MLB where seasons run from the Spring
of year t to the Fall of year t, these seasons are: 2012, 2013, 2014, 2015.
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Based on these sources, we construct a data set where each observation corresponds to
a particular game. For game g taking place in league l in season t between the home team
i and the away team j, we define the SkillRatiotlgij as the ratio of the skill expenditure
(payroll) of the home team to the away team. We define the dummy variables NFLl,
NBAl, NHLl and MLBl as indicators for the different leagues. We define the variable
RegulatoryRankl as the ranking of league l in terms of the extent of regulatory institutions
such as revenue sharing (where NFL has rank 1, NBA rank 2, NHL rank 3, and MLB rank
4, cf. Table 1). We define the variable HometeamWintlgij as an indicator for whether
the home team i won against the away team j in game g in league l in season t.41

Table 2 presents summary statistics of our data.

4.2 Empirical specification and estimation

We now discuss how to take the theoretical model from Section 3 to the data and estimate
the relationship between skill input and win probabilities for each sport. To accommodate
the fact that we now consider four different leagues and use data from multiple seasons
and games, we adapt the model setup and notation from Section 3 as follows: We let ctl
denote the cost of talent in league l during season t. We let Stli denote the skill employed
by team i from league l during season t. We let wtlgij denotes the probability that team i

beats team j in game g during season t in league l. Finally, we let αl denote the returns
to skill in league l.

With this notation, the win probability in a given game depends on skill inputs as
follows:

wtlgij =
Sαltli

Sαltli + Sαltlj
. (3)

Conveniently for the empirical implementation, simple algebra shows that this formulation
is equivalent to a standard logit model:

wtlgij = logistic
(
αl log

(
Stli
Stlj

))
. (4)

We use this logit formulation to estimate the different αl’s from the data described in
41A minor complication arises in defining this variable and taking our theoretical model to the data,

due to the possibility of tie games. While our model does not allow for ties, ties are possible in some of
the sports we analyze, although they are extremely rare. We present results here where tie games are
normalized as wins for the home team. Due to the very few ties in our data, however, dropping ties or
instead treating them as losses for the home team leads to virtually identical estimates.
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Table 2: Summary statistics

NFL
(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

Hometeam skill expenditure 1,024 110,710 13,389 59,519 155,820
Skill ratio 1,024 1.016 0.189 0.488 2.051
Log skill ratio 1,024 0.000 0.179 -0.718 0.718
Hometeam wins 1,024 0.578 0.494 0 1

NBA
(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

Hometeam skill expenditure 4,679 67,473 11,600 33,150 102,150
Skill ratio 4,679 1.034 0.276 0.354 2.828
Log skill ratio 4,679 0.000 0.258 -1.040 1.040
Hometeam wins 4,679 0.588 0.492 0 1

NHL
(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

Hometeam skill expenditure 4,116 61,353 8,384 38,000 83,500
Skill ratio 4,116 1.018 0.196 0.502 1.993
Log skill ratio 4,116 0.000 0.190 -0.690 0.690
Hometeam wins 4,116 0.548 0.498 0 1

MLB
(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

Hometeam skill expenditure 9,720 109,893 41,870 23,780 232,870
Skill ratio 9,720 1.167 0.726 0.115 8.720
Log skill ratio 9,720 0.000 0.554 -2.166 2.166
Hometeam wins 9,720 0.536 0.499 0 1

The table shows summary statistics for key variables for each of the sports leagues: NFL,
NBA, MLB, and NHL. The unit of observation is a game. Hometeam skill expenditure is
measured in 1,000s of dollars. Differences in the number of observations across the different
leagues reflect differences in typical number of games per season as well as idiosyncratic
differences in the number of games played across seasons for example due to player strikes.
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Section 3. We can relate wtlgij to the variables in our data as follows:

P (HometeamWintlgij) = wtlgij. (5)

For the ratio Stli
Stlj

, we note that under the assumption that the cost per unit of skill,
clt, is constant across teams in a given league and season, the ratio of employed skills is
simply equal to the ratio of skill expenditures from our dataÆ

Stli
Stlj

=
ctlStli
ctlStlj

= SkillRatiotlij. (6)

Accordingly, we use the ratio of skill expenditures (payrolls) as a measure of skill ratio
between teams throughout the empirical analysis.42 Combining (4), (5) and (6), we see
that we can estimate αl from our data using the following logit model:

P (HometeamWintlgij) = logistic
(
αl log (SkillRatiotlij)

)
(7)

Rather than estimate this equation individually for each of the four leagues in our
data, however, it will be convenient to use dummy variables for the different leagues and
formulate one model:

P (HometeamWintlgij) = logistic
(
αNFL log (SkillRatiotlij)×NFLl (8)

+αNBA log (SkillRatiotlij)×NBAl
+αNHL log (SkillRatiotlij)×NHLl

+αMLB log (SkillRatiotlij)×MLBl

)
Estimation of (8) will be our main approach to estimating αl for the individual leagues.
The conclusion from the theoretical model from Section 3 is that sports with inherently
higher levels of αl tend to adopt more regulatory institutions. A crude way of capturing
this in the empirical model is to substitute in αl = ᾱ + ρ ·RegulatoryRankl to get:

P (HometeamWintlgij) =logistic
(
ᾱ log (SkillRatiotlij) (9)

+ ρ log (SkillRatiotlij)×RegulatoryRankl
)

42There is strong empirical evidence that payrolls are significant predictors of playing success in different
sports. See Simmons and Forrest (2004) and Szymanski and Kuypers (1999). Section 3.3 and footnote
28 provides additional discussion regarding the assumption that total skill expenditures are proportional
to the employed level of skill within each league

25



In this model, ρ measures the relationship between αl and the degree of regulation
in the league. If leagues with higher αl optimally adopt more regulatory institutions, we
should have ρ < 0.

We note that the estimating equations above treat the home and away team sym-
metrically. In practice, however, there is evidence that in many sports home teams are
more likely to win. While our theoretical model does not include this, for robustness we
also estimate versions of the logit models above that allow for a league-specific homefield
advantage, ψl. This simply corresponds to include the un-interacted indicator variables
NFLl, NBAl, NHLl and MLBl as regressors:

P (HometeamWintlgij) = logistic
(
αNFL log (SkillRatiotlij)×NFLl (10)

+αNBA log (SkillRatiotlij)×NBAl
+αNHL log (SkillRatiotlij)×NHLl
+αMLB log (SkillRatiotlij)×MLBl

+ψNFLNFLl+ψNBANBAl + ψNHLNHLl + ψMLBMLBl

)

P (HometeamWintlgij) =logistic
(
ᾱ log (SkillRatiotlij) (11)

+ρ log (SkillRatiotlij)×RegulatoryRankl

+ψNFLNFLl + ψNBANBAl + ψNHLNHLl + ψMLBMLBl

)
4.3 Marginal productivity of skills and regulatory institutions

We now turn to estimating αl for the different sports using the logit models from above.
Table 3 presents estimates of the logit models in equations 8-11. Because each observation
in our data pertains to a pair (dyad) of teams playing against each other, and because
team outcomes may be correlated across seasons, we use dyadic cluster robust standard
errors throughout and cluster at the team-level.43 Column (1) presents estimates of
a logit model where the explanatory variables are interactions between the log salary
ratio and dummy variables for the four different sports. This corresponds to equation (8)
from above and accordingly the estimated coefficients on each of the interaction terms
corresponds to estimates of αl for each of the sports. We see substantial differences across
the four sports as α̂l ranges from 0.16 to 1.54. Moreover we can strongly reject the

43See Cameron and Miller (2014) and Aronow et al. (2015). There are 122 teams (clusters) in our data
in total.
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Table 3: Differences in productivity of skills, αl, across sports

(1) (2) (3) (4)
Logit: Logit: Logit: Logit:

Hometeam Hometeam Hometeam Hometeam
VARIABLES win win win win

Log skill ratio × NFL (αNFL) 0.983** 1.005**
(0.464) (0.476)

Log skill ratio × NBA (αNBA) 1.538*** 1.590***
(0.361) (0.374)

Log skill ratio × NHL (αNHL) 0.739*** 0.745***
(0.201) (0.200)

Log skill ratio × MLB (αMLB) 0.161*** 0.162***
(0.0590) (0.0603)

Log skill ratio 2.559*** 2.639***
(0.548) (0.565)

Log skill ratio × Regul. rank (ρ) -0.598*** -0.618***
(0.140) (0.144)

NFL (ψNFL) 0.320*** 0.327***
(0.0533) (0.0550)

NBA (ψNBA) 0.371*** 0.368***
(0.0286) (0.0285)

NHL (ψNHL) 0.194*** 0.194***
(0.0297) (0.0300)

MLB (ψMLB) 0.143*** 0.143***
(0.0230) (0.0230)

Observations 19,538 19,538 19,538 19,538
p-value, α equal across sports 0.000 0.000

The table shows estimates from Logit models with home team victory as the outcome. The
explanatory variables used are the log skill expenditure ratio of the home team to the away
team, indicators for the different leagues, the regulatory rank of each league, as well as
interaction terms between these regressors as shown. Dyadic cluster robust standard errors
clustered at the team level are in parenthesis. ∗ : p < 0.10, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01

Table 4: Pairwise tests of differences across sports

Tests of HA : αl 6= αk vs. H0 : αl = αk, p-values:

k: NFL NBA NHL MLB
:
NFL 0.347 0.630 0.082∗

NBA 0.055∗ < 0.001∗∗∗

NHL 0.007∗∗∗

MLB

The matrix shows p-values from pairwise t-tests of dif-
ferences in αl across sports based on the logit model in
column (1) of Table 3. The test are based on dyadic clus-
ter robust standard errors clustered at the team level.
∗ : p < 0.10, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01
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hypothesis of a constant α (p < 0.001).
Looking at the magnitudes of the estimated αl’s in Column (1), we also note that they

accord very well with the prediction of our theoretical model regarding league regulation
and the relative regulatory ranking of the four leagues described in Section 3. For three
of the four leagues, NBA, NHL and MLB, the ranking in terms of α̂ exactly mirrors
the ranking in terms of regulation. Among these leagues, the NBA is the most heavily
regulated and also has the highest estimated productivity of skills, 1.54, while MLB is
the least regulated and has the lowest estimated productivity of skills, 0.16. Moreover, as
shown in Table 4, the estimated differences in productivity across these three leagues are
statistically significant at least at the 10 percent level.

Turning to the fourth league, the NFL, the point estimate α̂ does not fit with the
predictions of the model given the NFL’s regulatory ranking. The NFL is the most
heavily regulated league, and while its estimated productivity of skills of 0.98 is high,
it is still noticably lower than the estimated productivity of skills for the NBA . At the
same time, however, because the NFL has so few games per season and also has the
smallest variance in skill expenditures across teams, the standard error on the estimated
productivity of skills in the NFL is relatively large. As a result, we cannot reject that
the productivity of skills in the NFL is in fact larger than in each of the other sports (see
Table 4).44

As a succinct way of capturing the relationship between productivity of skills, α̂l and
the amount of regulation, column (2) of Table 3 presents estimates a model that includes
the log salary ratio and an interaction term between the log salary ratio and the leagues
ranking in terms of regulation, corresponding to equation (9) from above. We find a
highly significant negative coefficient on the interaction term (ρ < 0); leagues with higher
levels of alpha have systematically more regulation (a lower rank).

Finally, columns (3) and (4) of Table 3, check how estimates are affected by allowing
for a league-specific home field advantage, as in equations (10) and (11). We see that our
estimates are virtually unaffected by these alternative specifications.

Overall, we conclude that the predictions from our theoretical model fit very well
with the observed relationship between productivity of skills and amount of regulatory

44Note also that this problem is not one that can readily be solved by additional data collection. Given
our current estimates and assuming that standard errors decrease with the square root of the sample size
(which due to clustering at the team level is likely an optimistic assumption), we would need to more
than double the number of seasons in our data set to be able to reject that αNFL is higher than αl for the
other three leagues at the 5 percent level of significance. Even ignoring the issue of comparability across
leagues, we are unaware of any data source that contains consistent payroll data for nine NFL seasons.
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Table 5: Productivity of skills and wage dispersion

League estimated wage
α dispersion

NFL 0.98 0.13
NBA 1.54 0.19
NHL 0.74 0.15
MLB 0.16 0.75

institutions across the four leagues.45

4.4 Wage dispersion

The main focus of this paper is the relationship between marginal productivity of skills
and regulatory institutions. Our model however also yields an prediction about skill
dispersion that we can also confront with data.

According to proposition 5, sports with higher skill productivities will have more skill
dispersion. In table 5 we report the estimated marginal productivity of skills together
with wage dispersion for the four sports leagues.46 As expected, the fact that NFL and
NHL have salary caps results in these sports having the lowest wage dispersions. But
wage dispersion is lower in the NFL than the NHL as would be expected if the marginal
productivity of skills were higher in the former. More importantly, wage dispersion is lower
in NBA than MLB, which is consistent with our finding that the marginal productivity
of skills is significantly higher in the former.

4.5 Alternative explanations for observed regulations

The results above show that our theoretical predictions fit the data well and that dif-
ferences in the productivity of skills can explain the observed differences in regulatory
institutions across league. In this section, we briefly consider whether other, alternative
explanations might explain the observed differences as well.

In light of occasional league shutdowns, one can argue that low revenue teams can
threaten not to participate unless they get compensation from high revenue teams. Ac-

45Szymanski (2003) presents estimates of the pay-performance sensitivity of these, and other, sports
using season winning percentage and relative wage bills. He finds that the pay performance sensitivity is
highest in NFL, followed by NBA, NHL and lowest in MLB. While Szymanski’s results do not capture
a fundamental characteristic of the corresponding sports, it is reassuring that we find the same relative
standing for three of the four leagues.

46Wage dispersion is measured as the average of standard deviations of teams’ yearly payrolls.
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cordingly, differences in the level of revenue sharing could merely reflect differences in the
strength of this threat across leagues. Under this alternative explanation, however, we
would expect that revenue sharing is systematically related to the dispersion of fan bases.
This is not what we observe in the data.47

Another alternative explanation is that leagues that depend more on national broad-
casting, and thus depend more on having “neutral” fans, would have more revenue sharing
in an attempt to promote competitive balance. While we can not rule it out, we view
this as an unsatisfactory explanation for a couple of reasons. First, we note that while
revenues from national broadcasting are in fact subject to 100% revenue sharing in all
four sports, leagues chose differently how to share other revenue sources. Second, this
alternative explanation is incomplete in that it does not explain why the importance of
national broadcasting would be correlated with the marginal productivity of skills.

Peeters (2015) studies how leagues use revenue sharing to coordinate skill demand.
Leagues have the same productivity of skills, but differ in how homogeneous their fan bases
are. Revenue sharing should be higher if teams in the league serve more homogeneous
local markets. In the proof of proposition 5 we show that an increase in the dispersion of
fan bases increases revenue sharing. Thus, our model, contrary to Peeters (2015), predicts
that more heterogeneity would lead to more revenue sharing. We believe this can be a
possible explanation for the secular increase in revenue sharing that has accompanied
league expansions in recent decades. It is also worth noting that heterogeneity in revenue
bases cannot account for the observed discrepancy in the relative ranking of the NFL.
While the proportional effect of α and fan base dispersion on the marginal incentive to
hire skills is roughly the same, the difference in α across sports is tenfold, while the
difference in fan base dispersion is much lower.48

In reality different leagues do differ in the heterogeneity of their revenue sources,
on the importance of neutral fans, and on a number of dimensions not covered by our
analysis. We thus view our explanation for observed institutions as complementary to
those provided in the literature.

47The ratio of fan bases of teams ranked 8th and 23rd is a convenient measure of dispersion of fan base
for a league with 30 teams. Using actual population data for the different US sports we find that this
ratio is 2.76 for NFL, 2.56 for NBA, 3.08 for NHL, and 2.36 for MLB. Thus, dispersion of fan bases is
only 30% higher in NHL relative to MLB.

48To make this comparison we evaluate the marginal productivity of skills at the social planner allo-
cation. Note from footnote 47 that the dispersion of fan bases is only 30% higher in NHL relative to
MLB.
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5 Conclusions

In this paper, we examined institutional choice across the Big Four US sports leagues.
Despite having very similar business models and facing the same economic and legal
environment, these leagues exhibit large differences in their use of regulatory institutions
such as revenue sharing, salary caps or luxury taxes. Since the four leagues differ in that
they play sports with very different rules, it seems natural to associate institutional choice
as the optimal response to sports’ fundamentals.

Building on a standard model of sports leagues, we showed theoretically that het-
erogeneity in the characteristics of the underlying sports regarding how skills translate
into win probabilities may make it optimal for some leagues to adopt systematically more
regulatory institutions. Because they play games against each other, teams’ hiring deci-
sions are subject to externalities that may lead to inefficiently high levels of talent. The
strength of the externalities depend on the marginal productivity of skills. We find that
for sports with a higher marginal productivity of skills, stronger hiring externalities make
it optimal for leagues to introduce regulatory institutions that constrain teams’ hiring
incentives, such as salary caps, revenue sharing or payroll taxes.

Using data on game outcomes and team payrolls we then estimated the marginal
productivity of skills for the four US sports leagues and found them to be significantly
different, ranging from 0.16 for MLB, to 1.54 for the NBA. Comparing the estimated
productivity of skills with the institutions actually observed in the different leagues, we
find that the theoretical predictions from the model fit for three of the four leagues. Over-
all, the observed differences in adopted institutions is thus in part explained as optimal
responses to these differences in the marginal productivity of skills.

Our work highlights some pathways for future research in the field of sports economics.
We have here focused on one fundamental parameter of a sport, the productivity of
skills, and shown how it relates to the optimal choice of regulatory institutions that
constrain teams’ hiring decisions. It is natural to try and extend this approach to focus
on other fundamental sports’ parameters (e.g. sports differ in the way in which suspense
and surprise develop over time), as well as possibly other, more complex institutional
differences across leagues and over time.

More broadly, we view the results of our case study of US sports leagues as relevant for
the economics literature on institutions. A central tenet of this literature, and the related
policy debate, is that economic outcomes can be improved by transplanting successful
institutions from one context to another. In the specific case of the sports leagues we
consider, for example, commentators periodically suggest that one or more of leagues
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adopt regulatory institutions from the other leagues. Our work suggests that such policy
prescriptions may be misguided. When observed differences in institutions reflect optimal
responses to differences in underlying fundamentals, then transplanting institutions across
settings may in fact be harmful.

References

Acemoglu, D., Robinson, J.A. and Verdier, T. (2017), ‘Asymmetric Growth and Institu-
tions in an Interdependent World’, Journal of Political Economy 125(5), 1245-1305.

Andreff, W. and Szymanski, S. (2006), Handbook on the Economics of Sport, Edward
Elgar Publishing.

Aronow, P.M., Samii, C. and Assenova, V.A. (2015), ‘Cluster-Robust Variance Estimation
for Dyadic Data’, Political Analysis 23, 564-577.

Bizzozero, P., Flepp, R. and Franck, E. (2016), ‘The importance of suspense and sur-
prise in entertainment demand: Evidence from Wimbledon’, Journal of Economic
Behavior & Organization 130, 47–63.

Cameron, A.C. and Miller, D.L. (2014), ‘Robust Inference for Dyadic Data’, working
paper, University of California - Davis.

Christenfeld, N. (1996), ‘What makes a good sport’, Nature 383(24), 662.

Dietl, H., Lang, M. and Werner, S. (2010), ‘The Effect of Luxury Taxes on Competitive
Balance, Club Profits, and Social Welfare in Sports Leagues’, International Journal
of Sport Finance 5(1), 41–51.

Downward, P. and Dawson, A. (2000), The Economics of Professional Team Sports, Psy-
chology Press.

Downward, P., Dawson, A. and Dejonghe, T. (2009), ‘Sports Economics: Theory, Evi-
dence and Policy’, Butterworth-Heinemann.

El-Hodiri, M. and Quirk, J. (1971), ‘An Economic Model of a Professional Sports League’,
Journal of Political Economics 79(6), 1302–1319.

Falconieri, S., Palomino, F. and Sákovics J. (2004), ‘Collective versus individual sale of
television rights in league sports’, Journal of the European Economic Association
2(5), 833-862.

Fort, R. and Quirk, J. (1995), ‘Cross-subsidization, incentives, and outcomes in profes-
sional team sports leagues’ Journal of Economic Literature 33, 1265–1299.

32



Gonzalez-Eiras, M., Harmon, N. and Rossi M. (2018), ‘Fundamentals and Optimal Insti-
tutions: The case of US Xports Leagues’, Working paper 128, Universidad de San
Andrés.

Gordon, S. (2012), NHL should look to the success of revenue sharing in other pro leagues,
The Globe and Mail, http://www.theglobeandmail.com/, Toronto.

Heitner, D. (2015), Sports Industry To Reach $73.5 Billion By 2019, Forbes,
http://www.forbes.com, Jersey City.

Hootman, J.M., Dick, R. and Agel, J. (2007), ‘Epidemiology of Collegiate Injuries for 15
Sports: Summary and Recommendations for Injury Prevention Initiatives’, Journal
of Athletic Training 42(2), 311–319.

Levin, R., Mitchell, G., Volcker, P. and Will G. (2000), The Report of the Independent
Members of the Commissioner’s Blue Ribbon Panel on Baseball Economics. New
York: Major League Baseball.

Massey, C. B. and Thaler R. H. (2013), ‘The Loser’s Curse: Decision Making and Market
Efficiency in the National Football League Draft’, Management Science 59(7), 1479–
1495.

Peeters, T. (2015), ‘Profit-maximizing gate revenue sharing in sports leagues’, Economic
Inquiry 53(2), 1275–1291.

Rogers, J. (2015), Communist sports are better, Forbes, http://www.forbes.com, Jersey
City.

Rosen, S. and Sanderson, A. (2001), ‘Labour markets in professional sports’, Economic
Journal 111(469), 47–68.

Rossi, M. and Ruzzier, C. (2018), ‘Career Choices and the Evolution of the College Gender
Gap’, The World Bank Economic Review 32(2), 307–333.

Salaga, S., Ostfeld, A., and Winfree, J. (2014), ‘Revenue Sharing with Heterogeneous
Investments in Sports Leagues: Share Media, Not Stadiums’, Review of Industrial
Organization 45(1), 1–19.

Scully, G. W. (1974), ‘Pay and Performance in Major League Baseball’, American Eco-
nomic Review 64(6), 915–930.

Simmons, R. and Forrest, D. (2004), ‘Buying success: Team Performance and wage bills
in U.S. and European sports leagues’, in Fort, R. and Fizel, J. (eds) ‘International
Sports Economics Comparisons ’, New York: Praeger.

Skaperdas, S. (1996), ‘Contest success functions’, Economic Theory 7(2), 283–290.

33



Stiglitz, J. (2008), ‘The future of global governance’, in Serra, N. and Stiglitz, J. (eds)
‘The Washington consensus reconsidered: Towards a new global governance’, Oxford
University Press, Oxford.

Szymanski, S. (2003), ‘The economic design of sporting contests’ Journal of Economic
Literature 41, 1137–1187.

Szymanski, S. and Kuypers T. (1999), Winners and Losers: The Business Strategy of
Football, Viking Press, London.

Vrooman, J. (1995), ‘A general theory of professional sports leagues’ Southern Economic
Journal 61, 971–990.

34



6 Appendix

6.1 Proof of proposition 1

In solving the planner’s problem, it will be convenient to reparameterize it so that the
planner directly chooses total talent, S̄, and win probabilities, wi (i = 1, .., N−1), instead
of choosing team skills Si. The reparameterized problem is equivalent to the original one
because, for any ~S there is a one-to-one correspondence to a set of total skills S̄ and win
probabilities, wi, and vice versa.

The reparameterized maximization problem is:

max
S̄, ~w

= Q(S̄, ~w; ~F ) = (N − 1)
N∑
i=1

FiR(S̄, wi)− c(N − 1)S̄ −X(n).

First-order conditions imply (using wN = 1−
∑N−1

i=1 wi)

∂Q

∂wi
= Fi

∂R(S̄, wi)

∂wi
− FN

∂R(S̄, wN)

∂wN
=0, i = 1, .., N − 1,

∂Q

∂S̄
=

N∑
i=1

Fi
∂R

∂S̄
− c =0.

Note that S̄P and wPi do not depend on α, and that assumption 3 implies wPi
wPj

=
Sαi
Sαj

, thus
an increase in α should be met with a more equal distribution of skills.

To guarantee uniqueness of the planner’s allocation, the objective must be strictly
concave which requires a negative definite Hessian matrix. A sufficient condition for this
is ∂2R

∂S̄∂wi
= 0, which is satisfied under assumption 2. Under this assumption we furthermore

have:

wPi =
Fi∑N
i=1 Fi

,

S̄P = S̄∗.

It is worth noting that the result that S̄P = S̄∗ is trivial in this setting as teams’ revenues
do not depend directly on aggregate skills. Thus, since skills are costly, a social planner
would set SPi as low as possible. But the property that S̄P does not depend on α is
general.
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6.2 Proof of proposition 2

We start by showing that there exists α such that when α < α, S∗1 + S∗2 < S̄ and thus
no revenue is generated. For this we start by noting that the ratio of skills, S1

S2
(and thus

w1), is independent of α. Combining first order conditions for teams 1 and 2, we get

F1

w1

=
F2

1− w1

S∗1
S∗2
.

Next, we note that the hiring incentive is stronger the higher α. The first order condition
of team i is

Fi
wi

(
S∗
j

S∗
i

)α
1 +

(
S∗
j

S∗
i

)α α
S∗i

= c.

Thus, given that S∗
1

S∗
2
and wi are independent of α, it must be the case that dS∗

i

dα
> 0. This

completes the proof that only sports for which α ≥ α generate positive revenues.
Plotting the graphs of S∗1(S1), S∗2(S1) against each other in (S1, S2)-space, Nash-equilibria

of the model occur at (and only at) intersections of the two graphs. Based on this, we
prove equilibrium existence in two steps by showing that:

i. limSj→0 S
∗
i (Sj) > Sj.

ii. limSj→∞ S
∗
i (Sj) < Sj.

We now go through the two steps. Step 1: From the first order condition for team i,
(1), when Sj → 0, choice of Si is given by

α
1− wi
Si

− c

Fi
≤ 0.

Note that if Si = 0 then wi = wi = 0, and the first term diverges in this case. Thus Si > 0

which implies wi = wi = 1 and Si > Sj.
Step 2: From the first order condition for team i, we note that wi = 0, since if wi > 0,

the first order condition would imply Sj <∞, which would be a contradiction. For wi = 0,
it has to be the case that Si < Sj.

Since the best responses S∗i (Sj) are continuous, the above implies that S∗1(S2) and
S∗2(S1) must cross at least once and thus that there is at least one Nash equilibrium in
the model.

To prove uniqueness, we start by observing that if two equilibria have the same win
probabilities, wi = w′i, then it must be the case that Si = S ′i and the equilibria are the
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same. Assume then that for the two equilibria it is the case that w′2 > w2. Then from the
first order conditions for team 1 it must be the case that S ′1 > S1 and from the first order
conditions for team 2 it must be that S ′2 < S2. But if this were the case then w′1 > w1,
contradicting our assumption. We thus conclude that the equilibrium is unique.

6.3 Proof of proposition 3

From the first order conditions for hiring talent,

∂R

∂Si
+
∂R

∂wi

dwi
dSi
− c

Fi
= 0.

An increase in α will affect the term dwi
dSi

, with

dwi
dSi

= α
wi(1− wi)

Si
.

Its derivative with respect to α is given by

ddwi
dSi

dα
=

wi(1− wi)
Si

+α
1

Si
wi(1− wi) [(1− wi) lnSi + wi lnSj] ,

=
dwi
dSi

(
1

α
+ [(1− wi) lnSi + wi lnSj]

)
.

When α > 0, this derivative might be negative only when one of the teams’ skill choice
is close to zero. A sufficient condition for the derivative to be positive would be that F1

and F2 are large enough such that S2 = 1 (since then S1 > 1). A lower threshold for α,
α(F1, F2), such that this sufficient condition is satisfied, is characterized by the following
system of equations from teams’ first order conditions

∂R

∂S̄
|S̄=S1+1 + α(F1, F2)

w1(1− w1)

S1

∂R

∂w
|w=w1 =

c

F1

,

∂R

∂S̄
|S̄=S1+1 + α(F1, F2)w1(1− w1)

∂R

∂w
|w=1−w1 =

c

F2

.

Since limS̄→∞
∂R
∂S̄

= 0, it must be that limF2→∞ α(F1, F2) = 0. Thus, increases in α when
α > α(F1, F2) always increases the Nash equilibrium hiring levels, S∗1 and S∗2 .
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Proof of Proposition 4

In parallel as we did in the proof of proposition 2, we prove equilibrium existence by
studying properties of best response functions S∗1(S1), S∗2(S1) and showing:

i. That limSj→0 S
∗
i (Sj) > Sj.

ii. That limSj→∞ S
∗
i (Sj) < Sj.

We now go through the two steps. Step 1: From the first order condition for team i,
(2), when Sj → 0, choice of Si is given by

α

Si

(
(1− τ

2
)Fi(1− wi)−

τ

2
Fjwi

)
− c(1− s1i=2) ≤ 0.

Note that if Si = 0 then wi = 0 and the first term diverges. Thus Si > 0 which implies
wi = 1 and Si > Sj.

Step 2: From the first order condition for team i, note that if Si → ∞ this would be
negative. This implies Si <∞, wi = 0, and thus Si < Sj.

Since the best responses S∗i (Sj) are continuous, the above implies that S∗1(S2) and
S∗2(S1) must cross at least once and thus that there is at least one Nash equilibrium in
the model.

The proof of uniqueness parallels that of proposition 2.

6.4 Proof of proposition 5

First, we are going to show that when S∗1 + S∗2 > S̄P , a pair 0 < τ < 1, and s exists
such that both teams first order conditions are satisfied when evaluated at the optimal
allocation. Using the planner’s profit maximizing first order conditions, we can rewrite
the marginal effect of hiring for team 2, evaluated at the profit maximizing allocation
(and thus satisfying (F1 + F2)∂R

∂S̄
= c), as

(1− τ

2
)F2

dR

dS2

+
τ

2
F1
dR

dS1

− (F1 + F2)
∂R

∂S̄

= −τ
2
F2
∂R

∂S2

− (1− τ

2
)F1

∂R

∂S2

+ (1− τ

2
)F2

∂R

∂w2

∂w2

∂S2

+
τ

2
F1

∂R

∂w1

∂w1

∂S2

= −τ
2
F2
∂R

∂S2

− (1− τ

2
)F1

∂R

∂S2

+ (1− τ)F2
∂R

∂w2

∂w2

∂S2

. (12)

Where in the last equality we have used F1
∂R
∂w1

= F2
∂R
∂w2

when evaluated at the profit
maximizing allocation, and ∂w1

∂S2
= −∂w2

∂S2
.
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When τ = 1 the above equation is negative. And when τ = 0 it is simply the first
order condition for team 2 in the absence of regulation evaluated at Si = SPi . Since
S∗1 + S∗2 > S̄P , the first order condition of at least one team would be positive when
evaluated at Si = SPi . We proceed under the assumptions that the marginal benefit of
hiring for team 1 when evaluated at Si = SPi is weakly larger than that of team 2 when
S∗1 +S∗2 > S̄P , and that both are positive.49 Therefore, by continuity, when S∗1 +S∗2 > S̄P

there exists a 0 < τ < 1 that would make team 2 to choose S2 = SP2 when team 1 is
choosing SP1 .

When the marginal hiring benefit for team 1 when evaluated at Si = SPi is weakly
larger than that of team 2, the first order condition for team 1 evaluated at SP1 would be
positive when the revenue sharing tax is set at the level that leads team 2 to choose SP2 ,
and assuming there are no luxury taxes, i.e. s = 0. In this case a salary cap set at SP1
would only be binding for team 1 and would lead to the profit maximizing allocation.

Now we consider the case of luxury taxes instead of salary cap, and evaluate team 1’s
first order condition at the profit-maximizing allocation and the tax rate that makes team
2 to choose SP2 . This gives

(1− τ

2
)F1

dR

dS1

+
τ

2
F2
dR

dS1

− (F1 + F2)
∂R

∂S̄
− cs,

= −τ
2
F1
∂R

∂S1

− (1− τ

2
)F2

∂R

∂S1

+ (1− τ)F1
∂R

∂w1

∂w1

∂S1

− cs.

Clearly there always exists a hiring tax/subsidy s that would make this equation to equal
zero when S1 = SP1 . Now we want to prove that s > 0, i.e. the league taxes team 1. To
do this we substract team 2’s first order condition from team 1’s to get

(1− τ)

[
(F1 − F2)

∂R

∂S̄
+ F1

∂R

∂w1

∂w1

∂S1

− F2
∂R

∂w2

∂w2

∂S2

]
− cs. (13)

If τ = s = 0, (13) is positive, under our assumption that the first order condition of team
1 is weakly higher than that of team 2 when evaluated at the planner’s allocation. This
implies that the term in brackets is positive, and thus that s must be positive if (13) is to
be zero. Therefore, the strong team is taxed. We conclude then that the profit maximizing
allocation can be decentralized through a combination of revenue sharing and a hiring tax
for the strong team provided that the autarky allocation satisfies S∗1 + S∗2 > S̄P .

49Otherwise the proof would go along using a parallel reasoning. If the marginal benefit of the weak
team is negative then we would need to have a hiring subsidy for this team instead of a hiring tax on the
strong team. And if the marginal benefit of the strong team is lower than that of the weak team then
the strong team should be given a hiring subsidy instead of a tax.
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To prove that an increase in α leads to an increase in optimal level of revenue sharing
we consider the effect that this has on (12). The only term that is directly affected is
∂w1

∂S1
, which we found increases with α when α > α(F1, F2). Thus to keep this first order

condition at zero the revenue sharing tax, τ , has to increase as well: dτ
dα
> 0.

The result that an increase in α reduces the dispersion of skills across teams follows
from the fact that in the optimal allocation, wP1 is independent of α but w1 is decreasing
in α for a given skills ratio, since w1

w2
=

Sα1
Sα2

. Thus S1

S2
has to decrease with α.

Finally, the result that an increase in in the dispersion of Fi (which proxies for an
expansion of the league’s size, N) leads to an increase in revenue sharing comes from
considering ∆F1 = −∆F2 > 0 in (12). This results in (1 − τ)

[
∂R
∂S1

+ ∂R
∂w1

∂w1

∂S1

]
∆F1 > 0.

Thus this change increases incentives for revenue sharing resulting in a higher tax rate.

40


