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1 Introduction

This instruction describes how to simulate the transition process of a wide range of infinite horizon
optimization models. It supplements the working paper of Trimborn, Koch and Steger (2007) and
the associated MatLab files (Version 3.1). The researcher who intends to simulate a specific model
only has to provide the dynamic system and the set of underlying parameters.1

2 Installation

There are two different types of files, the system files and the user files. The system files are general
to every model and should be copied into a separate folder, which has to be assigned as a MatLab
search path (menu File → Set Path). These files should not be modified. The user files carry the
information due to a particular model and should be copied into a model-related folder, which has
to be assigned as the MatLab Current Directory.

3 Preparation of the model

First of all, the dynamic system under study must be transformed into stationary variables, i.e. into
variables that approach a finite constant asymptotically as time goes to infinity. It is assumed that
now the model consists of n ordinary differential equations, n1(≤ n) initial conditions and (optional)
n3 static equations that have to be satisfied at all times.2 Notice that you do not have to modify
these equations. They are plugged into the algorithm as they are written in continuous time. Only
the static equations (if present in the model) must be rewritten as a residual (g(y) = 0).3 You
should go through the following steps carefully.

1 The code allows for non-autonomous differential equations as well as consideration of additional equations, which
have to be satisfied at all points in time. Moreover, there are many applications for the algorithm beyond the
application presented here. To implement these, some more modifications are required.

2For convenience, we define N := n + n3.
3For some algorithms it is necessary to differentiate the static equations with respect to time. This is not necessary

for the application of the relaxation procedure.
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4 Structure of the Code

The aim of the structure of the code is not only to make standard applications comfortable, but also
to allow for advanced applications, e.g. multiple simulations of the same model with different initial
conditions or parameter values. Therefore, in this section the structure of the code and the usage
of the two most important functions initrelax.m and relax.m will be described in more detail. Note,
that for convenience some files are double among the user files and the system files. The reason
is that files in the current directory have priority when Matlab is executing them. Therefore it is
possible to place empty files in the system folder to keep the number of files in the user directory
small and concise.

The central file of the code is the file main.m, which calls the different scripts and functions in
the following order:

globalpar initializes the global parameters
parini loads the values of the parameters
relaxsetting loads the settings for the relaxation procedure
initrelax converts the settings into a form suitable for relax.m
relax executes the Relaxation algorithm
varex disentangles the variables and stores them in the memory

The actual relaxation algorithm and the code to prepare the model for the relaxation algorithm
are exported to functions and are not integrated into main.m as a script. The reason for this
is that as a script they would be able to manipulate any variables in the memory. If they are
implemented as functions their interactions with model specific variables in the memory is kept as
small as possible. Detailed information about the functions initrelax.m and relax.m can be listed
by calling help initrelax and help relax at the MatLab command window. They are used according
to

[guess, start, errorcode] = initrelax(@funcODE, @funcSTAT, n,

n1, n3, nu, y, M, statev, t)

[t, x] = relax(@funcODE, @funcSTAT, @funcINI, @funcfinal, n,

n1, n3, nu, y, M, start, Endcond, maxit, tol, damp, dampfac)

Output from initrelax.m are the variables guess, start, and errorcode. The first two are again input
arguments for relax.m, the last is a code indicating error = 0 for the case of no error and error > 0
for different errors that the code detected in the model set-up. Output of relax.m is a row vector
t and a matrix x. Each column of x is the list of the variable values at the point of time of the
corresponding entry of t. The file varex.m disentangles the variables, such that each variable is a
row vector with corresponding time vector t.

Input for both functions are different parameters, which will be described in more detail be-
low. Further, input arguments for both functions are different function handles, which pass the
information about a specific function name. These functions have the following shape:
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function input arguments output arguments

@funcODE time, vector of vector of RHS of ODE (dim n)
variables (dim N)

@funcSTAT time, vector of vector of residuals of
variables (dim N) static equations (dim n3)

@funcINI time, vector of vector of residuals of initial
variables (dim N) boundary conditions (dim n1)

@funcfinal time, vector of vector of residuals of final boun-
variables (dim N) dary conditions (dim n − n1)

These functions are among the system files with the above names but may well be replaced by
more user specific files.

5 Simulation of a model

The model dependent files are the following:

globalpar.m
varex.m
parini.m
relaxsetting.m
ODE.m

with the optional files

StatEq.m
shock.m
initbound.m
finalbound.m

Go through the following steps carefully.4

• File globalpar.m

List all the names of the parameters with the command global.

• File varex.m

List all the variables like in the original with an increasing index. You have to bring the
variables in a special ordering. First write down all the state variables then all the control (or
adjoint) variables and finally all variables, for which the static equations should hold. If you
have an auxiliary variable that does not appear in the static equations you have to place it at
the very end.

• File parini.m

Assign all parameter values which are valid at the new steady state.

4Note, that you cannot name any variable or parameter with x.
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• relaxsetting.m

– Specify the dimensions:
n1 number of initial boundary conditions

(equals the number of state variables, for instance,
n1=1 in the case of the RCK model)

n number of differential equations
n3 number of static equations to be solved simultaniously
M number of mesh points

– normal specifies, which variables you want to normalize to 1 at the steady state. The
vector [1 3 6] for example will normalize variables 1, 3 and 6. If you do not want to
normalize any variable return an empty vector [ ].

– You have to provide a rough guess for the steady state. Here the same ordering for the
variables should be maintained as for the file varex.m.

– You can induce a transition process by reducing one of the state variables compared to
its new steady state value. E.g. statev(1) = .5 halves the value of the first state variable.
If you do not enter anything, the initial values of the state variables will be calculated
due to a shock in parameter values as specified in shock.m. If you assign statev = 0, you
can specify initial conditions in the file initbound.m (see below).

– Change the last section of the file only if problems occur.
Endcond: Specifies the final conditions. The vector [1 3 6] for example will set the
RHS of differential equations 1, 3 and 6 to zero. Default setting is to use the differential
equations of the control (or adjoint) variables. You should mind the dimensions when
changing this. If you set Endcond = 0 you can enter the final boundary conditions in
the file finalbound.m (see below).
tol: This declares the tolerance for the Newton procedure.
maxit: Maximum number of iterations
nu: This denotes the parameter for time transformation. Higher values allocate the mesh
more towards the beginning of time, while lower values increase the density around the
steady state. A good value for nu depends crucially on the speed of convergence towards
the steady state. It should be chosen such that it minimizes the maximum change of
the variables between the mesh points. For models with a half-life of about 50− 80 time
units, a value of nu = 0.04 is advisable.
damp: You can dampen the Newton procedure by the dampening factor damp. It will
be multiplied with the factor dampfac in every iteration until it equals 1. A value of 1
does not damp, values between 0 and 1 increase the convergence radius of the Newton
procedure but also lead to slower convergence and therefore more iterations.

• File ODE.m

List the right-hand-sides of your differential equations here. Assign them in vector form to
funcODE as in the original. You should mind the ordering, since the first differential equation
should belong to the first variable and so on. In the non-autonomous case time is denoted as
t.
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The following files are optional. If they are needed, create them in the model-related current
directory.

• File StatEq.m

List the residuals of your static equations here. Assign them in vector form to funcSTAT as
in the original. Time is again denoted as t.

• File shock.m

In this file you can specify a specific shock in the parameter values. Assign (e.g. in an if loop)
the old steady state values to the time t = −1 and the new steady state values to all other
t. It is also possible to investigate continuous parameter changes or interior (expected) jumps
in the parameters.

• File initbound.m

If you want to employ variable initial boundary conditions, enter them here and set statev = 0
in the file relaxsetting.m. Assign the residuals to the vector funcINI. Mind that you need n1
equations.

• File finalbound.m

If you want to employ final boundary conditions different to the RHS of the differential
equations, enter them here and set Endcond = 0 in the file relaxsetting.m. Assign the residuals
to the vector funcfinal. Mind that you need n − n1 equations.

After running the code by entering main, the variables are stored in the memory with their
assigned names. For plotting the results you should consider the time vector t.

6 Additional functions

There are a number of additional functions that are placed among the system files. These functions
simplify the analysis and presentation of dynamic models, and their designation of arguments is in
accordance with the files of the relaxation algorithm.

6.1 Plotting

You can view the results quickly by calling plotrelax(t,x,n1,time), whereas t and x are output from
relax.m. The results will be plotted for the time span (t0, time). For further information call help
plotrelax.

6.2 Calculation of eigenvectors and eigenvalues

Eigenvalues and eigenvectors of the linearized system at the steady state can be evaluated by the
function eigDAS.m. This routine can also handle differential algebraic systems. The routine derives
the Jacobian matrix at a specific point numerically, and calculates eigenvectors and eigenvalues at
this point numerically. For further information call help eigDAS.
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6.3 Forth order relaxation

While the function relax.m employs a second order procedure, it is possible to increase the order
to forth degree, only by tripling the computational effort.5 This is achieved by extrapolation.6 The
idea of extrapolation is to solve the same problem twice with a different number of mesh points.
Since both solutions are of order two, the local error reduces by order two and can be calculated by
comparing both solutions. Then, by a recombination of both solutions, the local error of order two
can be eliminated, such that only lower order errors remain. This is conducted by the procedure
relax4.m, which can be handled exactly in the same way as relax.m. Internally, relax4.m calls
relax.m twice and calculates a forth order solution, which is then the output of relax4.m. For
further information call help relax4.

Note that the precision of the solution is only one aspect, since the mesh has to be dense enough
to plot results or compute utility integrals. Our experience is that the second order procedure
relax.m is precise enough for most economic applications. However, if you require a more precise
representation of a solution trajectory on a moderate mesh grid, we recommend to employ relax4.m.

6.4 Error control

By employing extrapolation, we can estimate the relative error of the second order procedure. The
function relax2e.m can be handled in the same way as relax.m, but it delivers an estimation of the
relative error in addition. This comes in expense of a tripled computational effort. The procedure
employs extrapolation as described above. For further information call help relax2e.
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