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Chapter 1

Introduction

The art of successful theorizing is to make the inevitable simplifying
assumptions in such a way that the final results are not very sensitive.

−Robert M. Solow (1956, p. 65)

1.1 Macroeconomics

1.1.1 The field

Economics is the social science that studies the production and distribution of
goods and services in society. Then, what defines the branch of economics named
macroeconomics? There are two defining characteristics. First, macroeconomics
is the systematic study of the economic interactions in society as a whole. This
could also be said of microeconomic general equilibrium theory, however. The
second defining characteristic of macroeconomics is that it aims at understanding
the empirical regularities in the behavior of aggregate economic variables such
as aggregate production, investment, unemployment, the general price level for
goods and services, the inflation rate, the level of interest rates, the level of real
wages, the foreign exchange rate, productivity growth etc. Thus macroeconomics
focuses on the major lines of the economics of a society.
The aspiration of macroeconomics is three-fold:

1. to explain the levels of the aggregate variables as well as their movement
over time in the short run and the long run;

2. to make well-founded forecasts possible;

3. to provide foundations for rational economic policy applicable to macroeco-
nomic problems, be they short-run distress in the form of economic recession
or problems of a more long-term, structural character.

3



4 CHAPTER 1. INTRODUCTION

We use economic models to make our complex economic environment accessi-
ble for theoretical analysis. What is an economic model? It is a way of organizing
one’s thoughts about the economic functioning of a society. A more specific an-
swer is to define an economic model as a conceptual structure based on a set of
mathematically formulated assumptions which have an economic interpretation
and from which empirically testable predictions can be derived. In particular,
a macroeconomic model is an economic model concerned with macroeconomic
phenomena, i.e., the short-run fluctuations of aggregate variables as well as their
long-run trend.

Any economic analysis is based upon a conceptual framework. Formulating
this framework as a precisely stated economic model helps to break down the issue
into assumptions about the concerns and constraints of households and firms and
the character of the market environment within which these agents interact. The
advantage of this approach is that it makes rigorous reasoning possible, lays bare
where the underlying disagreements behind different interpretations of economic
phenomena are, and makes sensitivity analysis of the conclusions amenable. By
being explicit about agents’concerns, the technological constraints, and the social
structures (market forms, social conventions, and legal institutions) conditioning
their interactions, this approach allows analysis of policy interventions, including
the use of well-established tools of welfare economics. Moreover, mathematical
modeling is a simple necessity to keep track of the many mutual dependencies
and to provide a consistency check of the many accounting relationships involved.
And mathematical modeling opens up for use of powerful mathematical theorems
from the mathematical toolbox. Without these math tools it would in many cases
be impossible to reach any conclusion whatsoever.

Undergraduate students of economics are often perplexed or even frustrated by
macroeconomics being so preoccupied with composite theoretical models. Why
not study the issues each at a time? The reason is that the issues, say housing
prices and changes in unemployment, are not separate, but parts of a complex
system of mutually dependent variables. This also suggests that macroeconomics
must take advantage of theoretical and empirical knowledge from other branches
of economics, including microeconomics, industrial organization, game theory,
political economy, behavioral economics, and even sociology and psychology.

At the same time models necessarily give a simplified picture of the economic
reality. Ignoring secondary aspects and details is indispensable to be able to
focus on the essential features of a given problem. In particular macroeconomics
deliberately simplifies the description of the individual actors so as to make the
analysis of the interaction between different types of actors manageable.

The assessment of − and choice between − competing simplifying frameworks
should be based on how well they perform in relation to the three-fold aim of
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1.1. Macroeconomics 5

macroeconomics listed above, given the problem at hand. A necessary condition
for good performance is the empirical tenability of the model’s predictions. A
guiding principle in the development of useful models therefore lies in confronta-
tion of the predictions as well as the crucial assumptions with data. This can be
based on a variety of methods ranging from sophisticated econometric techniques
to qualitative case studies.
Three constituents make up an economic theory: 1) the union of connected

and non-contradictory economic models, 2) the theorems derived from these, and
3) the conceptual system defining the correspondence between the variables of
the models and the social reality to which they are to be applied. Being about
the interaction of human beings in societies, the subject matter of economic the-
ory is extremely complex and at the same time history dependent. The overall
political, social, and economic institutions (“rules of the game”in a broad sense)
evolve. These circumstances explain why economic theory is far from the natural
sciences with respect to precision and undisputable empirical foundation. Espe-
cially in macroeconomics, to avoid confusion one should be aware of the existence
of differing conceptions and in several matters conflicting theoretical schools.

1.1.2 The different “runs”

This textbook is about the macroeconomics of the industrialized market economies
of today. We study basic concepts, models, and analytical methods of rele-
vance for understanding macroeconomic processes where sometimes centripetal
and sometimes centrifugal forces are dominating. A simplifying device is the
distinction between “short-run”, “medium-run”, and “long-run” analysis. The
first concentrates on the behavior of the macroeconomic variables within a time
horizon of a few years, whereas “long-run” analysis deals with a considerably
longer time horizon − indeed, long enough for changes in the capital stock, pop-
ulation, and technology to have a dominating influence on changes in the level of
production. The “medium run”is then something in between.
To be more specific, long-run macromodels study the evolution of an econ-

omy’s productive capacity over time. Typically a time span of at least 15 years
is considered. The analytical framework is by and large supply-dominated. That
is, variations in the employment rate for labor and capital due to demand fluctu-
ations are abstracted away. This can to a first approximation be justified by the
fact that these variations, at least in advanced economies, tend to remain within
a fairly narrow band. Therefore, under “normal” circumstances the economic
outcome after, say, a 30 years’ interval reflects primarily the change in supply
side factors such as the labor force, the capital stock, and the technology. The
fluctuations in demand and monetary factors tend to be of limited quantitative
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importance within such a time horizon.

By contrast, when we speak of short-run macromodels, we think of models
concentrating on mechanisms that determine how fully an economy uses its pro-
ductive capacity at a given point in time. The focus is on the level of output and
employment within a time horizon less than, say, four years. These models are
typically demand-dominated. In this time perspective the demand side, mone-
tary factors, and price rigidities matter significantly. Shifts in aggregate demand
(induced by, e.g., changes in fiscal or monetary policy, exports, interest rates,
the general state of confidence, etc.) tend to be accommodated by changes in
the produced quantities rather than in the prices of manufactured goods and ser-
vices. By contrast, variations in the supply of production factors and technology
are diminutive and of limited importance within this time span. With Keynes’
words the aim of short-run analysis is to explain “what determines the actual
employment of the available resources”(Keynes 1936, p. 4).

The short and the long run make up the traditional subdivision of macro-
economics. It is convenient and fruitful, however, to include also a medium run,
referring to a time interval of, say, four-to-fifteen years.1 We shall call models
attempting to bridge the gap between the short and the long run medium-run
macromodels. These models deal with the regularities exhibited by sequences of
short periods. However, in contrast to long-run models which focus on the trend
of the economy, medium-run models attempt to understand the pattern charac-
terizing the fluctuations around the trend. In this context, variations at both
the demand and supply side are important. Indeed, at the centre of attention
is the dynamic interaction between demand and supply factors, the correction
of expectations, and the time-consuming adjustment of wages and prices. Such
models are also sometimes called business cycle models.

Returning to the “long run”, what does it embrace in this book? Well, since
the surge of “new growth theory”or “endogenous growth theory”in the late 1980s
and early 1990s, growth theory has developed into a specialized discipline study-
ing the factors and mechanisms that determine the evolution of technology and
productivity (Paul Romer 1987, 1990; Phillipe Aghion and Peter Howitt, 1992).
An attempt to give a systematic account of this expanding line of work within
macroeconomics would take us too far. When we refer to “long-run macromod-
els”, we just think of macromodels with a time horizon long enough such that
changes in the capital stock, population, and technology matter. Apart from a
taste of “new growth theory”in Chapter 11, we leave the sources of changes in
technology out of consideration, which is tantamount to regarding these changes

1These number-of-years figures are only a rough indication. The different “runs”are relative
concepts and their appropriateness depends on the specific problem and circumstances at hand.
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as exogenous.2

Figure 1.1: Quarterly Industrial Production Index in six major countries (Q1-1958 to
Q2-2013; index Q1-1961=100). Source: OECD Industry and Service Statistics. Note:
Industrial production includes manufacturing, mining and quarrying, electricity, gas,
and water, and construction.

In addition to the time scale dimension, the national-international dimension
is important for macroeconomics. Most industrialized economies participate in
international trade of goods and financial assets. This results in considerable
mutual dependency and co-movement of these economies. Downturns as well as
upturns occur at about the same time, as indicated by Fig. 1.1. In particular the
economic recessions triggered by the oil price shocks in 1973 and 1980 and by the
disruption of credit markets in the outbreak 2007 of the Great Financial Crisis
are visible across the countries, as also shown by the evolution of GDP, cf. Fig.
1.2. Many of the models and mechanisms treated in this text will therefore be
considered not only in a closed economy setup, but also from the point of view
of open economies.

2References to textbooks on economic growth are given in Literature notes at the end of this
chapter.
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Figure 1.2: Indexed real GDP for Denmark, Eurozone and US, 1995-2012 (2007=100).
Source: EcoWin and Statistics Denmark.

1.2 Components of macroeconomic models

1.2.1 Basics

(Incomplete)

Basic categories

• Agents: We use simple descriptions of the economic agents: A household is
an abstract entity making consumption, saving and labor supply decisions.
A firm is an abstract entity making decisions about production and sales.
The administrative staff and sales personnel are treated along with the
production workers as an undifferentiated labor input.

• Technological constraints.

• Goods, labor, and assets markets.

• The institutions and social norms regulating the economic interactions (for-
mal and informal “rules of the game”).

Types of variables
Endogenous vs. exogenous variables.
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Stocks vs. flows.
State variables vs. control variables (decision variables). Closely related to

this distinction is that between a predetermined variable and a jump variable. The
former is a variable whose value is determined historically at any point in time.
For example, the stock (quantity) of water in a bathtub at time t is historically
determined as the accumulated quantity of water stemming from the previous
inflow and outflow. But if yt is a variable which is not tied down by its own past
but, on the contrary, can immediately adjust if new conditions or new information
emerge, then yt is a non-predetermined variable, also called a jump variable. A
decision about how much to consume and how much to save − or dissave − in
a given month is an example of a jump variable. Returning to our bath tub
example: in the moment we pull out the waste plug, the outflow of water per
time unit will jump from zero to a positive value − it is a jump variable.

Types of basic model relations
Although model relations can take different forms, in macroeconomics they

often have the form of equations. A taxonomy for macroeconomic model relations
is the following:

1. Technology equations describe relations between inputs and output (pro-
duction functions and similar).

2. Preference equations express preferences, e.g. U =
∑T

t=0
u(ct)

(1+ρ)t
, ρ > 0, u′ >

0, u′′ < 0.

3. Budget constraints, whether in the form of an equation or an inequality.

4. Institutional equations refer to relationships required by law (e.g., how the
tax levied depends on income) and similar.

5. Behavioral equations describe the behavioral response to the determinants
of behavior. This includes an agent’s optimizing behavior written as a func-
tion of its determinants. A consumption function is an example. Whether
first-order conditions in optimization problems should be considered behav-
ioral equations or just separate first-order conditions is a matter of taste.

6. Identity equations are true by definition of the variables involved. National
income accounting equations are an example.

7. Equilibrium equations define the condition for equilibrium (“state of rest”)
of some kind, for instance equality of Walrasian demand and Walrasian
supply. No-arbitrage conditions for the asset markets also belong under the
heading equilibrium condition.
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10 CHAPTER 1. INTRODUCTION

8. Initial conditions are equations fixing the initial values of the state variables
in a dynamic model

Types of analysis
Statics vs. dynamics. Comparative dynamics vs. study of dynamic effects of

a parameter shift in historical time.
Macroeconomics studies processes in real time. The emphasis is on dynamic

models, that is, models that establishes a link from the state of the economic
system to the subsequent state. A dynamic model thus allows a derivation of
the evolution over time of the endogenous variables. A static model is a model
where time does not enter or where all variables refer to the same point in time.
Occasionally we consider static models, or more precisely quasi-static models. The
modifier “quasi-”is meant to indicate that although the model is a framework for
analysis of only a single period, the model considers some variables as inherited
from the past and some variables that involve expectations about the future.
What we call temporary equilibrium models are of this type. Their role is to serve
as a prelude to a more elaborate dynamic model dealing with the same elements.
Dynamic analysis aims at establishing dynamic properties of an economic

system: is the system stable or unstable, is it asymptotically stable, if so, is it
globally or only locally asymptotically stable, is it oscillatory? If the system is
asymptotically stable, how fast is the adjustment?
Partial equilibrium vs. general equilibrium:
We say that a given single market is in partial equilibrium at a given point in

time if for arbitrarily given prices and quantities in the other markets, the agents’
chosen actions in this market are mutually compatible. In contrast the concept of
general equilibrium take the mutual dependencies between markets into account.
We say that a given economy is in general equilibrium at a given point in time if
in all markets the actions chosen by all the agents are mutually compatible.
An analyst trying to clarify a partial equilibrium problem is doing partial

equilibrium analysis. Thus partial equilibrium analysis does not take into account
the feedbacks from these actions to the rest of the economy and the feedbacks
from these feedbacks − and so on. In contrast, an analyst trying to clarify a
general equilibrium problem is doing general equilibrium analysis. This requires
considering the mutual dependencies in the system of markets as a whole.
Sometimes even the analysis of the constrained maximization problem of a

single decision maker is called partial equilibrium analysis. Consider for instance
the consumption-saving decision of a household. Then the analytical derivation
of the saving function of the household is by some authors included under the
heading partial equilibrium analysis, which may seem natural since the real wage
and real interest rate appearing as arguments in the derived saving function are
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1.2. Components of macroeconomic models 11

arbitrary. Indeed, what the actual saving of the young will be in the end, depends
on the real wage and real interest rate formed in the general equilibrium.
In this book we call the analysis of a single decision maker’s problem partial

analysis, not partial equilibrium analysis. The motivation for this is that trans-
parency is improved if one preserves the notion of equilibrium for a state of a
market or a state of a system of markets .

1.2.2 The time dimension of input and output

In macroeconomic theory the production of a firm, a sector, or the economy as a
whole is often represented by a two-inputs-one-output production function,

Y = F (K,L), (1.1)

where Y is output (value added in real terms), K is capital input, and L is
labor input (K ≥ 0, L ≥ 0). The idea is that for several issues it is useful to
think of output as a homogeneous good which is produced by two inputs, one of
which is capital, by which we mean a producible durable means of production, the
other being labor, usually considered a non-producible human input. Of course,
thinking of these variables as representing one-dimensional entities is a drastic
abstraction, but may nevertheless be worthwhile in a first approach.
Simple as it looks, an equation like (1.1) is not always interpreted in the

right way. A key issue here is: how are the variables entering (1.1) denominated,
that is, in what units are the variables measured? It is most satisfactory, both
from a theoretical and empirical point of view, to think of both outputs and
inputs as flows: quantities per unit of time. This is generally recognized as far
as Y is concerned. Unfortunately, it is less recognized concerning K and L, a
circumstance which is probably related to a tradition in macroeconomic notation,
as we will now explain.
Let the time unit be one year. Then the K appearing in the production

function should be seen as the number of machine hours per year. Similarly, L
should be seen as the number of labor hours per year. Unless otherwise specified,
it should be understood that the rate of utilization of the production factors is
constant over time; for convenience, one can then normalize the rate of utilization
of each factor to equal one. Thus, with one year as our time unit, we imagine
that “normally”a machine is in operation in h hours during a year. Then, we
define one machine-year as the service of a machine in operation h hours a year.
If K machines are in operation and on average deliver one machine year per year,
then the total capital input is K machine-years per year:

K (machine-yrs/yr) = K (machines)× 1 ((machine-yrs/yr)/machine), (1.2)
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12 CHAPTER 1. INTRODUCTION

where the denomination of the variables is indicated in brackets. Similarly, if
the stock of laborers is L men and on average they deliver one man-year (say h
hours) per year, then the total labor input is L man-years per year:

L(man-yrs/yr) = L(men)× 1((man-yrs/yr)/man). (1.3)

One of the reasons that confusion of stocks and flows may arise is the tradition
in macroeconomics to use the same symbol, K, for the capital input (the number
of machine hours per year), in (1.1) as for the capital stock in an accumulation
equation like

Kt+1 = Kt + It − δKt. (1.4)

Here the interpretation of Kt is as a capital stock (number of machines) at the
beginning of period t, It is gross investment, and δ is the rate of physical capital
depreciation due to wear and tear (0 ≤ δ ≤ 1). In (1.4) there is no role for the
rate of utilization of the capital stock, which is, however, of key importance in
(1.1). Similarly, there is a tradition in macroeconomics to denote the number of
heads in the labor force by L and write, for example, Lt = L0(1 + n)t, where n
is a constant growth rate of the labor force. Here the interpretation of Lt is as a
stock (number of persons). There is no role for the average rate of utilization in
actual employment of this stock over the year.
This text will not attempt a break with this tradition of using the same symbol

for two in principle different variables. But we insist on interpretations such that
the notation is consistent. This requires normalization of the utilization rates for
capital and labor in the production function to equal one, as indicated in (1.2)
and (1.3) above. We are then allowed to use the same symbol for a stock and the
corresponding flow because the values of the two variables will coincide.
An illustration of the importance of being aware of the distinction between

stock and flows appears when we consider the following measure of per capita
income in a given year:

GDP

N
=

GDP

#hours of work
× #hours of work

#employed workers
×#employed workers

#workers
×#workers

N
,

(1.5)
where N, #workers, and #employed workers indicate, say, the average size of the
population, the workforce (including the unemployed), and the employed work-
force, respectively, during the year. That is, aggregate per capita income equals
average labor productivity times average labor intensity times the crude employ-
ment rate times the workforce participation rate.3 An increase from one year to

3By the crude employment rate is meant the number of employed individuals, without
weighting by the number of hours they work per week, divided by the total number of individuals
in the labor force.
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1.3. Macroeconomic models and national income accounting 13

the next in the ratio on the left-hand side of the equation reflects the net effect
of changes in the four ratios on the right-hand side. Similarly, a fall in per capita
income (a ratio between a flow and a stock) need not reflect a fall in productiv-
ity (GDP/#hours of work, a ratio of two flows), but may reflect, say, a fall in
the number of hours per member of the workforce (#hours of work/#workers)
due to a rise in unemployment (fall in #employed workers/workers) or an ageing
population (fall in #workers/N).
A second conceptual issue concerning the production function in (1.1) re-

lates to the question: what about land and other natural resources? As farming
requires land and factories and offi ce buildings require building sites, a third
argument, a natural resource input, should in principle appear in (1.1). In theo-
retical macroeconomics for industrialized economies this third factor is often left
out because it does not vary much as an input to production and tends to be of
secondary importance in value terms.
A third conceptual issue concerning the production function in (1.1) relates to

the question: what about intermediate goods? By intermediate goods we mean
non-durable means of production like raw materials and energy. Certainly, raw
materials and energy are generally necessary inputs at the micro level. Then
it seems strange to regard output as produced by only capital and labor. The
point is that in macroeconomics we often abstract from the engineering input-
output relations, involving intermediate goods. We imagine that at a lower stage
of production, raw materials and energy are continuously produced by capital
and labor, but are then immediately used up at a higher stage of production,
again using capital and labor. The value of these materials are not part of value
added in the sector or in the economy as a whole. Since value added is what
macroeconomics usually focuses at and what the Y in (1.1) represents, materials
therefore are often not explicit in the model.
On the other hand, if of interest for the problems studied, the analysis should,

of course, take into account that at the aggregate level in real world situations,
there will generally be a minor difference between produced and used-up raw
materials which then constitute net investment in inventories of materials.
To further clarify this point as well as more general aspects of how macro-

economic models are related to national income and product accounts, the next
section gives a review of national income accounting.

1.3 Macroeconomic models and national income
accounting

Stylized national income and product accounts
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14 CHAPTER 1. INTRODUCTION

(very incomplete)

We give here a stylized picture of national income and product accounts with
emphasis on the conceptual structure. The basic point to be aware of is that
national income accounting looks at output from three sides:

• the production side (value added),

• the use side,

• the income side.

These three “sides”refer to different approaches to the practical measurement
of production and income: the “output approach”, the “expenditure approach”,
and the “income approach”.
Consider a closed economy with three production sectors. Sector 1 produces

raw materials (or energy) in the amount Q1 per time unit, Sector 2 produces
durable capital goods in the amount Q2 per time unit, and the third sector pro-
duces consumption goods in the amount Q3 per time unit. It is common to distin-
guish between three basic production factors available ex ante a given production
process. These are land (or, more generally, non-producible natural resources),
labor, and capital (producible durable means of production). In practice also raw
materials are a necessary production input. Traditionally, this input has been
regarded as itself produced at an early stage within the production process and
then used up during the remainder of the production process. In formal dynamic
analysis, however, both capital and raw materials are considered produced prior
to the production process in which the latter are used up. This is why we include
raw materials as a fourth production factor in the production functions of the
three sectors.
....

1.4 Some terminological points

On the vocabulary used in this book:
(Incomplete)
Economic terms
Physical capital refers to stocks of reproducible durable means of production

such as machines and structures. Reproducible non-durable means of production
include raw materials and energy and are sometimes called intermediate goods.
Non-reproducible means of production, such as land and other natural resources,
are in this book not included under the heading “capital”but just called natural
resources.
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1.5. Brief history of macroeconomics 15

We follow the convention in macroeconomics and, unless otherwise specified,
use “capital”for physical capital, that is, a production factor. In other branches
of economics and in everyday language “capital”may mean the funds (sometimes
called “financial capital”) that finance purchases of physical capital.

By a household’s wealth (sometimes denoted net wealth), W, we mean the
value of the total stock of resources possessed by the household at a given point in
time. This wealth generally has two main components, the human wealth, which
is the present value of the stream of future labor income, and the non-human
wealth. The latter is the sum of the value of the household’s physical assets (also
called real assets) and its net financial assets. Typically, housing wealth is the
dominating component in households’physical assets. By net financial assets is
meant the difference between the value of financial assets and the value of financial
liabilities. Financial assets include cash as well as paper claims that entitles the
owner to future transfers from the issuer of the claim, perhaps conditional on
certain events. Bonds and shares are examples. And a financial liability of a
household (or other type of agent) is an obligation to transfer resources to others
in the future. A mortgage loan is an example.

In spite of this distinction between what is called physical assets and what is
called financial assets, often in macroeconomics (and in this book unless other-
wise indicated) the household’s “financial wealth” is used synonymous with its
non-human wealth, that is, including purely physical assets like land, house, car,
machines, and other equipment. Somewhat at odds with this convention macro-
economics (including this book) generally uses “investment”as synonymous with
“physical capital investment”, that is, procurement of new machines and plants
by firms and new houses or apartments by households. Then, when having pur-
chases of financial assets in mind, macroeconomists talk of financial investment.

...

Saving (flow) vs. savings (stock).

...

1.5 Brief history of macroeconomics

Text not yet available.

–

Akerlof and Shiller (2009)

Gali (2008)
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16 CHAPTER 1. INTRODUCTION

1.6 Literature notes

....
The modern theory of economic growth (“new growth theory”, “endogenous

growth theory”) is extensively covered in dedicated textbooks like Aghion and
Howitt (1998), Jones (2002), Barro and Sala-i Martin (2004), Acemoglu (2009),
and Aghion and Howitt (2009). A good introduction to analytical development
economics is Basu (1997).
Snowdon and Vane (1997), Blanchard (2000), and Woodford (2000) present

useful overviews of the history of macroeconomics. For surveys on recent devel-
opments on the research agenda within theory as well as practical policy analysis,
see Mankiw (2006), Blanchard (2008), and Woodford (2009). Somewhat different
perspectives, from opposite poles, are offered by Chari et al. (2009) and Colander
et al. (2008).
To be incorporated in the preface:
Two textbooks that have been a great inspiration for the one in your hands

are Blanchard and Fischer, Lectures in Macroeconomics, 1989, and Malinvaud,
Macroeconomic Theory, vol. A and B, 1998, both of which dig deeper into a
lot of the stuff. Compared with Blanchard and Fischer the present book on the
one hand of course includes some more recent contributions to macroeconomics,
while on ther hand it is more elementary. It is intended to be accessible for third-
year undergraduates with a good background in calculus and first-year graduate
students. Compared with Malinvaud the emphasis in this book is more on formu-
lating complete dynamic models and analyze their applications and implications.
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Chapter 2

Review of technology and firms

The aim of this chapter is threefold. First, we shall introduce this book’s vocabu-
lary concerning firms’technology and technological change. Second, we shall re-
fresh our memory of key notions from microeconomics relating to firms’behavior
and factor market equilibrium under simplifying assumptions, including perfect
competition. Finally, to prepare for the many cases where perfect competition
and other simplifying assumptions are not good approximations to reality, we
give an introduction to firms’behavior under more realistic conditions including
monopolistic competition.
The vocabulary pertaining to other aspects of the economy, for instance house-

holds’preferences and behavior, is better dealt with in close connection with the
specific models to be discussed in the subsequent chapters. Regarding the dis-
tinction between discrete and continuous time analysis, most of the definitions
contained in this chapter are applicable to both.

2.1 The production technology

Consider a two-input-one-output production function given by

Y = F (K,L), (2.1)

where Y is output (value added) per time unit, K is capital input per time unit,
and L is labor input per time unit (K ≥ 0, L ≥ 0). We may think of (2.1)
as describing the output of a firm, a sector, or the economy as a whole. It is
in any case a very simplified description, ignoring the heterogeneity of output,
capital, and labor. Yet, for many macroeconomic questions it may be a useful
first approach.
Note that in (2.1) not only Y but also K and L represent flows, that is,

quantities per unit of time. If the time unit is one year, we think of K as

17



18 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

measured in machine hours per year. Similarly, we think of L as measured in
labor hours per year. Unless otherwise specified, it is understood that the rate of
utilization of the production factors is constant over time and normalized to one
for each production factor. As explained in Chapter 1, we can then use the same
symbol, K, for the flow of capital services as for the stock of capital. Similarly
with L.

2.1.1 A neoclassical production function

By definition, Y, K and L are non-negative. It is generally understood that a
production function, Y = F (K,L), is continuous and that F (0, 0) = 0 (no input,
no output). Sometimes, when a production function is specified by a certain for-
mula, that formula may not be defined forK = 0 or L = 0 or both. In such a case
we adopt the convention that the domain of the function is understood extended
to include such boundary points whenever it is possible to assign function values
to them such that continuity is maintained. For instance the function F (K,L)
= αL+ βKL/(K +L), where α > 0 and β > 0, is not defined at (K,L) = (0, 0).
But by assigning the function value 0 to the point (0, 0), we maintain both con-
tinuity and the “no input, no output”property, cf. Exercise 2.4.
We call the production function neoclassical if for all (K,L), with K > 0 and

L > 0, the following additional conditions are satisfied:

(a) F (K,L) has continuous first- and second-order partial derivatives satisfying:

FK > 0, FL > 0, (2.2)

FKK < 0, FLL < 0. (2.3)

(b) F (K,L) is strictly quasiconcave (i.e., the level curves, also called isoquants,
are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous
substitution possibilities between K and L and the marginal productivities are
positive, but diminishing in own factor. Thus, for a given number of machines,
adding one more unit of labor, adds to output, but less so, the higher is already
the labor input. And (b) says that every isoquant, F (K,L) = Ȳ , has a strictly
convex form qualitatively similar to that shown in Fig. 2.1.1 When we speak
of for example FL as the marginal productivity of labor, it is because the “pure”

1For any fixed Ȳ ≥ 0, the associated isoquant is the level set {(K,L) ∈ R+| F (K,L) = Ȳ
}
.

A refresher on mathematical terms such as level set, boundary point, convex function, etc. is
contained in Math Tools.
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2.1. The production technology 19

partial derivative, ∂Y/∂L = FL, has the denomination of a productivity (out-
put units/yr)/(man-yrs/yr). It is quite common, however, to refer to FL as the
marginal product of labor. Then a unit marginal increase in the labor input is
understood: ∆Y ≈ (∂Y/∂L)∆L = ∂Y/∂L when ∆L = 1. Similarly, FK can
be interpreted as the marginal productivity of capital or as the marginal prod-
uct of capital. In the latter case it is understood that ∆K = 1, so that ∆Y
≈ (∂Y/∂K)∆K = ∂Y/∂K.

The definition of a neoclassical production function can be extended to the
case of n inputs. Let the input quantities be X1, X2, . . . , Xn and consider a
production function Y = F (X1, X2, . . . , Xn). Then F is called neoclassical if all
the marginal productivities are positive, but diminishing in own factor, and F is
strictly quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix
A). An example where n = 3 is Y = F (K,L, J), where J is land, an important
production factor in an agricultural economy.
Returning to the two-factor case, since F (K,L) presumably depends on the

level of technical knowledge and this level depends on time, t, we might want to
replace (2.1) by

Yt = F (Kt, Lt, t), (2.4)

where the third argument indicates that the production function may shift over
time, due to changes in technology. We then say that F is a neoclassical produc-
tion function if for all t in a certain time interval it satisfies the conditions (a)
and (b) w.r.t its first two arguments. Technological progress can then be said to
occur when, for Kt and Lt held constant, output increases with t.
For convenience, to begin with we skip the explicit reference to time and level

of technology.

The marginal rate of substitution Given a neoclassical production function
F, we consider the isoquant defined by F (K,L) = Ȳ , where Ȳ is a positive con-
stant. The marginal rate of substitution, MRSKL, of K for L at the point (K,L)
is defined as the absolute slope of the isoquant

{
(K,L) ∈ R2

++

∣∣ F (K,L) = Ȳ
}
at

that point, cf. Fig. 2.1. For some reason (unknown to this author) the tradition
in macroeconomics is to write Y = F (K,L) and in spite of ordering the argu-
ments of F this way, nonetheless have K on the vertical and L on the horizontal
axis when considering an isoquant. At this point we follow the tradition.
The equation F (K,L) = Ȳ defines K as an implicit function K = ϕ(L) of L.

By implicit differentiation we get FK(K,L)dK/dL +FL(K,L) = 0, from which
follows

MRSKL ≡ −
dK

dL |Y=Ȳ
= −ϕ′(L) =

FL(K,L)

FK(K,L)
> 0. (2.5)
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20 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

So MRSKL equals the ratio of the marginal productivities of labor and capital,
respectively.2 The economic interpretation of MRSKL is that it indicates (ap-
proximately) the amount of K that can be saved by applying an extra unit of
labor.
Since F is neoclassical, by definition F is strictly quasi-concave and so the

marginal rate of substitution is diminishing as substitution proceeds, i.e., as the
labor input is further increased along a given isoquant. Notice that this feature
characterizes the marginal rate of substitution for any neoclassical production
function, whatever the returns to scale (see below).

Figure 2.1: MRSKL as the absolute slope of the isoquant representing F (K,L) = Ȳ .

When we want to draw attention to the dependency of the marginal rate
of substitution on the factor combination considered, we write MRSKL(K,L).
Sometimes in the literature, the marginal rate of substitution between two pro-
duction factors, K and L, is called the technical rate of substitution (or the
technical rate of transformation) in order to distinguish from a consumer’s mar-
ginal rate of substitution between two consumption goods.
As is well-known frommicroeconomics, a firm that minimizes production costs

for a given output level and given factor prices, will choose a factor combination
such thatMRSKL equals the ratio of the factor prices. If F (K,L) is homogeneous
of degree q, then the marginal rate of substitution depends only on the factor
proportion and is thus the same at any point on the ray K = (K̄/L̄)L. In this
case the expansion path is a straight line.

2The subscript
∣∣Y = Ȳ in (2.5) signifies that “we are moving along a given isoquant F (K,L)

= Ȳ ”, i.e., we are considering the relation between K and L under the restriction F (K,L) = Ȳ .
Expressions like FL(K,L) or F2(K,L) mean the partial derivative of F w.r.t. the second
argument, evaluated at the point (K,L).
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The Inada conditions A continuously differentiable production function is
said to satisfy the Inada conditions3 if

lim
K→0

FK(K,L) = ∞, lim
K→∞

FK(K,L) = 0, (2.6)

lim
L→0

FL(K,L) = ∞, lim
L→∞

FL(K,L) = 0. (2.7)

In this case, the marginal productivity of either production factor has no upper
bound when the input of the factor becomes infinitely small. And the marginal
productivity is gradually vanishing when the input of the factor increases without
bound. Actually, (2.6) and (2.7) express four conditions, which it is preferable to
consider separately and label one by one. In (2.6) we have two Inada conditions
for MPK (the marginal productivity of capital), the first being a lower, the
second an upper Inada condition for MPK. And in (2.7) we have two Inada
conditions for MPL (the marginal productivity of labor), the first being a lower,
the second an upper Inada condition forMPL. In the literature, when a sentence
like “the Inada conditions are assumed”appears, it is sometimes not made clear
which, and how many, of the four are meant. Unless it is evident from the context,
it is better to be explicit about what is meant.
The definition of a neoclassical production function we have given is quite

common in macroeconomic journal articles and convenient because of its flexibil-
ity. Yet there are textbooks that define a neoclassical production function more
narrowly by including the Inada conditions as a requirement for calling the pro-
duction function neoclassical. In contrast, in this book, when in a given context
we need one or another Inada condition, we state it explicitly as an additional
assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by the
same factor? There may be different answers to this question, depending on
circumstances. We consider a production function F (K,L) where K > 0 and
L > 0. Then F is said to have constant returns to scale (CRS for short) if it is
homogeneous of degree one, i.e., if for all (K,L) ∈ R2

++ and all λ > 0,

F (λK, λL) = λF (K,L).

As all inputs are scaled up or down by some factor, output is scaled up or down
by the same factor.4 The assumption of CRS is often defended by the replication

3After the Japanese economist Ken-Ichi Inada, 1925-2002.
4In their definition of a neoclassical production function some textbooks add constant re-

turns to scale as a requirement besides (a) and (b) above. This book follows the alternative
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argument saying that “by doubling all inputs we are always able to double the
output since we are essentially just replicating a viable production activity”.
Before discussing this argument, lets us define the two alternative “pure”cases.
The production function F (K,L) is said to have increasing returns to scale

(IRS for short) if, for all (K,L) ∈ R2
++ and all λ > 1,

F (λK, λL) > λF (K,L).

That is, IRS is present if, when increasing the scale of operations by scaling up
every input by some factor > 1, output is scaled up bymore than this factor. One
argument for the plausibility of this is the presence of equipment indivisibilities
leading to high unit costs at low output levels. Another argument is that gains
by specialization and division of labor, synergy effects, etc. may be present, at
least up to a certain level of production. The IRS assumption is also called the
economies of scale assumption.
Another possibility is decreasing returns to scale (DRS). This is said to occur

when for all (K,L) ∈ R2
++ and all λ > 1,

F (λK, λL) < λF (K,L).

That is, DRS is present if, when all inputs are scaled up by some factor, output
is scaled up by less than this factor. This assumption is also called the disec-
onomies of scale assumption. The underlying hypothesis may be that control and
coordination problems confine the expansion of size. Or, considering the “repli-
cation argument” below, DRS may simply reflect that behind the scene there
is an additional production factor, for example land or a irreplaceable quality
of management, which is tacitly held fixed, when the factors of production are
varied.

EXAMPLE 1 The production function

Y = AKαLβ, A > 0, 0 < α < 1, 0 < β < 1, (2.8)

where A, α, and β are given parameters, is called a Cobb-Douglas production
function. The parameter A depends on the choice of measurement units; for a
given such choice it reflects effi ciency, also called the “total factor productivity”.
Exercise 2.2 asks the reader to verify that (2.8) satisfies (a) and (b) above and
is therefore a neoclassical production function. The function is homogeneous of
degree α + β. If α + β = 1, there are CRS. If α + β < 1, there are DRS, and if

terminology where, if in a given context an assumption of constant returns to scale is needed,
this is stated as an additional assumption and we talk about a CRS-neoclassical production
function.
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α+ β > 1, there are IRS. Note that α and β must be less than 1 in order not to
violate the diminishing marginal productivity condition. �
EXAMPLE 2 The production function

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (2.9)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1, β 6= 0,
is called a CES production function (CES for Constant Elasticity of Substitution).
For a given choice of measurement units, the parameter A reflects effi ciency (or
“total factor productivity”) and is thus called the effi ciency parameter. The
parameters α and β are called the distribution parameter and the substitution
parameter, respectively. The latter name comes from the property that the higher
is β, the more sensitive is the cost-minimizing capital-labor ratio to a rise in
the relative factor price. Equation (2.9) gives the CES function for the case of
constant returns to scale; the cases of increasing or decreasing returns to scale
are presented in Chapter 4.5. A limiting case of the CES function (2.9) gives the
Cobb-Douglas function with CRS. Indeed, for fixed K and L,

lim
β→0

A
[
αKβ + (1− α)Lβ

] 1
β = AKαL1−α.

This and other properties of the CES function are shown in Chapter 4.5. The
CES function has been used intensively in empirical studies. �
EXAMPLE 3 The production function

Y = min(AK,BL), A > 0, B > 0, (2.10)

where A and B are given parameters, is called a Leontief production function5

(or a fixed-coeffi cients production function; A and B are called the technical coef-
ficients. The function is not neoclassical, since the conditions (a) and (b) are not
satisfied. Indeed, with this production function the production factors are not
substitutable at all. This case is also known as the case of perfect complementarity
between the production factors. The interpretation is that already installed pro-
duction equipment requires a fixed number of workers to operate it. The inverse
of the parameters A and B indicate the required capital input per unit of output
and the required labor input per unit of output, respectively. Extended to many
inputs, this type of production function is often used in multi-sector input-output
models (also called Leontief models). In aggregate analysis neoclassical produc-
tion functions, allowing substitution between capital and labor, are more popular

5After the Russian-American economist and Nobel laureate Wassily Leontief (1906-99) who
used a generalized version of this type of production function in what is known as input-output
analysis.
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than Leontief functions. But sometimes the latter are preferred, in particular in
short-run analysis with focus on the use of already installed equipment where the
substitution possibilities tend to be limited.6 As (2.10) reads, the function has
CRS. A generalized form of the Leontief function is Y = min(AKγ, BLγ), where
γ > 0. When γ < 1, there are DRS, and when γ > 1, there are IRS. �

The replication argument The assumption of CRS is widely used in macro-
economics. The model builder may appeal to the replication argument. This is
the argument saying that by doubling all the inputs, we should always be able
to double the output, since we are just “replicating”what we are already doing.
Suppose we want to double the production of cars. We may then build another
factory identical to the one we already have, man it with identical workers and
deploy the same material inputs. Then it is reasonable to assume output is dou-
bled.
In this context it is important that the CRS assumption is about technology in

the sense of functions linking outputs to inputs. Limits to the availability of input
resources is an entirely different matter. The fact that for example managerial
talent may be in limited supply does not preclude the thought experiment that
if a firm could double all its inputs, including the number of talented managers,
then the output level could also be doubled.
The replication argument presupposes, first, that all the relevant inputs are

explicit as arguments in the production function; second, that these are changed
equiproportionately. This, however, exhibits the weakness of the replication argu-
ment as a defence for assuming CRS of our present production function, F. One
could easily make the case that besides capital and labor, also land is a necessary
input and should appear as a separate argument.7 If an industrial firm decides
to duplicate what it has been doing, it needs a piece of land to build another
plant like the first. Then, on the basis of the replication argument, we should in
fact expect DRS w.r.t. capital and labor alone. In manufacturing and services,
empirically, this and other possible sources for departure from CRS w.r.t. capital
and labor may be minor and so many macroeconomists feel comfortable enough
with assuming CRS w.r.t. K and L alone, at least as a first approximation.
This approximation is, however, less applicable to poor countries, where natural
resources may be a quantitatively important production factor.
There is a further problem with the replication argument. By definition, CRS

is present if and only if, by changing all the inputs equiproportionately by any
positive factor λ (not necessarily an integer), the firm is able to get output changed

6Cf. Section 2.5.2.
7Recall from Chapter 1 that we think of “capital”as producible means of production, whereas

“land”refers to non-producible natural resources, including for instance building sites.
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by the same factor. Hence, the replication argument requires that indivisibilities
are negligible, which is certainly not always the case. In fact, the replication
argument is more an argument against DRS than for CRS in particular. The
argument does not rule out IRS due to synergy effects as scale is increased.
Sometimes the replication line of reasoning is given a more subtle form. This

builds on a useful local measure of returns to scale, named the elasticity of scale.

The elasticity of scale*8 To allow for indivisibilities and mixed cases (for
example IRS at low levels of production and CRS or DRS at higher levels), we
need a local measure of returns to scale. One defines the elasticity of scale,
η(K,L), of F at the point (K,L), where F (K,L) > 0, as

η(K,L) =
λ

F (K,L)

dF (λK, λL)

dλ
≈ ∆F (λK, λL)/F (K,L)

∆λ/λ
, evaluated at λ = 1.

(2.11)
So the elasticity of scale at a point (K,L) indicates the (approximate) percentage
increase in output when both inputs are increased by 1 percent. We say that

if η(K,L)


> 1, then there are locally IRS,
= 1, then there are locally CRS,
< 1, then there are locally DRS.

(2.12)

The production function may have the same elasticity of scale everywhere. This
is the case if and only if the production function is homogeneous of some degree
h > 0. In that case η(K,L) = h for all (K,L) for which F (K,L) > 0, and h
indicates the global elasticity of scale. The Cobb-Douglas function, cf. Example
1, is homogeneous of degree α+β and has thereby global elasticity of scale equal
to α + β.
Note that the elasticity of scale at a point (K,L) will always equal the sum

of the partial output elasticities at that point:

η(K,L) =
FK(K,L)K

F (K,L)
+
FL(K,L)L

F (K,L)
. (2.13)

This follows from the definition in (2.11) by taking into account that

dF (λK, λL)

dλ
= FK(λK, λL)K + FL(λK, λL)L

= FK(K,L)K + FL(K,L)L, when evaluated at λ = 1.

8A section headline marked by * indicates that in a first reading the section can be skipped
- or at least just skimmed through.
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Fig. 2.2 illustrates a popular case from introductory economics, an average
cost curve which from the perspective of the individual firm is U-shaped: at low
levels of output there are falling average costs (thus IRS), at higher levels rising
average costs (thus DRS).9 Given the input prices wK and wL and a specified
output level F (K,L) = Ȳ , we know that the cost-minimizing factor combination
(K̄, L̄) is such that FL(K̄, L̄)/FK(K̄, L̄) = wL/wK . It is shown in Appendix A
that the elasticity of scale at (K̄, L̄) will satisfy:

η(K̄, L̄) =
LAC(Ȳ )

LMC(Ȳ )
, (2.14)

where LAC(Ȳ ) is average costs (the minimum unit cost associated with producing
Ȳ ) and LMC(Ȳ ) is marginal costs at the output level Ȳ . The L in LAC and
LMC stands for “long-run”, indicating that both capital and labor are considered
variable production factors within the period considered. At the optimal plant
size, Y ∗, there is equality between LAC and LMC, implying a unit elasticity
of scale. That is, locally we have CRS. That the long-run average costs are
here portrayed as rising for Ȳ > Y ∗, is not essential for the argument but may
reflect either that coordination diffi culties are inevitable or that some additional
production factor, say the building site of the plant, is tacitly held fixed.

Figure 2.2: Locally CRS at optimal plant size.

Anyway, on this basis Robert Solow (1956) came up with a more subtle repli-
cation argument for CRS at the aggregate level. Even though technologies may
differ across plants, the surviving plants in a competitive market will have the
same average costs at the optimal plant size. In the medium and long run, changes
in aggregate output will take place primarily by entry and exit of optimal-size

9By a “firm” is generally meant the company as a whole. A company may have several
“manufacturing plants”placed at different locations.
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plants. Then, with a large number of relatively small plants, each producing at
approximately constant unit costs for small output variations, we can without
substantial error assume constant returns to scale at the aggregate level. So the
argument goes. Notice, however, that even in this form the replication argument
is not entirely convincing since the question of indivisibility remains. The opti-
mal, i.e., cost-minimizing, plant size may be large relative to the market − and
is in fact so in many industries. Besides, in this case also the perfect competition
premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed (see the literature
notes at the end of the chapter). Notwithstanding the theoretical and empirical
ambiguities, the assumption of CRS w.r.t. capital and labor has a prominent
role in macroeconomics. In many contexts it is regarded as an acceptable ap-
proximation and a convenient simple background for studying the question at
hand.
Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-hand
side of (2.14) equals unity);

(ii) if production factors are paid according to their marginal productivities,
factor payments exactly exhaust total output so that pure profits are neither
positive nor negative (so the right-hand side of (2.13) equals unity);

(iii) a production function known to exhibit CRS and satisfy property (a) from
the definition of a neoclassical production function above, will automatically
satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always FKL > 0,
i.e., it exhibits “direct complementarity”between K and L;

(v) a two-factor production function that has CRS and is twice continuously
differentiable with positive marginal productivity of each factor everywhere
in such a way that all isoquants are strictly convex to the origin, must
have diminishing marginal productivities everywhere and thereby be neo-
classical.10

A principal implication of the CRS assumption is that it allows a reduction
of dimensionality. Considering a neoclassical production function, Y = F (K,L)

10Proof of claim (iii) is in Appendix A and proofs of claim (iv) and (v) are in Appendix B.
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with L > 0, we can under CRS write F (K,L) = LF (K/L, 1) ≡ Lf(k), where
k ≡ K/L is called the capital-labor ratio (sometimes the capital intensity) and
f(k) is the production function in intensive form (sometimes named the per capita
production function). Thus output per unit of labor depends only on the capital
intensity:

y ≡ Y

L
= f(k).

When the original production function F is neoclassical, under CRS the expres-
sion for the marginal productivity of capital simplifies:

FK(K,L) =
∂Y

∂K
=
∂ [Lf(k)]

∂K
= Lf ′(k)

∂k

∂K
= f ′(k). (2.15)

And the marginal productivity of labor can be written

FL(K,L) =
∂Y

∂L
=
∂ [Lf(k)]

∂L
= f(k) + Lf ′(k)

∂k

∂L
= f(k) + Lf ′(k)K(−L−2) = f(k)− f ′(k)k. (2.16)

A neoclassical CRS production function in intensive form always has a positive
first derivative and a negative second derivative, i.e., f ′ > 0 and f ′′ < 0. The
property f ′ > 0 follows from (2.15) and (2.2). And the property f ′′ < 0 follows
from (2.3) combined with

FKK(K,L) =
∂f ′(k)

∂K
= f ′′(k)

∂k

∂K
= f ′′(k)

1

L
.

For a neoclassical production function with CRS, we also have

f(k)− f ′(k)k > 0 for all k > 0, (2.17)

in view of f(0) ≥ 0 and f ′′ < 0. Moreover,

lim
k→0

[f(k)− f ′(k)k] = f(0). (2.18)

Indeed, from the mean value theorem11 we know there exists a number a ∈ (0, 1)
such that for any k > 0 we have f(k)− f(0) = f ′(ak)k. From this follows f(k)−
f ′(ak)k = f(0) < f(k) − f ′(k)k, since f ′(ak) > f ′(k) by f ′′ < 0. In view of
f(0) ≥ 0, this establishes (2.17). And from f(k) > f(k) − f ′(k)k > f(0) and
continuity of f follows (2.18).

11This theorem says that if f is continuous in [α, β] and differentiable in (α, β), then there
exists at least one point γ in (α, β) such that f ′(γ) = (f(β)− f(α))/(β − α).
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Under CRS the Inada conditions for MPK can be written

lim
k→0

f ′(k) =∞, lim
k→∞

f ′(k) = 0. (2.19)

In this case standard parlance is just to say that “f satisfies the Inada conditions”.
An input which must be positive for positive output to arise is called an

essential input ; an input which is not essential is called an inessential input. The
second part of (2.19), representing the upper Inada condition for MPK under
CRS, has the implication that labor is an essential input; but capital need not
be, as the production function f(k) = a + bk/(1 + k), a > 0, b > 0, illustrates.
Similarly, under CRS the upper Inada condition for MPL implies that capital
is an essential input. These claims are proved in Appendix C. Combining these
results, when both the upper Inada conditions hold and CRS obtain, then both
capital and labor are essential inputs.12

Fig. 2.3 is drawn to provide an intuitive understanding of a neoclassical
CRS production function and at the same time illustrate that the lower Inada
conditions are more questionable than the upper Inada conditions. The left panel
of Fig. 2.3 shows output per unit of labor for a CRS neoclassical production
function satisfying the Inada conditions for MPK. The f(k) in the diagram
could for instance represent the Cobb-Douglas function in Example 1 with β =
1 − α, i.e., f(k) = Akα. The right panel of Fig. 2.3 shows a non-neoclassical
case where only two alternative Leontief techniques are available, technique 1: y
= min(A1k,B1), and technique 2: y = min(A2k,B2). In the exposed case it is
assumed that B2 > B1 and A2 < A1 (if A2 ≥ A1 at the same time as B2 > B1,
technique 1 would not be effi cient, because the same output could be obtained
with less input of at least one of the factors by shifting to technique 2). If the
available K and L are such that k ≡ K/L < B1/A1 or k > B2/A2, some of either
L or K, respectively, is idle. If, however, the available K and L are such that
B1/A1 < k < B2/A2, it is effi cient to combine the two techniques and use the
fraction µ of K and L in technique 1 and the remainder in technique 2, where
µ = (B2/A2 − k)/(B2/A2 − B1/A1). In this way we get the “labor productivity
curve”OPQR (the envelope of the two techniques) in Fig. 2.3. Note that for
k → 0, MPK stays equal to A1 <∞, whereas for all k > B2/A2, MPK = 0.
A similar feature remains true, when we consider many, say n, alternative

effi cient Leontief techniques available. Assuming these techniques cover a con-
siderable range w.r.t. the B/A ratios, we get a labor productivity curve looking
more like that of a neoclassical CRS production function. On the one hand, this
gives some intuition of what lies behind the assumption of a neoclassical CRS
production function. On the other hand, it remains true that for all k > Bn/An,

12Given a Cobb-Douglas production function, both production factors are essential whether
we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neoclas-
sical technology with Inada conditions for MPK satisfied; the graphical representation
of MPK and MPL at k = k0 as f ′(k0) and f(k0) − f ′(k0)k0 are indicated. Right: the
line segment PQ makes up an effi cient combination of two effi cient Leontief techniques.

MPK = 0,13 whereas for k → 0, MPK stays equal to A1 <∞, thus questioning
the lower Inada condition.
The implausibility of the lower Inada conditions is also underlined if we look

at their implication in combination with the more reasonable upper Inada condi-
tions. Indeed, the four Inada conditions taken together imply, under CRS, that
output has no upper bound when either input goes towards infinity for fixed
amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often take
into account the existence of technological change. When technological change
occurs, the production function becomes time-dependent. Over time the produc-
tion factors tend to become more productive: more output for given inputs. To
put it differently: the isoquants move inward. When this is the case, we say that
the technological change displays technological progress.

Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by
(2.4). Empirical studies often specialize (2.4) by assuming that technological
change take a form known as factor-augmenting technological change:

Yt = F (AtKt, BtLt), (2.20)

13Here we assume the techniques are numbered according to ranking with respect to the size
of B.
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where F is a (time-independent) neoclassical production function, Yt, Kt, and
Lt are output, capital, and labor input, respectively, at time t, while At and
Bt are time-dependent “effi ciencies”of capital and labor, respectively, reflecting
technological change.
In macroeconomics an even more specific form is often assumed, namely the

form of Harrod-neutral technological change.14 This amounts to assuming that At
in (2.20) is a constant (which we can then normalize to one). So only Bt, which
is then conveniently denoted Tt, is changing over time, and we have

Yt = F (Kt, TtLt). (2.21)

The effi ciency of labor, Tt, is then said to indicate the technology level. Although
one can imagine natural disasters implying a fall in Tt, generally Tt tends to rise
over time and then we say that (2.21) represents Harrod-neutral technological
progress. An alternative name often used for this is labor-augmenting technolog-
ical progress. The names “factor-augmenting”and, as here, “labor-augmenting”
have become standard and we shall use them when convenient, although they
may easily be misunderstood. To say that a change in Tt is labor-augmenting
might be understood as meaning that more labor is required to reach a given
output level for given capital. In fact, the opposite is the case, namely that Tt
has risen so that less labor input is required. The idea is that the technological
change affects the output level as if the labor input had been increased exactly
by the factor by which T was increased, and nothing else had happened. (We
might be tempted to say that (2.21) reflects “labor saving”technological change.
But also this can be misunderstood. Indeed, keeping L unchanged in response to
a rise in T implies that the same output level requires less capital and thus the
technological change is “capital saving”.)
If the function F in (2.21) is homogeneous of degree one (so that the technol-

ogy exhibits CRS w.r.t. capital and labor), we may write

ỹt ≡
Yt
TtLt

= F (
Kt

TtLt
, 1) = F (k̃t, 1) ≡ f(k̃t), f ′ > 0, f ′′ < 0.

where k̃t ≡ Kt/(TtLt) ≡ kt/Tt (habitually called the “effective”capital intensity
or, if there is no risk of confusion, just the capital intensity). In rough accordance
with a general trend in aggregate productivity data for industrialized countries
we often assume that T grows at a constant rate, g, so that in discrete time Tt
= T0(1 + g)t and in continuous time Tt = T0e

gt, where g > 0. The popularity
in macroeconomics of the hypothesis of labor-augmenting technological progress
derives from its consistency with Kaldor’s “stylized facts”, cf. Chapter 4.

14After the English economist Roy F. Harrod, 1900-1978.
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There exists two alternative concepts of neutral technological progress. Hicks-
neutral technological progress is said to occur if technological development is such
that the production function can be written in the form

Yt = TtF (Kt, Lt), (2.22)

where, again, F is a (time-independent) neoclassical production function, while
Tt is the growing technology level.15 The assumption of Hicks-neutrality has been
used more in microeconomics and partial equilibrium analysis than in macroeco-
nomics. If F has CRS, we can write (2.22) as Yt = F (TtKt, TtLt). Comparing
with (2.20), we see that in this case Hicks-neutrality is equivalent to At = Bt in
(2.20), whereby technological change is said to be equally factor-augmenting.
Finally, in a symmetric analogy with (2.21), what is known as capital-augmenting

technological progress is present when

Yt = F (TtKt, Lt). (2.23)

Here technological change acts as if the capital input were augmented. For some
reason this form is sometimes called Solow-neutral technological progress.16 This
association of (2.23) to Solow’s name is misleading, however. In his famous growth
model,17 Solow assumed Harrod-neutral technological progress. And in another
famous contribution, Solow generalized the concept of Harod-neutrality to the
case of embodied technological change and capital of different vintages, see below.
It is easily shown (Exercise 2.5) that the Cobb-Douglas production function

(2.8) (with time-independent output elasticities w.r.t. K and L) satisfies all three
neutrality criteria at the same time, if it satisfies one of them (which it does if
technological change does not affect α and β). It can also be shown that within
the class of neoclassical CRS production functions the Cobb-Douglas function is
the only one with this property (see Exercise 4.??).
Note that the neutrality concepts do not say anything about the source of

technological progress, only about the quantitative form in which it materializes.
For instance, the occurrence of Harrod-neutrality should not be interpreted as
indicating that the technological change emanates specifically from the labor
input in some sense. Harrod-neutrality only means that technological innovations
predominantly are such that not only do labor and capital in combination become
more productive, but this happens to manifest itself in the form (2.21), that is,
as if an improvement in the quality of the labor input had occurred. (Even when
improvement in the quality of the labor input is on the agenda, the result may be
a reorganization of the production process ending up in a higher Bt along with,
or instead of, a higher At in the expression (2.20).)
15After the English economist and Nobel Prize laureate John R. Hicks, 1904-1989.
16After the American economist and Nobel Prize laureate Robert Solow (1924-).
17Solow (1956).
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Rival versus nonrival goods

When a production function (or more generally a production possibility set) is
specified, a given level of technical knowledge is presumed. As this level changes
over time, the production function changes. In (2.4) this dependency on the level
of knowledge was represented indirectly by the time dependency of the production
function. Sometimes it is useful to let the knowledge dependency be explicit by
perceiving knowledge as an additional production factor and write, for instance,

Yt = F (Xt, Tt), (2.24)

where Tt is now an index of the amount of knowledge, while Xt is a vector
of ordinary inputs like raw materials, machines, labor etc. In this context the
distinction between rival and nonrival inputs or more generally the distinction
between rival and nonrival goods is important. A good is rival if its character is
such that one agent’s use of it inhibits other agents’use of it at the same time.
A pencil is thus rival. Many production inputs like raw materials, machines,
labor etc. have this property. They are elements of the vector Xt. By contrast,
however, technical knowledge is a nonrival good. An arbitrary number of factories
can simultaneously use the same piece of technical knowledge in the sense of a list
of instructions about how different inputs can be combined to produce a certain
output. An engineering principle or a farmaceutical formula are examples. (Note
that the distinction rival-nonrival is different from the distinction excludable-
nonexcludable. A good is excludable if other agents, firms or households, can be
excluded from using it. Other firms can thus be excluded from commercial use of
a certain piece of technical knowledge if it is patented. The existence of a patent
concerns the legal status of a piece of knowledge and does not interfere with its
economic character as a nonrival input.).
What the replication argument really says is that by, conceptually, doubling

all the rival inputs, we should always be able to double the output, since we
just “replicate” what we are already doing. This is then an argument for (at
least) CRS w.r.t. the elements of Xt in (2.24). The point is that because of its
nonrivalry, we do not need to increase the stock of knowledge. Now let us imagine
that the stock of knowledge is doubled at the same time as the rival inputs are
doubled. Then more than a doubling of output should occur. In this sense we
may speak of IRS w.r.t. the rival inputs and T taken together.

The perpetual inventory method

Before proceeding, a brief remark about how the capital stockKt can be measured
While data on gross investment, It, is typically available in offi cial national income
and product accounts, data on Kt usually is not. It has been up to researchers
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and research institutions to make their own time-series for capital. One approach
to the measurement of Kt is the perpetual inventory method which builds upon
the accounting relationship

Kt = It−1 + (1− δ)Kt−1. (2.25)

Assuming a constant capital depreciation rate δ, backward substitution gives

Kt = It−1 + (1− δ) [It−2 + (1− δ)Kt−2] = . . . =
N∑
i=1

(1− δ)i−1It−i + (1− δ)TKt−N .

(2.26)
Based on a long time series for I and an estimate of δ, one can insert these
observed values in the formula and calculate Kt, starting from a rough conjec-
ture about the initial value Kt−N . The result will not be very sensitive to this
conjecture since for large N the last term in (2.26) becomes very small.

Embodied vs. disembodied technological progress*

An additional taxonomy of technological change is the following. We say that
technological change is embodied, if taking advantage of new technical knowledge
requires construction of new investment goods. The new technology is incorpo-
rated in the design of newly produced equipment, but this equipment will not
participate in subsequent technological progress. An example: only the most
recent vintage of a computer series incorporates the most recent advance in in-
formation technology. Then investment goods produced later (investment goods
of a later “vintage”) have higher productivity than investment goods produced
earlier at the same resource cost. Thus investment becomes an important driving
force in productivity increases.
We may formalize embodied technological progress by writing capital accu-

mulation in the following way:

Kt+1 −Kt = QtIt − δKt, (2.27)

where It is gross investment in period t, i.e., It = Yt − Ct, and Qt measures the
“quality” (productivity) of newly produced investment goods. The rising level
of technology implies rising Q so that a given level of investment gives rise to
a greater and greater addition to the capital stock, K, measured in effi ciency
units. In aggregate models C and I are produced with the same technology, the
aggregate production function. From this together with (2.27) follows that Q
capital goods can be produced at the same minimum cost as one consumption
good. Hence, the equilibrium price, p, of capital goods in terms of the consump-
tion good must equal the inverse of Q, i.e., p = 1/Q. The output-capital ratio in
value terms is Y/(pK) = QY/K.
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Note that even if technological change does not directly appear in the produc-
tion function, that is, even if for instance (2.21) is replaced by Yt = F (Kt, Lt),
the economy may experience a rising standard of living when Q is growing over
time.
In contrast, disembodied technological change occurs when new technical and

organizational knowledge increases the combined productivity of the production
factors independently of when they were constructed or educated. If the Kt

appearing in (2.21), (2.22), and (2.23) above refers to the total, historically ac-
cumulated capital stock as calculated by (2.26), then the evolution of T in these
expressions can be seen as representing disembodied technological change. All
vintages of the capital equipment benefit from a rise in the technology level Tt.
No new investment is needed to benefit.
Based on data for the U.S. 1950-1990, and taking quality improvements into

account, Greenwood et al. (1997) estimate that embodied technological progress
explains about 60% of the growth in output per man hour. So, empirically,
embodied technological progress seems to play a dominant role. As this tends not
to be fully incorporated in national income accounting at fixed prices, there is
a need to adjust the investment levels in (2.26) to better take estimated quality
improvements into account. Otherwise the resulting K will not indicate the
capital stock measured in effi ciency units.
For most issues dealt with in this book the distinction between embodied and

disembodied technological progress is not very important. Hence, unless explicitly
specified otherwise, technological change is understood to be disembodied.

2.3 The concepts of a representative firm and
an aggregate production function

Many macroeconomic models make use of the simplifying notion of a represen-
tative firm. By this is meant a fictional firm whose production “represents”
aggregate production (value added) in a sector or in society as a whole.
Suppose there are n firms in the sector considered or in society as a whole.

Let F i be the production function for firm i so that Yi = F i(Ki, Li), where Yi,
Ki, and Li are output, capital input, and labor input, respectively, i = 1, 2, . . . , n.
Further, let Y = Σn

i=1Yi, K = Σn
i=1Ki, and L = Σn

i=1Li. Ignoring technological
change, suppose the aggregate variables are related through some function, F ∗,
such that we can write

Y = F ∗(K,L),

and such that the choices of a single firm facing this production function coincide
with the aggregate outcomes, Σn

i=1Yi, Σn
i=1Ki, and Σn

i=1Li, in the original econ-
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omy. Then F ∗(K,L) is called the aggregate production function or the production
function of the representative firm. It is as if aggregate production is the result
of the behavior of such a single firm.
A simple example where the aggregate production function is well-defined is

the following. Suppose that all firms have the same production function so that
Yi = F (Ki, Li), i = 1, 2, . . . , n. If in addition F has CRS, we have

Yi = F (Ki, Li) = LiF (ki, 1) ≡ Lif(ki),

where ki ≡ Ki/Li. Hence, facing given factor prices, cost-minimizing firms will
choose the same capital intensity ki = k for all i. From Ki = kLi then follows∑

iKi = k
∑

i Li so that k = K/L. Thence,

Y ≡
∑

Yi =
∑

Lif(ki) = f(k)
∑

Li = f(k)L = F (k, 1)L = F (K,L).

In this (trivial) case the aggregate production function is well-defined and turns
out to be exactly the same as the identical CRS production functions of the
individual firms. Moreover, given CRS and ki = k for all i, we have ∂Yi/∂Ki

= f ′(ki) = f ′(k) = FK(K,L) for all i. So each firm’s marginal productivity of
capital is the same as the marginal productivity of capital on the basis of the
aggregate production function.
Allowing for the existence of different production functions at firm level, we

may define the aggregate production function as

F (K,L) = max
(K1,L1,...,Kn,Ln)≥0

F 1(K1, L1) + · · ·+ F n(Kn, Ln)

s.t.
∑
i

Ki ≤ K,
∑
i

Li ≤ L.

Here it is no longer generally true that ∂Yi/∂Ki (= F i
K(Ki, Li) = ∂Y/∂K (=

FK(K,L).
A next step is to allow also for the existence of different output goods, dif-

ferent capital goods, and different types of labor. This makes the issue even
more intricate, of course. Yet, if firms are price taking profit maximizers and
face nonincreasing returns to scale, we at least know from microeconomics that
the aggregate outcome is as if, for given prices, the firms jointly maximize aggre-
gate profit on the basis of their combined production technology. The problem
is, however, that the conditions needed for this to imply existence of an aggre-
gate production function which is well-behaved (in the sense of inheriting simple
qualitative properties from its constituent parts) are restrictive.
Nevertheless macroeconomics often treats aggregate output as a single homo-

geneous good and capital and labor as being two single and homogeneous inputs.
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There was in the 1960s a heated debate about the problems involved in this,
with particular emphasis on the aggregation of different kinds of equipment into
one variable, the capital stock “K”. The debate is known as the “Cambridge
controversy”because the dispute was between a group of economists from Cam-
bridge University, UK, and a group from Massachusetts Institute of Technology
(MIT), which is located in Cambridge, USA. The former group questioned the
theoretical robustness of several of the neoclassical tenets, including the propo-
sition that a higher aggregate capital intensity is induced by a lower rate of
interest. Starting at the disaggregate level, an association of this sort is not a
logical necessity because, with different production functions across the indus-
tries, the relative prices of produced inputs tend to change, when the interest
rate changes. While acknowledging the possibility of “paradoxical”relationships,
the MIT group maintained that in a macroeconomic context they are likely to
cause devastating problems only under exceptional circumstances. In the end this
is a matter of empirical assessment.18

To avoid complexity and because, for many important issues in macroeco-
nomics, there is today no well-tried alternative, this book is about models that
use aggregate constructs like “Y ”, “K”, and “L”as simplifying devices, assum-
ing they are, for a broad class of cases, acceptable in a first approximation. Of
course there are cases where some disaggregation is pertinent. When for example
the role of imperfect competition is in focus, we shall be ready to (modestly)
disaggregate the production side of the economy into several product lines, each
producing its own differentiated product (cf. Section 2.5.3).
Like the representative firm, the representative household and the aggregate

consumption function are simplifying notions that should be applied only when
they do not get in the way of the issue to be studied. The role of budget con-
straints may make it even more diffi cult to aggregate over households than over
firms. Yet, if (and that is a big if) all households have the same constant propen-
sity to consume out of income or wealth, aggregation is straightforward and the
representative household is a meaningful simplifying concept. On the other hand,
if we aim at understanding, say, the interaction between lending and borrowing
households, perhaps via financial intermediaries, the representative household is
not a useful starting point. Similarly, if the theme is conflicts of interests between
firm owners and employees, the existence of different types of households should
be taken into account. Or if we want to assess the welfare costs of business cycle
fluctuations, we have to take heterogeneity into account in view of the fact that
exposure to unemployment risk tends to be very unevenly distributed.

18In his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What the
‘paradoxical’comparative statics [of disaggregate capital theory] has taught us is simply that
modelling the world as having a single capital good is not a priori justified. So be it.”
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2.4 The neoclassical competitive one-sector setup

Many long-run macromodels, including those in the first chapters to follow, share
the same abstract setup regarding the firms and the market environment in which
they are placed. We give an account here which will serve as a reference point
for these later chapters.
The setup is characterized by the following simplifications:

(a) There is only one produced good, an all-purpose good that can be used for
consumption as well as investment. Physical capital is just the accumulated
amount of what is left of the produced good after consumption. Models
using this simplification are called one-sector models. One may think of
“corn”, a good that can be used for consumption as well as investment in
the form of seed to yield corn next period.

(b) A representative firm maximizes profit subject to a neoclassical production
function under non-increasing returns to scale.

(c) Capital goods become productive immediately upon purchase or renting (so
installation costs and similar features are ignored).

(d) In all markets perfect competition rules and so the economic actors are price
takers, perceiving no constraint on how much they can sell or buy at the
going market price. It is understood that market prices are flexible and
adjust quickly to levels required for market clearing.

(e) Factor supplies are inelastic.

(f) There is no uncertainty. When a choice of action is made, the consequences
are known.

We call such a setup the neoclassical competitive one-sector setup. In many
respects it is an abstraction. Nevertheless, the outcome under these conditions is
of theoretical interest. Think of Galilei’s discovery that a falling body falls with
a uniform acceleration as long as it is falling through a perfect vacuum.

2.4.1 Profit maximization

We consider a single period. Let the representative firm have the neoclassical
production function

Y = F (K,L), (2.28)
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where technological change is ignored. Although in this book often CRS will be
assumed, we may throw the CRS outcome in relief by starting with a broader
view.
From microeconomics we know that equilibrium with perfect competition is

compatible with producers operating under the condition of locally nonincreasing
returns to scale (cf. Fig. 2.2). In standard macroeconomics it is common to
accept a lower level of generality and simply assume that F is a concave function.
This allows us to carry out the analysis as if there were non-increasing returns
to scale everywhere (see Appendix D).19

Since F is neoclassical, we have FKK < 0 and FLL < 0 everywhere. To
guarantee concavity it is then necessary and suffi cient to add the assumption
that

D ≡ FKK(K,L)FLL(K,L)− FKL(K,L)2 ≥ 0, (2.29)

holds for all (K,L). This is a simple application of a general theorem on concave
functions (see Math Tools).
We consider both K and L as variable production factors. Let the factor

prices be denoted wK and wL, respectively. For the time being we assume the
firm rents the machines it uses; then the price, wK , of capital services is called
the rental price or the rental rate. As numeraire (unit of account) we apply the
output good. So all prices are measured in terms of the output good which itself
has the price 1. Then profit, defined as revenue minus costs, is

Π = F (K,L)− wKK − wLL. (2.30)

We assume both production inputs are variable inputs. Taking the factor prices
as given from the factor markets, the firm’s problem is to choose (K,L), where
K ≥ 0 and L ≥ 0, so as to maximize Π. An interior solution will satisfy the
first-order conditions

∂Π

∂K
= FK(K,L)− wK = 0 or FK(K,L) = wK , (2.31)

∂Π

∂L
= FL(K,L)− wL = 0 or FL(K,L) = wL. (2.32)

Since F is concave, so is the profit function. The first-order conditions are then
suffi cient for (K,L) to be a solution.
It is now convenient to proceed by considering the two cases, DRS and CRS,

separately.

19By definition, concavity means that by applying a weighted average of two factor combina-
tions, (K1, L1) and (K2, L2), the obtained output is at least as large as the weighted average
of the original outputs, Y1 and Y2. So, if 0 < λ < 1 and (K,L) = λ(K1, L1) +(1− λ)(K2, L2),
then F (K,L) ≥ λF (K1, L1) +(1− λ)F (K2, L2).
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The DRS case

Suppose the production function satisfies (2.29) with strict inequality everywhere,
i.e.,

D > 0.

In combination with the neoclassical property of diminishing marginal productiv-
ities, this implies that F is strictly concave which in turn implies DRS everywhere.
The factor demands will now be unique. Indeed, the equations (2.31) and (2.32)
define the factor demands Kd and Ld (“d”for demand) as implicit functions of
the factor prices:

Kd = K(wK , wL), Ld = L(wK , wL).

An easy way to find the partial derivatives of these functions is to first take the
differential20 of both sides of (2.31) and (2.32), respectively:

FKKdK
d + FKLdL

d = dwK ,

FLKdK
d + FLLdL

d = dwL.

Then we interpret these conditions as a system of two linear equations with two
unknowns, the variables dKd and dLd. The determinant of the coeffi cient matrix
equals D in (2.29) and is in this case positive everywhere. Using Cramer’s rule
(see Math Tools), we find

dKd =
FLLdwK − FKLdwL

D
,

dLd =
FKKdwL − FLKdwK

D
,

so that

∂Kd

∂wK
=

FLL
D

< 0,
∂Kd

∂wL
= −FKL

D
< 0 if FKL > 0, (2.33)

∂Ld

∂wK
= −FKL

D
< 0 if FKL > 0,

∂Ld

∂wL
=
FKK
D

< 0, (2.34)

20The differential of a differentiable function is a convenient tool for deriving results like
(2.33) and (2.34). For a function of one variable, y = f(x), the differential is denoted dy (or df)
and is defined as f ′(x)dx, where dx is some arbitrary real number (interpreted as the change in
x). For a differentiable function of two variables, z = g(x, y) , the differential of the function is
denoted dz (or dg) and is defined as dz = gx(x, y)dx +gy(x, y)dy, where dx and dy are arbitrary
real numbers.
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in view of FLK = FKL.
21

In contrast to the cases of CRS and IRS, here we cannot be sure that direct
complementarity (FKL > 0) holds everywhere. In any event, the rule for both
factors is that when a factor price increases, the demand for the factor in question
decreases and under direct complementarity also the demand for the other factor
will decrease. Although there is a substitution effect towards higher demand for
the factor whose price has not been increased, this is more than offset by the
negative output effect, which is due to the higher marginal costs. This is an
implication of perfect competition. In a different market structure output may
be determined from the demand side (think of a Keynesian short-run model) and
then only the substitution effect will be operative. An increase in one factor price
will then increase the demand for the other factor.

The CRS case

Under CRS, D in (2.29) takes the value

D = 0

everywhere, as shown in Appendix B. Then the factor prices no longer determine
the factor demands uniquely. But the relative factor demand, kd ≡ Kd/Ld, is
determined uniquely by the relative factor price, wL/wK . Indeed, by (2.31) and
(2.32),

MRS =
FL(K,L)

FK(K,L)
=
f(k)− f ′(k)k

f ′(k)
≡ mrs(k) =

wL
wK

, (2.35)

where the second equality comes from (2.15) and (2.16). By straightforward
calculation,

mrs′(k) = −f(k)f ′′(k)

f ′(k)2
= −kf

′′(k)/f ′(k)

α(k)
> 0,

where α(k) ≡ kf ′(k)/f(k) is the elasticity of f w.r.t. k and the numerator is the
elasticity of f ′ w.r.t. k. For instance, in the Cobb-Douglas case f(k) = Akα, we
get mrs′(k) = (1 − α)/α. Given wL/wK , the last equation in (2.35) gives kd as
an implicit function kd = k(wL/wK), where k′(wL/wK) = 1/mrs′(k) > 0. The
solution is illustrated in Fig. 2.4. Under CRS (indeed, for any homogeneous
neoclassical production function) the desired capital-labor ratio is an increasing
function of the inverse factor price ratio and independent of the output level.

21Applying the full content of the implicit function theorem (see Math tools), one could
directly have written down the results (2.33) and (2.34) and would not need the procedure
outlined here, based on differentials. On the other hand the present procedure is probably
more intuitive and easier to remember.
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Figure 2.4: Constancy of MRS along rays when the production function is homogeneous
of degree h (the cost-minimizing capital intensity is the same at all output levels).

To determine Kd and Ld separately we need to know the level of output. And
here we run into the general problem of indeterminacy under perfect competition
combined with CRS. Saying that the output level is so as to maximize profit is
pointless. Well, if at the going factor prices attainable profit is negative, exit
from the market is profit maximizing (or rather loss minimizing), which amounts
to Kd = Ld = 0. But if the profit is positive, there will be no upper bound to the
factor demands. Owing to CRS, doubling the factor inputs will double the profits
of a price taking firm. An equilibrium with positive production is only possible if
profit is zero. And then the firm is indifferent w.r.t. the level of output. Solving
the indeterminacy problem requires a look at the factor markets.

2.4.2 Clearing in factor markets

Considering a closed economy, we denote the available supplies of physical capital
and labor Ks and Ls, respectively, and assume these supplies are inelastic. W.r.t.
capital this is a “natural” assumption since in a closed economy in the short
term the available amount of capital will be predetermined, that is, historically
determined by the accumulated previous investment in the economy. W.r.t. labor
supply it is just a simplifying assumption introduced because the question about
possible responses of labor supply to changes in factor prices is a secondary issue
in the present context.
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The factor markets clear when

Kd = Ks, (2.36)

Ld = Ls. (2.37)

Achieving this equilibrium (state of “rest”) requires that the factor prices adjust
to their equilibrium levels, which are

wK = FK(Ks, Ls), (2.38)

wL = FL(Ks, Ls), (2.39)

by (2.31) and (2.32). This says that in equilibrium the real factor prices are
determined by the marginal productivities of the respective factors at full utiliza-
tion of the given supplies. This holds under DRS as well as CRS. So, under
non-increasing returns to scale there is, at the macroeconomic level, a unique
equilibrium (wK , wL, K

d, Ld) given by the above four equilibrium conditions for
the factor markets.22 It is an equilibrium in the sense that no agent has an
incentive to “deviate”.
As to comparative statics, since FKK < 0, a larger capital supply implies a

lower wK , and since FLL < 0, a larger labor supply implies a lower wL.
The intuitive mechanism behind the attainment of equilibrium is that if, for

example, for a short moment wK < FK(Ks, Ls), then Kd > Ks and so competi-
tion between the firms will generate an upward pressure on wK until equality is
obtained. And if for a short moment wK > FK(Ks, Ls), then Kd < Ks and so
competition between the suppliers of capital will generate a downward pressure
on wK until equality is obtained.
Looking more carefully at the matter, however, we see that this intuitive

reasoning fits at most the DRS case. In the CRS case we have FK(Ks, Ls) = f(ks),
where ks ≡ Ks/Ls. Here we can only argue that for instance wK < FK(Ks, Ls)
implies kd > ks. And even if this leads to upward pressure on wK until kd = ks

is achieved, and even if both factor prices have obtained their equilibrium levels
given by (2.38) and (2.39), there is nothing to induce the representative firm (or
the many firms in the actual economy taken together) to choose the “right”input
levels so as to satisfy the clearing conditions (2.36) and (2.37). In this way the
indeterminacy under CRS pops up again, this time as a problem endangering
stability of the equilibrium.

Stability not guaranteed*

To substantiate the point that the indeterminacy under CRS may endanger sta-
bility of competitive equilibrium, let us consider a Walrasian tâtonnement ad-
22At the microeconomic level, under CRS, industry structure remains indeterminate in that

firms are indifferent as to their size.
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justment process.23 We imagine that our period is sub-divided into many short
time intervals (t, t + ∆t). In the initial short time interval the factor markets
may not be in equilibrium. It is assumed that no capital or labor is hired out
of equilibrium. To allow an analysis in continuous time, we let ∆t → 0. A dot
over a variable denotes the time derivative, i.e., ẋ(t) = dx(t)/dt. The adjustment
process assumed is the following:

K̇d(t) = λ1

[
FK(Kd(t), Ld(t))− wK(t)

]
, λ1 > 0,

L̇d(t) = λ2

[
FL(Kd(t), Ld(t))− wL(t)

]
, λ2 > 0,

ẇK(t) = Kd(t)−Ks,

ẇL(t) = Ld(t)− Ls,
where the initial values, Kd(0), Ld(0), wK(0), and wL(0), are given. The parame-
ters λ1 and λ2 are constant adjustment speeds. The corresponding adjustment
speeds for the factor prices are set equal to one by choice of measurement units of
the inputs. Of course, the four endogenous variables should be constrained to be
nonnegative, but that is not important for the discussion here. The system has
a unique stationary state: Kd(t) = Ks, Ld(t) = Ls, wK(t) = KK(Ks, Ls), wL(t)
= KL(Ks, Ls).
A widespread belief, even in otherwise well-informed circles, seems to be that

with such adjustment dynamics, the stationary state is at least locally asymptot-
ically stable. By this is meant that there exists a (possibly only small) neigh-
borhood, N , of the stationary state with the property that if the initial state,
(Kd(0), Ld(0), wK(0), wL(0)), belongs to N , then the solution (Kd(t), Ld(t),
wK(t), wL(t)) converges to the stationary state for t→∞?
Unfortunately, however, this stability property is not guaranteed. To bear

this out, it is enough to present a counterexample. Let F (K,L) = K
1
2L

1
2 , λ1

= λ2 = Ks = Ls = 1, and suppose Kd(0) = Ld(0) > 0 and wK(0) = wL(0) > 0.
All this symmetry implies that Kd(t) = Ld(t) = x(t) > 0 and wK(t) = wL(t)
= w(t) for all t ≥ 0. So FK(Kd(t), Ld(t)) = 0.5x(t)−0.5x(t)0.5 = 0.5, and similarly
FL(Kd(t), Ld(t)) = 0.5 for all t ≥ 0. Now the system is equivalent to the two-
dimensional system,

ẋ(t) = 0.5− w(t), (2.40)

ẇ(t) = x(t)− 1. (2.41)

Using the theory of coupled linear differential equations, the solution is24

x(t) = 1 + (x(0)− 1) cos t− (w(0)− 0.5) sin t, (2.42)

w(t) = 0.5 + (w(0)− 0.5) cos t+ (x(0)− 1) sin t. (2.43)
23Tâtonnement is a French word meaning “groping”.
24For details, see hints in Exercise 2.6.
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The solution exhibits undamped oscillations and never settles down at the sta-
tionary state, (1, 0.5), if not being there from the beginning. In fact, the solution
curves in the (x,w) plane will be circles around the stationary state. This is
so whatever the size of the initial distance,

√
(x(0)− 1)2 + (w(0)− 0.5)2, to the

stationary point.
The economic mechanism is as follows. Suppose for instance that x(0) < 1

and w(0) < 0.5. Then to begin with there is excess supply and so w will be falling
while, with w below marginal products, x will be increasing. When x reaches its
potential equilibrium value, 1, w is at its trough and so induces further increases
in the factor demands, thus bringing about a phase where x > 1. This excess
demand causes w to begin an upturn. When w reaches its potential equilibrium
value, 0.5, however, excess demand, x− 1, is at its peak and this induces further
increases in factor prices, w. This brings about a phase where w > 0.5 so that
factor prices exceed marginal products, which leads to declining factor demands.
But as x comes back to its potential equilibrium value, w is at its peak and drives
x further down. Thus excess supply arises which in turn triggers a downturn of w.
This continues in never ending oscillations where the overreaction of one variable
carries the seed to an overreaction of the other variable soon after and so on.
This possible outcome underlines that the theoretical existence of equilibrium

is one thing and stability of the equilibrium is another. In particular under CRS,
where demand functions for inputs are absent, the issue of stability can be more
intricate than one might at first glance think.

The link between capital costs and the interest rate*

Returning to the description of equilibrium, we shall comment on the relationship
between the factor price wK and the more everyday concept of an interest rate.
The factor price wK is the cost per unit of capital service. It has different names
in the literature such as the rental price, the rental rate, the unit capital cost, or
the user cost. It is related to the interest and depreciation costs that the owner of
the capital good in question defrays. In the simple neoclassical setup considered
here, it does not matter whether the firm rents the capital it uses or owns it;
in the latter case, wK , is the imputed capital cost, i.e., the forgone interest plus
depreciation.
As to depreciation it is common in simple macroeconomics to apply the ap-

proximation that, due to wear and tear, a constant fraction δ (where 0 ≤ δ ≤ 1)
of a given capital stock evaporates per period. If for instance the period length
is one year and δ = 0.1, this means that a given machine in the next year has
only the fraction 0.9 of its productive capacity in the current year. Otherwise the
productive characteristics of a capital good are assumed to be the same whatever
its time of birth. Sometimes δ is referred to as the rate of physical capital depre-
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ciation or the deterioration rate. When changes in relative prices can occur, this
must be distinguished from the economic depreciation of capital which refers to
the loss in economic value of a machine after one year.
Let pt−1 be the price of a certain type of machine bought at the end of period

t− 1. Let prices be expressed in the same numeraire as that in which the interest
rate, r, is measured. And let pt be the price of the same type of machine one
period later. Then the economic depreciation in period t is

pt−1 − (1− δ)pt = δpt − (pt − pt−1).

The economic depreciation thus equals the value of the physical wear and tear
minus the capital gain (positive or negative) on the machine.
By holding the machine the owner faces an opportunity cost, namely the

forgone interest on the value pt−1 placed in the machine during period t. If rt is
the interest rate on a loan from the end of period t−1 to the end of period t, this
interest cost is rtpt−1. The benefit of holding the (new) machine is that it can be
rented out to the representative firm and provide the return wKt at the end of
the period. Since there is no uncertainty, in equilibrium we must then have wKt
= rtpt−1 + δpt − (pt − pt−1), or

wKt − δpt + pt − pt−1

pt−1

= rt. (2.44)

This is a no-arbitrage condition saying that the rate of return on holding the
machine equals the rate of return obtainable in the loan market (no profitable
arbitrage opportunities are available).25

In the simple setup considered so far, the capital good and the produced good
are physically identical and thus have the same price. As the produced good
is our numeraire, we have pt−1 = pt = 1. This has two implications. First, the
interest rate, rt, is a real interest rate so that 1 + rt measures the rate at which
future units of output can be traded for current units of output. Second, (2.44)
simplifies to

wKt − δ = rt.

Combining this with equation (2.38), we see that in the simple neoclassical setup
the equilibrium real interest rate is determined as

rt = FK(Ks
t , L

s
t)− δ, (2.45)

25In continuous time analysis the rental rate, the interest rate, and the price of the machine
are considered as differentiable functions of time, wK(t), r(t), and p(t), respectively. In analogy
with (2.44) we then get wK(t) = (r(t) + δ)p(t)− ṗ(t), where ṗ(t) denotes the time derivative of
the price p(t).
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whereKS
t and L

s
t are predetermined. Under CRS this takes the form rt = f ′(kst )−

δ, where kst ≡ Ks
t /L

s
t .

We have assumed that the firms rent capital goods from their owners, presum-
ably the households. But as long as there is no uncertainty, no capital adjustment
costs, and no taxation, it will have no consequences for the results if instead we
assume that the firms own the physical capital they use and finance capital invest-
ment by issuing bonds or shares. Then such bonds and shares would constitute
financial assets, owned by the households and offering a rate of return rt as given
by (2.45).

2.5 More complex model structures*

The neoclassical setup described above may be useful as a first way of organizing
one’s thoughts about the production side of the economy. To come closer to
a model of how modern economies function, however, many modifications and
extensions are needed.

2.5.1 Convex capital installation costs

In the real world the capital goods used by a production firm are usually owned
by the firm itself rather than rented for single periods on rental markets. This is
because inside the specific plant in which these capital goods are an integrated
part, they are generally worth much more than outside. So in practice firms ac-
quire and install fixed capital equipment with a view on maximizing discounted
expected profits in the future. The cost associated with this fixed capital in-
vestment not only includes the purchase price of new equipment, but also the
installation costs (the costs of setting up the new fixed equipment in the firm and
the associated costs of reorganizing work processes).
Assuming the installation costs are strictly convex in the level of investment,

the firm has to solve an intertemporal optimization problem. Forward-looking
expectations thus become important and this has implications for how equilib-
rium in the output market is established and how the equilibrium interest rate is
determined. Indeed, in the simple neoclassical setup above, the interest rate equi-
librates the market for capital services. The value of the interest rate is simply
tied down by the equilibrium condition (2.39) in this market and what happens
in the output market is a trivial consequence of this. But with convex capital
installation costs the firm’s capital stock is given in the short run and the interest
rate(s) become(s) determined elsewhere in the model, as we shall see in chapters
14 and 15.
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2.5.2 Long-run vs. short-run production functions

In the discussion of production functions up to now we have been silent about the
distinction between “ex ante”and “ex post”substitutability between capital and
labor. By ex ante is meant “when plant and machinery are to be decided upon”
and by ex post is meant “after the equipment is designed and constructed”. In the
standard neoclassical competitive setup like in (2.35) there is a presumption that
also after the construction and installation of the equipment in the firm, the ratio
of the factor inputs can be fully adjusted to a change in the relative factor price.
In practice, however, when some machinery has been constructed and installed,
its functioning will often require a more or less fixed number of machine operators.
What can be varied is just the degree of utilization of the machinery. That is,
after construction and installation of the machinery, the choice opportunities are
no longer described by the neoclassical production function but by a Leontief
production function,

Y = min(AuK̄,BL), A > 0, B > 0, (2.46)

where K̄ is the size of the installed machinery (a fixed factor in the short run)
measured in effi ciency units, u is its utilization rate (0 ≤ u ≤ 1), and A and B
are given technical coeffi cients measuring effi ciency (cf. Section 2.1.2).
So in the short run the choice variables are u and L. In fact, essentially only

u is a choice variable since effi cient production trivially requires L = AuK̄/B.
Under “full capacity utilization”we have u = 1 (each machine is used 24 hours
per day seven days per week). “Capacity”is given as AK̄ per week. Producing
effi ciently at capacity requiresL = AK̄/B and the marginal product by increasing
labor input is here nil. But if demand, Y d, is less than capacity, satisfying this
demand effi ciently requires L = Y d/B and u = BL/(AK̄) < 1. As long as u < 1,
the marginal productivity of labor is a constant, B.
The various effi cient input proportions that are possible ex ante may be ap-

proximately described by a neoclassical CRS production function. Let this func-
tion on intensive form be denoted y = f(k). When investment is decided upon
and undertaken, there is thus a choice between alternative effi cient pairs of the
technical coeffi cients A and B in (2.46). These pairs satisfy

f(k) = Ak = B. (2.47)

So, for an increasing sequence of k’s, k1, k2,. . . , ki,. . . , the corresponding pairs are
(Ai, Bi) = (f(ki)/ki, f(ki)), i = 1, 2,. . . .26 We say that ex ante, depending on the
relative factor prices as they are “now”and are expected to evolve in the future,

26The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as constructed
this way from the neoclassical production function in the left-hand panel of the figure.
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a suitable technique, (Ai, Bi), is chosen from an opportunity set described by the
given neoclassical production function. But ex post, i.e., when the equipment
corresponding to this technique is installed, the production opportunities are
described by a Leontief production function with (A,B) = (Ai, Bi).
In the picturesque language of Phelps (1963), technology is in this case putty-

clay. Ex ante the technology involves capital which is “putty” in the sense of
being in a malleable state which can be transformed into a range of various
machinery requiring capital-labor ratios of different magnitude. But once the
machinery is constructed, it enters a “hardened”state and becomes ”clay”. Then
factor substitution is no longer possible; the capital-labor ratio at full capacity
utilization is fixed at the level k = Bi/Ai, as in (2.46). Following the terminology
of Johansen (1972), we say that a putty-clay technology involves a “long-run
production function”which is neoclassical and a “short-run production function”
which is Leontief.

Table 1. Technologies classified according to
factor substitutability ex ante and ex post.

Ex post substitution
Ex ante substitution possible impossible
possible putty-putty putty-clay
impossible clay-clay

In contrast, the standard neoclassical setup assumes the same range of sub-
stitutability between capital and labor ex ante and ex post. Then the technology
is called putty-putty. This term may also be used if ex post there is at least some
substitutability although less than ex ante. At the opposite pole of putty-putty
we may consider a technology which is clay-clay. Here neither ex ante nor ex post
is factor substitution possible. Table 1 gives an overview of the alternative cases.
The putty-clay case is generally considered the realistic case. As time pro-

ceeds, technological progress occurs. To take this into account, we may replace
(2.47) and (2.46) by f(kt, t) = Atkt = Bt and Yt = min(AtutK̄t, BtLt), respec-
tively. If a new pair of Leontief coeffi cients, (At2 , Bt2), effi ciency-dominates its
predecessor (by satisfying At2 ≥ At1 and Bt2 ≥ Bt1 with at least one strict equal-
ity), it may pay the firm to invest in the new technology at the same time as
some old machinery is scrapped. Real wages tend to rise along with technolog-
ical progress and the scrapping occurs because the revenue from using the old
machinery in production no longer covers the associated labor costs.
The clay property ex-post of many technologies is important for short-run

analysis. It implies that there may be non-decreasing marginal productivity of

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



50 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

labor up to a certain point. It also implies that in its investment decision the
firm will have to take expected future technologies and future factor prices into
account. For many issues in long-run analysis the clay property ex-post may be
less important, since over time adjustment takes place through new investment.

2.5.3 A simple portrayal of price-making firms

Another modification which is important in short- and medium-run analysis,
relates to the assumed market forms. Perfect competition is not a good approx-
imation to market conditions in manufacturing and service industries. To bring
perfect competition in the output market in perspective, we give here a brief re-
view of firms’behavior under a form of monopolistic competition that is applied
in many short-run models.
Suppose there is a large number of differentiated goods, i = 1, 2, . . . , n, each

produced by a separate firm. In the short run n is given. Each firm has monopoly
on its own good (supported, say, by a trade mark, patent protection, or simply
secrecy regarding the production recipe). The goods are imperfect substitutes to
each other and so indirect competition prevails. Each firm is small in relation to
the “sum”of competing firms and perceives that these other firms do not respond
to its actions.
In the given period let firm i face a given downward-sloping demand curve for

its product,

Yi ≤
(
Pi
P

)−ε
Y

n
≡ D(Pi), ε > 1. (2.48)

Here Yi is the produced quantity and the expression on the right-hand side of the
inequality is the demand as a function of the price Pi chosen by the firm.27 The
“general price level”P (a kind of average across the different goods, cf. Chapter
22) and the “general demand level”, given by the index Y , matter for the position
of the demand curve in the (Yi, Pi) plan, cf. Fig. 2.5. The price elasticity
of demand, ε, is assumed constant and higher than one (otherwise there is no
solution to the monopolist’s decision problem). Variables that the monopolist
perceives as exogenous are implicit in the demand function symbol D.We imagine
prices are expressed in terms of money (so they are “nominal” prices, hence
denoted by capital letters whereas we generally use small letters for “real”prices).
For simplicity, factor markets are still assumed competitive. Given the nomi-

nal factor prices, WK and WL, firm i wants to maximize its profit

Πi = PiYi −WKKi −WLLi,

27We ignore production for inventory holding.
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subject to (2.48) and the neoclassical production function Yi = F (Ki, Li). For the
purpose of simple comparison with the case of perfect competition as described
in Section 2.4, we return to the case where both labor and capital are variable
inputs in the short run.28 It is no serious restriction on the problem to assume
the monopolist will want to produce the amount demanded so that Yi = D(Pi).
It is convenient to solve the problem in two steps.

Figure 2.5: Determination of the monopolist price and output.

Step 1. Imagine the monopolist has already chosen the output level Yi. Then
the problem is to minimize cost:

min
Ki,Li

WKKi +WLLi s.t. F (Ki, Li) = Yi.

An interior solution (Ki, Li) will satisfy the first-order conditions

λFK(Ki, Li) = WK , λFL(Ki, Li) = WL, (2.49)

where λ is the Lagrange multiplier. Since F is neoclassical and thereby strictly
quasiconcave, the first-order conditions are not only necessary but also suffi cient
for (Ki, Li) to be a solution, and (Ki, Li) will be unique so that we can write
these conditional factor demands as functions, Kd

i = K(WK ,WL, Yi) and Ldi =
L(WK ,WL, Yi). This gives rise to the cost function C(Yi) = WKK(WK ,WL, Yi)
+WLL(WK ,WL, Yi).
Step 2. Solve

max
Yi

Π(Yi) = R(Yi)− C(Yi) = P(Yi)Yi − C(Yi).

28Generally, the technology would differ across the different product lines and F should thus
be replaced by F i, but for notational convenience we ignore this.
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We have here introduced “total revenue”R(Yi) = P(Yi)Yi, where P(Yi) is the
inverse demand function defined by P(Yi) ≡ D−1(Yi) = [Yi/(Y/n)]−1/ε P from
(2.48). The first-order condition is

R′(Yi) = P(Yi) + P ′(Yi)Yi = C ′(Yi), (2.50)

where the left-hand side is marginal revenue and the right-hand side is marginal
cost.
A suffi cient second-order condition is that Π′′(Yi) = R′′(Yi)− C ′′(Yi) < 0, i.e.,

the marginal revenue curve crosses the marginal cost curve from above. In the
present case this is surely satisfied if we assume C ′′(Yi) ≥ 0, which also ensures
existence and uniqueness of a solution to (2.50). Substituting this solution, which
we denote Y s

i , cf. Fig. 2.5, into the conditional factor demand functions from
Step 1, we find the factor demands, Kd

i and L
d
i . Owing to the downward-sloping

demand curves the factor demands are unique whether the technology exhibits
DRS, CRS, or IRS. Thus, contrary to the perfect competition case, neither CRS
nor IRS pose particular problems.
From the definition R(Yi) = P (Yi)Yi follows

R′(Yi) = Pi

(
1 +

Yi
Pi
P ′(Yi)

)
= Pi

(
1− 1

ε

)
= Pi

ε− 1

ε
.

So the pricing rule is Pi = (1 +µ)C ′(Yi), where Yi is the profit maximizing output
level and µ ≡ ε/(ε − 1) − 1 > 0 is the mark-up on marginal cost. An analytical
very convenient feature is that the markup is thus a constant.
In parallel with (2.31) and (2.32) the solution to firm i’s decision problem is

characterized by the marginal revenue productivity conditions

R′(Y s
i )FK(Kd

i , L
d
i ) = WK , (2.51)

R′(Y s
i )FL(Kd

i , L
d
i ) = WL, (2.52)

where Y s
i = F (Kd

i , L
d
i ). These conditions follow from (2.49), since the Lagrange

multiplier equals marginal cost (see Appendix A), which equals marginal revenue.
That is, at profit maximum the marginal revenue products of capital and labor,
respectively, equal the corresponding factor prices. Since Pi > R′(Y s

i ), the factor
prices are below the value of the marginal productivities. This reflects the market
power of the firms.
In macro models a lot of symmetry is often assumed. If there is complete

symmetry across product lines and if factor markets clear as in (2.36) and (2.37)
with inelastic factor supplies, Ks and Ls, then Kd

i = Ks/n and Ldi = Ls/n.
Furthermore, all firms will choose the same price so that Pi = P, i = 1, 2, . . . , n.
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Then the given factor supplies, together with (2.51) and (2.52), determine the
equilibrium real factor prices:

wK ≡ WK

P
=

1

1 + µ
FK(

Ks

n
,
Ls

n
),

wL ≡
WL

P
=

1

1 + µ
FL(

Ks

n
,
Ls

n
),

where we have used that R′(Y s
i ) = P/(1+µ) under these circumstances. As under

perfect competition, the real factor prices are proportional to the corresponding
marginal productivities, although with a factor of proportionality less than one,
namely equal to the inverse of the markup. This observation is sometimes used
as a defence for applying the simpler perfect-competition framework for studying
certain long-run aspects of the economy. For these aspects, the size of the pro-
portionality factor may be immaterial, at least as long as it is relatively constant
over time. Indeed, the constant markups open up for a simple transformation of
many of the perfect competition results to monopolistic competition results by
inserting the markup factor 1 + µ the relevant places in the formulas.
If in the short term only labor is a variable production factor, then (2.51)

need not hold. As claimed by Keynesian and New Keynesian thinking, also the
prices chosen by the firms may be more or less fixed in the short run because
the firms face price adjustment costs (“menu costs”) and are reluctant to change
prices too often, at least vis-a-vis changes in demand. Then in the short run only
the produced quantity will adjust to changes in demand. As long as the output
level is within the range where marginal cost is below the price, such adjustments
are still beneficial to the firm. As a result, even (2.52) may at most hold “on
average”over the business cycle. These matters are dealt with in Part V of this
book.
In practice, market power and other market imperfections also play a role in

the factor markets, implying that further complicating elements enter the pic-
ture. One of the tasks of theoretical and empirical macroeconomics is to clarify
the aggregate implications of market imperfections and sort out which market
imperfections are quantitatively important in different contexts.

2.5.4 The financing of firms’operations

We have so far talked about aspects related to production and pricing. What
about the financing of a firm’s operations? To acquire not only its fixed capital
(structures and machines) but also its raw material and other intermediate inputs,
a firm needs funds (there are expenses before the proceeds from sale arrive). These
funds ultimately come from the accumulated saving of households. In long-run
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macromodels to be considered in the next chapters, uncertainty as well as non-
neutrality of corporate taxation are ignored; in that context the capital structure
(the debt-equity ratio) of firms is indeterminate and irrelevant for production
outcomes.29 In those chapters we shall therefore concentrate on the latter. Later
chapters, dealing with short- and medium-run issues, touch upon cases where
capital structure and bankruptcy risk matter and financial intermediaries enter
the scene.

2.6 Literature notes

As to the question of the empirical validity of the constant returns to scale as-
sumption, Malinvaud (1998) offers an account of the econometric diffi culties as-
sociated with estimating production functions. Studies by Basu (1996) and Basu
and Fernald (1997) suggest returns to scale are about constant or decreasing.
Studies by Hall (1990), Caballero and Lyons (1992), Harris and Lau (1992),
Antweiler and Treffl er (2002), and Harrison (2003) suggest there are quantita-
tively significant increasing returns, either internal or external. On this back-
ground it is not surprising that the case of IRS (at least at industry level), to-
gether with market forms different from perfect competition, has in recent years
received more attention in macroeconomics and in the theory of economic growth.
Macroeconomists’use of the value-laden term “technological progress”in con-

nection with technological change may seem suspect. But the term should be
interpreted as merely a label for certain types of shifts of isoquants in an abstract
universe. At a more concrete and disaggregate level analysts of course make use
of more refined notions about technological change, recognizing not only benefits
of new technologies, but for instance also the risks, including risk of fundamental
mistakes (think of the introduction and later abandonment of asbestos in the
construction industry). For history of technology see, e.g., Ruttan (2001) and
Smil (2003).
When referring to a Cobb-Douglas (or CES) production function some au-

thors implicitly assume that the partial output elasticities w.r.t. inputs time-
independent and thereby independent of technological change. For the case where
the inputs in question are renewable and nonrenewable natural resources, Growiec
and Schumacher (2008) study cases of time-dependency of the partial output elas-
ticities.
When technical change is not “neutral”in one of the senses described, it may

be systematically “biased”in alternative “directions”. The reader is referred to
the specialized literature on economic growth, cf. literature notes to Chapter 1.

29In chapter 14 we return to this irrelevance proposition, called the Modigliani-Miller theorem.
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Embodied technological progress, sometimes called investment-specific tech-
nological progress, is explored in, for instance, Solow (1960), Greenwood et al.
(1997), and Groth and Wendner (2014).

Time series for different countries’ aggregate and to some extent sectorial
capital stocks are available from Penn World Table, ..., EU KLEMS, ...., and the
AMECO database, .

The concept of Gorman preferences and conditions ensuring that a represen-
tative household is admitted are surveyed in Acemoglu (2009). Another source,
also concerning the conditions for the representative firm to be a meaningful no-
tion, is Mas-Colell et al. (1995). For general discussions of the limitations of
representative agent approaches, see Kirman (1992) and Gallegati and Kirman
(1999). Reviews of the “Cambridge Controversy” are contained in Mas-Colell
(1989) and Felipe and Fisher (2003). The last-mentioned authors find the condi-
tions required for the well-behavedness of these constructs so stringent that it is
diffi cult to believe that actual economies are in any sense close to satisfy them.
For less distrustful views and constructive approaches to the issues, see for in-
stance Johansen (1972), Malinvaud (1998), Jorgenson et al. (2005), and Jones
(2005).

Scarf (1960) provided a series of examples of lack of dynamic stability of an
equilibrium price vector in an exchange economy. Mas-Colell et al. (1995) survey
the later theoretical development in this field.

The counterexample to guaranteed stability of the neoclassical factor market
equilibrium presented towards the end of Section 2.4 is taken from Bliss (1975),
where further perspectives are discussed. It may be argued that this kind of
stability questions should be studied on the basis of adjustment processes of a
less mechanical nature than aWalrasian tâtonnement process. The view would be
that trade out of equilibrium should be incorporated in the analysis and agents’
behavior out of equilibrium should be founded on some kind of optimization
or “satisficing”, incorporating adjustment costs and imperfect information. The
field is complicated and the theory not settled. Yet it seems fair to say that the
studies of adjustment processes out of equilibrium indicate that the equilibrating
force of Adam Smith’s invisible hand is not without its limits. See Fisher (1983),
Osborne and Rubinstein (1990), and Negishi (2008) for reviews and elaborate
discussion of these issues.

We introduced the assumption that physical capital depreciation can be de-
scribed as geometric (in continuous time exponential) evaporation of the capital
stock. This formula is popular in macroeconomics, more so because of its simplic-
ity than its realism. An introduction to more general approaches to depreciation
is contained in, e.g., Nickell (1978).
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2.7 Appendix

A. Strict quasiconcavity

Consider a function f : A → R, where A is a convex set, A ⊆ Rn.30 Given a
real number a, if f(x) = a, the upper contour set is defined as {x ∈ A| f(x) ≥ a}
(the set of input bundles that can produce at least the amount a of output). The
function f(x) is called quasiconcave if its upper contour sets, for any constant
a, are convex sets. If all these sets are strictly convex, f(x) is called strictly
quasiconcave.

Average and marginal costs To show that (2.14) holds with n production
inputs, n = 1, 2,. . . , we derive the cost function of a firm with a neoclassical
production function, Y = F (X1, X2, . . . , Xn). Given a vector of strictly positive
input prices w = (w1, . . . , wn) >> 0, the firm faces the problem of finding a cost-
minimizing way to produce a given positive output level Ȳ within the range of
F. The problem is

min
n∑
i=1

wiXi s.t. F (X1, . . . , Xn) = Ȳ and Xi ≥ 0, i = 1, 2, . . . , n.

An interior solution, X∗ = (X∗1 , . . . , X
∗
n), to this problem satisfies the first-order

conditions λF ′i (X
∗) = wi, where λ is the Lagrange multiplier, i = 1, . . . , n.31 Since

F is neoclassical and thereby strictly quasiconcave in the interior of Rn+, the first-
order conditions are not only necessary but also suffi cient for the vector X∗ to be
a solution, andX∗ will be unique32 so that we can write it as a function, X∗(Ȳ ) =
(X∗1 (Ȳ ), . . . , X∗n(Ȳ )). This gives rise to the cost function C(Ȳ ) =

∑n
i=1wiX

∗
i (Ȳ ).

So average cost is C(Ȳ )/Ȳ . We find marginal cost to be

C ′(Ȳ ) =
n∑
i=1

wiX
∗′
i (Ȳ ) = λ

n∑
i=1

F ′i (X
∗)X∗′i (Ȳ ) = λ,

where the third equality comes from the first-order conditions, and the last equal-
ity is due to the constraint F (X∗(Ȳ )) = Ȳ , which, by taking the total derivative
on both sides, gives

∑n
i=1 F

′
i (X

∗)X∗′i (Ȳ ) = 1. Consequently, the ratio of average
to marginal costs is

C(Ȳ )/Ȳ

C ′(Ȳ )
=

∑n
i=1wiX

∗
i (Ȳ )

λȲ
=

∑n
i=1 F

′
i (X

∗)X∗i (Ȳ )

F (X∗)
,

30Recall that a set S is said to be convex if x, y ∈ S and λ ∈ [0, 1] implies λx+ (1− λ)y ∈ S.
31Since in this section we use a bit of vector notation, we exceptionally mark first-order partial

derivatives by a prime in order to clearly distinguish from the elements of a vector (so we write
F ′i instead of our usual Fi).
32See Sydsaeter et al. (2008), pp. 74, 75, and 125.
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which in analogy with (2.13) is the elasticity of scale at the point X∗. This proves
(2.14).

Suffi cient conditions for strict quasiconcavity The claim (iii) in Section
2.1.3 was that a continuously differentiable two-factor production function F (K,L)
with CRS, satisfying FK > 0, FL > 0, and FKK < 0, FLL < 0, will automatically
also be strictly quasi-concave in the interior of R2 and thus neoclassical.
To prove this, consider a function of two variables, z = f(x, y), that is twice

continuously differentiable with f1 ≡ ∂z/∂x > 0 and f2 ≡ ∂z/∂y > 0, everywhere.
Then the equation f(x, y) = a, where a is a constant, defines an isoquant,
y = g(x), with slope g′(x) = −f1(x, y)/f2(x, y). Substitute g(x) for y in this
equation and take the derivative w.r.t. x. By straightforward calculation we find

g′′(x) = −f
2
1 f22 − 2f1f2f21 + f 2

2 f11

f 3
2

(2.53)

If the numerator is negative, then g′′(x) > 0; that is, the isoquant is strictly
convex to the origin. And if this holds for all (x, y), then f is strictly quasi-
concave in the interior of R2. A suffi cient condition for a negative numerator is
that f11 < 0, f22 < 0 and f21 ≥ 0. All these conditions, including the last three
are satisfied by the given function F. Indeed, FK , FL, FKK , and FLL have the
required signs. And when F has CRS, F is homogeneous of degree 1 and thereby
FKL > 0, see Appendix B. Hereby claim (iii) in Section 2.1.3 is proved.

B. Homogeneous production functions

The claim (iv) in Section 2.1.3 was that a two-factor production function with
CRS, satisfying FK > 0, FL > 0, and FKK < 0, FLL < 0, has always FKL > 0,
i.e., there is direct complementarity between K and L. This assertion is implied
by the following observations on homogeneous functions.
Let Y = F (K, L) be a twice continuously differentiable production function

with FK > 0 and FL > 0 everywhere. Assume F is homogeneous of degree h > 0,
that is, for all possible (K,L) and all λ > 0, F (λK, λL) = λhF (K,L). According
to Euler’s theorem (see Math Tools) we then have:

CLAIM 1 For all (K, L), where K > 0 and L > 0,

KFK(K,L) + LFL(K,L) = hF (K,L). (2.54)

Euler’s theorem also implies the inverse:

CLAIM 2 If (2.54) is satisfied for all (K, L), where K > 0 and L > 0, then
F (K,L) is homogeneous of degree h.
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Partial differentiation w.r.t. K and L, respectively, gives, after ordering,

KFKK + LFLK = (h− 1)FK (2.55)

KFKL + LFLL = (h− 1)FL. (2.56)

In (2.55) we can substitute FLK = FKL (by Young’s theorem). In view of Claim
2 this shows:

CLAIM 3 The marginal products, FK and FL, considered as functions of K and
L, are homogeneous of degree h− 1.

We see also that when h ≥ 1 and K and L are positive, then

FKK < 0 implies FKL > 0, (2.57)

FLL < 0 implies FKL > 0. (2.58)

For h = 1 this establishes the direct complementarity result, (iv) in Section 2.1.3,
to be proved. A by-product of the derivation is that also when a neoclassical
production function is homogeneous of degree h > 1 (which implies IRS), does
direct complementarity between K and L hold.

Remark. The terminology around complementarity and substitutability may eas-
ily lead to confusion. In spite of K and L exhibiting direct complementarity when
FKL > 0, K and L are still substitutes in the sense that cost minimization for a
given output level implies that a rise in the price of one factor results in higher
demand for the other factor.

The claim (v) in Section 2.1.3 was the following. Suppose we face a CRS
production function, Y = F (K,L), that has positive marginal products, FK and
FL, everywhere and isoquants, K = g(L), satisfying the condition g′′(L) > 0
everywhere (i.e., F is strictly quasi-concave). Then the partial second derivatives
must satisfy the neoclassical conditions:

FKK < 0, FLL < 0. (2.59)

The proof is as follows. The first inequality in (2.59) follows from (2.53) combined
with (2.55). Indeed, for h = 1, (2.55) and (2.56) imply FKK = −FLKL/K
= −FKLL/K and FKL = −FLLL/K, i.e., FKK = FLL(L/K)2 (or, in the notation
of Appendix A, f22 = f11(x/y)2), which combined with (2.53) gives the conclusion
FKK < 0, when g′′ > 0. The second inequality in (2.59) can be verified in a similar
way.
Note also that for h = 1 the equations (2.55) and (2.56) entail

KFKK = −LFLK and KFKL = −LFLL, (2.60)
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respectively. By dividing the left- and right-hand sides of the first of these equa-
tions with those of the second we conclude that FKKFLL = F 2

KL in the CRS case.
We see also from (2.60) that, under CRS, the implications in (2.57) and (2.58)
can be turned round.
Finally, we asserted in § 2.1.1 that when the neoclassical production function

Y = F (K, L) is homogeneous of degree h, then the marginal rate of substitution
between the production factors depends only on the factor proportion k ≡ K/L.
Indeed,

MRSKL(K,L) =
FL(K,L)

FK(K,L)
=
Lh−1FL(k, 1)

Lh−1FK(k, 1)
=
FL(k, 1)

FK(k, 1)
≡ mrs(k), (2.61)

where k ≡ K/L. The result (2.61) follows even if we only assume F (K,L) is
homothetic. When F (K,L) is homothetic, by definition we can write F (K, L) ≡
ϕ(G(K,L)), where G is homogeneous of degree 1 and ϕ is an increasing function.
In view of this, we get

MRSKL(K,L) =
ϕ′GL(K,L)

ϕ′GK(K,L)
=
GL(k, 1)

GK(k, 1)
,

where the last equality is implied by Claim 3 for h = 1.

C. The Inada conditions combined with CRS

We consider a neoclassical production function, Y = F (K,L), exhibiting CRS.
Defining k ≡ K/L, we can then write Y = LF (k, 1) ≡ Lf(k), where f(0) ≥
0, f ′ > 0, and f ′′ < 0.

Essential inputs In Section 2.1.2 we claimed that the upper Inada condition
forMPL together with CRS implies that without capital there will be no output:

F (0, L) = 0 for any L > 0.

In other words: in this case capital is an essential input. To prove this claim, let
K > 0 be fixed and let L → ∞. Then k → 0, implying, by (2.16) and (2.18),
that FL(K,L) = f(k)− f ′(k)k → f(0). But from the upper Inada condition for
MPL we also have that L→∞ implies FL(K,L)→ 0. It follows that

the upper Inada condition for MPL implies f(0) = 0. (2.62)

Since under CRS, for any L > 0, F (0, L) = LF (0, 1) ≡ Lf(0), we have hereby
shown our claim.
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Similarly, we can show that the upper Inada condition for MPK together
with CRS implies that labor is an essential input. Consider the output-capital
ratio x ≡ Y/K. When F has CRS, we get x = F (1, `) ≡ g(`), where ` ≡ L/K,
g′ > 0, and g′′ < 0. Thus, by symmetry with the previous argument, we find that
under CRS, the upper Inada condition for MPK implies g(0) = 0. Since under
CRS F (K, 0) = KF (1, 0) ≡ Kg(0), we conclude that the upper Inada condition
for MPK together with CRS implies

F (K, 0) = 0 for any K > 0,

that is, without labor, no output.

Suffi cient conditions for output going to infinity when either input goes
to infinity Here our first claim is that when F exhibits CRS and satisfies the
upper Inada condition for MPL and the lower Inada condition for MPK, then

lim
L→∞

F (K,L) =∞ for any K > 0.

To prove this, note that Y can be written Y = Kf(k)/k, since K/k = L. Here,

lim
k→0

f(k) = f(0) = 0,

by continuity and (2.62), presupposing the upper Inada condition for MPL.
Thus, for any given K > 0,

lim
L→∞

F (K,L) = K lim
L→∞

f(k)

k
= K lim

k→0

f(k)− f(0)

k
= K lim

k→0
f ′(k) =∞,

by the lower Inada condition for MPK. This verifies the claim.
Our second claim is symmetric with this and says: when F exhibits CRS and

satisfies the upper Inada condition for MPK and the lower Inada condition for
MPL, then

lim
K→∞

F (K,L) =∞ for any L > 0.

The proof is analogue. So, in combination, the four Inada conditions imply, under
CRS, that output has no upper bound when either input goes to infinity.

D. Concave neoclassical production functions

Two claims made in Section 2.4 are proved here.

CLAIM 1 When a neoclassical production function F (K,L) is concave, it has
non-increasing returns to scale everywhere.
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Proof. We consider a concave neoclassical production function, F . Let x =
(x1, x2) = (K,L). Then we can write F (K,L) as F (x). By concavity, for all pairs
x0,x ∈ R2

+, we have F (x0) − F (x) ≤
∑2

i=1 F
′
i (x)(x0

i − xi). In particular, for
x0 = (0, 0), since F (x0) = F (0, 0) = 0, we have

−F (x) ≤ −
2∑
i=1

F ′i (x)xi. (2.63)

Suppose x ∈R2
++. Then F (x) > 0 in view of F being neoclassical so that FK > 0

and FL > 0. From (2.63) we now find the elasticity of scale to be

2∑
i=1

F ′i (x)xi/F (x) ≤ 1. (2.64)

In view of (2.13) and (2.12), this implies non-increasing returns to scale every-
where. �
CLAIM 2 When a neoclassical production function F (K,L) is strictly concave,
it has decreasing returns to scale everywhere.

Proof. The argument is analogue to that above, but in view of strict concavity
the inequalities in (2.63) and (2.64) become strict. This implies that F has DRS
everywhere. �

2.8 Exercises

2.1
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LOOKING AT THE LONG RUN
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Chapter 3

The basic OLG model: Diamond

There exists two main analytical frameworks for analyzing the basic intertemporal
choice, consumption versus saving, and the dynamic long-run implications of
this choice: overlapping generations models and representative agent models. In
the first class of models the focus is on (a) the interaction between different
generations alive at the same time, and (b) the never-ending entrance of new
generations. In the second class of models the household sector is modelled as
consisting of a finite number of infinitely-lived agents. One interpretation is that
these agents are dynasties where parents take the utility of their descendants fully
into account by leaving bequests. This approach, which is also called the Ramsey
approach (after the British mathematician and economist Frank Ramsey, 1903-
1930), will be described in Chapter 8 (discrete time) and Chapter 10 (continuous
time).
In the present chapter we introduce the overlapping generations approach

which has shown its usefulness for analysis of questions associated with public
debt problems, taxation of capital income, financing of social security (pensions),
design of educational systems, non-neutrality of money, and the possibility of
speculative bubbles. Our focus will be on the overlapping generations model
called Diamond’s OLG model1 after the American economist and Nobel Prize
laureate Peter A. Diamond (1940-).
Among the strengths of the model are:

• The life-cycle aspect of human behavior is taken into account. Although
the economy is infinitely-lived, the individual agents have finite time hori-
zons. During lifetime one’s educational level, working capacity, income, and
needs change and this is reflected in the individual labor supply and saving
behavior. The aggregate implications of the life-cycle behavior of coexisting
individual agents at different stages in their life is at the centre of attention.

1Diamond (1965).
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• The model takes elementary forms of heterogeneity in the population into
account − there are “old”and there are “young”, there are currently-alive
people and there are as yet unborn whose preferences are not reflected
in current market transactions. Questions relating to the distribution of
income and wealth across generations can be studied. For example, how
does the investment in capital and environmental protection by current
generations affect the conditions for succeeding generations?

3.1 Motives for saving

Before going into the specifics of Diamond’s model, let us briefly consider what
may motivate people to save:

(a) The consumption-smoothing motive for saving. Individuals go through a life
cycle where individual income typically has a hump-shaped time pattern; by
saving and dissaving the individual attempts to obtain the desired smooth-
ing of consumption across lifetime. This is the essence of the life-cycle
saving hypothesis put forward by Nobel laureate Franco Modigliani (1918-
2003) and associates in the 1950s. This hypothesis states that consumers
plan their saving and dissaving in accordance with anticipated variations
in income and needs over lifetime. Because needs vary less over lifetime
than income, the time profile of saving tends to be hump-shaped with some
dissaving early in life (while studying etc.), positive saving during the years
of peak earnings and then dissaving after retirement.

(b) The precautionary motive for saving. Income as well as needs may vary
due to conditions of uncertainty: sudden unemployment, illness, or other
kinds of bad luck. By saving, the individual can obtain a buffer against
such unwelcome events.

Horioka and Watanabe (1997) find that empirically, the saving motives (a)
and (b) are of dominant importance (Japanese data). Yet other motives include:

(c) Saving enables the purchase of durable consumption goods and owner-occupied
housing as well as repayment of debt.

(d) Saving may be motivated by the desire to leave bequests to heirs.

(e) Saving may simply be motivated by the fact that financial wealth may lead
to social prestige and economic or political power.
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Diamond’s OLG model aims at simplicity and concentrates on motive (a).
Only one aspect of motive (a) is in fact considered, namely the saving for re-
tirement. People live for two periods only, as “young”, working full-time, and as
“old”, having retired and living by their savings. The Diamond model abstracts
from a possible bequest motive.
Now to the details.

3.2 The model framework

The flow of time is divided into successive periods of equal length, taken as the
time unit. Given the two-period lifetime of (adult) individuals, the period length
is understood to be around, say, 30 years. The main assumptions are:

1. The number of young people in period t, denoted Lt, changes over time
according to Lt = L0(1 + n)t, t = 0, 1, 2, ..., where n is a constant, n > −1.
Indivisibility is ignored and so Lt is just considered a positive real number.

2. Only the young work. Each young supplies one unit of labor inelastically.
The division of available time between work and leisure is thereby considered
as exogenous.

3. Output is homogeneous and can be used for consumption as well as invest-
ment in physical capital. Physical capital is the only non-human asset in
the economy; it is owned by the old and rented out to the firms. Output is
the numeraire (unit of account) used in trading. Money (means of payment)
is ignored.2

4. The economy is closed (no foreign trade).

5. Firms’technology has constant returns to scale.

6. In each period three markets are open, a market for output, a market for
labor services, and a market for capital services. Perfect competition rules
in all markets. Uncertainty is absent; when a decision is made, its conse-
quences are known.

7. Agents have perfect foresight.

Assumption 7 entails the following. First, the agents are assumed to have
“rational expectations”or, with a better name, “model-consistent expectations”.

2As to the disregard of money we may imagine that agents have safe electronic accounts in
a fictional central bank allowing costless transfers between accounts.
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This means that forecasts made by the agents coincide with the forecasts that
can be calculated on the basis of the model. Second, as there are no stochastic
elements in the model (no uncertainty), the forecasts are point estimates rather
than probabilistic forecasts. Thereby the model-consistent expectations take the
extreme form of perfect foresight : the agents agree in their expectations about
the future evolution of the economy and these expectations are point estimates
that coincide with the subsequent actual evolution of the economy.

Figure 3.1: The two-period model’s time structure.

Of course, this is an unrealistic assumption. The model makes this assumption
in order to simplify in a first approach. The results that emerge will be the
outcome of economic mechanisms in isolation from expectational errors. In this
sense the model constitutes a “pure”case (benchmark case).
The time structure of the model is illustrated in Fig. 3.1. In every period

two generations are alive and interact with each other as indicated by the arrows.
The young supply labor to the firms, earn a labor income part of which they
consume and part of which they save for retirement. The young thereby offset
the dissaving by the old and possibly bring about positive net investment in the
economy. At the end of the period the savings by the young is converted into
direct ownership of new capital goods which constitute the non-consumed part
of aggregate output plus capital goods left over from the previous period. In the
next period the now old owners of the capital goods rent them out to the firms.
We may imagine that the firms are owned by the old, but this ownership is not
visible in the equilibrium allocation because pure profits will be nil due to the
combination of perfect competition and constant returns to scale.
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Let the output good be the numeraire and let r̂t denote the rental rate for
capital in period t; that is, r̂t is the real price a firm has to pay at the end of
period t for the right to use one unit of someone else’s physical capital through
period t. So the owner of Kt units of physical capital receives a

real (net) rate of return on capital =
r̂tKt − δKt

Kt

= r̂t − δ, (3.1)

where δ is the rate of physical capital depreciation which is assumed constant,
0 ≤ δ ≤ 1.
Suppose there is also a market for loans, the “credit market”. Assume you

have lent out one unit of output from the end of period t− 1 to the end of period
t. If the real interest rate in the loan market is rt, then, at the end of period t you
should get back 1 + rt units of output. In the absence of uncertainty, equilibrium
requires that capital and loans give the same rate of return,

r̂t − δ = rt. (3.2)

This no-arbitrage condition indicates how the rental rate for capital and the more
everyday concept, the interest rate, would be related in an equilibrium where
both the market for capital services and a credit market were active. We shall
see, however, that in this model no credit market will be active in an equilibrium.
Nevertheless we will follow the tradition and call the right-hand side of (3.2) the
interest rate.
Table 3.1 provides an overview of the notation. As to our timing convention,

notice that any stock variable dated t indicates the amount held at the beginning
of period t. That is, the capital stock accumulated by the end of period t − 1
and available for production in period t is denoted Kt. We therefore write Kt

= (1 − δ)Kt−1 + It−1 and Yt = F (Kt, Lt), where F is an aggregate production
function. In this context it is useful to think of “period t”as running from date t
to date t+ 1. So period t is the time interval [t, t+ 1) on a continuous time axis.
Still, all decisions are made at discrete points in time t = 0, 1, 2, ... (“dates”). We
imagine that receipts for work and lending as well as payment for the consumption
in period t occur at the end of the period. These timing conventions are common
in discrete-time growth and business cycle theory;3 they are convenient because
they make switching between discrete and continuous time analysis fairly easy.

3In contrast, in accounting and finance literature, typically Kt would denote the end-of-
period-t stock that begins to yield its services next period.
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Table 3.1. List of main variable symbols
Symbol Meaning
Lt the number of young people in period t
n generation growth rate
Kt aggregate capital available in period t
c1t consumption as young in period t
c2t consumption as old in period t
wt real wage in period t
rt real interest rate (from end of per. t− 1 to end of per. t)
ρ rate of time preference (impatience)
θ elasticity of marginal utility
st saving of each young in period t
Yt aggregate output in period t

Ct = c1tLt + c2tLt−1 aggregate consumption in period t
St = Yt − Ct aggregate gross saving in period t
δ ∈ [0, 1] capital depreciation rate

Kt+1 −Kt = It − δKt aggregate net investment in period t

3.3 The saving by the young

Suppose the preferences of the young can be represented by the lifetime utility
function specified in (3.3). Given wt and rt+1, the decision problem of the young
in period t then is:

max
c1t,c2t+1

U(c1t, c2t+1) = u(c1t) + (1 + ρ)−1u(c2t+1) s.t. (3.3)

c1t + st = wt (wt > 0), (3.4)

c2t+1 = (1 + rt+1)st (rt+1 > −1), (3.5)

c1t ≥ 0, c2t+1 ≥ 0. (3.6)

The interpretation of the variables is given in Table 3.1 above. We may think
of the “young”as a household consisting of one adult and 1 + n children whose
consumption is included in c1t. Note that “utility”appears at two levels. There
is a lifetime utility function, U, and a period utility function, u.4 The latter is
assumed to be the same in both periods of life (this has no effects on the qualita-
tive results and simplifies the exposition). The period utility function is assumed
continuous and twice continuously differentiable with u′ > 0 and u′′ < 0 (positive,
but diminishing marginal utility of consumption). Many popular specifications

4Other names for these two functions are the intertemporal utility function and the subutility
function, respectively.
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of u, e.g., u(c) = ln c, have the property that limc→0 u(c) = −∞; then we define
u(0) = −∞.
The parameter ρ is called the rate of time preference. It acts as a utility

discount rate, whereas (1 + ρ)−1 is a utility discount factor. Thus ρ indicates the
degree of impatience w.r.t. the “arrival”of utility. By definition, ρ > −1, but
ρ > 0 is often assumed. When preferences can be represented in this additive way,
they are called time-separable. In principle, as seen from period t the interest rate
appearing in (3.5) should be interpreted as an expected real interest rate. But
as long as we assume perfect foresight, there is no need to distinguish between
actual and expected magnitudes.

Box 3.1. Discount rates and discount factors

By a discount rate is meant an interest rate applied in the construction of a dis-
count factor. A discount factor is a factor by which future benefits or costs, mea-
sured in some unit of account, are converted into present equivalents. The higher
the discount rate the lower the discount factor.

One should bear in mind that a discount rate depends on what is to be dis-
counted. In (3.3) the unit of account is “utility”and ρ acts as a utility discount rate.
In (3.7) the unit of account is the consumption good and rt+1 acts as a consump-
tion discount rate. If people also work as old, the right-hand side of (3.7) would
read wt + (1 + rt+1)−1wt+1 and thus rt+1 would act as an earnings discount rate.
This will be the same as the consumption discount rate if we think of real income
measured in consumption units. But if we think of nominal income, that is, income
measured in monetary units, there would be a nominal earnings discount rate,
namely the nominal interest rate, which in an economy with inflation will exceed
the consumption discount rate. Unfortunately, confusion of different discount rates
is not rare.

In (3.5) the interest rate rt+1 acts as a (net) rate of return on saving.5 An
interest rate may also be seen as a discount rate relating to consumption over time.
Indeed, by isolating st in (3.5) and substituting into (3.4), we may consolidate

5While st in (3.4) appears as a flow (non-consumed income), in (3.5) st appears as a stock
(the accumulated financial wealth at the end of period t). This notation is legitimate because
the magnitude of the two is the same when the time unit is the same as the period length.
In real life the gross payoff of individual saving may sometimes be nil (if invested in a project

that completely failed). Unless otherwise indicated, it is in this book understood that an interest
rate is a number exceeding −1 as indicated in (3.5). Thereby the discount factor 1/(1 + rt+1)
is well-defined. In general equilibrium, the condition 1 + rt+1 > 0 is always met in the present
model.
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the two period budget constraints of the individual into one budget constraint,

c1t +
1

1 + rt+1

c2t+1 = wt. (3.7)

In this intertemporal budget constraint the interest rate appears as the discount
rate entering the discount factor converting future amounts of consumption into
present equivalents, cf. Box 3.1.

Solving the saving problem

To avoid the possibility of corner solutions, we impose the No Fast Assumption

lim
c→0

u′(c) =∞. (A1)

In view of the sizeable period length in the model, this is definitely plausible.
Inserting the two budget constraints into the objective function in (3.3), we get

U(c1t, c2t+1) = u(wt−st) +(1+ρ)−1u((1+rt+1)st) ≡ Ũt(st), a function of only one
decision variable, st. According to the non-negativity constraint on consumption
in both periods, (3.6), st must satisfy 0 ≤ st ≤ wt. Maximizing w.r.t. st gives
the first-order condition

dŨt
dst

= −u′(wt − st) + (1 + ρ)−1u′((1 + rt+1)st)(1 + rt+1) = 0. (FOC)

The second derivative of Ũt is

d2Ũt
ds2

t

= u′′(wt − st) + (1 + ρ)−1u′′((1 + rt+1)st)(1 + rt+1)2 < 0. (SOC)

Hence there can at most be one st satisfying (FOC). Moreover, for a positive
wage income there always exists such an st. Indeed:

LEMMA 1 Let wt > 0 and suppose the No Fast Assumption (A1) applies. Then
the saving problem of the young has a unique solution st = s(wt, rt+1). The
solution is interior, i.e., 0 < st < wt, and st satisfies (FOC).

Proof. Assume (A1). For any s ∈ (0, wt), dŨt(s)/ds > −∞. Now consider the
endpoints s = 0 and s = wt. By (FOC) and (A1),

lim
s→0

dŨt
ds

= −u′(wt) + (1 + ρ)−1(1 + rt+1) lim
s→0

u′((1 + rt+1)s) =∞,

lim
s→w

dŨt
ds

= − lim
s→wt

u′(wt − s) + (1 + ρ)−1(1 + rt+1)u′((1 + rt+1)wt) = −∞.
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By continuity of Ũt, it follows that there exists an st ∈ (0, wt) such that at s = st,
dŨt/ds = 0; This is an application of the intermediate value theorem. It follows
that (FOC) holds for this st. By (SOC), st is unique and can therefore be written
as an implicit function, s(wt, rt+1), of the exogenous variables in the problem, wt
and rt+1. �
Inserting the solution for st into the two period budget constraints, (3.4) and

(3.5), immediately gives the optimal consumption levels, c1t and c2t+1.
The simple optimization method we have used here is called the substitution

method : by substitution of the constraints into the objective function an uncon-
strained maximization problem is obtained.6

The consumption Euler equation

The first-order condition (FOC) can conveniently be written

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1). (3.8)

This is known as an Euler equation, after the Swiss mathematician L. Euler (1707-
1783) who was the first to study dynamic optimization problems. In the present
context the condition is called a consumption Euler equation.
Intuitively, in an optimal plan the marginal utility cost of saving must equal

the marginal utility benefit obtained by saving. The marginal utility cost of
saving is the opportunity cost (in terms of current utility) of saving one more
unit of account in the current period (approximately). This one unit of account
is transferred to the next period with interest so as to result in 1 + rt+1 units of
account in that period. An optimal plan requires that the utility cost equals the
utility benefit of having rt+1 more units of account in the next period. And this
utility benefit is the discounted value of the extra utility that can be obtained
next period through the increase in consumption by rt+1 units.
It may seem odd to attempt an intuitive interpretation this way, that is, in

terms of “utility units”. The utility concept is just a convenient mathematical de-
vice used to represent the assumed preferences. Our interpretation is only meant
as an as-if interpretation: as if utility were something concrete. An interpretation
in terms of concrete measurable quantities goes like this. We rewrite (3.8) as

u′(c1t)

(1 + ρ)−1u′(c2t+1)
= 1 + rt+1. (3.9)

The left-hand side measures the marginal rate of substitution, MRS, of consump-
tion as old for consumption as young, evaluated at the point (c1, c2). MRS is

6Alternatively, one could use the Lagrange method.
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defined as the increase in period-t + 1 consumption needed to compensate for a
one-unit marginal decrease in period-t consumption. That is,

MRSc2c1 = −dc2t+1

dc1t

|U=Ū =
u′(c1t)

(1 + ρ)−1u′(c2t+1)
, (3.10)

where we have used implicit differentiation in U(c1t, c2t+1) = Ū . The right-hand
side of (3.9) indicates the marginal rate of transformation, MRT, which is the
rate at which saving allows an agent to shift consumption from period t to period
t+ 1 via the market. In an optimal plan MRS must equal MRT.
Even though interpretations in terms of “MRS equal to MRT”are more sat-

isfactory, we will often use “as if”interpretations like the one before. They are a
convenient short-hand for the more elaborate interpretation.
The Euler equation (3.8) implies that

ρ Q rt+1 causes u′(c1t) R u′(c2t+1), i.e., c1t Q c2t+1,

respectively, in the optimal plan (because u′′ < 0). That is, absent uncertainty
the optimal plan entails either increasing, constant or decreasing consumption
over time according to whether the rate of time preference is below, equal to, or
above the market interest rate, respectively. For example, when ρ < rt+1, the
plan is to start with relatively low consumption in order to take advantage of the
relatively high rate of return on saving.
Note that there are infinitely many pairs (c1t, c2t+1) satisfying the Euler equa-

tion (3.8). Only when requiring the two period budget constraints, (3.4) and
(3.5), satisfied, do we get the unique solution st and thereby the unique solution
for c1t and c2t+1.

Properties of the saving function

The first-order condition (FOC), where the two budget constraints are inserted,
determines the saving as an implicit function of the market prices faced by the
young decision maker, i.e., st = s(wt, rt+1).
The partial derivatives of this function can be found by applying the implicit

function theorem on (FOC). A practical procedure is the following. We first write
dŨt/dst as a function, f, of the variables involved, st, wt, and rt+1, i.e.,

dŨt
dst

= −u′(wt − st) + (1 + ρ)−1u′((1 + rt+1)st)(1 + rt+1) ≡ f(st, wt, rt+1).

By (FOC), f(st, wt, rt+1) = 0 and so the implicit function theorem (see Math
tools) implies

∂st
∂wt

= −∂f/∂wt
D

and
∂st
∂rt+1

= −∂f/∂rt+1

D
,
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where D ≡ ∂f/∂st ≡ d2Ũt/ds
2
t < 0 by (SOC). We find

∂f

∂wt
= −u′′(c1t) > 0,

∂f

∂rt+1

= (1 + ρ)−1 [u′(c2t+1) + u′′(c2t+1)st(1 + rt+1)] .

Consequently, the partial derivatives of the saving function st = s(wt, rt+1) are

sw ≡ ∂st
∂wt

=
u′′(c1t)

D
> 0 (but < 1), (3.11)

sr ≡
∂st
∂rt+1

= −(1 + ρ)−1[u′(c2t+1) + u′′(c2t+1)c2t+1]

D
, (3.12)

where in the last expression we have used (3.5).7

We see that 0 < sw < 1, which implies that 0 < ∂c1t/∂wt < 1 and 0< ∂c2t/∂wt
< 1 + rt+1. The positive sign of these two derivatives indicate that consumption
in each of the periods is a normal good (which certainly is plausible since we are
talking about the total consumption by the individual in each period).8 The sign
of sr is seen to be ambiguous. This ambiguity reflects that the Slutsky substi-
tution and income effects on consumption as young of a rise in the interest rate
are of opposite signs. To understand this, it is useful to keep the intertempo-
ral budget constraint, (3.7), in mind. The substitution effect on c1t is negative
because the higher interest rate makes future consumption cheaper in terms of
current consumption. And the income effect on c1t is positive because with a
higher interest rate, a given budget can buy more consumption in both periods,
cf. (3.7). Generally there would be a third Slutsky effect, a wealth effect of a
rise in the interest rate. But such an effect is ruled out in this model. This is
because there is no labor income in the second period of life. Indeed, as indicated

7A perhaps more straightforward procedure, not requiring full memory of the exact content
of the implicit function theorem, is based on “implicit differentiation”. First, keeping rt+1 fixed,
one calculates the total derivative w.r.t. wt on both sides of (FOC). Next, keeping wt fixed,
one calculates the total derivative w.r.t. rt+1 on both sides of (FOC).
Yet another possible procedure is based on “total differentiation” in terms of differentials.

Taking the differential w.r.t. st, wt, and rt+1 on both sides of (FOC) gives −u′′(c1t)(dwt−dst)+
+(1+ρ)−1·{u′′(c2t+1) [(1 + rt+1)dst + stdrt+1] (1 + rt+1) + u′(c2t+1)drt+1} = 0. By rearranging
we find the ratios dst/dwt and dst/drt+1, which will indicate the value of the partial derivatives
(3.11) and (3.12).

8Recall, a consumption good is called normal for given consumer preferences if the demand
for it is an increasing function of the consumer’s wealth. Since in this model the consumer is
born without any financial wealth, the consumer’s wealth at the end of period t is simply the
present value of labor earnings through life, which here, evaluated at the beginning of period t,
is wt/(1 + rt) as there is no labor income in the second period of life, cf. (3.7).
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by (3.4), the human wealth of a member of generation t, evaluated at the end of
period t, is simply wt, which is independent of rt+1.
Rewriting (3.12) gives

sr =
(1 + ρ)−1u′(c2t+1)[θ(c2t+1)− 1]

D
T 0 for θ(c2t+1) S 1, (3.13)

respectively, whereD < 0, and where θ(c2t+1) is the absolute elasticity of marginal
utility of consumption in the second period, that is,

θ(c2t+1) ≡ − c2t+1

u′(c2t+1)
u′′(c2t+1) ≈ −∆u′(c2t+1)/u′(c2t+1)

∆c2t+1/c2t+1

> 0,

where the approximation is valid for a “small” increase, ∆c2t+1, in c2t+1. The
inequalities in (3.13) show that when the absolute elasticity of marginal utility is
below one, then the substitution effect on consumption as young of an increase in
the interest rate dominates the income effect and saving increases. The opposite
is true if the elasticity of marginal utility is above one.
The reason that θ(c2t+1) has this role is that θ(c2t+1) reflects how sensitive

marginal utility of c2t+1 is to a rise in c2t+1. To see the intuition, consider the
case where consumption as young, and thus saving, happens to be unaffected by
an increase in the interest rate. Even in this case, consumption as old, c2t+1, is
automatically increased (in view of the higher income as old through the higher
rate of return on the unchanged saving); and the marginal utility of c2t+1 is thus
decreased in response to a higher interest rate. The point is that this outcome can
only be optimal if the elasticity of marginal utility of c2t+1 is of “medium”size.
A very high absolute elasticity of marginal utility of c2t+1 would result in a sharp
decline in marginal utility − so sharp that not much would be lost by dampening
the automatic rise in c2t+1 and instead increase c1t, thus reducing saving. On the
other hand, a very low elasticity of marginal utility of c2t+1 would result in only a
small decline in marginal utility − so small that it is beneficial to take advantage
of the higher rate of return and save more, thus accepting a first-period utility
loss brought about by a lower c1t.
We see from (3.12) that an absolute elasticity of marginal utility equal to

exactly one is the case leading to the interest rate being neutral vis-a-vis the
saving of the young. What is the intuition behind this? Neutrality vis-a-vis
the saving of the young of a rise in the interest rate requires that c1t remains
unchanged since c1t = wt − st. In turn this requires that the marginal utility,
u′(c2t+1), on the right-hand side of (3.8) falls by the same percentage as 1 + rt+1

rises. At the same time the budget (3.5) as old tells us that c2t+1 has to rise by
the same percentage as 1+rt+1 if st remains unchanged. Altogether we thus need
that u′(c2t+1) falls by the same percentage as c2t+1 rises. But this requires that
the absolute elasticity of u′(c2t+1) w.r.t. c2t+1 is exactly one.
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The elasticity of marginal utility, also called the marginal utility flexibility,
will generally depend on the level of consumption, as implicit in the notation
θ(c2t+1). There exists a popular special case, however, where the elasticity of
marginal utility is constant.

EXAMPLE 1 The CRRA utility function. If we impose the requirement that
u(c) should have an absolute elasticity of marginal utility of consumption equal
to a constant θ > 0, then one can show (see Appendix A) that the utility function
must be of the CRRA form:

u(c) =

{
c1−θ−1

1−θ , when θ 6= 1,

ln c, when θ = 1.
, (3.14)

It may seem odd that in the upper case we subtract the constant 1/(1 − θ)
from c1−θ/(1 − θ). But adding or subtracting a constant from a utility function
does not affect the marginal rate of substitution and consequently not behavior.
Notwithstanding that we could do without this constant, its presence in (3.14)
has two advantages. One is that in contrast to c1−θ/(1 − θ), the expression
(c1−θ − 1)/(1− θ) can be interpreted as valid even for θ = 1, namely as identical
to ln c. This is because (c1−θ − 1)/(1 − θ) → ln c for θ → 1 (by L’Hôpital’s
rule for “0/0”). Another advantage is that the kinship between the different
members, indexed by θ, of the CRRA family becomes more transparent. Indeed,
by defining u(c) as in (3.14), all graphs of u(c) will go through the same point as
the log function, namely (1, 0), cf. Fig. 3.2.
The higher is θ, the more “curvature”does the corresponding curve in Fig. 3.2

have. In turn, more “curvature”reflects a higher incentive to smooth consumption
across time. The reason is that a large curvature means that the marginal utility
will drop sharply if consumption rises and will increase sharply if consumption
falls. Consequently, not much utility is lost by lowering consumption when it
is relatively high but there is a lot of utility to be gained by raising it when it
is relatively low. So the curvature θ indicates the degree of aversion towards
variation in consumption. Or we may say that θ indicates the strength of the
preference for consumption smoothing.9 �
Suppose the period utility is of CRRA form as given in (3.14). (FOC) then

yields an explicit solution for the saving of the young:

st =
1

1 + (1 + ρ)(1+rt+1

1+ρ
)
θ−1
θ

wt. (3.15)

9The name CRRA is a shorthand for Constant Relative Risk Aversion and comes from the
theory of behavior under uncertainty. Also in that theory does the CRRA function constitute an
important benchmark case. And θ is in that context called the degree of relative risk aversion.
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1
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u(c)

θ = 0

θ = 0.5

θ = 1

θ = 2

θ = 5

Figure 3.2: The CRRA family of utility functions.

We see that the signs of ∂st/∂wt and ∂st/∂rt+1 shown in (3.11) and (3.13), re-
spectively, are confirmed. Moreover, the saving of the young is in this special
case proportional to income with a factor of proportionality that depends on the
interest rate (as long as θ 6= 1). But in the general case the saving-income ratio
depends also on the income level.

A major part of the attempts at empirically estimating θ suggests that θ > 1.
Based on U.S. data, Hall (1988) provides estimates above 5, while Attanasio and
Weber (1993) suggest 1.25 ≤ θ ≤ 3.33. For Japanese data Okubo (2011) suggests
2.5 ≤ θ ≤ 5.0. As these studies relate to much shorter time intervals than the
implicit time horizon of about 2×30 years in the Diamond model, we should be
cautious. But if the estimates were valid also to that model, we should expect
the income effect on current consumption of an increase in the interest rate to
dominate the substitution effect, thus implying sr < 0 as long as there is no
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wealth effect of a rise in the interest rate.
When the elasticity of marginal utility of consumption is a constant, θ, its

inverse, 1/θ, equals the elasticity of intertemporal substitution in consumption.
This concept refers to the willingness to substitute consumption over time when
the interest rate changes. Under certain conditions the elasticity of intertemporal
substitution reflects the elasticity of the ratio c2t+1/c1t w.r.t. 1 + rt+1 when we
move along a given indifference curve. The next subsection, which can be omitted
in a first reading, goes more into detail with the concept.

Digression: The elasticity of intertemporal substitution*

Consider a two-period consumption problem like the one above. Fig. 3.3 depicts
a particular indifference curve, u(c1) + (1 + ρ)−1u(c2) = Ū . At a given point,
(c1, c2), on the curve, the marginal rate of substitution of period-2 consumption
for period-1 consumption, MRS, is given by

MRS = −dc2

dc1

|U=Ū ,

that is,MRS at the point (c1, c2) is the absolute value of the slope of the tangent
to the indifference curve at that point.10 Under the “normal” assumption of
“strictly convex preferences” (as for instance in the Diamond model), MRS is
rising along the curve when c1 decreases (and thereby c2 increases). Conversely,
we can let MRS be the independent variable and consider the corresponding
point on the indifference curve, and thereby the ratio c2/c1, as a function of
MRS. If we raise MRS along the indifference curve, the corresponding value of
the ratio c2/c1 will also rise.
The elasticity of intertemporal substitution in consumption at a given point is

defined as the elasticity of the ratio c2/c1 w.r.t. the marginal rate of substitution
of c2 for c1, when we move along the indifference curve through the point (c1, c2).
Letting the elasticity w.r.t. x of a differentiable function f(x) be denoted E`xf(x),
the elasticity of intertemporal substitution in consumption can be written

E`MRS
c2

c1

=
MRS

c2/c1

d (c2/c1)

dMRS
|U=Ū ≈

∆(c2/c1)
c2/c1

∆MRS
MRS

,

where the approximation is valid for a “small”increase, ∆MRS, in MRS.
A more concrete understanding is obtained when we take into account that

in the consumer’s optimal plan, MRS equals the ratio of the discounted prices

10When the meaning is clear from the context, to save notation we just write MRS instead
of the more precise MRSc2c1 .
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Figure 3.3: Substitution of period 2-consumption for period 1-consumption as MRS
increases to MRS′.

of good 1 and good 2, that is, the ratio 1/(1/(1 + r)) given in (3.7). Indeed, from
(3.10) and (3.9), omitting the time indices, we have

MRS = −dc2

dc1

|U=Ū =
u′(c1)

(1 + ρ)−1u′(c2)
= 1 + r ≡ R. (3.16)

Letting σ(c1, c2) denote the elasticity of intertemporal substitution, evaluated at
the point (c1, c2), we then have

σ(c1, c2) =
R

c2/c1

d (c2/c1)

dR
|U=Ū ≈

∆(c2/c1)
c2/c1
∆R
R

. (3.17)

Consequently, the elasticity of intertemporal substitution can here be interpreted
as the approximate percentage increase in the consumption ratio, c2/c1, triggered
by a one percentage increase in the inverse price ratio, holding the utility level
unchanged.11

Given u(c), we let θ(c) be the absolute elasticity of marginal utility of con-
sumption, i.e., θ(c) ≡ −cu′′(c)/u′(c). As shown in Appendix B, we then find the
elasticity of intertemporal substitution to be

σ(c1, c2) =
c2 +Rc1

c2θ(c1) +Rc1θ(c2)
. (3.18)

11This characterization is equivalent to saying that the elasticity of substitution between two
consumption goods indicates the approximate percentage decrease in the ratio of the chosen
quantities of the goods (when moving along a given indifference curve) induced by a one-
percentage increase in the corresponding price ratio.
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We see that if u(c) belongs to the CRRA class and thereby θ(c1) = θ(c2) = θ,
then σ(c1, c2) = 1/θ. In this case (as well as whenever c1 = c2) the elasticity of
marginal utility and the elasticity of intertemporal substitution are simply the
inverse of each other.

3.4 Production

Output is homogeneous and can be used for consumption as well as investment
in physical capital. The capital stock is thereby just accumulated non-consumed
output. We may imagine a “corn economy”where output is corn, part of which
is eaten (flour) while the remainder is accumulated as capital (seed corn).
The specification of technology and production conditions follows the sim-

ple competitive one-sector setup discussed in Chapter 2. Although the Diamond
model is a long-run model, we shall in this chapter for simplicity ignore techno-
logical change.

The representative firm

There is a representative firm with a neoclassical production function and con-
stant returns to scale (CRS). Omitting the time argument t when not needed for
clarity, we have

Y = F (K,L) = LF (k, 1) ≡ Lf(k), f ′ > 0, f ′′ < 0, (3.19)

where Y is output (GNP) per period, K is capital input, L is labor input, and
k ≡ K/L is the capital-labor ratio. The derived function, f, is the production
function in intensive form. Capital installation and other adjustment costs are
ignored. Hence profit is Π ≡ F (K,L)− r̂K − wL. The firm maximizes Π under
perfect competition. This gives, first, ∂Π/∂K = FK (K,L)− r̂ = 0, that is,

FK (K,L) =
∂ [Lf (k)]

∂K
= f ′ (k) = r̂. (3.20)

Second, ∂Π/∂L = FL (K,L)− w = 0, that is,

FL (K,L) =
∂ [Lf (k)]

∂L
= f (k)− kf ′ (k) = w. (3.21)

The interpretation is that the firm will in every period use capital up to the point
where the marginal productivity of capital equals the rental rate given from the
market. Similarly, the firm will employ labor up to the point where the marginal
productivity of labor equals the wage rate given from the market.
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In view of f ′′ < 0, a k > 0 satisfying (3.20) is unique. Let us call it the
desired capital-labor ratio. Owing to CRS, however, at this stage the separate
factor inputs, K and L, are indeterminate; only their ratio, k, is determinate.12

We will now see how the equilibrium conditions for the factor markets select the
factor prices and the level of factor inputs consistent with equilibrium.

Factor prices in equilibrium

Let the aggregate demand for capital services and labor services be denoted Kd

and Ld, respectively. Clearing in factor markets in period t implies

Kt
d = Kt, (3.22)

Lt
d = Lt = L0(1 + n)t, (3.23)

whereKt is the aggregate supply of capital services and Lt the aggregate supply of
labor services. As was called attention to in Chapter 1, unless otherwise specified
it is understood that the rate of utilization of each production factor is constant
over time and normalized to one. So the quantityKt will at one and the same time
measure both the capital input, a flow, and the available capital stock. Similarly,
the quantity Lt will at one and the same time measure both the labor input, a
flow, and the size of the labor force as a stock (= the number of young people).
The aggregate input demands, Kd and Ld, are linked through the desired

capital-labor ratio, kd. In equilibrium we have Kd
t /L

d
t = kt

d = Kt/Lt ≡ kt, by
(3.22) and (3.23). The k in (3.20) and (3.21) can thereby be identified with the
ratio of the stock supplies, kt ≡ Kt/Lt > 0, which is a predetermined variable.
Interpreted this way, (3.20) and (3.21) determine the equilibrium factor prices r̂t
and wt in each period. In view of the no-arbitrage condition (3.2), the real interest
rate satisfies rt = r̂t − δ, where δ is the capital depreciation rate, 0 ≤ δ ≤ 1, and
so in equilibrium we end up with

rt = f ′(kt)− δ ≡ r(kt) (r′(kt) = f ′′(kt) < 0), (3.24)

wt = f(kt)− ktf ′(kt) ≡ w(kt) (w′(kt) = −ktf ′′(kt) > 0), (3.25)

where causality is from the right to the left in the two equations. In line with
our general perception of perfect competition, cf. Section 2.4 of Chapter 2, it is
understood that the factor prices, r̂t and wt, adjust quickly to the market-clearing
levels.
12It might seem that k is overdetermined because we have two equations, (3.20) and (3.21),

but only one unknown. This reminds us that for arbitrary factor prices, r̂ and w, there will not
exist a k satisfying both (3.20) and (3.21). But in equilibrium the factor prices faced by the
firm are not arbitrary. They are equilibrium prices, i.e., they are adjusted so that (3.20) and
(3.21) become consistent.
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Technical Remark. In these formulas it is understood that L > 0, but we may
allowK = 0, i.e., k = 0. In case f ′(0) is not immediately well-defined, we interpret
f ′(0) as limk→0+ f ′(k) if this limit exists. If it does not, it must be because
we are in a situation where limk→0+ f ′(k) = ∞, since f ′′(k) < 0 (an example
is the Cobb-Douglas function, f(k) = Akα, 0 < α < 1, where limk→0+ f ′(k)
= limk→0+ Aαkα−1 = +∞). In this situation we simply include +∞ in the range
of r(k) and define r(0) · 0 ≡ limk→0+(f ′(k) − δ)k = 0, where the last equality
comes from the general property of a neoclassical CRS production function that
limk→0+ kf ′(k) = 0, cf. (2.18) of Chapter 2. Letting r(0) · 0 = 0 also fits well
with intuition since, when k = 0, nobody receives capital income anyway. Note
that since δ ∈ [0, 1] , r(k) > −1 for all k ≥ 0. What about w(0)? We interpret
w(0) as limk→0w(k). From (2.18) of Chapter 2 we have that limk→0+ w(k) = f(0)
≡ F (0, 1) ≥ 0. If capital is essential, F (0, 1) = 0. Otherwise, F (0, 1) > 0. Finally,
since w′ > 0, we have, for k > 0, w(k) > 0 as also noted in Chapter 2. �

To fix ideas we have assumed that households (here the old) own the physical
capital and rent it out to the firms. In view of perfect competition and constant
returns to scale, pure profit is nil in equilibrium. As long as the model ignores
uncertainty and capital installation costs, the results will be unaffected if instead
we let the firms themselves own the physical capital and finance capital investment
by issuing bonds and shares. These bonds and shares would then be accumulated
by the households and constitute their financial wealth instead of the capital
goods themselves. The equilibrium rate of return, rt, would be the same.

3.5 The dynamic path of the economy

As in other fields of economics, it is important to distinguish between the set of
technically feasible allocations and an allocation brought about, within this set,
by a specific economic institution (the rules of the game). The economic institu-
tion assumed by the Diamond model is the private-ownership perfect-competition
market institution.

We shall in the next subsections introduce three different concepts concerning
allocations over time in this economy. The three concepts are: technically feasible
paths, temporary equilibrium, and equilibrium path. These concepts are mutually
related in the sense that there is a whole set of technically feasible paths, within
which there may exist a unique equilibrium path, which in turn is a sequence of
states that have certain properties, including the temporary equilibrium property.
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3.5.1 Technically feasible paths

When we speak of technically feasible paths, the focus is merely upon what is
feasible from the point of view of the given technology as such and available initial
resources. That is, we disregard the agents’preferences, their choices given the
constraints, their interactions in markets, the market forces etc.
The technology is represented by (3.19) and there are two exogenous resources,

the labor force, Lt = L0(1 + n)t, and the initial capital stock, K0. From na-
tional income accounting aggregate consumption can be written Ct ≡ Yt − St =
F (Kt, Lt) − St, where St denotes aggregate gross saving, and where we have
inserted (3.19). In a closed economy aggregate gross saving equals (ex post)
aggregate gross investment, Kt+1 −Kt + δKt. So

Ct = F (Kt, Lt)− (Kt+1 −Kt + δKt). (3.26)

Let ct denote aggregate consumption per unit of labor in period t, i.e.,

ct ≡
Ct
Lt

=
c1tLt + c2tLt−1

Lt
= c1t +

c2t

1 + n
.

Combining this with (3.26) and using the definitions of k and f(k), we obtain the
dynamic resource constraint of the economy:

c1t +
c2t

1 + n
= f(kt) + (1− δ)kt − (1 + n)kt+1. (3.27)

DEFINITION 1 Let k̄0 ≥ 0 be the historically given initial ratio of available
capital and labor. The path {(kt, c1t, c2t)}∞t=0 is called technically feasible if it has
k0 = k̄0 and for all t = 0, 1, 2,. . . , (3.27) has kt ≥ 0, c1t ≥ 0, and c2t ≥ 0.

The next subsections consider how, for given household preferences, the private-
ownership market institution with profit-maximizing firms under perfect competi-
tion generates a selection within the set of technically feasible paths. A member
of this selection (which may but need not have just one member) is called an
equilibrium path. It constitutes a sequence of states with certain properties, one
of which is the temporary equilibrium property.

3.5.2 A temporary equilibrium

Standing in a given period, it is natural to think of next period’s interest rate as
an expected interest rate that provisionally can deviate from the ex post realized
one. We let ret+1 denote the expected real interest rate of period t + 1 as seen
from period t.
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3.5. The dynamic path of the economy 85

Essentially, by a temporary equilibrium in period t is meant a state where for
a given ret+1, all markets clear in the period. There are three markets, namely
two factor markets and a market for produced goods. We have already described
the two factor markets. In the market for produced goods the representative firm
supplies the amount Y s

t = F (Kd
t , L

d
t ) in period t. The demand side in this market

has two components, consumption, Ct, and gross investment, It. Equilibrium in
the goods market requires that demand equals supply, i.e.,

Ct + It = c1tLt + c2tLt−1 + It = Y s
t = F (Kd

t , L
d
t ), (3.28)

where consumption by the young and old, c1t and c2t, respectively, were deter-
mined in Section 3.
By definition, aggregate gross investment equals aggregate net investment,

INt , plus capital depreciation, i.e.,

It = INt + δKt ≡ IN1t + IN2t + δKt ≡ SN1t +SN2t + δKt = stLt + (−Kt) + δKt. (3.29)

The first equality follows from the definition of net investment and the assump-
tion that capital depreciation equals δKt. Next comes an identity reflecting that
aggregate net investment is the sum of net investment by the young and net in-
vestment by the old. In turn, saving in this model is directly an act of acquiring
capital goods. So the net investment by the young, IN1t , and the old, I

N
2t , are

identical to their net saving, SN1t and S
N
2t , respectively. As we have shown, the

net saving by the young in the model equals stLt. And the net saving by the
old is negative and equals −Kt. Indeed, because they have no bequest motive,
the old consume all they have and leave nothing as bequests. Hence, the young
in any period enter the period with no non-human wealth. Consequently, any
non-human wealth existing at the beginning of a period must belong to the old
in that period and be the result of their saving as young in the previous period.
As Kt constitutes the aggregate non-human wealth in our closed economy at the
beginning of period t, we therefore have

st−1Lt−1 = Kt. (3.30)

Recalling that the net saving of any group is by definition the same as the increase
in its non-human wealth, the net saving of the old in period t is −Kt. Aggregate
net saving in the economy is thus stLt + (−Kt), and (3.29).is thereby explained.

DEFINITION 2 For a given period t with capital stock Kt ≥ 0 and labor supply
Lt > 0, let the expected real interest rate be given as ret+1 > −1.With kt ≡ Kt/Lt,
a temporary equilibrium in period t is a state (kt, c1t, c2t, wt, rt) of the economy
such that (3.22), (3.23), (3.28), and (3.29) hold (i.e., all markets clear) for c1t

= wt − st and c2t = (kt + rtkt)(1 + n), where st = s(wt, r
e
t+1), as defined in
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Lemma 1, while wt = w(kt) > 0 and rt = r(kt), as defined in (3.25) and (3.24),
respectively.

The reason for the requirement wt > 0 in the definition is that if wt = 0,
people would have nothing to live on as young and nothing to save from for
retirement. The system would not be economically viable in this case. With
regard to the equation for c2t in the definition, note that (3.30) gives st−1 =
Kt/Lt−1 = (Kt/Lt)(Lt/Lt−1) = kt(1 + n), which is the wealth of each old at
the beginning of period t. Substituting into c2t = (1 + rt)st−1, we get c2t =
(1 + rt)kt(1 +n), which can also be written c2t = (kt + rtkt)(1 +n). This last way
of writing c2t has the advantage of being applicable even if kt = 0, cf. Technical
Remark in Section 3.4. The remaining conditions for a temporary equilibrium
are self-explanatory.

PROPOSITION 1 Suppose the No Fast Assumption (A1) applies. Consider a
given period t with a given kt ≥ 0. Then for any ret+1 > −1,

(i) if kt > 0, there exists a temporary equilibrium, (kt, c1t, c2t, wt, rt), and c1t and
c2t are positive;
(ii) if kt = 0, a temporary equilibrium exists if and only if capital is not essential;
in that case, wt = w(kt) = w(0) = f(0) > 0 and c1t and st are positive (while
c2t = 0);

(iii) whenever a temporary equilibrium exists, it is unique.

Proof. We begin with (iii). That there is at most one temporary equilibrium is
immediately obvious since wt and rt are functions of the given kt : wt = w(kt)
and rt = r(kt). And given wt, rt, and ret+1, c1t and c2t are uniquely determined.
(i) Let kt > 0. Then, by (3.25), w(kt) > 0.We claim that the state (kt, c1t, c2t, wt, rt),

with wt = w(kt), rt = r(kt), c1t = w(kt)−s(w(kt), r
e
t+1), and c2t = (1+r(kt))kt(1+

n), is a temporary equilibrium. Indeed, Section 3.4 showed that the factor prices
wt = w(kt) and rt = r(kt) are consistent with clearing in the factor markets in
period t. Given that these markets clear (by price adjustment), it follows by Wal-
ras’law (see Appendix C) that also the third market, the goods market, clears
in period t. So all criteria in Definition 2 are satisfied. That c1t > 0 follows from
w(kt) > 0 and the No Fast Assumption (A1), in view of Lemma 1. That c2t > 0
follows from c2t = (1 + r(kt))kt(1 + n) when kt > 0, since r(kt) > −1 always.
(ii) Let kt = 0. Suppose f(0) > 0. Then, by Technical Remark in Section 3.4,

wt = w(0) = f(0) > 0 and c1t = wt− s(wt, ret+1) is well-defined, positive, and less
than wt, in view of Lemma 1; so st = s(wt, r

e
t+1) > 0. The old in period 0 will

starve since c2t = (0 + 0)(1 + n), in view of r(0) · 0 = 0, cf. Technical Remark in
Section 3.4. Even though this is a bad situation for the old, it is consistent with
the criteria in Definition 2. On the other hand, if f(0) = 0, we get wt = f(0) = 0,
which violates one of the criteria in Definition 2. �
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Point (ii) of the proposition says that a temporary equilibrium may exist even
in a period where k = 0. The old in this period will starve and not survive. But if
capital is not essential, the young get positive labor income out of which they will
save a part for their old age and be able to maintain life also next period which
will be endowed with positive capital. Then, by our assumptions the economy is
viable forever.13

Generally, the term “equilibrium”is used to denote a state of “rest”, possibly
only “temporary rest”. The temporary equilibrium in the present model is an
example of a state of “temporary rest” in the following sense: (a) the agents
optimize, given their expectations and the constraints they face; and (b) the
aggregate demands and supplies in the given period are mutually consistent,
i.e., markets clear. The qualification “temporary”is motivated by two features.
First, in the next period circumstances may be different, among other things as a
consequence of the currently chosen actions. Second, the given expectations may
turn out wrong.

3.5.3 An equilibrium path

The concept of an equilibrium path, also called an intertemporal equilibrium,
requires more conditions satisfied. The concept refers to a sequence of temporary
equilibria such that expectations of the agents are fulfilled in every period:

DEFINITION 3 An equilibrium path is a technically feasible path {(kt, c1t, c2t)}∞t=0

such that for t = 0, 1, 2,. . . , the state (kt, c1t, c2t, wt, rt) is a temporary equilibrium
with ret+1 = r (kt+1).

To characterize such a path, we forward (3.30) one period and rearrange so
as to get

Kt+1 = stLt. (3.31)

Since Kt+1 ≡ kt+1Lt+1 = kt+1Lt(1 + n), this can be written

kt+1 =
s (w (kt) , r (kt+1))

1 + n
, (3.32)

using that st = s(wt, r
e
t+1), wt = w(kt), and ret+1 = rt+1 = r (kt+1) in a sequence of

temporary equilibria with fulfilled expectations. Equation (3.32) is a first-order
difference equation, known as the fundamental difference equation or the law of
motion of the Diamond model.

PROPOSITION 2 Suppose the No Fast Assumption (A1) applies. Then,

13For simplicity, the model ignores that in practice a certain minimum per capita consumption
level (the subsistence minimum) is needed for viability.
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(i) for any k0 > 0 there exists at least one equilibrium path;
(ii) if k0 = 0, an equilibrium path exists if and only if f(0) > 0 (i.e., capital not
essential);
(iii) in any case, an equilibrium path has a positive real wage in all periods and
positive capital in all periods except possibly the first;
(iv) an equilibrium path satisfies the first-order difference equation (3.32).

Proof. (i) and (ii): see Appendix D. (iii) For a given t, let kt ≥ 0. Then,
since an equilibrium path is a sequence of temporary equilibria, we have wt =
w(kt) > 0 and st = s(w (kt) , r

e
t+1), where ret+1 = r (kt+1) . Hence, by Lemma 1,

s(w (kt) , r
e
t+1) > 0, which implies kt+1 > 0, in view of (3.32). This shows that

only for t = 0 is kt = 0 possible along an equilibrium path. (iv) This was shown
in the text above. �
The formal proofs of point (i) and (ii) of the proposition are placed in appendix

because they are quite technical. But the graphs in the ensuing figures 3.4-3.7
provide an intuitive verification. The “only if”part of point (ii) reflects the not
very surprising fact that if capital were an essential production factor, no capital
“now”would imply no income “now”, hence no saving and investment and thus no
capital in the next period and so on. On the other hand, the “if”part of point (ii)
says that when capital is not essential, an equilibrium path can set off even from
an initial period with no capital. Then point (iii) adds that an equilibrium path
will have positive capital in all subsequent periods. Finally, as to point (iv), note
that the fundamental difference equation, (3.32), rests on equation (3.31). Recall
from the previous subsection that the economic logic behind this key equation
is that since capital is the only non-human asset in the economy and the young
are born without any inheritance, the aggregate capital stock at the beginning of
period t+ 1 must be owned by the old generation in that period. It must thereby
equal the aggregate saving these people had in the previous period where they
were young.

The transition diagram

To be able to further characterize equilibrium paths, we construct a transition
diagram in the (kt, kt+1) plane. The transition curve is defined as the set of points
(kt, kt+1) satisfying (3.32). Its form and position depends on the households’
preferences and the firms’technology. Fig. 3.4 shows one possible, but far from
necessary configuration of this curve. A complicating circumstance is that the
equation (3.32) has kt+1 on both sides. Sometimes we are able to solve the
equation explicitly for kt+1 as a function of kt, but sometimes we can do so only
implicitly. What is even worse is that there are cases where kt+1 is not unique
for a given kt. We will proceed step by step.
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First, what can we say about the slope of the transition curve? In general a
point on the transition curve has the property that at least in a small neighbor-
hood of this point the equation (3.32) will define kt+1 as an implicit function of
kt.14 Taking the total derivative w.r.t. kt on both sides of (3.32), we get

dkt+1

dkt
=

1

1 + n

(
sww

′ (kt) + srr
′ (kt+1)

dkt+1

dkt

)
. (3.33)

By ordering, the slope of the transition curve within this small neighborhood can
be written

dkt+1

dkt
=

sw (w (kt) , r (kt+1))w′ (kt)

1 + n− sr (w (kt) , r (kt+1)) r′ (kt+1)
, (3.34)

when sr(w(kt), r(kt+1))r′ (kt+1) 6= 1+n. Since sw > 0 and w′(kt) = −kt f ′′(kt) > 0,
the numerator in (3.34) is always positive and we have

dkt+1

dkt
≷ 0 for sr(w(kt), r(kt+1)) ≷ 1 + n

r′ (kt+1)
,

respectively (recall that r′ (kt+1) = f ′′(kt+1) < 0).

Figure 3.4: Transition curve and the resulting dynamics in the log-utility Cobb-Douglas
case.

It follows that the transition curve is universally upward-sloping if and only if
sr(w(kt), r(kt+1)) > (1 + n)/r′ (kt+1) everywhere along the transition curve. The

14An exception occurs if the denominator in (3.34) below vanishes.
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intuition behind this becomes visible by rewriting (3.34) in terms of small changes
in kt and kt+1. Since ∆kt+1/∆kt ≈ dkt+1/dkt for ∆kt “small”, (3.34) implies

[1 + n− sr (·) r′ (kt+1)] ∆kt+1 ≈ sw (·) w′(kt)∆kt. (*)

Let ∆kt > 0. This rise in kt will always raise wage income and, via the resulting
rise in st, raise kt+1, everything else equal. Everything else is not equal, however,
since a rise in kt+1 implies a fall in the rate of interest. There are four cases to
consider:
Case 1: sr (·) = 0. Then there is no feedback effect from the fall in the rate of

interest. So the tendency to a rise in kt+1 is neither offset nor fortified.
Case 2: sr (·) > 0. Then the tendency to a rise in kt+1 will be partly offset

through the dampening effect on saving resulting from the fall in the interest
rate. This negative feedback can not fully offset the tendency to a rise in kt+1.
The reason is that the negative feedback on the saving of the young will only
be there if the interest rate falls in the first place. We cannot in a period have
both a fall in the interest rate triggering lower saving and a rise in the interest
rate (via a lower kt+1) because of the lower saving. So a suffi cient condition for
a universally upward-sloping transition curve is that the saving of the young is a
non-decreasing function of the interest rate.
Case 3: (1 + n)/r′ (kt+1) < sr (·) < 0. Then the tendency to a rise in kt+1 will

be fortified through the stimulating effect on saving resulting from the fall in the
interest rate.
Case 4: sr (·) < (1 + n)/r′ (kt+1) < 0. Then the expression in brackets on

the left-hand side of (*) is negative and requires therefore that ∆kt+1 < 0 in
order to comply with the positive right-hand side. This is a situation of multiple
temporary equilibria, a situation where self-fulfilling expectations operate. We
shall explore this case in the next sub-section.
Another feature of the transition curve is the following:

LEMMA 2 (the transition curve is nowhere flat) For all kt > 0, dkt+1/dkt 6= 0.

Proof. Since sw > 0 and w′(kt) > 0 always, the numerator in (3.34) is always
positive. �
The implication is that no part of the transition curve can be horizontal.15

When the transition curve crosses the 45◦ degree line for some kt > 0, as in
the example in Fig. 3.4, we have a steady state at this kt. Formally:

DEFINITION 4 An equilibrium path {(kt, c1t, c2t)}∞t=0 is in a steady state with
capital-labor ratio k∗ > 0 if the fundamental difference equation, (3.32), is satis-
fied with kt as well as kt+1 replaced by k∗.

15This would not necessarily hold if the utility function were not time-separable.
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This exemplifies the notion of a steady state as a stationary point in a dy-
namic process. Some economists use the term “dynamic equilibrium”instead of
“steady state”. As in this book the term “equilibrium”refers to situations where
the constraints and decided actions of the market participants are mutually com-
patible, an economy can be in “equilibrium”without being in a steady state. A
steady state is seen as a special sequence of temporary equilibria with fulfilled
expectations, namely one with the property that the dynamic variable, here k,
entering the fundamental difference equation does not change over time.

EXAMPLE 2 (the log utility Cobb-Douglas case) Let u(c) = ln c and Y =
AKαL1−α, where A > 0 and 0 < α < 1. Since u(c) = ln c is the case θ = 1
in Example 1, by (3.15) we have sr = 0. Indeed, with logarithmic utility the
substitution and income effects on st offset each other; and, as discussed above,
in the Diamond model there can be no wealth effect of a rise in rt+1. Further,
the equation (3.32) reduces to a transition function,

kt+1 =
(1− α)Akαt

(1 + n)(2 + ρ)
. (3.35)

The associated transition curve is shown in Fig. 3.4 and there is for k0 > 0 both
a unique equilibrium path and a unique steady state with capital-labor ratio

k∗ =

(
(1− α)A

(2 + ρ)(1 + n)

)1/(1−α)

> 0.

At kt = k∗ the slope of the transition curve is necessarily less than one. The
dynamics therefore lead to convergence to the steady state as illustrated in the
figure.16 In the steady state the interest rate is r∗ = f ′(k∗) − δ = α(1 + n)(2 +
ρ)/(1− α)− δ. Note that a higher n results in a lower k∗, hence a higher r∗. �
Because the Cobb-Douglas production function implies that capital is essen-

tial, (3.35) implies kt+1 = 0 if kt = 0. The state kt+1 = kt = 0 is thus a stationary
point of the difference equation (3.35) considered in isolation. This state is not,
however, an equilibrium path as defined above (not a steady state of an economic
system since there is no production). We may call it a trivial steady state in
contrast to the economically viable steady state kt+1 = kt = k∗ > 0 which is then
called a non-trivial steady state.
Theoretically, there may be more than one (non-trivial) steady state. Non-

existence of a steady state is also possible. But before considering these possibil-
ities, the next subsection (which may be skipped in a first reading) addresses an
even more defiant feature which is that for a given k0 there may exist more than
one equilibrium path.

16A formal proof can be based on the mean value theorem.
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The possibility of multiple equilibrium paths*

It turns out that a backward-bending transition curve like that in Fig. 3.5 is
possible within the model. Not only are there two steady states but for kt ∈ (k, k)
there are three temporary equilibria with self-fulfilling expectations. That is, for a
given kt in this interval, there are three different values of kt+1 that are consistent
with self-fulfilling expectations. Exercise 3.3 at the end of the chapter documents
this possibility by way of a numerical example.

Figure 3.5: A backward-bending transition curve leads to multiple temporary equilibria
with self-fulfilling expectations.

The theoretical possibility of multiple equilibria with self-fulfilling expecta-
tions requires that there is at least one interval on the horizontal axis where a
section of the transition curve has negative slope. Let us see if we can get an
intuitive understanding of why in this situation multiple equilibria can arise. Con-
sider the specific configuration in Fig. 3.5 where k′, k′′, and k′′′ are the possible
values for the capital-labor ratio next period when kt ∈ (k, k). In a neighbor-
hood of the point P associated with the intermediate value, k′′, the slope of the
transition curve is negative. As we saw above, this requires not only that in this
neighborhood sr(wt, r(kt+1)) < 0, but that the stricter condition sr(wt, r(kt+1))
< (1 + n)/f ′′(k′′) holds (we take wt as given since kt is given and wt = w(kt)).
That the point P with coordinates (kt, k

′′) is on the transition curve indicates that
given wt = w(kt) and an expected interest rate ret+1 = r(k′′), the induced saving

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



3.5. The dynamic path of the economy 93

by the young, s(wt, r(k′′), will be such that kt+1 = k′′, that is, the expectation
is fulfilled. The fact that also the point (kt, k

′), where k′ > k′′, is on transition
curve indicates that also a lower interest rate, r(k′), can be self-fulfilling. By this
is meant that if an interest rate at the level r(k′) is expected, then this expecta-
tion induces more saving by the young, just enough more to make kt+1 = k′ > k′′,
thus confirming the expectation of the lower interest rate level r(k′).What makes
this possible is exactly the negative dependency of st on ret+1. The fact that also
the point (kt, k

′′′), where k′′′ < k′′, is on the transition curve can be similarly
interpreted. It is also sr < 0 that makes it possible that less saving by the young
than at P can be induced by an expected higher interest rate, r(k′′′), than at P.
These ambiguities point to a serious problem with the assumption of perfect

foresight. The model presupposes that all the young agree in their expectations.
Only then will one of the three mentioned temporary equilibria appear. But the
model is silent about how the needed coordination of expectations is brought
about, and if it is, why this coordination ends up in one rather than another of
the three possible equilibria with self-fulfilling expectations. Each single young is
isolated in the market and will not know what the others will expect. The market
mechanism in the model provides no coordination of expectations. As it stands,
the model cannot determine how the economy will evolve in this situation.
This is of course a weakness. Yet the encountered phenomenon itself − that

multiple self-fulfilling equilibrium paths are theoretically possible − is certainly
of interest and plays an important role in certain business cycle theories of booms
and busts.
For now we plainly want to circumvent non-uniqueness. There are at least

two ways to rule out the possibility of multiple equilibrium paths. One simple
approach is to discard the assumption of perfect foresight. Instead, some kind
of adaptive expectations may be assumed, for example in the form of myopic
foresight, also called static expectations. This means that the expectation formed
by the agents in the current period about the value of a variable next period
is that it will stay the same as in the current period. So here the assumption
would be that the young have the expectation ret+1 = rt. Then, given k0 > 0,
a unique sequence of temporary equilibria {(kt, c1t, c2t, wt, rt)}∞t=0 is generated by
the model. Oscillations in the sense of repetitive movements up and down of kt
are possible. Even chaotic trajectories are possible (see Exercise 3.6).
Outside steady state the agents will experience that their expectations are

systematically wrong. And the assumption of myopic foresight rules out that
learning occurs. This may be too simplistic, although it can be argued that
human beings to a certain extent have a psychological disposition to myopic
foresight.
Another approach to the indeterminacy problem in the Diamond model is
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motivated by the presumption that the possibility of multiple equilibria is basi-
cally due to the rough time structure of the model. Each period in the model
corresponds to half of an adult person’s lifetime. Moreover, in the first period of
life there is no capital income, in the second there is no labor income. This coarse
notion of time may artificially generate a multiplicity of equilibria or, with my-
opic foresight, oscillations. An expanded model where people live many periods
may “smooth”the responses of the system to the events impinging on it. Indeed,
with working life stretching over more than one period, wealth effects of changes
in the interest rate arise, thereby reducing the likelihood of a backward-bending
transition curve.
Anyway, in a first approach the analyst may want to stay with a rough time

structure because of its analytical convenience and then make the best of it by
imposing conditions on the utility function, the production function, and/or pa-
rameter values so as to rule out multiple equilibria. Following this approach we
stay with the assumption of perfect foresight, but assume that circumstances are
such that multiple temporary equilibria with self-fulfilling expectations do not
arise.

Conditions for uniqueness of the equilibrium path

Suffi cient for the equilibrium path to be unique is that preferences and technology
in combination are such that the slope of the transition curve is everywhere
positive. Hence we impose the Positive Slope Assumption that

sr(w(kt), r(kt+1)) >
1 + n

f ′′(kt+1)
(A2)

everywhere along an equilibrium path. This condition is of course always satisfied
when sr ≥ 0 (reflecting an elasticity of marginal utility of consumption not above
one) and can be satisfied even if sr < 0 (as long as sr is small in absolute value).
Essentially, it is an assumption that the income effect on consumption as young
of a rise in the interest rate does not dominate the substitution effect “too much”.
Unfortunately, a condition like (A2) is not in itself very informative. This is

because it is expressed in terms of an endogenous variable, kt+1, for given kt. A
model assumption should preferably be stated in terms of what is given, also called
the “primitives”of the model, that is, the exogenous elements which in this model
comprise the assumed preferences, demography, technology, and the market form.
We can state suffi cient conditions, however, in terms of the “primitives”, such that
(A2) is ensured. Here we state two such suffi cient conditions, both involving a
CRRA period utility function with parameter θ as defined in (3.14):

(a) If 0 < θ ≤ 1, then (A2) holds for all kt > 0 along an equilibrium path.
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(b) If the production function is of CES-type,17 i.e., f(k) = A(αkγ + 1− α)1/γ,
A > 0, 0 < α < 1, −∞ < γ < 1, then (A2) holds along an equilibrium path
even for θ > 1, if the elasticity of substitution between capital and labor,
1/(1− γ), is not too small, i.e., if

1

1− γ >
1− 1/θ

1 + (1 + ρ)−1/θ(1 + f ′(k)− δ)(1−θ)/θ (3.36)

for all k > 0. In turn, suffi cient for this is that (1− γ)−1 > 1− θ−1.

That (a) is suffi cient for (A2) is immediately visible in (3.15). The suffi ciency
of (b) is proved in Appendix D. The elasticity of substitution between capital
and labor is a concept analogue to the elasticity of intertemporal substitution
in consumption. It is a measure of the sensitivity of the chosen k = K/L with
respect to the relative factor price. The next chapter goes more into detail with
the concept and shows, among other things, that the Cobb-Douglas production
function corresponds to γ = 0. So the Cobb-Douglas production function will
satisfy the inequality (1− γ)−1 > 1− θ−1 (since θ > 0), hence also the inequality
(3.36).
With these or other suffi cient conditions in the back of our mind we shall now

proceed imposing the Positive Slope Assumption (A2). To summarize:

PROPOSITION 3 (uniqueness of an equilibrium path) Suppose the No Fast and
Positive Slope assumptions, (A1) and (A2), apply. Then, if k0 > 0, there exists
a unique equilibrium path.
(i) if k0 > 0, there exists a unique equilibrium path;
(ii) if k0 = 0, an equilibrium path exists if and only if f(0) > 0 (i.e., capital not
essential).

When the conditions of Proposition 3 hold, the fundamental difference equa-
tion, (3.32), of the model defines kt+1 as an implicit function of kt,

kt+1 = ϕ(kt),

for all kt > 0, where ϕ(kt) is called a transition function. The derivative of this
implicit function is given by (3.34) with kt+1 on the right-hand side replaced by
ϕ(kt), i.e.,

ϕ′(kt) =
sw (w (kt) , r (ϕ(kt)))w

′(kt)

1 + n− sr (w (kt) , r (ϕ(kt))) r′(ϕ(kt))
> 0. (3.37)

The positivity for all kt > 0 is due to (A2). Example 2 above leads to a transition
function.
17CES stands for Constant Elasticity of Substitution. CES production functions are consid-

ered in detail in Chapter 4.
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Having determined the evolution of kt, we have in fact determined the evolu-
tion of “everything”in the economy: the factor prices w(kt) and r(kt), the saving
of the young st = s(w(kt), r(kt+1)), and the consumption by both the young and
the old. The mechanism behind the evolution of the economy is the Walrasian (or
Classical) mechanism where prices, here wt and rt, always adjust so as to generate
market clearing as if there were a Walrasian auctioneer and where expectations
always adjust so as to be model consistent.

Existence and stability of a steady state?

Possibly the equilibrium path converges to a steady state. To address this issue,
we examine the possible configurations of the transition curve in more detail. In
addition to being positively sloped everywhere, the transition curve will always,
for kt > 0, be situated strictly below the solid curve, kt+1 = w(kt)/(1 +n), shown
in Fig. 3.6. In turn, the latter curve is always, for kt > 0, strictly below the
stippled curve, kt+1 = f(kt)/(1 + n), in the figure. To be precise:

LEMMA 3 (ceiling and roof) Suppose the No Fast Assumption (A1) applies.
Along an equilibrium path, whenever kt > 0,

0 < kt+1 <
w(kt)

1 + n
<
f(kt)

1 + n
, t = 0, 1, . . . .

Proof. From (iii) of Proposition 2, an equilibrium path has wt = w(kt) > 0 and
kt+1 > 0 for t = 0, 1, 2,. . . . Thus,

0 < kt+1 =
st

1 + n
<

wt
1 + n

=
w(kt)

1 + n
=
f(kt)− f ′(kt)kt

1 + n
<
f(kt)

1 + n
,

where the first equality comes from (3.32), the second inequality from Lemma
1 in Section 3.3, and the last inequality from the fact that f ′(kt)kt > 0 when
kt > 0. �
We will call the graph (kt, w(kt)/(1 + n)) in Fig. 3.6 a ceiling. It acts as a

ceiling on kt+1 simply because the saving of the young cannot exceed the income
of the young, w(kt). And we will call the graph (kt, f(kt)/(1 +n)) a roof, because
“everything of interest”occurs below it. The roof can be drawn directly on the
basis of the production function f(kt).
To characterize the position of the roof relative to the 45◦ line, we consider

the lower Inada condition, limk→0 f
′(k) =∞.

LEMMA 4 The roof, R(k) ≡ f(k)/(1+n), has positive slope everywhere, crosses
the 45◦ line for at most one k > 0 and can only do that from above. A necessary
and suffi cient condition for the roof to be above the 45◦ line for small k is that
either limk→0 f

′(k) > 1 + n or f(0) > 0 (capital not essential).
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Proof. Since f ′ > 0, the roof has positive slope. Since f ′′ < 0, it can only cross
the 45◦ line once and only from above. If and only if limk→0 f

′(k) > 1 + n, then
for small kt, the roof is steeper than the 45◦ line. Obviously, if f(0) > 0, then
close to the origin, the roof will be above the 45◦ line. �

Figure 3.6: A case where both the roof and the ceiling cross the 45◦ line, but the
transition curve does not (no steady state exists).

LEMMA 5 Given w(k) = f(k) − f ′(k)k for all k ≥ 0, where f(k) satisfies
f(0) ≥ 0, f ′ > 0, f ′′ < 0, the following holds:
(i) limk→∞w(k)/k = 0;
(ii) the ceiling, C(k) ≡ w(k)/(1 + n), is positive and has positive slope for all
k > 0; moreover, there exists k̄ > 0 such that C(k) < k for all k > k̄.

Proof. (i) In view of f(0) ≥ 0 combined with f ′′ < 0, we have w(k) > 0 for
all k > 0. Hence, limk→∞w(k)/k ≥ 0 if this limit exists. Consider an arbitrary
k1 > 0. We have f ′(k1) > 0. For all k > k1, it holds that 0 < f ′(k) < f ′(k1), in
view of f ′ > 0 and f ′′ < 0, respectively. Hence, limk→∞ f

′(k) exists and

0 ≤ lim
k→∞

f ′(k) < f ′(k1). (3.38)

We have

lim
k→∞

w(k)

k
= lim

k→∞

f(k)

k
− lim

k→∞
f ′(k). (3.39)
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There are two cases to consider. Case 1: f(k) has an upper bound. Then,
limk→∞ f(k)/k = 0 so that limk→∞w(k)/k = − limk→∞ f

′(k) = 0, by (3.39)
and (3.38), as w(k)/k > 0 for all k > 0. Case 2: limk→∞ f(k) = ∞. Then,
by L’Hôpital’s rule for “∞/∞”, limk→∞(f(k)/k) = limk→∞ f

′(k) so that (3.39)
implies limk→∞w(k)/k = 0.
(ii) As n > −1 and w(k) > 0 for all k > 0, C(k) > 0 for all k > 0. From

w′(k) = −kf ′′(k) > 0 follows C ′(k) = −kf ′′(k)/(1 + n) > 0 for all k > 0; that is,
the ceiling has positive slope everywhere. For k > 0, the inequality C(k) < k is
equivalent to w(k)/k < 1+n. By (i) follows that for all ε > 0, there exists kε > 0
such that w(k)/k < ε for all k > kε. Now, letting ε = 1 + n and k̄ = kε proves
that there exists k̄ > 0 such that w(k)/k < 1 + n for all k > k̄. �
While the roof can be above the 45◦ line for all kt > 0, the ceiling can not.

Indeed, (ii) of the lemma implies that if for small kt the ceiling is above the 45◦

line, the ceiling will necessarily cross the 45◦ line at least once for larger kt.
In view of the ceiling being always an upper bound on kt+1, what is the point

of introducing also the roof? The point is that the roof is a more straightforward
construct since it is directly given by the production function and is always strictly
concave. The ceiling is generally a more complex construct. It can have convex
sections and for instance cross the 45◦ line at more than one point if at all. .
A necessary condition for existence of a (non-trivial) steady state is that the

roof is above the 450 line for small kt. But this is not suffi cient for also the
transition curve to be above the 450 line for small kt. Fig. 3.6 illustrates this. Here
the transition curve is in fact everywhere below the 450 line. In this case no steady
state exists and the dynamics imply convergence towards the “catastrophic”point
(0, 0).Given the rate of population growth, the saving of the young is not suffi cient
to avoid famine in the long run. This will for example happen if the technology
implies so low productivity that even if all income of the young were saved, we
would have kt+1 < kt for all kt > 0, cf. Exercise 3.2. The Malthusian mechanism
will be at work and bring down n (outside the model). This exemplifies that even
a trivial steady state (the point (0,0)) may be of interest in so far as it may be
the point the economy is heading to without ever reaching it.
To help existence of a steady state we will impose the condition that either

capital is not essential or preferences and technology fit together in such a way
that the slope of the transition curve is larger than one for small kt. That is, we
assume that either

(i) f(0) > 0 or (A3)

(ii) lim
k→0

ϕ′(k) > 1,

where ϕ′(k) is implicitly given in (3.37). Whether condition (i) of (A3) holds in
a given situation can be directly checked from the production function. If it does
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not, we should check condition (ii). But this condition is less amenable because
the transition function ϕ is not one of the “primitives” of the model. There
exist cases, though, where we can find an explicit transition function and try out
whether (ii) holds (like in Example 2 above). But generally we can not. Then we
have to resort to suffi cient conditions for (ii) of (A3), expressed in terms of the
“primitives”. For example, if the period utility function belongs to the CRRA
class and the production function is Cobb-Douglas at least for small k, then (ii)
of (A3) holds (see Appendix E). Anyway, as (i) and (ii) of (A3) can be interpreted
as reflecting two different kinds of “early steepness”of the transition curve, we
shall call (A3) the Early Steepness Assumption.18

PROPOSITION 4 (existence and stability of a steady state) Assume that the
No Fast Assumption (A1) and the Positive Slope assumption (A2) apply as well
as the Early Steepness Assumption (A3). Then there exists at least one steady
state k∗ > 0 that is locally asymptotically stable. Oscillations do not occur.

Proof. By (A1), Lemma 3 applies. From Proposition 2 we know that if (i) of
(A3) holds, then kt+1 = st/(1 + n) > 0 even for kt = 0. Alternatively, (ii) of (A3)
is enough to ensure that the transition curve lies above the 45◦ line for small kt.
By Lemma 4 the roof then does the same. According to (ii) of Lemma 5, for
large kt the ceiling is below the 45◦ line. Being below the ceiling, cf. Lemma
3, the transition curve must therefore cross the 45◦ line at least once. Let k∗

denote the smallest kt at which it crosses. Then k∗ > 0 is a steady state with the
property 0 < ϕ′ (k∗) < 1. By graphical inspection we see that this steady state
is asymptotically stable. For oscillations to come about there must exist a steady
state, k∗∗, with ϕ′ (k∗∗) < 0, but this is impossible in view of (A2). �
From Proposition 4 we conclude that, given k0, the assumptions (A1) - (A3)

ensure existence and uniqueness of an equilibrium path; moreover, the equilibrium
path converges towards some steady state. Thus with these assumptions, for any
k0 > 0, sooner or later the system settles down at some steady state k∗ > 0. For
the factor prices we therefore have

rt = f ′(kt)− δ → f ′(k∗)− δ ≡ r∗, and

wt = f(kt)− ktf ′(kt)→ f(k∗)− k∗f ′(k∗) ≡ w∗,

for t → ∞. But there may be more than one steady state and therefore only
local stability is guaranteed. This can be shown by examples, where the utility
function, the production function, and parameters are specified in accordance
with the assumptions (A1) - (A3) (see Exercise 3.5 and ...).

18In (i) of (A3), the “steepness” is rather a “hop”at k = 0 if we imagine k approaching nil
from below.
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Figure 3.7: A case of multiple steady states (and capital being not essential).

Fig. 3.7 illustrates such a case (with f(0) > 0 so that capital is not essential).
Moving West-East in the figure, the first steady state, k∗1, is stable, the second,
k∗2, unstable, and the third, k

∗
3, stable. In which of the two stable steady states

the economy ends up depends on the initial capital-labor ratio, k0. The lower
steady state, k∗1, is known as a poverty trap. If 0 < k0 < k∗2, the economy is
caught in the trap and converges to the low steady state. But with high enough
k0 (k0 > k∗2), perhaps obtained by foreign aid, the economy avoids the trap and
converges to the high steady state. Looking back at Fig. 3.6, we can interpret
that figure’s scenario as exhibiting an inescapable poverty trap.
It turns out that CRRA utility combined with a Cobb-Douglas production

function ensures both that (A1) - (A3) hold and that a unique (non-trivial)
steady state exists. So in this case global asymptotic stability of the steady state
is ensured.19 Example 2 and Fig. 3.4 above display a special case of this, the
case θ = 1.

This is of course a convenient case for the analyst. A Diamond model sat-
isfying assumptions (A1) - (A3) and featuring a unique steady state is called a
well-behaved Diamond model.
We end this section with the question: Is it possible that aggregate consump-

tion, along an equilibrium path, for some periods exceeds aggregate income? We

19See last section of Appendix E.
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shall see that this is indeed possible in the model if K0 (wealth of the old in the
initial period) is large enough. Indeed, from national accounting we have:

C10 + C20 = F (K0, L0)− I0 > F (K0, L0)⇔ I0 < 0

⇔ K1 < (1− δ)K0 ⇔ K0 −K1 > δK0.

So aggregate consumption in period 0 being greater than aggregate income is
equivalent to a fall in the capital stock from period 0 to period 1 greater than
the capital depreciation in period 0. Consider the log utility Cobb-Douglas case
in Fig. 3.4 and suppose δ < 1 and Lt = L0 = 1, i.e., n = 0. Then kt = Kt for all
t and by (3.35), Kt+1 = (1−α)A

2+ρ
Kα
t . Thus K1 < (1− δ)K0 for

K0 >

(
(1− α)A

(2 + ρ)(1− δ)

)1/(1−α)

.

As initial K is arbitrary, this situation is possible. When it occurs, it reflects
that the financial wealth of the old is so large that their consumption (recall
they consume all their financial wealth as well as the interest on this wealth)
exceeds what is left of current aggregate production after subtracting the amount
consumed by the young. So aggregate gross investment in the economy will be
negative. Of course this is only feasible if capital goods can be “eaten”or at least
be immediately (without further resources) converted into consumption goods.
As it stands, the model has implicitly assumed this to be the case. And this is in
line with the general setup since the output good is homogeneous and can either
be consumed or piled up as capital.
We now turn to effi ciency problems.

3.6 The golden rule and dynamic ineffi ciency

An economy described by the Diamond model has the property that even though
there is perfect competition and no externalities, the outcome brought about
by the market mechanism may not be Pareto optimal.20 Indeed, the economy
may overaccumulate forever and thus suffer from a distinctive form of production
ineffi ciency.
A key element in understanding the concept of overaccumulation is the con-

cept of a golden-rule capital-labor ratio. Overaccumulation occurs when aggregate

20Recall that a Pareto optimal path is a technically feasible path with the property that
no other technically feasible path will make at least one individual better off without making
someone else worse off. A technically feasible path which is not Pareto optimal is called Pareto
inferior.
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saving maintains a capital-labor ratio above the golden-rule value forever. Let us
consider these concepts in detail.
In the present section generally the period length is arbitrary except when

we relate to the Diamond model and the period length therefore is half of adult
lifetime.

The golden-rule capital-labor ratio

The golden rule is a principle that relates to technically feasible paths. The
principle does not depend on the market form.
Consider the economy-wide resource constraint Ct = Yt − St = F (Kt, Lt) −

(Kt+1−Kt+δKt), where we assume that F is neoclassical with CRS. Accordingly,
aggregate consumption per unit of labor can be written

ct ≡
Ct
Lt

=
F (Kt, Lt)− (Kt+1 −Kt + δKt)

Lt
= f(kt) + (1− δ)kt − (1 + n)kt+1,

(3.40)
where k is the capital-labor ratioK/L. Note that Ct will generally be greater than
the workers’consumption. One should simply think of Ct as the flow of produced
consumption goods in the economy and ct as this flow divided by aggregate em-
ployment, including the labor that in period t produces investment goods. How
the consumption goods are distributed to different members of society is not our
concern here.

DEFINITION 5 By the golden-rule capital-labor ratio, kGR, is meant that value
of the capital-labor ratio k, which results in the highest possible sustainable level
of consumption per unit of labor.

Sustainability requires replicability forever. We therefore consider a steady
state. In a steady state kt+1 = kt = k so that (3.40) simplifies to

c = f(k)− (δ + n)k ≡ c(k). (3.41)

Maximizing gives the first-order condition

c′(k) = f ′(k)− (δ + n) = 0. (3.42)

In view of c′′(k) = f ′′(k) < 0, the condition (3.42) is both necessary and suffi cient
for an interior maximum. Let us assume that δ + n > 0 and that f satisfies the
condition

lim
k→∞

f ′(k) < δ + n < lim
k→0

f ′(k).

Then (3.42) has a solution in k, and it is unique because c′′(k) < 0. The solution
is called kGR so that

f ′(kGR)− δ = n.
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That is:

PROPOSITION 5 (the golden rule) The highest sustainable consumption level
per unit of labor in society is obtained when in steady state the net marginal
productivity of capital equals the growth rate of the economy.

Figure 3.8: A steady state with overaccumulation.

It follows that if a society aims at the highest sustainable level of consumption
and initially has k0 < kGR, it should increase its capital-labor ratio up to the
point where the extra output obtainable by a further small increase is exactly
offset by the extra gross investment needed to maintain the capital-labor ratio
at that level. The intuition is visible from (3.41). The golden-rule capital-labor
ratio, kGR, strikes the right balance in the trade-off between high output per unit
of labor and a not too high investment requirement. Although a steady state
with k > kGR would imply higher output per unit of labor, it would also imply
that a large part of that output is set aside for investment (namely the amount
(δ + n)k per unit of labor) to counterbalance capital depreciation and growth in
the labor force; without this investment the high capital-labor ratio k∗ would not
be maintained. With k > kGR this feature would dominate the first effect so that
consumption per unit of labor ends up low. Fig. 3.8 illustrates.
The name golden rule hints at the golden rule from the Bible: “Do unto others

as you would have them to do unto you.”We imagine that God asks the newly
born generation: “What capital-labor ratio would you prefer to be presented
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with, given that you must hand over the same capital-labor ratio to the next
generation?”The appropriate answer is: the golden-rule capital-labor ratio.

The possibility of overaccumulation in a competitive market economy

The equilibrium path in the Diamond model with perfect competition implies an
interest rate r∗ = f ′(k∗)− δ in a steady state. As an implication,

r∗ T n⇔ f ′(k∗)− δ T n⇔ k∗ S kGR, respectively,

in view of f ′′ < 0. Hence, a long-run interest rate below the growth rate of the
economy indicates that k∗ > kGR. This amounts to a Pareto-inferior state of
affairs. Indeed, everyone can be made better off if by a coordinated reduction of
saving and investment, k is reduced. A formal demonstration of this is given in
connection with Proposition 6 in the next subsection. Here we give an account
in more intuitive terms.
Consider Fig. 3.8. Let k be gradually reduced to the level kGR by refrain-

ing from investment in period t0 and forward until this level is reached. When
this happens, let k be maintained at the level kGR forever by providing for the
needed investment per young, (δ+ n)kGR. Then there would be higher aggregate
consumption in period t0 and every future period. Both the immediate reduction
of saving and a resulting lower capital-labor ratio to be maintained contribute to
this result. There is thus scope for both young and old to consume more in every
future period.
In the Diamond model a simple policy implementing such a Pareto improve-

ment in the case where k∗ > kGR (i.e., r∗ < n) is to incur a lump-sum tax on
the young, the revenue of which is immediately transferred lump sum to the old,
hence, fully consumed. Suppose this amounts to a transfer of one good from each
young to the old. Since there are 1 + n young people for each old person, every
old receives in this way 1 + n goods in the same period. Let this transfer be
repeated every future period. By decreasing their saving by one unit, the young
can maintain unchanged consumption in their youth, and when becoming old,
they receive 1 + n goods from the next period’s young and so on. In effect, the
“return”on the tax payment by the young is 1 + n next period. This is more
than the 1 + r∗ that could be obtained via the market through own saving.21

21In this model with no utility of leisure, a tax on wage income, or a mandatory pay-as-you-go
pension contribution (see Chapter 5) would act like a lump-sum tax on the young.
The described tax-transfers policy will affect the equilibrium interest rate negatively. By

choosing an appropriate size of the tax this policy, combined with competitive markets, will
under certain conditions (see Chapter 5.1) bring the economy to the golden-rule steady state
where overaccumulation has ceased and r∗ = n.
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A proof that k∗ > kGR is indeed theoretically possible in the Diamond model
can be based on the log utility-Cobb-Douglas case from Example 2 in Section
3.5.3. As indicated by the formula for r∗ in that example, the outcome r∗ < n,
which is equivalent to k∗ > kGR, can always be obtained by making the parameter
α ∈ (0, 1) in the Cobb-Douglas function small enough. The intuition is that a
small α implies a high 1−α, that is, a high wage income wL = (1−α)KαL−α ·L
= (1 − α)Y ; this leads to high saving by the young, since sw > 0. The result is
a high kt+1 which generates a high real wage also next period and may in this
manner be sustained forever.
An intuitive understanding of the fact that the perfectly competitive market

mechanism may thus lead to overaccumulation, can be based on the following
argument. Assume, first, that sr < 0. In this case, if the young in period t
expects the rate of return on their saving to end up small (less than n), the
decided saving will be large in order to provide for consumption after retirement.
But the aggregate result of this behavior is a high kt+1 and therefore a low f ′(kt+1).
In this way the expectation of a low rt+1 is confirmed by the actual events. The
young persons each do the best they can as atomistic individuals, taking the
market conditions as given. Yet the aggregate outcome is an equilibrium with
overaccumulation, hence a Pareto-inferior outcome.
Looking at the issue more closely, we see that sr < 0 is not crucial for this

outcome. Suppose sr = 0 (the log utility case) and that in the current period,
kt is, for some historical reason, at least temporarily considerably above kGR.
Thus, current wages are high, hence, st is relatively high (there is in this case no
offsetting effect on st from the relatively low expected rt+1). Again, the aggregate
result is a high kt+1 and thus the expectation is confirmed. Consequently, the
situation in the next period is the same and so on. By continuity, even if sr > 0,
the argument goes through as long as sr is not too large.

Dynamic ineffi ciency and the double infinity

Another name for the overaccumulation phenomenon is dynamic ineffi ciency.

DEFINITION 6 A technically feasible path {(ct, kt)}∞t=0 with the property that
there does not exist another technically feasible path with higher ct in some
periods without smaller ct in other periods is called dynamically effi cient. A
technically feasible path {(ct, kt)}∞t=0 which is not dynamically effi cient is called
dynamically ineffi cient.

PROPOSITION 6 A technically feasible path {(ct, kt)}∞t=0 with the property that
for t→∞, kt → k∗ > kGR, is dynamically ineffi cient.

Proof. Let k∗ > kGR. Then there exists an ε > 0 such that k ∈ (k∗ − 2ε, k∗ + 2ε)
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implies f ′(k)− δ < n since f ′′ < 0. By concavity of f,

f(k)− f(k − ε) ≤ f ′(k − ε)ε. (3.43)

Consider a technically feasible path {(ct, kt)}∞t=0 with kt → k∗ for t → ∞ (the
reference path). Then there exists a t0 such that for t ≥ t0, kt ∈ (k∗ − ε, k∗ + ε),
f ′(kt) − δ < n and f ′(kt − ε) − δ < n. Consider an alternative feasible path{

(ĉt, k̂t)
}∞
t=0

, where a) for t = t0 consumption is increased relative to the reference

path such that k̂t0+1 = kt0 − ε; and b) for all t > t0, consumption is such that
k̂t+1 = kt− ε.We now show that after period t0, ĉt > ct. Indeed, for all t > t0, by
(3.40),

ĉt = f(k̂t) + (1− δ)k̂t − (1 + n)k̂t+1

= f(kt − ε) + (1− δ)(kt − ε)− (1 + n)(kt+1 − ε)
≥ f(kt)− f ′(kt − ε)ε+ (1− δ)(kt − ε)− (1 + n)(kt+1 − ε) (by (3.43))

> f(kt)− (δ + n)ε+ (1− δ)kt − (1 + n)kt+1 + (δ + n)ε

= f(kt) + (1− δ)kt − (1 + n)kt+1 = ct,

by (3.40). �
Moreover, it can be shown22 that:

PROPOSITION 7 A technically feasible path {(ct, kt)}∞t=0 such that for t→∞,
kt → k∗ ≤ kGR, is dynamically effi cient.

Accordingly, a steady state with k∗ < kGR is never dynamically ineffi cient.
This is because increasing k from this level always has its price in terms of a
decrease in current consumption; and at the same time decreasing k from this
level always has its price in terms of lost future consumption. But a steady state
with k∗ > kGR is always dynamically ineffi cient. Intuitively, staying forever with
k = k∗ > kGR, implies that society never enjoys its great capacity for producing
consumption goods.
The fact that k∗ > kGR, and therefore dynamic ineffi ciency, cannot be ruled

out might seem to contradict the First Welfare Theorem from the microeconomic
theory of general equilibrium. This is the theorem saying that under certain con-
ditions (essentially that increasing returns to scale are absent are absent, markets
are competitive, no goods are of public good character, and there are no exter-
nalities, then market equilibria are Pareto optimal. In fact, however, the First
Welfare Theorem also presupposes a finite number of periods or, if the number of
periods is infinite, then a finite number of agents. In contrast, in the OLG model

22See Cass (1972).
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there is a double infinity: an infinite number of periods and agents. Hence, the
First Welfare Theorem breaks down. Indeed, the case r∗ < n, i.e., k∗ > kGR, can
arise under laissez-faire. Then, as we have seen, everyone can be made better
off by a coordinated intervention by some social arrangement (a government for
instance) such that k is reduced.
The essence of the matter is that the double infinity opens up for technically

feasible reallocations which are definitely beneficial when r∗ < n and which a
central authority can accomplish but the market can not. That nobody need
loose by the described kind of redistribution is due to the double infinity: the
economy goes on forever and there is no last generation. Nonetheless, some kind
of centralized coordination is required to accomplish a solution.
There is an analogy in “Gamow’s bed problem”: There are an infinite number

of inns along the road, each with one bed. On a certain rainy night all innkeepers
have committed their beds. A late guest comes to the first inn and asks for a
bed. “Sorry, full up!”But the minister of welfare hears about it and suggests
that each incumbent guest move down the road one inn.23

Whether the theoretical possibility of overaccumulation should be a matter of
practical concern is an empirical question about the relative size of rates of return
and economic growth. To answer the question meaningfully, we need an extension
of the criterion for overaccumulation so that the presence of technological progress
and rising per capita consumption in the long run can be taken into account. This
is one of the topics of the next chapter. At any rate, we can already here reveal
that there exists no indication that overaccumulation has ever been an actual
problem in industrialized market economies.
A final remark before concluding. Proposition 5 about the golden rule can be

generalized to the case where instead of one there are n different capital goods in
the economy. Essentially the generalization says that assuming CRS-neoclassical
production functions with n different capital goods as inputs, one consumption
good, no technological change, and perfectly competitive markets, a steady state
in which per-unit-of labor consumption is maximized has interest rate equal to
the growth rate of the labor force when technological progress is ignored (see,
e.g., Mas-Colell, 1989).

3.7 Concluding remarks

(Unfinished)
In several respects the conclusions we get from OLG models are different than

those from representative agent models to be studied later. In OLG models the
23George Gamow (1904-1968) was a Russian physicist. The problem is also known as Hilbert’s

hotel problem, after the German mathematician David Hilbert (1862-1943).
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aggregate quantities are the outcome of the interplay of finite-lived agents at
different stages in their life cycle. The turnover in the population plays a crucial
role. In this way the OLG approach lays bare the possibility of coordination
failure on a grand scale. In contrast, in a representative agent model, aggregate
quantities are just a multiple of the actions of the representative household.
Regarding analytical tractability, the complexity implied by having in every

period two different coexisting generations is in some respects more than compen-
sated by the fact that the finite time horizon of the households make the dynamics
of the model one-dimensional : we end up with a first-order difference equation
in the capital-labor ratio, kt, in the economy. In contrast, the dynamics of the
basic representative agent model (Chapter 8 and 10) is two-dimensional (owing
to the assumed infinite horizon of the households considered as dynasties).
Miscellaneous notes:
OLG gives theoretical insights concerning macroeconomic implications of life

cycle behavior, allows heterogeneity, provides training in seeing the economy as
consisting of a heterogeneous population where the distribution of agent charac-
teristics matters for the aggregate outcome.
Farmer (1993), p. 125, notes that OLG models are diffi cult to apply and

for this reason much empirical work in applied general equilibrium theory has
regrettably instead taken the representative agent approach.
Outlook: Rational speculative bubbles in general equilibrium, cf. Chapter ?.

3.8 Literature notes

1. The Nobel Laureate Paul A. Samuelson (1915-2009) is one of the pioneers
of OLG models. Building on the French economist and Nobel laureate Maurice
Allais (1911-2010), Samuelson’s famous article, Samuelson (1958), was concerned
with a missing market problem. Imagine a two-period OLG economy where,
as in the Diamond model, only the young have an income (which in turn is,
by Samuelson, assumed exogenous). Contrary to the Diamond model, however,
there is neither capital nor other stores of value. Then, in the laissez-faire market
economy the old have to starve. This is clearly a Pareto-inferior allocation; if
each member of the young generation hands over to the old generation one unit
of account, and this is repeated every period, everyone will be better off. Since
for every old there are 1 + n young, the implied rate of return would be n, the
population growth rate. Such transfers do not arise under laissez-faire. A kind
of social contract is required. As Samuelson pointed out, a government could in
period 0 issue paper notes, “money”, and transfer them to the members of the
old generation who would then use them to buy goods from the young. Provided
the young believed the notes to be valuable in the next period, they would accept

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



3.8. Literature notes 109

them in exchange for some of their goods in order to use them in the next period
for buying from the new young generation and so on. We have here an example of
how a social institution can solve a coordination problem. This gives a flavour of
Samuelson’s contribution although in his original article he assumed three periods
of life.

2. Diamond (1965) extended Samuelson’s contribution by adding capital ac-
cumulation. Because of its antecedents Diamonds OLGmodel is sometimes called
the Samuelson-Diamond model or the Allais-Samuelson-Diamond model. In our
exposition we have drawn upon clarifications by Galor and Ryder (1989) and
de la Croix and Michel (2002). The last mentioned contribution is an extensive
exploration of discrete-time OLG models and their applications.

3. The life-cycle saving hypothesis was put forward by Franco Modigliani
(1918-2003) and associates in the 1950s. See for example Modigliani and Brum-
berg (1954). Numerous extensions of the framework, relating to the motives (b)
- (e) in the list of Section 3.1, see for instance de la Croix and Michel (2002).

4. A review of the empirics of life-cycle behavior and attempts at refining
life-cycle models are given in Browning and Crossley (2001).

5. Regarding the dynamic effi ciency issue, both the propositions 6 and 7 were
shown in a stronger form by the American economist David Cass (1937-2008).
Cass established the general necessary and suffi cient condition for a feasible path
{(ct, kt)}∞t=0 to be dynamically effi cient (Cass 1972). Our propositions 6 and 7 are
more restrictive in that they are limited to paths that converge. Partly intuitive
expositions of the deeper aspects of the theory are given by Shell (1971) and
Burmeister (1980).

6. Diamond has also contributed to other fields of economics, including search
theory for labor markets. In 2010 Diamond, together with Dale Mortensen and
Christopher Pissarides, was awarded the Nobel price in economics.

From here very incomplete:

The two-period structure of Diamonds OLG model leaves little room for con-
sidering, e.g., education and dissaving in the early years of life. This kind of
issues is taken up in three-period extensions of the Diamond model, see ...

Multiple equilibria, self-fulfilling expectations, optimism and pessimism..

Dynamic ineffi ciency, see also Burmeister (1980).

Bewley 1977, 1980.

Two-sector OLG: Galor (1992). Galor’s book??

On the golden rule in a general setup, see Mas-Colell (1989).
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3.9 Appendix

A. On the CRRA utility function

Derivation of the CRRA function Consider a utility function u(c), defined
for all c > 0 and satisfying u′(c) > 0, u′′(c) < 0. Let the absolute value of
the elasticity of marginal utility be denoted θ(c), that is, θ(c) ≡ −cu′′(c)/u′(c)
> 0. We claim that if θ(c) is a positive constant, θ, then up to a positive linear
transformation u(c) must be of the form

u(c) =

{
c1−θ

1−θ , when θ 6= 1,

ln c, when θ = 1,
(*)

i.e., of CRRA form.

Proof. Suppose θ(c) = θ > 0. Then, u′′(c)/u′(c) = −θ/c. By integration, lnu′(c)
= −θ ln c+A, where A is an arbitrary constant. Take the antilogarithm function
on both sides to get u′(c) = eAe−θ ln c = eAc−θ. By integration we get

u(c) =

{
eA c

1−θ

1−θ +B, when θ 6= 1,

eA ln c+B, when θ = 1,

where B is an arbitrary constant. This proves the claim. Letting A = B = 0, we
get (*). �

When we want to make the kinship between the members of the CRRA family
transparent, we maintain A = 0 and for θ = 1 also B = 0, whereas for θ 6= 1 we
set B = −1/(1−θ). In this way we achieve that all members of the CRRA family
will be represented by curves going through the same point as the log function,
namely the point (1, 0), cf. Fig. 3.2. And adding or subtracting a constant does
not affect marginal rates of substitution and consequently not behavior.

The domain of the CRRA function We want to extend the domain to
include c = 0. If θ ≥ 1, the CRRA function, whether in the form u(c) = (c1−θ −
1)/(1 − θ) or in the form (*), is defined only for c > 0, not for c = 0. This is
because for c→ 0 we get u(c)→ −∞. In this case we simply define u(0) = −∞.
This will create no problems since the CRRA function anyway has the property
that u′(c) → ∞, when c → 0 (whether θ is larger or smaller than one). The
marginal utility thus becomes very large as c becomes very small, that is, the
No Fast Assumption is satisfied. This will ensure that the chosen c is strictly
positive whenever there is a positive budget. So throughout this book we define
the domain of the CRRA function to be [0,∞) .
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The range of the CRRA function Considering the CRRA function u(c) ≡(
c1−θ − 1

)
(1− θ)−1 for c ∈ [0,∞) , we have:

for 0 < θ < 1, the range of u(c) is
[
−(1− θ)−1,∞

)
,

for θ = 1, the range of u(c) is [−∞,∞) ,

for θ > 1, the range of u(c) is [−∞,−(1− θ)−1).

Thus, in the latter case u(c) is bounded from above and so allows asymptotic
“saturation”to occur.

B. Deriving the elasticity of intertemporal substitution in consumption

Referring to Section 3.3, we here show that the definition of σ(c1, c2) in (3.17)
gives the result (3.18). Let x ≡ c2/c1 and β ≡ (1 + ρ)−1. Then the first-order
condition (3.16) and the equation describing the considered indifference curve
constitute a system of two equations

u′(c1) = βu′(xc1)R,

u(c1) + βu(xc1) = Ū .

For a fixed utility level U = Ū these equations define c1 and x as implicit functions
of R, c1 = c(R) and x = x(R). We calculate the total derivative w.r.t. R in both
equations and get, after ordering,

[u′′(c1)− βRu′′(xc1)x] c′(R)− βRu′′(xc1)c1x
′(R)

= βu′(xc1), (3.44)

[u′(c1) + βu′(xc1)x] c′(R) = −βu′(xc1)c1x
′(R). (3.45)

Substituting c′(R) from (3.45) into (3.44) and ordering now yields

−
[
x
c1u
′′(c1)

u′(c1)
+R

xc1u
′′(xc1)

u′(xc1)

]
R

x
x′(R) = x+R.

Since −cu′′(c)/u′(c) ≡ θ(c), this can be written

R

x
x′(R) =

x+R

xθ(c1) +Rθ(xc1)
.

Finally, in view of xc1 = c2 and the definition of σ(c1, c2), this gives (3.18).
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C. Walras’law

In the proof of Proposition 1 we referred to Walras’law. Here is how Walras’law
works in each period in a model like this. We consider period t, but for simplicity
we skip the time index t on the variables. There are three markets, a market
for capital services, a market for labor services, and a market for output goods.
Suppose a “Walrasian auctioneer”calls out the price vector (r̂, w, 1), where r̂ > 0
and w > 0, and asks all agents, i.e., the young, the old, and the representative
firm, to declare their supplies and demands.
The supplies of capital and labor are by assumption inelastic and equal to

K units of capital services and L units of labor services. But the demand for
capital and labor services depends on the announced r̂ and w. Let the potential
pure profit of the representative firm be denoted Π. If r̂ and w are so that Π < 0,
the firm declares Kd = 0 and Ld = 0. If on the other hand at the announced r̂
and w, Π = 0 (as when r̂ = r(k) + δ and w = w(k)), the desired capital-labor
ratio is given as kd = f ′−1(r̂) from (3.20), but the firm is indifferent w.r.t. the
absolute level of the factor inputs. In this situation the auctioneer tells the firm
to declare Ld = L (recall L is the given labor supply) and Kd = kdLd which is
certainly acceptable for the firm. Finally, if Π > 0, the firm is tempted to declare
infinite factor demands, but to avoid that, the auctioneer imposes the rule that
the maximum allowed demands for capital and labor are 2K and 2L, respectively.
Within these constraints the factor demands will be uniquely determined by r̂
and w and we have

Π = Π(r̂, w, 1) = F (Kd, Ld)− r̂Kd − wLd. (3.46)

The owners of both the capital stock K and the representative firm must be
those who saved in the previous period, namely the currently old. These elderly
will together declare the consumption c2L−1 = (1 + r̂ − δ)K + Π and the net
investment −K (which amounts to disinvestment). The young will declare the
consumption c1L = wL− s(w, re+1)L and the net investment sL = s(w, re+1)L. So
aggregate declared consumption will be C = (1 + r̂− δ)K + Π +wL− s(w, re+1)L
and aggregate net investment I − δK = s(w, re+1)L − K. It follows that C + I
= wL + r̂K + Π. The aggregate declared supply of output is Y s = F (Kd, Ld).
The values of excess demands in the three markets now add to

Z(r̂, w, 1) ≡ w(Ld − L) + r̂(Kd −K) + C + I − Y s

= wLd − wL+ r̂Kd − r̂K + wL+ r̂K + Π− F (Kd, Ld)

= wLd + r̂Kd + Π− F (Kd, Ld) = 0,

by (3.46).
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This is a manifestation of Walras’law for each period: whatever the announced
price vector for the period is, the aggregate value of excess demands in the period
is zero. The reason is the following. When each household satisfies its budget
constraint and each firm pays out its ex ante profit,24 then the economy as a
whole has to satisfy an aggregate budget constraint for the period considered.
The budget constraints, demands, and supplies operating in this thought ex-

periment (and in Walras’law in general) are the Walrasian budget constraints,
demands, and supplies. Outside equilibrium these are somewhat artificial con-
structs. A Walrasian budget constraint is based on the assumption that the
desired actions can be realized. This assumption will be wrong unless r̂ and w
are already at their equilibrium levels. But the assumption that desired actions
can be realized is never falsified because the thought experiment does not allow
trades to take place outside Walrasian equilibrium. Similarly, the Walrasian con-
sumption demand by the worker is rather hypothetical outside equilibrium. This
demand is based on the income the worker would get if fully employed at the
announced real wage, not on the actual employment (or unemployment) at that
real wage.
These ambiguities notwithstanding, the important message of Walras’ law

goes through, namely that when two of the three markets clear (in the sense of
the Walrasian excess demands being nil), so does the third.

D. Proof of (i) and (ii) of Proposition 2

For convenience we repeat the fundamental difference equation characterizing an
equilibrium path:

kt+1 =
s (w (kt) , r (kt+1))

1 + n
,

where w(k) ≡ f(k)− f ′(k)k > 0 for all k > 0 and r(k) ≡ f ′(k)− δ > −1 for all
k ≥ 0. The key to the proof of Proposition 2 about existence of an equilibrium
path is the following lemma.

LEMMA D1 Suppose the No Fast Assumption (A1) applies and let w > 0 and
n > −1 be given. Then the equation

s (w, r (k))

k
= 1 + n. (3.47)

has at least one solution k > 0.

24By ex ante profit is meant the hypothetical profit calculated on the basis of firms’desired
supply evaluated at the announced price vector, (r̂, w, 1).
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Proof. Note that 1 + n > 0. From Lemma 1 in Section 3.3 follows that for all
possible values of r(k), 0 < s(w, r(k)) < w. Hence, for any k > 0,

0 <
s (w, r (k))

k
<
w

k
.

Letting k → ∞ we then have s (w, r (k)) /k → 0 since s (w, r (k)) /k is squeezed
between 0 and 0 (as indicated in the two graphs in Fig. 3.9).

Figure 3.9: Existence of a solution to equation (3.47).

Next we consider k → 0. There are two cases.
Case 1: limk→0 s (w, r (k)) > 0.25 Then obviously limk→0 s (w, r (k)) /k =∞.
Case 2: limk→0 s (w, r (k)) = 0.26 In this case we have

lim
k→0

r (k) =∞. (3.48)

Indeed, since f ′(k) rises monotonically as k → 0, the only alternative would be
that limk→0 r (k) exists and is <∞; then, by Lemma 1 in Section 3.3, we would
be in case 1 rather than case 2. By the second-period budget constraint, with
r = r(k), consumption as old is c2 = s (w, r (k)) (1 + r(k)) ≡ c(w, k) > 0 so that

s (w, r (k))

k
=

c(w, k)

[1 + r(k)] k
.

The right-hand side of this equation goes to∞ for k → 0 since limk→0 [1 + r(k)] k =
0 by Technical Remark in Section 3.4 and limk→0 c(w, k) = ∞; this latter fact
follows from the first-order condition (3.8), which can be written

0 ≤ u′(c(w, k)) = (1 + ρ)
u′(w − s(w, r(k))

1 + r(k)
≤ (1 + ρ)

u′(w)

1 + r(k)
.

25If the limit does not exist, the proof applies to the limit inferior of s (w, r (k)) for k → 0.
The limit inferior for i→∞ of a sequence {xi}∞i=0 is defined as limi→∞ inf {xj | j = i, i+1, . . . } ,
where inf of a set Si = {xj | j = i, i+ 1, . . . } is defined as the greatest lower bound for Si.
26If the limit does not exist, the proof applies to the limit inferior of s (w, r (k)) for k → 0.
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Taking limits on both sides gives

lim
k→0

u′(c(w, k)) = (1 + ρ) lim
k→0

u′(w − s (w, r (k)))

1 + r(k)
= (1 + ρ) lim

k→0

u′(w)

1 + r(k)
= 0,

where the second equality comes from the fact that we are in case 2 and the
third comes from (3.48). But since u′(c) > 0 and u′′(c) < 0 for all c > 0,
limk→0 u

′(c(w, k)) = 0 requires limk→0 c(w, k) =∞, as was to be shown.
In both Case 1 and Case 2 we thus have that k → 0 implies s (w, r (k)) /k →

∞. Since s (w, r (k)) /k is a continuous function of k, there must be at least one
k > 0 such that (3.47) holds (as illustrated by the two graphs in Fig. 3.14). �
Now, to prove (i) of Proposition 2, consider an arbitrary kt > 0. We have

w(kt) > 0. In (3.47), let w = w(kt). By Lemma C1, (3.47) has a solution k > 0.
Set kt+1 = k. Starting with t = 0, from a given k0 > 0 we thus find a k1 > 0 and
letting t = 1, from the now given k1 we find a k2 and so on. The resulting infinite
sequence {kt}∞t=0 is an equilibrium path. In this way we have proved existence of
an equilibrium path if k0 > 0. Thereby (i) of Proposition 2 is proved.
But what if k0 = 0? Then, if f(0) = 0, no temporary equilibrium is possible in

period 0, in view of (ii) of Proposition 1; hence there can be no equilibrium path.
Suppose f(0) > 0. Then w(k0) = w(0) = f(0) > 0, as explained in Technical
Remark in Section 3.4. Let w in equation (3.47) be equal to f(0). By Lemma
C1 this equation has a solution k > 0. Set k1 = k. Letting period 1 be the new
initial period, we are back in the case with initial capital positive. This proves
(ii) of Proposition 2.

E. Suffi cient conditions for certain properties of the transition curve

Positive slope everywhere For convenience we repeat here the condition
(3.36):

1

1− γ >
1− σ

1 + (1 + ρ)−σ(1 + f ′(k)− δ)σ−1
, (*)

where we have substituted σ ≡ 1/θ. In Section 3.5.3 we claimed that in the
CRRA-CES case this condition is suffi cient for the transition curve to be posi-
tively sloped everywhere. We here prove the claim.
Consider an arbitrary kt > 0 and let w ≡ w(kt) > 0. Knowing that w′(kt) > 0

for all kt > 0, we can regard kt+1 as directly linked to w. With k representing
kt+1, k must satisfy the equation k = s(w, r(k))/(1 + n). A suffi cient condition
for this equation to implicitly define k as an increasing function of w is also a
suffi cient condition for the transition curve to be positively sloped for all kt > 0.
When u(c) belongs to the CRRA class, by (3.15) with σ ≡ 1/θ, we have

s(w, r(k)) = [1 + (1 + ρ)σ(1 + r(k))1−σ]
−1
w. The equation k = s(w, r(k))/(1+n)
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then implies
w

1 + n
= k

[
1 + (1 + ρ)σR(k)1−σ] ≡ h(k), (3.49)

where R(k) ≡ 1 + r(k) ≡ 1 + f ′(k)− δ > 0 for all k > 0. It remains to provide a
suffi cient condition for obtaining h′(k) > 0 for all k > 0. We have

h′(k) = 1 + (1 + ρ)σR(k)1−σ [1− (1− σ)η(k)] , (3.50)

since η(k) ≡ −kR′(k)/R(k) > 0, the sign being due to R′(k) = f ′′(k) < 0. So
h′(k) > 0 if and only if 1−(1−σ)η(k) > −(1+ρ)−σR(k)σ−1, a condition equivalent
to

1

η(k)
>

1− σ
1 + (1 + ρ)−σR(k)σ−1

. (3.51)

To make this condition more concrete, consider the CES production function

f(k) = A(αkγ + 1− α), A > 0, 0 < α < 1, γ < 1. (3.52)

Then f ′(k) = αAγ(f(k)/k)1−γ and defining π(k) ≡ f ′(k)k/f(k) we find

η(k) = (1− γ)
(1− π(k))f ′(k)

1− δ + f ′(k)
≤ (1− γ)(1− π(k)) < 1− γ, (3.53)

where the first inequality is due to 0 ≤ δ ≤ 1 and the second to 0 < π(k) < 1,
which is an implication of strict concavity of f combined with f(0) ≥ 0. Thus,
η(k)−1 > (1 − γ)−1 so that if (*) holds for all k > 0, then so does (3.51), i.e.,
h′(k) > 0 for all k > 0. We have hereby shown that (*) is suffi cient for the
transition curve to be positively sloped everywhere.

Transition curve steep for k small Here we specialize further and consider
the CRRA-Cobb-Douglas case: u(c) = (c1−θ−1)/(1−θ), θ > 0, and f(k) = Akα,
A > 0, 0 < α < 1. In the prelude to Proposition 4 in Section 3.5 it was claimed
that if this combined utility and technology condition holds at least for small k,
then (ii) of (A3) is satisfied. We now show this.
Letting γ → 0 in (3.52) gives the Cobb-Douglas function f(k) = Akα (this

is proved in the appendix to Chapter 4). With γ = 0, clearly (1 − γ)−1 = 1
> 1 − σ, where σ ≡ θ−1 > 0. This inequality implies that (*) above holds and
so the transition curve is positively sloped everywhere. As an implication there
is a transition function, ϕ, such that kt+1 = ϕ(kt), ϕ

′(kt) > 0. Moreover, since
f(0) = 0, we have, by Lemma 5, limkt→0 ϕ(kt) = 0.
Given the imposed CRRA utility, the fundamental difference equation of the

model is

kt+1 =
w(kt)

(1 + n) [1 + (1 + ρ)σR(kt+1)1−σ]
(3.54)
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or, equivalently,

h(kt+1) =
w(kt)

1 + n
,

where h(kt+t) is defined as in (3.49). By implicit differentiation we find h′(kt+1)ϕ′(kt)
= w′(kt)/(1 + n), i.e.,

ϕ′(kt) =
w′(kt)

(1 + n)h′(kt+1)
> 0.

If k∗ > 0 is a steady-state value of kt, (3.54) implies

1 + (1 + ρ)σR(k∗)1−σ =
w(k∗)

(1 + n)k∗
, (3.55)

and the slope of the transition curve at the steady state will be

ϕ′(k∗) =
w′(k∗)

(1 + n)h′(k∗)
> 0. (3.56)

If we can show that such a k∗ > 0 exists, is unique, and implies ϕ′(k∗) < 1, then
the transition curve crosses the 45◦ line from above, and so (ii) of (A3) follows in
view of limkt→0 = 0.
Defining x(k) ≡ f(k)/k = Akα−1, where x′(k) = (α− 1)Akα−2 < 0, and using

that f(k) = Akα, we have R(k) = 1 + αx(k) − δ and w(k)/k = (1 − α)x(k).
Hence, (3.55) can be written

1 + (1 + ρ)σ(1 + αx∗ − δ)1−σ =
1− α
1 + n

x∗, (3.57)

where x∗ = x(k∗). It is easy to show graphically that this equation has a unique
solution x∗ > 0 whether σ < 1, σ = 1, or σ > 1. Then k∗ = (x∗/A)1/(α−1) > 0 is
also unique.
By (3.50) and (3.57),

h′(k∗) = 1 + (
1− α
1 + n

x∗ − 1) [1− (1− σ)η(k∗)] > 1 + (
1− α
1 + n

x∗ − 1)(1− η(k∗))

≥ 1 + (
1− α
1 + n

x∗ − 1)α,

where the first inequality is due to σ > 0 and the second to the fact that η(k) ≤
1− α in view of (3.53) with γ = 0 and π(k) = α. Substituting this together with
w′(k∗) = (1− α)αx∗ into (3.56) gives

0 < ϕ′(k∗) <
αx∗

1 + n+ αx∗
< 1, (3.58)

as was to be shown.
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118 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

The CRRA-Cobb-Douglas case is well-behaved For the case of CRRA
utility and Cobb-Douglas technology with CRS, existence and uniqueness of a
steady state has just been proved. Asymptotic stability follows from (3.58). So
the CRRA-Cobb-Douglas case is well-behaved.

3.10 Exercises

3.1 The dynamic accounting relation for a closed economy is

Kt+1 = Kt + SN (*)

where Kt is the aggregate capital stock and SNt is aggregate net saving. In the
Diamond model, let S1t be aggregate net saving of the young in period t and
S2t aggregate net saving of the old in the same period. On the basis of (*)
give a direct proof that the link between two successive periods takes the form
kt+1 = st/(1+n), where st is the saving of each young, n is the population growth
rate, and kt+1 is the capital/labor ratio at the beginning of period t + 1. Hint:
by definition, the increase in financial wealth is the same as net saving (ignoring
gifts).

3.2 Suppose the production function in Diamond’s OLG model is Y = A(αKγ +
(1−α)Lγ)1/γ, A > 0, 0 < α < 1, γ < 0, and Aα1/γ < 1+n. a) Given k ≡ K/L, find
the equilibrium real wage, w(k). b) Show that w(k) < (1+n)k for all k > 0. Hint:
consider the roof. c) Comment on the implication for the long-run evolution of
the economy. Hint: consider the ceiling.

3.3 (multiple temporary equilibria with self-fulfilling expectations) Fig. 3.10
shows the transition curve for a Diamond OLG model with u(c) = c1−θ/(1− θ),
θ = 8, ρ = 0.4, n = 0.2, δ = 0.6, f(k) = A(bkp + 1 − b)1/p, A = 7, b = 0.33,
p = −0.4.

a) Let t = 0. For a given k0 slightly below 1, how many temporary equilibria
with self-fulfilling expectations are there?

b) Suppose the young in period 0 expect the real interest rate on their saving
to be relatively low. Describe by words the resulting equilibrium path in
this case. Comment (what is the economic intuition behind the path?).

c) In the first sentence under b), replace “low”by “high”. How is the answer
to b) affected? What kind of diffi culty arises?

3.4 (plotting the transition curve by MATLAB) This exercise requires compu-
tation on a computer. You may use MATLAB OLG program.27

27Made by Marc P. B. Klemp and available at the address:
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Figure 3.10: Transition curve for Diamond’s OLG model in the case described in Ex-
ercise 3.3.

a) Enter the model specification from Exercise 3.3 and plot the transition
curve.

b) Plot examples for two other values of the substitution parameter: p = −1.0
and p = 0.5. Comment.

c) Find the approximate largest lower bound for p such that higher values of
p eliminates multiple equilibria.

d) In continuation of c), what is the corresponding elasticity of factor substi-
tution, ψ? Hint: as shown in §4.4, the formula is ψ = 1/(1− p).

e) The empirical evidence for industrialized countries suggests that 0.4 < ψ <
1.0. Is your ψ from d) empirically realistic? Comment.

3.5 (one stable and one unstable steady state) Consider the following Diamond
model: u(c) = ln c, ρ = 2.3, n = 2.097, δ = 1.0, f(k) = A(bkp + 1− b)1/p, A = 20,
b = 0.5, p = −1.0.

http://www.econ.ku.dk/okocg/Computation/main.htm.
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a) Plot the transition curve of the model. Hint: you may use either a program
like MATLAB OLG Program (available on the course website) or first a
little algebra and then Excel (or similar simple software).

b) Comment on the result you get. Will there exist a poverty trap? Why or
why not?

c) At the stable steady state calculate numerically the output-capital ratio,
the aggregate saving-income ratio, the real interest rate, and the capital
income share of gross national income.

d) Briefly discuss how your results in c) comply with your knowledge of cor-
responding empirical magnitudes in industrialized Western countries?

e) There is one feature which this model, as a long-run model, ought to incor-
porate, but does not. Extend the model, taking this feature into account,
and write down the fundamental difference equation for the extended model
in algebraic form.

f) Plot the new transition curve. Hint: given the model specification, this
should be straightforward if you use Excel (or similar); and if you use MAT-
LAB OLG Program, note that by a simple “trick”you can transform your
new model into the “old”form.

g) The current version of the MATLAB OLG Program is not adapted to this
question. So at least here you need another approach, for instance based on
a little algebra and then Excel (or similar simple software). Given k0 = 10,
calculate numerically the time path of kt and plot the time profile of kt, i.e.,
the graph (t, kt) in the tk-plane. Next, do the same for k0 = 1. Comment.

3.6 (dynamics under myopic foresight)
(incomplete) Show the possibility of a chaotic trajectory.

3.7 Given the period utility function is CRRA, derive the saving function of the
young in Diamond’s OLG model. Hint: substitute the period budget constraints
into the Euler equation.

3.8 Short questions a) A steady-state capital-labor ratio can be in the “dy-
namically effi cient” region or in the “dynamically ineffi cient” region. How are
the two mentioned regions defined? b) Give a simple characterization of the two
regions. c) The First Welfare Theorem states that, given certain conditions, any
competitive equilibrium (≡Walrasian equilibrium) is Pareto optimal. Give a list
of circumstances that each tend to obstruct Pareto optimality of a competitive
equilibrium.
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3.9 Consider a Diamond OLG model for a closed economy. Let the utility
discount rate be denoted ρ and let the period utility function be specified as
u (c) = ln c.

a) Derive the saving function of the young. Comment.

b) Let the aggregate production function be a neoclassical production function
with CRS and ignore technological progress. Let Lt denote the number of
young in period t. Derive the fundamental difference equation of the model.

From now, assume that the production function is Y = αL+ βKL/(K + L),
where α > 0 and β > 0 (as in Problem 2.4).

c) Draw a transition diagram illustrating the dynamics of the economy. Make
sure that you draw the diagram so as to exhibit consistency with the pro-
duction function.

d) Given the above information, can we be sure that there exists a unique and
globally asymptotically stable steady state? Why or why not?

e) Suppose the economy is in a steady state up to and including period t0 > 0.
Then, at the shift from period t0 to period t0 + 1, a negative technology
shock occurs such that the technology level in period t0 + 1 is below that of
period t0. Illustrate by a transition diagram the evolution of the economy
from period t0 onward. Comment.

f) Let k ≡ K/L. In the (t, ln k) plane, draw a graph of ln kt such that the
qualitative features of the time path of ln k before and after the shock,
including the long run, are exhibited.

g) How, if at all, is the real interest rate in the long run affected by the shock?

h) How, if at all, is the real wage in the long run affected by the shock?

i) How, if at all, is the labor income share of national income in the long run
affected by the shock?

j) Explain by words the economic intuition behind your results in h) and i).

3.10
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Chapter 4

A growing economy

In the previous chapter we ignored technological progress. An incontestable fact
of real life in industrialized countries is, however, the presence of a persistent rise
in GDP per capita − on average between 1.5 and 2.5 percent per year since 1870
in many developed economies. In regard to UK, USA, and Japan, see Fig. 4.1;
and in regard to Denmark, see Fig. 4.2. In spite of the somewhat dubious quality
of the data from before the Second World War, this observation should be taken
into account in a model which, like the Diamond model, aims at dealing with
long-run issues. For example, in relation to the question of dynamic ineffi ciency,
cf. Chapter 3, the cut-offvalue of the steady-state interest rate is the steady-state
GDP growth rate of the economy and this growth rate increases one-to-one with
the rate of technological progress. We shall therefore now introduce technological
progress.

On the basis of a summary of “stylized facts” about growth, Section 4.1
motivates the assumption that technological progress at the aggregate level takes
the Harrod-neutral form. In Section 4.2 we extend the Diamond OLG model by
incorporating this form of technological progress. Section 4.3 extends the concept
of the golden rule to allow for the existence of technological progress. In Section
4.4 what is known as the marginal productivity theory of factor income shares is
addressed. In this connection an expedient analytical tool, the elasticity of factor
substitution, is presented. Section 4.5 goes into detail with the special case of a
constant elasticity of factor substitution (the CES production function). Finally,
Section 4.6 concludes.
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124 CHAPTER 4. A GROWING ECONOMYGDP per capita in United States, United Kingdom and Japan (1870-2010) 

 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4. 

  

Figure 4.1: GDP per capita in USA, UK, and Japan 1870-2010. Source: Bolt and van
Zanden (2013).

4.1 Harrod-neutrality and Kaldor’s stylized facts

Suppose the technology changes over time in such a way that we can write the
aggregate production function as

Yt = F (Kt, TtLt), (4.1)

where the level of technology is represented by the factor Tt which is growing over
time, and where Yt, Kt, and Lt stand for output, capital input, and labor input,
respectively. When technological change takes this purely “labor-augmenting”
form, it is known as Harrod-neutral technological progress.

Kaldor’s stylized facts

The reason that macroeconomists often assume that technological change at the
aggregate level takes the Harrod-neutral form as in (4.1) and not for example
the form Yt = F (XtKt, TtLt) (where both X and T are changing over time), is
the following. You want the long-run properties of the model to comply with
Kaldor’s list of “stylized facts”(Kaldor 1961) concerning the long-run evolution
of industrialized economies. Abstracting from short-run fluctuations, Kaldor’s
“stylized facts”are:
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4.1. Harrod-neutrality and Kaldor’s stylized facts 125

GDP and GDP per capita in Denmark (1870-2010) 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4, Maddison (2010): Statistics on World Population, 

GDP and Per Capita GDP, 1-2008 AD, and The Conference Board Total Economy Database (2013). 

Figure 4.2: GDP and GDP per capita. Denmark 1870-2006. Sources: Bolt and van
Zanden (2013); Maddison (2010); The Conference Board Total Economy Database
(2013).

1. the growth rates in K/L and Y/L are roughly constant;

2. the output-capital ratio, Y/K, the income share of labor, wL/Y, and the
average rate of return, (Y − wL− δK)/K,1 are roughly constant;

3. the growth rate of Y/L can vary substantially across countries for quite
long time.

Ignoring the conceptual difference between the path of Y/L and that of Y
per capita (a difference not so important in this context), the figures 4.1 and
4.2 illustrate Kaldor’s “fact 1”about the long-run property of the Y/L path for
the more developed countries. Japan had an extraordinarily high growth rate
for a couple of decades after World War II, usually explained by fast technology
transfer from the most developed countries (the catching-up process which can
only last until the technology gap is eliminated). Fig. 4.3 gives rough support

1In this formula w is the real wage and δ is the capital depreciation rate. Land (and/or
similar natural resources) is ignored. For countries where land is a quantitatively important
production factor, the denominator should be replaced by K + pJJ , where pJ is the real price
of land, J.
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126 CHAPTER 4. A GROWING ECONOMY

for that part of Kaldor’s “fact 2”which claims long-run constancy of the labor
income share. The third fact is a fact well documented empirically.2
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Figure 4.3: Labor’s share of GDP in USA (1950-2011) and Denmark (1970-2011).
Source: Feenstra, Inklaar and Timmer (2013), www.ggdc.net/pwt.

It is fair to add, however, that the claimed regularities 1 and 2 do not fit
all developed countries equally well. While Solow’s growth model (Solow, 1956)
can be seen as the first successful attempt at building a model consistent with
Kaldor’s “stylized facts”, Solow himself once remarked about them: “There is no
doubt that they are stylized, though it is possible to question whether they are
facts”(Solow, 1970). Recently, several empiricists have questioned the methods
which standard national income accounting applies to separate the income of
entrepreneurs, sole proprietors, and unincorporated businesses into labor and
capital income. It is claimed that these methods obscure a tendency in recent
decades of the labor income share to fall.
Notwithstanding these ambiguities, it is definitely a fact that many long-run

models are constructed so a to comply with Kaldor’s stylized facts. Let us briefly
take a look at the Solow model (in discrete time) and check its consistency with
Kaldor’s “stylized facts”. The point of departure of the Solow model, and many
other growth models, is the aggregate dynamic resource constraint for a closed
economy:

Kt+1 −Kt = It − δKt = St − δKt ≡ Yt − Ct − δKt, K0 > 0 given, (4.2)

2For a summary, see Pritchett (1997).
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where It is gross investment, which in a closed economy equals gross saving, St

≡ Yt − Ct; δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1.3

The Solow model and Kaldor’s stylized facts

As is well-known, the Solow model postulates a constant aggregate saving-income
ratio, ŝ, so that St = ŝYt, 0 < ŝ < 1.4 Further, the model assumes that the aggre-
gate production function is neoclassical and features Harrod-neutral technological
progress. So, let F in (4.1) be Solow’s production function. To this Solow adds
assumptions of CRS and exogenous geometric growth in both the technology
level T and the labour force L, i.e., Tt = T0(1 + g)t, g ≥ 0, and Lt = L0(1 + n)t,
n > −1. In view of CRS, we have Y = F (K,AL) = TLF (k̃, 1) ≡ TLf(k̃), where
k̃ ≡ K/(TL) is the effective capital-labor ratio while f ′ > 0 and f ′′ < 0.

Substituting St = ŝYt into Kt+1 −Kt = St − δKt, dividing through by Tt(1 +
g)Lt(1 + n) and rearranging gives the “law of motion”of the Solow economy:

k̃t+1 =
ŝf(k̃t) + (1− δ)k̃t

(1 + g)(1 + n)
≡ ϕ(k̃t). (4.3)

Defining G ≡ (1 + g)(1 + n), we have ϕ′(k̃) = (ŝf ′(k̃) + 1− δ)/G > 0 and ϕ′′(k̃)
= ŝf ′′(k̃)/G < 0. If G > 1 − δ and f satisfies the Inada conditions limk̃→0 f

′(k̃)
=∞ and limk̃→∞ f

′(k̃) = 0, there is a unique and globally asymptotically stable
steady state k̃∗ > 0. The transition diagram looks entirely as in Fig. 3.4 of the
previous chapter (ignoring the tildes).5 The convergence of k̃ to k̃∗ implies that
in the long run we have K/L = k̃∗T and Y/L = f(k̃∗)T. Both K/L and Y/L are
consequently growing at the same constant rate as T, the rate g. And constancy of
k̃ implies that Y/K = f(k̃)/k̃ is constant and so is the labor income share, wL/Y
= (f(k̃)−k̃f ′(k̃))/f(k̃), and hence also the net rate of return, (1−wL/Y )Y/K−δ.
It follows that the Solow model complies with the stylized facts 1 and 2 above.

Many different models do that. What these models must then have in common
is a capability of generating balanced growth.

3In both (4.1) and (4.2) it is implicitly assumed, as is usual in simple macroeconomic models,
that technological progress is disembodied rather than embodied, a distinction described in
Section 2.2 of Chapter 2.

4Note that ŝ is a ratio while the s in the Diamond model stands for the saving per young.
5What makes the Solow model so easily tractable compared to the Diamond OLG model

is the constant saving-income ratio which makes the transition function essentially dependent
only on the production function in intensive form. Owing to dimishing marginal productivity
of capital, this is a strictly concave function. Anyway, the Solow model emerges as a special
case of the Diamond model, see Exercise IV.??.
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Balanced growth

With Kt, Yt, and Ct denoting aggregate capital, output, and consumption as
above, we define a balanced growth path the following way:

DEFINITION 1 A balanced growth path is a path {(Kt, Yt, Ct)}∞t=0 along which the
variables Kt, Yt, and Ct are positive and grow at constant rates (not necessarily
positive).

At least for a closed economy there is a general equivalence relationship be-
tween balanced growth and constancy of certain key ratios like Y/K and C/Y .
This relationship is an implication of accounting based on the above aggregate
dynamic resource constraint (4.2).
For an arbitrary variable xt ∈ R++, we define ∆xt ≡ xt − xt−1. Whenever

xt−1 > 0, the growth rate of x from t − 1 to t, denoted gx(t), is defined by gx(t)
≡ ∆xt/xt−1. When there is no risk of confusion, we suppress the explicit dating
and write gx ≡ ∆x/x.

PROPOSITION 1 (the balanced growth equivalence theorem). Let {(Kt, Yt, Ct)}∞t=0

be a path along which Kt, Yt, Ct, and St (≡ Yt − Ct) are positive for all t =
0, 1, 2, . . . . Then, given the dynamic resource constraint (4.2), the following holds:
(i) if there is balanced growth, then gY = gK = gC and so the ratios Y/K and
C/Y are constant;
(ii) if Y/K and C/Y are constant, then Y,K, and C grow at the same constant
rate, i.e., not only is there balanced growth but the growth rates of Y, K, and C
are the same.

Proof Consider a path {(Kt, Yt, Ct)}∞t=0 along which K, Y, C, and St ≡ Y − Ct
are positive for all t = 0, 1, 2, . . . .

(i) Suppose the path is a balanced growth path. Then, by definition, gY , gK ,
and gC are constant. Hence, by (4.2), S/K = gK + δ must be constant, implying6

gS = gK . (*)

By (4.2), Y ≡ C + S, and so

gY =
∆Y

Y
=

∆C

Y
+

∆S

Y
=
C

Y
gC +

S

Y
gS =

C

Y
gC +

S

Y
gK (by (*))

=
C

Y
gC +

Y − C
Y

gK =
C

Y
(gC − gK) + gK . (**)

6The ratio between two positive variables is constant if and only if the variables have the
same growth rate (not necessarily constant or positive). For this and similar simple growth-
arithmetic rules, see Appendix A.
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Let us provisionally assume that gC 6= gK . Then (**) gives

C

Y
=
gY − gK
gC − gK

, (***)

a constant since gY , gK , and gC are constant. Constancy of C/Y requires gC = gY ,
hence, by (***), C/Y = 1, i.e., C = Y. In view of Y ≡ C + S, however, this
implication contradicts the given condition that S > 0. Hence, our provisional
assumption and its implication (***) are falsified. Instead we have gC = gK . By
(**), this implies gY = gK = gC , but now without the condition C/Y = 1 being
implied. It follows that Y/K and C/Y are constant.
(ii) Suppose Y/K and C/Y are positive constants. Applying that the ratio

between two variables is constant if and only if the variables have the same (not
necessarily constant or positive) growth rate, we can conclude that gY = gK = gC .
By constancy of C/Y follows that S/Y ≡ 1−C/Y is constant. So gS = gY = gK ,
which in turn implies that S/K is constant. By (4.2),

S

K
=

∆K + δK

K
= gK + δ,

so that also gK is constant. This, together with constancy of Y/K and C/Y,
implies that also gY and gC are constant. �
Remark. It is part (i) of the proposition which requires the assumption S > 0 for
all t ≥ 0. If S = 0, we would have gK = −δ and C ≡ Y −S = Y, hence gC = gY for
all t ≥ 0. Then there would be balanced growth if the common value of gC and gY
had a constant growth rate. This growth rate, however, could easily differ from
that of K. Suppose Y = AKαL1−α, 0 < α < 1, gA = γ and gL = n, where γ and
n are constants. We would then have 1+gC = 1+gY = (1+γ)(1−δ)α(1+n)1−α,
which could easily be larger than 1 and thereby different from 1 + gK = 1− δ ≤ 1
so that (i) no longer holds.
It is part (ii) of the proposition which requires the assumption of a closed

economy. In an open economy we do not necessarily have I = S, hence constancy
of S/K no longer implies constancy of gK = I/K − δ. �
For many long-run closed-economymodels, including the Diamond OLGmodel,

it holds that if and only if the dynamic system implied by the model is in a steady
state, will the economy feature balanced growth, cf. Proposition 4 below. There
exist cases, however, where this equivalence between steady state and balanced
growth does not hold (some open economy models and some models with em-
bodied technological change). Hence, we shall maintain a distinction between the
two concepts.
Note that Proposition 1 pertains to any model for which (4.2) is valid. No

assumption about market form and economic agents’behavior are involved. And

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



130 CHAPTER 4. A GROWING ECONOMY

except for the assumed constancy of the capital depreciation rate δ, no assumption
about the technology is involved, not even that constant returns to scale is present.
Proposition 1 suggests that if one accepts Kaldor’s stylized facts as a rough

description of more than a century’s growth experience and therefore wants the
model to be consistent with them, one should construct the model so that it can
generate balanced growth.

Balanced growth requires Harrod-neutrality

Our next proposition states that for a model to be capable of generating balanced
growth, technological progress must take the Harrod-neutral form (i.e., be labor-
augmenting). Also this proposition holds in a fairly general setting, but not as
general as that of Proposition 1. Constant returns to scale and a constant growth
rate in the labor force, two aspects about which Proposition 1 is silent, will now
have a role to play.7

Consider an aggregate production function

Yt = F̃ (Kt, ALt, t), A > 0,
∂F̃

∂t
> 0, (4.4)

where F̃ is homogeneous of degree one w.r.t. the first two arguments (CRS) and
A is a constant that depends on measurement units. The third argument, t,
represents technological progress: as time proceeds, unchanged inputs of capital
and labor result in more and more output. Let the labor force grow at a constant
rate n,

Lt = L0(1 + n)t, n > −1, (4.5)

where L0 > 0. The Japanese economist Hirofumi Uzawa (1928-) is famous for
several contributions, not least his balanced growth theorem (Uzawa 1961), which
we here state in a modernized form.

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let {(Kt, Yt, Ct)}∞t=0 be a
path along which Yt, Kt, Ct, and St ≡ Yt − Ct are positive for all t = 0, 1, 2,. . . ,
and satisfy the dynamic resource constraint (4.2), given the production function
(4.4) and the labor force (4.5). Assume (1 + g)(1 + n) > 1− δ. Then:
(i) a necessary condition for this path to be a balanced growth path is that along
the path it holds that

Yt = F̃ (Kt, TtLt, 0), (4.6)

where Tt = A(1+g)t with 1+g ≡ (1+gY )/(1+n), gY being the constant growth
rate of output along the balanced growth path;

7On the other hand we do not imply that CRS is always necessary for a balanced growth
path (see Exercise 4.??).

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



4.1. Harrod-neutrality and Kaldor’s stylized facts 131

(ii) for any g ≥ 0 such that there is a q > (1 + g)(1 + n) − (1 − δ) with the
property that the production function F̃ in (4.4) allows an output-capital ratio
equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q for some real number k̃ > 0), a suffi cient
condition for F̃ to be consistent with a balanced growth path with output-capital
ratio equal to q is that F̃ can be written as in (4.6) with Tt = A(1 + g)t.

Proof (i) Suppose the given path {(Kt, Yt, Ct)}∞t=0 is a balanced growth path.
By definition, gK and gY are then constant so that Kt = K0(1 + gK)t and Yt
= Y0(1 + gY )t. With t = 0 in (4.4) we then have

Yt(1 + gY )−t = Y0 = F̃ (K0, AL0, 0) = F̃ (Kt(1 + gK)−t, ALt(1 + n)−t, 0). (4.7)

In view of the assumption that St ≡ Yt−Ct > 0, we know from (i) of Proposition
1, that Y/K is constant so that gY = gK . By CRS, (4.7) then implies

Yt = F̃ (Kt, A(1 + gY )t(1 + n)−tLt, 0).

We see that (4.6) holds for Tt = A(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n).
(ii) See Appendix B. �
The form (4.6) indicates that along a balanced growth path (BGP from

now), technological progress must be purely labor augmenting, that is, Harrod-
neutral. Moreover, by defining a new CRS production function F by F (Kt, TtLt)
≡ F̃ (Kt, TtLt, 0), we see that (i) of the proposition implies that at least along the
BGP, we can rewrite the original production function this way:

Yt = F̃ (Kt, ALt, t) = F̃ (Kt, TtLt, 0) ≡ F (Kt, TtLt). (4.8)

where T0 = A and Tt = T0(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n).
As emphasized also in Chapter 2, presence of Harrod-neutrality says nothing

about what the source of technological progress is. Harrod-neutrality does not
mean that technological change emanates specifically from the labor input. It
only means that technical innovations predominantly are such that not only do
labor and capital in combination become more productive, but this happens to
manifest itself such that we can rewrite the aggregate production function as in
(4.8). (Often introductions to economic growth theory focus on the case where
the production function F is Cobb-Douglas. In this case − but only in this case
− Harrod-neutrality is equivalent to both Hicks-neutrality and Solow-neutrality.)
What is the intuition behind the Uzawa result that for balanced growth to be

possible, technological progress must at the aggregate level have the purely labor-
augmenting form? First, notice that there is an asymmetry between capital and
labor. Capital is an accumulated amount of non-consumed output. In contrast,
labor is a non-produced production factor which in the present context grows in
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an exogenous way. Second, because of CRS, the original production function,
(4.4), implies that

1 = F̃ (
Kt

Yt
,
Lt
Yt
, t). (4.9)

Now, since capital is accumulated non-consumed output, it tends to inherit the
trend in output such that Kt/Yt must be constant along a BGP (this is what
Proposition 1 is about). Labor does not inherit the trend in output; indeed, the
ratio Lt/Yt is free to adjust as t proceeds. When there is technological progress
(∂F̃ /∂t > 0) along a BGP, this progress must manifest itself in the form of a
changing Lt/Yt in (4.9) as t proceeds, precisely because Kt/Yt must be constant
along the path. In the “normal”case where ∂F̃ /∂L > 0, the needed change in
L(t)/Y (t) is a fall (i.e., rise in Y (t)/L(t)). This is what (4.9) shows. Indeed, the
fall in Lt/Yt must exactly offset the effect on F̃ of the rising t, when there is a
fixed capital-output ratio. It follows that along the BGP, Yt/Lt is an increasing
implicit function of t. If we denote this function Tt, we end up with (4.8).
The generality of Uzawa’s theorem is noteworthy. Like Proposition 1, Uzawa’s

theorem is about technically feasible paths, while economic institutions, market
forms, and agents’behavior are not involved. The theorem presupposes CRS,
but does not need that the technology has neoclassical properties not to speak of
satisfying the Inada conditions. And the theorem holds for exogenous as well as
endogenous technological progress.
A simple implication of the theorem is the following. Let yt denote “labor

productivity”in the sense of Yt/Lt, kt denote the capital-labor ratio, Kt/Lt, and
ct the consumption-labor ratio, Ct/Lt. We have:

COROLLARY Along a BGP with positive gross saving and the technology level
T growing at a constant rate g ≥ 0, output grows at the rate (1 + g)(1 + n)− 1
(≈ g + n for g and n “small”) while labor productivity, y, capital-labor ratio, k,
and consumption-labor ratio, c, all grow at the rate g.

Proof That gY = (1 + g)(1 + n) − 1 follows from (i) of Proposition 2. As to gy
we have

yt ≡
Yt
Lt

=
Y0(1 + gY )t

L0(1 + n)t
= y0(1 + g)t,

showing that y grows at the rate g. Moreover, y/k = Y/K, which is constant
along a BGP, by (i) of Proposition 1. Hence k grows at the same rate as y.
Finally, also c/y ≡ C/Y is constant along a BGP, implying that also c grows at
the same rate as y. �
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Factor income shares

There is one facet of Kaldor’s stylized facts which we have not yet related to
Harrod-neutral technological progress, namely the claimed long-run “approxi-
mate”constancy of the income share of labor and the rate of return on capital.
It turns out that, if we assume (a) neoclassical technology, (b) profit maximiz-
ing firms, and (c) perfect competition in the output and factor markets, then
these constancies are inherent in the combination of constant returns to scale
and balanced growth.
To see this, let the aggregate production function be Yt = F (Kt, TtLt) where

F is neoclassical and has CRS. With wt denoting the real wage at time t, in
equilibrium under perfect competition the labor income share will be

wtLt
Yt

=
∂Yt
∂Lt

Lt

Yt
=
F2(Kt, TtLt)TtLt

Yt
. (4.10)

When the capital good is nothing but non-consumed output, the rate of return
on capital at time t can be written

rt =
Yt − wtLt − δKt

Kt

=
Yt − wtLt

Yt
· Yt
Kt

− δ. (4.11)

Since land as a production factor is ignored, gross capital income equals non-
labor income, Yt − wtLt. Denoting the gross capital income share by αt, we thus
have

αt =
Yt − wtLt

Yt
=
F (Kt, TtLt)− F2(Kt, TtLt)TtLt

Yt

=
F1(Kt, TtLt)Kt

Yt
=

∂Yt
∂Kt

Kt

Yt
= (rt + δ)

Kt

Yt
, (4.12)

where the third equality comes from Euler’s theorem8 and the last from (4.11.

PROPOSITION 3 (factor income shares) Suppose a given path {(Kt, Yt, Ct)}∞t=0

is a BGP with positive saving in this competitive economy. Then αt = α, a
constant ∈ (0, 1). The labor income share will be 1−α and the rate of return on
capital αq − δ, where q is the constant output-capital ratio along the BGP.
Proof We have Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t). From Proposition
1 follows that along the given BGP, Yt/Kt is some constant, q. Since Yt/Kt =
f(k̃t)/k̃t and f ′′ < 0, this implies k̃t constant, say equal to k̃∗. Along the BGP,
∂Yt/∂Kt (= f ′(k̃t)) thus equals the constant f ′(k̃∗). From (4.12) then follows

8Indeed, from Euler’s theorem follows that F1K+F2TL= F (K,TL), when F is homogeneous
of degree one.
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that αt = f ′(k̃∗)/q ≡ α. Moreover, 0 < α < 1, since 0 < α is implied by f ′ > 0,
and α < 1 is implied by the fact that q = Y/K = f(k̃∗)/k̃∗ > f ′(k̃∗), in view of
f ′′ < 0 and f(0) ≥ 0. So, by the first equality in (4.12), the labor income share
can be written wtLt/Yt = 1 − αt = 1 − α. Consequently, by (4.11), the rate of
return on capital is rt = (1− wtLt/Yt)Yt/Kt − δ = αq − δ. �
Although this proposition implies constancy of the factor income shares under

balanced growth, it does not determine them. The proposition expresses the
factor income shares in terms of the unknown constants α and q. These constants
will generally depend on the effective capital-labor ratio in steady state, k̃∗, which
will generally be an unknown as long as we have not formulated a theory of saving.
This takes us back to Diamond’s OLG model which provides such a theory.

4.2 The Diamond OLGmodel with Harrod-neutral
technological progress

Recall from the previous chapter that in the Diamond OLG model people live in
two periods, as young and as old. Only the young work and each young supplies
one unit of labor inelastically. The period utility function, u(c), satisfies the
No Fast Assumption. The saving function of the young is st = s(wt, rt+1). We
now include Harrod-neutral technological progress in the aggregate production
function of the Diamond model:

Yt = F (Kt, TtLt), (4.13)

where F is neoclassical with CRS and Tt represents the level of technology in
period t. We assume that Tt grows at a constant exogenous rate, that is,

Tt = T0(1 + g)t, g ≥ 0. (4.14)

The initial level of technology, T0, is historically given. Employment equals Lt
which is the number of young, growing at the constant exogenous rate n > −1.
Suppressing for a while the explicit dating of the variables, in view of CRS

w.r.t. K and TL, we have

ỹ ≡ Y

TL
= F (

K

TL
, 1) = F (k̃, 1) ≡ f(k̃), f ′ > 0, f ′′ < 0,

where TL is labor input in effi ciency units and k̃ ≡ K/(TL) is known as the
effective or technology-corrected capital-labor ratio - also sometimes called the
effective capital intensity. There is perfect competition in all markets. In each
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period the representative firm maximizes profit, Π = F (K,TL)− r̂K−wL.With
respect to capital this leads to the first-order condition

∂Y

∂K
=
∂
[
TLf(k̃)

]
∂K

= f ′(k̃) = r + δ, (4.15)

where δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1. With respect to labor
we get the first-order condition

∂Y

∂L
=
∂
[
TLf(k̃)

]
∂L

=
[
f(k̃)− f ′(k̃)k̃

]
T = w. (4.16)

In view of f ′′ < 0, a k̃ satisfying (4.15) is unique. Let us denote its value in
period t, k̃dt . Assuming equilibrium in the factor markets, this desired effective
capital-labor ratio equals the effective capital-labor ratio from the supply side,
k̃t ≡ Kt/(TtLt) ≡ kt/Tt, which is predetermined in every period. The equilibrium
interest rate and real wage in period t are thus given by

rt = f ′(k̃t)− δ ≡ r(k̃t), where r′(k̃t) = f ′′(k̃t) < 0, (4.17)

wt =
[
f(k̃t)− f ′(k̃t)k̃

]
Tt ≡ w̃(k̃t)Tt, where w̃′(k̃t) = −k̃tf ′′(k̃t) > 0. (4.18)

Here, w̃(k̃t) = wt/Tt is known as the technology-corrected real wage.

The equilibrium path

The aggregate capital stock at the beginning of period t+1must still be owned by
the old generation in that period and thus equal the aggregate saving these people
did as young in the previous period. Hence, as before,Kt+1 = stLt = s(wt, rt+1)Lt.
In view of Kt+1 ≡ k̃t+1Tt+1Lt+1 = k̃t+1Tt(1 + g)Lt(1 + n), together with (4.17)
and (4.18), we get

k̃t+1 =
s(w̃(k̃t)Tt, r(k̃t+1))

Tt(1 + g)(1 + n)
. (4.19)

This is the general version of the law of motion of the Diamond OLG model with
Harrod-neutral technological progress.
For the model to comply with Kaldor’s “stylized facts”, the model should be

capable of generating balanced growth. Essentially, this capability is equivalent
to being able to generate a steady state. In the presence of technological progress
this latter capability requires a restriction on the lifetime utility function, U. In-
deed, we see from (4.19) that the model is consistent with existence of a steady
state only if the time-dependent technology level, Tt, in the numerator and de-
nominator cancels out. This requires that the saving function is homogeneous of
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degree one in its first argument such that s(w̃(k̃t)Tt, r(k̃t+1)) = s(w̃(k̃t), r(k̃t+1))Tt.
In turn this is so if and only if the lifetime utility function of the young is ho-
mothetic. So, in addition to the No Fast Assumption from Chapter 3, we impose
the Homotheticity Assumption:

the lifetime utility function U is homothetic. (A4)

This property entails that if the value of the “endowment”, here the human wealth
wt, is multiplied by a λ > 0, then the chosen c1t and c2t+1 are also multiplied by
this factor λ (see Appendix C); it then follows that st is multiplied by λ as well.
Letting λ = 1/(w̃(k̃t)Tt), (A4) thus allows us to write

st = s(1, r(k̃t+1))w̃(k̃t)Tt ≡ ŝ(r(k̃t+1))w̃(k̃t)Tt, (4.20)

where ŝ(r(k̃t+1)) is the saving-wealth ratio of the young. The distinctive feature
is that this saving-wealth ratio is independent of wealth (but in general it depends
on the interest rate). By (4.19), the law of motion of the economy reduces to

k̃t+1 =
ŝ(r(k̃t+1))

(1 + g)(1 + n)
w̃(k̃t). (4.21)

The equilibrium path of the economy can be analyzed in a similar way as in
the case of no technological progress. In the assumptions (A2) and (A3) from
Chapter 3 we replace k by k̃ and 1 + n by (1 + g)(1 + n). As a generalization
of Proposition 4 from Chapter 3, these generalized versions of (A2) and (A3),
together with the No Fast Assumption (A1) and the Homotheticity Assumption
(A4), guarantee that there exists at least one locally asymptotically stable steady
state k̃∗ > 0. That is, given these assumptions, we have k̃t → k̃∗ for t→∞ and so
the system will sooner or later settle down in a steady state. The convergence of
k̃ implies convergence of many key variables, for instance the equilibrium factor
prices given in (4.17) and (4.18). We see that, for t→∞,

rt = f ′(k̃t)− δ → f ′(k̃∗)− δ ≡ r∗, and

wt =
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt → [f(k∗)− k∗f ′(k∗)]Tt ≡ w̃∗Tt = w̃∗T0(1 + g)t.

The prediction of the model is now that the economy will in the long run
behave in accordance with Kaldor’s stylized facts. Indeed, in many models, in-
cluding the present one, convergence toward a steady state is equivalent to saying
that the time path of the economy converges toward a BGP. In the present case,
with perfect competition, the implication is that in the long run the economy will
be consistent with Kaldor’s stylized facts.
The claimed equivalence follows from:
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PROPOSITION 4 Consider a Diamond economy with Harrod-neutral techno-
logical progress at the constant rate g ≥ 0 and positive gross saving for all t.
Then:
(i) if the economy features balanced growth, then it is in a steady state;
(ii) if the economy is in a steady state, then it features balanced growth.

Proof (i) Suppose the considered economy features balanced growth. Then, by
Proposition 1, Y/K is constant. As Y/K = ỹ/k̃ = f(k̃)/k̃, also k̃ is constant.
Thereby the economy is in a steady state. (ii) Suppose the considered economy
is in a steady state, i.e., given (4.21), k̃t = k̃t+1 = k̃∗ for some k̃∗ > 0. The
constancy of k̃ ≡ K/(TL) and ỹ ≡ Y/(TL) = f(k̃) implies that both gK and gY
equal gTL = (1+g)(1+n)−1 > 0. As K and Y thus grow at the same rate, Y/K
is constant. With S ≡ Y − C, constancy of S/K = (∆K + δK)/K = gK + δ,
implies constancy of S/K so that S also grows at the rate gK and thereby at the
same rate as output. Hence S/Y is constant. Because C/Y ≡ 1 − S/Y, also C
grows at the constant rate gY . All criteria for a balanced growth path are thus
satisfied. �

Figure 4.4: Transition curve for a well-behaved Diamond OLG model with Harrod-
neutral technical progress.

Let us portray the dynamics by a transition diagram. Fig. 4.4 shows a “well-
behaved”case in the sense that there is only one steady state. In the figure the
initial effective capital-labor ratio, k̃0, is assumed to be relatively large. This
need not be interpreted as if the economy is highly developed and has a high
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initial capital-labor ratio, K0/L0. Indeed, the reason that k̃0 ≡ K0/(T0L0) is
large relative to its steady-steady value may be that the economy is “backward”
in the sense of having a relatively low initial level of technology. Growing at a
given rate g, the technology will in this situation grow faster than the capital-
labor ratio, K/L, so that the effective capital-labor ratio declines over time. The
process continues until the steady state is essentially reached with a real interest
rate r∗ = f ′(k̃∗)− δ. This is to remind the reader that from an empirical point of
view, the adjustment towards a steady state can be from above as well as from
below.
The output growth rate in steady state, (1+g)(1+n)−1, is sometimes called

the “natural rate of growth”. Since (1 + g)(1 + n)− 1 = g + n+ gn ≈ g + n for
g and n “small”, the natural rate of growth approximately equals the sum of the
rate of technological progress and the growth rate of the labor force. Warning:
When measured on an annual basis, the growth rates of technology and labor
force, ḡ and n̄, do indeed tend to be “small”, say ḡ = 0.02 and n̄ = 0.005, so
that ḡ + n̄ + ḡn̄ = 0.0251 ≈ 0.0250 = ḡ + n̄. But in the context of models like
Diamond’s, the period length is, say, 30 years. Then the corresponding g and n
will satisfy the equations 1+g = (1+ ḡ)30 = 1.0230 = 1.8114 and 1+n = (1+ n̄)30

= 1.00530 = 1.1614, respectively. We get g + n = 0.973, which is about 10 per
cent smaller than the true output growth rate over 30 years, which is g + n+ gn
= 1.104.
We end our account of Diamond’s OLGmodel with some remarks on a popular

special case of a homothetic utility function.

An example: CRRA period utility

An example of a homothetic lifetime utility function is obtained by letting the
period utility function take the CRRA form introduced in the previous chapter.
Then

U(c1, c2) =
c1−θ

1 − 1

1− θ + (1 + ρ)−1 c
1−θ
2 − 1

1− θ , θ > 0. (4.22)

Recall that the CRRA utility function with parameter θ has the property that
the (absolute) elasticity of marginal utility of consumption equals the constant
θ > 0 for all c > 0. Up to a positive linear transformation it is, in fact, the only
period utility function with this property. A proof that the utility function (4.22)
is indeed homothetic is given in Appendix C.
One of the reasons that the CRRA function is popular in macroeconomics is

that in representative agent models, the period utility function must have this
form to obtain consistency with balanced growth and Kaldor’s stylized facts (this
is shown in Chapter 7). In contrast, a model with heterogeneous agents, like the
Diamond model, does not need CRRA utility to comply with the Kaldor facts.
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CRRA utility is just a convenient special case leading to homothetic lifetime
utility. And this is what is needed for a BGP to exist and thereby for compatibility
with Kaldor’s stylized facts.
Given the CRRA assumption in (4.22), the saving-wealth ratio of the young

becomes

ŝ(r) =
1

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
. (4.23)

It follows that ŝ′(r) R 0 for θ Q 1.

When θ = 1 (the case u(c) = ln c), ŝ(r) = 1/(2 + ρ) ≡ ŝ, a constant, and the
law of motion (4.21) thus simplifies to

k̃t+1 =
1

(1 + g)(1 + n)(2 + ρ)
w̃(k̃t).

We see that in the θ = 1 case, whatever the production function, k̃t+1 enters
only at the left-hand side of the fundamental difference equation, which thereby
reduces to a simple transition function. Since w̃′(k̃) > 0, the transition curve
is positively sloped everywhere. If the production function is Cobb-Douglas, Yt
= Kα

t (TtLt)
1−α, then w̃(k̃t) = (1 − α)k̃αt . Combining this with θ = 1 yields a

“well-behaved”Diamond model (thus having a unique and globally asymptoti-
cally stable steady state), cf. Fig. 4.4 above. In fact, as noted in Chapter 3,
in combination with Cobb-Douglas technology, CRRA utility results in “well-
behavedness”whatever the value of θ > 0.

4.3 The golden rule under Harrod-neutral tech-
nological progress

Given that there is technological progress, consumption per unit of labor is likely
to grow over time. Therefore the definition of the golden-rule capital-labor ratio
from Chapter 3 has to be extended to cover the case of growing consumption per
unit of labor. To allow existence of steady states and balanced growth paths, we
maintain the assumption that technological progress is Harrod-neutral, that is,
we maintain (4.13) where the technology level, T, grows at a constant rate g > 0.

DEFINITION 2 The golden-rule capital intensity, k̃GR, is that level of k̃ ≡
K/(TL) which gives the highest sustainable path for consumption per unit of
labor in the economy.

As before, we let time be discrete but allow the period length to be arbitrary,
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possibly one year for instance. Consumption per unit of labor is

ct ≡
Ct
Lt

=
F (Kt, TtLt)− St

Lt
=
f(k̃t)TtLt − (Kt+1 −Kt + δKt)

Lt

= f(k̃t)Tt − (1 + g)Tt(1 + n)k̃t+1 + (1− δ)Ttk̃t
=

[
f(k̃t) + (1− δ)k̃t − (1 + g)(1 + n)k̃t+1

]
Tt.

In a steady state we have k̃t+1 = k̃t = k̃ and therefore

ct =
[
f(k̃) + (1− δ)k̃ − (1 + g)(1 + n)k̃

]
Tt ≡ c̃(k̃)Tt,

where c̃(k̃) is the “technology-corrected” level of consumption per unit of labor
in steady state. We see that in steady state, consumption per unit of labor will
grow at the same rate as the technology. Thus, ln ct = ln c̃(k̃) + lnT0 + t ln(1 +g).
Fig. 4.5 illustrates.
Since the evolution of technology, parameterized by T0 and g, is exogenous, the

highest possible path of ct is found by maximizing c̃(k̃). This gives the first-order
condition

c̃′(k̃) = f́ ′(k̃) + (1− δ)− (1 + g)(1 + n) = 0. (4.24)

Assuming, for example, n ≥ 0, we have (1 + g)(1 + n)− (1− δ) > 0 since g > 0.
Then, by continuity the equation (4.24) necessarily has a unique solution in k̃ > 0,
if the production function satisfies the condition

lim
k̃→0

f ′(k̃) > (1 + g)(1 + n)− (1− δ) > lim
k̃→∞

f ′(k̃),

which is a milder condition than the Inada conditions. Considering the second-
order condition c̃′′(k̃) = f ′′(k̃) < 0, the k̃ satisfying (4.24) does indeed maximize
c̃(k̃). By definition, this k̃ is the golden-rule capital intensity, k̃GR. Thus

f́ ′(k̃GR)− δ = (1 + g)(1 + n)− 1 ≈ g + n, (4.25)

where the right-hand side is the “natural rate of growth”. This says that the
golden-rule capital intensity is that level of the capital intensity at which the net
marginal productivity of capital equals the output growth rate in steady state.

Is dynamic ineffi ciency a problem in practice? As in the Diamond model
without technological progress, it is theoretically possible that the economy ends
up in a steady state with k̃∗ > k̃GR.

9 If this happens, the economy is dynamically

9The proof is analogue to that in Chapter 3 for the case g = 0.
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Figure 4.5: The highest sustainable path of consumption is where k̃∗ = k̃GR.

ineffi cient and r∗ < (1 + g)(1 + n) − 1 ≈ g + n. To check whether dynamic
ineffi ciency is a realistic outcome in an industrialized economy or not, we should
compare the observed average GDP growth rate over a long stretch of time to the
average real interest rate or rate of return in the economy. For the period after the
Second World War the average GDP growth rate (≈ g+ n) in Western countries
is typically about 3 per cent per year. But what interest rate should one choose?
In simple macro models, like the Diamond model, there is no uncertainty and no
need for money to carry out trades. In such models all assets earn the same rate
of return, r, in equilibrium. In the real world there is a spectrum of interest rates,
reflecting the different risk and liquidity properties of the different assets. The
expected real rate of return on a short-term government bond is typically less
than 3 per cent per year (a relatively safe and liquid asset). This is much lower
than the expected real rate of return on corporate stock, 7-9 per cent per year.
Our model cannot tell which rate of return we should choose, but the conclusion
hinges on that choice.

Abel et al. (1989) study the problem on the basis of a model with uncertainty.
They show that a suffi cient condition for dynamic effi ciency is that gross invest-
ment, I, does not exceed the gross capital income in the long run, that is I ≤
Y −wL. They find that for the U.S. and six other major OECD nations this seems
to hold. Indeed, for the period 1929-85 the U.S. has, on average, I/Y = 0.15 and
(Y − wL)/Y = 0.29. A similar difference is found for other industrialized coun-
tries, suggesting that they are dynamically effi cient. At least in these countries,
therefore, the potential coordination failure laid bare by OLG models does not
seem to have been operative in practice.
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4.4 The functional distribution of income

.....Text to be inserted

The neoclassical theory of factor income shares

.....Text to be inserted

How the labor income share depends on the capital-labor ratio

To begin with we ignore technological progress and write aggregate output as
Y = F (K,L), where F is neoclassical with CRS. From Euler’s theorem follows
that F (K,L) = F1K + F2L = f ′(k)K + (f(k) − kf ′(k))L, where k ≡ K/L. In
equilibrium under perfect competition we have

Y = r̂K + wL,

where r̂ = r + δ = f ′(k) ≡ r̂(k) is the cost per unit of capital input and w
= f(k) − kf ′(k) ≡ w(k) is the real wage, i.e., the cost per unit of labor input.
The labor income share is

wL

Y
=
f(k)− kf ′(k)

f(k)
≡ w(k)

f(k)
≡ SL(k) =

wL

r̂K + wL
=

w/r̂
k

1 + w/r̂
k

, (4.26)

where the function SL(·) is the income share of labor function, w/r̂ is the factor
price ratio, and (w/r̂)/k = w/(r̂k) is the factor income ratio. As r̂′(k) = f ′′(k) < 0
and w′(k) = −kf ′′(k) > 0, the factor price ratio, w/r̂, is an increasing function
of k.
Suppose that capital tends to grow faster than labor so that k rises over time.

Unless the production function is Cobb-Douglas, this will under perfect competi-
tion affect the labor income share. But apriori it is not obvious in what direction.
By (4.26) we see that the labor income share moves in the same direction as the
factor income ratio, (w/r̂)/k. The latter goes up (down) depending on whether
the percentage rise in the factor price ratio w/r̂ is greater (smaller) than the
percentage rise in k. So, if we let E`xg(x) denote the elasticity of a function g(x)
w.r.t. x, we can only say that

SL′(k) R 0 for E`k
w

r̂
R 1, (4.27)

respectively. In words: if the production function is such that the ratio of the
marginal productivities of the two production factors is strongly (weakly) sensitive
to the capital-labor ratio, then the labor income share rises (falls) along with a
rise in K/L.
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Usually, however, the inverse elasticity is considered, namely E`w/r̂k (= 1/E`k wr̂ ).
This elasticity indicates how sensitive the cost minimizing capital-labor ratio, k,
is to a given factor price ratio w/r̂. Under perfect competition E`w/r̂k coincides
with what is known as the elasticity of factor substitution (for a general defin-
ition, see below). The latter is often denoted σ. In the CRS case, σ will be a
function of only k so that we can write E`w/r̂k = σ(k). By (4.27), we therefore
have

SL′(k) R 0 for σ(k) Q 1,

respectively.
If F is Cobb-Douglas, i.e., Y = KαL1−α, 0 < α < 1, we have σ(k) ≡ 1, as

shown in Section 4.5. In this case variation in k does not change the labor income
share under perfect competition. Empirically there is not agreement about the
“normal”size of the elasticity of factor substitution for industrialized economies,
but the bulk of studies seems to conclude with σ(k) < 1 (see below).

Adding Harrod-neutral technical progress We now add Harrod-neutral
technical progress. We write aggregate output as Y = F (K,TL), where F is
neoclassical with CRS, and T = Tt = T0(1 + g)t. Then the labor income share is

wL

Y
=

w/T

Y/(TL)
≡ w̃

ỹ
.

The above formulas still hold if we replace k by k̃ ≡ K/(TL) and w by w̃ ≡ w/T.
We get

SL′(k̃) R 0 for σ(k̃) Q 1,

respectively. We see that if σ(k̃) < 1 in the relevant range for k̃, then market
forces tend to increase the income share of the factor that is becoming relatively
more scarce, which is effi ciency-adjusted labor, TL, if k̃ is increasing. And if
instead σ(k̃) > 1 in the relevant range for k̃, then market forces tend to decrease
the income share of the factor that is becoming relatively more scarce.
While k empirically is clearly growing, k̃ ≡ k/T is not necessarily so because

also T is increasing. Indeed, according to Kaldor’s “stylized facts”, apart from
short- and medium-term fluctuations, k̃ − and therefore also r̂ and the labor
income share − tend to be more or less constant over time. This can happen
whatever the sign of σ(k̃∗) − 1, where k̃∗ is the long-run value of the effective
capital-labor ratio k̃. Given CRS and the production function f, the elasticity
of substitution between capital and labor does not depend on whether g = 0 or
g > 0, but only on the function f itself and the level of K/(TL).
As alluded to earlier, there are empiricists who reject Kaldor’s “facts” as a

general tendency. For instance Piketty (2014) essentially claims that in the very
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long run the effective capital-labor ratio k̃ has an upward trend, temporarily
braked by two world wars and the Great Depression in the 1930s. If so, the sign
of σ(k̃) − 1 becomes decisive for in what direction wL/Y will move. Piketty
interprets the econometric literature as favoring σ(k̃) > 1, which means there
should be downward pressure on wL/Y . This particular source behind a falling
wL/Y can be questioned, however. Indeed, σ(k̃) > 1 contradicts the more general
empirical view referred to above.10

Immigration

Here is another example that illustrates the importance of the size of σ(k̃). Con-
sider an economy with perfect competition and a given aggregate capital stock K
and technology level T (entering the production function in the labor-augmenting
way as above). Suppose that for some reason, immigration, say, aggregate labor
supply, L, shifts up and full employment is maintained by the needed real wage
adjustment. Given the present model, in what direction will aggregate labor in-
come wL = w̃(k̃)TL then change? The effect of the larger L is to some extent
offset by a lower w brought about by the lower effective capital-labor ratio. In-
deed, in view of dw̃/dk̃ = −k̃f ′′(k̃) > 0, we have k̃ ↓ implies w ↓ for fixed T. So
we cannot apriori sign the change in wL. The following relationship can be shown
(Exercise 4.??), however:

∂(wL)

∂L
= (1− α(k̃)

σ(k̃)
)w R 0 for α(k̃) Q σ(k̃), (4.28)

respectively, where a(k̃) ≡ k̃f ′(k̃)/f(k̃) is the output elasticity w.r.t. capital
which under perfect competition equals the gross capital income share. It follows
that the larger L will not be fully offset by the lower w as long as the elasticity
of factor substitution, σ(k̃), exceeds the gross capital income share, α(k̃). This
condition seems confirmed by most of the empirical evidence (see Section 4.5).

The elasticity of factor substitution*

We shall here discuss the concept of elasticity of factor substitution at a more
general level. Fig. 4.6 depicts an isoquant, F (K,L) = Ȳ , for a given neoclassical
production function, F (K,L), which need not have CRS. Let MRS denote the
marginal rate of substitution of K for L, i.e., MRS = FL(K,L)/FK(K,L).11 At

10According to Summers (2014), Piketty’s interpretation relies on conflating gross and net
returns to capital.
11When there is no risk of confusion as to what is up and what is down, we use MRS as a

shorthand for the more precise expression MRSKL.
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a given point (K,L) on the isoquant curve, MRS is given by the absolute value
of the slope of the tangent to the isoquant at that point. This tangent coincides
with that isocost line which, given the factor prices, has minimal intercept with
the vertical axis while at the same time touching the isoquant. In view of F (·)
being neoclassical, the isoquants are by definition strictly convex to the origin.
Consequently, MRS is rising along the curve when L decreases and thereby K
increases. Conversely, we can let MRS be the independent variable and consider
the corresponding point on the indifference curve, and thereby the ratioK/L, as a
function ofMRS. If we letMRS rise along the given isoquant, the corresponding
value of the ratio K/L will also rise.

Figure 4.6: Substitution of capital for labor as the marginal rate of substitution in-
creases from MRS to MRS′.

The elasticity of substitution between capital and labor is defined as the elas-
ticity of the ratioK/L with respect toMRS when we move along a given isoquant,
evaluated at the point (K,L). Let this elasticity be denoted σ̃(K,L). Thus,

σ̃(K,L) =
MRS

K/L

d(K/L)

dMRS |Y=Ȳ
=

d(K/L)
K/L

dMRS
MRS |Y=Ȳ

. (4.29)

Although the elasticity of factor substitution is a characteristic of the tech-
nology as such and is here defined without reference to markets and factor prices,
it helps the intuition to refer to factor prices. At a cost-minimizing point, MRS
equals the factor price ratio w/r̂. Thus, the elasticity of factor substitution will
under cost minimization coincide with the percentage increase in the ratio of the
cost-minimizing factor ratio induced by a one percentage increase in the inverse
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factor price ratio, holding the output level unchanged.12 The elasticity of factor
substitution is thus a positive number and reflects how sensitive the capital-labor
ratio K/L is under cost minimization to an increase in the factor price ratio w/r̂
for a given output level. The less curvature the isoquant has, the greater is the
elasticity of factor substitution. In an analogue way, in consumer theory one con-
siders the elasticity of substitution between two consumption goods or between
consumption today and consumption tomorrow, cf. Chapter 3. In that context
the role of the given isoquant is taken over by an indifference curve. That is also
the case when we consider the intertemporal elasticity of substitution in labor
supply, cf. the next chapter.
Calculating the elasticity of substitution betweenK and L at the point (K,L),

we get

σ̃(K,L) = − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
, (4.30)

where all the derivatives are evaluated at the point (K,L). When F (K,L) has
CRS, the formula (4.30) simplifies to

σ̃(K,L) =
FK(K,L)FL(K,L)

FKL(K,L)F (K,L)
= −f

′(k) (f(k)− f ′(k)k)

f ′′(k)kf(k)
≡ σ(k), (4.31)

where k ≡ K/L.13 We see that under CRS, the elasticity of substitution depends
only on the capital-labor ratio k, not on the output level. We will now consider the
case where the elasticity of substitution is independent also of the capital-labor
ratio.

4.5 The CES production function*

It can be shown14 that if a neoclassical production function with CRS has a
constant elasticity of factor substitution different from one, it must be of the
form

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (4.32)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0. This function has been used intensively in empirical studies and is called
a CES production function (CES for Constant Elasticity of Substitution). For a
given choice of measurement units, the parameter A reflects effi ciency (or what

12This characterization is equivalent to interpreting the elasticity of substitution as the per-
centage decrease in the factor ratio (when moving along a given isoquant) induced by a one-
percentage increase in the corresponding factor price ratio.
13The formulas (4.30) and (4.31) are derived in Appendix D.
14See, e.g., Arrow et al. (1961).
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is known as total factor productivity) and is thus called the effi ciency parameter.
The parameters α and β are called the distribution parameter and the substitution
parameter, respectively. The restriction β < 1 ensures that the isoquants are
strictly convex to the origin. Note that if β < 0, the right-hand side of (4.32)
is not defined when either K or L (or both) equal 0. We can circumvent this
problem by extending the domain of the CES function and assign the function
value 0 to these points when β < 0. Continuity is maintained in the extended
domain (see Appendix E).
By taking partial derivatives in (4.32) and substituting back we get

∂Y

∂K
= αAβ

(
Y

K

)1−β

and
∂Y

∂L
= (1− α)Aβ

(
Y

L

)1−β

, (4.33)

where Y/K = A
[
α + (1− α)k−β

] 1
β and Y/L = A

[
αkβ + 1− α

] 1
β . The marginal

rate of substitution of K for L therefore is

MRS =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β > 0.

Consequently,
dMRS

dk
=

1− α
α

(1− β)k−β,

where the inverse of the right-hand side is the value of dk/dMRS. Substituting
these expressions into (4.29) gives

σ̃(K,L) =
1

1− β ≡ σ, (4.34)

confirming the constancy of the elasticity of substitution. Since β < 1, σ > 0
always. A higher substitution parameter, β, results in a higher elasticity of factor
substitution, σ. And σ ≶ 1 for β ≶ 0, respectively.
Since β = 0 is not allowed in (4.32), at first sight we cannot get σ = 1 from

this formula. Yet, σ = 1 can be introduced as the limiting case of (4.32) when
β → 0, which turns out to be the Cobb-Douglas function. Indeed, one can show15

that, for fixed K and L,

A
[
αKβ + (1− α)Lβ

] 1
β → AKαL1−α, for β → 0.

By a similar procedure as above we find that a Cobb-Douglas function always
has elasticity of substitution equal to 1; this is exactly the value taken by σ in

15Proofs of this and the further claims below are in Appendix E.
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(4.34) when β = 0. In addition, the Cobb-Douglas function is the only production
function that has unit elasticity of substitution whatever the capital-labor ratio.
Another interesting limiting case of the CES function appears when, for fixed

K and L, we let β → −∞ so that σ → 0. We get

A
[
αKβ + (1− α)Lβ

] 1
β → Amin(K,L), for β → −∞. (4.35)

So in this case the CES function approaches a Leontief production function, the
isoquants of which form a right angle, cf. Fig. 4.7. In the limit there is no
possibility of substitution between capital and labor. In accordance with this the
elasticity of substitution calculated from (4.34) approaches zero when β goes to
−∞.
Finally, let us consider the “opposite”transition. For fixed K and L we let

the substitution parameter rise towards 1 and get

A
[
αKβ + (1− α)Lβ

] 1
β → A [αK + (1− α)L] , for β → 1.

Here the elasticity of substitution calculated from (4.34) tends to ∞ and the
isoquants tend to straight lines with slope−(1−α)/α. In the limit, the production
function thus becomes linear and capital and labor become perfect substitutes.
Fig. 4.7 depicts isoquants for alternative CES production functions and their

limiting cases. In the Cobb-Douglas case, σ = 1, the horizontal and vertical
asymptotes of the isoquant coincide with the coordinate axes. When σ < 1, the
horizontal and vertical asymptotes of the isoquant belong to the interior of the
positive quadrant. This implies that both capital and labor are essential inputs.
When σ > 1, the isoquant terminates in points on the coordinate axes. Then
neither capital, nor labor are essential inputs. Empirically there is not complete
agreement about the “normal” size of the elasticity of factor substitution for
industrialized economies. The elasticity also differs across the production sectors.
A thorough econometric study (Antràs, 2004) of U.S. data indicate the aggregate
elasticity of substitution to be in the interval (0.5, 1.0). The survey by Chirinko
(2008) concludes with the interval (0.4, 0.6). Starting from micro data, a recent
study by Oberfield and Raval (2014) finds that the elasticity of factor substitution
for the US manufacturing sector as a whole has been stable since 1970 at about
0.7.

The CES production function in intensive form

Dividing through by L on both sides of (4.32), we obtain the CES production
function in intensive form,

y ≡ Y

L
= A(αkβ + 1− α)

1
β , (4.36)
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Figure 4.7: Isoquants for the CES function for alternative values of σ (A = 1.5, Ȳ = 2,
and α = 0.42).

where k ≡ K/L. The marginal productivity of capital can be written

MPK =
dy

dk
= αA

[
α + (1− α)k−β

] 1−β
β = αAβ

(y
k

)1−β
,

which of course equals ∂Y/∂K in (4.33). We see that the CES function violates
either the lower or the upper Inada condition for MPK, depending on the sign
of β. Indeed, when β < 0 (i.e., σ < 1), then for k → 0 both y/k and dy/dk
approach an upper bound equal to Aα1/β < ∞, thus violating the lower Inada
condition forMPK (see the right-hand panel of Fig. 2.3 of Chapter 2). It is also
noteworthy that in this case, for k →∞, y approaches an upper bound equal to
A(1− α)1/β <∞. These features reflect the low degree of substitutability when
β < 0.
When instead β > 0, there is a high degree of substitutability (σ > 1). Then,

for k → ∞ both y/k and dy/dk → Aα1/β > 0, thus violating the upper Inada
condition for MPK (see right panel of Fig. 4.8). It is also noteworthy that for
k → 0, y approaches a positive lower bound equal to A(1 − α)1/β > 0. Thus, in
this case capital is not essential. At the same time dy/dk →∞ for k → 0 (so the
lower Inada condition for the marginal productivity of capital holds). Details are
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in Appendix E.
The marginal productivity of labor is

MPL =
∂Y

∂L
= (1− α)Aβy1−β = (1− α)A(αkβ + 1− α)(1−β)/β ≡ w(k),

from (4.33).
Since (4.32) is symmetric in K and L, we get a series of symmetric results by

considering output per unit of capital as x ≡ Y/K = A
[
α + (1− α)(L/K)β

]1/β
.

In total, therefore, when there is low substitutability (β < 0), for fixed input
of either of the production factors, there is an upper bound for how much an
unlimited input of the other production factor can increase output. And when
there is high substitutability (β > 0), there is no such bound and an unlimited
input of either production factor take output to infinity.
The Cobb-Douglas case, i.e., the limiting case for β → 0, constitutes in several

respects an intermediate case in that all four Inada conditions are satisfied and
we have y → 0 for k → 0, and y →∞ for k →∞.

0 5 10
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1
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∆x ·Aα
1
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∆x

a) The case of σ < 1.
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y
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a) The case of σ > 1.
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Figure 4.8: The CES production function in intensive form, σ = 1/(1− β), β < 1.

Generalizations

The CES production function considered above has CRS. By adding an elasticity
of scale parameter, γ, we get the generalized form

Y = A
[
αKβ + (1− α)Lβ

] γ
β , γ > 0. (4.37)

In this form the CES function is homogeneous of degree γ. For 0 < γ < 1, there are
DRS, for γ = 1 CRS, and for γ > 1 IRS. If γ 6= 1, it may be convenient to consider
Q ≡ Y 1/γ = A1/γ

[
αKβ + (1− α)Lβ

]1/β
and q ≡ Q/L = A1/γ(αkβ + 1− α)1/β.
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The elasticity of substitution between K and L is σ = 1/(1−β) whatever the
value of γ. So including the limiting cases as well as non-constant returns to scale
in the “family”of production functions with constant elasticity of substitution,
we have the simple classification displayed in Table 4.1.

Table 4.1 The family of production functions
with constant elasticity of substitution.

σ = 0 0 < σ < 1 σ = 1 σ > 1
Leontief CES Cobb-Douglas CES

Note that only for γ ≤ 1 is (4.37) a neoclassical production function. This
is because, when γ > 1, the conditions FKK < 0 and FNN < 0 do not hold
everywhere.
We may generalize further by assuming there are n inputs, in the amounts

X1, X2, ..., Xn. Then the CES production function takes the form

Y = A
[
α1X1

β + α2X2
β + ...αnXn

β
] γ
β , αi > 0 for all i,

∑
i

αi = 1, γ > 0.

(4.38)
In analogy with (4.29), for an n-factor production function the partial elasticity
of substitution between factor i and factor j is defined as

σij =
MRSij
Xi/Xj

d(Xi/Xj)

dMRSij |Y=Ȳ

,

where it is understood that not only the output level but also all Xk, k 6= i, j,
are kept constant. Note that σji = σij. In the CES case considered in (4.38), all
the partial elasticities of substitution take the same value, 1/(1− β).

4.6 Concluding remarks

(incomplete)
When speaking of “sustained growth” in variables like K, Y, and C, we do

not mean growth in a narrow physical sense. Given limited natural resources
(matter and energy), exponential growth in a physical sense is of course not
possible. But sustained growth in terms of economic value is not ruled out. We
should for instance understand K broadly as “produced means of production”
of rising quality and falling material intensity (think of the rising effi ciency of
microprocessors). Similarly, C must be seen as a composite of consumer goods
and services with declining material intensity over time. This accords with the
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empirical fact that as income rises, the share of consumption expenditures devoted
to agricultural and industrial products declines and the share devoted to services,
hobbies, and amusement increases. Although “economic development”is perhaps
a more appropriate term (suggesting qualitative and structural change), we retain
standard terminology and speak of “economic growth”.

4.7 Literature notes and discussion

1. We introduced the assumption that at the macroeconomic level the “direc-
tion”of technological progress tends to be Harrod-neutral. Otherwise the model
will not be consistent with Kaldor’s stylized facts. The Harrod-neutrality of the
“direction” of technological progress is in the present model just an exogenous
feature. This raises the question whether there are mechanisms tending to gen-
erate Harrod-neutrality. Fortunately new growth theory provides clues as to the
sources of the speed as well as the direction of technological change. A facet
of this theory is that the direction of technological change is linked to the same
economic forces as the speed, namely profit incentives. See Acemoglu (2003) and
Jones (2006).
2. The literature discussing Kaldor’s “stylized facts” includes Attfield and

Temple (2010), Rognlie (2015), Gollin (2002), Elsby et al. (2013), and Karabar-
bounis and Neiman (2014). The latter three references conclude with serious
scepticism.
3. In Section 4.2 we claimed that from an empirical point of view, the adjust-

ment towards a steady state can be from above as well as from below. Indeed,
Cho and Graham (1996) find that “on average, countries with a lower income per
adult are above their steady-state positions, while countries with a higher income
are below their steady-state positions”.
As to the assessment of the role of uncertainty for the condition that dynamic

effi ciency is satisfied, in addition to Abel et al. (1989) other useful sources include
Ball et al. (1998) and Blanchard and Weil (2001).
4. In the Diamond OLG model as well as in many other models, a steady

state and a balanced growth path imply each other. Indeed, they are two sides
of the same process. There exist cases, however, where this equivalence does not
hold (some open economy models and some models with embodied technological
change, see Groth et al., 2010). Therefore, it is recommendable always to maintain
a terminological distinction between the two concepts.
5. Based on time-series econometrics, Attfield and Temple (2010) and others

find support for the Kaldor “facts”for the US and UK and thereby for an evolu-
tion roughly obeying balanced growth in terms of aggregate variables. This does
not rule out structural change. A changing sectorial composition of the economy
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is under certain conditions compatible with balanced growth (in a generalized
sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,
2001, and Acemoglu, 2009).

6. Cases where the equivalence between steady state and balanced growth
does not hold include some open economy models and some models with embodied
technological change, see, e.g., Groth et al. (2010).

7. La Grandville (2009) contains a lot about analytical aspects linked to the
CES production function and the concept of elasticity of factor substitution.

8. On the declining material intensity of consumer goods and services as
technology develops, see Fagnart and Germain (2011).

From here incomplete:

Piketty (2014), Zucman ( ).

Demange and Laroque (1999, 2000) extend Diamond’s OLG model to uncer-
tain environments.

Keeping-up-with-the-Jones externalities. Do we work too much?

Blanchard, O., (2004) The Economic Future of Europe, J. Economic Perspec-
tives, vol. 18 (4), 3-26.

Prescott, E. (2003), Why do Americans work so much more than Europeans?
Federal Reserve Bank of Minneapolis Research Department StaffReport No. 321.
I Ch. 5?

Chari, V. V., and P. J. Kehoe (2006), Modern macroeconomics in practice:
How theory is shaping policy, J. of Economic Perspectives, vol. 20 (4), 3-28.

For expositions in depth of OLG modeling and dynamics in discrete time, see
Azariadis (1993), de la Croix and Michel (2002), and Bewley (2007).

Dynamic ineffi ciency, see also Burmeister (1980).

Two-sector OLG: Galor (1992). Galor’s book??

Bewley (2007).

Uzawa’s theorem: Uzawa (1961), Schlicht (2006).

The way the intuition behind the Uzawa theorem was presented in Section
4.1 draws upon Jones and Scrimgeour (2008).

La Grandville’s normalization of the CES function.

For more general and flexible production functions applied in econometric
work, see, e.g., Nadiri (1982).

Other aspects of life cycle behavior: education. OLG where people live three
periods.
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4.8 Appendix

A. Growth and interest arithmetic in discrete time

Let t = 0,±1,±2, . . . , and consider the variables zt, xt, and yt, assumed positive
for all t. Define ∆zt = zt − zt−1 and ∆xt and ∆yt similarly. These ∆’s need not
be positive. The growth rate of xt from period t− 1 to period t is defined as the
relative rate of increase in x, i.e., ∆xt/xt−1 ≡ xt/xt−1. And the growth factor for
xt from period t− 1 to period t is defined as 1 + xt/xt−1.
As we are here interested not in the evolution of growth rates, we simplify

notation by suppressing the t’s. So we write the growth rate of x as gx ≡ ∆x/x−1

and similarly for y and z.

PRODUCT RULE If z = xy, then 1 + gz = (1 + gx)(1 + gy) and gz ≈ gx + gy,
when gx and gy are “small”.

Proof. By definition, z = xy, which implies z−1 + ∆z = (x−1 + ∆x)(y−1 +
∆y). Dividing by z−1 = x−1y−1 gives 1 + ∆z/z−1 = (1 + ∆x/x−1)(1 + ∆y/y−1)
as claimed. By carrying out the multiplication on the right-hand side of this
equation, we get 1 + ∆z/z−1 = 1 + ∆x/x−1 + ∆y/y−1 + (∆x/x−1)(∆y/y−1) ≈
1 + ∆x/x−1 + ∆y/y1 when ∆x/x−1 and ∆y/y−1 are “small”. Subtracting 1 on
both sides gives the stated approximation. �
So the product of two positive variables will grow at a rate approximately

equal to the sum of the growth rates of the two variables.

FRACTION RULE If z = x
y
, then 1 + gz = 1+gx

1+gy
and gz ≈ gx − gy, when gx and

gy are “small”.

Proof. By interchanging z and x in Product Rule and rearranging, we get 1 +
∆z/z−1 = 1+∆x/x−1

1+∆y/y−1
, as stated in the first part of the claim. Subtracting 1 on

both sides gives ∆z/z−1 = ∆x/x−1−∆y/y−1

1+∆y/y−1
≈ ∆x/x−1 − ∆y/y−1, when ∆x/x−1

and ∆y/y−1 are “small”. This proves the stated approximation. �
So the ratio between two positive variables will grow at a rate approximately

equal to the excess of the growth rate of the numerator over that of the denomina-
tor. An implication of the first part of Claim 2 is: the ratio between two positive
variables is constant if and only if the variables have the same growth rate (not
necessarily constant or positive).

POWER FUNCTION RULE If z = xα, then 1 + gz = (1 + gx)
α.

Proof. 1 + gz ≡ z/z−1 = (x/x−1)α ≡ (1 + gx)
α. �

Given a time series x0, x1, ..., xn, by the average growth rate per period, or
more precisely, the average compound growth rate, is meant a g which satisfies
xn = x0(1 + g)n. The solution for g is g = (xn/x0)1/n − 1.
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Finally, the following approximation may be useful (for intuition) if used with
caution:

THE GROWTH FACTOR With n denoting a positive integer above 1 but “not
too large”, the growth factor (1 + g)n can be approximated by 1 + ng when g is
“small”. For g 6= 0, the approximation error is larger the larger is n.

Proof. (i) We prove the claim by induction. Suppose the claim holds for a fixed
n ≥ 2, i.e., (1 + g)n ≈ 1 + ng for g “small”. Then (1 + g)n+1 = (1 + g)n(1 + g)
≈ (1 + ng)(1 + g) = 1 + ng + g + ng2 ≈ 1 + (n + 1)g since g “small”implies g2

“very small”and therefore ng2 “small”if n is not “too”large. So the claim holds
also for n+ 1. Since (1 + g)2 = 1 + 2g+ g2 ≈ 1 + 2g, for g “small”, the claim does
indeed hold for n = 2. �
THE EFFECTIVE ANNUAL RATE OF INTEREST Suppose interest on a
loan is charged n times a year at the rate r/n per year. Then the effective annual
interest rate is (1 + r/n)n − 1.

B. Proof of the suffi ciency part of Uzawa’s theorem

For convenience we restate the full theorem here:

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let {(Kt, Yt, Ct)}∞t=0 be a
path along which Yt, Kt, Ct, and St ≡ Yt − Ct are positive for all t = 0, 1, 2, . . . ,
and satisfy the dynamic resource constraint (4.2), given the production function
(4.4) and the labor force (4.5). Assume (1 + g)(1 + n) > 1− δ. Then:
(i) a necessary condition for this path to be a balanced growth path is that along
the path it holds that

Yt = F̃ (Kt, TtLt, 0), (*)

where Tt = A(1+g)t with 1+g ≡ (1+gY )/(1+n), gY being the constant growth
rate of output along the balanced growth path;
(ii) for any g ≥ 0 such that there is a q > (1 + g)(1 + n) − (1 − δ) with the
property that the production function F̃ in (4.4) allows an output-capital ratio
equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q for some real number k̃ > 0), a suffi cient
condition for F̃ to be consistent with a balanced growth path with output-capital
ratio equal to q is that F̃ can be written as in (*) with Tt = A(1 + g)t.

Proof (i) See Section 4.1. (ii) Suppose (*) holds with Tt = A(1 + g)t. Let g ≥ 0
be given such that there is a q > (1 + g)(1 + n)− (1− δ) > 0 with the property
that

F̃ (1, k̃−1, 0) = q (**)

for some constant k̃ > 0. Our strategy is to prove the claim by construction of
a path P = (Yt, Kt, Ct)

∞
t=0 which satisfies it. We let P be such that the saving-

income ratio is a constant ŝ ≡ [(1 + g)(1 + n)− (1− δ)] /q ∈ (0, 1), i.e., Yt − Ct

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



156 CHAPTER 4. A GROWING ECONOMY

≡ St = ŝYt for all t = 0, 1, 2, . . . . Inserting this, together with Yt = f(k̃t)TtLt,
where f(k̃t) ≡ F̃ (k̃t, 1, 0) and k̃t ≡ Kt/(TtLt), into (4.2), rearranging gives the
Solow equation (4.3), which we may rewrite as

k̃t+1 − k̃t =
ŝf(k̃t)− [(1 + g)(1 + n)− (1− δ)] k̃t

(1 + g)(1 + n)
.

We see that k̃t is constant if and only if k̃t satisfies the equation f(k̃t)/k̃t =
[(1 + g)(1 + n)− (1− δ)] /ŝ ≡ q. By (**) and the definition of f, the required
value of k̃t is k̃, which is thus the steady state for the constructed Solow model.
Letting K0 satisfy K0 = k̃AL0, where A = T0, we thus have k̃0 = K0/(T0L0) = k̃.
So that the initial value of k̃t equals the steady-state value. It follows that k̃t = k̃
for all t = 0, 1, 2, . . . , and so Yt/Kt = f(k̃t)/k̃t = f(k̃)/k̃ = q for all t ≥ 0. In
addition, Ct = (1− ŝ)Yt, so that Ct/Yt is constant along the path P. As both Y/K
and C/Y are thus constant along the path P , by (ii) of Proposition 1 follows that
P is a balanced growth path. �

It is noteworthy that the proof of the suffi ciency part of the theorem is con-
structive. It provides a method for constructing a balanced growth path with a
given technology growth rate and a given output-capital ratio.

C. Homothetic utility functions

Generalities A set C in Rn is called a cone if x ∈ C and λ > 0 implies λx ∈ C.
A function f(x) = f(x1,. . . ,xn) is homothetic in the cone C if for all x,y ∈ C
and all λ > 0, f(x) = f(y) implies f(λx) = f(λy).

Consider the continuous utility function U(x1, x2), defined in R2
+. Suppose U

is homothetic and that the consumption bundles (x1, x2) and (y1, y2) are on the
same indifference curve, i.e., U(x1, x2) = U(y1, y2). Then for any λ > 0 we have
U(λx1, λx2) = U(λy1, λy2) so that the bundles (λx1, λx2) and (λy1, λy2) are also
on the same indifference curve.
For a continuous utility function U(x1, x2), defined in R2

+ and increasing in
each of its arguments (as is our life time utility function in the Diamond model),
one can show that U is homothetic if and only if U can be written U(x1, x2) ≡
F (f(x1, x2)) where the function f is homogeneous of degree one and F is an
increasing function. The “if”part is easily shown. Indeed, if U(x1, x2) = U(y1, y2),
then F (f(x1, x2)) = F (f(y1, y2)). Since F is increasing, this implies f(x1, x2)
= f(y1, y2). Because f is homogeneous of degree one, if λ > 0, then f(λx1, λx2)
= λf(x1, x2) and f(λy1, λy2) = λf(y1, y2) so that U(λx1, λx2) = F (f(λx1, λx2))
= F (f(λy1, λy2)) = U(λy1, λy2), which shows that U is homothetic. As to the
“only if”part, see Sydsaeter et al. (2002).
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Using differentiability of our homothetic time utility function U(x1, x2) ≡
F (f(x1, x2)), we find the marginal rate of substitution of good 2 for good 1 to be

MRS =
dx2

dx1 |U=Ū

=
∂U/∂x1

∂U/∂x2

=
F ′f1(x1, x2)

F ′f2(x1, x2)
=
f1(1, x2

x1
)

f2(1, x2

x1
)
. (4.39)

The last equality is due to Euler’s theorem saying that when f is homogeneous of
degree 1, then the first-order partial derivatives of f are homogeneous of degree
0. Now, (4.39) implies that for a given MRS, in optimum reflecting a given
relative price of the two goods, the same consumption ratio, x2/x1, will be chosen
whatever the budget. For a given relative price, a rising budget (rising wealth)
will change the position of the budget line, but not its slope. So MRS will not
change, which implies that the chosen pair (x1, x2) will move outward along a
given ray in R2

+. Indeed, as the intercepts with the axes rise proportionately with
the budget (the wealth), so will x1 and x2.

Proof that the utility function in (4.22) is homothetic In Section 4.2 we
claimed that (4.22) is a homothetic utility function. This can be proved in the
following way. There are two cases to consider. Case 1: θ > 0, θ 6= 1.We rewrite
(4.22) as

U(c1, c2) =
1

1− θ
[
(c1−θ

1 + βc1−θ
2 )1/(1−θ)]1−θ − 1 + β

1− θ ,

where β ≡ (1 + ρ)−1. The function x = g(c1, c2) ≡ (c1−θ
1 + βc1−θ

2 )1/(1−θ) is
homogeneous of degree one and the function G(x) ≡ (1/(1 − θ))x1−θ − (1 +
β)/(1− θ) is an increasing function, given θ > 0, θ 6= 1. Case 2: θ = 1. Here we
start from U(c1, c2) = ln c1 + β ln c2. This can be written

U(c1, c2) = (1 + β) ln
[
(c1c

β
2 )1/(1+β)

]
,

where x = g(c1, c2) = (c1c
β
2 )1/(1+β) is homogeneous of degree one and G(x) ≡

(1 + β) lnx is an increasing function. �

D. General formulas for the elasticity of factor substitution

We here prove (4.30) and (4.31). Given the neoclassical production function
F (K,L), the slope of the isoquant F (K,L) = Ȳ at the point (K̄, L̄) is

dK

dL |Y=Ȳ
= −MRS = −FL(K̄, L̄)

FK(K̄, L̄)
. (4.40)
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We consider this slope as a function of the value of k ≡ K/L as we move along
the isoquant. The derivative of this function is

−dMRS

dk |Y=Ȳ
= −dMRS

dL |Y=Ȳ

dL

dk |Y=Ȳ

= −(FL)2FKK − 2FKFLFKL + (FK)2FLL
F 3
K

dL

dk |Y=Ȳ
(4.41)

by (2.53) of Chapter 2. In view of L ≡ K/k we have

dL

dk |Y=Ȳ
=
k dK
dk |Y=Ȳ

−K

k2
=
k dK
dL |Y=Ȳ

dL
dk |Y=Ȳ

−K

k2
=
−kMRS dL

dk |Y=Ȳ
−K

k2
.

From this we find
dL

dk |Y=Ȳ
= − K

(k +MRS)k
,

to be substituted into (4.41). Finally, we substitute the inverse of (4.41) together
with (4.40) into the definition of the elasticity of factor substitution:

σ(K,L) ≡ MRS

k

dk

dMRS |Y=Ȳ

= −FL/FK
k

(k + FL/FK)k

K

F 3
K

[(FL)2FKK − 2FKFLFKL + (FK)2FLL]

= − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
,

which is the same as (4.30).
Under CRS, this reduces to

σ(K,L) = − FKFLF (K,L)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
(from (2.54) with h = 1)

= − FKFLF (K,L)

KLFKL [−(FL)2L/K − 2FKFL − (FK)2K/L]
(from (2.60))

=
FKFLF (K,L)

FKL(FLL+ FKK)2
=

FKFL
FKLF (K,L)

, (using (2.54) with h = 1)

which proves the first part of (4.31). The second part is an implication of rewriting
the formula in terms of the production in intensive form.
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E. Properties of the CES production function

The generalized CES production function is

Y = A
[
αKβ + (1− α)Lβ

] γ
β , (4.42)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0, γ > 0. If γ < 1, there is DRS, if γ = 1, CRS, and if γ > 1, IRS. The
elasticity of substitution is always σ = 1/(1 − β). Throughout below, k means
K/L.

The limiting functional forms We claimed in the text that, for fixed K > 0
and L > 0, (4.42) implies:

lim
β→0

Y = A(KαL1−α)γ = ALγkαγ, (*)

lim
β→−∞

Y = Amin(Kγ, Lγ) = ALγ min(kγ, 1). (**)

Proof. Let q ≡ Y/(ALγ). Then q = (αkβ + 1− α)γ/β so that

ln q =
γ ln(αkβ + 1− α)

β
≡ m(β)

β
, (4.43)

where

m′(β) =
γαkβ ln k

αkβ + 1− α =
γα ln k

α + (1− α)k−β
. (4.44)

Hence, by L’Hôpital’s rule for “0/0”,

lim
β→0

ln q = lim
β→0

m′(β)

1
= γα ln k = ln kγα,

so that limβ→0 q = kγα, which proves (*). As to (**), note that

lim
β→−∞

kβ = lim
β→−∞

1

k−β
→


0 for k > 1,
1 for k = 1,
∞ for k < 1.

Hence, by (4.43),

lim
β→−∞

ln q =

{
0 for k ≥ 1,

limβ→−∞
m′(β)

1
= γ ln k = ln kγ for k < 1,

where the result for k < 1 is based on L’Hôpital’s rule for “∞/-∞”. Consequently,

lim
β→−∞

q =

{
1 for k ≥ 1,
kγ for k < 1,

which proves (**). �
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Properties of the isoquants of the CES function The absolute value of
the slope of an isoquant for (4.42) in the (L,K) plane is

MRSKL =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β →
{

0 for k → 0,
∞ for k →∞. (*)

This holds whether β < 0 or 0 < β < 1.
Concerning the asymptotes and terminal points, if any, of the isoquant Y = Ȳ

we have from (4.42) Ȳ β/γ = A
[
αKβ + (1− α)Lβ

]
. Hence,

K =

(
Ȳ

β
γ

Aα
− 1− α

α
Lβ

) 1
β

,

L =

(
Ȳ

β
γ

A(1− α)
− α

1− αK
β

) 1
β

.

From these two equations follows, when β < 0 (i.e., 0 < σ < 1), that

K → (Aα)−
1
β Ȳ

1
γ for L→∞,

L → [A(1− α)]−
1
β Ȳ

1
γ for K →∞.

When instead β > 0 (i.e., σ > 1), the same limiting formulas obtain for L → 0
and K → 0, respectively.

Properties of the CES function on intensive form Given γ = 1, i.e., CRS,
we have y ≡ Y/L = A(αkβ + 1− α)1/β from (4.42). Then

dy

dk
= A

1

β
(αkβ + 1− α)

1
β
−1αβkβ−1 = Aα

[
α + (1− α)k−β

] 1−β
β .

Hence, when β < 0 (i.e., 0 < σ < 1),

y =
A

(akβ + 1− α)−1/β
→
{

0 for k → 0,
A(1− α)1/β for k →∞.

dy

dk
=

Aα

[α + (1− α)k−β](β−1)/β
→
{
Aα1/β for k → 0,

0 for k →∞.

If instead β > 0 (i.e., σ > 1),

y →
{
A(1− α)1/β for k → 0,
∞ for k →∞.

dy

dk
→

{
∞ for k → 0,

Aα1/β for k →∞.

The output-capital ratio is y/k = A
[
α + (1− α)k−β

] 1
β and has the same limiting

values as dy/dk, when β > 0.
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Continuity at the boundary of R2
+ When 0 < β < 1, the right-hand side of

(4.42) is defined and continuous also on the boundary of R2
+. Indeed, we get

Y = F (K,L) = A
[
αKβ + (1− α)Lβ

] γ
β →

{
Aα

γ
βKγ for L→ 0,

A(1− α)
γ
βLγ for K → 0.

When β < 0, however, the right-hand side is not defined on the boundary. We
circumvent this problem by redefining the CES function in the following way
when β < 0:

Y = F (K,L) =

{
A
[
αKβ + (1− α)Lβ

] γ
β when K > 0 and L > 0,

0 when either K or L equals 0.
(4.45)

We now show that continuity holds in the extended domain. When K > 0 and
L > 0, we have

Y
β
γ = A

β
γ
[
αKβ + (1− α)Lβ

]
≡ A

β
γG(K,L). (4.46)

Let β < 0 and (K,L) → (0, 0). Then, G(K,L) → ∞, and so Y β/γ → ∞. Since
β/γ < 0, this implies Y → 0 = F (0, 0), where the equality follows from the
definition in (4.45). Next, consider a fixed L > 0 and rewrite (4.46) as

Y
1
γ = A

1
γ
[
αKβ + (1− α)Lβ

] 1
β = A

1
γL(αkβ + 1− α)

1
β

=
A

1
γL

(akβ + 1− α)−1/β
→ 0 for k → 0,

when β < 0. Since 1/γ > 0, this implies Y → 0 = F (0, L), from (4.45). Finally,
consider a fixed K > 0 and let L/K → 0. Then, by an analogue argument we get
Y → 0 = F (K, 0), (4.45). So continuity is maintained in the extended domain.

4.9 Exercises

4.1 (the aggregate saving rate in steady state)

a) In a well-behaved Diamond OLG model let n be the rate of population
growth and k∗ the steady state capital-labor ratio (until further notice, we
ignore technological progress). Derive a formula for the long-run aggregate
net saving rate, SN/Y, in terms of n and k∗. Hint: use that for a closed
economy SN = Kt+1 −Kt.
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b) In the Solow growth model without technological change a similar relation
holds, but with a different interpretation of the causality. Explain.

c) Compare your result in a) with the formula for SN/Y in steady state one
gets in any model with the same CRS-production function and no techno-
logical change. Comment.

d) Assume that n = 0. What does the formula from a) tell you about the level
of net aggregate savings in this case? Give the intuition behind the result in
terms of the aggregate saving by any generation in two consecutive periods.
One might think that people’s rate of impatience (in Diamond’s model the
rate of time preference ρ) affect SN/Y in steady state. Does it in this case?
Why or why not?

e) Suppose there is Harrod-neutral technological progress at the constant rate
g > 0. Derive a formula for the aggregate net saving rate in the long run in
a well-behaved Diamond model in this case.

f) Answer d) with “from a)”replaced by “from e)”. Comment.

g) Consider the statement: “In Diamond’s OLG model any generation saves
as much when young as it dissaves when old.”True or false? Why?

4.2 (increasing returns to scale and balanced growth)
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Chapter 6

Long-run aspects of fiscal policy
and public debt

We consider an economy with a government providing public goods and services.
It finances its spending by taxation and borrowing. The term fiscal policy refers
to the government’s decisions about spending and the financing of this spending,
be it by taxes or debt issue. The government’s choice concerning the level and
composition of its spending and how to finance it, may aim at:

1 affecting resource allocation (provide public goods that would otherwise not
be supplied in a suffi cient amount, correct externalities and other markets
failures, prevent monopoly ineffi ciencies, provide social insurance);

2 affecting income distribution, be it a) within generations or b) between
generations;

3 contribute to macroeconomic stabilization (dampening of business cycle
fluctuations through aggregate demand policies).

The design of fiscal policy with regard to the aims 1 and 2 at a disaggregate
level is a major theme within the field of public economics. Macroeconomics
studies ways of dealing with aim 3 as well as big-picture aspects of 1 and 2, like
overall policies to maintain and promote sustainable prosperity.
In this chapter we address fiscal sustainability and long-run implications of

debt finance. This relates to one of the conditions that constrain public financing
instruments. To see the issue of fiscal sustainability in a broader context, Section
6.1 provides an overview of conditions and factors that constrain public financ-
ing instruments. Section 6.2 introduces the basics of government budgeting and
Section 6.3 defines the concepts of government solvency and fiscal sustainability.
In Section 6.4 the analytics of debt dynamics is presented. As an example, the
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AND PUBLIC DEBT

Stability and Growth Pact of the EMU (the Economic and Monetary Union of
the European Union) is discussed. Section 6.5 looks more closely at the link be-
tween government solvency and the government’s No-Ponzi-Game condition and
intertemporal budget constraint. In Section 6.6 we widen public sector accounting
by introducing separate operating and capital budgets so as to allow for proper
accounting of public investment. A theoretical claim, known as the Ricardian
equivalence proposition, is studied in Section 6.7. The question “is Ricardian
equivalence likely to be a good approximation to reality?”is addressed, applying
the Diamond OLG framework extended with a public sector.

6.1 An overview of government spending and
financing issues

Before entering the more specialized sections, it is useful to have a general idea
about circumstances that condition public spending and financing. These cir-
cumstances include:

(i) financing by debt issue is constrained by the need to remain solvent and
avoid catastrophic debt dynamics;

(ii) financing by taxes is limited by problems arising from:

(a) distortionary supply-side effects of many kinds of taxes;

(b) tax evasion (cf. the rise of the shadow economy, tax havens used by
multinationals, etc.).

(iii) time lags in spending as well as taxing may interfere with attempts to
stabilize the economy (recognition lag, decision lag, implementation lag,
and effect lag);

(iv) credibility problems due to time-inconsistency;

(v) conditions imposed by political processes, bureaucratic self-interest, lobby-
ing, and rent seeking.

Point (i) is the main focus of sections 6.2-6.6. Point (ii) is briefly considered
in Section 6.4.1 in connection with the so-called Laffer curve. In Section 6.6 point
(iii) is briefly commented on. The remaining points, (iv) - (v), are not addressed
specifically in this chapter. They should always be kept in mind, however, when
discussing fiscal policy. Hence some remarks at the end of the chapter.
Now to the specifics of government budget accounting and debt financing.
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6.2 The government budget

We generally perceive the public sector (or the nation state) as consisting of the
national government and a central bank. In economics the term “government”
does not generally refer to the particular administration in offi ce at a point in
time. The term is rather used in a broad sense, encompassing both legislation
and administration. The aspects of legislation and administration in focus in
macroeconomics are the rules and decisions concerning spending on public con-
sumption, public investment, transfers, and subsidies on the expenditure side and
on levying taxes and incurring debts on the financing side. Within certain limits
the government has usually delegated the management of the nation’s currency
to the central bank, also called the monetary authority. Our accounting treats
“government budgeting” as covering the public sector as a whole, that is, the
consolidated government (including local government) and central bank. Gov-
ernment bonds held by the central bank are thus excluded from what we call
“government debt”. So the terms government debt, public debt, and state debt
are used synonymously.

The basics of government budget accounting cannot be described without
including money, nominal prices, and inflation. Elementary aspects of money and
inflation will therefore be included in this section. We shall not, however, consider
money and inflation in any systematic way until later chapters. Whether the
economy considered is a closed or open economy will generally not be important
in this chapter.

Table 6.1 lists key variables of government budgeting.

Table 6.1. List of main variable symbols
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Symbol Meaning
Yt real GDP (= real GNP if the economy is closed)
Cg
t public consumption

Igt public fixed capital investment
Gt ≡ Cg

t + Igt real public spending on goods and services
Xt real transfer payments
T̃t real gross tax revenue
Tt ≡ T̃t −Xt real net tax revenue
Mt the monetary base (currency and bank reserves in the central bank)
Pt price level (in money) for goods and services (the GDP deflator)
Dt nominal net public debt
Bt ≡ Dt

Pt−1
real net public debt

bt ≡ Bt
Yt

government debt-to-income ratio
it nominal short-term interest rate
∆xt = xt − xt−1 (where x is some arbitrary variable)
πt ≡ ∆Pt

Pt−1
≡ Pt−Pt−1

Pt−1
inflation rate

1 + rt ≡ Pt−1(1+it)
Pt

≡ 1+it
1+πt

real short-term interest rate

Note that Yt, Gt, and Tt are quantities defined per period, or more generally,
per time unit, and are thus flow variables. On the other hand, Mt, Dt, and Bt

are stock variables, that is, quantities defined at a given point in time, here at
the beginning of period t. We measure Dt and Bt net of financial claims held
by the government. Almost all countries have positive government net debt, but
in principle Dt < 0 is possible.1 The monetary base, Mt, is currency plus fully
liquid deposits in the central bank held by the private sector at the beginning of
period t; Mt is by definition nonnegative.
We shall in this chapter most of the time ignore uncertainty and risk of default.

Then the nominal interest rate on government bonds must be the same as that on
other interest-bearing assets in the economy. For ease of exposition we imagine
that all government bonds are one-period bonds. That is, each government bond
promises a payout equal to one unit of account at the end of the period and
then the bond expires. Given the interest rate, it, the market value of a bond at
the start of period t is vt = 1/(1 + it). If the number of outstanding bonds (the
quantity of bonds) in period t is qt, the government debt has face value (value at
maturity) equal to qt. The market value at the start of period t of this quantity
of bonds will be Dt = qt/(1 + it). The nominal expenditure to be made at the

1If Dt < 0, the government has positive net financial claims on the private sector and earns
interest on these claims − which is then an additional source of government revenue besides
taxation.
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end of the period to redeem the outstanding debt can then be written

qt = Dt(1 + it). (6.1)

This is the usual way of writing the expenditure to be made, namely as if the
government debt were like a given bank loan of size Dt with a variable rate of
interest. We should not forget, however, that given the quantity, qt, of the bonds,
the value, Dt, of the government debt at the issue date depends negatively on it.
Anyway, the total nominal government expenditure in period t can be written

Pt(Gt +Xt) +Dt(1 + it).

It is common to refer to this expression as expenditure “in period t”. Yet, in a
discrete time model (with a period length of a year or a quarter corresponding
to typical macroeconomic data) one has to imagine that the payment for goods
and services delivered in the period occurs either at the beginning or the end of
the period. We follow the latter interpretation and so the nominal price level Pt
for period-t goods and services refers to payment occurring at the end of period
t. As an implication, the real value, Bt, of government debt at the beginning of
period t (= end of period t− 1) is Dt/Pt−1. This may look a little awkward but
is nevertheless meaningful. Indeed, Dt is a stock of liabilities at the beginning
of period t while Pt−1 is a price referring to a flow paid for at the end of period
t − 1 which is essentially the same point in time as the beginning of period t.
Anyway, whatever timing convention is chosen, some kind of awkwardness will
always arise in discrete time analysis. This is because the discrete time approach
artificially treats the continuous flow of time as a sequence of discrete points in
time.2

The government expenditure is financed by a combination of taxes, bonds
issue, and increase in the monetary base:

PtT̃t +Dt+1 + ∆Mt+1 = Pt(Gt +Xt) +Dt(1 + it). (6.2)

By rearranging we have

∆Dt+1 + ∆Mt+1 = Pt(Gt +Xt − T̃t) + itDt. (6.3)

In standard government budget accounting the nominal government budget
deficit, GBD, is defined as the excess of total government spending over govern-
ment revenue, PT̃ . That is, according to this definition the right-hand side of
(6.3) is the nominal budget deficit in period t, GBDt. The first term on the right-
hand side, Pt(Gt + Xt − T̃t), is named the primary budget deficit (non-interest

2In a theoretical model this kind of problems is avoided when government budgeting is
formulated in continuous time, cf. Chapter 13.
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spending less taxes). The second term, itDt, is called the debt service. Simi-
larly, Pt(T̃t −Xt −Gt) is called the primary budget surplus. A negative value of
a “deficit” thus amounts to a positive value of a corresponding “surplus”, and
a negative value of a “surplus” amounts to a positive value of a corresponding
“deficit”.
We immediately see that this accounting deviates from “normal”principles.

Business companies typically have sharply separated capital and operating bud-
gets. In contrast, the budget deficit defined above treats that part of G which
represents government net investment as parallel to government consumption.
Government net investment is attributed as an expense in a single year’s ac-
count; according to “normal”principles it is only the depreciation on the public
capital that should figure as an expense. Likewise, the above accounting does
not consider that a part of D (or perhaps more than D) may be backed by the
value of public physical capital. And if the government sells a physical asset to
the private sector, the sale will appear as a reduction of the government budget
deficit while in reality it is merely a conversion of an asset from a physical form
to a financial form. So the cost and asset aspects of government net investment
are not properly dealt with in the standard public accounting.3

With the exception of Section 6.6 we will nevertheless stick to the traditional
vocabulary. Where this might create logical diffi culties, it helps to imagine that:

(a) all of G is public consumption, i.e., Gt = Cg
t for all t;

(b) there is no public physical capital.

Now, from (6.2) and the definition Tt ≡ T̃t−Xt (net tax revenue) follows that
real government debt at the beginning of period t+ 1 is:

Bt+1 ≡
Dt+1

Pt
= Gt +Xt − T̃t + (1 + it)

Dt

Pt
− ∆Mt+1

Pt

= Gt − Tt + (1 + it)
Dt/Pt−1

Pt/Pt−1

− ∆Mt+1

Pt
= Gt − Tt +

1 + it
1 + πt

Bt −
∆Mt+1

Pt

≡ (1 + rt)Bt +Gt − Tt −
∆Mt+1

Pt
. (6.4)

We see from the second line that, everything else equal, inflation curtails the real
value of the debt and interest payments. Hence, sometimes not only the actual
nominal budget deficit is recorded but also a measure where πtDt is subtracted.

3Another anomaly is related to the fact that some countries, for instance Denmark, have
large implicit government assets due to deferred taxes on the part of personal income invested
in pension funds. If the government then decides to reverse the deferred taxation (as the Danish
government did 2012 and 2014 to comply better with the 3%-deficit rule of the Stability and
Growth Pact of the EMU), the offi cial budget deficit is reduced, but essentially it is just a
matter of replacing one government asset by another.
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The last term, ∆Mt+1/Pt, in (6.4) is seigniorage, i.e., public sector revenue
obtained by issuing base money (ignoring the diminutive cost of printing money).
To get a sense of this variable, suppose real output grows at the constant rate gY
so that Yt+1 = (1 + gY )Yt. Then the public debt-to-income ratio can be written

bt+1 ≡
Bt+1

Yt+1

=
1 + rt
1 + gY

bt +
Gt − Tt

(1 + gY )Yt
− ∆Mt+1

Pt(1 + gY )Yt
. (6.5)

Apart from the growth-correcting factor, (1+gY )−1, the last term is the seigniorage-
income ratio,

∆Mt+1

PtYt
=

∆Mt+1

Mt

Mt

PtYt
.

If in the long run the base money growth rate, ∆Mt+1/Mt, as well as the nominal
interest rate (i.e., the opportunity cost of holding money) are constant, then the
velocity of money and its inverse, the money-nominal income ratio, Mt/(PtYt),
are also likely to be roughly constant. So is, therefore, the seigniorage-income
ratio.4 For the more developed countries this ratio tends to be a fairly small
number although not immaterial. For emerging economies with poor institutions
for collecting taxes seigniorage matters more.5

The U.S. has a single monetary authority, the central bank, and a single
fiscal authority, the treasury. The seigniorage created is immediately transferred
from the first to the latter. The Eurozone has a single monetary authority but
multiple fiscal authorities, namely the treasuries of the member countries. The
seigniorage created by the ECB is every year shared by the national central banks
of the Eurozone countries in proportion to their equity share in the ECB. And
the national central banks then transfer their share to the national treasuries.
This makes up a ∆Mt+1 term for the consolidated public sector of the individual
Eurozone countries.
In monetary unions and countries with their own currency, government budget

deficits are thus generally financed both by debt creation and money creation, as
envisioned in the above equations. Nonetheless, from now on, for simplicity, in
this chapter we will predominantly ignore the seigniorage term in (6.5) and only
occasionally refer to the modifications implied by taking it into account.

4A reasonable money demand function is Md
t = PtYte

−αi, α > 0, where i is the nominal
interest rate. With clearing in the money market, we thus have Mt/(PtYt) = e−αi. In view of
1 + i ≡ (1 + r)(1 + π), when r and π are constant, so is i and, thereby, Mt/(PtYt).

5In the U.S. over the period 1909-1950s seigniorage fluctuated a lot and peaked 4 % of GDP
in the 1930s and 3 % of GDP at the end of WW II. But over the period from the late 1960s
to 1986 seigniorage fluctuated less around an average close to 0.5 %.of GDP (Walsh, 2003, p.
177). In Denmark seigniorage was around 0.2 % of GDP during the 1990s (Kvartalsoversigt 4.
kvartal 2000, Danmarks Nationalbank). In Bolivia, up to the event of hyperinflation 1984-85,
seigniorage reached 5 % of GDP and more than 50 % of government revenue (Sachs and Larrain,
1993).
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We thus proceed with the simple government accounting equation:

Bt+1 −Bt = rtBt +Gt − Tt, (DGBC)

where the right-hand side is the real budget deficit. This equation is in macro-
economics often called the dynamic government budget constraint (or DGBC for
short). It is in fact just an accounting identity conditional on ∆M = 0. It says
that if the real budget deficit is positive and there is essentially no financing
by money creation, then the real public debt grows. We come closer to a con-
straint when combining (DGBC) with the requirement that the government stays
solvent.

6.3 Government solvency and fiscal sustainabil-
ity

To be solvent means being able to meet the financial commitments as they fall
due. In practice this concept is closely related to the government’s No-Ponzi-
Game condition and intertemporal budget constraint (to which we return in Sec-
tion 6.5), but at the theoretical level it is more fundamental.
We may view the public sector as an infinitely-lived agent in the sense that

there is no last date where all public debt has to be repaid. Nevertheless, as we
shall see, there tends to be stringent constraints on government debt creation in
the long run.

6.3.1 The critical role of the growth-corrected interest
factor

Very much depends on whether the real interest rate in the long-run is higher
than the growth rate of GDP or not.
To see this, suppose the country considered has positive government debt at

time 0 and that the government levies taxes equal to its non-interest spending:

T̃t = Gt +Xt or Tt ≡ T̃t −Xt = Gt for all t ≥ 0. (6.6)

So taxes cover only the primary expenses while interest payments (and debt
repayments when necessary) are financed by issuing new debt. That is, the
government attempts a permanent roll-over of the debt including the interest
due for payment. In view of (DGBC), this implies that Bt+1 = (1 + rt)Bt, saying
that the debt grows at the rate rt. Assuming, for simplicity, that rt = r (a
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constant), the law of motion for the public debt-to-income ratio is

bt+1 ≡
Bt+1

Yt+1

=
1 + r

1 + gY

Bt

Yt
≡ 1 + r

1 + gY
bt, b0 > 0,

where we have maintained the assumption of a constant output growth rate, gY .
The solution to this linear difference equation then becomes

bt = b0(
1 + r

1 + gY
)t,

where we consider both r and gY as exogenous. We see that the growth-corrected
interest rate, 1+r

1+gY
− 1 ≈ r − gY (for gY and r “small”) plays a key role. There

are contrasting cases to discuss.
Case 1: r > gY . In this case, bt →∞ for t→∞. Owing to compound interest,

the debt grows so large in the long run that the government will be unable to find
buyers for all the debt. Permanent debt roll-over is thus not feasible. Imagine for
example an economy described by the Diamond OLG model. Here the buyers of
the debt are the young who place part of their saving in government bonds. But
if the stock of these bonds grows at a higher rate than income, the saving of the
young cannot in the long run keep track with the fast-growing government debt.
In this situation the private sector will understand that bankruptcy is threatening
and nobody will buy government bonds except at a low price, which means a high
interest rate. The high interest rate only aggravates the problem. That is, the
fiscal policy (6.6) breaks down. Either the government defaults on the debt or T
must be increased or G decreased (or both) until the growth rate of the debt is
no longer higher than gY .
If the debt is denominated in the country’s own currency, an alternative way

out is of course a shift to money financing of the budget deficit, that is, seignior-
age. When capacity utilization is high, this leads to rising inflation and thus
the real value of the debt is eroded. Bond holders will then demand a higher
nominal interest rate, thus aggravating the fiscal diffi culties. The economic and
social chaos of hyperinflation threatens.6 The hyperinflation in Germany 1922-23
peaked in Nov. 1923 at 29,525% per month; it eroded the real value of the huge
government debt of Germany after WW I by 95 percent.
Case 2: r = gY . If r = gY , we get bt = b0 for all t ≥ 0. Since the debt, increas-

ing at the rate r, does not increase faster than national income, the government
has no problem finding buyers of its newly issued bonds − the government stays

6In economists’ standard terminology “hyperinflation” is present when the inflation rate
exceeds 50 percent per month. As we shall see in Chapter 18, the monetary financing route comes
to a dead end if the needed seigniorage reaches the backward-bending part of the “seigniorage
Laffer curve”.
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Figure 6.1: Real short-term interest rate and annual growth rate of real GDP in Den-
mark and the US since 1875. The real short-term interest rate is calculated as the
money market rate minus the contemporaneous rate of consumer price inflation. Source:
Abildgren (2005) and Maddison (2003).
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solvent. Thereby the government is able to finance its interest payments simply
by issuing new debt. The growing debt is passed on to ever new generations with
higher income and saving and the debt roll-over implied by (6.6) can continue
forever.
Case 3: r < gY . Here we get bt → 0 for t → ∞, and the same conclusion

holds a fortiori.
In Case 2 as well as Case 3, where the interest rate is not higher than the

growth rate of the economy, the government can thus pursue a permanent debt
roll-over policy as implied by (6.6) and still remain solvent. But in Case 1,
permanent debt roll-over is impossible and sooner or later the interest payments
must be tax financed.
Which of the cases is relevant in real life? Fig. 6.1 shows for Denmark (upper

panel) and the US (lower panel) the time paths of the real short-term interest
rate and the GDP growth rate, both on an annual basis. Overall, the levels of
the two are more or less the same, although on average the interest rate is in
Denmark slightly higher but in the US somewhat lower than the growth rate.
(Note that the interest rates referred to are not the average rate of return in the
economy but a proxy for the lower interest rate on government bonds.)
Nevertheless, many macroeconomists believe there is good reason for paying

attention to the case r > gY , also for a country like the US. This is because we live
in a world of uncertainty, with many different interest rates, and imperfect credit
markets, aspects the above line of reasoning has not incorporated. The prudent
debt policy needed whenever, under certainty, r > gY can be shown to apply
to a larger range of circumstances when uncertainty is present (see Literature
notes). To give a flavor we may say that a prudent debt policy is needed when
the average interest rate on the public debt exceeds gY − ε for some “small”but
positive ε.7 On the other hand there is a different feature which draws the matter
in the opposite direction. This is the possibility that a tax, τ ∈ (0, 1), on interest
income is in force so that the net interest rate on the government debt is (1− τ)r
rather than r.

6.3.2 Sustainable fiscal policy

The concept of sustainable fiscal policy is closely related to the concept of gov-
ernment solvency. As already noted, to be solvent means being able to meet the
financial commitments as they fall due. A given fiscal policy is called sustainable
if by applying its spending and tax rules forever, the government stays solvent.
“Sustainable”conveys the intuitive meaning. The issue is: can the current tax
and spending rules continue forever?

7This is only a “rough”characterization, see, e.g., Blanchard and Weil (2001).
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To be more specific, suppose Gt and Tt are determined by fiscal policy rules
represented by the functions

Gt = G(x1t, ..., xnt, t), and Tt = T (x1t, ..., xnt, t),

where t = 0, 1, 2, . . . , and x1t,..., xnt are key macroeconomic and demographic
variables (like national income, old-age dependency ratio, rate of unemployment,
extraction of natural resources, say oil from the North Sea, etc.). In this way a
given fiscal policy is characterized by the rules G(·) and T (·). Suppose further
that we have an economic model,M, of how the economy functions.

DEFINITION Let the current period be period 0 and let the public debt at
the beginning of period 0 be given. Then, given a forecast of the evolution
of the demographic and foreign economic environment in the future and given
the economic model M, the fiscal policy (G(·), T (·)) is said to be sustainable
relative to this model if the forecast calculated on the basis of M is that the
government stays solvent under this policy. The fiscal policy (G(·), T (·)) is called
unsustainable, if it is not sustainable.

This definition of fiscal sustainability is silent about the presence of uncer-
tainty. Without going into detail about this diffi cult issue, suppose the model
M is stochastic and let ε be a “small”positive number. Then we may say that
the fiscal policy (G(·), T (·)) with 100-ε percent probability is sustainable relative
to the modelM if the forecast calculated on the basis ofM is that with 100-ε
percent probability the government stays solvent under this policy.
Governments, rating agencies, and other institutions evaluate sustainability

of fiscal policy on the basis of simulations of giant macroeconometric models.
Essentially, the operational criterion for sustainability is whether the fiscal policy
can be deemed compatible with upward boundedness of the public debt-to-income
ratio. Normally, the income measure applied here is GDP. Other measures are
conceivable such as GNP, taxable income, or after-tax income. Moreover, even
if a debt spiral is not (yet) underway in a given country, a high level of the
debt-income ratio may in itself be worrisome. This is because a high level of
debt under certain conditions may trigger a spiral of self-fulfilling expectations of
default. We come back to this in the section to follow.
Owing to the increasing pressure on public finances caused by factors such

as reduced birth rates, increased life expectancy, and a fast-growing demand for
medical care, many industrialized countries have for a long time been assessed
to be in a situation where their fiscal policy is not sustainable (Elmendorf and
Mankiw 1999). The implication is that sooner or later one or more expenditure
rules and/or tax rules (in a broad sense) will probably have to be changed.
Two major kinds of strategies have been suggested. One kind of strategy is

the pre-funding strategy. The idea is to prevent sharp future tax increases by
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ensuring a fiscal consolidation prior to the expected future demographic changes.
Another strategy (alternative or complementary to the former) is to attempt a
gradual increase in the labor force by letting the age limits for retirement and
pension increase along with expected lifetime − this is the indexed retirement
strategy. The first strategy implies that current generations bear a large part
of the adjustment cost. In the second strategy the costs are shared by current
and future generations in a way more similar to the way the benefits in the
form of increasing life expectancy are shared. We shall not go into detail about
these matters here, but refer the reader to a large literature about securing fiscal
sustainability in the ageing society, see Literature notes.

6.4 Debt arithmetic

A key tool for evaluating fiscal sustainability is debt arithmetic, i.e., the ana-
lytics of debt dynamics. The previous section described the important role of
the growth-corrected interest rate. The next subsection considers the minimum
primary budget surplus required for fiscal sustainability in different situations.

6.4.1 The required primary budget surplus

Ignoring the seigniorage term∆Mt+1/Pt in the dynamic government budget iden-
tity (6.4), we have:

Bt+1 = (1 + r)Bt − (Tt −Gt), (DGBC)

where Tt − Gt is the primary surplus in real terms. Suppose aggregate income,
Yt, grows at a given constant rate rate, gY . Let the spending-to-income ratio,
Gt/Yt, and the (net) tax revenue-to-income ratio, Tt/Yt, be constants, γ and τ ,
respectively. We assume that interest income on government bonds is not taxed.
It follows that the public debt-to-income ratio bt ≡ Bt/Yt (from now just denoted
debt-income ratio) changes over time according to

bt+1 ≡
Bt+1

Yt+1

=
1 + r

1 + gY
bt −

τ − γ
1 + gY

, (6.7)

where we have assumed a constant interest rate, r. There are (again) three cases
to consider.
Case 1: r > gY . As emphasized above this case is generally considered the one

of most practical relevance. And it is in this case that latent debt instability is
present and the government has to pay attention to the danger of runaway debt
dynamics. To see this, note that the solution of the linear difference equation
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(6.7) is

bt = (b0 − b∗)
(

1 + r

1 + gY

)t
+ b∗, where (6.8)

b∗ = − τ − γ
1 + gY

(
1− 1 + r

1 + gY

)−1

=
τ − γ
r − gY

≡ s

r − gY
, (6.9)

where s is the primary surplus as a share of GDP. Here b0 is historically given. But
the steady-state debt-income ratio, b∗, depends on fiscal policy. The important
feature is that the growth-corrected interest factor is in this case higher than 1
and has the exponent t. Therefore, if fiscal policy is such that b∗ < b0, the debt-
income ratio exhibits geometric growth. The solid curve in the topmost panel in
Fig. 6.2 shows a case where fiscal policy is such that τ−γ < (r−gY )b0 whereby we
get b∗ < b0 when r > gY , so that the debt-income ratio, bt, grows without bound.
This reflects that with r > gY , compound interest is stronger than compound
growth. The sequence of discrete points implied by our discrete-time model is in
the figure smoothed out as a continuous curve.
The American economist and Nobel Prize laureate George Akerlof (2004, p.

6) came up with this analogy:

“It takes some time after running off the cliff before you begin to fall.
But the law of gravity works, and that fall is a certainty”.

Somewhat surprisingly, perhaps, when r > gY , there can be debt explosion in
the long run even if τ > γ, namely if 0 < τ − γ < (r− gY )b0. Debt explosion can
also arise if b0 < 0, namely if τ − γ < (r − gY )b0 < 0.
The only way to avoid the snowball effects of compound interest when the

growth-corrected interest rate is positive is to ensure a primary budget surplus as
a share of GDP, τ − γ, high enough such that b∗ ≥ b0. So the minimum primary
surplus as a share of GDP, ŝ, required for fiscal sustainability is the one implying
b∗ = b0, i.e., by (6.9),

ŝ = (r − gY )b0. (6.10)

If by adjusting τ and/or γ, the government obtains τ − γ = ŝ, then b∗ = b0

whereby bt = b0 for all t ≥ 0 according to (6.8), cf. the second from the top panel
in Fig. 6.2. The difference between ŝ and the actual primary surplus as a share
of GDP is named the primary surplus gap or the sustainability gap.
Note that ŝ will be larger:

- the higher is the initial level of debt, b0; and,
- when b0 > 0, the higher is the growth-corrected interest rate, r − gY .
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Figure 6.2: Evolution of the debt-income ratio, depending on the sign of b0− b∗, in the
cases r > gY (the three upper panels) and r < gY (the two lower panels), respectively.
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Delaying the adjustment increases the size of the needed policy action, since
the debt-income ratio, and thereby ŝ, will become higher in the meantime.
For fixed spending-income ratio γ, the minimum tax-to-income ratio needed

for fiscal sustainability is
τ̂ = γ + (r − gY )b0. (6.11)

Given b0 and γ, this tax-to-income ratio is sometimes called the sustainable tax
rate. The difference between this rate and the actual tax rate, τ , indicates the
size of the needed tax adjustment, were it to take place at time 0, assuming a
given γ.
Suppose that the debt build-up can be − and is − prevented already at time

0 by ensuring that the primary surplus as a share of income, τ−γ, at least equals
ŝ so that b∗ ≥ b0. The solid curve in the midmost panel in Fig. 6.2 illustrates the
resulting evolution of the debt-income ratio if b∗ is at the level corresponding to
the hatched horizontal line while b0 is unchanged compared with the top panel.
Presumably, the government would in such a state of affairs relax its fiscal policy
after a while in order not to accumulate large government financial net wealth.
Yet, the pre-funding strategy vis-a-vis the fiscal challenge of population ageing
(referred to above) is in fact based on accumulating some positive public financial
net wealth as a buffer before the substantial effects of population ageing set in. In
this context, the higher the growth-corrected interest rate, the shorter the time
needed to reach a given positive net wealth position.
Case 2: r = gY . In this knife-edge case there is still a danger of runaway dy-

namics, but of a less explosive form. The formula (6.8) is no longer valid. Instead
the solution of (6.7) is bt = b0 + [(γ − τ)/(1 + gY )] t = b0 − [(τ − γ)/(1 + gY )] t.
Here, a non-negative primary surplus is both necessary and suffi cient to avoid
bt →∞ for t→∞.
Case 3: r < gY . This is the case of stable debt dynamics. The formula (6.8)

is again valid, but now implying that the debt-income ratio is non-explosive.
Indeed, bt → b∗ for t → ∞, whatever the level of the initial debt-income ratio
and whatever the sign of the budget surplus. Moreover, when r < gY ,

b∗ =
τ − γ
r − gY

S 0 for τ − γ T 0. (*)

So, if there is a forever positive primary surplus, the result is a negative long-run
debt, i.e., a positive government financial net wealth in the long run. And if there
is a forever negative primary surplus, the result is not debt explosion but just
convergence toward some positive long-run debt-income ratio. The second from
bottom panel in Fig. 6.2 illustrates this case for a situation where b0 > b∗ and
b∗ > 0, i.e., τ − γ < 0, by (*). When the GDP growth rate continues to exceed
the interest rate on government debt, a large debt-income ratio can be brought
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down quite fast, as witnessed by the evolution of both UK and US government
debt in the first three decades after the second world war. Indeed, if the growth-
corrected interest rate remains negative, permanent debt roll-over can handle the
financing, and taxes need never be levied.8

Finally, the bottom panel in Fig. 6.2 shows the case where, with a large
primary deficit (τ − γ < 0 but large in absolute value), excess of output growth
over the interest rate still implies convergence towards a constant debt-income
ratio, albeit a high one.
In this discussion we have treated r as exogenous. But r may to some extent

be dependent on prolonged budget deficits. Indeed, in Chapter 13 we shall see
that with prolonged budget deficits, r tends to become higher than otherwise.
Everything else equal, this reduces the likelihood of Case 2 and Case 3.

Laffer curve*

We return to Case 1 because we have ignored supply-side effects of taxation, and
such effects could be important in Case 1.
A Laffer curve (so named after the American economist Arthur Laffer, 1940-)

refers to a hump-shaped relationship between the income tax rate and the tax
revenue. For simplicity, suppose the tax revenue equals taxable income times
a given average tax rate. A 0% tax rate and most likely also a 100% tax rate
generate no tax revenue. As the tax rate increases from a low initial level, a rising
tax revenue is obtained. But after a certain point some people may begin to work
less (in the legal economy), stop reporting all their income, and stop investing.
So it is reasonable to think of a tax rate above which the tax revenue begins to
decline.
While Laffer was wrong about where USA was “on the curve” (see, e.g.,

Fullerton 2008), and while, strictly speaking, there is no such thing as the Laffer
curve and the tax rate,9 Laffer’s intuition is hardly controversial. Ignoring, for
simplicity, transfers, we therefore now assume that for a given tax system there
is a gross tax-income ratio, τL, above which the tax revenue declines. Then, if
the presumed sustainable tax-income ratio, τ̂ , in (6.11) exceeds τL, it can not be
realized.
To see what the value of τL could be, suppose aggregate taxable income before

8On the other hand, we should not forget that this analysis presupposes absence of uncer-
tainty. As touched on in Section 6.3.1, in the presence of uncertainty and therefore existence of
many interest rates, the issue becomes more complicated.

9A lot of contingencies are involved: income taxes are typically progressive (i.e., average tax
rates rise with income); it matters whether a part of tax revenue is spent to reduce tax evasion,
etc.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



220
CHAPTER 6. LONG-RUN ASPECTS OF FISCAL POLICY

AND PUBLIC DEBT

tax is a function, f, of the net-of-tax share 1− τ . Then tax revenue is

R(τ) = τ · f(1− τ),

which we assume is a hump-shaped function of τ in the interval [0, 1] . Taking
logs and differentiating w.r.t. τ gives the first-order condition R′(τ)/R(τ) =
1/τ − f ′(1− τ)/f(1− τ) = 0, which holds for τ = τL, the tax-income ratio that
maximizes R. It follows that 1/τL = f ′(1− τL)/f(1− τL), hence

1− τL
τL

=
1− τL

f(1− τL)
f ′(1− τL) ≡ E`1−τf(1− τL).

Rearranging gives

τL =
1

1 + E`1−τf(1− τL)
.

If the elasticity of income w.r.t. 1 − τ is given as 0.4,10 we get τL = 5/7 ≈ 0.7.
Thus, if the required tax-income ratio, τ̂ , calculated on the basis of (6.11) (under
the simplifying assumption of no transfers), exceeds 0.7, fiscal sustainability can
not be obtained by just raising taxation.

The level of the debt-income ratio and self-fulfilling expectations of
default

We again consider Case 1: r > gY . The incumbent chief economist at the IMF,
Olivier Blanchard remarked in the midst of the 2010-2012 debt crisis in the Eu-
rozone:

“The higher the level of debt, the smaller is the distance between
solvency and default”.11

The background for this remark is the following. There is likely to be an upper
bound for the tax-income ratio deemed politically or economically feasible by the
government as well as the market participants. Similarly, a lower bound for the
spending-income ratio is likely to exist, be it for economic or political reasons. In
the present framework we therefore let the government face the constraints τ ≤ τ̄
and γ ≥ γ̄, where τ̄ is the least upper bound for the tax-income ratio and γ̄ is
the greatest lower bound for the spending-income ratio. Then the actual primary
surplus, s, can at most equal s̄ ≡ τ̄ − γ̄.
10As suggested for the U.S. by Gruber and Saez, 2002.
11Blanchard (2011).
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Suppose that at first the situation in the considered country is as in the second
from the top panel in Fig. 6.2. That is, initially,

s = τ − γ = ŝ = (r − gY )b0 ≤ s̄ ≡ τ̄ − γ̄, (6.12)

with b0 > 0. Define r̄ to be the value of r satisfying

(r̄ − gY )b0 = s̄, i.e., r̄ =
s̄

b0

+ gY . (6.13)

Thereby r̄ is the maximum level of the interest rate consistent with absence of
an explosive debt-income ratio.
According to (6.12), fundamentals (tax- and spending-income ratios, growth-

corrected interest rate, and initial debt) are consistent with absence of an explo-
sive debt-income ratio as long as r is unchanged. Nevertheless financial investors
may be worried about default if b0 is high. Investors are aware that a rise in the
actual interest rate, r, can always happen and that if it does, a situation with
r > r̄ is looming, in particular if the country has high debt. The larger is b0, the
lower is the critical interest rate, r̄, as witnessed by (6.13).
The worrying scenario is that the fear of default triggers a risk premium, and

if the resulting level of the interest rate on the debt, say r′, exceeds r̄, unpleasant
debt dynamics like that in the top panel of Fig. 6.2 set in. To r′ corresponds a
new value of the primary surplus, say ŝ′, defined by ŝ′ = (r′ − gY )b0. So ŝ′ is the
minimum primary surplus (as a share of GDP) required for a non-accelerating
debt-income ratio in the new situation. With b0 > 0 and r′ > r̄, we get

ŝ′ = (r′ − gY )b0 > (r̄ − gY )b0 = s̄,

where s̄ is given in (6.12). The government could possibly increase its primary
surplus, s, but at most up to s̄, and this will not be enough since the required
primary surplus, ŝ′, exceeds s̄. The situation would be as illustrated in the top
panel of Fig. 6. 2 with b∗ given as s̄/(r′ − gY ) < b0.
That is, if the actual interest rate should rise above the critical interest rate,

r̄, runaway debt dynamics would take offand debt default thereby be threatening.
A fear that it may happen may be enough to trigger a fall in the market price of
government bonds which means a rise in the actual interest rate, r. So financial
investors’fear can be a self-fulfilling prophesy. Moreover, as we saw in connection
with (6.13), the risk that r becomes greater than r̄ is larger the larger is b0.
It is not so that across countries there is a common threshold value for a

“too large” public debt-to-income ratio. This is because variables like τ̄ , γ̄, r,
and gY , as well as the net foreign debt position and the current account deficit
(not in focus in this chapter), differ across countries. Late 2010 Greece had
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(gross) government debt of 148 percent of GDP and the interest rate on 10-year
government bonds skyrocketed. Conversely Japan had (gross) government debt
of more than 200 percent of GDP while the interest rate on 10-year government
bonds remained very low.

Finer shades

1. As we have just seen, even when in a longer-run perspective a solvency problem
is unlikely, self-fulfilling expectations can here and now lead to default. Such a
situation is known as a liquidity crisis rather than a true solvency crisis. In a
liquidity crisis there is an acute problem of insuffi cient cash to pay the next bill
on time (“cash-flow insolvency”) because lending is diffi cult due to actual and
potential creditors’fear of default. A liquidity crisis can be braked by the central
bank stepping in and acting as a “lender of last resort”by printing money. In a
country with its own currency, the central bank can do so and thereby prevent a
bad self-fulfilling expectations equilibrium to unfold.12

2. In the above analysis we simplified by assuming that several variables,
including γ, τ , and r, are constants. The upward trend in the old-age dependency
ratio, due to a decreased birth rate and rising life expectancy, together with a
rising request for medical care is likely to generate upward pressure on γ. Thereby
a high initial debt-income ratio becomes more challenging.
3. On the other hand, rBt is income to the private sector and can be taxed at

the same average tax rate τ as factor income, Yt. Then the benign inequality is
no longer r ≤ gY but (1− τ)r ≤ gY , which is more likely to hold. Taxing interest
income is thus supportive of fiscal sustainability (cf. Exercise B.28).
4. Having ignored seigniorage, there is an upward bias in our measure (6.10)

of the minimum primary surplus as a share of GDP, ŝ, required for fiscal sustain-
ability when r > gY . Imposing stationarity of the debt-income ratio at the level b̄
into the general debt-accumulation formula (6.5), multiplying through by 1 + gY ,
and cancelling out, we find

ŝ = (r − gY )b̄− ∆Mt+1

PtYt
= (r − gY )b̄− ∆Mt+1

Mt

· Mt

PtYt
.

12In a monetary union which is not also a fiscal union (think of the eurozone), the situation
is more complicated. A single member country with large government debt (or large debt in
commercial banks for that matter) may find itself in an acute liquidity crisis without its own
means to solve it. Indeed, the elevation of interest rates on government bonds in the Southern
part of the eurozone in 2010-2012 can be seen as a manifestation of investors’fear of payment
diffi culties. The elevation was not reversed until the European Central Bank in September 2012
declared its willingness to effectively act as a “lender of last resort” (on a conditional basis),
see Box 6.2 in Section 6.4.2.
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With r = 0.04, gY = 0.03, and b̄ = 0.60, we get (r − gY )b̄ = 0.006. With a
seigniorage-income ratio even as small as 0.003, the “true”required primary sur-
plus is 0.003 rather than 0.006. As long as the seigniorage-income ratio is approx-
imately constant, our original formula, given in (6.10), for the required primary
surplus as a share of GDP is in fact valid if we interpret τ as the (tax+seigniorage)-
income ratio.
5. Having assumed a constant gY , we have ignored business cycle fluctuations.

Allowing for booms and recessions, the timing of fiscal consolidation in a country
with a structural primary surplus gap (ŝ − s > 0) becomes a crucial issue. The
case study in the next section will be an opportunity to touch upon this issue.

6.4.2 Case study: The Stability and Growth Pact of the
EMU

The European Union (EU) is approaching its aim of establishing a “single mar-
ket”(unrestricted movement of goods and services, workers, and financial capital)
across the territory of its member countries, 28 sovereign nations. Nineteen of
these have joined the common currency, the euro. They constitute what is known
as the Eurozone with the European Central Bank (ECB) as supranational institu-
tion responsible for conducting monetary policy in the Eurozone. The Eurozone
countries as well as the nine EU countries outside the Eurozone (including UK,
Denmark, Sweden, and Poland) are, with minor exceptions, required to abide
with a set of fiscal rules, first formulated already in the Treaty of Maastrict from
1992. In that year a group of European countries decided a road map leading to
the establishment of the euro in 1999 and a set of criteria for countries to join.
These fiscal rules included a deficit rule as well as a debt rule. The deficit rule
says that the annual nominal government budget deficit must not be above 3
percent of nominal GDP. The debt rule says that the government debt should not
be above 60 percent of GDP. The fiscal rules were upheld and in minor respects
tightened in the Stability and Growth Pact (SGP) which was implemented in 1997
as the key fiscal constituent of the Economic and Monetary Union (EMU). The
latter name is a popular umbrella term for the fiscal and monetary legislation of
the EU. The EU member countries that have adopted the euro are often referred
to as “the full members of the EMU”.
Some of the EU member states (Belgium, Italy, and Greece) had debt-income

ratios above 100 percent since the early 1990s − and still have. Committing to
the requirement of a gradual reduction of their debt-income ratios, they became
full members of the EMU essentially from the beginning (that is, 1999 except
Greece, 2001). The 60 percent debt rule of the SGP is to be understood as a
long-run ceiling that, by the stock nature of debt, can not be accomplished here
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and now if the country is highly indebted.
The deficit and debt rules (with associated detailed contingencies and arrange-

ments including ultimate pecuniary fines for defiance) are meant as discipline de-
vices aiming at “sound budgetary policy”, alternatively called “fiscal prudence”.
The motivation is protection of the ECB against political demands to loosen mon-
etary policy in situations of fiscal distress. A fiscal crisis in one or more of the
Eurozone countries, perhaps “too big to fail”, could set in and entail a state of
affairs approaching default on government debt and chaos in the banking sector
with rising interest rates spreading to neighboring member countries (a negative
externality). This could lead to open or concealed political pressure on the ECB
to inflate away the real value of the debt, thus challenging the ECB’s one and
only concern with “price stability”.13 Or a fiscal crisis might at least result in
demands on the ECB to curb soaring interest rates by purchasing government
bonds from the country in trouble. In fact, such a scenario is close to what we
have seen in southern Europe in the wake of the Great Recession triggered by
the financial crisis starting 2007. Such “bailing out”could give governments in-
centives to be relaxed about deficits and debts (a “moral hazard”problem). And
the lid on deficit spending imposed by the SGP should help to prevent needs for
“bailing out”to arise.

The link between the deficit and the debt rule

Whatever the virtues or vices of the design of the deficit and debt rules, one may
ask the plain question: what is the arithmetical relationship, if any, between the
3 percent and 60 percent tenets?
First a remark about measurement. The measure of government debt, called

the EMU debt, used in the SGP criterion is based on the book value of the
financial liabilities rather than the market value. In addition, the EMU debt is
more of a gross nature than the theoretical net debt measure represented by our
D. The EMU debt measure allows fewer of the government financial assets to
be subtracted from the government financial liabilities.14 In our calculation and
subsequent discussion we ignore these complications.
Consider a deficit rule saying that the (total) nominal budget deficit must

never be above α · 100 percent of nominal GDP. By (6.3) with ∆Mt+1 “small”
enough to be ignored, this deficit rule is equivalent to the requirement

Dt+1 −Dt = GBDt = itDt + Pt(Gt − Tt) ≤ αPtYt. (6.14)
13The ECB interprets “price stability”as a consumer price inflation rate “below, but close

to, 2 percent per year over the medium term”.
14For Denmark the difference between the EMU and the net debt is substantial. In 2013 the

Danish EMU debt was 44.6% of GDP while the government net debt was 5.5% of GDP (Danish
Ministry of Finance, 2014).
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In the SGP, α = 0.03. Here we consider the general case: α > 0. To see the
implication for the (public) debt-to-income ratio in the long run, let us first
imagine a situation where the deficit ceiling, α, is always binding for the economy
we look at. Then Dt+1 = Dt + αPtYt and so

bt+1 ≡
Bt+1

Yt+1

≡ Dt+1

PtYt+1

=
Dt

(1 + π)Pt−1(1 + gY )Yt
+

α

1 + gY
,

assuming constant output growth rate, gY , and inflation rate π. This reduces to

bt+1 =
1

(1 + π)(1 + gY )
bt +

α

1 + gY
. (6.15)

Assuming that (1+π)(1+gY ) > 1 (as is normal over the medium run), this linear
difference equation has the stable solution

bt = (b0 − b∗)
(

1

(1 + π)(1 + gY )

)t
+ b∗ → b∗ for t→∞, (6.16)

where

b∗ =
(1 + π)

(1 + π)(1 + gY )− 1
α. (6.17)

Consequently, if the deficit rule (6.14) is always binding, the debt-income ratio
tends in the long run to be proportional to the deficit bound α. The factor of
proportionality is a decreasing function of the long-run growth rate of real GDP
and the inflation rate. This result confirms the general tenet that if there is
economic growth, perpetual budget deficits need not lead to fiscal problems.
If on the other hand the deficit rule is not always binding, then the budget

deficit is on average smaller than above so that the debt-income ratio will in the
long run be smaller than b∗.
The conclusion is the following. With one year as the time unit, suppose the

deficit rule is α = 0.03 and that gY = 0.03 and π = 0.02 (the upper end of
the inflation interval aimed at by the ECB). Suppose further the deficit rule is
never violated. Then in the long run the debt-income ratio will be at most b∗

= 1.02 × 0.03/(1.02 × 1.03 − 1) ≈ 0.60. This is in agreement with the debt rule
of the SGP according to which the maximum value allowed for the debt-income
ratio is 60%.
Although there is nothing sacred about either of the numbers 0.60 or 0.03,

they are mutually consistent, given π = 0.02 and gY = 0.03.
We observe that the deficit rule (6.14) implies that:

• The upper bound, b∗, on the long-run debt income ratio is lower the higher
is inflation. The reason is that the growth factor β ≡ [(1 + π) (1 + gY )]−1

for bt in (6.15) depends negatively on the inflation rate, π. So does therefore
b∗ since, by (6.16), b∗ ≡ α(1 + gY )−1(1− β)−1.
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• For a given π, the upper bound on the long-run debt income ratio is inde-
pendent of both the nominal and real interest rate (this follows from the
indicated formula for the growth factor for bt and the fact that (1+i)(1+r)−1

= 1 + π).

The debate about the design of the SGP

In addition to the aimed long-run implications, by its design the SGP has short-
run implications for the economy. Hence an evaluation of the SGP cannot ignore
the way the economy functions in the short run. How changes in government
spending and taxation affects the economy depends on the “state of the business
cycle”: is the economy in a boom with full capacity utilization or in a slump with
slack aggregate demand?
Much of the debate about the SGP has centered around the consequences

of the deficit rule in an economic recession triggered by a collapse of aggregate
demand (for instance due to private deleveraging in the wake of a banking crisis).
Although the Eurozone countries are economically quite different, they are sub-
ject to the same one-size-fits-all monetary policy. Facing dissimilar shocks, the
single member countries in need of aggregate demand stimulation in a recession
have by joining the euro renounced on both interest rate policy and currency de-
preciation.15 The only policy tool left for demand stimulation is therefore fiscal
policy. Instead of a supranational fiscal authority responsible for handling the
problem, it is up to the individual member countries to act − and to do so within
the constraints of the SGP.
On this background, the critiques of the deficit rule of the SGP include the fol-

lowing points. (It may here be useful to have at the back of one’s mind the simple
Keynesian income-expenditure model, where output is demand-determined and
below capacity while the general price level is sticky.)

Critiques 1. When considering the need for fiscal stimuli in a recession, a
ceiling at 0.03 is too low unless the country has almost no government debt in
advance. Such a deficit rule gives too little scope for counter-cyclical fiscal policy,
including the free working of the automatic fiscal stabilizers (i.e., the provisions,
through tax and transfer codes, in the government budget that automatically
cause tax revenues to fall and spending to rise when GDP falls).16 As an econ-
omy moves towards recession, the deficit rule may, bizarrely, force the government
to tighten fiscal policy although the situation calls for stimulation of aggregate

15Denmark is in a similar situation. In spite of not joining the euro after the referendum in
2000, the Danish krone has been linked to the euro through a fixed exchange rate since 1999.
16Over the first 13 years of existence of the euro even Germany violated the 3 percent rule

five of the years.
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demand. The pact has therefore sometimes been called the “Instability and De-
pression Pact”− it imposes a wrong timing of fiscal consolidation.17
2. Since what really matters is long-run fiscal sustainability, a deficit rule

should be designed in a more flexible way than the 3% rule of the SGP. A mean-
ingful deficit rule would relate the deficit to the trend nominal GDP, which we
may denote (PY )∗. Such a criterion would imply

GBD ≤ α(PY )∗. (6.18)

Then
GBD

PY
≤ α

(PY )∗

PY
.

In recessions the ratio (PY )∗/(PY ) is high, in booms it is low. This has the
advantage of allowing more room for budget deficits when they are needed −
without interfering with the long-run aim of stabilizing government debt below
some specified ceiling.
3. A further step in this direction is a rule directly in terms of the structural

or cyclically adjusted budget deficit rather than the actual year-by-year deficit.
The cyclically adjusted budget deficit in a given year is defined as the value the
deficit would take in case actual output were equal to trend output in that year.
Denoting the cyclically adjusted budget deficit GBD∗, the rule would be

GBD∗

(PY )∗
≤ α.

In fact, in its original version as of 1997 the SGP contained an additional rule
like that, but in the very strict form of α ≈ 0. This requirement was implicit in
the directive that the cyclically adjusted budget “should be close to balance or
in surplus”. By this requirement it is imposed that the debt-income ratio should
be close to zero in the long run. Many EMU countries certainly had − and have
− larger cyclically adjusted deficits. Taking steps to comply with such a low
structural deficit ceiling may be hard and endanger national welfare by getting in
the way of key tasks of the public sector. The minor reform of the SGP endorsed
in March 2005 allowed more contingencies, also concerning this structural bound.
By the more recent reform in 2012, the Fiscal Pact, the lid on the cyclically

17The SGP has an exemption clause referring to “exceptional”circumstances. These circum-
stances were originally defined as “severe economic recession”, interpreted as an annual fall
in real GDP of at least 1-2%. By the reform of the SGP in March 2005, the interpretation
was changed into simply “negative growth”. Owing to the international economic crisis that
broke out in 2008, the deficit rule was thus suspended in 2009 and 2010 for most of the EMU
countries. But the European Commission brought the rule into effect again from 2011, which
according to many critics was much too early, given the circumstances.
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adjusted deficit-income ratio was raised to 0.5% and to 1.0% for members with a
debt-income ratio “significantly below 60%”. These are still quite small numbers.
Abiding by the 0.5% or 1.0% rule implies a long-run debt-income ratio of at most
10% or 20%, respectively, given structural inflation and structural GDP growth
at 2% and 3% per year, respectively.18

4. Regarding the composition of government expenditure, critics have argued
that the SGP pact entails a problematic disincentive for public investment. The
view is that a fiscal rule should be based on a proper accounting of public invest-
ment instead of simply ignoring the composition of government expenditure. We
consider this issue in Section 6.6 below.
5. At a more general level critics have contended that policy rules and sur-

veillance procedures imposed on sovereign nations will hardly be able to do their
job unless they encompass stronger incentive-compatible elements. Enforcement
mechanisms are bound to be week. The SGP’s threat of pecuniary fines to a
country which during a recession has diffi culties to reduce its budget deficit seems
absurd (and has not been made use of so far). Moreover, abiding by the fiscal
rules of the SGP prior to the Great Recession was certainly no guarantee of not
ending up in a fiscal crisis in the wake of a crisis in the banking sector, as wit-
nessed by Ireland and Spain. A seemingly strong fiscal position can vaporize fast,
particularly if banks, “too big to fail”, need be bailed out.

Counter-arguments Among the counter-arguments raised against the criti-
cisms of the SGP has been that the potential benefits of the proposed alternative
rules are more than offset by the costs in terms of reduced simplicity, measurabil-
ity, and transparency. The lack of flexibility may even be a good thing because it
helps “tying the hands of elected policy makers”. Tight rules are needed because
of a “deficit bias”arising from short-sighted policy makers’temptation to promise
spending without ensuring the needed financing, especially before an upcoming
election. These points are sometimes linked to the view that market economies
are generally self-regulating. Keynesian stabilization policy is not needed and
may do more harm than good.

Box 6.1. The 2010-2012 debt crisis in the Eurozone

What began as a banking crisis became a deep economic recession combined with a
government debt crisis.

At the end of 2009, in the aftermath of the global economic downturn, it became
evident that Greece faced an acute debt crisis driven by three factors: high government
debt, low ability to collect taxes, and lack of competitiveness due to cost inflation.
Anxiety broke out about the debt crisis spilling over to Spain, Portugal, Italy, and

18Again apply (6.17).
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Ireland, thus widening bond yield spreads in these countries vis-a-vis Germany in the
midst of a serious economic recession. Moreover, the solvency of big German banks
that were among the prime creditors of Greece was endangered. The major Eurozone
governments and the International Monetary Fund (IMF) reached an agreement to
help Greece (and indirectly its creditors) with loans and guarantees for loans, condi-
tional on the government of Greece imposing yet another round of harsh fiscal austerity
measures. The elevated bond interest rates of Greece, Italy, and Spain were not con-
vincingly curbed, however, until in August-September 2012 the president of the ECB,
Mario Draghi, launched the “Outright Monetary Transactions” (OMT) program ac-
cording to which, under certain conditions, the ECB will buy government bonds in
secondary bond markets with the aim of “safeguarding an appropriate monetary policy
transmission and the singleness of the monetary policy” and with “no ex ante quan-
titative limits”. Considerably reduced government bond spreads followed and so the
sheer announcement of the program seemed effective in its own right. Doubts raised by
the German Constitutional Court about its legality vis-à-vis Treaties of the European
Union were finally repudiated by the European Court of Justice mid-June 2015. At
the time of writing (late June 2015) the OMT program has not been used in practice.
Early 2015, a different massive program for purchases of government bonds, including
long-term bonds, in the secondary market as well as private asset-backed bonds was
decided and implemented by the ECB. The declared aim was to brake threatening de-
flation and return to “price stability”, by which is meant inflation close to 2 percent
per year.

So much about the monetary policy response. What about fiscal policy? On the
basis of the SGP, the EU Commission imposed “fiscal consolidation” initiatives to be
carried out in most EU countries in the period 2011-2013 (some of the countries were
required to start already in 2010). With what consequences? By many observers, partly
including the research department of IMF, the initiatives were judged self-defeating.
When at the same time comprehensive deleveraging in the private sector is going on,
“austerity” policy deteriorates aggregate demand further and raises unemployment.
Thereby, instead of budget deficits being decreased, the numerator in the debt-income
ratio, D/(PY ), is decreased. Fiscal multipliers are judged to be large (“in the 0.9 to
1.7 range since the Great Recession”, IMF, World Economic Outlook, Oct. 2012) in
a situation of idle resources, monetary policy aiming at low interest rates, and nega-
tive spillover effects through trade linkages when “fiscal consolidation”is synchronized
across countries. The unemployment rate in the Eurozone countries was elevated from
7.5 percent in 2008 to 12 percent in 2013. The British economists, Holland and Portes
(2012), concluded: “It is ironic that, given that the EU was set up in part to avoid
coordination failures in economic policy, it should deliver the exact opposite”.

The whole crisis has pointed to a basic diffi culty faced by the Eurozone. In spite
of the member countries being economically very different sovereign nations, they are
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subordinate to the same one-size-fits-all monetary policy without sharing a federal
government ready to use fiscal instruments to mitigate regional consequences of country-
specific shocks. Adverse demand shocks may lead to sharply rising budget deficits in
some countries, and financial investors may loose confidence and so elevate government
bond interest rates. A liquidity crisis may arise, thereby amplifying adverse shocks.
Even when a common negative demand shock hits all the member countries in a similar
way, and a general relaxation of both monetary and fiscal policy is called for, there is
the problem that the individual countries, in fear of boosting their budget deficit and
facing the risk of exceeding the deficit or debt limit, may wait for the others to initiate
a fiscal expansion. The possible consequence of this “free rider” problem is general
under-stimulation of the economies.

The dismal experience regarding the ability of the Eurozone to handle the Great
Recession has incited proposals along two dimensions. One dimension is about allowing
the ECB greater scope for acting as a “lender of last resort”. The other dimension is
about centralizing a larger part of the national budgets into a common union budget
(see, e.g., De Grauwe, 2014). (END OF BOX)

6.5 Solvency, the NPG condition, and the in-
tertemporal government budget constraint

Up to now we have considered the issue of government solvency from the per-
spective of dynamics of the government debt-to-income ratio. It is sometimes
useful to view government solvency from another angle − the intertemporal bud-
get constraint (GIBC). Under a certain condition stated below, the intertemporal
budget constraint is as relevant for a government as for private agents. A simple
condition closely linked to whether the government’s intertemporal budget con-
straint is satisfied or not is what is known as the government’s No-Ponzi-Game
(NPG) condition. It is convenient to first focus on this condition. We concentrate
on government net debt measured in real terms and ignore seigniorage.

6.5.1 When is the NPG condition necessary for solvency?

Consider a situation with a constant interest rate, r. Suppose taxes are lump sum
or at least that there is no tax on interest income from owning government bonds.
Then the government’s NPG condition is that the present discounted value of the
public debt in the far future is not positive, i.e.,

lim
t→∞

Bt(1 + r)−t ≤ 0. (NPG)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



6.5. Solvency, the NPG condition, and the intertemporal government budget
constraint 231

This condition says that government debt is not allowed to grow in the long
run at a rate as high as (or even higher than) the interest rate.19 That is, a
fiscal policy satisfying the NPG condition rules out a permanent debt rollover.
Indeed, as we saw in Section 6.3.1, with B0 > 0, a permanent debt rollover
policy (financing all interest payments and perhaps even also part of the primary
government spending) by debt issue leads to Bt ≥ B0(1 + r)t for t = 0, 1, 2, . . . .
Substituting into (NPG) gives limt→∞Bt ≥ B0(1 + r)t(1 + r)−t = B0 > 0, thus
violating (NPG).
The designation No-Ponzi-Game condition refers to a guy fromBoston, Charles

Ponzi, who in the 1920s made a fortune out of an investment scam based on the
chain-letter principle. The principle was to pay off old investors with money from
new investors. Ponzi was sentenced to many years in prison for his transactions;
he died poor − and without friends!
To our knowledge, this kind of financing behavior is nowhere forbidden for

the government as it generally is for private agents. But under “normal”circum-
stances a government has to plan its expenditures and taxation so as to comply
with its NPG condition since otherwise not enough lenders will be forthcoming.
As the state is in principle infinitely-lived, however, there is no final date where

all government debt should be over and done with. Indeed, the NPG condition
does not even require that the debt has ultimately to be non-increasing. The
NPG condition “only” says that the debtor, here the government, can not let
the debt grow forever at a rate as high as (or higher than) the interest rate. For
instance the U.K. as well as the U.S. governments have had positive debt for
centuries − and high debt after both WW I and WW II.
Suppose Y (GDP) grows at the constant rate gY (actually, for most of the

following results it is enough that limt→∞ Yt+1/Yt = 1 + gY ). We have:

PROPOSITION 1 Let bt ≡ Bt/Yt and interpret “solvency”as absence of an for
ever accelerating debt-income ratio. Then:

(i) if r > gY , solvency requires (NPG) satisfied;

(ii) if r ≤ gY , the government can remain solvent without (NPG) being satisfied.

Proof. When bt 6= 0,

lim
t→∞

bt+1

bt
≡ lim

t→∞

Bt+1/Yt+1

Bt/Yt
= lim

t→∞

Bt+1/Bt

Yt+1/Yt
= lim

t→∞

Bt+1/Bt

1 + gY
. (6.19)

19If there is effective taxation of interest income at the rate τ r ∈ (0, 1), then the after-
tax interest rate, (1 − τ r)r, is the relevant discount rate, and the NPG condition would read
limt→∞Bt [1 + (1− τ r)r]−t ≤ 0.
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Case (i): r > gY . If limt→∞Bt ≤ 0, then (NPG) is trivially satisfied. As-
sume limt→∞Bt > 0. For this situation we prove the statement by contradic-
tion. Suppose (NPG) is not satisfied. Then, limt→∞Bt(1 + r)−t > 0, implying
that limt→∞Bt+1/Bt ≥ 1 + r. In view of (6.19) this implies that limt→∞ bt+1/bt
≥ (1+r)/(1+gY ) > 1. Thus, bt →∞, which violates solvency. By contradiction,
this proves that solvency implies (NPG) when r > gY .
Case (ii): r ≤ gY . Consider the permanent debt roll-over policy Tt = Gt for

all t ≥ 0, and assume B0 > 0. By (DGBC) of Section 6.2 this policy yields
Bt+1/Bt = 1 + r; hence, in view of (6.19), lim t→∞bt+1/bt = (1 + r)/(1 + gY )
≤ 1. The policy consequently implies solvency. On the other hand the solution
of the difference equation Bt+1 = (1 + r)Bt is Bt = B0(1 + r)t. Thus Bt(1 + r)−t

= B0 > 0 for all t, thus violating (NPG). �
Hence imposition of the NPG condition on the government relies on the in-

terest rate being in the long run higher than the growth rate of GDP. If instead
r ≤ gY , the government can cut taxes, run a budget deficit, and postpone the
tax burden indefinitely. In that case the government can thus run a Ponzi Game
and still stay solvent. Nevertheless, as alluded to earlier, if uncertainty is added
to the picture, there will be many different interest rates, matters become more
complicated, and qualifications to Proposition 1 are needed (Blanchard and Weil,
2001). The prevalent view among macroeconomists is that imposition of the NPG
condition on the government is generally warranted.
While in the case r > gY , the NPG condition is necessary for solvency, it is

not suffi cient. Indeed, we could have

1 + gY < lim
t→∞

Bt+1/Bt < 1 + r. (6.20)

Here, by the upper inequality, (NPG) is satisfied, yet, by the lower inequality
together with (6.19), we have limt→∞ bt+1/bt > 1 so that the debt-income ratio
explodes.

EXAMPLE 1 Let GDP = Y, a constant, and r > 0; so r > gY = 0. Let the
budget deficit in real terms equal εBt +α, where 0 ≤ ε < r and α > 0. Assuming
no money-financing of the deficit, government debt evolves according to Bt+1−Bt

= εBt + α which implies a simple linear difference equation:

Bt+1 = (1 + ε)Bt + α. (*)

Case 1: ε = 0. Then the solution of (*) is

Bt = B0 + αt, (**)

B0 being historically given. Then Bt(1 + r)−t = B0(1 + r)−t +αt(1 + r)−t → 0 for
t → ∞. So, (NPG) is satisfied. Yet the debt-GDP ratio, Bt/Y, goes to infinity
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for t→∞. That is, in spite of (NPG) being satisfied, solvency is not present. For
ε = 0 we thus get the insolvency result even though the lower strict inequality in
(6.20) is not satisfied. Indeed, (**) implies Bt+1/Bt = 1 + α/Bt → 1 for t→∞
and 1 + gY = 1.
Case 2: 0 < ε < r. Then the solution of (*) is

Bt = (B0 +
α

ε
)(1 + ε)t − α

ε
→∞ for t→∞,

if B0 > −α/ε. So Bt/Y → ∞ for t → ∞ and solvency is violated. Nevertheless
Bt(1 + r)−t → 0 for t→∞ so that (NPG) holds.
The example of this case fully complies with both strict inequalities in (6.20)

because Bt+1/Bt = 1 + ε+ α/Bt → 1 + ε for t→∞. �
An approach to fiscal budgeting that ensures debt stabilization and thereby

solvency is the following. First impose that the cyclically adjusted primary budget
surplus as a share of GDP equals a constant, s. Next adjust taxes and/or spending
such that s ≥ ŝ = (r− gY )b0, ignoring short-run differences between Yt+1/Yt and
1 + gY and between rt and its long-run value, r; as in (6.10), ŝ is the minimum
primary surplus as a share of GDP required to obtain bt+1/bt ≤ 1 for all t ≥ 0.
This ŝ is a measure of the burden that the government debt imposes on tax payers.
If the policy steps needed to realize at least ŝ are not taken, the debt-income ratio
will grow, thus worsening the fiscal position in the future by increasing ŝ.

6.5.2 Equivalence of NPG and GIBC

The condition under which the NPG condition is necessary for solvency is also
the condition under which the government’s intertemporal budget constraint is
necessary. To show this we let t denote the current period and t + i denote a
period in the future. As above, we ignore seigniorage. Debt accumulation is then
described by

Bt+1 = (1 + r)Bt +Gt +Xt − T̃t, where Bt is given. (6.21)

The government intertemporal budget constraint (GIBC), as seen from the begin-
ning of period t, is the requirement

∞∑
i=0

(Gt+i +Xt+i)(1 + r)−(i+1) ≤
∞∑
i=0

T̃t+i(1 + r)−(i+1) −Bt. (GIBC)

This condition requires that the present value (PV) of current and expected
future government spending does not exceed the government’s net wealth. The
latter equals the PV of current and expected future tax revenue minus existing
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government debt. By the symbol
∑∞

i=0 xi we mean limI→∞
∑I

i=0 xi. Until further
notice we assume this limit exists.
What connection is there between the dynamic accounting relationship (6.21)

and the intertemporal budget constraint, (GIBC)? To find out, we rearrange
(6.21) and use forward substitution to get

Bt = (1 + r)−1(T̃t −Xt −Gt) + (1 + r)−1Bt+1

=

j∑
i=0

(1 + r)−(i+1)(T̃t+i −Xt+i −Gt+i) + (1 + r)−(j+1)Bt+j+1

=

∞∑
i=0

(1 + r)−(i+1)(T̃t+i −Xt+i −Gt+i) + lim
j→∞

(1 + r)−(j+1)Bt+j+1

≤
∞∑
i=0

(1 + r)−(i+1)(T̃t+i −Xt+i −Gt+i), (6.22)

if and only if the government debt ultimately grows at a rate less than r so that

lim
j→∞

(1 + r)−(j+1)Bt+j+1 ≤ 0. (6.23)

This latter condition is exactly the NPG condition above (replace t in (6.23) by
0 and j by t − 1). And the condition (6.22) is just a rewriting of (GIBC). We
conclude:

PROPOSITION 2 Given the book-keeping relation (6.21), then:

(i) (NPG) is satisfied if and only if (GIBC) is satisfied;

(ii) there is strict equality in (NPG) if and only if there is strict equality in
(GIBC).

We know from Proposition 1 that in the “normal case”where r > gY , (NPG) is
needed for government solvency. The message of (i) of Proposition 2 is then that
also (GIBC) need be satisfied. Given r > gY , to appear solvent a government has
to realistically plan taxation and spending profiles such that the PV of current and
expected future primary budget surpluses matches the current debt, cf. (6.22).
Otherwise debt default is looming and forward-looking investors will refuse to
buy government bonds or only buy them at a reduced price, thereby aggravating
the fiscal conditions.20

20Government debt defaults have their own economic as well as political costs, including loss
of credibility. Yet, they occur now and then. Recent examples include Russia in 1998 and
Argentina in 2001-2002. During 2010-12, Greece was on the brink of debt default. At the time
of writing (June 2015) such a situation has turned up again for Greece.
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In view of the remarks around the inequalities in (6.20), however, satisfying
the condition (6.22) is only a necessary condition (if r > gY ), not in itself a
suffi cient condition for solvency. A simple condition under which satisfying the
condition (6.22) is suffi cient for solvency is that both Gt and Tt are proportional
to Yt, cf. Example 2.

EXAMPLE 2 Consider a small open economy facing an exogenous constant
real interest rate r. Suppose that at time t government debt is Bt > 0, GDP is
growing at the constant rate gY , and r > gY . Assume Gt = γYt and Tt ≡ T̃t−Xt

= τYt, where γ and τ are positive constants. What is the minimum size of the
primary budget surplus as a share of GDP required for satisfying the government’s
intertemporal budget constraint as seen from time t? Inserting into the formula
(6.22), with strict equality, yields

∑∞
i=0(1 + r)−(i+1)(τ − γ)Yt+i = Bt. This gives

τ−γ
1+gY

Yt
∑∞

i=0

(
1+gY
1+r

)(i+1)
= τ−γ

r−gY Yt = Bt, where we have used the rule for the
sum of an infinite geometric series. Rearranging, we conclude that the required
primary surplus as a share of GDP is

τ − γ = (r − gY )
Bt

Yt
.

This is the same result as in (6.10) above if we substitute ŝ = τ − γ and t = 0.
Thus, maintaining Gt/Yt and Tt/Yt constant while satisfying the government’s
intertemporal budget constraint ensures a constant debt-income ratio and thereby
government solvency. �
On the other hand, if r ≤ gY , it follows from propositions 1 and 2 together that

the government can remain solvent without satisfying its intertemporal budget
constraint (at least as long as we ignore uncertainty). The background for this
fact may become more apparent when we recognize how the condition r ≤ gY
affects the constraint (GIBC). Indeed, to the extent that the tax revenue tends
to grow at the same rate as national income, we have T̃t+i = T̃t(1 + gY )i. Then

∞∑
i=0

T̃t+i(1 + r)−(i+1) =
T̃t

1 + gY

∞∑
i=0

(
1 + gY
1 + r

)(i+1)

,

which is clearly infinite if r ≤ gY . The PV of expected future tax revenues is thus
unbounded in this case. Suppose that also government spending, Gt+i + Xt+i,
grows at the rate gY . Then the evolution of the primary surplus is described by
T̃t+i − Xt+i − Gt+i = (T̃t − (Gt + Xt))(1 + gY )i, i = 1, 2, . . . . Although in this
case also the PV of future government spending is infinite, (6.22) shows that any
positive initial primary budget surplus, T̃t − (Gt + Xt), ever so small can repay
any level of initial debt in finite time.
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In (GIBC) and (6.23) we allow strict inequalities to obtain. What is the
interpretation of a strict inequality here? The answer is:

COROLLARY OF PROPOSITION 2 Given the book-keeping relation (6.21),
then strict inequality in (GIBC) is equivalent to the government in the long run
accumulating positive net financial wealth.

Proof. Strict inequality in (GIBC) is equivalent to strict inequality in (6.22),
which in turn, by (ii) of Proposition 2, is equivalent to strict inequality in (6.23),
which is equivalent to limj→∞(1 + r)−(j+1)Bt+j+1 < 0. This latter inequality is
equivalent to limj→∞Bt+j+1 < 0, that is, positive net financial wealth in the long
run. Indeed, by definition, r > −1, hence limj→∞(1 + r)−(j+1) ≥ 0. �
It is common to consider as the regular case the case where the government

does not attempt to accumulate positive net financial wealth in the long run
and thereby become a net creditor vis-à-vis the private sector. Returning to
the assumption r > gY , in the regular case fiscal solvency thus amounts to the
requirement

∞∑
i=0

T̃t+i(1 + r)−(i+1) =
∞∑
i=0

(Gt+i +Xt+i)(1 + r)−(i+1) +Bt, (GIBC’)

which is obtained by rearranging (GIBC) and replacing weak inequality with strict
equality. It is certainly not required that the budget is balanced all the time. The
point is “only”that for a given planned expenditure path, a government should
plan realistically a stream of future tax revenues the PV of which matches the
PV of planned expenditure plus the current debt. If an unplanned budget deficit
is run so that the public debt rises − during a recession, say − then higher taxes
than otherwise must be levied in the future.
We may rewrite (GIBC’) as

∞∑
i=0

(
T̃t+i − (Gt+i +Xt+i)

)
(1 + r)−(i+1) = Bt. (GIBC”)

This expresses the basic principle that when r > gY , solvency requires that the
present value of planned future primary surpluses equals the initial debt. If debt
is positive today, then the government has to run a positive primary surplus for
a suffi ciently long time in the future.

Finer shades

1. If the real interest rate varies over time, all the above formulas remain valid if
(1 + r)−(i+1) is replaced by Πi

j=0(1 + rt+j)
−1.
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2. We have essentially ignored seigniorage. Under “normal” circumstances
seigniorage is present and this relaxes (GIBC”) somewhat. Indeed, as noted in
Section 6.2, the money-nominal income ratio,M/PY, tend to be roughly constant
over time, reflecting that money and nominal income tend to grow at the same
rate. So a rough indicator of gM is the sum π + gY . Seigniorage is S ≡ ∆M/P
= gMM/P = sY, where s is the seigniorage-income ratio. Taking seigniorage into
account amounts to subtracting the present value of expected future seigniorage,
PV(S), from the right-hand side of (GIBC”). With s constant and Y growing at
the constant rate gY < r, PV(S) can be written

PV(S) =
∞∑
i=0

St+i(1 + r)−(i+1) = s

∞∑
i=0

Yt+i(1 + r)−(i+1) =
sYt

1 + gY

∞∑
i=0

(
1 + gY
1 + r

)(i+1)

=
sYt

1 + gY

1 + gY
1 + r

1

1− 1+gY
1+r

=
sYt

r − gY
,

where the second to last equality comes from the rule for the sum of an infinite
geometric series. So the right-hand side of (GIBC”) becomes Bt − sYt/(r − gY )
≡ [bt − s/(r − gY )]Yt.

21

3. Should a public deficit rule not make a distinction between public con-
sumption and public investment? This question is taken up in the next section.

6.6 A proper accounting of public investment*

Public investment as a share of GDP has been falling in the EMU countries since
the middle of the 1970s, in particular since the run-up to the euro 1993-97. This
later development is seen as in part induced by the deficit rule of the Maastrict
Treaty and the Stability and Growth Pact (SGP) which, like the standard gov-
ernment budget accounting we have considered up to now, attributes government
gross investment as an expense in a single year’s operating account instead of just
the depreciation of the public capital. Already Musgrave (1939) recommended
applying separate capital and operating budgets. Thereby government net in-
vestment will be excluded from the definition of the public “budget deficit”. And
more meaningful deficit rules can be devised.
To see the gist of this, we partition G into public consumption, Cg, and public

investment, Ig, that is, G = Cg + Ig. Public investment produces public capital
(infrastructure etc.). Denoting the public capital Kg we may write

∆Kg = Ig − δKg, (6.24)
21In a recession where the economy is in a liquidity trap the non-conventional monetary policy

called Quantitative Easing may partly take the form of seigniorage. This is taken up in Chapter
24.
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where δ is a (constant) capital depreciation rate. Let the annual (direct) financial
return per unit of public capital be rg. This is the sum of user fees and the
like. Net government revenue, T ′, now consists of net tax revenue, T, plus the
direct financial return rgKg.22 In that now only interest payments and the capital
depreciation, δKg, along with Cg, enter the operating account as “true”expenses,
the “true”budget deficit is rB + Cg + δKg − T ′, where T ′ = T + rgK

g.
We impose a rule requiring balancing the “true structural budget”in the sense

that on average over the business cycle

T ′ = rB + Cg + δKg (6.25)

should hold. The spending on public investment of course enters the debt accu-
mulation equation which now takes the form

∆B = rB + Cg + Ig − T ′.

Substituting (13.68) into this, we get

∆B = Ig − δKg = ∆Kg, (6.26)

by (13.67). So the balanced “true structural budget” implies that public net
investment is financed by an increase in public debt. Other public spending is
tax financed.
Suppose that public capital keeps pace with trend GDP, Y ∗t , thereby growing

at the same constant rate gY > 0. So∆Kg/Kg = gY and the ratioKg/Y ∗ remains
positive constant at some level, say h. Then (13.69) implies

Bt+1 −Bt = Kg
t+1 −K

g
t = gYK

g
t = gY hY

∗
t . (6.27)

What is the implication for the evolution of the debt-to-trend-income ratio, b̂t ≡
Bt/Y

∗
t , over time? By (6.27) together with Y

∗
t+1 = (1 + gY )Y ∗t follows

b̂t+1 ≡
Bt+1

Y ∗t+1

=
Bt

(1 + gY )Y ∗t
+

gY h

1 + gY
≡ 1

1 + gY
b̂t +

gY h

1 + gY
.

This linear first-order difference equation has the solution

b̂t = (b̂0 − b̂∗)(1 + gY )−t + b̂∗, where b̂∗ =
1

1 + gY
b̂∗ +

gY h

1 + gY
= h,

22There is also an indirect financial return deriving from the fact that better infrastructure
may raise effi ciency in the supply of public services and increase productivity in the private
sector and thereby the tax base. While such expected effects matter for a cost-benefit analysis
of a public investment project, from an accounting point of view they will be included in the
net tax revenue, T, in the future.
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assuming gY > 0. Then b̂t → h for t → ∞. Run-away debt dynamics is pre-
cluded.23 Moreover, the ratio Bt/K

g
t , which equals b̂t/h, approaches 1. Eventu-

ally the public debt is in relative terms thus backed by the accumulated public
capital.

Fiscal sustainability is here ensured in spite of a positive “budget deficit”in
the traditional sense of Section 6.2 and given by ∆B in (13.69). This result holds
even when rg < r, which is perhaps the usual case. Still, the public investment
may be worthwhile in view of indirect financial returns as well as non-financial
returns in the form of the utility contribution of public goods.

Additional remarks

1. The deficit rule described says only that the “true structural budget”should
be balanced “on average”over the business cycle. This invites deficits in slumps
and surpluses in booms. Indeed, in economic slumps government borrowing is
usually cheap. As Harvard economist Lawrence Summers put it: “Idle workers
+ Low interest rates = Time to rebuild infrastructure”(Summers, 2014).

2. When separating government consumption and investment in budget ac-
counting, a practical as well as theoretical issue arises: where to draw the border
between the two? A sizeable part of what is investment in an economic sense is in
standard public sector accounting categorized as “public consumption”: spending
on education, research, and health are obvious examples. Distinguishing between
such categories and public consumption in a narrower sense (administration, ju-
dicial system, police, defence) may be important when economic growth policy is
on the agenda. Apart from noting the issue, we shall not pursue the matter here.

3. That time lags, cf. point (iii) in Section 6.1, are a constraining factor
for fiscal policy is especially important for macroeconomic stabilization policy
aiming at dampening business cycle fluctuations. If the lags are ignored, there is
a risk that government intervention comes too late and ends up amplifying the
fluctuations instead of dampening them. In particular the monetarists, lead by
Milton Friedman (1912-2006), warned against this risk. Other economists find
awareness of this potential problem relevant but point to ways to circumvent the
problem. During a recession there is for instance the option of reimbursing a
part of last year’s taxes, a policy that can be quickly implemented. At a more
structural level, legislation concerning taxation, transfers, and other spending can
be designed with the aim of strengthening the automatic fiscal stabilizers.

23This also holds if gY = 0. Indeed, in this case, (6.27) implies Bt+1 = Bt = B0.
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6.7 Ricardian equivalence?

Having so far concentrated on the issue of fiscal sustainability, we shall now
consider how budget policy affects resource allocation and intergenerational dis-
tribution. The role of budget policy for economic activity within a time horizon
corresponding to the business cycle is not the issue here. The focus is on the
longer run: does it matter for aggregate consumption and aggregate saving in
an economy with full capacity utilization whether the government finances its
current spending by (lump-sum) taxes or borrowing?
There are two opposite answers in the literature to this question. Some macro-

economists tend to answer the question in the negative. This is the debt neutral-
ity view, also called the Ricardian equivalence view. The influential American
economist Robert Barro is in this camp. Other macroeconomists tend to answer
the question in the positive. This is the debt non-neutrality view or absence of
Ricardian equivalence view. The influential French-American economist Olivier
Blanchard is in this camp.
The two different views rest on two different models of the economic reality.

The two models have a common point of departure, though, namely a state of
affairs where:

1) r > gY ;

2) fiscal policy satisfies the intertemporal budget constraint with strict equal-
ity:

∞∑
t=0

T̃t(1 + r)−(t+1) =
∞∑
t=0

(Gt +Xt)(1 + r)−(t+1) +B0, (6.28)

where the initial debt, B0, and the planned path of Gt +Xt are given;

3) agents have rational (model consistent) expectations;

4) at least some of the taxes are lump sum and only these are varied in the
thought experiment to be considered;

5) no money financing;

6) credit market imperfections are absent.

For a given planned time path of Gt +Xt, equation (6.28) implies that a tax
cut in any period has to be met by an increase in future taxes of the same present
discounted value as the tax cut.
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6.7.1 Two differing views

Ricardian equivalence

The Ricardian equivalence view is the conception that government debt is neutral
in the sense that for a given time path of government spending, aggregate private
consumption is unaffected by a temporary tax cut. The temporary tax cut does
not make the households feel richer because they expect that the ensuing rise
in government debt will lead to higher taxes in the future. The essential claim
is that the timing of (lump-sum) taxes does not matter. The name Ricardian
equivalence comes from a − seemingly false − association of this view with the
early nineteenth-century British economist David Ricardo. It is true that Ricardo
articulated the possible logic behind debt neutrality. But he suggested several
reasons that debt neutrality would not hold in practice and in fact he warned
against high public debt levels (Ricardo, 1969, pp. 161-164). Therefore it is
doubtful whether Ricardo was a Ricardian.

Debt neutrality was rejuvenated, however, by Robert Barro in a paper entitled
“Are government bonds net wealth [of the private sector]?”, a question which
Barro answered in the negative (Barro 1974). Barro’s debt neutrality view rests
on a representative agent model, that is, a model where the household sector
is described as consisting of a fixed number of infinitely-lived forward-looking
“dynasties”. With perfect financial markets, a change in the timing of taxes
does not change the PV of the infinite stream of taxes imposed on the individual
dynasty. A cut in current taxes is offset by the expected higher future taxes.
Though current government saving (T −G− rB) goes down, private saving and
bequests left to the members of the next generation go up equally much.

More precisely, the logic of the debt neutrality view is as follows. Suppose, for
simplicity, that the government waits only 1 period to increase taxes and then does
so in one stroke. Then, for each unit of account current taxes are reduced, taxes
next period are increased by (1+r) units of account. The PV as seen from the end
of the current period of this future tax increase is (1+r)/(1+r) = 1. As 1−1 = 0,
the change in the time profile of taxation will make the dynasty feel neither richer
nor poorer. Consequently, its current and planned future consumption will be
unaffected. That is, its current saving goes up just as much as its current taxation
is reduced. In this way the altruistic parents make sure that the next generation
is fully compensated for the higher future taxes. Current private consumption in
society is thus unaffected and aggregate saving stays the same.24

24The complete Barro model is presented in Chapter 7.
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Absence of Ricardian equivalence

Other economists dissociate themselves from such representative agent models
because of their unrealistic description of the household sector. Instead attention
is drawn to overlapping generations models which emphasize finite lifetime and
life-cycle behavior of human beings and lead to a refutation of Ricardian equiva-
lence. The essential point is that those individuals who benefit from lower taxes
today will at most be a fraction of those who bear the higher tax burden in the
future. As taxes levied at different times are thereby levied at partly different
sets of agents, the timing of taxes generally matters. The current tax cut makes
current tax payers feel wealthier and so they increase their consumption and de-
crease their saving. The present generations benefit and future tax payers (partly
future generations) bear the cost in the form of access to less national wealth
than otherwise.
The next subsection provides an example showing in detail how a change

in the timing of taxes affects aggregate private consumption in an overlapping
generations framework.

6.7.2 A small open OLG economy with a temporary bud-
get deficit

We consider a Diamond-style overlapping generations (OLG) model of a small
open economy (henceforth named SOE) with a government sector. The rela-
tionship between SOE and international markets is described by the same four
assumptions as in Section 5.3 of Chapter 5:

(a) There is perfect mobility of goods and financial capital across borders.

(b) There is no uncertainty and domestic and foreign financial claims are perfect
substitutes.

(c) The need for means of payment is ignored; hence so is the need for a foreign
exchange market.

(d) There is no labor mobility across borders.

The assumptions (a) and (b) imply real interest rate equality. That is, in
equilibrium the real interest rate in SOE must equal the real interest rate in
the world financial market, r. And by saying that SOE is “small” we mean
it is small enough to not affect the world market interest rate as well as other
world market factors. We imagine that all countries trade one and the same
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homogeneous good. International trade will then be only intertemporal trade,
i.e., international borrowing and lending of this good.
We assume that r is constant over time and that r > n ≥ 0. As earlier

we let Lt denote the size of the young generation and Lt = L0(1 + n)t. Each
young supplies one unit of labor inelastically, hence Lt is aggregate labor supply.
Assuming full employment, gross domestic product, GDP, is Yt = F (Kt, Lt).

Some national accounting for the open economy

Gross national saving is

St = Yt − rNFDt − Ct −Gt = Yt − rNFDt − (c1tLt + c2tLt−1)−Gt, (6.29)

where NFDt is (net) foreign debt (also called external debt) at the beginning
of period t, Gt is government consumption in period t, and c1t and c2t are con-
sumption by a young and an old in period t, respectively. In the open economy,
generally, gross investment, It, differs from gross saving. If NFDt > 0, the in-
terpretation is that some of the capital stock, Kt, is directly or indirectly owned
by foreigners. On the other hand, if NFDt < 0, SOE has positive net claims on
resources in the rest of the world.
National wealth, Vt, of SOE at the beginning of period t is, by definition,

national assets minus national liabilities,

Vt ≡ Kt −NFDt.

National wealth is also, by definition, the sum of private financial (net) wealth,
At, and government financial (net) wealth, −Bt. We assume the government has
no physical assets and Bt is government (net) debt. Thus,

Vt ≡ At + (−Bt). (6.30)

We may also view national wealth from the perspective of national saving.
First, when the young save, they accumulate private financial wealth. The private
financial wealth at the start of period t+1 must in our Diamond framework equal
the (net) saving by the young in the previous period, SN1t , and the latter must
equal minus the (net) saving by the old in the next period, SN2t+1 :

At+1 = stLt ≡ SN1t = −SN2t+1. (6.31)

Next, the increase in national wealth equals by definition net national saving,
SNt , which in turn equals the sum of net saving by the private sector, SN1t + SN2t ,
and the net saving by the public sector, SNgt . So

Vt+1 − Vt = St − δKt = SNt ≡ SN1t + SN2t + SNgt = At+1 + (−At) + (−GBDt)

= At+1 − At − (Bt+1 −Bt),
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where the second to last equality comes from (6.31) and the identity SNgt ≡
−GBDt, while the last equality reflects the maintained assumption that bud-
get deficits are fully financed by debt issue.

Firms’behavior

GDP is produced by an aggregate neoclassical production function with CRS:

Yt = F (Kt, Lt) = LtF (kt, 1) ≡ Ltf(kt),

where Kt and Lt are input of capital and labor, respectively, and kt ≡ Kt/Lt.
Technological change is ignored. Imposing perfect competition in all markets,
markets clear so that Lt can be interpreted as both employment and labor supply
(exogenous). Profit maximization leads to f ′(kt) = r + δ, where δ is a constant
capital depreciation rate, 0 ≤ δ ≤ 1. When f satisfies the condition limk→0 f

′(k)
> r + δ > limk→∞ f

′(k), there is always a solution in k to this equation and it is
unique (since f ′′ < 0) and constant over time (as long as r and δ are constant).
Thus,

kt = f ′−1(r + δ) ≡ k, for all t. (6.32)

The stock of capital, Kt, is determined by the equation Kt = kLt.
In view of firms’profit maximization, the equilibrium real wage before tax is

wt =
∂Yt
∂Lt

= f(k)− f ′(k)k ≡ w, (6.33)

a constant. GDP will evolve according to

Yt = f(k)Lt = f(k)L0(1 + n)t = Y0(1 + n)t.

The growth rate of Y thus equals the growth rate of the labor force, i.e., gY = n.

Government and household behavior

We assume that the role of the government sector is to deliver some public good
or service in the amount Gt in period t. Think of a non-rival good like “rule of
law”, TV-transmitted theatre, or another public service free of charge. Suppose

Gt = G0(1 + n)t,

where 0 < G0 < F (K0, L0). It is assumed that the production of Gt uses the
same technology and therefore involves the same unit production costs as the
other components of GDP. As the focus is not on distortionary effects of taxation,

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



6.7. Ricardian equivalence? 245

taxes are assumed to be lump sum, i.e., levied on individuals irrespective of their
economic behavior.
To get explicit solutions, we specify the period utility function to be CRRA:

u(c) = (c1−θ − 1)/(1 − θ), where θ > 0. To keep things simple, the utility of
the public good enters the life-time utility additively so that it does not affect
marginal utilities of private consumption. In addition we assume that the public
good does not affect productivity in the private sector. There is a tax on the
young as well as the old in period t, τ 1 and τ 2, respectively. Until further notice
these taxes are time-independent. Possibly, τ 1 or τ 2 is negative, in which case
there is a transfer to either the young or the old.
The consumption-saving decision of the young will be the solution to the

following problem:

maxU(c1t, c2t+1) =
c1−θ

1t − 1

1− θ + v(Gt) + (1 + ρ)−1

[
c1−θ

2t+1 − 1

1− θ + v(Gt+1)

]
s.t.

c1t + st = w − τ 1,

c2t+1 = (1 + r)st − τ 2,

c1t ≥ 0, c1t+1 ≥ 0,

where the function v represents the utility contribution of the public good. The
implied Euler equation can be written

c2t+1

c1t

=

(
1 + r

1 + ρ

)1/θ

.

Inserting the two budget constraints and solving for st, we get

st =
w − τ 1 +

(
1+ρ
1+r

)1/θ
τ 2

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
≡ s(w, r, τ 1, τ 2). (6.34)

Consumption in the first and the second period then is

c1t = w − τ 1 − st = ĉ1(r)ht (6.35)

and
c2t+1 = ĉ2(r)ht, (6.36)

respectively, where

ĉ1(r) ≡ 1 + ρ

1 + ρ+
(

1+r
1+ρ

)(1−θ)/θ ∈ (0, 1) and (6.37)

ĉ2(r) =

(
1 + r

1 + ρ

)1/θ

ĉ1(r) =
1 + r

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
(6.38)
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are the marginal (= average) propensities to consume out of wealth, and where
ht is the after-tax human wealth of the young, i.e., the present value, evaluated
at the end of period t, of disposable lifetime income (the “endowment”). Thus,

ht = w − τ 1 −
τ 2

1 + r
≡ h. (6.39)

Under the given conditions human wealth is thus time-independent. We assume
τ 1 and τ 2 are such that h > 0. Given r, individual consumption in the first as well
as the second period of life is thus proportional to individual human wealth. This
is as expected in view of the homothetic life time utility function. If ρ = r, then
ĉ1(r) = ĉ2(r) = (1 + r)/(2 + r), that is, there is complete consumption smoothing
as also the Euler equation indicates when ρ = r.25

The tax revenue in period t is Tt = τ 1Lt + τ 2Lt−1 = (τ 1 + τ 2/(1 + n))Lt. Let
B0 = 0 and let the “reference path”be a path along which the budget is and
remains balanced for all t, i.e., Tt = Gt = G0(1 + n)t. In the reference path the
tax code (τ 1, τ 2) thus satisfies(

τ 1 +
τ 2

1 + n

)
L0 = G0.

Consistency with h > 0 in (6.39) requires a “not too large”G0.
Along the reference path, aggregate private consumption grows at the same

constant rate as GDP and public consumption, the rate n. Indeed,

Ct = c1tLt +
c2t

1 + n
Lt = (c1t +

c2t

1 + n
)L0(1 + n)t = C0(1 + n)t.

A one-off tax cut

As an alternative to the reference path, consider the case where an unexpected
one-off cut in taxation by x takes place in period 0 for every individual, whether
young or old. Given 0 < x < τ 1, what are the consequences of this? The tax
cut amounts to creating a budget deficit in period 0 equal to (L0 + L−1)x. At
the start of period 1 there is thus a government debt B′1 = (L0 +L−1)x, while in
the reference path, B1 = 0. Since we assume r > n = gY , government solvency
requires that the present value of future taxes, as seen from the beginning of
period 1, rises by (L0 + L−1)x. This may be accomplished by, for instance,
raising the tax on all individuals from period 1 onward by m. Suppose this way
of addressing the arisen debt is already in period 0 credibly announced by the

25By calculating backwards from (6.38) to (6.37) to (6.34), the reader may check whether the
calculated st, c1t and c2t+1 are consistent.
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government to be followed. The required value of m will satisfy

∞∑
t=1

(L0 + L−1)(1 + n)tm(1 + r)−t = (L0 + L−1)x.

This gives

m
∞∑
t=1

(
1 + n

1 + r

)t
= x.

As r > n, from the rule for the sum of an infinite geometric series follows that

m =
r − n
1 + n

x ≡ m̄. (6.40)

The needed rise in future taxes is thus higher the higher is the interest rate r.
This is because the interest burden of the debt will be higher. On the other
hand, a higher population growth rate, n, reduces the needed rise in future taxes.
This is because the interest burden per capita is mitigated by population growth.
Finally, a greater tax cut, x, in the first period implies greater tax rises in future
periods.
Let the value of the variables along this alternative path be marked with a

prime. In period 0 the tax cut unambiguously benefits the old whose increase in
consumption equals the saved tax:

c′20 − c20 = x > 0. (6.41)

The young in period 0 know that per capita taxes next period will be increased
by m̄. In view of the tax cut in period 0, the young nevertheless experiences an
increase in after-tax human wealth equal to

h′0 − h0 = w − τ 1 + x− τ 2 + m̄

1 + r
−
(
w − τ 1 −

τ 2

1 + r

)
=

(
1− r − n

(1 + r)(1 + n)

)
x (by (6.40))

=
1 + (2 + r)n

(1 + r)(1 + n)
x > 0.

Consequently, through the wealth effect this generation enjoys increases in con-
sumption through life equal to

c′10 − c10 = ĉ1(r)(h′0 − h0) > 0, (6.42)

c′21 − c21 = ĉ2(r)(h′0 − h0) > 0, (6.43)
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by (6.35) and (6.36), respectively. So the two generations alive in period 0 gain
from the temporary budget deficit. But all future generations are worse off. These
generations do not benefit from the tax relief in period 0, but they have to bear
the future cost of the tax relief by a reduction in individual after-tax human
wealth. Indeed, for t = 1, 2, . . . ,

h′t − ht = h′1 − h = w − τ 1 − m̄−
τ 2 + m̄

1 + r
−
(
w − τ 1 −

τ 2

1 + r

)
= −

(
m̄+

m̄

1 + r

)
< 0. (6.44)

All things considered, since both the young and the old in period 0 increase
their consumption, aggregate consumption in period 0 rises. Ricardian equiva-
lence thus fails.

National saving and wealth accumulation*

The direct impact on national wealth of the temporary tax cut How
does aggregate private net saving, SN10 + SN20, respond to the temporary tax cut?
In both the reference path and the alternative path, the old enter period 0 with
the financial wealth A0 and leave the period with zero financial wealth. So their
net saving is SN20 = −A0 in both fiscal regimes. Although the young in period 0
increase their consumption in response to the temporary tax cut, they increase
their period 0-saving as well. The increased saving by the young is revealed by
the fact that they in period 1, as old, can afford to increase their consumption
in spite of the tax increase of size m̄ in that period. Indeed, from (6.43) and the
period budget constraint as old follows

0 < c′21 − c21 = (1 + r)s′0 − (τ 2 + m̄)− ((1 + r)s0 − τ 2)

= (1 + r)(s′0 − s0)− m̄ < (1 + r)(s′0 − s0),

thus implying s′0−s0 > 0. Since A′1/L0 = s′0 > s0 = A1/L0, also aggregate private
financial wealth per old at the beginning of period 1 is larger than it would have
been without the temporary tax cut. This might seem paradoxical in view of the
higher aggregate private consumption in period 0. The explanation lies in the
fact that the lower taxation in period 0 means higher disposable income, allowing
both higher private consumption and higher private saving in period 0.
Nevertheless, gross national saving, cf. (6.29), is lower than in the reference

path. Indeed, C ′0 > C0 implies

S ′0 = F (K0, L0)− rNFD0 − C ′0 −G0 < F (K0, L0)− rNFD0 − C0 −G0 = S0.
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A counterpart of the increased private saving is the public dissaving, reflecting the
budget deficit created one-to-one by the reduction in taxation. As the increased
disposable income resulting from the latter partly goes to increased private saving
and partly to increased private consumption, the rise in private saving is smaller
than the public dissaving. Consequently, gross national saving ends up lower
than in the reference path.
Net national saving in the reference path is SN0 = S0 − δK0. The public

dissaving in the alternative path reduces net national saving by the amount

SN0 − SN ′0 = C ′0 − C0 = c′10L0 + c′20L−1 − (c10L0 + c20L−1)

= (c′10 − c10)L0 + (c′20 − c20)L−1 = ĉ1(r)(h′0 − h0)L0 + xL−1

= ĉ1(r)
1 + (2 + r)n

(1 + r)(1 + n)
xL0 + x

1

1 + n
L0

=

(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
L0x > 0. (6.45)

For our national income accounting to be consistent, national wealth should
decrease by the same amount as net national saving. Let us check. By the
definition (6.30) follows

V ′1 = A′1 −B′1 = s′0L0 − (1 +
1

1 + n
)L0x = (w − (τ 1 − x)− c′10 − x)L0 −

1

1 + n
L0x

= (w − τ 1 − ĉ1(r)h′0)L0 −
1

1 + n
L0x

=

(
w − τ 1 − ĉ1(r)

(
w − τ 1 + x− τ 2 + m̄

1 + r

))
L0 −

1

1 + n
L0x

=

(
w − τ 1 − ĉ1(r)

(
w − τ 1 −

τ 2

1 + r

))
L0 − ĉ1(r)

(
x− m̄

1 + r

)
L0 −

1

1 + n
L0x

= s0L0 − ĉ1(r)

(
1− r − n

(1 + r)(1 + n)

)
L0x−

1

1 + n
L0x

= s0L0 −
(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
L0x < s0L0 = V1. (6.46)

We see that national wealth has decreased by an amount equal to the decrease
in net national saving in (6.45), as it should.

Later consequences As revealed by (6.44), all future generations (those born
in period 1, 2, . . . ) are worse off along the alternative path. One might think that
also aggregate private financial wealth per old along the alternative path would
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necessarily be lower. But this is not so. As of period t = 2, 3,. . . , aggregate
private financial wealth per old along the alternative path is

A′t/Lt−1 = s′t−1 = w − (τ 1 + m̄)− c′1t−1 = w − (τ 1 + m̄)− ĉ1(r)h′t

= w − (τ 1 + m̄)− ĉ1(r)

(
w − τ 1 − m̄−

τ 2 + m̄

1 + r

)
= w − τ 1 − m̄− ĉ1(r)(w − τ 1) + ĉ1(r)m̄+ ĉ1(r)

τ 2

1 + r
+ ĉ1(r)

m̄

1 + r

= w − τ 1 − ĉ1(r)(w − τ 1 −
τ 2

1 + r
)− m̄+ ĉ1(r)m̄+ ĉ1(r)

m̄

1 + r

= w − τ 1 − ĉ1(r)

(
w − τ 1 −

τ 2

1 + r

)
−
(

1− ĉ1(r)

(
1 +

1

1 + r

))
m̄

= st−1 −
(

1− ĉ1(r)
2 + r

1 + r

)
r − n
1 + n

x. (6.47)

Thus, for t = 2, 3, . . . ,

A′t
Lt−1

Q At
Lt−1

holds for s′t−1 Q st−1, respectively, which in turn holds for

ĉ1(r) Q 1 + r

2 + r
, respectively. (6.48)

In the benchmark case θ = 1, (6.37) gives ĉ1(r) = (1 + r)/(2 + ρ). In combination
with (6.48), this implies that aggregate private financial wealth per old along the
alternative path is lower than, equal to, or higher than that along the reference
path if ρ R r, respectively (in the benchmark case θ = 1). The reason that it
may be higher is that the saving by the young, which next period constitutes the
private financial wealth, has to cover not only the consumption as old but also
the taxes as old which have been increased. In view of st = (c2t+1 + τ 2)/(1 + r),
a rise in τ 2 thus gives scope for a rise in st at the same time as c2t+1 decreases.

For certain, however, national wealth as of period t = 2, 3, . . . , is smaller
along the alternative path. In Exercise 6.? the reader is asked to show that for
t = 1, 2, . . . , we have B′t = [(2 + n)/(1 + n)]L1(1 +n)t−2x.With this evolution of
public debt, the evolution in national wealth per old along the alternative path
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as of period t = 2, 3, . . . , is

V ′t
Lt−1

≡ A′t
Lt−1

− Bt

Lt−1

= s′t−1 −
2 + n

1 + n
x

= st−1 −
[(

1− ĉ1(r)
2 + r

1 + r

)
(r − n) + 2 + n

]
1

1 + n
x (by (6.47))

= s0 −
(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
x− (1− ĉ1(r))

1 + r

1 + n
x

< s0 −
(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
x = V ′1/L0 (by (6.46))

< s0 =
A1

L0

=
At
Lt−1

=
Vt
Lt−1

,

where the second to last inequality is due to ĉ1(r) < 1, cf. (6.37), while the two
first equalities in the last line are due to the constancy of “per old” variables
along the reference path. The last equality is due to the absence of government
debt along that path. So, like period 1, also the subsequent periods experience a
reduction in national wealth as a consequence of the temporary tax cut in period
0.
Period 1 is special, though. While there is a per capita tax increase by m̄ like

in the subsequent periods, period 1’s old generation still benefits from the higher
disposable income in period 0. Hence, in period 2 national wealth per old is even
lower than in period 1 but remains constant henceforth.

A closed economy Also in a closed economy would the future generations be
worse offas a result of a temporary tax cut. Indeed, national wealth (which in the
closed economy equals K) would, in view of the reduced national saving in period
0, in period 1 be smaller than otherwise. As of period 2 national wealth would be
even smaller than in period 1, in view of the further reduction in national saving
that occurs in period 1.

Perspectives on the debt neutrality issue

The fundamental point underlined by OLG models is that there is a difference
between the public sector’s future tax base, including the resources of individuals
yet to be born, and the future tax base emanating from individuals alive today.
This may be called the composition-of-tax-base argument for a tendency to non-
neutrality of shifting the timing of (lump-sum) taxation.26

26In Exercise 6.?? the reader is asked how the burden of the public debt is distributed across
generations if the debt should be completely wiped out through a tax increase in only periods
1 and 2.
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The conclusion that under full capacity utilization budget deficits imply a
burden for future generations may be seen in a somewhat different light if per-
sistent technological progress is included in the model. In that case, everything
else equal, future generations will generally be better off than current generations.
Then it might seem less unfair if the former carry some public debt forward to the
latter. In particular this is so if a part of Gt represents spending on infrastructure,
education, research, health, and environmental protection. As future generations
directly benefit from such investment, it seems fair that they also contribute to
the financing. This is the “benefits received principle”known from public finance
theory.

A further concern is whether the economy is a state of full capacity utiliza-
tion or serious unemployment. The above analysis assumes the first. What if the
economy in period 0 is in economic depression with high unemployment due to
insuffi cient aggregate demand? Some economists maintain that also in this situa-
tion is a cut in (lump-sum) taxes to stimulate aggregate demand futile because it
has no real effect. The argument is again that foreseeing the higher taxes needed
in the future, people will save more to prepare themselves (or their descendants
through higher bequests) for paying the higher taxes in the future. The opposite
view is, first, that the composition-of-tax-base argument speaks against this as
usual. Second, there is in a depression an additional and quantitatively impor-
tant factor. The “first-round”increase in consumption due to the temporary tax
cut raises aggregate demand. Thereby production and income is stimulated and
a further (but smaller) rise in consumption occurs in the “second round”and so
on (the Keynesian multiplier process).

This Keynesian mechanism is important for the debate about effects of budget
deficits because there are limits to how large deviations from Ricardian equiva-
lence the composition-of-tax-base argument alone can deliver. Indeed, taking into
account the sizeable life expectancy of the average citizen, Poterba and Summers
(1987) point out that the composition-of-tax-base argument by itself delivers only
modest deviations if the issue is timing of taxes over the business cycle.

Another concern is that in the real world, taxes tend to be distortionary and
not lump sum. On the one hand, this should not be seen as an argument against
the possible theoretical validity of the Ricardian equivalence proposition. The
reason is that Ricardian equivalence (in its strict meaning) claims absence of
allocational effects of changes in the timing of lump-sum taxes.

On the other hand, in a wider perspective the interesting question is, of course,
how changes in the timing of distortionary taxes is likely to affect resource allo-
cation. Consider first income taxes. When taxes are proportional to income or
progressive (average tax rate rising in income), they provide insurance through re-
ducing the volatility of after-tax income. The fall in taxes in a recession thus helps
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stimulating consumption through reduced precautionary saving (the phenomenon
that current saving tends to rise in response to increased uncertainty, cf. Chapter
??). In this way, replacing lump-sum taxation by income taxation underpins the
positive wealth effect on consumption, arising from the composition-of-tax-base
channel, of a debt-financed tax-cut in an economic recession.
What about consumption taxes? A debt-financed temporary cut in consump-

tion taxes stimulates consumption through a positive wealth effect, arising from
the composition-of-tax-base channel. On top of this comes a positive intertempo-
ral substitution effect on current consumption caused by the changed consumer
price time profile.
The question whether Ricardian non-equivalence is important from a quan-

titative and empirical point of view pops up in many contexts within macroeco-
nomics. We shall therefore return to the issue several times later in this book.

6.8 Concluding remarks

(incomplete)
Point (iv) in Section 6.1 hints at the fact that when outcomes depend on

forward-looking expectations in the private sector, governments may face a time-
inconsistency problem. In this context time inconsistency refers to the possible
temptation of the government to deviate from its previously announced course
of action once the private sector has acted. An example: With the purpose
of stimulating private saving, the government announces that it will not tax
financial wealth. Nevertheless, when financial wealth has reached a certain level,
it constitutes a tempting base for taxation and so a tax on wealth might be levied.
To the extent the private sector anticipates this, the attempt to affect private
saving in the first place fails. This raises issues of commitment and credibility.
We return to this kind of problems in later chapters.
Finally, point (v) in Section 6.1 alludes to the fact that political processes,

bureaucratic self-interest, rent seeking, and lobbying by powerful interest groups
interferes with fiscal policy.27 This is a theme in the branch of economics called
political economy and is outside the focus of this chapter.

6.9 Literature notes

(incomplete)

27Rent seeking refers to attempts to gain by increasing one’s share of existing wealth, instead
of trying to produce wealth.
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Sargent and Wallace (1981) study consequences of − and limits to − a shift
from debt financing to money financing of sustained government budget deficits
in response to threatening increases in the government debt-income ratio.
How the condition r > gY , for prudent debt policy to be necessary, is modified

when the assumption of no uncertainty is dropped is dealt with in Abel et al.
(1989), Bohn (1995), Ball et al. (1998), and Blanchard and Weil (2001).
Readers wanting to go more into detail with the debate about the design of the

EMU and the Stability and Growth Pact is referred to the discussions in for exam-
ple Buiter (2003), Buiter and Grafe (2004), Fogel and Saxena (2004), Schuknecht
(2005), and Wyplosz (2005). As to discussions of the actual functioning of mone-
tary and fiscal policy in the Eurozone in response to the Great Recession, see for
instance the opposing views by De Grauwe and Ji (2013) and Buti and Carnot
(2013). Blanchard and Giavazzi (2004) discuss how proper accounting of public
investment would modify the deficit and debt rules of the EMU. Beetsma and
Giuliodori (2010) survey recent research of costs and benefits of the EMU.
On the theory of optimal currency areas, see Krugman, Obstfeld, and Melitz

(2012).
In addition to the hampering of Keynesian stabilization policy discussed in

Section 6.4.2, also demographic staggering (due to baby booms succeeded by
baby busts) may make rigid deficit rules problematic. In Denmark for instance
demographic staggering is prognosticated to generate considerable budget deficits
during several decades after 2030 where younger and smaller generations will suc-
ceed older and larger ones in the labor market. This is prognosticated to take
place, however, without challenging the long-run sustainability of current fiscal
policy as assessed by the Danish Economic Council (see the English Summary in
De Økonomiske Råd, 2014). This phenomenon is in Danish known as “hængekø-
jeproblemet”(the “hammock problem”).
Sources for last part of Section 6.7 ....

6.10 Exercises

6.xx In the OLG model of Section 6.6.2, derive (6.37) and (6.38).

6.? In the OLG model of Section 6.6.2, show that for t = 1, 2, 3, . . . , public debt
along the “alternative path”evolves according to B′t = [(2 + n)/(1 + n)]L1(1 +
n)t−2x, where x is the temporary per capita tax cut in period 0. Hint: given
the information in Section 6.6.2 you may start by deriving a first-order difference
equation in bt ≡ Bt/Yt with constant coeffi cients. The information that the
“reference path" has a balanced budget for all t should be taken into account. In
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addition, you should explain - and apply - that the initial condition is b1 = B1/Y1

= (2 + n)x/ [f(k)(1 + n)2] .

6.?? Consider the OLG model of Section 6.6.2. a) Show that if the temporary
per capita tax cut, x, is suffi ciently small, the debt can be completely wiped out
through a per capita tax increase in only periods 1 and 2. b) Investigate how in
this case the burden of the debt is distributed across generations. Compare with
the alternative debt policy described in the text.
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Chapter 9

The intertemporal
consumption-saving problem in
discrete and continuous time

In the next two chapters we shall discuss − and apply − the continuous-time ver-
sion of the basic representative agent model, the Ramsey model. As a preparation
for this, the present chapter gives an account of the transition from discrete time
to continuous time analysis and of the application of optimal control theory to
formalize and solve the household’s consumption/saving problem in continuous
time.

There are many fields in economics where a setup in continuous time is prefer-
able to one in discrete time. One reason is that continuous time formulations
expose the important distinction in dynamic theory between stock and flows in
a much clearer way. A second reason is that continuous time opens up for appli-
cation of the mathematical apparatus of differential equations; this apparatus is
more powerful than the corresponding apparatus of difference equations. Simi-
larly, optimal control theory is more developed and potent in its continuous time
version than in its discrete time version, considered in Chapter 8. In addition,
many formulas in continuous time are simpler than the corresponding ones in
discrete time (cf. the growth formulas in Appendix A).

As a vehicle for comparing continuous time modeling with discrete time mod-
eling we consider a standard household consumption/saving problem. How does
the household assess the choice between consumption today and consumption in
the future? In contrast to the preceding chapters we allow for an arbitrary num-
ber of periods within the time horizon of the household. The period length may
thus be much shorter than in the previous models. This opens up for capturing
additional aspects of economic behavior and for undertaking the transition to
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continuous time in a smooth way.
We first specify the market environment in which the optimizing household

operates.

9.1 Market conditions

In the Diamond OLG model no loan market was active and wealth effects on
consumption or saving through changes in the interest rate were absent. It is
different in a setup where agents live for many periods and realistically have a
hump-shaped income profile through life. This motivates a look at the financial
market and more refined notions related to intertemporal choice.

A perfect loan market Consider a given household or, more generally, a
given contractor. Suppose the contractor at a given date t wants to take a loan or
provide loans to others at the going interest rate, it, measured in money terms. So
two contractors are involved, a borrower and a lender. Let the market conditions
satisfy the following four criteria:

(a) the contractors face the same interest rate whether borrowing or lending
(that is, monitoring, administration, and other transaction costs are ab-
sent);

(b) there are many contractors on each side and none of them believe to be able
to influence the interest rate (the contractors are price takers in the loan
market);

(c) there are no borrowing restrictions other than the requirement on the part
of the borrower to comply with her financial commitments;

(d) the lender faces no default risk (the borrower can somehow cost-less be
forced to repay the debt with interest on the conditions specified in the
contract).

A loan market satisfying these idealized conditions is called a perfect loan
market. In such a market,

1. various payment streams can be subject to comparison in a simple way; if
they have the same present value (PV for short), they are equivalent;

2. any payment stream can be converted into another one with the same
present value;
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3. payment streams can be compared with the value of stocks.

Consider a payment stream {xt}T−1
t=0 over T periods, where xt is the payment

in currency at the end of period t. Period t runs from time t to time t + 1 for t
= 0, 1, ..., T − 1. We ignore uncertainty and so it is the interest rate on a riskless
loan from time t to time t + 1. Then the present value, PV0, as seen from the
beginning of period 0, of the payment stream is defined as1

PV0 =
x0

1 + i0
+

x1

(1 + i0)(1 + i1)
+ · · ·+ xT−1

(1 + i0)(1 + i1) · · · (1 + iT−1)
. (9.1)

If Ms. Jones is entitled to the income stream {xt}T−1
t=0 and at time 0 wishes

to buy a durable consumption good of value PV0, she can borrow this amount
and use a part of the income stream {xt}T−1

t=0 to repay the debt with interest over
the periods t = 0, 1, 2, ..., T − 1. In general, when Jones wishes to have a time
profile on the payment stream different from the income stream, she can attain
this through appropriate transactions in the loan market, leaving her with any
stream of payments of the same present value as the given income stream.

Real versus nominal rate of return In this chapter we maintain the as-
sumption of perfect competition in all markets, i.e., households take all prices as
given from the markets. In the absence of uncertainty, the various assets (real
capital, stocks, loans etc.) in which households invest give the same rate of return
in equilibrium. The good which is traded in the loan market can be interpreted
as a (riskless) bond. The borrower issues bonds and the lender buys them. In
this chapter all bonds are assumed to be short-term, i.e., one-period bonds. For
every unit of account borrowed at the end of period t−1, the borrower pays back
with certainty (1 + short-term interest rate) units of account at the end of period
t. If a borrower wishes to maintain debt through several periods, new bonds are
issued at the end of the current period and the obtained loans are spent rolling
over the older loans at the going market interest rate. For the lender, who lends
in several periods, this is equivalent to offering a variable-rate demand deposit
like in a bank.2

Our analysis will be in real terms, that is, inflation-corrected terms. In prin-
ciple the unit of account is a fixed bundle of consumption goods. In the simple
macroeconomic models to be studied in this and most subsequent chapters, such

1We use “present value” as synonymous with “present discounted value”. As usual our
timing convention is such that PV0 denotes the time-0 value of the payment stream, including
the discounted value of the payment (or dividend) indexed by 0.

2Unless otherwise specified, this chapter uses terms like “loan market”and “bond market”
interchangeably. As uncertainty is ignored, this is legitimate.
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a bundle is reduced to one consumption good. The models simply assume there
is only one consumption good in the economy. In fact, there will only be one
produced good, “the”output good, which can be used for both consumption and
capital investment. Whether our unit of account is seen as the consumption good
or the output good is thus immaterial.
The real (net) rate of return on an investment is the rate of return in units

of the output good. More precisely, the real rate of return in period t, rt, is the
(proportionate) rate at which the real value of an investment, made at the end
of period t− 1, has grown after one period.
The link between this rate of return and the more commonplace concept of a

nominal rate of return is the following. Imagine that at the end of period t − 1
you make a bank deposit of value Vt euro. The real value of the deposit when
you invest is then Vt/Pt−1, where Pt−1 is the price in euro of the output good at
the end of period t− 1. If the nominal short-term interest rate is it, the deposit is
worth Vt+1 = Vt(1 + it) euro at the end of period t. By definition of rt, the factor
by which the deposit in real terms has expanded is

1 + rt =
Vt+1/Pt
Vt/Pt−1

=
Vt+1/Vt
Pt/Pt−1

=
1 + it
1 + πt

, (9.2)

where πt ≡ (Pt − Pt−1)/Pt−1 is the inflation rate in period t. So the real (net)
rate of return on the investment is rt = (it − πt)/(1 + πt) ≈ it − πt for it and πt
“small”. The number 1 + rt is called the real interest factor and measures the
rate at which current units of output can be traded for units of output one period
later.
In the remainder of this chapter we will think in terms of real values and

completely ignore monetary aspects of the economy.

9.2 Maximizing discounted utility in discrete time

As mentioned, the consumption/saving problem faced by the household is as-
sumed to involve only one consumption good. The composition of consumption
in each period is not part of the problem. What remains is the question how to
distribute consumption over time.

The intertemporal utility function

A plan for consumption in the periods 0, 1, ..., T − 1 is denoted {ct}T−1
t=0 , where ct

is the consumption in period t. We say the plan has time horizon T. Period 0
(“the initial period”) need not refer to the “birth”of the household but is just
an arbitrary period within the lifetime of the household.
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We assume the preferences of the household can be represented by a time-
separable intertemporal utility function with a constant utility discount rate and
no utility from leisure. The latter assumption implies that the labor supply
of the household in each period is inelastic. The time-separability itself just
means that the intertemporal utility function is additive, i.e., U(c0, c1,. . . , cT−1)
= u(0)(c0) + u(1)(c1)+ . . . +u(T−1)(cT−1), where u(t)(ct) is the utility contribution
from period-t consumption, t = 0, 1,. . . , T − 1. In addition we assume geometric
utility discounting, meaning that utility obtained t periods ahead is converted
into a present equivalent by multiplying by the discount factor (1 + ρ)−t, where
ρ is a constant utility discount rate. So u(t)(ct) = u(ct)(1 + ρ)−t, where u(c)
is a time-independent period utility function. Together, these two assumptions
amount to

U(c0, c1, · · · , cT−1) = u(c0) +
u(c1)

1 + ρ
+ . . . +

u(cT−1)

(1 + ρ)T−1
=

T−1∑
t=0

u(ct)

(1 + ρ)t
. (9.3)

The period utility function is assumed to satisfy u′(c) > 0 and u′′(c) < 0. As
explained in Box 9.1, only linear positive transformations of the period utility
function are admissible.
As (9.3) indicates, the number 1+ρ tells how many units of utility in the next

period the household insists on “in return”for a decrease of one unit of utility in
the current period. So, a ρ > 0 will reflect that if the chosen level of consumption
is the same in two periods, then the individual always appreciates a marginal
unit of consumption higher if it arrives in the earlier period. This explains why
ρ is named the rate of time preference or, even more to the point, the rate of
impatience. The utility discount factor, 1/(1 + ρ)t, indicates how many units of
utility the household is at most willing to give up in period 0 to get one additional
unit of utility in period t.3

It is generally believed that human beings are impatient and that ρ should
therefore be assumed positive.4 There is, however, a growing body of evidence
suggesting that the utility discount rate is typically not constant, but declining
with the time distance from the current period to the future periods within the
horizon. This phenomenon is referred to as “present bias”or, with a more tech-
nical term, “hyperbolic discounting”. Macroeconomics often, as a first approach,

3Multiplying through in (9.3) by (1 + ρ)−1 would make the objective function appear in a
way similar to (9.1) in the sense that also the first term in the sum becomes discounted. At the
same time the ranking of all possible alternative consumption paths would remain unaffected.
For ease of notation, however, we use the form (9.3) which is more standard. Economically,
there is no difference.

4If uncertainty were included in the model, (1 + ρ)−1 might be interpreted as (roughly)
reflecting the probability of surviving to the next period. In this perspective, ρ > 0 is definitely
a plausible assumption.
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ignores the problem and assumes a constant ρ to keep things simple. We will
generally follow this practice.
For many issues the size of ρ is immaterial. Except when needed, we shall

therefore not impose any other constraint on ρ than the definitional requirement
in discrete time that ρ > −1.

Box 9.1. Admissible transformations of the period utility function

When preferences, as assumed here, can be represented by discounted utility, the
concept of utility appears at two levels. The function U in (9.3) is defined on
the set of alternative feasible consumption paths and corresponds to an ordinary
utility function in general microeconomic theory. That is, U will express the
same ranking between alternative consumption paths as any increasing transfor-
mation of U . The period utility function, u, defined on the consumption in
a single period, is a less general concept, requiring that reference to “utility
units”is legitimate. That is, the size of the difference in terms of period utility
between two outcomes has significance for choices. Indeed, the essence of the
discounted utility hypothesis is that we have, for example,

u(c0)− u(c′0) > 0.95
[
u(c′1)− u(c1)

]
⇔ (c0, c1) � (c′0, c

′
1),

meaning that the household, having a utility discount factor 1/(1 + ρ) = 0.95,
strictly prefers consuming (c0, c1) to (c′0, c

′
1) in the first two periods, if and only

if the utility differences satisfy the indicated inequality. (The notation x � y
means that x is strictly preferred to y.)

Only a linear positive transformation of the utility function u, that is,
v(c) = au(c) + b, where a > 0, leaves the ranking of all possible alternative
consumption paths, {ct}T−1

t=0 , unchanged. This is because a linear positive
transformation does not affect the ratios of marginal utilities (the marginal
rates of substitution across time).

The saving problem in discrete time

Suppose the household considered has income from two sources: work and fi-
nancial wealth. Let at denote the real value of (net) financial wealth held by
the household at the beginning of period t (a for “assets”). We treat at as pre-
determined at time t and in this respect similar to a variable-interest deposit with
a bank. The initial financial wealth, a0, is thus given, independently of what in
interest rate is formed in the loan market. And a0 can be positive as well as
negative (in the latter case the household is initially in debt).
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The labor income of the household in period t is denoted wt ≥ 0 and may
follow a typical life-cycle pattern, first rising, then more or less stationary, and
finally vanishing due to retirement. Thus, in contrast to previous chapters where
wt denoted the real wage per unit of labor, here a broader interpretation of wt
is allowed. Whatever the time profile of the amount of labor delivered by the
household through life, in this chapter, where the focus is on individual saving,
we regard this time profile, as well as the hourly wage as exogenous. The present
interpretation of wt will coincide with the one in the other chapters if we imagine
that the household in each period delivers one unit of labor.
To avoid corner solutions we impose the No Fast Assumption limc→0 u

′(c) =
∞. Since uncertainty is by assumption ruled out, the problem is to choose a plan
(c0, c1,. . . , cT−1) so as to maximize

U =

T−1∑
t=0

u(ct)(1 + ρ)−t s.t. (9.4)

ct ≥ 0, (9.5)

at+1 = (1 + rt)at + wt − ct, a0 given, (9.6)

aT ≥ 0, (9.7)

where rt is the interest rate. The control region (9.5) reflects the definitional
non-negativity of the control variable, consumption. The dynamic equation (9.6)
is an accounting relation telling how financial wealth moves over time. Indeed,
income in period t is rtat +wt and saving is then rtat +wt− ct. Since saving is by
definition the same as the increase in financial wealth, at+1− at, we obtain (9.6).
Finally, the terminal condition (9.7) is a solvency requirement that no financial
debt be left over at the terminal date, T . We shall refer to this decision problem
as the standard discounted utility maximization problem without uncertainty.

Solving the problem

To solve the problem, let us use the substitution method.5 From (9.6) we have ct
= (1 + rt)at + wt − at+1, for t = 0, 1,. . . , T − 1. Substituting this into (9.4), we
obtain a function of a1, a2,. . . , aT . Since u′ > 0, saturation is impossible and so an
optimal solution cannot have aT > 0. Hence we can put aT = 0 and the problem
is reduced to an essentially unconstrained problem of maximizing a function Ũ
w.r.t. a1, a2,. . . , aT−1. Thereby we indirectly choose c0, c1,. . . , cT−2. Given aT−1,
consumption in the last period is trivially given as

cT−1 = (1 + rT−1)aT−1 + wT−1,

5Alternative methods include the Maximum Principle as described in the previous chapter
or Dynamic Programming as described in Math Tools.
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ensuring
aT = 0, (9.8)

the terminal optimality condition, necessary when u′(c) > 0 for all c ≥ 0 (satu-
ration impossible).
To obtain first-order conditions we put the partial derivatives of Ũ w.r.t. at+1,

t = 0, 1,. . . , T − 2, equal to 0:

∂Ũ

∂at+1

= (1 + ρ)−t
[
u′(ct) · (−1) + (1 + ρ)−1u′(ct+1)(1 + rt+1)

]
= 0.

Reordering gives the Euler equations describing the trade-off between consump-
tion in two succeeding periods,

u′(ct) = (1 + ρ)−1u′(ct+1)(1 + rt+1), t = 0, 1, 2, ..., T − 2. (9.9)

One of the implications of this condition is that

ρ S rt+1 causes u′(ct) T u′(ct+1), i.e., ct S ct+1 (9.10)

in the optimal plan (due to u′′ < 0). Absent uncertainty the optimal plan entails
either increasing, constant, or decreasing consumption over time depending on
whether the rate of time preference is below, equal to, or above the rate of return
on saving.

Interpretation The interpretation of (9.9) is as follows. Let the consumption
path (c0, c1,. . . , cT−1) be our “reference path”. Imagine an alternative path which
coincides with the reference path except for the periods t and t + 1. If it is
possible to obtain a higher total discounted utility than in the reference path
by varying ct and ct+1 within the constraints (9.5), (9.6), and (9.7), at the same
time as consumption in the other periods is kept unchanged, then the reference
path cannot be optimal. That is, “local optimality”is a necessary condition for
“global optimality”. So the optimal plan must be such that the current utility
loss by decreasing consumption ct by one unit equals the discounted expected
utility gain next period by having 1 + rt+1 extra units available for consumption,
namely the gross return on saving one more unit in the current period.
A more concrete interpretation, avoiding the notion of “utility units”, is ob-

tained by rewriting (9.9) as

u′(ct)

(1 + ρ)−1u′(ct+1)
= 1 + rt+1. (9.11)

The left-hand side indicates the marginal rate of substitution, MRS, of period-
(t+1) consumption for period-t consumption, namely the increase in period-(t+1)
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consumption needed to compensate for a one-unit marginal decrease in period-t
consumption:

MRSt+1,t = −dct+1

dct
|U=Ū =

u′(ct)

(1 + ρ)−1u′(ct+1)
. (9.12)

And the right-hand side of (9.11) indicates the marginal rate of transformation,
MRT, which is the rate at which the loan market allows the household to shift
consumption from period t to period t+ 1.
So, in an optimal plan MRS must equal MRT. This has implications for the

time profile of optimal consumption as indicated by the relationship in (9.10).
The Euler equations, (9.9), can also be seen in a comparative perspective. Con-
sider two alternative values of rt+1. The higher interest rate will induce a negative
substitution effect on current consumption, ct. There is also an income effect,
however, and this goes in the opposite direction. The higher interest rate makes
the present value of a given consumption plan lower. This allows more consump-
tion in all periods for a given total wealth. Moreover, there is generally a third
effect of the rise in the interest rate, a wealth effect. As indicated by the in-
tertemporal budget constraint in (9.20) below, total wealth includes the present
value of expected future after-tax labor earnings and this present value depends
negatively on the interest rate, cf. (9.15) below.
From the formula (9.12) we see one of the reasons that the assumption of a

constant utility discount rate is convenient (but also restrictive). The marginal
rate of substitution between consumption this period and consumption next pe-
riod is independent of the level of consumption as long as this level is the same
in the two periods.
The formula for MRS between consumption this period and consumption two

periods ahead is

MRSt+2,t = −dct+2

dct
|U=Ū =

u′(ct)

(1 + ρ)−2u′(ct+2)
.

This displays one of the reasons that the time-separability of the intertemporal
utility function is a strong assumption. It implies that the trade-off between
consumption this period and consumption two periods ahead is independent of
consumption in the interim.

Deriving the consumption function when utility is CRRA The first-
order conditions (9.9) tell us about the relative consumption levels over time,
not the absolute level. The latter is determined by the condition that initial
consumption, c0, must be highest possible, given that the first-order conditions
and the constraints (9.6) and (9.7) must be satisfied.
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To find an explicit solution we have to specify the period utility function. As
an example we choose the CRRA function u(c) = c1−θ/(1 − θ), where θ > 0.6

Moreover we simplify by assuming rt = r, a constant > −1. Then the Euler
equations take the form (ct+1/ct)

θ = (1 + r)(1 + ρ)−1 so that

ct+1

ct
=

(
1 + r

1 + ρ

)1/θ

≡ γ, (9.13)

and thereby ct = γtc0, t = 0, 1,. . . , T − 1. Substituting into the accounting equa-
tion (9.6), we thus have at+1 = (1 + r)at + wt − γtc0. By backward substitution
we find the solution of this difference equation to be

at = (1 + r)t

[
a0 +

t−1∑
i=0

(1 + r)−(i+1)(wi − γic0)

]
.

Optimality requires that the left-hand side of this equation vanishes for t = T .
So we can solve for c0 :

c0 =
1 + r∑T−1

i=0

(
γ

1+r

)i
[
a0 +

T−1∑
i=0

(1 + r)−(i+1)wi

]
=

1 + r∑T−1
i=0

(
γ

1+r

)i (a0 + h0), (9.14)

where we have inserted the human wealth of the household (present value of
expected lifetime labor income) as seen from time zero:

h0 =
T−1∑
i=0

(1 + r)−(i+1)wi. (9.15)

Thus (9.14) says that initial consumption is proportional to initial total wealth,
the sum of financial wealth and human wealth at time 0. To allow for positive
consumption we need a0 + h0 > 0.
In (9.14) γ is not one of the original parameters, but a derived parameter. To

express the consumption function only in terms of the original parameters, not
that, by (9.14), the propensity to consume out of total wealth depends on:

T−1∑
i=0

(
γ

1 + r

)i
=

{
1−( γ

1+r )
T

1− γ
1+r

when γ 6= 1 + r,

T when γ = 1 + r,
(9.16)

6In later sections of this chapter we let the time horizon of the decision maker go to infinity.
To ease convergence of an infinite sum of discounted utilities, it is an advantage not to have to
bother with additive constants in the period utilities and therefore we write the CRRA function
as c1−θ/(1− θ) instead of the form, (c1−θ − 1)/(1− θ), introduced in Chapter 3. As implied by
Box 9.1, the two forms represent the same preferences.
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where the result for γ 6= 1 + r follows from the formula for the sum of a finite
geometric series. Inserting this together with (9.13) into (9.14), we end up with
the expression

c0 =


(1+r)[1−(1+ρ)−1/θ(1+r)(1−θ)/θ]

1−(1+ρ)−T/θ(1+r)(1−θ)T/θ (a0 + h0) when
(

1+r
1+ρ

)1/θ

6= 1 + r,

1+r
T

(a0 + h0) when
(

1+r
1+ρ

)1/θ

= 1 + r.
(9.17)

This, together with (9.14), thus says:

Result 1 : Consumption is proportional to total wealth, and the factor of
proportionality, often called the marginal propensity to consume out of wealth,
depends on the interest rate r, the time horizon T, and the preference parame-
ters ρ and θ, that is, the impatience rate and the strength of the preference for
consumption smoothing, respectively.

For the subsequent periods we have from (9.13) that

ct = c0

((
1 + r

1 + ρ

)1/θ
)t

, t = 1, . . . , T − 1. (9.18)

EXAMPLE 1 Consider the special case θ = 1 (i.e., u(c) = ln c) together with
ρ > 0. The upper case in (9.17) is here the relevant one and period-0 consumption
will be

c0 =
(1 + r)(1− (1 + ρ)−1)

1− (1 + ρ)−T
(a0 + h0) for θ = 1.

We see that c0 → (1 + r)ρ(1 + ρ)−1(a0 +h0) for T →∞, assuming the right-hand
side of (9.15) converges for T →∞.
We have assumed that payment for consumption occurs at the end of the

period at the price 1 per consumption unit. To compare with the corresponding
result in continuous time with continuous compounding (see Section 9.4), we
might want to have initial consumption in the same present value terms as a0

and h0. That is, we consider c̃0 ≡ c0(1 + r)−1 = ρ(1 + ρ)−1(a0 + h0) for T →∞.
�
So far the expression (9.17) is only a candidate consumption function. But

in view of strict concavity of the objective function, (9.17) is indeed the unique
optimal solution when a0 + h0 > 0.
The conclusion from (9.17) and (9.18) is that consumers look beyond current

income. More precisely:

Result 2 : Under the idealized conditions assumed, including a perfect loan
market and perfect foresight, and given the marginal propensity to consume out
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of total wealth shown in (9.17), the time profile of consumption is determined
by the total wealth and the interest rate (relative to impatience corrected for
the preference for consumption smoothing). The time profile of income does not
matter because consumption can be smoothed over time by drawing on the loan
market.

EXAMPLE 2 Consider the special case ρ = r > 0. Again the upper case in (9.17)
is the relevant one and period-0 consumption will be

c0 =
r

1− (1 + r)−T
(a0 + h0).

We see that c0 → r(a0 + h0) for T → ∞, assuming the right-hand side of (9.15)
converges for T → ∞. So, with an infinite time horizon current consumption
equals the interest on total current wealth. By consuming this the individual
or household maintains total wealth intact. This consumption function provides
an interpretation of Milton Friedman’s permanent income hypothesis. Friedman
defined “permanent income”as “the amount a consumer unit could consume (or
believes it could) while maintaining its wealth intact” (Friedman, 1957). The
key point of Friedman’s theory was the idea that a random change in current
income only affects current consumption to the extent that it affects “perma-
nent income”. Replacing Friedman’s awkward term “permanent income”by the
straightforward “total wealth”, this feature is a general aspect of all consump-
tion functions considered in this chapter. In contrast to this chapter, however,
Friedman emphasized credit market imperfections and thought of a “subjective
income discount rate”of as much as 33% per year. His interpretation of the em-
pirics was that households adopt a much shorter “horizon”than the remainder
of their expected lifetimes (Friedman, 1963, Carroll 2001). �

If the real interest rate varies over time, the discount factor (1 + r)−(i+1) for
a payment made at the end of period i is replaced by Πi

j=0(1 + rj)
−1.

Alternative approach based on the intertemporal budget constraint

There is another approach to the household’s saving problem. With its choice of
consumption plan the household must act in conformity with its intertemporal
budget constraint (IBC for short). The present value of the consumption plan
(c1, ..., cT−1), as seen from time zero, is

PV (c0, c1, ..., cT−1) ≡
T−1∑
t=0

ct
Πt
τ=0(1 + rτ )

. (9.19)
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This value cannot exceed the household’s total initial wealth, a0 + h0. So the
household’s intertemporal budget constraint is

T−1∑
t=0

ct
Πt
τ=0(1 + rτ )

≤ a0 + h0. (9.20)

In this setting the household’s problem is to choose its consumption plan so as
to maximize U in (9.4) subject to this budget constraint.
This way of stating the problem is equivalent to the approach above based

on the dynamic budget condition (9.6) and the solvency condition (9.7). Indeed,
given the accounting equation (9.6), the consumption plan of the household will
satisfy the intertemporal budget constraint (9.20) if and only if it satisfies the
solvency condition (9.7). And there will be strict equality in the intertemporal
budget constraint if and only if there is strict equality in the solvency condition
(the proof is similar to that of a similar claim relating to the government sector
in Chapter 6.2).
Moreover, since in our specific saving problem saturation is impossible, an

optimal solution must imply strict equality in (9.20). So it is straightforward to
apply the substitution method also within the IBC approach. Alternatively one
can introduce the Lagrange function associated with the problem of maximizing
U =

∑T−1
t=0 (1 + ρ)−tu(ct) s.t. (9.20) with strict equality.

Infinite time horizon In the Ramsey model of the next chapter the idea is
used that households may have an infinite time horizon. One interpretation of
this is that parents care about their children’s future welfare and leave bequests
accordingly. This gives rise to a series of intergenerational links. The household
is then seen as a family dynasty with a time horizon beyond the lifetime of
the current members of the family. Barro’s bequest model in Chapter 7 is an
application of this idea. Given a suffi ciently large rate of time preference, it is
ensured that the sum of achievable discounted utilities over an infinite horizon is
bounded from above.
One could say, of course, that infinity is a long time. The sun will eventually,

in some billion years, burn out and life on earth become extinct. Nonetheless,
there are several reasons that an infinite time horizon may provide a convenient
substitute for finite but remote horizons. First, in many cases the solution to
an optimization problem for T “large” is in a major part of the time horizon
close to the solution for T →∞.7 Second, an infinite time horizon tends to ease
aggregation because at any future point in time, remaining time is still infinite.
Third, an infinite time horizon may be a convenient notion when in any given

7The turnpike proposition in Chapter 8 exemplifies this.
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period there is a always a positive probability that there will be a next period to
be concerned about. This probability may be low, but this can be reflected in a
high effective utility discount rate. This idea will be applied in chapters 12 and
13.
We may perform the transition to infinite horizon by letting T →∞ in the ob-

jective function, (9.4) and the intertemporal budget constraint, (9.20). On might
think that, in analogy of (9.8) for the case of finite T, the terminal optimality
condition for the case of infinite horizon is limT→∞ aT = 0. This is generally not
so, however. The reason is that with infinite horizon there is no final date where
all debt must be settled. The terminal optimality condition in the present prob-
lem is simply that the intertemporal budget constraint should hold with strict
equality.
As with finite time horizon, the saving problem with infinite time horizon

may alternatively be framed in terms of a series of dynamic period-by-period
budget identities, in the form (9.6), together with the borrowing limit known as
the No-Ponzi-Game condition:

lim
t→∞

atΠ
t−1
i=0(1 + ri)

−1 ≥ 0.

As we saw in Section 6.5.2 of Chapter 6, such a “flow”formulation of the prob-
lem is equivalent to the formulation based on the intertemporal budget constraint.
We also recall from Chapter 6 that the name Ponzi refers to a guy, Charles Ponzi,
who in Boston in the 1920s temporarily became very rich by a loan arrangement
based on the chain letter principle. The fact that debts grow without bounds is
irrelevant for the lender if the borrower can always find new lenders and use their
outlay to pay off old lenders with the contracted interest. In the real world, en-
deavours to establish this sort of financial eternity machine sooner or later break
down because the flow of new lenders dries up. Such financial arrangements,
in everyday speech known as pyramid companies, are universally illegal.8 It is
exactly such arrangements the No-Ponzi-Game condition precludes.
The terminal optimality condition, known as a transversality condition, can

be shown9 to be
lim
t→∞

(1 + ρ)−(t−1)u′(ct−1)at = 0.

8A related Danish instance, though on a modest scale, could be read in the Danish newpaper
Politiken on the 21st of August 1992. “A twenty-year-old female student from Tylstrup in
Northern Jutland is charged with fraud. In an ad she offered to tell the reader, for 200 DKK,
how to make easy money. Some hundred people responded and received the reply: do like me”.
A more serious present day example is the Wall Street stockbroker, Bernard Madoff, who

admitted a Ponzi scheme that is considered to be the largest financial fraud in U.S. history. In
2009 Madoff was sentenced to 150 years in prison. Other examples of large-scale Ponzi games
appeared in Albania 1995-97 and Ukraine 2008.

9The proof is similar to that given in Chapter 8, Appendix C.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



9.3. Transition to continuous time analysis 357

9.3 Transition to continuous time analysis

In the discrete time framework the run of time is divided into successive periods
of equal length, taken as the time-unit. Let us here index the periods by i =
0, 1, 2, .... Thus financial wealth accumulates according to

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

Multiple compounding per year

With time flowing continuously, we let a(t) refer to financial wealth at time t.
Similarly, a(t + ∆t) refers to financial wealth at time t + ∆t. To begin with, let
∆t equal one time unit. Then a(i∆t) equals a(i) and is of the same value as ai.
Consider the forward first difference in a, ∆a(t) ≡ a(t+∆t)−a(t). It makes sense
to consider this change in a in relation to the length of the time interval involved,
that is, to consider the ratio ∆a(t)/∆t. As long as ∆t = 1, with t = i∆t we have
∆a(t)/∆t = (ai+1 − ai)/1 = ai+1 − ai.
Now, keep the time unit unchanged, but let the length of the time interval

[t, t+ ∆t) approach zero, i.e., let ∆t→ 0. When a is a differentiable function of
t, we have

lim
∆t→0

∆a(t)

∆t
= lim

∆t→0

a(t+ ∆t)− a(t)

∆t
=
da(t)

dt
,

where da(t)/dt, often written ȧ(t), is known as the derivative of a at the point t.
Wealth accumulation in continuous time can then be written

ȧ(t) = s(t), a(0) = a0 given, (9.21)

where s(t) is the saving flow (saving intensity) at time t. For ∆t “small”we have
the approximation ∆a(t) ≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have
∆a(t) = a(t+ 1)− a(t) ≈ s(t).
As time unit choose one year. Going back to discrete time, if wealth grows at

a constant rate g per year, then after i periods of length one year, with annual
compounding, we have

ai = a0(1 + g)i, i = 0, 1, 2, ... . (9.22)

If instead compounding (adding saving to the principal) occurs n times a year,
then after i periods of length 1/n year and a growth rate of g/n per such period,
we have

ai = a0(1 +
g

n
)i. (9.23)
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With t still denoting time measured in years passed since date 0, we have i = nt
periods. Substituting into (9.23) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

[
(1 +

1

m
)m
]gt

, where m ≡ n

g
.

We keep g and t fixed, but let n → ∞. Thus m → ∞. In the limit there is
continuous compounding and we get

a(t) = a0e
gt, (9.24)

where e is a mathematical constant called the base of the natural logarithm and
defined as e ≡ limm→∞(1 + 1/m)m ' 2.7182818285....
The formula (9.24) is the continuous-time analogue to the discrete time for-

mula (9.22) with annual compounding. A geometric growth factor is replaced by
an exponential growth factor, egt, and this growth factor is valid for any t in the
time interval (−τ 1, τ 2) for which the growth rate of a equals the constant g (τ 1

and τ 2 being some positive real numbers).
We can also view the formulas (9.22) and (9.24) as the solutions to a difference

equation and a differential equation, respectively. Thus, (9.22) is the solution to
the linear difference equation ai+1 = (1 + g)ai, given the initial value a0. And
(9.24) is the solution to the linear differential equation ȧ(t) = ga(t), given the
initial condition a(0) = a0. Now consider a time-dependent growth rate, g(t), a
continuous function of t. The corresponding differential equation is ȧ(t) = g(t)a(t)
and it has the solution

a(t) = a(0)e
∫ t
0 g(τ)dτ , (9.25)

where the exponent,
∫ t

0
g(τ)dτ , is the definite integral of the function g(τ) from 0

to t. The result (9.25) is called the accumulation formula in continuous time and
the factor e

∫ t
0 g(τ)dτ is called the growth factor or the accumulation factor.10

Compound interest and discounting in continuous time

Let r(t) denote the short-term real interest rate in continuous time at time t.
To clarify what is meant by this, consider a deposit of V (t) euro in a bank at
time t. If the general price level in the economy at time t is P (t) euro, the real
value of the deposit is a(t) = V (t)/P (t) at time t. By definition the real rate of
return on the deposit in continuous time (with continuous compounding) at time
t is the (proportionate) instantaneous rate at which the real value of the deposit
expands per time unit when there is no withdrawal from the account. Thus, if

10Sometimes the accumulation factor with time-dependent growth rate is written in a different
way, see Appendix B.
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the instantaneous nominal interest rate is i(t), we have V̇ (t)/V (t) = i(t) and so,
by the fraction rule in continuous time (cf. Appendix A),

r(t) =
ȧ(t)

a(t)
=
V̇ (t)

V (t)
− Ṗ (t)

P (t)
= i(t)− π(t), (9.26)

where π(t) ≡ Ṗ (t)/P (t) is the instantaneous inflation rate. In contrast to the
corresponding formula in discrete time, this formula is exact. Sometimes i(t) and
r(t) are referred to as the nominal and real force of interest.
Calculating the terminal value of the deposit at time t1 > t0, given its value at

time t0 and assuming no withdrawal in the time interval [t0, t1], the accumulation
formula (9.25) immediately yields

a(t1) = a(t0)e
∫ t1
t0
r(t)dt.

When calculating present values in continuous time, we use compound dis-
counting. We reverse the accumulation formula and go from the compounded or
terminal value to the present value, a(t0). Similarly, given a consumption plan
(c(t))t1t=t0 , the present value of this plan as seen from time t0 is

PV =

∫ t1

t0

c(t) e−rtdt, (9.27)

presupposing a constant interest rate, r. Instead of the geometric discount factor,
1/(1+r)t, from discrete time analysis, we have here an exponential discount factor,
1/(ert) = e−rt, and instead of a sum, an integral. When the interest rate varies
over time, (9.27) is replaced by

PV =

∫ t1

t0

c(t) e
−
∫ t
t0
r(τ)dτ

dt.

In (9.27) c(t) is discounted by e−rt ≈ (1 + r)−t for r “small”. This might not
seem analogue to the discrete-time discounting in (9.19) where it is ct−1 that is
discounted by (1 + r)−t, assuming a constant interest rate. When taking into
account the timing convention that payment for ct−1 in period t − 1 occurs at
the end of the period (= time t), there is no discrepancy, however, since the
continuous-time analogue to this payment is c(t).

The range for particular parameter values

The allowed range for parameters may change when we go from discrete time to
continuous time with continuous compounding. For example, the usual equation
for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (9.28)
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where K(t) is the capital stock, I(t) is the gross investment at time t and δ ≥ 0
is the (physical) capital depreciation rate. Unlike in discrete time, here δ > 1 is
conceptually allowed. Indeed, suppose for simplicity that I(t) = 0 for all t ≥ 0;
then (9.28) gives K(t) = K0e

−δt. This formula is meaningful for any δ ≥ 0.
Usually, the time unit used in continuous time macro models is one year (or, in
business cycle theory, rather a quarter of a year) and then a realistic value of δ
is of course < 1 (say, between 0.05 and 0.10). However, if the time unit applied
to the model is large (think of a Diamond-style OLG model), say 30 years, then
δ > 1 may fit better, empirically, if the model is converted into continuous time
with the same time unit. Suppose, for example, that physical capital has a half-
life of 10 years. With 30 years as our time unit, inserting into the formula 1/2
= e−δ/3 gives δ = (ln 2) · 3 ' 2.
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good is
1 and thus constant. More generally, if we let the relative price of the capital
good in terms of the consumption good at time t be p(t) and allow ṗ(t) 6= 0, then
we have to distinguish between the physical depreciation of capital, δ, and the
economic depreciation, that is, the loss in economic value of a machine per time
unit. The economic depreciation will be d(t) = p(t)δ− ṗ(t), namely the economic
value of the physical wear and tear (and technological obsolescence, say) minus
the capital gain (positive or negative) on the machine.
Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates of
return and discount rates in general.

Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make
a clear distinction between stocks (say wealth) and flows (say consumption or
saving). Recall, a stock variable is a variable measured as a quantity at a given
point in time. The variables a(t) and K(t) considered above are stock variables.
A flow variable is a variable measured as quantity per time unit at a given point
in time. The variables s(t), K̇(t) and I(t) are flow variables.
One can not add a stock and a flow, because they have different denomina-

tions. What is meant by this? The elementary measurement units in economics
are quantity units (so many machines of a certain kind or so many liters of oil
or so many units of payment, for instance) and time units (months, quarters,
years). On the basis of these elementary units we can form composite mea-
surement units. Thus, the capital stock, K, has the denomination “quantity of
machines”, whereas investment, I, has the denomination “quantity of machines
per time unit”or, shorter, “quantity/time”. A growth rate or interest rate has
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Figure 9.1: With ∆t small the integral of s(t) from t0 to t0 + ∆t ≈ the hatched area.

the denomination “(quantity/time)/quantity”= “time−1”. If we change our time
unit, say from quarters to years, the value of a flow variable as well as a growth
rate is changed, in this case quadrupled (presupposing annual compounding).
In continuous time analysis expressions like K(t) + I(t) or K(t) + K̇(t) are

thus illegitimate. But one can write K(t + ∆t) ≈ K(t) + (I(t) − δK(t))∆t, or
K̇(t)∆t ≈ (I(t) − δK(t))∆t. In the same way, suppose a bath tub at time t
contains 50 liters of water and that the tap pours 1

2
liter per second into the

tub for some time. Then a sum like 50 ` + 1
2
(`/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount
would be 50 ` + 1

2
· 60 ((`/sec)×sec) = 80 `. In analogy, economic flow variables

in continuous time should be seen as intensities defined for every t in the time
interval considered, say the time interval [0, T ) or perhaps [0, ∞). For example,
when we say that I(t) is “investment” at time t, this is really a short-hand
for “investment intensity” at time t. The actual investment in a time interval
[t0, t0 + ∆t) , i.e., the invested amount during this time interval, is the integral,∫ t0+∆t

t0
I(t)dt ≈ I(t0)∆t. Similarly, the flow of individual saving, s(t), should be

interpreted as the saving intensity (or saving density), at time t. The actual saving
in a time interval [t0, t0 + ∆t) , i.e., the saved (or accumulated) amount during
this time interval, is the integral,

∫ t0+∆t

t0
s(t)dt. If ∆t is “small”, this integral is

approximately equal to the product s(t0) ·∆t, cf. the hatched area in Fig. 9.1.
The notation commonly used in discrete time analysis blurs the distinction

between stocks and flows. Expressions like ai+1 = ai + si, without further com-
ment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are added.
In fact, however, it is wealth at the beginning of period i and the saved amount
during period i that are added: ai+1 = ai + si · ∆t. The tacit condition is that
the period length, ∆t, is the time unit, so that ∆t = 1. But suppose that, for
example in a business cycle model, the period length is one quarter, but the time
unit is one year. Then saving in quarter i is si = (ai+1 − ai) · 4 per year.
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The choice between discrete and continuous time formulation

In empirical economics, data typically come in discrete time form and data for
flow variables typically refer to periods of constant length. One could argue that
this discrete form of the data speaks for discrete time rather than continuous
time modelling. And the fact that economic actors often think, decide, and plan
in period terms, may seem a good reason for putting at least microeconomic
analysis in period terms. Nonetheless real time is continuous. Moreover, as for
instance Allen (1967) argued, it can hardly be said that the mass of economic
actors think and decide with the same time distance between successive decisions
and actions. In macroeconomics we consider the sum of the actions. In this
perspective the continuous time approach has the advantage of allowing variation
within the usually artificial periods in which the data are chopped up. In addition,
centralized asset markets equilibrate very fast and respond almost immediately
to new information. For such markets a formulation in continuous time seems a
good approximation.
There is also a risk that a discrete time model may generate artificial oscil-

lations over time. Suppose the “true”model of some mechanism is given by the
differential equation

ẋ = αx, α < −1. (9.29)

The solution is x(t) = x(0)eαt which converges in a monotonic way toward 0 for
t → ∞. However, the analyst takes a discrete time approach and sets up the
seemingly “corresponding”discrete time model

xt+1 − xt = αxt.

This yields the difference equation xt+1 = (1+α)xt, where 1+α < 0. The solution
is xt = (1+α)tx0, t = 0, 1, 2, . . . . As (1+α)t is positive when t is even and negative
when t is odd, oscillations arise (together with divergence if α < −2) in spite of
the “true”model generating monotonous convergence towards the steady state
x∗ = 0.
This potential problem can always be avoided, however, by choosing a suffi -

ciently short period length in the discrete time model. The solution to a differen-
tial equation can always be obtained as the limit of the solution to a corresponding
difference equation for the period length approaching zero. In the case of (9.29),
the approximating difference equation is xi+1 = (1 + α∆t)xi, where ∆t is the
period length, i = t/∆t, and xi = x(i∆t). By choosing ∆t small enough, the
solution comes arbitrarily close to the solution of (9.29). It is generally more
diffi cult to go in the opposite direction and find a differential equation that ap-
proximates a given difference equation. But the problem is solved as soon as a
differential equation has been found that has the initial difference equation as an
approximating difference equation.
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From the point of view of the economic contents, the choice between discrete
time and continuous time may be a matter of taste. Yet, everything else equal, the
clearer distinction between stocks and flows in continuous time than in discrete
time speaks for the former. From the point of view of mathematical convenience,
the continuous time formulation, which has worked so well in the natural sciences,
is preferable. At least this is so in the absence of uncertainty. For problems where
uncertainty is important, discrete time formulations are easier to work with unless
one is familiar with stochastic calculus.11

9.4 Maximizing discounted utility in continuous
time

9.4.1 The saving problem in continuous time

In continuous time the analogue to the intertemporal utility function, (9.3), is

U0 =
∫ T

0
u(c(t))e−ρtdt. (9.30)

In this context it is common to name the utility flow, u, the instantaneous utility
function. We still assume that u′ > 0 and u′′ < 0. The analogue in continuous
time to the intertemporal budget constraint (9.20) is∫ T

0
c(t)e−

∫ t
0
r(τ)dτdt ≤ a0 + h0, (9.31)

where, as before, a0 is the historically given initial financial wealth, while h0 is
the given human wealth,

h0 =
∫ T

0
w(t)e−

∫ t
0
r(τ)dτdt. (9.32)

The household’s problem is then to choose a consumption plan (c(t))T
t=0
so as

to maximize discounted utility, U0, subject to the budget constraint (9.31).

Infinite time horizon Transition to infinite horizon is performed by letting
T → ∞ in (9.30), (9.31), and (9.32). In the limit the household’s, or dynasty’s,
problem becomes one of choosing a plan, (c(t))∞t=0, which maximizes

U0 =

∫ ∞
0

u(c(t))e−ρtdt s.t. (9.33)∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ a0 + h0, (IBC)

11In the latter case, the arguments by Nobel laureate Robert C. Merton in favor of a contin-
uous time formulation are worth consideration.
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where h0 emerges by letting T in (9.32) approach ∞. With an infinite horizon
there may exist technically feasible paths along which the integrals in (9.30),
(9.31), and (9.32) go to ∞ for T → ∞. In that case maximization is not well-
defined. However, the assumptions we are going to make when working with
infinite horizon will guarantee that the integrals converge as T →∞ (or at least
that some feasible paths have −∞ < U0 < ∞, while the remainder have U0

= −∞ and are thus clearly inferior). The essence of the matter is that the rate
of time preference, ρ, must be assumed suffi ciently high.
Generally we define a person as solvent if she is able to meet her financial

obligations as they fall due. Each person is considered “small” relative to the
economy as a whole. As long as all agents in an economy with a perfect loan
market remain “small”, they will in general equilibrium remain solvent if and
only if their gross debt does not exceed their gross assets. The “gross assets”
should be understood as including the present value of the expected future labor
income. Considering the net debt d0 ≡ gross debt − gross assets, the solvency
requirement becomes

d0 ≤
∫ ∞

0

(w(t)− c(t))e−
∫ t
0 r(τ)dτdt,

where the right-hand side of the inequality is the present value of the expected
future primary saving.12 By the definition in (9.32), we see that this requirement
is identical to the intertemporal budget constraint (IBC) which consequently
expresses solvency.

The budget constraint in flow terms

The method which is particularly apt for solving intertemporal decision problems
in continuous time is based on the mathematical discipline optimal control theory.
To apply the method, we have to convert the household’s budget constraint from
the present-value formulation considered above into flow terms.
By mere accounting, in every short time interval (t, t + ∆t) the household’s

consumption plus saving equals the household’s total income, that is,

(c(t) + ȧ(t))∆t = (r(t)a(t) + w(t))∆t.

Here, ȧ(t) ≡ da(t)/dt is the increase per time unit in financial wealth, and thereby
the saving intensity, at time t (assuming no robbery). If we divide through by
∆t and rearrange, we get for all t ≥ 0

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given. (9.34)

12By primary saving is meant the difference between current earned income and current
consumption, where earned income means income before interest transfers.
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This equation in itself is just a dynamic budget identity. It tells how much
and in which direction the financial wealth is changing due to the difference
between current income and current consumption. The equation per se does
not impose any restriction on consumption over time. If this equation were the
only “restriction”, one could increase consumption indefinitely by incurring an
increasing debt without limits. It is not until we add the requirement of solvency
that we get a constraint. When T < ∞, the relevant solvency requirement is
a(T ) ≥ 0 (that is, no debt is left over at the terminal date). This is equivalent to
satisfying the intertemporal budget constraint (9.31).
When T =∞, the relevant solvency requirement is the No-Ponzi-Game con-

dition
lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

This condition says that the present value of debts, measured as −a(t), infinitely
far out in the future, is not permitted to be positive. We have the following
equivalency:

PROPOSITION 1 (equivalence of NPG condition and intertemporal budget con-
straint) Let the time horizon be infinite and assume that the integral (9.32)
remains finite for T →∞. Then, given the accounting relation (9.34), we have:
(i) the requirement (NPG) is satisfied if and only if the intertemporal budget
constraint, (IBC), is satisfied; and
(ii) there is strict equality in (NPG) if and only if there is strict equality in (IBC).

Proof. See Appendix C.

The condition (NPG) does not preclude that the household, or family dynasty,
can remain in debt. This would also be an unnatural requirement as the dynasty
is infinitely-lived. The condition does imply, however, that there is an upper
bound for the speed whereby debt can increase in the long term. The NPG
condition says that in the long term, debts are not allowed to grow at a rate as
high as (or higher than) the interest rate.
To understand the implication, consider the case with a constant interest rate

r > 0. Assume that the household at time t has net debt d(t) > 0, i.e., a(t)
≡ −d(t) < 0. If d(t) were persistently growing at a rate equal to or greater than
the interest rate, (NPG) would be violated.13 Equivalently, one can interpret
(NPG) as an assertion that lenders will only issue loans if the borrowers in the
long run cover their interest payments by other means than by taking up new
loans. In this way, it is avoided that ḋ(t) ≥ rd(t) in the long run. In brief, the
borrowers are not allowed to run a Ponzi Game.
13Starting from a given initial positive debt, d0, when ḋ(t)/d(t) ≥ r > 0, we have d(t) ≥ d0ert

so that d(t)e−rt ≥ d0 > 0 for all t ≥ 0. Consequently, a(t)e−rt = −d(t)e−rt ≤ −d0 < 0 for
all t ≥ 0, that is, lim t→∞a(t)e−rt < 0, which violates (NPG).
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9.4.2 Solving the saving problem

The household’s consumption/saving problem is one of choosing a path for the
control variable c(t) so as to maximize a criterion function, in the form of an in-
tegral, subject to constraints that include a first-order differential equation where
the control variable enters, namely (9.34). Choosing a time path for the con-
trol variable, this equation determines the evolution of the state variable, a(t).
Optimal control theory, which in Chapter 8 was applied to a related discrete
time problem, offers a well-suited apparatus for solving this kind of optimization
problems. We will make use of a special case of Pontryagin’s Maximum Principle
(the basic tool of optimal control theory) in its continuous time version. We shall
consider both the finite and the infinite horizon case. The only regularity con-
dition required is that the exogenous variables, here r(t) and w(t), are piecewise
continuous and that the control variable, here c(t), is piecewise continuous and
take values within some given set C ⊂ R, called the control region.
For T <∞ the problem is: choose a plan (c(t))Tt=0 that maximizes

U0 =

∫ T

0

u(c(t))e−ρtdt s.t. (9.35)

c(t) ≥ 0, (control region) (9.36)

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given, (9.37)

a(T ) ≥ 0. (9.38)

With an infinite time horizon, T in (9.35) is interpreted as∞ and the solvency
condition (9.38) is replaced by

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

Let I denote the time interval [0, T ] if T < ∞ and the time interval [0,∞)
if T = ∞. If c(t) and the corresponding evolution of a(t) fulfil (9.36) and (9.37)
for all t ∈ I as well as the relevant solvency condition, we call (a(t), c(t))Tt=0 an
admissible path. If a given admissible path (a(t), c(t))Tt=0 solves the problem, it is
referred to as an optimal path.14 We assume that w(t) > 0 for all t. No condition
on the impatience parameter ρ is imposed (in this chapter).

First-order conditions

The solution procedure for this problem is as follows:15

14The term “path”, sometimes “trajectory”, is common in the natural sciences for a solution
to a differential equation because one may think of this solution as the path of a particle moving
in two- or three-dimensional space.
15The four-step solution procedure below is applicable to a large class of dynamic optimization

problems in continuous time, see Math tools.
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1. We set up the current-value Hamiltonian function (often just called the
current-value Hamiltonian):

H(a, c, λ, t) ≡ u(c) + λ(ra+ w − c),

where λ is the adjoint variable (also called the co-state variable) associated
with the dynamic constraint (9.37).16 That is, λ is an auxiliary variable
which is a function of t and is analogous to the Lagrange multiplier in
static optimization.

2. At every point in time, we maximize the Hamiltonian w.r.t. the control
variable. Focusing on an interior optimal path,17 we calculate

∂H

∂c
= u′(c)− λ = 0.

For every t ∈ I we thus have the condition

u′(c(t)) = λ(t). (9.39)

3. We calculate the partial derivative of H with respect to the state variable
and put it equal to minus the time derivative of λ plus the discount rate
(as it appears in the integrand of the criterion function) multiplied by λ :

∂H

∂a
= λr = −λ̇+ ρλ.

This says that, for all t ∈ I, the adjoint variable λ should fulfil the differ-
ential equation

λ̇(t) = (ρ− r(t))λ(t). (9.40)

4. We now apply the Maximum Principle which applied to this problem says:
an interior optimal path (a(t), c(t))Tt=0 will satisfy that there exits a contin-
uous function λ = λ(t) such that for all t ∈ I, (9.39) and (9.40) hold along
the path, and the transversality condition,

a(T )λ(T ) = 0, if T <∞, and
lim
t→∞

a(t)λ(t)e−ρt = 0, if T =∞, (TVC)

is satisfied.
16The explicit dating of the time-dependent variables a, c, and λ is omitted where not needed

for clarity.
17A path, (at, ct)

T
t=0, is an interior path if for no t ∈ [0, T ) , (at, ct) is at a boundary point of

the set of admissible values. In the present case where at is not constrained, except at t = T,
(at, ct)

T
t=0, is an interior path if ct > 0 for all t ∈ [0, T ) .
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Let us provide some interpretation of these optimality conditions. Overall,
the Maximum Principle characterizes an optimal path as a path that for every
t maximizes the Hamiltonian associated with the problem. The intuition is that
the Hamiltonian weighs the direct contribution of the marginal unit of the con-
trol variable to the criterion function in the “right”way relative to the indirect
contribution, which comes from the generated change in the state variable (here
financial wealth); “right”means in accordance with the opportunities offered by
the rate of return vis-a-vis the time preference rate, ρ. The optimality condition
(9.39) can be seen as a MC = MB condition in utility terms: on the margin
one unit of account (here the consumption good) must be equally valuable in its
two uses: consumption and wealth accumulation. Together with the optimality
condition (9.40) this signifies that the adjoint variable λ can be interpreted as
the shadow price (measured in units of current utility) of financial wealth along
the optimal path.18

Reordering the differential equation (9.40) gives

rλ+ λ̇

λ
= ρ. (9.41)

This can be interpreted as a no-arbitrage condition. The left-hand side gives the
actual rate of return, measured in utility units, on the marginal unit of saving.
Indeed, rλ can be seen as a dividend and λ̇ as a capital gain. The right-hand side
is the required rate of return in utility units, ρ. Along an optimal path the two
must coincide. The household is willing to save the marginal unit of income only
up to the point where the actual return on saving equals the required return.
We may alternatively write the no-arbitrage condition as

r = ρ− λ̇

λ
. (9.42)

On the left-hand-side appears the actual real rate of return on saving and on
the right-hand-side the required real rate of return. The intuition behind this
condition can be seen in the following way. Suppose Mr. Jones makes a deposit
of V utility units in a “bank”that offers a proportionate rate of expansion of the
utility value of the deposit equal to i (assuming no withdrawal occurs), i.e.,

V̇

V
= i.

18Recall, a shadow price (measured in some unit of account) of a good is, from the point of
view of the buyer, the maximum number of units of account that the optimizing buyer is willing
to offer for one extra unit of the good.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



9.4. Maximizing discounted utility in continuous time 369

This is the actual utility rate of return, a kind of “nominal interest rate”. To
calculate the corresponding “real interest rate”let the “nominal price”of a con-
sumption good be λ utility units. Dividing the number of invested utility units,
V, by λ, we get the real value, m = V/λ, of the deposit at time t. The actual real
rate of return on the deposit is therefore

r =
ṁ

m
=
V̇

V
− λ̇

λ
= i− λ̇

λ
. (9.43)

Mr. Jones is just willing to save the marginal unit of income if this actual
real rate of return on saving equals the required real rate, that is, the right-hand
side of (9.42); in turn this necessitates that the “nominal interest rate”, i, in
(9.43) equals the required nominal rate, ρ. The formula (9.43) is analogue to the
discrete-time formula (9.2) except that the unit of account in (9.43) is current
utility while in (9.2) it is currency.
The transversality condition (TVC) is a terminal optimality condition. We

could, for the case T <∞, have expressed it on the equivalent form

a(T )λ(T )e−ρT = 0,

since e−ρT > 0 always. This form has the advantage of being “parallel” to the
transversality condition for the case T = ∞. More importantly, the transversal-
ity condition has affi nity with the principle of complementary slackness in linear
and nonlinear programming. Let us spell out in general terms. Consider the case
T <∞. Interpret the solvency condition a(T ) ≥ 0 as just an example of a general
terminal constraint a(T ) ≥ aT , where a(T ) is the terminal value of some general
state variable with a nonnegative shadow price λ(T ); besides, aT is an arbitrary
real number. Continuing this line of thought, interpret (9.35) as an abstract cri-
terion function and c(t) as an abstract control variable with control region R and
with the property that a higher value of c(t) makes ȧ(t) smaller. Then “comple-
mentary slackness”is the principle that given the terminal constraint a(T ) ≥ aT ,
the terminal optimality condition must be (a(T ) −aT )λ(T ) = 0. The intuition
is that if the shadow price λ(T ) > 0 (a “slackness”), then optimality requires
a(T ) = aT . Indeed, in this case a(T ) > aT has an avoidable positive opportunity
cost. On the other hand, if a(T ) > aT is optimal (another “slackness”), then the
shadow price must be nil, i.e., λ(T ) = 0. There is “complementary slackness”in
the sense that at most one of the weak inequalities a(T ) ≥ aT and λ(T ) ≥ 0 can
be strict in optimum.
Anyway, returning to the household’s saving problem, the transversality con-

dition becomes more concrete if we insert (9.39). For the case T < ∞, we then
have

a(T )u′(c(T ))e−ρT = 0. (9.44)
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Since u′(c(T ))e−ρT is always positive, an optimal plan obviouslymust satisfy a(T )
= aT = 0. The reason is that, given the solvency requirement a(T ) ≥ 0, the only
alternative to a(T ) = 0 is a(T ) > 0. But this would imply that the level of the
consumption path could be raised, and U0 thereby be increased, by allowing a
decrease in a(T ) without violating the solvency requirement.
Now, write the solvency requirement as a(T )e−ρT ≥ 0 and let T →∞. Then

in the limit the solvency requirement takes the form of (NPG) above (replace T
by t), and (9.44) is replaced by

lim
T→∞

a(T )u′(c(T ))e−ρT = 0. (9.45)

This says the same as (TVC) above. Intuitively, a plan that violates this condition
by having “>”instead “=”indicates scope for improvement and thus cannot be
optimal. There would be “purchasing power left for eternity”. This purchasing
power could be transferred to consumption on earth at an earlier date.
Generally, care must be taken when extending a necessary transversality con-

dition from a finite to an infinite horizon. But for the present problem, the
extension is valid. To see this, note that by Proposition 1, strict inequality in
the (NPG) condition is (by Proposition1) equivalent to strict inequality in the in-
tertemporal budget constraint (IBC). Such a path can always be improved upon
by raising c(t) a little in some time interval without decreasing c(t) in any other
time interval and without violating the (NPG) and (IBC). Hence, an optimal
plan must have strict equality in both NPG and IBC. This amounts to requiring
that none of these two conditions is “over-satisfied”. And this requirement can
be shown to be equivalent to the condition (TVC) above. Indeed:

PROPOSITION 2 (the household’s necessary transversality condition with in-
finite time horizon) Let T → ∞ in the criterion function (9.35) and assume
the human wealth integral (9.32) converges (and thereby remains bounded) for
T → ∞. Provided the adjoint variable, λ(t), satisfies the first-order conditions
(9.39) and (9.40), (TVC) holds if and only if (NPG) holds with strict equality.

Proof. See Appendix D.

In view of this proposition, we can write the transversality condition for T →
∞ as the NPG condition with strict equality:

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ = 0. (TVC’)

In view of the equivalence of the NPG condition with strict equality and the IBC
with strict equality, established in Proposition 1, the transversality condition for
T →∞ can also be written∫ ∞

0

c(t)e−
∫ t
0 r(τ)dτdt = a0 + h0. (IBC’)
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The current-value Hamiltonian versus the present-value Hamiltonian
The prefix “current-value” is used to distinguish the current-value Hamiltonian
from what is known as the present-value Hamiltonian. The latter is defined as
Ĥ ≡ He−ρt with λe−ρt substituted by µ, which is the associated (discounted)
adjoint variable. The solution procedure is similar except that step 3 is replaced
by ∂Ĥ/∂a = −µ̇ and λ(t)e−ρt in the transversality condition is replaced by µ(t).
The two methods are equivalent (and if the discount rate is nil, the formulas for
the optimality conditions coincide). But for many economic problems the current-
value Hamiltonian has the advantage that it makes both the calculations and the
interpretation slightly simpler. The adjoint variable, λ(t), which as mentioned
acts as a shadow price of the state variable, becomes a current price along with
the other prices in the problem, w(t) and r(t). This is in contrast to µ(t) which
is a discounted price.

9.4.3 The Keynes-Ramsey rule

The first-order conditions have interesting implications. Differentiate both sides
of (9.39) w.r.t. t to get u′′(c)ċ = λ̇. This equation can be written u′′(c)ċ/u′(c) =
λ̇/λ by drawing on (9.39) again. Applying (9.40) now gives

ċ(t)

c(t)
=

1

θ(c(t))
(r(t)− ρ), (9.46)

where θ(c) is the (absolute) elasticity of marginal utility w.r.t. consumption,

θ(c) ≡ − c

u′(c)
u′′(c) > 0. (9.47)

As in discrete time, θ(c) indicates the strength of the consumer’s preference for
consumption smoothing. The inverse of θ(c) measures the instantaneous in-
tertemporal elasticity of substitution in consumption, which in turn indicates the
willingness to accept variation in consumption over time when the interest rate
changes, see Appendix F.
The result (9.46) says that an optimal consumption plan is characterized in

the following way. The household will completely smooth − i.e., even out −
consumption over time if the rate of time preference equals the real interest rate.
The household will choose an upward-sloping time path for consumption if and
only if the rate of time preference is less than the real interest rate. In this case
the household will have to accept a relatively low level of current consumption
with the purpose of enjoying higher consumption in the future. The higher the
real interest rate relative to the rate of time preference, the more favorable is
it to defer consumption − everything else equal. The proviso is important. In-
deed, in addition to the negative substitution effect on current consumption of a
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Figure 9.2: Optimal consumption paths for a low and a high constant θ, given a constant
r > ρ.

higher interest rate there is a positive income effect due to the present value of
a given intertemporal consumption plan being reduced by a higher interest rate
(see (IBC)). On top of this comes a negative wealth effect due to a higher interest
rate causing a lower present value of expected future labor earnings (again see
(IBC)). The special case of a CRRA utility function provides a convenient agenda
for sorting these details out, see Example 1 in Section 9.5.

By (9.46) we also see that the greater the elasticity of marginal utility (that
is, the greater the curvature of the utility function), the greater the incentive to
smooth consumption for a given value of r(t) − ρ. The reason for this is that a
strong curvature means that the marginal utility will drop sharply if consumption
increases, and will rise sharply if consumption decreases. Fig. 9.2 illustrates this
in the CRRA case where θ(c) = θ, a positive constant. For a given constant
r > ρ, the consumption path chosen when θ is high has lower slope, but starts
from a higher level, than when θ is low.

The condition (9.46), which holds for all t within the time horizon whether this
is finite or infinite, is referred to as the Keynes-Ramsey rule. The name springs
from the English mathematician Frank Ramsey who derived the rule in 1928,
while his mentor, John Maynard Keynes, suggested a simple and intuitive way
of presenting it. The rule is the continuous-time counterpart to the consumption
Euler equation in discrete time.

The Keynes-Ramsey rule reflects the general microeconomic principle that
the consumer equates the marginal rate of substitution between any two goods to
the corresponding price ratio. In the present context the principle is applied to a
situation where the “two goods”refer to the same consumption good delivered at
two different dates. In Section 9.2 we used the principle to interpret the optimal
saving behavior in discrete time. How can the principle be translated into a
continuous time setting?
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Local optimality in continuous time* Let (t, t+∆t) and (t+∆t, t+2∆t) be
two short successive time intervals. The marginal rate of substitution,MRSt+∆t,t,
of consumption in the second time interval for consumption in the first, is19

MRSt+∆t,t ≡ −
dc(t+ ∆t)

dc(t)
|U=Ū =

u′(c(t))

e−ρ∆tu′(c(t+ ∆t))
, (9.48)

approximately. On the other hand, by saving −∆c(t) more per time unit (where
∆c(t) < 0) in the short time interval (t, t+∆t), one can, via the market, transform
−∆c(t) ·∆t units of consumption in this time interval into

∆c(t+ ∆t) ·∆t ≈ −∆c(t)∆t e
∫ t+∆t
t r(τ)dτ (9.49)

units of consumption in the time interval (t+ ∆t, t+ 2∆t). The marginal rate of
transformation is therefore

MRTt+∆t,t ≡ −dc(t+ ∆t)

dc(t)
|U=Ū ≈

= e
∫ t+∆t
t r(τ)dτ .

In the optimal plan we must have MRSt+∆t,t = MRTt+∆t,t which gives

u′(c(t))

e−ρ∆tu′(c(t+ ∆t))
= e

∫ t+∆t
t r(τ)dτ , (9.50)

approximately. When ∆t = 1 and ρ and r(t) are small, this relation can be
approximated by (9.11) from discrete time (generally, by a first-order Taylor
approximation, we have ex ≈ 1 + x, when x is close to 0).
Taking logs on both sides of (9.50), dividing through by ∆t, inserting (9.49),

and letting ∆t→ 0, we get (see Appendix E)

ρ− u′′(c(t))

u′(c(t))
ċ(t) = r(t). (9.51)

With the definition of θ(c) in (9.47), this is exactly the same as the Keynes-
Ramsey rule (9.46) which, therefore, is merely an expression of the general op-
timality condition MRS = MRT. When ċ(t) > 0, the household is willing to
sacrifice some consumption today for more consumption tomorrow only if it is
compensated by an interest rate suffi ciently above ρ. Naturally, the required com-
pensation is higher, the faster marginal utility declines with rising consumption,
i.e., the larger is (−u′′/u′)ċ already. Indeed, a higher ct in the future than today
implies a lower marginal utility of consumption in the future than of consumption
today. Saving of the marginal unit of income today is thus only warranted if the
rate of return is suffi ciently above ρ, and this is what (9.51) indicates.

19The underlying analytical steps can be found in Appendix E.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



374
CHAPTER 9. THE INTERTEMPORAL CONSUMPTION-

SAVING PROBLEM IN DISCRETE AND CONTINUOUS TIME

9.4.4 Mangasarian’s suffi cient conditions

For dynamic optimization problems with one state variable, the Maximum Prin-
ciple delivers a set of first-order conditions and suggests a terminal optimality
condition, the transversality condition. The first-order conditions are necessary
conditions for an interior path to be optimal, while, with infinite horizon, the
necessity of the suggested transversality condition in principle requires a verifica-
tion in each case; in the present case the verification is implied by Proposition 2.
So, up to this point we have only shown that if the consumption/saving problem
has an interior solution, then this solution satisfies the Keynes-Ramsey rule and
a transversality condition, (TVC’).
But are these conditions also suffi cient? The answer is yes in the present case.

This follows from Mangasarian’s suffi ciency theorem (see Math tools) which, ap-
plied to the present problem, tells us that if the Hamiltonian is jointly concave
in (a, c) for every t within the time horizon, then the listed first-order conditions,
together with the transversality condition, are also suffi cient. Because the in-
stantaneous utility function (the first term in the Hamiltonian) is here strictly
concave in c and the second term is linear in (a, c), the Hamiltonian is jointly
concave in (a, c).

To sum up: if we have found a path satisfying the Keynes-Ramsey rule and
(TVC’), we have a candidate solution. Applying the Mangasarian theorem, we
check whether our candidate is an optimal solution. In the present case it is. In
fact the strict concavity of the Hamiltonian with respect to the control variable
in this problem ensures that the optimal solution is unique (Exercise 9.?).

9.5 The consumption function

We have not yet fully solved the saving problem. The Keynes-Ramsey rule gives
only the optimal rate of change of consumption over time. It says nothing about
the level of consumption at any given time. In order to determine, for instance,
the level c(0), we implicate the solvency condition which limits the amount the
household can borrow in the long term. Among the infinitely many consumption
paths satisfying the Keynes-Ramsey rule, the household will choose the “highest”
one that also fulfils the solvency requirement (NPG). Thus, the household acts
so that strict equality in (NPG) obtains. As we saw in Proposition 2, this is
equivalent to the transversality condition being satisfied.
To avoid misunderstanding: The examples below should not be interpreted

such that for any evolution of wages and interest rates there exists a solution to
the household’s maximization problem with infinite horizon. There is generally
no guarantee that integrals converge and thus have an upper bound for T →∞.
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The evolution of wages and interest rates which prevails in general equilibrium
is not arbitrary, however. It is determined by the requirement of equilibrium.
In turn, of course existence of an equilibrium imposes restrictions on the utility
discount rate relative to the potential growth in instantaneous utility. We shall
return to these aspects in the next chapter.

EXAMPLE 1 (constant elasticity of marginal utility; infinite time horizon). In
the problem in Section 9.4.2 with T =∞, we consider the case where the elasticity
of marginal utility θ(c), as defined in (9.47), is a constant θ > 0. From Appendix
A of Chapter 3 we know that this requirement implies that up to a positive linear
transformation the utility function must be of the form:

u(c) =

{
c1−θ

1−θ , when θ > 0, θ 6= 1,

ln c, when θ = 1.
(9.52)

This is our familiar CRRA utility function. In this case the Keynes-Ramsey rule
implies ċ(t) = θ−1(r(t)− ρ)c(t). Solving this linear differential equation yields

c(t) = c(0)e
1
θ

∫ t
0 (r(τ)−ρ)dτ , (9.53)

cf. the general accumulation formula, (9.25).
We know from Proposition 2 that the transversality condition is equivalent

to the NPG condition being satisfied with strict equality, and from Proposition 1
we know that this condition is equivalent to the intertemporal budget constraint
being satisfied with strict equality, i.e.,∫ ∞

0

c(t)e−
∫ t
0 r(τ)dτdt = a0 + h0, (IBC’)

where h0 is the human wealth,

h0 =

∫ ∞
0

w(t)e−
∫ t

0
r(τ)dτdt. (9.54)

This result can be used to determine c(0).20 Substituting (9.53) into (IBC’) gives

c(0)

∫ ∞
0

e
∫ t
0 [ 1
θ

(r(τ)−ρ)−r(τ)]dτdt = a0 + h0.

The consumption function is thus

c(0) = β0(a0 + h0), where

β0 ≡
1∫∞

0
e
∫ t
0 [ 1
θ

(r(τ)−ρ)−r(τ)]dτdt
=

1∫∞
0
e

1
θ

∫ t
0 [(1−θ)r(τ)−ρ]dτdt

(9.55)

20The method also applies if instead of T =∞, we have T <∞.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



376
CHAPTER 9. THE INTERTEMPORAL CONSUMPTION-

SAVING PROBLEM IN DISCRETE AND CONTINUOUS TIME

is the marginal propensity to consume out of wealth. We have here assumed
that these improper integrals over an infinite horizon are bounded from above for
all admissible paths. We see that consumption is proportional to total wealth.
The factor of proportionality, often called the marginal propensity to consume
out of wealth, depends on the expected future interest rates and on the preference
parameters ρ and θ, that is, the impatience rate and the strength of the preference
for consumption smoothing, respectively.

Generally, an increase in the interest rate level, for given total wealth, a0 +h0,
can effect c(0) both positively and negatively.21 On the one hand, such an increase
makes future consumption cheaper in present value terms. This change in the
trade-off between current and future consumption entails a negative substitution
effect on c(0). On the other hand, the increase in the interest rates decreases the
present value of a given consumption plan, allowing for higher consumption both
today and in the future, for given total wealth, cf. (IBC’). This entails a positive
pure income effect on consumption today as consumption is a normal good. If θ
< 1 (small curvature of the utility function), the substitution effect will dominate
the pure income effect, and if θ > 1 (large curvature), the reverse will hold. This
is because the larger is θ, the stronger is the propensity to smooth consumption
over time.

In the intermediate case θ = 1 (the logarithmic case) we get from (9.55) that
β0 = ρ, hence

c(0) = ρ(a0 + h0). (9.56)

In this special case the marginal propensity to consume is time independent and
equal to the rate of time preference. For a given total wealth, a0 + h0, current
consumption is thus independent of the expected path of the interest rate. That
is, in the logarithmic case the substitution and pure income effects on current
consumption exactly offset each other. Yet, on top of this comes the negative
wealth effect on current consumption of an increase in the interest rate level.
The present value of future wage incomes becomes lower (similarly with expected
future dividends on shares and future rents in the housing market in a more
general setup). Because of this, h0 (and so a0 + h0) becomes lower, which adds
to the negative substitution effect. Thus, even in the logarithmic case, and a
fortiori when θ < 1, the total effect of an increase in the interest rate level is
unambiguously negative on c(0).

21By an increase in the interest rate level we mean an upward shift in the time-profile of the
interest rate. That is, there is at least one time interval within [0,∞) where the interest rate is
higher than in the original situation and no time interval within [0,∞) where the interest rate
is lower.
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If, for example, r(t) = r and w(t) = w (positive constants), we get

β0 = [(θ − 1)r + ρ]/θ,

a0 + h0 = a0 + w/r.

When θ = 1, the negative effect of a higher r on h0 is decisive. When θ < 1,
a higher r reduces both β0 and h0, hence the total effect on c(0) is even “more
negative”. When θ > 1, a higher r implies a higher β0 which more or less offsets
the lower h0, so that the total effect on c(0) becomes ambiguous. As referred to
in Chapter 3, available empirical studies generally suggest a value of θ somewhat
above 1. �
A remark on fixed-rate loans and positive net debt is appropriate here. Sup-

pose a0 < 0 and assume that this net debt is not in the form of a variable-rate
loan (as hitherto assumed), but for instance a fixed-rate mortgage loan. Then
a rise in the interest rate level implies a lowering of the present value of the
debt and thereby raises financial wealth and possibly total wealth. If so, the rise
in the interest rate level implies a positive wealth effect on current consumption,
thereby “joining”the positive pure income effect in counterbalancing the negative
substitution effect.

EXAMPLE 2 (constant absolute semi-elasticity of marginal utility; infinite time
horizon). In the problem in Section 9.4.2 with T = ∞, we consider the case
where the sensitivity of marginal utility, measured by the absolute value of the
semi-elasticity of marginal utility, −u′′(c)/u′(c) ≈ −(∆u′/u′)/∆c, is a positive
constant, α. The utility function must then, up to a positive linear transformation,
be of the form,

u(c) = −α−1e−αc, α > 0. (9.57)

This is known as the CARA utility function (where the name CARA comes from
“Constant Absolute Risk Aversion”). The Keynes-Ramsey rule now becomes
ċ(t) = α−1(r(t)− ρ).When the interest rate is a constant r > 0, we find, through
(IBC’) and partial integration, c(0) = r(a0 + h0) − (r − ρ)/(αr), presupposing
r ≥ ρ and a0 + h0 > (r − ρ)/(ar2).
This hypothesis of a “constant absolute variability aversion”implies that the

degree of relative variability aversion is θ(c) = αc and thus greater, the larger is
c. The CARA function is popular in the theory of behavior under uncertainty.
One of the theorems of expected utility theory is that the degree of absolute risk
aversion, −u′′(c)/u′(c), is proportional to the risk premium which the economic
agent will require to be willing to exchange a specified amount of consumption
received with certainty for an uncertain amount having the same mean value.
Empirically this risk premium seems to be a decreasing function of the level of
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consumption. Therefore the CARA function is generally considered less realistic
than the CRRA function of the previous example. �
EXAMPLE 3 (logarithmic utility; finite time horizon; retirement). We consider
a life-cycle saving problem. A worker enters the labor market at time 0 with
a financial wealth of 0, has finite lifetime T (assumed known), retires at time
t1 ∈ (0, T ] , and does not wish to pass on bequests. For simplicity we assume that
rt = r > 0 for all t ∈ [0, T ] and labor income is w(t) = w > 0 for t ∈ [0, t1], while
w(t) = 0 for t > t1. The decision problem is

max
(c(t))T

t=0

U0 =

∫ T

0

(ln c(t))e−ρtdt s.t.

c(t) ≥ 0,

ȧ(t) = ra(t) + w(t)− c(t), a(0) = 0,

a(T ) ≥ 0.

The Keynes-Ramsey rule becomes ċt/ct = r − ρ. A solution to the problem
will thus fulfil

c(t) = c(0)e(r−ρ)t. (9.58)

Inserting this into the differential equation for a, we get a first-order linear dif-
ferential equation the solution of which (for a(0) = 0) can be reduced to

a(t) = ert
[
w

r
(1− e−rz)− c0

ρ
(1− e−ρt)

]
, (9.59)

where z = t if t ≤ t1, and z = t1 if t > t1. We need to determine c(0). The
transversality condition implies a(T ) = 0. Having t = T , z = t1 and aT = 0 in
(9.59), we get

c(0) = (ρw/r)(1− e−rt1)/(1− e−ρT ). (9.60)

Substituting this into (9.58) gives the optimal consumption plan.22

If r = ρ, consumption is constant over time at the level given by (9.60). If, in
addition, t1 < T , this consumption level is less than the wage income per year up
to t1 (in order to save for retirement); in the last years the level of consumption
is maintained although there is no wage income; the retired person uses up both
the return on financial wealth and this wealth itself. �
The examples illustrate the importance of forward-looking expectations, here

expectations about future wage income and interest rates. The expectations
affect c(0) both through their impact on the marginal propensity to consume

22For t1 = T and T → ∞ we get in the limit c(0) = ρw/r ≡ ρh0, which is also what (9.55)
gives when a(0) = 0 and θ = 1.
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(cf. β0 in Example 1) and through their impact on the present value of expected
future labor income (or of expected future dividends on shares or imputed rental
income on owner-occupied houses in a more general setup).23

9.6 Concluding remarks

(incomplete)
...
The examples above − and the consumption theory in this chapter in gen-

eral − should only be seen as a first, crude approximation to actual consump-
tion/saving behavior. Real world factors such as uncertainty and narrow credit
constraints (absence of perfect loan and insurance markets) also affect the behav-
ior. When these factors are included, current income and expected income in the
near future tend to become important co-determinants of current consumption,
at least for a large fraction of the population with little financial wealth. We
return to this in connection with short- and medium-run macro models later in
this book.

9.7 Literature notes

(incomplete)
In Chapter 6, where the borrower was a “large”agent with fiscal and mon-

etary policy mandates, namely the public sector, satisfying the intertemporal
budget constraint was a necessary condition for solvency (when the interest rate
exceeds the growth rate of income), but not a suffi cient condition. When the
modelled borrowers are “small”private agents as in this chapter, the situation
is different. Neoclassical models with perfect markets then usually contain equi-
librium mechanisms such that the agents’compliance with their intertemporal
budget constraint is suffi cient for lenders’willingness and ability to supply the
demanded finance. See ...
Present-bias and time-inconsistency. Strots (1956). Laibson, QJE 1997: 1,

αβ, αβ2, ...
Loewenstein and Thaler (1989) survey the evidence suggesting that the utility

discount rate is generally not constant, but declining with the time distance from
the current period to the future periods within the horizon. This is known as
hyperbolic discounting.

23There exist cases where, due to new information, a shift in expectations occurs so that
a discontinuity in a responding endogenous variable results. How to deal with such cases is
treated in Chapter 11.
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The assumptions regarding the underlying intertemporal preferences which
allow them to be represented by the present value of period utilities discounted
at a constant rate are dealt with by Koopmans (1960), Fishburn and Rubinstein
(1982), and − in summary form − by Heal (1998).
Borovika, WP 2013, Recursive preferences, separation of risk aversion and

IES.
Deaton, A., Understanding Consumption, OUP 1992.
On continuous-time finance, see for instance Merton (1990).
Goldberg (1958).
Allen (1967).
To Math Tools: Rigorous and more general presentations of the Maximum

Principle in continuous time applied in economic analysis are available in, e.g.,
Seierstad and Sydsæter (1987), Sydsæter et al. (2008) and Seierstad and Sydsæter
(Optimization Letters, 2009, 3, 507-12).

9.8 Appendix

A. Growth arithmetic in continuous time

Let the variables z, x, and y be differentiable functions of time t. Suppose z(t),
x(t), and y(t) are positive for all t. Then:

PRODUCT RULE z(t) = x(t)y(t)⇒ ż(t)/z(t) = ẋ(t)/x(t) + ẏ(t)/y(t).

Proof. Taking logs on both sides of the equation z(t) = x(t)y(t) gives ln z(t) =
lnx(t)+ln y(t). Differentiation w.r.t. t, using the chain rule, gives the conclusion.
�

The procedure applied in this proof is called logarithmic differentiation w.r.t.
t.

FRACTION RULE z(t) = x(t)/y(t)⇒ ż(t)/z(t) = ẋ(t)/x(t)− ẏ(t)/y(t).

The proof is similar.

POWER FUNCTION RULE z(t) = x(t)α ⇒ ż(t)/z(t) = αẋ(t)/x(t).

The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time
the analogue formulas are only approximately true and the approximation can
be quite bad unless the growth rates of x and y are small, cf. Appendix A to
Chapter 4.
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B. Average growth and interest rates

Sometimes in the literature the accumulation formula in continuous time,

a(t) = a(0)e
∫ t
0 g(τ)dτ ,

is expressed in terms of the arithmetic average, also called the arithmetic mean,
of the growth rates in the time interval [0, t]. This average is defined as ḡ0,t

= (1/t)
∫ t

0
g(τ)dτ . So we can write

a(t) = a(0)eḡ0,tt, (9.61)

which has form similar to (9.24). Similarly, let r̄0,t denote the arithmetic average
of the (short-term) interest rates from time 0 to time t, i.e., r̄0,t = (1/t)

∫ t
0
r(τ)dτ .

Then we can write the present value of the consumption stream (c(t))Tt=0 as PV
=
∫ T

0
c(t)e−r̄0,ttdt.

The arithmetic average growth rate, ḡ0,t, coincides with the average compound
growth rate from time 0 to time t, that is, the number g satisfying

a(t) = a(0)egt, (9.62)

for the same a(0) and a(t) as in (9.61).
There is no similar concordance within discrete time modeling. To see this,

suppose that the period-by-period observations, a0, a1 . . . , an, are available. Let
ĝ0,n be the average compound growth rate from period 0 to period n, that is,
the number x satisfying an = a0(1 + x)n. We find 1 + ĝ0,n = 1 + x = (an/a0)1/n.
This compound growth factor is the geometric mean, mg, of the period-by-period
growth factors since

mg ≡
(
a1

a0

a2

a1

. . .
an
an−1

)1/n

= (
an
a0

)1/n.

The arithmetic mean, Ma, of the period-by-period growth factors is

ma ≡
1

n

(
a1

a0

+
a2

a1

+ · · ·+ an
an−1

)
≥ mg, (9.63)

where strict inequality holds unless all the n growth factors are identical. Indeed,
when the growth factors are not identical, we have, by Jensen’s inequality,

ϕ(

n∑
i=1

wixi) >

n∑
i=1

wiϕ(xi),
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when ϕ is strictly concave and
∑n

i=1 wi = 1, wi ≥ 0, i = 1, 2, . . . , n. So, by (9.63),

lnma = ln
n∑
i=1

1

n

ai
ai−1

>
n∑
i=1

1

n
ln

ai
ai−1

=
1

n

n∑
i=1

ln
ai
ai−1

= lnmg,

since ln is a strictly concave function. This inequality implies ma > mg since ln

is also an increasing function. Consequently, unless the period-by-period growth
rate is a constant, multiplying the initial value a0 with the arithmetic mean of
the growth factors results in a number larger than an.

Discrete versus continuous compounding Suppose the period length is
one year so that the given observations, a0, a1 . . . , an, are annual data. There
are two alternative ways of calculating an average compound growth rate (often
just called the “average growth rate”) for the data. We may apply the geometric
growth formula,

an = a0(1 +G)n, (9.64)

which is natural if the compounding behind the data is discrete and occurs annu-
ally. If the compounding is much more frequent, it is in principle better to apply
the exponential growth formula,

an = a0e
gn, (9.65)

corresponding to continuous compounding. Unless an = a0, the resulting g will
be smaller than the average compound growth rate G calculated from a geometric
growth formula (discrete time) for the same data. Indeed,

g =
ln an

a0

n
= ln(1 +G) / G

for G “small”, where “/”means “close to”(by a first-order Taylor approximation
about G = 0) but “less than”except if G = 0. The intuitive reason for “less than”
is that a given growth force is more powerful when compounding is continuous.
To put it differently: rewriting (1 + G)n into exponential form gives (1 + G)n

= (eln(1+G))n = egn < eGn, as ln(1 +G) < G for all G 6= 0.
Anyway, the difference betweenG and g is usually unimportant. If for example

G refers to the annual GDP growth rate, it will be a small number, and the
difference between G and g immaterial. For example, to G = 0.040 corresponds g
≈ 0.039. Even if G = 0.10, the corresponding g is 0.0953. But if G stands for the
inflation rate and there is high inflation, the difference between G and g will be
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substantial. During hyperinflation the monthly inflation rate may be, say, G =
100%, but the corresponding g will be only 69%.24

C. Proof of Proposition 1 (about equivalence between the No-Ponzi-
Game condition and the intertemporal budget constraint)

We consider the book-keeping relation

ȧ(t) = r(t)a(t) + w(t)− c(t), (9.66)

where a(0) = a0 (given), and the solvency requirement

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

Technical remark. The expression in (NPG) should be understood to include
the possibility that a(t)e−

∫ t
0 r(τ)dτ → ∞ for t → ∞. Moreover, if full generality

were aimed at, we should allow for infinitely fluctuating paths in both the (NPG)
and (TVC) and therefore replace “limt→∞” by “lim inft→∞”, i.e., the limit in-
ferior. The limit inferior for t → ∞ of a function f(t) on [0,∞) is defined as
limt→∞ inf {f(s)| s ≥ t}.25 As noted in Appendix E of the previous chapter, how-
ever, undamped infinitely fluctuating paths never turn up in “normal”economic
optimization problems, whether in discrete or continuous time. Hence, we apply
the simpler concept “lim”rather than “lim inf”. �
On the background of (9.66), Proposition 1 in the text claimed that (NPG)

is equivalent to the intertemporal budget constraint,∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ h0 + a0, (IBC)

being satisfied, where h0 is defined as in (9.54) and is assumed to be a finite
number. In addition, Proposition 1 in Section 9.4 claimed that there is strict
equality in (IBC) if and only there is strict equality in (NPG). A plain proof goes
as follows.

Proof. Isolate c(t) in (9.66) and multiply through by e−
∫ t

0
r(τ)dτ to obtain

c(t)e−
∫ t

0
r(τ)dτ = w(t)e−

∫ t
0
r(τ)dτ − (ȧ(t)− r(t)a(t))e−

∫ t
0
r(τ)dτ .

24Apart from the discrete compounding instead of continuous compounding, a geometric
growth factor is equivalent to a “corresponding” exponential growth factor. Indeed, we can
rewrite the growth factor (1+g)t, t = 0, 1, 2, . . . , into exponential form since (1+g)t = (eln(1+g))t

= e[ln(1+g)]t. Moreover, if g is “small”, we have e[ln(1+g)]t ≈ egt.
25By “inf” is meant infimum of the set, that is, the largest number less than or equal to all

numbers in the set.
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Integrate from 0 to T > 0 to get
∫ T

0
c(t)e−

∫ t
0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt−

∫ T

0

ȧ(t)e−
∫ t

0
r(τ)dτdt+

∫ T

0

r(t)a(t)e−
∫ t

0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt−

([
a(t)e−

∫ t
0
r(τ)dτ

]T
0

−
∫ T

0

a(t)e−
∫ t

0
r(τ)dτ (−r(t))dt

)

+

∫ T

0

r(t)a(t)e−
∫ t

0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt− (a(T )e−

∫ T
0 r(τ)dτ − a(0)),

where the second equality follows from integration by parts. If we let T →∞ and
use the definition of h0 and the initial condition a(0) = a0, we get (IBC) if and
only if (NPG) holds. It follows that when (NPG) is satisfied with strict equality,
so is (IBC), and vice versa. �
An alternative proof is obtained by using the general solution to a linear

inhomogeneous first-order differential equation and then let T → ∞. Since this
is a more generally applicable approach, we will show how it works and use it
for Claim 1 below (an extended version of Proposition 1) and for the proof of
Proposition 2 in the text. Claim 1 will for example prove useful in Exercise 9.1
and in the next chapter.

CLAIM 1 Let f(t) and g(t) be given continuous functions of time, t. Consider
the differential equation

ẋ(t) = g(t)x(t) + f(t), (9.67)

with x(t0) = xt0 , a given initial value. Then the inequality

lim
t→∞

x(t)e
−
∫ t
t0
g(s)ds ≥ 0 (9.68)

is equivalent to

−
∫ ∞
t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ ≤ xt0 . (9.69)

Moreover, if and only if (9.68) is satisfied with strict equality, then (9.69) is
satisfied with strict equality.

Proof. The linear differential equation, (9.67), has the solution

x(t) = x(t0)e
∫ t
t0
g(s)ds

+

∫ t

t0

f(τ)e
∫ t
τ g(s)dsdτ . (9.70)
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Multiplying through by e−
∫ t
t0
g(s)ds yields

x(t)e
−
∫ t
t0
g(s)ds

= x(t0) +

∫ t

t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ .

By letting t→∞, it can be seen that if and only if (9.68) is true, we have

x(t0) +

∫ ∞
t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ ≥ 0.

Since x(t0) = xt0 , this is the same as (9.69). We also see that if and only if (9.68)
holds with strict equality, then (9.69) also holds with strict equality. �
COROLLARY Let n be a given constant and let

ht0 ≡
∫ ∞
t0

w(τ)e
−
∫ τ
t0

(r(s)−n)ds
dτ , (9.71)

which we assume is a finite number. Then, given

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t), where a(t0) = at0 , (9.72)

it holds that

lim
t→∞

a(t)e
−
∫ t
t0

(r(s)−n)ds ≥ 0⇔
∫ ∞
t0

c(τ)e
−
∫ τ
t0

(r(s)−n)ds
dτ ≤ at0 + ht0 , (9.73)

where a strict equality on the left-hand side of “⇔”implies a strict equality on
the right-hand side, and vice versa.

Proof. In (9.67), (9.68) and (9.69), let x(t) = a(t), g(t) = r(t) − n and f(t) =
w(t)− c(t). Then the conclusion follows from Claim 1. �

By setting t0 = 0 in the corollary and replacing τ by t and n by 0, we have
hereby provided an alternative proof of Proposition 1.

D. Proof of Proposition 2 (about the transversality condition with an
infinite time horizon)

In the differential equation (9.67) we let x(t) = λ(t), g(t) = −(r(t) − ρ), and
f(t) = 0. This gives the linear differential equation λ̇(t) = (ρ − r(t))λ(t), which
is identical to the first-order condition (9.40) in Section 9.4. The solution is

λ(t) = λ(t0)e
−
∫ t
t0

(r(s)−ρ)ds
.
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Substituting this into (TVC) in Section 9.4 yields

λ(t0) lim
t→∞

a(t)e
−
∫ t
t0

(r(s)−n)ds
= 0. (9.74)

From the first-order condition (9.39) in Section 9.4 we have λ(t0) = u′(c(t0)) > 0
so that λ(t0) in (9.74) can be ignored. Thus, (TVC) in Section 9.4 is equivalent
to the condition that (NPG) in that section is satisfied with strict equality (let
t0 = 0 = n). This proves Proposition 2 in the text. �

E. Intertemporal consumption smoothing

We claimed in Section 9.4 that equation (9.48) gives approximately the marginal
rate of substitution of consumption in the time interval (t + ∆t, t + 2∆t) for
consumption in (t, t+∆t). This can be seen in the following way. To save notation
we shall write our time-dependent variables as ct, rt, etc., even though they are
continuous functions of time. The contribution from the two time intervals to the
criterion function is∫ t+2∆t

t

u(cτ )e
−ρτdτ ≈ e−ρt

(∫ t+∆t

t

u(ct)e
−ρ(τ−t)dτ +

∫ t+2∆t

t+∆t

u(ct+∆t)e
−ρ(τ−t)dτ

)
= e−ρt

(
u(ct)

[
e−ρ(τ−t)

−ρ

]t+∆t

t

+ u(ct+∆t)

[
e−ρ(τ−t)

−ρ

]t+2∆t

t+∆t

)

=
e−ρt(1− e−ρ∆t)

ρ

[
u(ct) + u(ct+∆t)e

−ρ∆t
]
.

Requiring unchanged utility integral U0 = Ū0 is thus approximately the same as
requiring ∆[u(ct) + u(ct+∆t)e

−ρ∆t] = 0, which by carrying through the differenti-
ation and rearranging gives (9.48).
The instantaneous local optimality condition, equation (9.51), can be inter-

preted on the basis of (9.50). Take logs on both sides of (9.50) to get

lnu′(ct) + ρ∆t− lnu′(ct+∆t) =

∫ t+∆t

t

rτdτ .

Dividing by ∆t, substituting (9.49), and letting ∆t→ 0 we get

ρ− lim
∆t→0

lnu′(ct+∆t)− lnu′(ct)

∆t
= lim

∆t→0

Rt+∆t −Rt

∆t
, (9.75)

where Rt is the antiderivative of rt. By the definition of a time derivative, (9.75)
can be written

ρ− d lnu′(ct)

dt
=
dRt

dt
.
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Carrying out the differentiation, we get

ρ− 1

u′(ct)
u′′(ct)ċt = rt,

which was to be shown.

F. Elasticity of intertemporal substitution in continuous time

The relationship between the elasticity of marginal utility and the concept of
instantaneous elasticity of intertemporal substitution in consumption can be ex-
posed in the following way: consider an indifference curve for consumption in the
non-overlapping time intervals (t, t+∆t) and (s, s+∆t). The indifference curve is
depicted in Fig. 9.3. The consumption path outside the two time intervals is kept
unchanged. At a given point (ct∆t, cs∆t) on the indifference curve, the marginal
rate of substitution of s-consumption for t-consumption, MRSst, is given by the
absolute slope of the tangent to the indifference curve at that point. In view of
u′′(c) < 0, MRSst is rising along the curve when ct decreases (and thereby cs
increases).
Conversely, we can consider the ratio cs/ct as a function of MRSst along the

given indifference curve. The elasticity of this consumption ratio w.r.t. MRSst
as we move along the given indifference curve then indicates the elasticity of
substitution between consumption in the time interval (t, t+∆t) and consumption
in the time interval (s, s+∆t). Denoting this elasticity by σ(ct, cs), we thus have:

σ(ct, cs) =
MRSst
cs/ct

d(cs/ct)

dMRSst
≈

∆(cs/ct)
cs/ct

∆MRSst
MRSst

.

At an optimum point, MRSst equals the ratio of the discounted prices of
good t and good s. Thus, the elasticity of substitution can be interpreted as
approximately equal to the percentage increase in the ratio of the chosen goods,
cs/ct, generated by a one percentage increase in the inverse price ratio, holding
the utility level and the amount of other goods unchanged. If s = t+ ∆t and the
interest rate from date t to date s is r, then (with continuous compounding) this
price ratio is er∆t, cf. (9.50). Inserting MRSst from (9.48) with t + ∆t replaced
by s, we get

σ(ct, cs) =
u′(ct)/[e

−ρ(s−t)u′(cs)]

cs/ct

d(cs/ct)

d{u′(ct)/[e−ρ(s−t)u′(cs)]}

=
u′(ct)/u

′(cs)

cs/ct

d(cs/ct)

d(u′(ct)/u′(cs))
, (9.76)
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Figure 9.3: Substitution of s-consumption for t-consumption as MRSst increases to
MRS

′
st.

since the factor e−ρ(t−s) cancels out.
We now interpret the d’s in (9.76) as differentials (recall, the differential of a

differentiable function y = f(x) is denoted dy and defined as dy = f ′(x)dx where
dx is some arbitrary real number). Calculating the differentials we get

σ(ct, cs) ≈
u′(ct)/u

′(cs)

cs/ct

(ctdcs − csdct)/c2
t

[u′(cs)u′′(ct)dct − u′(ct)u′′(cs)dcs]/u′(cs)2
.

Hence, for s→ t we get cs → ct and

σ(ct, cs)→
ct(dcs − dct)/c2

t

u′(ct)u′′(ct)(dct − dcs)/u′(ct)2
= − u′(ct)

ctu′′(ct)
≡ σ̃(ct).

This limiting value is known as the instantaneous elasticity of intertemporal sub-
stitution of consumption. It reflects the opposite of the preference for consump-
tion smoothing. Indeed, we see that σ̃(ct) = 1/θ(ct), where θ(ct) is the elasticity
of marginal utility at the consumption level c(t).

9.9 Exercises

9.1 We look at a household (or dynasty) with infinite time horizon. The house-
hold’s labor supply is inelastic and grows at the constant rate n > 0. The house-
hold has a constant rate of time preference ρ > n and the individual instantaneous
utility function is u(c) = c1−θ/(1 − θ), where θ is a positive constant. There is
no uncertainty. The household maximizes the integral of per capita utility dis-
counted at the rate ρ − n. Set up the household’s optimization problem. Show
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that the optimal consumption plan satisfies

c(0) = β0(a0 + h0), where

β0 =
1∫ ∞

0
e
∫ t
0

(
(1−θ)r(τ)−ρ

θ
+n)dτ

dt
, and

h0 =

∫ ∞
0

w(t)e−
∫ t
0 (r(τ)−n)dτdt,

where w(t) is the real wage per unit of labor and otherwise the same notation as
in this chapter is used. Hint: apply the corollary to Claim 1 in Appendix C and
the method of Example 1 in Section 9.5. As to h0, start by considering

H0 ≡ h0L0 =

∫ ∞
0

w(t)Lte
−
∫ t
0 (r(τ)−n)dτdt

and apply that L(t) = L0e
nt.
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Chapter 10

The basic representative agent
model: Ramsey

As early as 1928 a sophisticated model of a society’s optimal saving was pub-
lished by the British mathematician and economist Frank Ramsey (1903-1930).
Ramsey’s contribution was mathematically demanding and did not experience
much response at the time. Three decades had to pass until his contribution was
taken up seriously (Samuelson and Solow, 1956). His model was merged with the
growth model by Solow (1956) and became a cornerstone in neoclassical growth
theory from the mid 1960s. The version of the model which we present below was
completed by the work of Cass (1965) and Koopmans (1965). Hence the model
is also known as the Ramsey-Cass-Koopmans model.

The model is one of the basic workhorse models in macroeconomics. As
we conclude in Section 10.6, the model can be seen as placed at one end of a
line segment. At the other end appears another basic workhorse model, namely
Diamond’s overlapping generations model considered in chapters 3 and 4. While
in the Diamond model there is an unbounded number of agents (since in every new
period a new generation enters the economy) and these have a finite time horizon,
in the Ramsey model there is a finite number of agents with an unbounded time
horizon. The agents in the Ramsey model are completely alike. The model is thus
an example of a representative agent model. In contrast, the Diamond model has
heterogeneous agents, young versus old, interacting in every period. There are
important economic questions where these differences in the setup lead to salient
differences in the answers.

The purpose of this chapter is to describe and analyze the continuous-time
version of the Ramsey framework. In the main sections we consider the case of a
perfectly competitive market economy. In this context we shall see, for example,
that the Solow growth model can be interpreted as a special case of the Ramsey
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model. Towards the end of the chapter we consider the Ramsey framework in a
setting with an “all-knowing and all-powerful”social planner.

10.1 Preliminaries

We consider a closed economy. Time is continuous. We assume households own
the capital goods and hire them out to firms at a market rental rate, r̂. This
is just to have something concrete in mind. If instead the capital goods were
owned by the firms using them in production and the capital investment by these
firms were financed by issuing shares and bonds, the conclusions would remain
the same as long as we ignore uncertainty.
The variables in the model are considered as (piecewise) continuous and dif-

ferentiable functions of time, t. Yet, to save notation, we shall write them as wt,
r̂t, etc. instead of w(t), r̂(t), etc. In every short time interval (t, t+ ∆t), the in-
dividual firm employs labor at the market wage wt and rents capital goods at the
rental rate r̂t. The combination of labor and capital produces the homogeneous
output good. This good can be used for consumption as well as investment. So
in every short time interval there are at least three active markets, one for the
“all-purpose”output good, one for labor, and one for capital services (the rental
market for capital goods). It may be convenient to imagine that there is also a
market for loans. As all households are alike, however, the loan market will not
be active in general equilibrium.
There is perfect competition in all markets, that is, households and firms are

price takers. Any need for means of payment − money − is abstracted away.
Prices are measured in units of the output good.
There are no stochastic elements in the model. We assume households under-

stand exactly how the economy works and can predict the future path of wages
and interest rates. In other words, we assume “rational expectations”. In our
non-stochastic setting this amounts to perfect foresight. The results that emerge
from the model are thereby the outcome of economic mechanisms in isolation
from expectational errors.
Uncertainty being absent, rates of return on alternative assets are in equilib-

rium the same. In spite of the not active loan market, it is usual to speak of this
common rate of return as the real interest rate of the economy. Denoting this
rate rt, for a given rental rate, r̂t, we have

rt =
r̂tKt − δKt

Kt

= r̂t − δ, (10.1)

where the right-hand side is the rate of return on holding Kt capital goods, δ
(≥ 0) being a constant rate of capital depreciation. This relationship may be
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considered a no-arbitrage condition between investing in the loan market and in
capital goods.
We describe, first, the households’ behavior and next the firms’ behavior.

Thereafter the interaction between households and firms in general equilibrium
and the resulting dynamics will be analyzed.

10.2 The agents

10.2.1 Households

There is a fixed number, N, of identical households with an infinite time horizon.
This feature makes aggregation very simple: we just have to multiply the behavior
of a single household with the number of households (we later normalize N to
equal 1). Every household has Lt (adult) members and Lt changes over time at
a constant rate, n :

Lt = L0e
nt, L0 > 0. (10.2)

Indivisibility is ignored.
Each household member supplies inelastically one unit of labor per time unit.

Equation (10.2) therefore describes the growth of the population as well as the
labor force. Since there is only one consumption good, the only decision problem
is how to distribute current income between consumption and saving.

Intertemporal utility function

The household’s preferences can be represented by an additive intertemporal util-
ity function with a constant rate of time preference, ρ. Seen from time 0, the
intertemporal utility function is

U0 =

∫ ∞
0

u(ct)Lte
−ρtdt,

where ct ≡ Ct/Lt is consumption per family member. The instantaneous utility
function, u(c), has u′(c) > 0 and u′′(c) < 0, i.e., positive but diminishing marginal
utility of consumption. The utility contribution from consumption per family
member is weighted by the number of family members, Lt. So it is the sum of the
family members’utility that counts. Such a utility function is called a utilitarian
utility function (with discounting).
The household is seen as an infinitely-lived family, a family dynasty. The

current members of the dynasty act in unity and are concerned about the utility
from own consumption as well as the utility of the future generations within the
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dynasty.1 Births (into adult life) do not amount to emergence of new economic
agents with independent interests. Births and population growth are seen as
just an expansion of the size of the already existing families. In contrast, in the
Diamond OLG model births imply entrance of new economic decision makers
whose preferences no-one cared about in advance.
In view of (10.2), U0 can be written as

U0 =

∫ ∞
0

u(ct)e
−(ρ−n)tdt, (10.3)

where the inconsequential positive factor L0 has been eliminated. Here ρ − n is
known as the effective rate of time preference while ρ is the pure rate of time
preference. We later introduce a restriction on ρ−n to ensure boundedness from
above of the utility integral in general equilibrium.
The household chooses a consumption-saving plan which maximizes U0 subject

to its budget constraint. Let At ≡ atLt be the household’s (net) financial wealth
in real terms at time t. We have

Ȧt ≡
dAt
dt

= rtAt + wtLt − ctLt, A0 given. (10.4)

This equation is a book-keeping relation telling how financial wealth or debt (−A)
changes over time depending on how consumption relates to current income. The
equation merely says that the increase in financial wealth per time unit equals
saving which equals income minus consumption. Income is the sum of the net
return on financial wealth, rtAt, and labor income, wtLt, where wt is the real
wage.2 Saving can be negative. In that case the household “dissaves”and does
so simply by selling a part of its stock of capital goods or by taking loans in the
loan market. The market prices, wt and rt, faced by the household are assumed
to be piecewise continuous functions of time.
When the dynamic budget identity (10.4) is combined with a requirement of

solvency, we have a budget constraint. The relevant solvency requirement is the
No-Ponzi-Game condition (NPG for short):

lim
t→∞

Ate
−
∫ t
0 rsds ≥ 0. (10.5)

This condition says that financial wealth far out in the future cannot have a
negative present value. That is, in the long run, debt is at most allowed to rise

1The descrete-time Barro model of Chapter 7 articulated such an altruistic bequest motive.
In that chapter we also discussed some of the conceptual diffi culties of the dynasty setup.

2Since the technology exhibits constant returns to scale, in competitive equilibrium the firms
make no (pure) profit to pay out to their owners.
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at a rate less than the real interest rate r. The NPG condition thus precludes
permanent financing of the interest payments by new loans.3

The decision problem is: choose a plan (ct)
∞
t=0 so as to achieve a maximum

of U0 subject to non-negativity of the control variable, c, and the constraints
(10.4) and (10.5). The problem is a slight generalization of the problem studied
in Section 9.4 of the previous chapter.
To solve the problem we shall apply the Maximum Principle. This method can

be applied directly to the problem as stated above or to an equivalent problem
with constraints expressed in per capita terms. Let us follow the latter approach.
From the definition at ≡ At/Lt we get by differentiation w.r.t. t

ȧt =
LtȦt − AtL̇t

L2
t

=
Ȧt
Lt
− atn.

Substitution of (10.4) gives the dynamic budget identity in per capita terms:

ȧt = (rt − n)at + wt − ct, a0 given. (10.6)

By inserting At ≡ atLt = atL0e
nt, the NPG condition (10.5) can be rewritten

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0, (10.7)

where the unimportant factor L0 has been eliminated.
We see that in both (10.6) and (10.7) a kind of corrected interest rate appears,

namely the interest rate, r, minus the family size growth rate, n. Although
deferring consumption gives a real interest rate of r, this return is diluted on
a per capita basis because it will have to be shared with more members of the
family when n > 0. In the form (10.7) the NPG condition requires that per capita
debt, if any, in the long run at most grows at a rate less than r − n.

Solving the consumption/saving problem

The decision problem is now: choose (ct)
0
t=∞ so as to a maximize U0 subject to

the constraints: ct ≥ 0, (10.6), and (10.7). To solve the problem we apply the
Maximum Principle. So we follow the same solution procedure as in the alike
problem (apart from n = 0) of Section 9.4 of the previous chapter:

3In the previous chapter we saw that the NPG condition, in combination with (10.4), is
equivalent to an ordinary intertemporal budget constraint which says that the present value of
the planned consumption path cannot exceed initial total wealth, i.e., the sum of the initial
financial wealth and the present value of expected future labor income.
Violating the NPG condition means running a “Ponzi game”, that is, trying to make a fortune

through the chain-letter principle where old investors are payed off with money from the new
investors.
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1) Set up the current-value Hamiltonian

H(a, c, λ, t) = u(c) + λ [(r − n) a+ w − c] ,

where λ is the adjoint variable associated with the differential equation (10.6).
2) Differentiate H partially w.r.t. the control variable, c, and put the result

equal to zero:
∂H

∂c
= u′(c)− λ = 0. (10.8)

3) Differentiate H partially w.r.t. the state variable, a, and put the result
equal to minus the time derivative of λ plus the effective discount rate (appearing
in the integrand of the criterion function) multiplied by λ :

∂H

∂a
= λ(r − n) = −λ̇+ (ρ− n)λ. (10.9)

4) Apply the Maximum Principle: an interior optimal path (at, ct)
∞
t=0 will

satisfy that there exists a continuous function λ = λt such that for all t ≥ 0,
(10.8) and (10.9) hold along the path and the transversality condition,

lim
t→∞

atλte
−(ρ−n)t = 0, (10.10)

is satisfied.
The interpretation of these optimality conditions is as follows. The condition

(10.8) can be considered a MC = MB condition (in utility terms). It illustrates
together with (10.9) that the adjoint variable, λ, constitutes the shadow price,
measured in current utility, of per head financial wealth along the optimal path.
In the differential equation (10.9), λn cancels out and rearranging (10.9) gives

rλ+ λ̇

λ
= ρ.

This can be interpreted as a no-arbitrage condition. The left-hand side gives the
actual rate of return, measured in utility units, on the marginal unit of saving:
rλ can be seen as a dividend and λ̇ as a capital gain. The right-hand side is the
required rate of return in utility units, ρ. The household is willing to save the
marginal unit of income only up to the point where the actual return on saving
equals the required return.
The transversality condition (10.10) says that for t→∞, the present shadow

value of per capita financial wealth should go to zero. Combined with (10.8), the
condition is that

lim
t→∞

atu
′(ct)e

−(ρ−n)t = 0 (10.11)
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must hold along the optimal path. This requirement is not surprising if we
compare with the case where limt→∞ atu

′(ct)e
−(ρ−n)t > 0. In this case there

would be over-saving; U0 could be increased by reducing the “ultimate”at and
thereby, before eternity, consume more and save less. The opposite case, limt→∞
atu
′(ct)e

−(ρ−n)t < 0, will not even satisfy the NPG condition in view of Proposi-
tion 2 of the previous chapter. In fact, from that proposition we know that the
transversality condition (10.10) is equivalent to the NPG condition (10.7) being
satisfied with strict equality, i.e.,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds = 0. (10.12)

Recall that the Maximum Principle gives only necessary conditions for an
optimal plan. But since the Hamiltonian is jointly concave in (a, c) for every t,
the necessary conditions are also suffi cient, by Mangasarian’s suffi ciency theorem.
The first-order conditions (10.8) and (10.9) give the Keynes-Ramsey rule:

ċt
ct

=
1

θ(ct)
(rt − ρ), (10.13)

where θ(ct) is the (absolute) elasticity of marginal utility,

θ(ct) ≡ −
ct

u′(ct)
u′′(ct) > 0. (10.14)

As we know from previous chapters, this elasticity indicates the consumer’s wish
to smooth consumption over time. The inverse of θ(ct) is the elasticity of in-
tertemporal substitution in consumption. It indicates the willingness to vary
consumption over time in response to a change in the interest rate.
Note that the population growth rate, n, does not appear in the Keynes-

Ramsey rule. Going from n = 0 to n > 0 implies that rt is replaced by rt−n in the
dynamic budget identity and ρ is replaced by ρ−n in the criterion function. Hence
n cancels out in the Keynes-Ramsey rule. Yet n appears in the transversality
condition and thereby also in the level of consumption for given wealth, cf. (10.18)
below.

CRRA utility

In order that the model can accommodate Kaldor’s stylized facts, it should be
capable of generating a balanced growth path. When the population grows at
the same constant rate as the labor force, here n, by definition balanced growth
requires that per capita output, per capita capital, and per capita consumption
grow at constant rates. At the same time another of Kaldor’s stylized facts is
that the general rate of return in the economy tends to be constant. But (10.13)
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shows that having a constant per capita consumption growth rate at the same
time as r is constant, is only possible if the elasticity of marginal utility does not
vary with c. Hence, it makes sense to assume that the right-hand-side of (10.14)
is a positive constant, θ. We thus assume that the instantaneous utility function
is of CRRA form:

u(c) =
c1−θ

1− θ , θ > 0; (10.15)

here, for θ = 1, the right-hand side should be interpreted as ln c as explained in
Section 3.3 of Chapter 3.
So our Keynes-Ramsey rule simplifies to

ċt
ct

=
1

θ
(rt − ρ). (10.16)

The consumption function∗ The Keynes-Ramsey rule characterizes the opti-
mal rate of change of consumption. The optimal initial level of consumption, c0,
will be the highest feasible c0 which is compatible with both the Keynes-Ramsey
rule and the NPG condition. And for this reason the choice of c0 will exactly
comply with the transversality condition (10.12). Although at this stage an ex-
plicit determination of c0 is not necessary to pin down the equilibrium path of the
economy (see below), we note in passing that c0 can be found by the method de-
scribed at the end of Chapter 9. Indeed, given the book-keeping relation (10.6),
we know from Proposition 1 of that chapter that the transversality condition
(10.12) is equivalent to satisfying the intertemporal budget constraint with strict
equality: ∫ ∞

0

cte
−
∫ t
0 (rs−n)dsdt = a0 + h0. (10.17)

Solving the differential equation (10.16), we get ct = c0e
1
θ

∫ t
0 (rs−ρ)ds which we

substitute for ct in (10.17). Isolating c0 now gives4

c0 = β0(a0 + h0), where (10.18)

β0 =
1∫∞

0
e
∫ t
0

(
(1−θ)rs−ρ

θ
+n)ds

dt
, and

h0 =

∫ ∞
0

wte
−
∫ t
0 (rs−n)dsdt.

Initial consumption is thus proportional to total wealth. The factor of propor-
tionality is β0, also called the marginal (and average) propensity to consume out

4These formulas can also be derived directly from Example 1 of Chapter 9.5 by replacing
r(τ) and ρ by r(τ)− n and ρ− n, respectively. As to h0, see the hint in Exercise 9.1.
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of wealth. We see that the entire expected future evolution of wages and inter-
est rates affects c0 through β0. Moreover, β0 is less, the greater is the population
growth rate, n.5 The explanation is that the effective utility discount rate, ρ−n, is
less, the greater is n. The propensity to save is greater the more mouths to feed in
the future. The initial saving level will be r0a0 +w0−c0 = r0a0 +w0−β0(a0 +h0).
In case rt = r for all t and wt = w0e

gt, where g < r − n, we get β0 =
[(θ − 1)r + ρ− θn] /θ and a0 + h0 = a0 + w0/(r − n− g).
In the Solow growth model the saving-income ratio is a parameter, a given

constant. The Ramsey model endogenizes the saving-income ratio. Solow’s para-
metric saving-income ratio is replaced by two “deeper”parameters, the rate of
impatience, ρ, and the desire for consumption smoothing, θ. As we shall see, the
resulting saving-income ratio will not generally be constant outside the steady
state of the dynamic system implied by the Ramsey model. But first we need a
description of production.

10.2.2 Firms

There is a large number of firms. They have the same neoclassical production
function with CRS,

Yt = F (Kd
t , TtL

d
t ) (10.19)

where Yt is supply of output, Kd
t is capital input, and Ldt is labor input, all

measured per time unit, at time t. The superscript d on the two inputs indicates
that these inputs are seen from the demand side. The factor Tt represents the
economy-wide level of technology as of time t and is exogenous. We assume there
is technological progress at a constant rate g (≥ 0) :

Tt = T0e
gt, T0 > 0. (10.20)

Thus the economy features Harrod-neutral technological progress, as is needed
for compliance with Kaldor’s stylized facts.
Necessary and suffi cient conditions for the factor combination (Kd

t , L
d
t ), where

Kd
t > 0 and Ldt > 0, to maximize profits under perfect competition are that

F1(Kd
t , TtL

d
t ) = r̂t, (10.21)

F2(Kd
t , TtL

d
t )Tt = wt. (10.22)

10.3 General equilibrium and dynamics

We now consider the economy as a whole and thereby the interaction between
households and firms in the various markets. For simplicity, we assume that

5This holds also if θ = 1, i. e., u(c) = ln c, since in that case β0 = ρ− n.
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the number of households is the same as the number of firms. We normalize
this number to one so that F (·, ·) from now on is interpreted as the aggregate
production function and Ct as aggregate consumption.

Factor markets

In the short term, i.e., for fixed t, the available quantities of labor, Lt = L0e
nt,

and capital, Kt, are predetermined. The factor markets clear at all points in time,
that is,

Kd
t = Kt, and Ldt = Lt, for all t ≥ 0. (10.23)

It is the rental rate, r̂t, and the wage rate, wt, which adjust (immediately) so that
this is achieved for every t. Aggregate output can be written

Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t), f ′ > 0, f ′′ < 0, (10.24)

where k̃t ≡ kt/Tt ≡ Kt/(TtLt) is the technology-corrected capital labor ratio, also
sometimes just called the “capital intensity”. Substituting (10.23) into (10.21)
and (10.22), we find the equilibrium interest rate and wage rate:

rt = r̂t − δ =
∂(TtLtf(k̃t))

∂Kt

− δ = f ′(k̃t)− δ, (10.25)

wt =
∂(TtLtf(k̃t))

∂(TtLt)
Tt =

[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt, (10.26)

where k̃t is at any point in time predetermined and where in (10.25) we have used
the no-arbitrage condition (10.1).

Capital accumulation

From now we leave out the explicit dating of the variables when not needed for
clarity. By national product accounting we have

K̇ = Y − C − δK. (10.27)

Let us check whether we get the same result from the wealth accumulation equa-
tion of the household. Because physical capital is the only asset in the economy,
aggregate financial wealth, A, at time t equals the total quantity of capital, K,
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at time t.6 From (10.4) we thus have

Ȧ = K̇ = rK + wL− cL
= (f ′(k̃)− δ)K + (f(k̃)− k̃f ′(k̃))TL− cL (from (10.25) and (10.26))

= f(k̃)TL− δK − cL (by rearranging and use of K ≡ k̃TL)

= F (K,TL)− δK − C = Y − C − δK (by C ≡ cL).

Hence the book-keeping is in order (the national product account is consistent
with the national income account).
We now face an important difference as compared with models where house-

holds have a finite horizon, such as the Diamond OLG model. Current consump-
tion cannot be determined independently of the expected entire future evolution
of the economy. Consumption and saving, as we saw in Section 10.2, depend on
the expectations of the future path of wages and interest rates. And given the
presumption of perfect foresight, the households’expectations are identical to the
prediction that can be calculated from the model. In this way there is mutual de-
pendence between expectations and the level and evolution of consumption. We
can determine the level of consumption only in the context of the overall dynamic
analysis. In fact, the economic agents are in some sense in the same situation as
the outside analyst. They, too, have to think through the entire dynamics of the
economy in order to form their rational expectations.

The dynamic system

We get a concise picture of the dynamics by reducing the model to the minimum
number of coupled differential equations. This minimum number is two. The key
endogenous variables are k̃ ≡ K/(TL) and c̃ ≡ C/(TL) ≡ c/T . Using the rule
for the growth rate of a fraction, we get

·
k̃

k̃
=

K̇

K
− Ṫ

T
− L̇

L
=
K̇

K
− (g + n) (from (10.2) and (10.20))

=
F (K,TL)− C − δK

K
− (g + n) (from (10.27))

=
f(k̃)− c̃

k̃
− (δ + g + n) (from (10.24)).

6Whatever financial claims on each other the households might have, they net out for the
household sector as a whole.
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The associated differential equation for c̃ is obtained in a similar way:

·
c̃

c̃
=

ċ

c
− Ṫ

T
=

1

θ
(rt − ρ)− g (from the Keynes-Ramsey rule)

=
1

θ

[
f ′(k̃)− δ − ρ− θg

]
(from (10.25)).

We thus end up with the dynamic system

·
k̃ = f(k̃)− c̃− (δ + g + n)k̃, k̃0 > 0 given, (10.28)
·
c̃ =

1

θ

[
f ′(k̃)− δ − ρ− θg

]
c̃. (10.29)

There is no given initial value of c. Instead we have the transversality condition
(10.12). Using at = Kt/Lt ≡ k̃tTt = k̃tT0e

gt and rt = f ′(k̃t) − δ, we see that
(10.12) is equivalent to

lim
t→∞

k̃te
−
∫ t
0 (f ′(k̃s)−δ−g−n)ds = 0. (10.30)

Fig. 10.1 is an aid for the construction of the phase diagram in Fig. 10.2.

The curve OEB in Fig. 10.2 represents the points where
·
k̃ = 0 and is called the

nullcline for the differential equation (10.28). We see from (10.28) that

·
k̃ = 0 for c̃ = f(k̃)− (δ + g + n)k̃ ≡ c̃(k̃). (10.31)

Fig. 10.1 displays the value of c̃(k̃) as the vertical distance between the curve
ỹ = f(k̃) and the line ỹ = (δ + g + n)k̃ (to save space the proportions are
somewhat distorted).7 The maximum value of c̃(k̃), if it exists, is reached at the
point where the tangent to the OEB curve in Fig. 10.2 is horizontal, i.e., where
c̃′(k̃) = f ′(k̃)− (δ+ g+n) = 0 or f ′(k̃)− δ = g+n. The value of k̃ which satisfies
this is the golden rule capital intensity, k̃GR:

f ′(k̃GR)− δ = g + n. (10.32)

From (10.28) we see that for points above the
·
k̃ = 0 locus we have

·
k̃ < 0, whereas

for points below the
·
k̃ = 0 locus,

·
k̃ > 0. The horizontal arrows in the figure

indicate these directions of movement for k̃.
7As the graph is drawn, f(0) = 0, i.e., capital is assumed essential. But none of the conclu-

sions we are going to consider depends on this.
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We also need the nullcline for the differential equation (10.29). We see from
(10.29) that

·
c̃ = 0 for f ′(k̃) = δ + ρ+ θg or c̃ = 0. (10.33)

Let k̃∗ > 0 satisfy the equation f ′(k̃∗)− δ = ρ+ θg. Then the vertical line k̃ = k̃∗

represents points where
·
c̃ = 0 (and so does of course the horizontal half-line

c̃ = 0, k̃ ≥ 0). For points to the left of the k̃ = k̃∗ line we have, according to

(10.29),
·
c̃ > 0. And for points to the right of the k̃ = k̃∗ line we have

·
c̃ < 0.

The vertical arrows in Fig. 10.2 indicate these directions of movement for c̃. Four
illustrative examples of solution curves (I, II, III, and IV ) are drawn in the figure.

Steady state

The point E has coordinates (k̃∗, c̃∗) and represents the unique steady state.8

From (10.33) and (10.31) follows that

f ′(k̃∗) = δ + ρ+ θg, and (10.34)

c̃∗ = f(k̃∗)− (δ + g + n)k̃∗. (10.35)

From (10.34) it can be seen that the real interest rate in steady state is

r∗ = f ′(k̃∗)− δ = ρ+ θg. (10.36)

The effective capital-labor ratio satisfying this equation is known as the modified-
golden-rule capital intensity, k̃MGR. The modified golden rule is the rule saying
that for a representative agent economy to be in steady state, the capital intensity
must be such that the net marginal productivity of capital equals the required
rate of return, taking into account the pure rate of time preference, ρ, and the
desire for consumption smoothing, θ.9

We show below that the steady state is, in a specific sense, asymptotically sta-
ble. First we have to make sure, however, that the steady state is consistent with

8As (10.33) shows, if c̃t = 0, then
·
c̃ = 0. Therefore, mathematically, point B (if it exists) in

Fig. 10.2 is also a stationary point of the dynamic system. And if f(0) = 0, then according to
(10.29) and (10.31) also the point (0, 0) in the figure is a stationary point. But these stationary
points have zero consumption forever and are therefore not steady states of any economic
system. From an economic point of view they are “trivial”steady states.

9The ρ of the Ramsey model corresponds to the intergenerational discount rate R of the
Barro dynasty model in Chapter 7. Indeed, in the discrete time Barro model we have 1 + r∗

= (1+R)(1+g)θ, which, by taking logs on both sides and using first-order Taylor approximations
of ln(1 + x) around x = 0 gives r∗ ≈ ln(1 + r∗) = ln(1 + R) + θ ln(1 + g) ≈ R + θg. Recall,
however, that in view of the considerable period length (about 25-30 years) of the Barro model,
this approximation may not be good.
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k̃MGR k̃GR
¯̃
k

0

ỹ = f(k̃)

ỹ = (δ + g + n)k̃
δ + ρ+ θg

δ + g + n

k̃

ỹ

Figure 10.1: Building blocks for the phase diagram.

k̃0 k̃∗ = k̃MGR k̃GR
¯̃
k

c̃A

c̃∗
˙̃
k = 0

A

˙̃c = 0

I

IV

E

II

III

V

VI

k̃

c̃

Figure 10.2: Phase diagram for the Ramsey model.
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general equilibrium. This consistency requires that the household’s transversality
condition (10.30) holds in the point E, where k̃t = k̃∗ and f ′(k̃t)− δ = ρ+ θg for
all t. So the condition (10.30) becomes

lim
t→∞

k̃∗e−(ρ+θg−g−n)t = 0. (10.37)

This is fulfilled if and only if ρ+ θg > g + n, that is,

ρ− n > (1− θ)g. (A1)

This inequality also ensures that the improper integral U0 is bounded from above
(see Appendix B). If θ ≥ 1, (A1) is fulfilled as soon as the effective utility discount
rate, ρ − n, is positive; (A1) may even hold for a negative ρ − n if not “too”
negative. If θ < 1, (A1) requires ρ− n to be “suffi ciently positive”.
Since the parameter restriction (A1) can be written ρ+ θg > g+n, it implies

that the steady-state interest rate, r∗, given in (10.36), is higher than the “nat-
ural”growth rate, g+n. If this did not hold, the transversality condition (10.12)
would fail at the steady-state point E. Indeed, along the steady-state path we
have

ate
−(r∗−n)t = kte

−(r∗−n)t = k0e
gte−(r∗−n)t = k0e

(g+n−r∗)t,

which would take the constant positive value k0 for all t ≥ 0 if r∗ = g + n and
would go to ∞ for t → ∞ if r∗ < g + n. The individual households would thus
be over-saving. Each household would in this situation alter its behavior and the
steady state could not be an equilibrium path.
Another way of seeing that r∗ ≤ g+n can not be an equilibrium in a Ramsey

model is to recognize that this condition would make the infinitely-lived house-
hold’s human wealth =∞ because wage income, wL, would grow at a rate, g+n,
at least as high as the real interest rate, r∗. This would motivate an immediate
increase in consumption and so the considered steady-state path would again not
be an equilibrium.
To have a model of interest, from now on we assume that the preference and

technology parameters satisfy the inequality (A1). As an implication, the capital
intensity in steady state, k̃∗, is less than the golden-rule value k̃GR. Indeed,
f ′(k̃∗)− δ = ρ+ θg > g + n = f ′(k̃GR)− δ, so that k̃∗ < k̃GR, in view of f ′′ < 0.
So far we have only ensured that if the steady state, E, exists, it is consistent

with general equilibrium. Existence of a steady state requires that the marginal
productivity of capital is suffi ciently sensitive to variation in the capital intensity:

lim
k̃→0

f ′(k̃)− δ > ρ+ θg > lim
k̃→∞

f ′(k̃)− δ.

We could proceed with this assumption. To allow comparison of the steady
state of the model with the golden rule allocation, we make the slightly stronger
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assumption that f has the properties

lim
k̃→0

f ′(k̃)− δ > ρ+ θg and lim
k̃→∞

f ′(k̃)− δ < g + n. (A2)

Together with (A1) this implies limk̃→0 f
′(k̃)−δ > ρ+θg > g+n > limk̃→∞ f

′(k̃)−
δ. By continuity of f ′, these inequalities ensure the existence of both k̃∗ > 0 and
k̃GR > 0.10 Moreover, as illustrated by Fig. 10.1, the inequalities also ensure
existence of a k̃ > 0 with the property that f(k̃) − (δ + g + n)k̃ = 0.11 Because
f ′(k̃) > 0 for all k̃ > 0, it is implicit in the technology assumption (A2) that δ +
g+n > 0. Even without deciding on the sign of n (a decreasing workforce should
not be ruled out in our days), this inequality seems a plausible presumption.

Trajectories in the phase diagram

A first condition for a path (k̃t, c̃t), with k̃t > 0 and c̃t > 0 for all t ≥ 0, to
be a solution to the model is that it satisfies the system of differential equations
(10.28)-(10.29). Indeed, to be technically feasible, it must satisfy (10.28) and to
comply with the Keynes-Ramsey rule, it must satisfy (10.29). Technical feasibility
of the path also requires that the initial value for k̃ equals the historically given
value k̃0 ≡ K0/(T0L0). In contrast, for c̃ we have no given initial value. This is
because c̃0 is a jump variable, also known as a forward-looking variable. By this
is meant an endogenous variable which can immediately shift to another value if
new information arrives so as to alter expectations about the future. We shall
see that the terminal condition (10.30), reflecting the transversality condition of
the households, makes up for this lack of an initial condition for c.
In Fig. 10.2 we have drawn some paths that could be solutions as t increases.

We are especially interested in the paths which are consistent with the historically
given k̃0, that is, paths starting at some point on the stippled vertical line in the
figure. If the economy starts out with a high value of c̃, it will follow a curve like
II in the figure. The low level of saving implies that the capital stock goes to
zero in finite time (see Appendix C). If the economy starts out with a low level
of c̃, it will follow a curve like III in the figure. The high level of saving implies

that the capital intensity converges towards
_

k̃ in the figure.
All in all this suggests the existence of an initial level of consumption some-

where in between, which results in a path like I. Indeed, since the curve II
emerged with a high c̃0, then by lowering this c̃0 slightly, a path will emerge in

10The often presumed Inada conditions, limk̃→0 f
′(k̃) =∞ and limk̃→∞ f ′(k̃) = 0, are stricter

than (A2) and not necessary.
11We claim that k̃ > k̃GR must hold. Indeed, this inequality follows from f ′(k̃GR) = δ+n+g

≡ f(
_

k̃)/
_

k̃ > f ′(
_

k̃), the latter inequality being due to f ′′ < 0 and f(0) ≥ 0.
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which the maximal value of k̃ on the
·
k̃ = 0 locus is greater than curve II’s maxi-

mal k̃ value.12 We continue lowering c̃0 until the path’s maximal k̃ value is exactly
equal to k̃∗. The path which emerges from this, namely the path I, starting at
the point A, is special in that it converges towards the steady-state point E. No
other path starting at the stippled line, k̃ = k̃0, has this property. Paths starting
above A do not, as we just saw. Neither do paths starting below A, like path
III. Either this path never reaches the consumption level c̃A in which case it can
not converge to E, of course. Or, after a while its consumption level reaches c̃A,
but at the same time it must have k̃ > k̃0. From then on, as long as k̃ ≤ k̃∗, for
every c̃-value that path III has in common with path I, path III has a higher
·
k̃ and a lower

·
c̃ than path I (use (10.28) and (10.29)). Hence, path III diverges

from point E.
Had we considered a value of k̃0 > k̃∗, there would similarly be a unique value

of c̃0 such that the path starting from (k̃0, c̃0) would converge to E (see path IV
in Fig. 10.2).
The point E is a saddle point. By this is meant a steady-state point with

the following property: there exists exactly two paths, one from each side of k̃∗,
that converge towards the steady-state point; all other paths (at least starting
in a neighborhood of the steady state) move away from the steady state and
asymptotically approach one of the two diverging paths, the stippled North-West
and South-East curves in Fig. 10.2. The two converging paths together make up
what is known as the stable branch (or stable arm); on their own they are referred
to as saddle paths (sometimes referred to in the singular as the saddle path).13

The stippled diverging paths in Fig. 10.2 together make up the unstable branch
(or unstable arm).

The equilibrium path

A solution to the model is a path which is technically feasible and in addition
satisfies a set of equilibrium conditions. In analogy with the definition in discrete
time (see Chapter 3) a path (k̃t, c̃t)

∞
t=0 is called a technically feasible path if (i) the

path has k̃t ≥ 0 and c̃t ≥ 0 for all t ≥ 0; (ii) it satisfies the accounting equation
(10.28); and (iii) it starts out, at t = 0, with the historically given initial capital
intensity. An equilibrium path with perfect foresight is then a technically feasible
path (k̃t, c̃t)

∞
t=0 with the properties that the path (a) is consistent with firms’

12As an implication of the uniqueness theorem for differential equations (see Math tools), two
solution paths in the phase plane cannot intersect.
13An algebraic definition of a saddle point, in terms of eigenvalues, is given in Appendix A.

There it is also shown that if limk̃→0f(k̃) = 0, then the saddle path on the left side of the steady
state in Fig. 10.2 will start out infinitely close to the origin.
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profit maximization and households’optimization given their expectations; (b)
is consistent with market clearing for all t ≥ 0; and (c) has the property that
the evolution of the pair (wt, rt), where wt = w̃(k̃t)Tt and rt = f ′(k̃t) − δ, is as
expected by the households. Among other other things these conditions require
the transformed Keynes-Ramsey rule (10.29) and the transversality condition
(10.30) to hold for all t ≥ 0.

Consider the case where 0 < k̃0 < k̃∗, as illustrated in Fig. 10.2. Then, the
path starting at point A and following the saddle path towards the steady state
is an equilibrium path because, by construction, it is technically feasible and in
addition has the required properties, (a), (b), and (c). More intuitively: if the
households expect an evolution of wt and rt corresponding to this path (that is,
expect a corresponding underlying movement of k̃t, which we know unambigu-
ously determines rt and wt), then these expectations will induce a behavior the
aggregate result of which is an actual path for (k̃t, c̃t) that confirms the expecta-
tions. And along this path the households find no reason to correct their behavior
because the path allows both the Keynes-Ramsey rule and the transversality con-
dition to be satisfied.
No other path than the saddle path can be an equilibrium. This is because

no other technically feasible path is compatible with the households’individual
utility maximization under perfect foresight. An initial point above point A can
be excluded in that the implied path of type II does not satisfy the household’s
NPG condition (and, consequently, not at all the transversality condition).14 If
the individual household expected an evolution of rt and wt corresponding to path
II, then the household would immediately choose a lower level of consumption,
that is, the household would deviate in order not to suffer the same fate as Charles
Ponzi. In fact all the households would react in this way. Thus path II would not
be realized and the expectation that it would, can not be a rational expectation.
Likewise, an initial point below point A can be ruled out because the implied

path of type III does not satisfy the household’s transversality condition but
implies over-saving. Indeed, at some point in the future, say at time t1, the
economy’s capital intensity would pass the golden rule value so that for all t > t1,
rt < g + n. But with a rate of interest permanently below the growth rate of
wage income of the household, the present value of human wealth is infinite.
This motivates a higher consumption level than that along the path. Thus,
if the household expects an evolution of rt and wt corresponding to path III,
then the household will immediately deviate and choose a higher initial level of
consumption. But so will all the households react and the expectation that the
economy will follow path III can not be rational.
We have presumed 0 < k̃0 < k̃∗. If instead k̃0 > k̃∗, the economy would move

14This is shown in Appendix C.
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along the saddle path from above. Paths like V and V I in Fig. 10.2 can be ruled
out because they violate the NPG condition and the transversality condition,
respectively. With this we have shown:

PROPOSITION 1 Assume (A1) and (A2). Let there be a given k̃0 > 0. Then
the Ramsey model exhibits a unique equilibrium path, characterized by (k̃t, c̃t)
converging, for t → ∞, toward a unique steady state with a capital intensity k̃∗
satisfying f ′(k̃∗)− δ = ρ+θg. In the steady state the real interest rate is given by
the modified-golden-rule formula, r∗ = ρ + θg, the per capita consumption path
is c∗t = c̃∗T0e

gt, where c̃∗ = f(k̃∗) − (δ + g + n)k̃∗, and the real wage path is w∗t
= w̃(k̃∗)T0e

gt.

A numerical example based on one year as the time unit: θ = 2, g = 0.02,
n = 0.01 and ρ = 0.01. Then, r∗ = 0.05 > 0.03 = g + n.
So output per capita, yt ≡ Yt/Lt ≡ ỹtTt, tends to grow at the rate of techno-

logical progress, g :

ẏt
yt
≡

·
ỹt
ỹt

+
Ṫt
Tt

=
f ′(k̃t)

·
k̃t

f(k̃t)
+ g → g for t→∞,

in view of
·
k̃t → 0. This is also true for the growth rate of consumption per capita

and the real wage, since ct ≡ c̃tTt and wt = w̃(k̃t)Tt.
The intuition behind the convergence lies in the neoclassical principle of di-

minishing marginal productivity of capital. Starting from a low capital intensity
and therefore a high marginal and average productivity of capital, the resulting
high aggregate saving15 will be more than enough to maintain the capital inten-
sity which therefore increases. But when this happens, the marginal and average
productivity of capital decreases and the resulting saving, as a proportion of the
capital stock, declines until eventually it is only suffi cient to replace worn-out ma-
chines and equip new “effective”workers with enough machines to just maintain
the capital intensity. If instead we start from a high capital intensity, a similar
story can be told in reverse. In the long run the capital intensity settles down
at the steady-state level, k̃∗, where the marginal saving and investment yields
a return as great as the representative household’s willingness to postpone the
marginal unit of consumption. Since the adjustment process is based on capital
accumulation, it is slow. The “speed of adjustment”, in the sense of the propor-
tionate rate of decline per year of the distance to the steady state,

∣∣∣k̃ − k̃∗∣∣∣ , is
generally assessed to be in the interval (0.02, 0.10), assuming absence of distur-
bances to the system during the adjustment.
15Saving will be high because the negative substitution and wealth effects on current con-

sumption of the high interest rate dominate the income effect.
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The equilibrium path generated by the Ramsey model is necessarily dynam-
ically effi cient and satisfies the modified golden rule in the long run. Why this
contrast to Diamonds OLG model where equilibrium paths may be dynamically
ineffi cient? The reason lies in the fact that only a “single infinity”, not a “double
infinity”, is involved in the Ramsey model. The time horizon of the economy is
infinite but the number of decision makers is finite. Births (into adult life) do
not reflect the emergence of new economic agents with separate interests. It is
otherwise in the Diamond OLG model where births imply entrance of new eco-
nomic decision makers whose preferences no-one cared about in advance. In that
model neither is there any final date, nor any final decision maker. Because of
this difference, in some respects the two models give different results. A type of
equilibria, namely dynamically ineffi cient ones, can be realized in the Diamond
model but not so in the Ramsey model. A rate of time preference low enough
to generate a tendency to a long-run interest rate below the income growth rate
is inconsistent with the conditions needed for general equilibrium in the Ramsey
model. And such a low rate of time preference is in fact ruled out in the Ramsey
model by the parameter restriction (A1).

The concept of saddle-point stability

The steady state of the model is globally asymptotically stable for arbitrary initial
values of the capital intensity (the phase diagram only verifies local asymptotic
stability, but the extension to global asymptotic stability is verified in Appendix
A). If k̃ is hit by a shock at time 0 (say by a discrete jump in the technology level
T0), the economy will converge toward the same unique steady state as before. At
first glance this might seem peculiar considering that the steady state is a saddle
point. Such a steady state is unstable for arbitrary values of both coordinates in
the initial point (k̃0, c̃0). But the crux of the matter is that it is only the initial k̃
that is arbitrary. The model assumes that the decision variable c0, and therefore
the value of c̃0 ≡ c0/T0, immediately adjusts to the given circumstances and
the available information about the future. That is, the model assumes that c̃0

always takes the value needed for the household’s transversality condition under
perfect foresight to be satisfied. This ensures that the economy is initially on
the saddle path, cf. the point A in Fig. 10.2. In the language of differential
equations conditional asymptotic stability is present. The condition that ensures
the stability in our case is the transversality condition.
We shall follow the common terminology in macroeconomics and call a steady

state of a two-dimensional dynamic system (locally) saddle-point stable if:

1. the steady state is a saddle point;
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2. one of the two endogenous variables is predetermined while the other is a
jump variable;

3. the saddle path is not parallel to the jump variable axis;

4. there is a boundary condition on the system such that the diverging paths
are ruled out as solutions.

Thus, to establish saddle-point stability all four properties must be verified.
If for instance point 1 and 2 hold but, contrary to point 3, the saddle path is
parallel to the jump variable axis, then saddle-point stability does not obtain.
Indeed, given that the predetermined variable initially deviated from its steady-
state value, it would not be possible to find any initial value of the jump variable
such that the solution of the system would converge to the steady state for t→∞.
In the present case, we have already verified point 1 and 2. And as the phase

diagram indicates, the saddle path is not vertical. So also point 3 holds. The
transversality condition ensures that also point 4 holds. Thus, the Ramsey model
is saddle-point stable. In Appendix A it is shown that the positively-sloped saddle
path in Fig. 10.2 ranges over all k̃ > 0 (there is nowhere a vertical asymptote
to the saddle path). Hence, the steady state is globally saddle-point stable. All
in all, these characteristics of the Ramsey model are analogue to those of Barro’s
dynasty model in discrete time when the bequest motive is operative.

10.4 Comparative analysis

10.4.1 The role of key parameters

The conclusion that in the long run the real interest rate is given by the modified
golden rule formula, r∗ = ρ + θg, tells us that only three parameters matter:
the rate of time preference, the elasticity of marginal utility, and the rate of
technological progress. A higher ρ, i.e., more impatience and thereby less willing-
ness to defer consumption, implies less capital accumulation and thus in the long
run smaller capital intensity, higher interest rate, and lower consumption than
otherwise. The long-run growth rate is unaffected.
A higher θ will have a similar effect. As θ is a measure of the desire for

consumption smoothing, a higher θ implies that a larger part of the greater wage
income in the future (reflecting a positive g) will be consumed immediately. This
implies less saving and thereby less capital accumulation and so a lower k̃∗ and
higher r∗. Similarly, the long-run interest rate will depend positively on the
technology growth rate g because the higher g is, the greater is the expected
future wage income. Thereby the consumption possibilities in the future are
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greater even without any current saving. This discourages current saving and we
end up with lower capital accumulation and lower effective capital intensity in
the long run, hence higher interest rate. It is also true that the higher is g, the
higher is the rate of return needed to induce the saving required for maintaining
a steady state and resist the desire for more consumption smoothing.
The long-run interest rate is independent of the particular form of the ag-

gregate production function, f . This function matters for what effective capital
intensity and what consumption level per unit of effective labor are compatible
with the long-run interest rate. This kind of results are specific to representative
agent models. This is because only in these models will the Keynes-Ramsey rule
hold not only for the individual household, but also at the aggregate level.
Unlike the Solow growth model, the Ramsey model provides a theory of the

evolution and long-run level of the saving rate. The endogenous gross saving rate
of the economy is

st ≡
Yt − Ct
Yt

=
K̇t + δKt

Yt
=
K̇t/Kt + δ

Yt/Kt

=

·
k̃t/k̃t + g + n+ δ

f(k̃t)/k̃t

→ g + n+ δ

f(k̃∗)/k̃∗
≡ s∗ for t→∞. (10.38)

By determining the path of k̃t, the Ramsey model determines how st moves over
time and adjusts to its constant long-run level. Indeed, for any given k̃ > 0,
the equilibrium value of c̃t is uniquely determined by the requirement that the
economy must be on the saddle path. Since this defines c̃t as a function, c̃(k̃t),
of k̃t, there is a corresponding function for the saving rate in that st = 1 −
c̃(k̃t)/f(k̃t) ≡ s(k̃t); so s(k̃∗) = s∗.
We note that the long-run saving rate is a decreasing function of the rate of

impatience, ρ, and the desire of consumption smoothing, θ; it is an increasing
function of the capital depreciation rate, δ, and the rate of population growth, n.
For an example with an explicit formula for the long-run saving rate, consider:

EXAMPLE 1 Suppose the production function is Cobb-Douglas:

ỹ = f(k̃) = Ak̃α, A > 0, 0 < α < 1. (10.39)

Then f ′(k̃) = Aαk̃α−1 = αf(k̃)/k̃. In steady state we get, by use of the steady-
state result (10.34),

f(k̃∗)

k̃∗
=

1

α
f ′(k̃∗) =

δ + ρ+ θg

α
.

Substitution in (10.38) gives

s∗ = α
δ + g + n

δ + ρ+ θg
< α, (10.40)
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where the inequality follows from our parameter restriction (A1). Indeed, (A1)
implies ρ + θg > g + n. The long-run saving rate depends positively on the
following parameters: the elasticity of production w.r.t. to capital, α, the capital
depreciation rate, δ, and the population growth rate, n. The long-run saving rate
depends negatively on the rate of impatience, ρ, and the desire for consumption
smoothing, θ. The role of the rate of technological progress is ambiguous.16

A numerical example (time unit = 1 year): If n = 0.005, g = 0.015, ρ = 0.025,
θ = 3, and δ = 0.07, then s∗ = 0.21. With the same parameter values except δ
= 0.05, we get s∗ = 0.19.
It can be shown (see Appendix D) that if, by coincidence, θ = 1/s∗, then

s′(k̃) = 0, that is, the saving rate st is also outside of steady state equal to s∗. In
view of (10.40), the condition θ = 1/s∗ is equivalent to the “knife-edge”condition
θ = (δ + ρ)/ [α(δ + g + n)− g] ≡ θ̄. More generally, assuming α(δ + g + n) > g
(which seems likely empirically), we have that if θ Q 1/s∗ (i.e., θ Q θ̄), then s′(k̃)Q
0, respectively (and if instead α(δ+g+n) ≤ g, then s′(k̃) < 0, unconditionally).17

Data presented in Barro and Sala-i-Martin (2004, p. 15) indicate no trend for
the US saving rate, but a positive trend for several other developed countries
since 1870. One interpretation is that whereas the US has for a long time been
close to its steady state, the other countries are still in the adjustment process
toward the steady state. As an example, consider the parameter values δ = 0.05,
ρ = 0.02, g = 0.02 and n = 0.01. In this case we get θ̄ = 10 if α = 0.33; given
θ < 10, these other countries should then have s′(k̃) < 0 which, according to the
model, is compatible with a rising saving rate over time only if these countries
are approaching their steady state from above (i.e., they should have k̃0 > k̃∗).
It may be argued that α should also reflect the role of education and R&D in
production and thus be higher; with α = 0.75 we get θ̄ = 1.75. Then, if θ > 1.75,
these countries would have s′(k̃) > 0 and thus approach their steady state from
below (i.e., k̃0 < k̃∗). �

10.4.2 Solow’s growth model as a special case

The above results give a hint that Solow’s growth model, with a given constant
saving rate s ∈ (0, 1) and given δ, g, and n (with δ +g + n > 0), can, under
certain circumstances, be interpreted as a special case of the Ramsey model. The
Solow model in continuous time is given by

·
k̃t = sf(k̃t)− (δ + g + n)k̃t.

16Partial differentiation w.r.t. g yields ∂s∗/∂g = α [ρ− θn− (θ − 1)δ] /(δ+ρ+θg)2, the sign
of which cannot be determined a priori.
17See Appendix D.
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The constant saving rate implies proportionality between consumption and in-
come. In growth-corrected terms per capita consumption is

c̃t = (1− s)f(k̃t).

For the Ramsey model to yield this, the production function must be like in
(10.39) (i.e., Cobb-Douglas) with α > s. And the elasticity of marginal utility, θ,
must satisfy θ = 1/s. Finally, the rate of time preference, ρ, must be such that
(10.40) holds with s∗ replaced by s, which implies ρ = α(δ + g + n)/s −δ −θg.
It remains to show that this ρ satisfies the inequality, ρ− n > (1− θ)g, which is
necessary for existence of an equilibrium in the Ramsey model. Since α/s > 1,
the chosen ρ satisfies ρ > δ+g+n −δ −θg = n+(1−θ)g, which was to be proved.
Thus, in this case the Ramsey model generates an equilibrium path which implies
an evolution identical to that generated by the Solow model with s = 1/θ.18

With this foundation of the Solow model, it will always hold that s = s∗ <
sGR, where sGR is the golden rule saving rate. Indeed, from (10.38) and (10.32),
respectively,

sGR =
(δ + g + n)k̃GR

f(k̃GR)
=
f ′(k̃GR)k̃GR

f(k̃GR)
= α > s∗,

from the Cobb-Douglas specification and (10.40), respectively.
A point of the Ramsey model vis-a-vis the Solow model is to replace a me-

chanical saving rule by maximization of discounted utility and thereby, on the
one hand, open up for a wider range of possible evolutions, welfare analysis,
and analysis of incentive effects of economic policy on households’saving. On
the other hand, in some respects the Ramsey model narrows down the range of
possibilities, for example by ruling out over-accumulation (dynamic ineffi ciency).

10.5 A social planner’s problem

Another implication of the Ramsey framework is that the decentralized market
equilibrium (within the idealized presumptions of the model) brings about the
same allocation of resources as would a social planner facing the same technology
and initial resources as described above and having the same criterion function
as the representative household.

18A more elaborate account of the Solow model as a special case of the Ramsey model is
given in Appendix D.
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10.5.1 The equivalence theorem

As in Chapter 8, by a social planner we mean a fictional central authority who is
”all-knowing and all-powerful”and is constrained only by the limitations arising
from technology and initial resources. Within these confines the social planner
can fully decide on the resource allocation. Since we consider a closed economy,
the social planner has no access to an international loan market.
Let the economy be closed and let the social welfare function be time separable

with constant elasticity, θ̂, of marginal utility and a pure rate of time preference
ρ̂.19 Then the social planner’s optimization problem is

max
(ct)∞t=0

W0 =

∫ ∞
0

c1−θ̂
t

1− θ̂
e−(ρ̂−n)tdt s.t. (10.41)

ct ≥ 0, (10.42)
·
k̃t = f(k̃t)−

ct
Tt
− (δ + g + n)k̃t, (10.43)

k̃t ≥ 0 for all t ≥ 0. (10.44)

We assume θ̂ > 0 and ρ̂ − n > (1 − θ̂)g in line with the assumption (A1) for
the market economy above. In case θ̂ = 1, the expression c1−θ̂

t /(1 − θ̂) should
be interpreted as ln ct. No market prices or other elements belonging to the spe-
cific market institutions of the economy enter the social planner’s problem. The
dynamic constraint (10.43) reflects the national product account. Because the
economy is closed, the social planner does not have the opportunity of borrowing
or lending from abroad. Hence there is no solvency requirement. Instead we just
impose the definitional constraint (10.44) of non-negativity of the state variable
k̃.
The problem is the continuous time analogue of the social planner’s problem in

discrete time in Chapter 8. Note, however, a minor conceptual difference, namely
that in continuous time there is in the short run no upper bound on the flow
variable ct, that is, no bound like ct ≤ Tt

[
f(k̃t)− (δ + g + n)k̃t

]
. A consumption

intensity ct which is higher than the right-hand side of this inequality will just be

reflected in a negative value of the flow variable
·
k̃t.

20

19Possible reasons for allowing these two preference parameters to deviate from the corre-
sponding parameters in the private sector are given Section 8.1.1.
20As usual we presume that capital can be “eaten”. That is, we consider the capital good to

be instantaneously convertible to a consumption good. Otherwise there would be at any time
an upper bound on c, namely c ≤ Tf(k̃), saying that the per capita consumption flow cannot
exceed the per capita output flow. The role of such constraints is discussed in Feichtinger and
Hartl (1986).
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To solve the problem we apply the Maximum Principle. The current-value
Hamiltonian is

H(k̃, c, λ, t) =
c1−θ̂

1− θ̂
+ λ

[
f(k̃)− c

T
− (δ + g + n)k̃

]
,

where λ is the adjoint variable associated with the dynamic constraint (10.43).
An interior optimal path (k̃t, ct)

∞
t=0 will satisfy that there exists a continuous

function λ = λ(t) such that, for all t ≥ 0,

∂H

∂c
= c−θ̂ − λ

T
= 0, i.e., c−θ̂ =

λ

T
, and (10.45)

∂H

∂k̃
= λ(f ′(k̃)− δ − g − n) = (ρ̂− n)λ− λ̇ (10.46)

hold along the path and the transversality condition,

lim
t→∞

k̃tλte
−(ρ̂−n)t = 0, (10.47)

is satisfied.21

The condition (10.45) can be seen as a MC = MB condition and illustrates
that λt is the social planner’s shadow price, measured in terms of current utility,
of k̃t along the optimal path.22 The differential equation (10.46) tells us how this
shadow price evolves over time. The transversality condition, (10.47), together
with (10.45), entails the condition

lim
t→∞

k̃tc
−θ̂
t egte−(ρ̂−n)t = 0,

where the unimportant factor T0 has been eliminated. Imagine the opposite were
true, namely that limt→∞ k̃tc

−θ̂
t e[g−(ρ̂−n)]t > 0. Then, intuitively U0 could be

increased by reducing the long-run value of k̃t, i.e., consume more and save less.
By taking logs in (10.45) and differentiating w.r.t. t, we get −θ̂ċ/c = λ̇/λ− g.

Inserting (10.46) and rearranging gives the condition

ċ

c
=

1

θ̂
(g − λ̇

λ
) =

1

θ̂
(f ′(k̃)− δ − ρ̂). (10.48)

21The infinite-horizon Maximum Principle itself does not guarantee validity of such a straight-
forward extension of a necessary transversality condition from a finite horizon to an infinite hori-
zon. Yet, this extension is valid for the present problem when ρ̂− n > (1− θ̂)g, cf. Appendix
E.
22Decreasing ct by one unit, increases k̃t by 1/Tt units, each of which are worth λt utility

units to the social planner.
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This is the social planner’s Keynes-Ramsey rule. If the rate of time preference, ρ̂,
is lower than the net marginal productivity of capital, f ′(k̃)−δ, the social planner
will let per capita consumption be relatively low in the beginning in order to attain
greater per capita consumption later. The lower the impatience relative to the
return to capital, the more favorable it becomes to defer consumption.
Because c̃ ≡ c/T, we get from (10.48) qualitatively the same differential equa-

tion for c̃ as we obtained in the decentralized market economy. And the dynamic
resource constraint (10.43) is of course identical to that of the decentralized mar-
ket economy. Thus, the dynamics are in principle unaltered and the phase dia-
gram in Fig. 10.2 is still valid. The solution of the social planner implies that
the economy will move along the saddle path towards the steady state. This
trajectory, path I in the diagram, satisfies both the first-order conditions and
the transversality condition. However, paths such as III in the figure do not
satisfy the transversality condition of the social planner but imply permanent
over-saving. And paths such as II in the figure will experience a sudden end
when all the capital has been used up. Intuitively, they cannot be optimal. A
rigorous argument is given in Appendix E, based on the fact that the Hamil-
tonian is strictly concave in (k̃, c̃). Thence, not only is the saddle path an optimal
solution, it is the unique optimal solution.
Comparing with the market solution of the previous section, we have estab-

lished:

PROPOSITION 2 (equivalence theorem) Consider an economy with neoclassical
CRS technology as described above and a representative infinitely-lived household
with preferences as in (10.3) with u(c) = c1−θ/(1 − θ). Assume (A1) and (A2).
Let there be a given k̃0 > 0. Then perfectly competitive markets bring about the
same resource allocation as that brought about by a social planner with the same
criterion function as the representative household, i.e., with θ̂ = θ and ρ̂ = ρ.

This is a continuous time analogue to the discrete time equivalence theorem of
Chapter 8.
The capital intensity k̃ in the social planner’s solution will not converge to-

wards the golden rule level, k̃GR, but towards a level whose distance to the golden
rule level depends on how much ρ̂ + θ̂g exceeds the natural growth rate, g + n.
Even if society would be able to consume more in the long term if it aimed for
the golden rule level, this would not compensate for the reduction in current con-
sumption which would be necessary to achieve it. This consumption is relatively
more valuable, the greater is the social planner’s effective rate of time preference,
ρ̂− n. In line with the market economy, the social planner’s solution ends up in
a modified golden rule. In the long term, net marginal productivity of capital is
determined by preference parameters and productivity growth and equals ρ̂+ θ̂g
> g + n. Hereafter, given the net marginal productivity of capital, the capital
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intensity and the level of the consumption path is determined by the production
function.

Classical versus average utilitarianism*

In the above analysis the social planner maximizes the sum of discounted per
capita utilities weighted by generation size. We call this classical utilitarianism.
As an implication, the effective utility discount rate, ρ−n, varies negatively (one
to one) with the population growth rate. Since this corresponds to how the per
capita rate of return on saving, r − n, is “diluted” by population growth, the
net marginal productivity of capital in steady state becomes independent of n,
namely equal to ρ̂+ θ̂g.
Some textbooks, Blanchard and Fischer (1989) for instance, assumes what

might be called average utilitarianism. Here the social planner maximizes the
sum of discounted per capita utilities without weighing by generation size. Then
the effective utility discount rate is independent of the population growth rate,
n. With ρ̂ still denoting the pure rate of time preference, the criterion function
becomes

W0 =

∫ ∞
0

ct
1−θ̂

1− θ̂
e−ρ̂tdt.

The social planner’s solution then converges towards a steady state with the net
marginal productivity of capital

f ′(k̃∗)− δ = ρ̂+ n+ θ̂g. (10.49)

Here, an increase in n will imply higher long-run net marginal productivity of
capital and lower capital intensity, everything else equal. The representative
household in the Ramsey model may of course also have a criterion function in
line with average utilitarianism, that is, U0 =

∫∞
0
u(ct)e

−ρtdt. Then, the interest
rate in the economy will in the long run be r∗ = ρ+ n+ θg and so an increase in
n will increase r∗ and decrease k̃∗.
The more common approach is classical utilitarianism, which may be based

on the argument: “if more people benefit, so much the better”.

10.5.2 Ramsey’s original zero discount rate and the over-
taking criterion*

It was mostly the perspective of a social planner, rather than the market mecha-
nism, which was at the center of Ramsey’s original analysis. The case considered
by Ramsey has g = n = 0. Ramsey maintained that the social planner should
“not discount later enjoyments in comparison with earlier ones, a practice which
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is ethically indefensible and arises merely from the weakness of the imagination”
(Ramsey 1928). So Ramsey has ρ − n = ρ = 0. Given the instantaneous utility
function, u, where u′ > 0, u′′ < 0, and given ρ = 0, Ramsey’s original problem
was: choose (ct)

∞
t=0 so as to optimize (in some sense, see below)

W0 =

∫ ∞
0

u(ct)dt s.t.

ct ≥ 0,

k̇t = f(kt)− ct − δkt,
kt ≥ 0 for all t ≥ 0.

A condition corresponding to our assumption (A1) above does not apply.
So the improper integral W0 will generally not be bounded23 and Ramsey can
not use maximization of W0 as an optimality criterion. Instead he considers a
criterion akin to the overtaking criterion we considered in a discrete time context
in Chapter 8. We only have to reformulate this criterion for a continuous time
setting.
Let (ct)

∞
t=0 be the consumption path associated with an arbitrary technically

feasible path and let (ĉt) be the consumption path associated with our candidate
as an optimal path, that is, the path we wish to test for optimality. Define

DT ≡
∫ T

0

u(ĉt)dt−
∫ T

0

u(ct)dt. (10.50)

Then the feasible path (ĉt)
∞
t=0 is overtaking optimal, if for any feasible path,

(ct)
∞
t=0, there exists a number T

′ ≥ 0 such that DT ≥ 0 for all T ≥ T ′. That is,
if for every alternative feasible path, the candidate path has from some date on,
cumulative utility up to all later dates at least as great as that of the alternative
feasible path, then the candidate path is overtaking optimal.
We say that the candidate path is weakly preferred in case we just know that

DT ≥ 0 for all T ≥ T ′. If DT ≥ 0 can be replaced by DT > 0, we say it is strictly
preferred.24

Optimal control theory is also applicable with this criterion. The current-value
HamiItonian is

H(k, c, λ, t) = u(c) + λ [f(k)− c− δk] .

23Suppose for instance that ct → c̄ for t → ∞. Then
∫∞
0
u(ct)dt = ±∞ for u(c̄) ≷ 0,

respectively.
24A slightly more generally applicable optimality criterion is the catching-up criterion. The

meaning of this criterion in continuous time is analogue to its meaning in discrete time, cf.
Chapter 8.3. The overtaking as well as the catching-up criterion entail generally only a par-
tial.ordering of alternative technically feasible paths.
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The Maximum Principle states that an interior overtaking-optimal path will sat-
isfy that there exists an adjoint variable λ such that for all t ≥ 0 it holds along
this path that

∂H

∂c
= u′(c)− λ = 0, and (10.51)

∂H

∂k
= λ(f ′(k)− δ) = −λ̇. (10.52)

Since ρ = 0, the Keynes-Ramsey rule reduces to

ċt
ct

=
1

θ(ct)
(f ′(kt)− δ), where θ(c) ≡ − c

u′(c)
u′′(c).

One might conjecture that also the transversality condition,

lim
t→∞

ktλt = 0, (10.53)

is necessary for optimality but, as we will see below, this turns out to be wrong
in this case with no discounting.
Our assumption (A2) here reduces to limk→0 f

′(k) > δ > limk→∞ f
′(k) (which

requires δ > 0). Apart from this, the phase diagram is fully analogue to that in
Fig. 10.2, except that the steady state, E, is now at the top of the k̇ = 0 curve.
This is because in steady state, f ′(k∗)− δ = 0. This equation also defines kGR in
this case. It can be shown that the saddle path is again the unique solution to
the optimization problem (the method is essentially the same as in the discrete
time case of Chapter 8). The intuitive background is that failing to approach the
golden rule would imply a forgone “opportunity of infinite gain”.
A noteworthy feature is that in this case the Ramsey model constitutes a

counterexample to the widespread presumption that an optimal plan with infinite
horizon must satisfy a transversality condition like (10.53). Indeed, by (10.51),
λt = u′(ct) → u′(c∗) for t → ∞ along the overtaking-optimal path (the saddle
path). Thus, instead of (10.53), we get

lim
t→∞

ktλt = k∗u′(c∗) > 0.

With CRRA utility it is straightforward to generalize these results to the case
g ≥ 0, n ≥ 0 and ρ̂ − n = (1 − θ̂)g. The social planner’s overtaking-optimal
solution is still the saddle path approaching the golden rule steady state; and this
solution violates the seemingly “natural” transversality condition. The reason
is essentially that we have no condition like the parameter restriction (A1) in
Section 10.3, ensuring boundedness from above of the utility integral.
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Note also that with zero effective utility discounting, there can not be equi-
librium in the market economy version of this story. The real interest rate would
in the long run be zero and thus the human wealth of the infinitely-lived house-
hold would be infinite. But then the demand for consumption goods would be
unbounded and equilibrium thus be impossible.

10.6 Concluding remarks

The Ramsey model has played an important role as a way of structuring econo-
mists’thoughts about many macrodynamic phenomena. As illustrated in Fig.
10.3, the model can be seen as situated at one end of a line segment where the
Diamond OLG model is situated at the opposite end. Both models build on
idealized assumptions. The Diamond model ignores any bequest motive and em-
phasizes life-cycle behavior and heterogeneity in the population. The Ramsey
model implicitly assumes an altruistic bequest motive which is always operative
and which turns households into homogeneous, infinitely-lived agents. In this way
the Ramsey model ends up as an easy-to-apply framework, suggesting inter alia a
clear-cut theory of the level of the real interest rate in the long run. The model’s
usefulness lies in allowing general equilibrium analysis of an array of problems in
a “vacuum”.
The next chapter discusses different applications of the Ramsey model. Be-

cause of the model’s simplicity, one should always be aware of the risk of non-
robust conclusions. The assumption of a representative household is a main lim-
itation. Indeed, it is not easy to endow the dynasty portrait of households with
plausibility. The lack of heterogeneity in the model’s population of households
implies a danger that important interdependencies between different classes of
agents are unduly neglected. For some problems these interdependencies may be
of only secondary importance, but they are crucial for others (for instance, issues
concerning public debt or interaction between private debtors and creditors or
issues where income and wealth distribution matter).
Another problematic feature of the model is that it endows the households

with an extreme amount of information about the future. There can be good
reasons for bearing in mind the following warning (by Solow, 1990, p. 221) against
overly reliance on saddle-point stability in the analysis of a market economy:

“The problem is not just that perfect foresight into the indefinite future
is so implausible away from steady states. The deeper problem is that in
practice − if there is any practice − miscalculations about the equilibrium
path may not reveal themselves for a long time. The mistaken path gives
no signal that it will be ”ultimately“ infeasible. It is natural to comfort
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oneself: whenever the error is perceived there will be a jump to a better
approximation to the converging arm. But a large jump may be required.
In a decentralized economy it will not be clear who knows what, or where
the true converging arm is, or, for that matter, exactly where we are now,
given that some agents (speculators) will already have perceived the need
for a mid-course correction while others have not. This thought makes it
hard even to imagine what a long-run path would look like. It strikes me
as more or less devastating for the interpretation of quarterly data as the
solution of an infinite time optimization problem.”

As we saw in Section 10.5.2, Ramsey’s original analysis (Ramsey 1928) dealt
with a social planner’s infinite horizon optimal control problem. In that opti-
mization problem there are well-defined shadow prices. In a decentralized market
economy, however, there are a multitude of both agents and prices and no god-
like auctioneer to ensure that the long-term price expectations coincide with the
long-term shadow prices in the social planner’s optimal control problem.
While the Ramsey and the Diamond model are polar cases along the line

segment in Fig. 10.3, less abstract macro models are scattered between these
poles, some being closer to one pole than to the other. Sometimes a given model
open up for alternative regimes, one close to Ramsey’s pole, another close to
Diamond’s. An example is Robert Barro’s model with parental altruism discussed
in Chapter 7. When the bequest motive in the Barro model is operative, the
model coincides with a Ramsey model (in discrete time) as was shown in Chapter
8. But when the bequest motive is not operative, the Barro model coincides
with a Diamond OLG model. Blanchard’s OLG model in continuous time (to
be analyzed in chapters 12, 13, and 15) also belongs to the interior of the line
segment, although closer to Diamond’s pole than to Ramsey’s.

Fig. 10.3 about here (not yet available)

10.7 Literature notes

1. Frank Ramsey (1903-1930) died at the age of 26 but he managed to publish
several path-breaking articles in economics. Ramsey discussed economic issues
with, among others, John Maynard Keynes. In an obituary published in the Eco-
nomic Journal (March 1932) after Ramsey’s death, Keynes described Ramsey’s
article about the optimal savings as “one of the most remarkable contributions to
mathematical economics ever made, both in respect of the intrinsic importance
and diffi culty of its subject, the power and elegance of the technical methods
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employed, and the clear purity of illumination with which the writer’s mind is
felt by the reader to play about its subject”.
2. The version of the Ramsey model we have considered is in accordance with

the general tenet of neoclassical preference theory: saving is motivated only by
higher consumption in the future. Extended versions assume that accumulation of
wealth is to some extend an end in itself or perhaps motivated by a desire for social
prestige and economic and political power rather than consumption. In Kurz
(1968b) an extended Ramsey model is studied where wealth is an independent
argument in the instantaneous utility function.
Also Tournemaine and Tsoukis (2008) and Long and Shimomura (2004).
3. The equivalence in the Ramsey model between the decentralized market

equilibrium and the social planner’s solution can be seen as an extension of the
first welfare theorem as it is known from elementary textbooks, to the case where
the market structure stretches infinitely far out in time, and the finite number of
economic agents (family dynasties) face an infinite time horizon: in the absence of
externalities etc., the allocation of resources under perfect competition will lead
to a Pareto optimal allocation. The Ramsey model is indeed a special case in that
all households are identical. But the result can be shown in a far more general
setup, cf. Debreu (1954). The result, however, does not hold in overlapping
generations models where an unbounded sequence of new generations enter and
the “interests”of the new households have not been accounted for in advance.
4. Cho and Graham (1996) consider the empirical question whether countries

tend to be above or below their steady state. Based on the Penn World Table
they find that on average, countries with a relatively low income per adult are
above their steady state and that countries with a higher income are below.

10.8 Appendix

A. Algebraic analysis of the dynamics around the steady state

To supplement the graphical approach of Section 10.3 with an exact analysis of
the adjustment dynamics of the model, we compute the Jacobian matrix for the
system of differential equations (10.28) - (10.29):

J(k̃, c̃) =

 ∂
·
k̃/∂k̃ ∂

·
k̃/∂c̃

∂
·
c̃/∂k̃ ∂

·
c̃/∂c̃

 =

[
f ′(k̃)− (δ + g + n) − 1
1
θ
f ′′(k̃)c̃ 1

θ
(f ′(k̃)− δ − ρ+ θg)

]
.

Evaluated in the steady state this reduces to

J(k̃∗, c̃∗) =

[
ρ− n− (1− θ)g − 1
1
θ
f ′′(k̃∗)c̃∗ 0

]
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This matrix has the determinant

1

θ
f ′′(k̃∗)c̃∗ < 0.

Since the product of the eigenvalues of the matrix equals the determinant, the
eigenvalues are real and opposite in sign.
In standard math terminology a steady-state point in a two dimensional

continuous-time dynamic system is called a saddle point if the associated eigen-
values are opposite in sign.25 For the present case we conclude that the steady
state is a saddle point. This mathematical definition of a saddle point is equiv-
alent to that given in the text of Section 10.3. Indeed, with two eigenvalues of
opposite sign, there exists, in a small neighborhood of the steady state, a stable
arm consisting of two saddle paths which point in opposite directions. From the
phase diagram in Fig. 10.2 we know that the stable arm has a positive slope.
At least for k̃0 suffi ciently close to k̃∗ it is thus possible to start out on a saddle
path. Consequently, there is a (unique) value of c̃0 such that (k̃t, c̃t)→ (k̃∗, c̃∗) for
t → ∞. Finally, the dynamic system has exactly one jump variable, c̃, and one
predetermined variable, k̃. It follows that the steady state is (locally) saddle-point
stable.
We claim that for the present model this can be strengthened to global saddle-

point stability. Indeed, for any k̃0 > 0, it is possible to start out on the saddle
path. For 0 < k̃0 ≤ k̃∗, this is obvious in that the extension of the saddle path
towards the left reaches the y-axis at a non-negative value of c̃∗. That is to say
that the extension of the saddle path cannot, according to the uniqueness theorem
for differential equations, intersect the k̃-axis for k̃ > 0 in that the positive part
of the k̃-axis is a solution of (10.28) - (10.29).26

For k̃0 > k̃∗, our claim can be verified in the following way: suppose, contrary
to our claim, that there exists a k̃1 > k̃∗ such that the saddle path does not
intersect that region of the positive quadrant where k̃ ≥ k̃1. Let k̃1 be chosen as
the smallest possible value with this property. The slope, dc̃/dk̃, of the saddle
path will then have no upper bound when k̃ approaches k̃1 from the left. Instead
c̃ will approach ∞ along the saddle path. But then ln c̃ will also approach ∞
along the saddle path for k̃ → k̃1 (k̃ < k̃1). It follows that d ln c̃/dk̃ = (dc̃/dk̃)/c̃,
computed along the saddle path, will have no upper bound. Nevertheless, we

25Note the difference compared to a discrete time system, cf. Appendix D of Chapter 8. In
the discrete time system we have next period’s k̃ and c̃ on the left-hand side of the dynamic
equations, not the increase in k̃ and c̃, respectively. Therefore, the criterion for a saddle point
looks different in discrete time.
26Because the extension of the saddle path towards the left in Fig. 10.1 can not intersect the

c̃-axis at a value of c̃ > f(0), it follows that if f(0) = 0, the extension of the saddle path ends
up in the origin.
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have
d ln c̃

dk̃
=
d ln c̃/dt

dk̃/dt
=

·
c̃/c̃
·
k̃

=
1
θ
(f ′(k̃)− δ − ρ− θg)

f(k̃)− c̃− (δ + g + n)k̃
.

When k̃ → k̃1 and c̃ → ∞ , the numerator in this expression is bounded, while
the denominator will approach −∞. Consequently, d ln c̃/dk̃ will approach zero
from above, as k̃ → k̃1. But this contradicts that d ln c̃/dk̃ has no upper bound,
when k̃ → k̃1. Thus, the assumption that such a k̃1 exists is false and our original
hypothesis holds true.

B. Boundedness of the utility integral

We claimed in Section 10.3 that if the parameter restriction

ρ− n > (1− θ)g (A1)

holds, then the utility integral, U0 =
∫∞

0
c1−θ

1−θ e
−(ρ−n)tdt, is bounded, from above

as well as from below, along the steady-state path, ct = c̃∗Tt. The proof is as
follows. Recall that θ > 0 and g ≥ 0. For θ 6= 1,

(1− θ)U0 =

∫ ∞
0

c1−θ
t e−(ρ−n)tdt =

∫ ∞
0

(c0e
gt)1−θe−(ρ−n)tdt

= c0

∫ ∞
0

e[(1−θ)g−(ρ−n)]tdt =
c0

ρ− n− (1− θ)g , (10.54)

which by (A1) is finite and positive since c0 > 0. If θ = 1, so that u(c) = ln c, we
get

U0 =

∫ ∞
0

(ln c0 + gt)e−(ρ−n)tdt, (10.55)

which is also finite, in view of (A1) implying ρ−n > 0 in this case (the exponential
term, e−(ρ−n)t, declines faster than the linear term gt increases). It follows that
also any path converging to the steady state will entail bounded utility, when
(A1) holds.
On the other hand, suppose that (A1) does not hold, i.e., ρ − n ≤ (1 − θ)g.

Then by the third equality in (10.54) and c0 > 0 follows that (1 − θ)U0 = ∞ if
θ 6= 0. If instead θ = 1, (10.55) implies U0 =∞.

C. The diverging paths

In Section 10.3 we stated that paths of types II and III in the phase diagram
in Fig. 10.2 can not be equilibria with perfect foresight. Given the expectation
corresponding to any of these paths, every single household will choose to deviate
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from the expected path (i.e., deviate from the expected “average behavior”in the
economy). We will now show this formally.
We first consider a path of type III. A path of this type will not be able to reach

the horizontal axis in Fig. 10.2. It will only converge towards the point (
_

k̃, 0) for
t→∞. This claim follows from the uniqueness theorem for differential equations
with continuously differentiable right-hand sides. The uniqueness implies that
two solution curves cannot intersect. And we see from (10.29) that the positive
part of the x-axis is from a mathematical point of view a solution curve (and

the point (
_

k̃, 0) is a trivial steady state). This rules out another solution curve
hitting the x-axis.

The convergence of k̃ towards
_

k̃ implies limt→∞ rt = f ′(
_

k̃)− δ < g+ n, where

the inequality follows from
_

k̃ > k̃GR. So,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds = lim

t→∞
k̃te
−
∫ t
0 (rs−g−n)ds = lim

t→∞
k̃te
−
∫ t
0 (f ′(k̃s)−δ−g−n)ds =

_

k̃e∞ > 0.

(10.56)
Hence the transversality condition of the households is violated. Consequently,
the household will choose higher consumption than along this path and can do
so without violating the NPG condition.
Consider now instead a path of type II. We shall first show that if the economy

follows such a path, then depletion of all capital occurs in finite time. Indeed, in

the text it was shown that any path of type II will pass the
·
k̃ = 0 locus in Fig.

10.2. Let t0 be the point in time where this occurs. If path II lies above the
·
k̃

= 0 locus for all t ≥ 0, then we set t0 = 0. For t > t0, we have

·
k̃t = f(k̃t)− c̃t − (δ + g + n)k̃t < 0.

By differentiation w.r.t. t we get

··
k̃t = f ′(k̃t)

·
k̃t − ċt − (δ + g + n)

·
k̃t = [f ′(k̃t)− δ − g − n]

·
k̃t − ċt < 0,

where the inequality comes from
·
k̃t < 0 combined with the fact that k̃t < k̃GR

implies f ′(k̃t) − δ > f ′(k̃GR) − δ = g + n. Therefore, there exists a t1 > t0 ≥ 0
such that

k̃t1 = k̃t0 +

∫ t1

t0

·
k̃tdt = 0,

as was to be shown. At time t1, k̃ cannot fall any further and c̃t immediately
drops to f(0) and stay there hereafter.
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Yet, this result does not in itself explain why the individual household will
deviate from such a path. The individual household has a negligible impact on
the movement of k̃t in society and correctly perceives rt and wt as essentially
independent of its own consumption behavior. Indeed, the economy-wide k̃ is
not the household’s concern. What the household cares about is its own financial
wealth and budget constraint. In the perspective of the household nothing pre-
vents it from planning a negative financial wealth, a, and possibly a continuously
declining financial wealth, if only the NPG condition,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0,

is satisfied.
But we can show that paths of type II will violate the NPG condition. The

reasoning is as follows. The household plans to follow the Keynes-Ramsey rule.
Given an expected evolution of rt and wt corresponding to path II, this will
imply a planned gradual transition from positive financial wealth to debt. The
transition to positive net debt, d̃t ≡ −ãt ≡ −at/Tt > 0, takes place at time t1
defined above.
The continued growth in the debt will meanwhile be so fast that the NPG

condition is violated. To see this, note that the NPG condition implies the re-
quirement

lim
t→∞

d̃te
−
∫ t
0 (rs−g−n)ds ≤ 0, (NPG)

that is, the productivity-corrected debt, d̃t, is allowed to grow in the long run
only at a rate less than the growth-corrected real interest rate. For t > t1 we get
from the accounting equation ȧt = (rt − n)at + wt − ct that

·
d̃t = (rt − g − n)d̃t + c̃t − w̃t > 0,

where d̃t > 0, rt > ρ + θg > g + n, and where c̃t grows exponentially according
to the Keynes-Ramsey rule, while w̃t is non-increasing in that k̃t does not grow.
This implies

lim
t→∞

·
d̃t

d̃t
≥ lim

t→∞
(rt − g − n),

which is in conflict with (NPG).
Consequently, the household will choose a lower consumption path and thus

deviate from the reference path considered. Every household will do this and the
evolution of rt and wt corresponding to path II is thus not an equilibrium with
perfect foresight.
The conclusion is that all individual households understand that the only

evolution which can be expected rationally is the one corresponding to the saddle
path.
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D. A constant saving rate as a special case

As we noted in Section 10.4, Solow’s growth model can be seen as a special case of
the Ramsey model. Indeed, a constant saving rate may, under certain conditions,
emerge as an endogenous result in the Ramsey model.
Let the rate of saving, (Yt − Ct)/Yt, be st. We have generally

c̃t = (1− st)f(k̃t), and so (10.57)

·
k̃t = f(k̃t)− c̃t − (δ + g + n)k̃t = stf(k̃t)− (δ + g + n)k̃t. (10.58)

In the Solow model the rate of saving is a constant, s, and we then get, by
differentiating with respect to t in (10.57) and using (10.58),

·
c̃t
c̃t

= f ′(k̃t)[s−
(δ + g + n)k̃t

f(k̃t)
]. (10.59)

By maximization of discounted utility in the Ramsey model, given a rate of
time preference ρ and an elasticity of marginal utility θ, we get in equilibrium

·
c̃t
c̃t

=
1

θ
(f ′(k̃t)− δ − ρ− θg). (10.60)

There will not generally exist a constant, s, such that the right-hand sides of
(10.59) and (10.60), respectively, are the same for varying k̃ (that is, outside
steady state). But Kurz (1968a) showed the following:

CLAIM Let δ, g, n, α, and θ be given. If the elasticity of marginal utility θ is
greater than 1 and the production function is ỹ = Ak̃α with α ∈ (1/θ, 1), then a
Ramsey model with ρ = θα(δ + g + n) −δ − θg will generate a constant saving
rate s = 1/θ. Thereby the same resource allocation and transitional dynamics
arise as in the corresponding Solow model with s = 1/θ.

Proof. Let 1/θ < α < 1 and f(k̃) = Ak̃α. Then f ′(k̃) = Aαk̃α−1. The right-hand-
side of the Solow equation, (10.59), becomes

Aαk̃α−1[s− (δ + g + n)k̃t

Ak̃α
] = sAαk̃α−1 − α(δ + g + n). (10.61)

The right-hand-side of the Ramsey equation, (10.60), becomes

1

θ
Aαk̃α−1 − δ + ρ+ θg

θ
.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



10.8. Appendix 429

By inserting ρ = θα(δ + g + n)− δ − θg, this becomes

1

θ
Aαk̃α−1 − δ + θα(δ + g + n)− δ − θg + θg

θ

=
1

θ
Aαk̃α−1 − α(δ + g + n). (10.62)

For the chosen ρ we have ρ = θα(δ + g + n) − δ − θg > n + (1 − θ)g, because
θα > 1 and δ+ g+ n > 0. Thus, ρ− n > (1− θ)g and existence of equilibrium in
the Ramsey model with this ρ is ensured. We can now make (10.61) and (10.62)
the same by inserting s = 1/θ. This also ensures that the two models require the

same k̃∗ to obtain a constant c̃ > 0. With this k̃∗, the requirement
·
k̃t = 0 gives

the same steady-state value of c̃ in both models, in view of (10.58). It follows
that (k̃t, c̃t) is the same in the two models for all t ≥ 0. �
On the other hand, maintaining ỹ = Ak̃α, but allowing ρ 6= θα(δ + g + n)

−δ − θg, so that θ 6= 1/s∗, then s′(k̃) 6= 0, i.e., the Ramsey model does not
generate a constant saving rate except in steady state. Defining s∗ as in (10.40)
and θ̄ ≡ (δ + ρ)/ [α(δ + g + n)− g], we have: When α(δ + g + n) > g (which
seems likely empirically), it holds that if θ Q 1/s∗ (i.e., if θ Q θ̄), then s′(k̃)

Q 0, respectively; if instead α(δ + g + n) ≤ g, then θ < 1/s∗ and s′(k̃) < 0,
unconditionally. These results follow by considering the slope of the saddle path
in a phase diagram in the (k̃, c̃/f(k̃)) plane and using that s(k̃) = 1 − c̃/f(k̃),
cf. Exercise 10.?? The intuition is that when k̃ is rising over time (i.e., society is
becoming wealthier), then, when the desire for consumption smoothing is “high”
(θ “high”), the prospect of high consumption in the future is partly taken out as
high consumption already today, implying that saving is initially low, but rising
over time until it eventually settles down in the steady state. But if the desire
for consumption smoothing is “low”(θ “low”), saving will initially be high and
then gradually fall in the process towards the steady state. The case where k̃ is
falling over time gives symmetric results.

E. The social planner’s solution

In the text of Section 10.5 we postponed some of the more technical details.
First, by (A2), the existence of the steady state, E, and the saddle path in
Fig. 10.2 is ensured. Solving the linear differential equation (10.46) gives λt
= λ0e

−
∫ t
0 (f ′(k̃s)−δ−ρ̂−g)ds. Substituting this into the transversality condition (10.47)

gives
lim
t→∞

k̃te
−
∫ t
0 (f ′(k̃s)−δ−g−n)ds = 0, (10.63)

where we have eliminated the unimportant positive factor λ0 = c−θ̂0 T0.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.
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This condition is essentially the same as the transversality condition (10.30)
for the market economy and holds in the steady state, given the parameter re-
striction ρ̂ − n > (1 − θ̂)g, which is analogue to (A1). Thus, (10.63) also holds
along the saddle path. Since we must have k̃ ≥ 0 for all t ≥ 0, (10.63) has the
form required by Mangasarian’s suffi ciency theorem. If we can show that the
Hamiltonian is jointly concave in (k̃, c) for all t ≥ 0, then the saddle path is a
solution to the social planner’s problem. And if we can show strict concavity, the
saddle path is the unique solution. We have:

∂H

∂k̃
= λ(f ′(k̃)− (δ + g + n)),

∂H

∂c
= c−θ̂ − λ

T
,

∂2H

∂k̃2
= λf ′′(k̃) < 0 (by λ = c−θ̂T > 0),

∂2H

∂c2
= −θ̂c−θ̂−1 < 0,

∂2H

∂k̃∂c
= 0.

So the leading principal minors of the Hessian matrix of H are

D1 = −∂
2H

∂k̃2
> 0, D2 =

∂2H

∂k̃2

∂2H

∂c2
−
(
∂2H

∂k̃∂c

)2

> 0.

Hence, H is strictly concave in (k̃, c) and the saddle path is the unique optimal
solution.
It also follows that the transversality condition (10.47) is a necessary optimal-

ity condition when the parameter restriction ρ̂ − n > (1 − θ̂)g holds. Note that
we have had to derive this conclusion in a different way than when solving the
household’s consumption/saving problem in Section 10.2. There we could appeal
to a link between the No-Ponzi-Game condition (with strict equality) and the
transversality condition to verify necessity of the transversality condition. But
that proposition does not cover the social planner’s problem where there is no
NPG condition.
As to the diverging paths in Fig. 10.2, note that paths of type II (those paths

which, as shown in Appendix C, in finite time deplete all capital) can not be
optimal, in spite of the temporarily high consumption level. This follows from
the fact that the saddle path is the unique solution. Finally, paths of type III
in Fig. 10.2 behave as in (10.56) and thus violate the transversality condition
(10.47), as claimed in the text.

10.9 Exercises

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



Advanced Macroeconomics Short Note 1

01.10.2015. Christian Groth

A glimpse of theory of
the “level of interest rates”

This short note provides a brief sketch of what macroeconomics says about the general

level around which rates of return fluctuate. We also give a “broad”summary of different

circumstances that give rise to differences in rates of return on different assets.

In non-monetary models without uncertainty there is in equilibrium only one rate of

return, r. If in addition there is a) perfect competition in all markets, b) the consumption

good is physically indistinguishable from the capital good, and c) there are no capital

adjustment costs, as in simple neoclassical models (like the Diamond OLG model and

the Ramsey model), then the equilibrium real interest rate is at any time equal to the

current net marginal productivity of capital evaluated at full employment (r = ∂Y/∂K−δ
in standard notation). Moreover, under conditions ensuring “well-behavedness”of these

models, they predict that in the absence of disturbances, the technology-corrected capital-

labor ratio, and thereby the marginal productivity of capital, adjusts over time to some

long-run level (on which more below).

Different rates of return In simple neoclassical models with perfect competition and

no uncertainty, the equilibrium short-term real interest rate is at any time equal to the

net marginal productivity of capital (r = ∂Y/∂K − δ). In turn the marginal productivity
of capital adjusts over time, via changes in the capital intensity, to some long-run level

(on this more below). As we saw in Chapter 14, existence of convex capital installation

costs loosens the link between r and ∂Y/∂K. The convex adjustment costs create a

wedge between the price of investment goods and the market value of the marginal unit

of installed capital. Besides the marginal productivity of capital, the possible capital gain

in the market value of installed capital as well as the effect of the marginal unit of installed

capital on future installation costs enter as co-determinants of the current rate of return

on capital.
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Arithmetic
average

Standard
deviation

Geometric
average

Small Company Stocks 17,3 33,2 12,5
Large Company Stocks 12,7 20,2 10,7
LongTerm Corporate Bonds 6,1 8,6 5,8
LongTerm Government Bonds 5,7 9,4 5,3
IntermediateTerm Government Bonds 5,5 5,7 5,3
U.S. Treasury Bills 3,9 3,2 3,8
Cash 0,0 0,0 0,0
Inflation rate 3,1 4,4 3,1

Small Company Stocks 13,8 32,6 9,2
Large Company Stocks 9,4 20,4 7,4
LongTerm Corporate Bonds 3,1 9,9 2,6
LongTerm Government Bonds 2,7 10,6 2,2
IntermediateTerm Government Bonds 2,5 7,0 2,2
U.S. Treasury Bills 0,8 4,1 0,7
Cash 2,9 4,2 3,0

 Percent 

Real values

Nominal values

Table 1: Average annual rates of return on a range of U.S. asset portfolios, 1926-2001.
Source: Stocks, Bonds, Bills, and Inflation: Yearbook 2002, Valuation Edition. Ibbotson
Associates, Inc.

When imperfect competition in the output markets rules, prices are typically set as a

mark-up on marginal cost. This implies a wedge between the net marginal productivity

of capital and capital costs. And when uncertainty and limited opportunities for risk

diversification are added to the model, a wide spectrum of expected rates of return on

different financial assets and expected marginal productivities of capital in different pro-

duction sectors arise, depending on the risk profiles of the different assets and production

sectors. On top of this comes the presence of taxation which may complicate the picture

because of different tax rates on different asset returns.

Nominal and real average annual rates of return on a range of U.S. asset portfolios for

the period 1926—2001 are reported in Table 1. By a portfolio of n assets, i = 1, 2, . . . , n

is meant a “basket”, (v1, v2, . . . , vn), of the n assets in value terms, that is, vi = pixi is

the value of the investment in asset i, the price of which is denoted pi and the quantity

of which is denoted xi. The total investment in the basket is V =
∑n

i=1 vi. If Ri denotes

the gross rate of return on asset i, the overall gross rate of return on the portfolio is

R =

∑n
i viRi

V
=

n∑
i=1

wiRi,
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where wi ≡ vi/V is the weight or fraction of asset i in the portfolio. Defining Ri ≡ 1+ ri,
where ri is the net rate of return on asset i, the net rate of return on the portfolio can be

written

r = R− 1 =
n∑
i=1

wi(1 + ri)− 1 =
n∑
i=1

wi +

n∑
i=1

wiri − 1 =
n∑
i=1

wiri.

The net rate of return is often just called “the rate of return”.

In Table 1 we see that the portfolio consisting of small company stocks throughout the

period 1926-2001 had an average annual real rate of return of 13.8 per cent (the arithmetic

average) or 9.2 per cent (the geometric average). This is more than the annual rate of

return of any of the other considered portfolios. Small company stocks are also seen to

be the most volatile. The standard deviation of the annual real rate of return of the

portfolio of small company stocks is almost eight times higher than that of the portfolio

of U.S. Treasury bills (government zero coupon bonds with 30 days to maturity), with

an average annual real return of only 0.8 per cent (arithmetic average) or 0.7 per cent

(geometric average) throughout the period. The displayed positive relation between high

returns and high volatility is not without exceptions, however. The portfolio of long-term

corporate bonds has performed better than the portfolio of long-term government bonds,

although they have been slightly less volatile as here measured. The data is historical and

expectations are not always met. Moreover, risk depends significantly on the covariance

of asset returns within the total set of assets and specifically on the correlation of asset

returns with the business cycle, a feature that can not be read off from Table 1. Share

prices, for instance, are very sensitive to business cycle fluctuations.

The need for means of payment − money − is a further complicating factor. That is,
besides dissimilarities in risk and expected return across different assets, also dissimilar-

ities in their degree of liquidity are important, not least in times of financial crisis. The

expected real rate of return on cash holding is minus the expected rate of inflation and

is therefore negative in an economy with inflation, cf. the last row in Table 1. When

agents nevertheless hold cash in their portfolios, it is because the low rate of return is

compensated by the liquidity services of money. In the Sidrauski model of Chapter 17 this

is modeled in a simple way, albeit ad hoc, by including real money holdings directly as an

argument in the utility function. Another dimension along which the presence of money

interferes with returns is through inflation. Real assets, like physical capital, land, houses,

etc. are better protected against fluctuating inflation than are nominally denominated

bonds (and money of course).
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Without claiming too much we can say that investors facing such a spectrum of rates

of return choose a composition of assets so as to balance the need for liquidity, the wish

for a high expected return, and the wish for low risk. Finance theory teaches us that

adjusted for differences in risk and liquidity, asset returns tend to be the same. This

raises the question: at what level? This is where macroeconomics − as an empirically
oriented theory about the economy as a whole − comes in.

Macroeconomic theory of the “average rate of return” The point of departure

is that market forces by and large may be thought of as anchoring the rate of return of

an average portfolio of interest-bearing assets to the net marginal productivity of capital

in an aggregate production function, assuming a closed economy. Some popular phrases

are:

• the net marginal productivity of capital acts as a centre of gravitation for the spec-
trum of asset returns; and

• movements of the rates of return are in the long run held in check by the net marginal
productivity of capital.

Though such phrases seem to convey the right flavour, in themselves they are not

very informative. The net marginal productivity of capital is not a given, but an endoge-

nous variable which, via changes in the capital intensity, adjusts through time to more

fundamental factors in the economy.

The different macroeconomic models we have encountered in previous chapters bring

to mind different presumptions about what these fundamental factors are.

1. Solow’s growth model The Solow growth model leads to the fundamental differ-

ential equation (standard notation)

·
k̃t = sf(k̃t)− (δ + g + n)k̃t,

where s is an exogenous and constant aggregate saving-income ratio, 0 < s < 1. In steady

state

r∗ = f ′(k̃∗)− δ, (1)
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where k̃∗ is the unique steady state value of the (effective) capital intensity, k̃, satisfying

sf(k̃∗) = (δ + g + n)k̃∗. (2)

In society there is a debate and a concern that changed demography and less growth

in the source of new technical ideas, i.e., the stock of educated human beings, will in the

future result in lower n and lower g, respectively, making financing social security more

diffi cult. On the basis of the Solow model we find by implicit differentiation in (2) ∂k̃∗/∂n

= ∂k̃∗/∂g = −k̃∗
[
δ + g + n− sf ′(k̃∗)

]−1
, which is negative since sf ′(k̃∗) < sf(k̃∗)/k̃∗

= δ + g + n. Hence, by (1),

∂r∗

∂n
=
∂r∗

∂g
=
∂r∗

∂k̃∗
∂k̃∗

∂n
= f ′′(k̃∗)

−k̃∗

δ + g + n− sf ′(k̃∗)
> 0,

since f ′′(k̃∗) < 0. It follows that

n ↓ or g ↓⇒ r∗ ↓ . (3)

A limitation of this theory is of course the exogeneity of the saving-income ratio, which

is a key co-determinant of k̃∗, hence of r∗. The next models are examples of different ways

of integrating a theory of saving into the story about the long-run rate of return.

2. The Diamond OLG model In the Diamond OLG model, based on a life-cycle

theory of saving, we again arrive at the formula r∗ = f ′(k̃∗)− δ. Like in the Solow model,
the long-run rate of return thus depends on the aggregate production function and on k̃∗.

But now there is a logically complete theory about how k̃∗ is determined. In the Diamond

model k̃∗ depends in a complicated way on the lifetime utility function and the aggregate

production function. The steady state of a well-behaved Diamond model will nevertheless

have the same qualitative property as indicated in (3).

3. The Ramsey model Like the Solow and Diamond models, the Ramsey model

implies that rt = f ′(k̃t)−δ for all t. But unlike in the Solow and Diamond models, the net
marginal productivity of capital now converges in the long run to a specific value given

by the modified golden rule formula. In a continuous time framework this formula says:

r∗ = ρ+ θg, (4)

where the new parameter, θ, is the (absolute) elasticity of marginal utility of consumption.

Because the Ramsey model is a representative agent model, the Keynes-Ramsey rule holds
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not only at the individual level, but also at the aggregate level. This is what gives rise to

this simple formula for r∗.

Here there is no role for n, only for g. On the other hand, there is an alternative

specification of the Ramsey model, namely the “average utilitarianism”specification. In

this version of the model, we get r∗ = f ′(k̃∗) − δ = ρ + n + θg, so that not only a lower

g, but also a lower n implies lower r∗.

Also the Sidrauski model, i.e., the monetary Ramsey model of Chapter 17, results in

the modified golden rule formula.1

4. Blanchard’s OLG model A continuous time OLG model with emphasis on life-

cycle aspects is Blanchard’s model, Blanchard (1985). In that model the net marginal

productivity of capital adjusts to a value where, in addition to the production function,

technology growth, and preference parameters, also demographic parameters, like birth

rate, death rate, and retirement rate, play a role. One of the results is that when θ = 1,

ρ+ g − λ < r∗ < ρ+ g + b,

where λ is the retirement rate (reflecting how early in life the “average” person retire

from the labor market) and b is the (crude) birth rate. The population growth rate is the

difference between the birth rate, b, and the (crude) mortality rate, m, so that n = b−m.
The qualitative property indicated in (3) becomes conditional. It still holds if the fall in

n reflects a lower b, but not necessarily if it reflects a higher m.

5. What if technological change is embodied? The models in the list above assume

a neoclassical aggregate production function with CRS and disembodied Harrod-neutral

technological progress, that is,

Yt = F (Kt, TtLt) ≡ TtLtf(k̃t), f ′ > 0, f ′′ < 0. (5)

This amounts to assuming that new technical knowledge advances the combined pro-

ductivity of capital and labor independently of whether the workers operate old or new

machines.

In contrast, we say that technological change is embodied if taking advantage of new

technical knowledge requires construction of new investment goods. The newest technol-

ogy is incorporated in the design of newly produced equipment; and this equipment will
1See Chapter 10, Section 10.5.
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not participate in subsequent technological progress. Both intuition and empirics suggest

that most technological progress is of this form. Indeed, Greenwood et al. (1997) estimate

for the U.S. 1950-1990 that embodied technological change explains 60% of the growth in

output per man hour.

So a theory of the rate of return should take this into account. Fortunately, this can

be done with only minor modifications. We assume that the link between investment and

capital accumulation takes the form

K̇t = QtIt − δKt, (6)

where It is gross investment (I = Y − C) and Qt measures the “quality”(effi ciency) of

newly produced investment goods. Suppose for instance that

Qt = Q0e
γt, γ > 0.

Then, even if no technological change directly appears in the production function, that

is, even if (5) is replaced by

Yt = F (Kt, Lt) = Kα
t L

1−α
t , 0 < α < 1,

the economy will still experience a rising standard of living.2 A given level of gross

investment will give rise to greater and greater additions to the capital stock K, measured

in effi ciency units. Since at time t, Qt capital goods can be produced at the same cost as

one consumption good, the price, pt, of capital goods in terms of the consumption good

must in competitive equilibrium equal the inverse of Qt, that is, pt = 1/Qt. In this way

embodied technological progress results in a steady decline in the relative price of capital

equipment.

This prediction is confirmed by the data. Greenwood et al. (1997) find for the U.S.

that the relative price of capital equipment has been declining at an average rate of 0.03

per year in the period 1950-1990, a trend that has seemingly been fortified in the wake of

the computer revolution.

Along a balanced growth path the constant growth rate of K will now exceed that

of Y, and Y/K thus be falling. The output-capital ratio in value terms, Y/(pK), will be

constant, however. Embedding these features in a Ramsey-style framework, we find the

2We specify F to be Cobb-Douglas, because otherwise a model with embodied technical progress in
the form (6) will not be able to generate balanced growth and comply with Kaldor’s stylized facts.
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long-run rate of return to be3

r∗ = ρ+ θ
αγ

1− α.

This is of the same form as (4) since growth in output per unit of labor in steady state is

exactly g = αγ/(1− α).

Adding uncertainty and risk of bankruptcy Although absent from many simple

macroeconomic models, uncertainty and risk of bankruptcy are significant features of

reality. Bankruptcy risk may lead to a conflict of interest between share owners and

managers. Managers may want less debt and more equity than the share owners because

bankruptcy can be very costly to managers who loose a well-paid job and a promising

carrier. So managers are unwilling to finance all new capital investment by new debt in

spite of the associated lower capital cost (there is generally a lower rate of return on debt

than on equity). In this way the excess of the rate of return on equity over that on debt,

the equity premium, is sustained.

A rough behavioral theory of the equity premium goes as follows.4 Firm managers

prefer a payout structure with a fraction, sf , going to equity and the remaining fraction,

1− sf , to debt (corporate bonds). That is, out of each unit of expected operating profit,
managers are unwilling to commit more than 1−sf to bond owners. This is to reduce the
risk of a failing payment ability in case of a bad market outcome. And those who finance

firms by loans definitely also want debtor firms to have some equity at stake.

We let households’ preferred portfolio consist of a fraction sh in equities and the

remainder, 1−sh, in bonds. In view of households’risk aversion and memory of historical
stock market crashes, it is plausible to assume that sh < sf .

As a crude adaptation of for instance the Blanchard OLG model to these features, we

interpret the model’s r∗ as an average rate of return across firms. Let time be discrete

and let aggregate financial wealth be A = pK, where p is the price of capital equipment

in terms of consumption goods. In the frameworks 1 to 4 above we have p ≡ 1, but in
framework 5 the relative price p equals 1/Q and is falling over time. Anyway, given A

at time t, the aggregate gross return or payout is (1 + r∗)A. Out of this, (1 + r∗)Asf

constitutes the gross return to the equity owners and (1 + r∗)A(1 − sf ) the gross return
3See Exercise 18.??
4The following is inspired by Baker, DeLong, and Krugman (2005). These authors discuss the implied

predictions for U.S. rates of return in the future and draw implications of relevance for the debate on
social security reform.
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to the bond owners. Let re denote the rate of return on equity and rb the rate of return

on bonds.

To find re and rb we have

(1 + re)Ash = (1 + r∗)Asf ,

(1 + rb)A(1− sh) = (1 + r∗)A(1− sf ).

Thus,

1 + re = (1 + r∗)
sf
sh

> 1 + r∗,

1 + rb = (1 + r∗)
1− sf
1− sh

< 1 + r∗.

We may define the equity premium, π, by 1 + π ≡ (1 + re)/(1 + rb). Then

π =
sf (1− sh)
sh(1− sf )

− 1 > 0.

Of course these formulas have their limitations. The key variables sf and sh will

depend on a lot of economic circumstances and should be endogenous in an elaborate

model. Yet, the formulas may be helpful as a way of organizing one’s thoughts about

rates of return in a world with asymmetric information and risk of bankruptcy.

There is evidence that in the last decades of the twentieth century the equity premium

had become lower than in the long aftermath of the Great Depression in the 1930s.5 A

likely explanation is that sh had gone up, along with rising confidence. The computer

and the World Wide Web have made it much easier for individuals to invests in stocks of

shares. On the other hand, the recent financial and economic crisis, known as the Great

Recession 2007- , and the associated rise in mistrust seems to have halted and possibly

reversed this tendency for some time (source ??).

–

5Blanchard (2003, p. 333).
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Chapter 11

Applications of the Ramsey
model

The Ramsey representative agent framework has, rightly or wrongly, been a work-
horse for the study of many macroeconomic issues. Among these are public fi-
nance themes and themes relating to endogenous productivity growth. In this
chapter we consider issues within these two themes. Section 11.1 deals with a
market economy with a public sector. The focus is on general equilibrium effects
of government spending and taxation, including effects of shifts in fiscal policy,
both anticipated and unanticipated shifts. In Section 11.2 we set up and analyze
a model of technology growth based on learning by investing. The analysis leads
to a characterization of a “first-best policy”.

11.1 Market economy with a public sector

In this section we extend the Ramsey model of a competitive market economy by
adding a government sector that spends on goods and services, makes transfers
to the private sector, and levies taxes.
Subsection 11.1.1 considers the effect of government spending on goods and

services, assuming a balanced budget where all taxes are lump sum. The issue
what is really meant by one-off shocks in a perfect foresight model is addressed,
including how to model the effects of such shocks. In subsections 11.1.2 and
11.1.3 we consider income taxation and how the economy responds to the arrival
of new information about future fiscal policy. Finally, subsection 11.1.4 introduces
financing by temporary budget deficits. In view of the Ramsey model being a
representative agent model, it is not surprising that Ricardian equivalence will
hold in the model.
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432 CHAPTER 11. APPLICATIONS OF THE RAMSEY MODEL

11.1.1 Public consumption financed by lump-sum taxes

The representative household (or family dynasty) has Lt = L0e
nt members each

of which supplies one unit of labor inelastically per time unit, n ≥ 0. The
household’s preferences can be represented by a time separable utility function∫ ∞

0

ũ(ct, Gt)Lte
−ρtdt,

where ct ≡ Ct/Lt is consumption per family member andGt is public consumption
in the form of a service delivered by the government, while ρ is the rate of time
preference. We assume, for simplicity, that the instantaneous utility function is
additive: ũ(c,G) = u(c) + v(G), where u′ > 0, u′′ < 0, i.e., there is positive but
diminishing marginal utility of private consumption; the properties of the utility
function v are immaterial for the questions to be studied (but hopefully v′ > 0).
The public service might consist in making a non-rival good, say “law and order”
or TV-transmitted theatre, available for the households free of charge.
Throughout this section the government budget is always balanced. In the

present subsection the government spending, Gt, is financed by a per capita lump-
sum tax, τ t, so that

τ tLt = Gt. (11.1)

To allow for balanced growth under technological progress we assume that u
is a CRRA function. Thus, the criterion function of the representative household
can be written

U0 =

∫ ∞
0

(
c1−θ
t

1− θ + v(Gt)

)
e−(ρ−n)tdt, (11.2)

where θ > 0 is the constant (absolute) elasticity of marginal utility of private
consumption.
As usual, let the real interest rate and the real wage be denoted rt and wt,

respectively. The household’s dynamic book-keeping equation reads

ȧt = (rt − n)at + wt − τ t − ct, a0 given, (11.3)

where at is per capita financial wealth. The financial wealth is held in claims of
a form similar to a variable-rate deposit in a bank. Hence, at any point in time
at is historically determined and independent of the current and future interest
rates. The No-Ponzi-Game condition (solvency condition) is

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0. (NPG)

We see from (11.2) that leisure does not enter the instantaneous utility func-
tion. So per capita labor supply is exogenous. We fix its value to be one unit of
labor per time unit, as is indicated by (11.3).

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



11.1. Market economy with a public sector 433

In view of the additive instantaneous utility function in (11.2), marginal utility
of private consumption is not affected by Gt. The Keynes-Ramsey rule resulting
from the household’s optimization will therefore be as if there were no government
sector:

ċt
ct

=
1

θ
(rt − ρ).

The transversality condition of the household is that (NPG) holds with strict
equality, i.e.,

lim
t→∞

ate
−
∫ t
0 (rs−n)ds = 0.

GDP is produced through an aggregate neoclassical production function with
CRS:

Yt = F (Kd
t , TtLdt ),

where Kd
t and Ldt are inputs of capital and labor, respectively, and Tt is the

technology level, assumed to grow at an exogenous and constant rate g ≥ 0.
For simplicity we assume that F satisfies the Inada conditions. It is further
assumed that in the production of Gt the same technology (production function)
is applied as in the production of the other components of GDP; thereby the
same unit production costs are involved. A possible role of Gt for productivity is
ignored (so we should not interpret Gt as related to such things as infrastructure,
health, education, or research).
All capital in the economy is assumed to belong to the private sector. The

economy is closed. In accordance with the standard Ramsey model, there is
perfect competition in all markets. Hence there is market clearing so that Kd

t =
Kt and Ldt = Lt for all t.

General equilibrium and dynamics

The increase in the capital stock, K, per time unit equals aggregate gross saving:

K̇t = Yt−Ct−Gt−δKt = F (Kt, TtLt)−ctLt−Gt−δKt, K0 > 0 given. (11.4)

We assume Gt is proportional to the work force measured in effi ciency units, that
is

Gt = γ̃TtLt, (11.5)

where the size of γ̃ ≥ 0 is decided by the government. The balanced budget
(11.1) now implies that the per capita lump-sum tax grows at the same rate as
technology:

τ t = Gt/Lt = γ̃Tt = γ̃T0e
gt = τ 0e

gt. (11.6)
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Defining k̃t ≡ Kt/(TtLt) ≡ kt/Tt and c̃t ≡ Ct/(TtLt) ≡ ct/Tt, the dynamic
aggregate resource constraint (11.4) can be written

·
k̃t = f(k̃t)− c̃t − γ̃ − (δ + g + n)k̃t, k̃0 > 0 given, (11.7)

where f is the production function in intensive form, f ′ > 0, f ′′ < 0. As F satisfies
the Inada conditions, we have

f(0) = 0, lim
k̃→0

f ′(k̃) =∞, lim
k̃→∞

f ′(k̃) = 0.

As usual, by the golden-rule capital intensity, k̃GR, we mean that capital
intensity which maximizes sustainable consumption per unit of effective labor,
c̃+ γ̃. By setting the left-hand side of (11.7) to zero, eliminating the time indices
on the right-hand side, and rearranging, we get c̃ + γ̃ = f(k̃) − (δ + g + n)k̃
≡ c(k̃). In view of the Inada conditions, the problem maxk̃ c(k̃) has a unique
solution, k̃ > 0, characterized by the condition f ′(k̃) = δ + g + n. This k̃ is, by
definition, k̃GR.
In general equilibrium the real interest rate, rt, equals f ′(k̃t) − δ. Expressed

in terms of c̃, the Keynes-Ramsey rule thus becomes

·
c̃t =

1

θ

[
f ′(k̃t)− δ − ρ− θg

]
c̃t. (11.8)

Moreover, we have at = kt ≡ k̃tTt = k̃tT0e
gt, and so the transversality condition

of the representative household can be written

lim
t→∞

k̃te
−
∫ t
0 (f ′(k̃s)−δ−n−g)ds = 0. (11.9)

The phase diagram of the dynamic system (11.7) - (11.8) is shown in Fig.

11.1 where, to begin with, the
·
k̃ = 0 locus is represented by the stippled inverse

U curve. Apart from a vertical downward shift of the
·
k̃ = 0 locus, when we

have γ̃ > 0 instead of γ̃ = 0, the phase diagram is similar to that of the Ramsey
model without government. Although the per capita lump-sum tax is not visible
in the reduced form of the model consisting of (11.7), (11.8), and (11.9), it is

indirectly present because it ensures that for all t ≥ 0, the c̃t and
·
k̃t appearing

in (11.7) represent exactly the consumption demand and net saving coming from
the households’intertemporal budget constraint (which depends on the lump-sum
tax, cf. (11.11). Otherwise, equilibrium would not be maintained.
We assume γ̃ is of “moderate size” compared to the productive capacity of

the economy so as to not rule out the existence of a steady state. Moreover, to
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Figure 11.1: Phase portrait of an unanticipated permanent increase in government
spending from γ̃ to γ̃′ > γ̃.

guarantee bounded discounted utility and existence of general equilibrium, we
impose the parameter restriction

ρ− n > (1− θ)g. (A1)

How to model effects of unanticipated policy shifts

In a perfect foresight model, as the present one, agents’expectations and actions
never incorporate that unanticipated events, “shocks”, may arrive. That is, if
a shock occurs in historical time, it must be treated as a complete surprise, a
one-off shock not expected to be replicated in any sense.
Suppose that up until time t0 > 0 government spending maintains the given

ratio Gt/(TtLt) = γ̃. Suppose further that before time t0, the households expected
this state of affairs to continue forever. But, unexpectedly, at time t0 there is a
shift to a higher constant spending ratio, γ̃′, which is maintained for a long time.
We assume that the upward shift in public spending goes hand in hand with

higher lump-sum taxes so as to maintain a balanced budget. Thereby the after-
tax human wealth of the household is at time t0 immediately reduced. As the
households are now less wealthy, private consumption immediately drops.
Mathematically, the time path of ct will therefore have a discontinuity at

t = t0. To fix ideas, we will generally consider control variables, e.g., consumption,
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to be right-continuous functions of time in such cases. This means that ct0 =
limt→t+0

ct. Likewise, at such points of discontinuity of the control variable the
“time derivative” of the state variable a in (11.3) is generally not well-defined
without an amendment. In line with the right-continuity of the control variable,
we define the time derivative of a state variable at a point of discontinuity of the
control variable as the right-hand time derivative, i.e., ȧt0 = limt→t+0

(at−at0)/(t−
t0).1 We say that the control variable has a jump at time t0, we call the point
where this jump occurs a switch point, and we say that the state variable, which
remains a continuous function of t, has a kink at time t0.
In line with this, control variables are called jump variables or forward-looking

variables. The latter name comes from the notion that a decision variable can
immediately shift to another value if new information arrives. In contrast, a state
variable is said to be pre-determined because its value is an outcome of the past
and it cannot jump.

An unanticipated permanent shift in government spending Returning
to our specific example, suppose that the economy has been in steady state for
t < t0. Then, unexpectedly, the new spending policy γ̃′ > γ̃ is introduced, followed
by an increase in taxation so as to maintain a balanced budget. Let the households

rightly expect this new policy to be maintained forever. As a consequence, the
·
k̃

= 0 locus in Fig. 11.1 is shifted downwards while the
·
c̃ = 0 locus remains where

it is. It follows that k̃ stays unchanged at its old steady-state level, k̃∗, while c̃
jumps down to the new steady-state value, c̃∗′. There is immediate crowding out
of private consumption to the exact extent of the rise in public consumption.2

To understand the mechanism, note that Per capita consumption of the house-
hold is

ct = βt(at + ht), (11.10)

where ht is the after-tax human wealth per family member and is given by

ht =

∫ ∞
t

(ws − τ s)e−
∫ s
t (rz−n)dzds, (11.11)

and βt is the propensity to consume out of wealth,

βt =
1∫∞

t
e
∫ s
t

(
(1−θ)rz−ρ

θ
+n)dzds

, (11.12)

1While these conventions help to fix ideas, they are mathematically inconsequential. Indeed,
the value of the consumption intensity at each isolated point of discontinuity will affect neither
the utility integral of the household nor the value of the state variable, a.

2The conclusion is modified, of course, if Gt encompasses public investments and if these
have an impact on the productivity of the private sector.
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as derived in the previous chapter. The upward shift in public spending is accom-
panied by higher lump-sum taxes, τ ′t = γ̃′Lt, forever, implying that ht is reduced,
which in turn reduces consumption.
Had the unanticipated shift in public spending been downward, say from γ̃′ to

γ̃, the effect would be an upward jump in consumption but no change in k̃, that
is, a jump E’to E in Fig. 11.1.
Many kinds of disturbances of a steady state will result in a gradual adjust-

ment process, either to a new steady state or back to the original steady state. It
is otherwise in this example where there is an immediate jump to a new steady
state.

11.1.2 Income taxation

We now replace the assumed lump-sum taxation by income taxation of different
kinds. In addition, we introduce lump-sum income transfers to the households.

Taxation of labor income

Consider a tax on wage income at the constant rate τw, 0 < τw < 1. Since labor
supply is exogenous, it is unaffected by the wage income tax. While (11.7) is
still the dynamic resource constraint of the economy, the household’s dynamic
book-keeping equation now reads

ȧt = (rt − n)at + (1− τw)wt + xt − ct, a0 given,

where xt is the per capita lump-sum transfers at time t. Maintaining the assump-
tion of a balanced budget, the tax revenue at every t exactly covers government
spending on goods and services and the lump-sum transfers to the private sector.
This means that

τwwtLt = Gt + xtLt for all t ≥ 0.

As Gt and τw are given, the interpretation is that for all t ≥ 0, transfers adjust
so as to balance the budget. This requires that xt = τwwt−Gt/Lt = τwwt− γ̃Tt,
for all t ≥ 0; if xt need be negative to satisfy this equation, so be it. Then −xt
would act as a positive lump-sum tax.
Disposable income at time t is

(1− τw)wt + xt = wt − γ̃Tt,

and human wealth at time t per member of the representative household is thus

ht =

∫ ∞
t

[(1− τw)ws + xs] e
−
∫ s
t (rz−n)dzds =

∫ ∞
t

(ws − γ̃Ts)e−
∫ s
t (rz−n)dzds.

(11.13)
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Owing to the given γ̃, a shift in the value of τw is immediately compensated
by an adjustment of the path of transfers in the same direction so as to maintain a
balanced budget. Neither disposable income nor ht is affected. So the shift in τw
leaves the determinants of per capita consumption unaffected. As also disposable
income is unaffected, it follows that private saving is unaffected. This is why
τw nowhere enters the model in its reduced form, consisting of (11.7), (11.8),
and (11.9). The phase diagram for the economy with labor income taxation is
completely identical to that in Fig. 11.1 where there is no tax on labor income.
The evolution of the economy is independent of the size of τw (if the model were
extended with endogenous labor supply, the result would generally be different).
The intuitive explanation is that the three conditions: (a) inelastic labor supply,
(b) a balanced budget,3 and (c) a given path for Gt, imply that a labor income tax
affects neither the marginal trade-offs (consumption versus saving and working
versus enjoying leisure) nor the intertemporal budget constraint of the household.

Taxation of capital income

It is different when it comes to a tax on capital income because saving in the
Ramsey model responds to incentives. Consider a constant capital income tax at
the rate τ r, 0 < τ r < 1. The household’s dynamic budget identity becomes

ȧt = [(1− τ r)rt − n] at + wt + xt − ct, a0 given,

where, if at < 0, the tax acts as a rebate. As above, xt is a per capita lump-sum
transfer. In view of a balanced budget, we have at the aggregate level

Gt + xtLt = τ rrtKt.

As Gt and τ r are given, the interpretation is that for all t ≥ 0, transfers adjust so
as to balance the budget. This requires that xt = τ rrtkt −Gt/Lt = τ rrtkt − γ̃Tt.
The No-Ponzi-Game condition is now

lim
t→∞

ate
−
∫ t
0 [(1−τr)rs−n]ds ≥ 0,

and the Keynes-Ramsey rule becomes

ċt
ct

=
1

θ
[(1− τ r)rt − ρ].

3In fact, as we shall see in Section 11.1.4, the key point is not that, to fix ideas, we have
assumed the budget is balanced for every t. It is enough that the government satisfies its
intertemporal budget constraint.
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In general equilibrium we have

·
c̃t =

1

θ

[
(1− τ r)(f ′(k̃t)− δ)− ρ− θg

]
c̃t. (11.14)

The differential equation for k̃ is still (11.7).
In steady state we get (f ′(k̃∗)− δ)(1− τ r) = ρ+ θg, that is,

f ′(k̃∗)− δ =
ρ+ θg

1− τ r
> ρ+ θg > g + n,

where the last inequality comes from the parameter condition (A1). Because
f ′′ < 0, k̃∗ is lower than if τ r = 0. Consequently, in the long run consumption
is lower as well.4 The resulting resource allocation is not Pareto optimal. There
exist an alternative technically feasible resource allocation that makes everyone
in society better off. This is because the capital income tax implies a wedge
between the marginal rate of transformation over time in production, f ′(k̃t)− δ,
and the marginal rate of transformation over time to which consumers adapt,
(1− τ r)(f ′(k̃t)− δ).

11.1.3 Effects of shifts in the capital income tax rate

We shall study effects of a rise in the tax on capital income. The effects depend
on whether the change is anticipated in advance or not and whether the change
is permanent or only temporary. So there are four cases to consider.

(i) Unanticipated permanent shift in τ r

Until time t0 the economy has been in steady state with a tax-transfer scheme
based on some given constant tax rate, τ r, on capital income. At time t0, un-
expectedly, the government introduces a new tax-transfer scheme, involving a
higher constant tax rate, τ ′r, on capital income, i.e., 0 < τ r < τ ′r < 1. The path of
spending on goods and services remains unchanged, i.e., Gt = γ̃TtLt for all t ≥ 0.
The lump-sum transfers, xt, are raised so as to maintain a balanced budget. We
assume it is credibly announced that the new tax-transfer scheme will be adhered
to forever. So households expect the real after-tax interest rate (rate of return
on saving) to be (1− τ ′r)rt for all t ≥ t0.
For t < t0 the dynamics are governed by (11.7) and (11.14) with 0 < τ r < 1.

The corresponding steady state, E, has k̃ = k̃∗ and c̃ = c̃∗ as indicated in the

4In the Diamond OLG model a capital income tax, which finances lump-sum transfers to the
old generation, has an ambiguous effect on capital accumulation, depending on whether θ < 1
or θ > 1, cf. Exercise 5.?? in Chapter 5.
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Figure 11.2: Phase portrait of an unanticipated permanent rise in τ r.

phase diagram in Fig. 11.2. The new tax-transfer scheme ruling after time t0
shifts the steady state point to E’with k̃ = k̃∗′ and c̃ = c̃∗

′
. The new

·
c̃ = 0 line

and the new saddle path are to the left of the old, i.e., k̃∗′ < k̃∗. Until time t0
the economy is at the point E. Immediately after the shift in the tax on capital
income, equilibrium requires that the economy is on the new saddle path. So
there will be a jump from point E to point A in Fig. 11.2.
This upward jump in consumption is intuitively explained the following way.

We know that individual consumption immediately after the policy shock satisfies

ct0 = βt0(at0 + ht0), where (11.15)

ht0 =

∫ ∞
t0

(wt + τ ′rrtkt − γ̃Tt)e
−
∫ t
t0

((1−τ ′r)rz−n)dz
dt, and

βt0 =
1∫∞

t0
e
∫ t
t0

(
(1−θ)(1−τ ′r)rz−ρ

θ
+n)dz

dt

.

Two effects are present. First, both the higher transfers and the lower after-
tax rate of return after time t0 contribute to a higher ht0 ; there is thereby a
positive wealth effect on current consumption through a higher ht0 . Second, the
propensity to consume, βt0 , will generally be affected. If θ < 1, the reduction in
the after-tax rate of return will have a positive effect on βt0 . The positive effect
on βt0 when θ < 1 reflects that the positive substitution effect on ct0 of a lower
after-tax rate of return dominates the negative income effect. If instead θ > 1,
the positive substitution effect on ct0 is dominated by the negative income effect.
Whatever happens to βt0 , however, the phase diagram shows that in general
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equilibrium there will necessarily be an upward jump in ct0 . We get this result
even if θ is much higher than 1. The explanation lies in the assumption that all
the extra tax revenue obtained by the rise in τ r is immediately transferred back
to the households lump sum, thereby strengthening the positive wealth effect
on current consumption through the lower discount rate implied by (1 − τ ′r)rz
< (1− τ r)rz.
In response to the rise in τ r, we thus have c̃t0 > f(k̃t0)−(δ+g+n)k̃t0 , implying

that saving is too low to sustain k̃, which thus begins to fall. This results in lower
real wages and higher before-tax interest rates, that is two negative feedbacks
on human wealth. Could these feedbacks not fully offset the initial tendency for
(after-tax) human wealth to rise? The answer is no, see Box 11.1.
As indicated by the arrows in Fig. 11.2, the economy moves along the new

saddle path towards the new steady state E’. Because k̃ is lower in the new
steady state than in the old, so is c̃. The evolution of the technology level, T, is
by assumption exogenous; thus, also actual per capita consumption, c ≡ c̃∗T, is
lower in the new steady state.

Box 11.1. A mitigating feedback can not instantaneously fully offset the
force that activates it.

Can the story told by Fig. 11.2 be true? Can it be true that the net effect of
the higher tax on capital income is an upward jump in consumption at time
t0 as indicated in Fig. 11.2? Such a jump means that c̃t0> f(k̃t0)

−(δ + g + n)k̃t0 and the resulting reduced saving will make the future k lower
than otherwise and thereby make expected future real wages lower and
expected future before-tax interest rates higher. Both feedbacks partly
counteract the initial upward shift in human wealth due to higher transfers
and a lower effective discount rate that were the direct result of the rise in
τw. Could the two mentioned counteracting feedbacks fully offset the initial
tendency for (after-tax) human wealth, and therefore current consumption, to
rise?
The phase diagram says no. But what is the intuition? That the two feed-

backs can not fully offset (or even reverse) the tendency for (after-tax) human
wealth to rise at time t0 is explained by the fact that if they could, then the two
feedbacks would not be there in the first place. We cannot at the same
time have both a rise in the human wealth that triggers higher consumption
(and thereby lower saving and investment in the economy) and a neutrali-
zation, or a complete reversal, of this rise in the human wealth caused by
the higher consumption. The two feedbacks can only partly offset the initial
tendency for human wealth to rise.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



442 CHAPTER 11. APPLICATIONS OF THE RAMSEY MODEL

Instead of all the extra tax revenue obtained being transferred back lump sum
to the households, we may alternatively assume that a major part of it is used to
finance a rise in government consumption to the level G′t = γ̃′TtLt, where γ̃′ > γ̃.5

In addition to the leftward shift of the
·
c̃ = 0 locus this will result in a downward

shift of the
·
k̃ = 0 locus. The phase diagram would look like a convex combination

of Fig. 11.1 and Fig. 11.2. Then it is possible that the jump in consumption at
time t0 becomes downward instead of upward.
Returning to the case where the extra tax revenue is fully transferred, the

next subsection splits the change in taxation policy into two events.

(ii) Anticipated permanent shift in τ r

Until time t0 the economy has been in steady state with a tax-transfer scheme
based on some given constant tax rate, τ r, on capital income. At time t0, unex-
pectedly, the government announces that a new tax-transfer policy with τ ′r > τ r
is to be implemented at time t1 > t0. We assume people believe in this announce-
ment and that the new policy is implemented at time t1 as announced. The shock
to the economy is now not the event of a higher tax being implemented at time
t1; this event is expected after time t0. The shock occurs at time t0 in the form
of the unexpected announcement. The path of spending on goods and services
remains unchanged throughout, i.e., Gt = γ̃TtLt for all t ≥ 0.
The phase diagram in Fig. 11.3 illustrates the evolution of the economy for

t ≥ t0. There are two time intervals to consider. For t ∈ [t1,∞) , the dynamics
are governed by (11.7) and (11.14) with τ r replaced by τ ′r, starting from whatever
value obtained by k̃ at time t1.
In the time interval [t0, t1) , however, the “old dynamics”, with the lower tax

rate, τ r, in a sense still hold. Yet the path the economy follows immediately after
time t0 is different from what it would be without the information that capital
income will be taxed heavily from time t1, where also transfers will become higher.
Indeed, the expectation of a lower after-tax interest rate until time t1, combined
with higher transfers from time t1 implies higher present value of future labor and
transfer income. Already at time t0 this induces an upward jump in consumption
to the point C in Fig. 11.3 because people feel more wealthy.
Since the low τ r rules until time t1, the point C is below the point A, which

is the same as that in Fig. 11.2. How far below? The answer follows from the
fact that there cannot be an expected discontinuity of marginal utility at time t1,
since that would contradict the preference for consumption smoothing over time

5It is understood that also γ̃′ is not larger than what allows a steady state to exist. Moreover,
the government budget is still balanced for all t so that any temporary surplus or shortage of
tax revenue, τ ′rrtKt −G′t, is immediately transferred or collected lump-sum.
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Figure 11.3: Phase portrait of an anticipated permanent rise in τ r.

implied by u′′(c) < 0 (strict concavity of the instantaneous utility function) and
reflected in the Keynes-Ramsey rule. To put it differently: the shift to τ ′r does
not occur immediately, as in (11.15), but in the future, and as long as the shift
is known to occur at a given time in the future. The shift, when it takes place,
namely at the announced time t1, will not trigger a jump in human wealth, ht1 .

6

Hence, at time t1, there will be no jump in consumption, ct1 .
The intuitive background for this is that a consumer will never plan a jump

in consumption. To see this, consider a consumption path in the time inter-
val (t0, t2), where t2 > t1. Suppose there is a discontinuity in ct at time t1. In
view of the strict concavity of the utility function, there would then be gains to
be obtained by smoothing out consumption. Recalling the optimality condition
u′(ct1) = λt1 , we could also say that along an optimal path there can be no ex-
pected discontinuity in the shadow price of financial wealth, λt1 . This is analogue
to the fact that in an asset market, arbitrage rules out the existence of a generally
expected jump in the price of the asset to occur at some future time t1. If we
imagine the expected jump is upward, an infinite positive rate of return could
be obtained by buying the asset immediately before the jump. This generates
excess demand of the asset before time t1 and drives its price up in advance thus
preventing an expected upward jump at time t1. And if we on the other hand
imagine the expected jump is downward, an infinite negative rate of return could
be avoided by selling the asset immediately before the jump. This generates ex-

6Replace t0 in the formula for human wealth in (11.15) by some t ∈ (t0, t1), and consider ht
as the sum of the integrals from t to t1 and from t1 to ∞, respectively, and let then t approach
t1 from below.
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cess supply of the asset before time t1 and drives its price down in advance thus
preventing an expected downward jump at t1.
To avoid existence of an expected discontinuity in consumption, the point C

on the vertical line k̃ = k̃∗ in Fig. 11.3 must be such that, following the “old
dynamics”, it takes exactly t1− t0 time units to reach the new saddle path. This
dictates a unique position of the point C between E and A. If C were at a lower
position, the journey to the saddle path would take longer than t1− t0. And if C
were at a higher position, the journey would not take as long as t1 − t0.
Immediately after time t0, k̃ will be decreasing (because saving is smaller than

what is required to sustain a constant k̃); and c̃ will be increasing in view of the
Keynes-Ramsey rule, since the rate of return on saving is above ρ + θg as long
as k̃ < k̃∗ and τ r low. Precisely at time t1 the economy reaches the new saddle
path, the high taxation of capital income begins, and the after-tax rate of return
becomes lower than ρ+ θg. Hence, per-capita consumption begins to fall and the
economy gradually approaches the new steady state E’.
This analysis illustrates that when economic agents’ behavior depend on

forward-looking expectations, a credible announcement of a future change in pol-
icy has an effect already before the new policy is implemented. Such effects are
known as announcement effects or anticipation effects.

(iii) Unanticipated temporary shift in τ r

Once again we change the scenario. The economy with low capital taxation
has been in steady state up until time t0. Then a new tax-transfer scheme is
unexpectedly introduced. At the same time it is credibly announced that the high
taxes on capital income and the corresponding transfers will cease at time t1 > t0.
The path of spending on goods and services remains unchanged throughout, i.e.,
Gt = γ̃TtLt for all t ≥ 0.
The phase diagram in Fig. 11.4 illustrates the evolution of the economy for

t ≥ t0. For t ≥ t1, the dynamics are governed by (11.7) and (11.14), again with
the old τ r, starting from whatever value obtained by k̃ at time t1.
In the time interval [t0, t1) the “new, temporary dynamics”with the high τ ′r

and high transfers hold sway. Yet the path that the economy takes immediately
after time t0 is different from what it would have been without the information
that the new tax-transfers scheme is only temporary. Indeed, the expectation of
a shift to a higher after-tax rate of return and cease of high transfers as of time
t1 implies lower present value of expected future labor and transfer earnings than
without this information. Hence, the upward jump in consumption at time t0 is
smaller than in Fig. 11.2. How much smaller? Again, the answer follows from
the fact that there can not be an expected discontinuity of marginal utility at time
t1, since that would violate the principle of smoothing of planned consumption.
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Figure 11.4: Phase portrait of an unanticipated temporary rise in τ r.

Thus the point F on the vertical line k̃ = k̃∗ in Fig. 11.4 must be such that,
following the “new, temporary dynamics”, it takes exactly t1 time units to reach
the solid saddle path in Fig. 11.4 (which is in fact the same as the saddle path
before time t0). The implied position of the economy at time t1 is indicated by
the point G in the figure.
Immediately after time t0, k̃ will be decreasing (because saving is smaller than

what is required to sustain a constant k̃) and c̃ will be decreasing in view of the
Keynes-Ramsey rule in a situation with an after-tax rate of return lower than
ρ + θg. Precisely at time t1, when the temporary tax-transfers scheme based
on τ ′r is abolished (as announced and expected), the economy reaches the solid
saddle path. From that time the return on saving is high both because of the
abolition of the high capital income tax and because k̃ is relatively low. The
general equilibrium effect of this is higher saving, and so the economy moves
along the solid saddle path back to the original steady-state point E.
There is a last case to consider, namely an anticipated temporary shift in τ r.

We leave that for an exercise, see Exercise 11.??

11.1.4 Ricardian equivalence

We now drop the balanced budget assumption and allow public spending to be
financed partly by issuing government bonds and partly by lump-sum taxation.
Transfers and gross tax revenue as of time t are called Xt and T̃t respectively,
while the real value of government net debt is called Bt. For simplicity, we assume
all public debt is short-term. Ignoring any money-financing of the spending, the
increase per time unit in government debt is identical to the government budget
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deficit:
Ḃt = rtBt +Gt +Xt − T̃t. (11.16)

As we ignore uncertainty, on its debt the government has to pay the same interest
rate, rt, as other borrowers.
Along an equilibrium path in the Ramsey model the long-run interest rate

necessarily exceeds the long-run GDP growth rate. As we saw in Chapter 6, to
remain solvent, the government must then, as a debtor, fulfil a solvency require-
ment analogous to that of the households in the Ramsey model:

lim
t→∞

Bte
−
∫ t
0 rsds ≤ 0. (11.17)

This NPG condition says that the debt is in the long run allowed to grow at most
at a rate less than the interest rate. As in discrete time, given the accounting
relationship (11.16), the NPG condition is equivalent to the intertemporal budget
constraint ∫ ∞

0

(Gt +Xt)e
−
∫ t
0 rsdsdt ≤

∫ ∞
0

T̃te
−
∫ t
0 rsdsdt−B0. (11.18)

This says that the present value of the credibly planned public expenditure cannot
exceed government net wealth consisting of the present value of the expected
future tax revenues minus initial government debt, i.e., assets minus liabilities.
Assuming that the government does not want to be a net creditor to the

private sector in the long run, it will not collect more taxes than is necessary to
satisfy (11.18). Hence, we replace “≤”by “=”and rearrange to obtain∫ ∞

0

T̃te
−
∫ t
0 rsdsdt =

∫ ∞
0

(Gt +Xt)e
−
∫ t
0 rsdsdt+B0. (11.19)

Thus, for a given path of Gt and Xt, the stream of the expected tax revenue
must be such that its present value equals the present value of total liabilities on
the right-hand-side of (11.19). A temporary budget deficit leads to more debt
and therefore also higher taxes in the future. A budget deficit merely implies a
deferment of tax payments. The condition (11.19) can be reformulated as∫ ∞

0

(T̃t −Gt −Xt)e
−
∫ t
0 rsdsdt = B0,

showing that if net debt is positive today, then the government has to run a
positive primary budget surplus (that is, T̃t −Gt −Xt > 0) in a suffi ciently long
time in the future.
We will now show that when taxes are lump sum, then Ricardian equivalence

holds in the Ramsey model with a public sector.7 That is, a temporary tax

7It is enough that just those taxes that are varied in the thought experiment are lump-sum.
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cut will have no consequences for aggregate consumption. The time profile of
lump-sum taxes does not matter.
Consider the intertemporal budget constraint of the representative household,∫ ∞

0

ctLte
−
∫ t
0 rsdsdt ≤ A0 +H0 = K0 +B0 +H0, (11.20)

where H0 is human wealth of the household. This says, that the present value of
the planned consumption stream can not exceed the total wealth of the household.
In the optimal plan of the household, we have strict equality in (11.20).
Let τ t denote the lump-sum per capita net tax. Then, T̃t −Xt = τ tLt and

H0 = h0L0 =

∫ ∞
0

(wt − τ t)Lte−
∫ t
0 rsdsdt =

∫ ∞
0

(wtLt +Xt − T̃t)e−
∫ t
0 rsdsdt

=

∫ ∞
0

(wtLt −Gt)e
−
∫ t
0 rsdsdt−B0, (11.21)

where the last equality comes from rearranging (11.19). It follows that

B0 +H0 =

∫ ∞
0

(wtLt −Gt)e
−
∫ t
0 rsdsdt.

We see that the time profiles of transfers and taxes have fallen out. What matters
for total wealth of the forward-looking household is just the spending on goods
and services, not the time profile of transfers and taxes. A higher initial debt
has no effect on the sum, B0 + H0, because H0, which incorporates transfers
and taxes, becomes equally much lower. Total private wealth is thus unaffected
by government debt. So is therefore also private consumption when net taxes
are lump sum. A temporary tax cut will not make people feel wealthier and
induce them to consume more. Instead they will increase their saving by the
same amount as taxes have been reduced, thereby preparing for the higher taxes
in the future.
This is the Ricardian equivalence result, which we encountered also in Barro’s

discrete time dynasty model in Chapter 7:

In a representative agent model with full employment, rational
expectations, and no credit market imperfections, if taxes are lump
sum, then, for a given evolution of public expenditure, aggregate pri-
vate consumption is independent of whether current public expen-
diture is financed by taxes or by issuing bonds. The latter method
merely implies a deferment of tax payments. Given the government’s
intertemporal budget constraint, (11.19), a cut in current taxes has
to be offset by a rise in future taxes of the same present value. Since,
with lump-sum taxation, it is only the present value of the stream of
taxes that matters, the “timing”is irrelevant.
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The assumptions of a representative agent and a long-run interest rate in
excess of the long-run GDP growth rate are of key importance. As pointed
out in Chapter 6, Ricardian equivalence breaks down in OLG models without
an operative Barro-style bequest motive. Such a bequest motive is implicit in
the infinite horizon of the Ramsey household. In OLG models, where finite life
time is emphasized, there is a turnover in the population of tax payers so that
taxes levied at different times are levied on partly different sets of agents. In
the future there are newcomers and they will bear part of the higher future tax
burden. Therefore, a current tax cut makes current generations feel wealthier and
this leads to an increase in current consumption, implying a decrease in national
saving, as a result of the temporary deficit finance. The present generations
benefit, but future generations bear the cost in the form of smaller national
wealth than otherwise. We return to further reasons for absence of Ricardian
equivalence in chapters 13 and 19.

11.2 Learning by investing and investment-enhancing
policy

In endogenous growth theory the Ramsey framework has been applied extensively
as a simplifying description of the household sector. In most endogenous growth
theory the focus is on mechanisms that generate and shape technological change.
Different hypotheses about the generation of new technologies are then often
combined with a simplified picture of the household sector as in the Ramsey
model. Since this results in a simple determination of the long-run interest rate
(the modified golden rule), the analyst can in a first approach concentrate on the
main issue, technological change, without being disturbed by aspects that are
often secondary to this issue.
As an example, let us consider one of the basic endogenous growth models,

the learning-by-investing model, sometimes called the learning-by-doing model.
Learning from investment experience and diffusion across firms of the resulting
new technical knowledge (positive externalities) play an important role.
There are two popular alternative versions of the model. The distinguishing

feature is whether the learning parameter (see below) is less than one or equal
to one. The first case corresponds to a model by Nobel laureate Kenneth Arrow
(1962). The second case has been drawn attention to by Paul Romer (1986) who
assumes that the learning parameter equals one. We first consider the common
framework shared by these two models. Next we describe and analyze Arrow’s
model (in a simplified version) and finally we compare it to Romer’s.
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11.2.1 The common framework

We consider a closed economy with firms and households interacting under con-
ditions of perfect competition. Later, a government attempting to internalize the
positive investment externality is introduced.
Let there be N firms in the economy (N “large”). Suppose they all have

the same neoclassical production function, F, with CRS. Firm no. i faces the
technology

Yit = F (Kit, TtLit), i = 1, 2, ..., N, (11.22)

where the economy-wide technology level Tt is an increasing function of society’s
previous experience, proxied by cumulative aggregate net investment:

Tt =

(∫ t

−∞
Ins ds

)λ
= Kλ

t , 0 < λ ≤ 1, (11.23)

where Ins is aggregate net investment and Kt =
∑

iKit.
8

The idea is that investment − the production of capital goods − as an unin-
tended by-product results in experience. The firm and its employees learn from
this experience. Producers recognize opportunities for process and quality im-
provements. In this way knowledge is achieved about how to produce the capital
goods in a cost-effi cient way and how to design them so that in combination
with labor they are more productive and better satisfy the needs of the users.
Moreover, as emphasized by Arrow,

“each new machine produced and put into use is capable of changing
the environment in which production takes place, so that learning is
taking place with continually new stimuli”(Arrow, 1962).9

The learning is assumed to benefit essentially all firms in the economy. There
are knowledge spillovers across firms and these spillovers are reasonably fast rel-
ative to the time horizon relevant for growth theory. In our macroeconomic ap-
proach both F and T are in fact assumed to be exactly the same for all firms in the
economy. That is, in this specification the firms producing consumption-goods
benefit from the learning just as much as the firms producing capital-goods.
The parameter λ indicates the elasticity of the general technology level, T ,

with respect to cumulative aggregate net investment and is named the “learning

8For arbitrary units of measurement for labor and output the hypothesis is Tt = BKλ
t ,

B > 0. In (11.23) measurement units are chosen such that B = 1.
9Concerning empirical evidence of learning-by-doing and learning-by-investing, see Liter-

ature Notes. The citation of Arrow indicates that it was experience from cumulative gross
investment he had in mind as the basis for learning. Yet, to simplify, we stick to the hypothesis
in (11.23), where it is cumulative net investment that matters.
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parameter”. Whereas Arrow assumes λ < 1, Romer focuses on the case λ = 1.
The case of λ > 1 is ruled out since it would lead to explosive growth (infinite
output in finite time) and is therefore not plausible.

The individual firm

In the simple Ramsey model we assumed that households directly own the capital
goods in the economy and rent them out to the firms. When discussing learning-
by-investment, it somehow fits the intuition better if we (realistically) assume
that the firms generally own the capital goods they use. They then finance their
capital investment by issuing shares and bonds. Households’financial wealth
then consists of these shares and bonds.
Consider firm i. There is perfect competition in all markets. So the firm is

a price taker. Its problem is to choose a production and investment plan which
maximizes the present value, Vi, of expected future cash-flows. Thus the firm
chooses (Lit, Iit)

∞
t=0 to maximize

Vi0 =

∫ ∞
0

[F (Kit, TtLit)− wtLit − Iit] e−
∫ t
0 rsdsdt

subject to K̇it = Iit−δKit. Here wt and It are the real wage and gross investment,
respectively, at time t, rs is the real interest rate at time s, and δ ≥ 0 is the capital
depreciation rate. Rising marginal capital installation costs and other kinds of
adjustment costs are assumed minor and can be ignored. It can be shown, cf.
Chapter 14, that in this case the firm’s problem is equivalent to maximization of
current pure profits in every short time interval. So, as hitherto, we can describe
the firm as just solving a series of static profit maximization problems.
We suppress the time index when not needed for clarity. At any date firm i

maximizes current pure profits, Πi = F (Ki, T Li) − (r + δ)Ki − wLi. This leads
to the first-order conditions for an interior solution:

∂Πi/∂Ki = F1(Ki, T Li)− (r + δ) = 0, (11.24)

∂Πi/∂Li = F2(Ki, T Li)T − w = 0.

Behind (11.24) is the presumption that each firm is small relative to the economy
as a whole, so that each firm’s investment has a negligible effect on the economy-
wide technology level Tt. Since F is homogeneous of degree one, by Euler’s
theorem,10 the first-order partial derivatives, F1 and F2, are homogeneous of
degree 0. Thus, we can write (11.24) as

F1(ki, T ) = r + δ, (11.25)

10See Math tools.
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where ki ≡ Ki/Li. Since F is neoclassical, F11 < 0. Therefore (11.25) determines
ki uniquely. From (11.25) follows that the chosen capital-labor ratio, ki, will be
the same for all firms, say k̄.

The individual household

The household sector is described by our standard Ramsey framework with in-
elastic labor supply and a constant population growth rate n ≥ 0. The households
have CRRA instantaneous utility with parameter θ > 0. The pure rate of time
preference is a constant, ρ. The flow budget identity in per capita terms is

ȧt = (rt − n)at + wt − ct, a0 given,

where a is per capita financial wealth. The NPG condition is

lim
t→∞

ate
−
∫ t
0 (rs−n)ds ≥ 0.

The resulting consumption-saving plan implies that per capita consumption fol-
lows the Keynes-Ramsey rule,

ċt
ct

=
1

θ
(rt − ρ),

and the transversality condition that the NPG condition is satisfied with strict
equality. In general equilibrium of our closed economy with no role for natural
resources and no government debt, at will equal Kt/Lt.

Equilibrium in factor markets

For every t we have in equilibrium that
∑

iKi = K and
∑

i Li = L, where K
and L are the available amounts of capital and labor, respectively (both pre-
determined). Since K =

∑
iKi =

∑
i kiLi =

∑
i k̄Li = k̄L, the chosen capital

intensity, ki, satisfies

ki = k̄ =
K

L
≡ k, i = 1, 2, ..., N. (11.26)

As a consequence we can use (11.25) to determine the equilibrium interest rate:

rt = F1(kt, Tt)− δ. (11.27)

That is, whereas in the firm’s first-order condition (11.25) causality goes from rt
to kit, in (11.27) causality goes from kt to rt. Note also that in our closed economy
with no natural resources and no government debt, at will equal kt.
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The implied aggregate production function is

Y =
∑
i

Yi ≡
∑
i

yiLi =
∑
i

F (ki, T )Li =
∑
i

F (k, T )Li

= F (k, T )
∑
i

Li = F (k, T )L = F (K, T L) = F (K,KλL), (11.28)

where we have used (11.22), (11.26), and (11.23) and the assumption that F is
homogeneous of degree one.

11.2.2 The arrow case: λ < 1

The Arrow case is the robust case where the learning parameter satisfies 0 <
λ < 1. The method for analyzing the Arrow case is analogue to that used in
the study of the Ramsey model with exogenous technical progress. In particular,
aggregate capital per unit of effective labor, k̃ ≡ K/(T L), is a key variable. Let
ỹ ≡ Y/(T L). Then

ỹ =
F (K, T L)

T L = F (k̃, 1) ≡ f(k̃), f ′ > 0, f ′′ < 0. (11.29)

We can now write (11.27) as

rt = f ′(k̃t)− δ, (11.30)

where k̃t is pre-determined.

Dynamics

From the definition k̃ ≡ K/(T L) follows

·
k̃

k̃
=

K̇

K
− ṪT −

L̇

L
=
K̇

K
− λK̇

K
− n (by (11.23))

= (1− λ)
Y − C − δK

K
− n = (1− λ)

ỹ − c̃− δk̃
k̃

− n, where c̃ ≡ C

T L ≡
c

T .

Multiplying through by k̃ we have

·
k̃ = (1− λ)(f(k̃)− c̃)− [(1− λ)δ + n] k̃. (11.31)

In view of (11.30), the Keynes-Ramsey rule implies

gc ≡
ċ

c
=

1

θ
(r − ρ) =

1

θ

(
f ′(k̃)− δ − ρ

)
. (11.32)
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Defining c̃ ≡ c/A, now follows

.

c̃

c̃
=

ċ

c
− ṪT =

ċ

c
− λK̇

K
=
ċ

c
− λY − cL− δK

K
=
ċ

c
− λ

k̃
(ỹ − c̃− δk̃)

=
1

θ
(f ′(k̃)− δ − ρ)− λ

k̃
(ỹ − c̃− δk̃).

Multiplying through by c̃ we have

·
c̃ =

[
1

θ
(f ′(k̃)− δ − ρ)− λ

k̃
(f(k̃)− c̃− δk̃)

]
c̃. (11.33)

The two coupled differential equations, (11.31) and (11.33), determine the
evolution over time of the economy.

Phase diagram Fig. 11.5 depicts the phase diagram. The
·
k̃ = 0 locus comes

from (11.31), which gives

·
k̃ = 0 for c̃ = f(k̃)− (δ +

n

1− λ)k̃, (11.34)

where we realistically may assume that δ + n/(1− λ) > 0. As to the
·
c̃ = 0 locus,

we have

·
c̃ = 0 for c̃ = f(k̃)− δk̃ − k̃

λθ
(f ′(k̃)− δ − ρ)

= f(k̃)− δk̃ − k̃

λ
gc ≡ c(k̃) (from (11.32)). (11.35)

Before determining the slope of the
·
c̃ = 0 locus, it is convenient to consider

the steady state, (k̃∗, c̃∗).

Steady state In a steady state c̃ and k̃ are constant so that the growth rate of
C as well as K equals Ȧ/A+ n, i.e.,

Ċ

C
=
K̇

K
=
Ṫ
T + n = λ

K̇

K
+ n.

Solving gives
Ċ

C
=
K̇

K
=

n

1− λ.
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Figure 11.5: Phase diagram for the Arrow model.

Thence, in a steady state

gc =
Ċ

C
− n =

n

1− λ − n =
λn

1− λ ≡ g∗c , and (11.36)

Ṫ
T = λ

K̇

K
=

λn

1− λ = g∗c . (11.37)

The steady-state values of r and k̃, respectively, will therefore satisfy, by (11.32),

r∗ = f ′(k̃∗)− δ = ρ+ θg∗c = ρ+ θ
λn

1− λ. (11.38)

To ensure existence of a steady state we assume that the private marginal pro-
ductivity of capital is suffi ciently sensitive to capital per unit of effective labor,
from now called the “capital intensity”:

lim
k̃→0

f ′(k̃) > δ + ρ+ θ
λn

1− λ > lim
k̃→∞

f ′(k̃). (A1)

The transversality condition of the representative household is that limt→∞
ate
−
∫ t
0 (rs−n)ds = 0, where at is per capita financial wealth. In general equilibrium
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at = kt ≡ k̃tTt, where Tt in steady state grows according to (11.37). Thus, in
steady state the transversality condition can be written

lim
t→∞

k̃∗e(g∗c−r∗+n)t = 0. (TVC)

For this to hold, we need

r∗ > g∗c + n =
n

1− λ, (11.39)

by (11.36). In view of (11.38), this is equivalent to

ρ− n > (1− θ) λn

1− λ, (A2)

which we assume satisfied.
As to the slope of the

·
c̃ = 0 locus we have from (11.35),

c′(k̃) = f ′(k̃)− δ − 1

λ
(k̃
f ′′(k̃)

θ
+ gc) > f ′(k̃)− δ − 1

λ
gc, (11.40)

since f ′′ < 0. At least in a small neighborhood of the steady state we can sign
the right-hand side of this expression. Indeed,

f ′(k̃∗)−δ− 1

λ
g∗c = ρ+θg∗c−

1

λ
g∗c = ρ+θ

λn

1− λ−
n

1− λ = ρ−n−(1−θ) λn

1− λ > 0,

(11.41)
by (11.36) and (A2). So, combining with (11.40), we conclude that c′(k̃∗) > 0.
By continuity, in a small neighborhood of the steady state, c′(k̃) ≈ c′(k̃∗) > 0.

Therefore, close to the steady state, the
·
c̃ = 0 locus is positively sloped, as

indicated in Fig. 11.5.
Still, we have to check the following question: In a neighborhood of the steady

state, which is steeper, the
·
c̃ = 0 locus or the

·
k̃ = 0 locus? The slope of the latter

is f ′(k̃)− δ − n/(1− λ), from (11.34). At the steady state this slope is

f ′(k̃∗)− δ − 1

λ
g∗c ∈ (0, c′(k̃∗)),

in view of (11.41) and (11.40). The
·
c̃ = 0 locus is thus steeper. So, the

·
c̃ = 0

locus crosses the
·
k̃ = 0 locus from below and can only cross once.

The assumption (A1) ensures existence of a k̃∗ > 0 satisfying (11.38). As
Fig. 11.5 is drawn, a little more is implicitly assumed namely that there exists a
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k̂ > 0 such that the private net marginal productivity of capital equals the the
steady-state growth rate of output, i.e.,

f ′(k̂)− δ = (
Ẏ

Y
)∗ = (

Ṫ
T )∗ +

L̇

L
=

λn

1− λ + n =
n

1− λ, (11.42)

where we have used (11.37). Thus, the tangent to the
·
k̃ = 0 locus at k̃ = k̂ is

horizontal and k̂ > k̃∗ as indicated in the figure.
Note, however, that k̂ is not the golden-rule capital intensity. The latter is the

capital intensity, k̃GR, at which the social net marginal productivity of capital
equals the steady-state growth rate of output (see Appendix). If k̃GR exists, it will
be larger than k̂ as indicated in Fig. 11.5. To see this, we now derive a convenient
expression for the social marginal productivity of capital. From (11.28) we have

∂Y

∂K
= F1(·) + F2(·)λKλ−1L = f ′(k̃) + F2(·)KλL(λK−1) (by (11.29))

= f ′(k̃) + (F (·)− F1(·)K)λK−1 (by Euler’s theorem)

= f ′(k̃) + (f(k̃)KλL− f ′(k̃)K)λK−1 (by (11.29) and (11.23))

= f ′(k̃) + (f(k̃)Kλ−1L− f ′(k̃))λ = f ′(k̃) + λ
f(k̃)− k̃f ′(k̃)

k̃
> f ′(k̃).

in view of k̃ = K/(KλL) = K1−λL−1 and f(k̃)/k̃ − f ′(k̃) > 0. As expected, the
positive externality makes the social marginal productivity of capital larger than
the private one. Since we can also write ∂Y/∂K = (1−λ)f ′(k̃)+λf(k̃)/k̃, we see
that ∂Y/∂K is a decreasing function of k̃ (both f ′(k̃) and f(k̃)/k̃ are decreasing
in k̃.
Now, the golden-rule capital intensity, k̃GR, will be that capital intensity which

satisfies

f ′(k̃GR) + λ
f(k̃GR)− k̃GRf ′(k̃GR)

k̃GR
− δ = (

Ẏ

Y
)∗ =

n

1− λ.

To ensure there exists such a k̃GR, we strengthen the right-hand side inequality
in (A1) by the assumption

lim
k̃→∞

(
f ′(k̃) + λ

f(k̃)− k̃f ′(k̃)

k̃

)
< δ +

n

1− λ. (A3)

This, together with (A1) and f
′′
< 0, implies existence of a unique k̃GR, and in

view of our additional assumption (A2), we have 0 < k̃∗ < k̂ < k̃GR, as displayed
in Fig. 11.5.
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Stability The arrows in Fig. 11.5 indicate the direction of movement as de-
termined by (11.31) and (11.33). We see that the steady state is a saddle point.
The dynamic system has one pre-determined variable, k̃, and one jump variable,
c̃. The saddle path is not parallel to the jump variable axis. We claim that for
a given k̃0 > 0, (i) the initial value of c̃0 will be the ordinate to the point where
the vertical line k̃ = k̃0 crosses the saddle path; (ii) over time the economy will
move along the saddle path towards the steady state. Indeed, this time path is
consistent with all conditions of general equilibrium, including the transversality
condition (TVC). And the path is the only technically feasible path with this
property. Indeed, all the divergent paths in Fig. 11.5 can be ruled out as equi-
librium paths because they can be shown to violate the transversality condition
of the household.
In the long run c and y ≡ Y/L ≡ ỹT = f(k̃∗)T grow at the rate λn/(1− λ),

which is positive if and only if n > 0. This is an example of endogenous growth in
the sense that the positive long-run per capita growth rate is generated through an
internal mechanism (learning) in the model (in contrast to exogenous technology
growth as in the Ramsey model with exogenous technical progress).

Two types of endogenous growth

One may distinguish between two types of endogenous growth. One is called fully
endogenous growth which occurs when the long-run growth rate of c is positive
without the support by growth in any exogenous factor (for example exogenous
growth in the labor force); the Romer case, to be considered in the next section,
provides an example. The other type is called semi-endogenous growth and is
present if growth is endogenous but a positive per capita growth rate can not be
maintained in the long run without the support by growth in some exogenous
factor (for example growth in the labor force). Clearly, in the Arrow model of
learning by investing, growth is “only” semi-endogenous. The technical reason
for this is the assumption that the learning parameter λ is below 1, which implies
diminishing returns to capital at the aggregate level. If and only if n > 0, do we
have ċ/c > 0 in the long run.11 In line with this, ∂g∗y/∂n > 0.
The key role of population growth derives from the fact that although there

are diminishing marginal returns to capital at the aggregate level, there are in-
creasing returns to scale w.r.t. capital and labor. For the increasing returns to
be exploited, growth in the labor force is needed. To put it differently: when
there are increasing returns to K and L together, growth in the labor force not
only counterbalances the falling marginal productivity of aggregate capital (this

11Note, however, that the model, and therefore (11.36), presupposes n ≥ 0. If n < 0, then
K would tend to be decreasing and so, by (11.23), the level of technical knowledge would be
decreasing, which is implausible, at least for a modern industrialized economy.
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counter-balancing role reflects the complementarity between K and L), but also
upholds sustained productivity growth.
Note that in the semi-endogenous growth case ∂g∗y/∂λ = n/(1 − λ)2 > 0 for

n > 0. That is, a higher value of the learning parameter implies higher per capita
growth in the long run, when n > 0. Note also that ∂g∗y/∂ρ = 0 = ∂g∗y/∂θ, that
is, in the semi-endogenous growth case preference parameters do not matter for
long-run growth. As indicated by (11.36), the long-run growth rate is tied down
by the learning parameter, λ, and the rate of population growth, n. But, like in
the simple Ramsey model, it can be shown that preference parameters matter for
the level of the growth path. This suggests that taxes and subsidies do not have
long-run growth effects, but “only” level effects (see Exercise 11.??).

11.2.3 Romer’s limiting case: λ = 1, n = 0

We now consider the limiting case λ = 1. We should think of it as a thought
experiment because, by most observers, the value 1 is considered an unrealistically
high value for the learning parameter. To avoid a forever rising growth rate we
have to add the restriction n = 0.

The resulting model turns out to be extremely simple and at the same time
it gives striking results (both circumstances have probably contributed to its
popularity).
First, with λ = 1 we get T = K and so the equilibrium interest rate is, by

(11.27),

r = F1(k,K)− δ = F1(1, L)− δ ≡ r̄,

where we have divided the two arguments of F1(k,K) by k ≡ K/L and again
used Euler’s theorem. Note that the interest rate is constant “from the beginning”
and independent of the historically given initial value of K, K0. The aggregate
production function is now

Y = F (K,KL) = F (1, L)K, L constant, (11.43)

and is thus linear in the aggregate capital stock. In this way the general neo-
classical presumption of diminishing returns to capital has been suspended and
replaced by exactly constant returns to capital. So the Romer model belongs to a
class of models known as AK models, that is, models where in general equilibrium
the interest rate and the output-capital ratio are necessarily constant over time
whatever the initial conditions.
The method for analyzing an AK model is different from the one used for a

diminishing returns model as above.
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Dynamics

The Keynes-Ramsey rule now takes the form

ċ

c
=

1

θ
(r̄ − ρ) =

1

θ
(F1(1, L)− δ − ρ) ≡ γ, (11.44)

which is also constant “from the beginning”. To ensure positive growth, we
assume

F1(1, L)− δ > ρ. (A1’)

And to ensure bounded intertemporal utility (and existence of equilibrium), it is
assumed that

ρ > (1− θ)γ and therefore γ < θγ + ρ = r̄. (A2’)

Solving the linear differential equation (11.44) gives

ct = c0e
γt, (11.45)

where c0 is unknown so far (because c is not a predetermined variable). We shall
find c0 by applying the households’transversality condition

lim
t→∞

ate
−r̄t = lim

t→∞
kte
−r̄t = 0. (TVC)

First, note that the dynamic resource constraint for the economy is

K̇ = Y − cL− δK = F (1, L)K − cL− δK,

or, in per-capita terms,

k̇ = [F (1, L)− δ] k − c0e
γt. (11.46)

In this equation it is important that F (1, L) − δ − γ > 0. To understand this
inequality, note that, by (A2’), F (1, L)−δ−γ > F (1, L)−δ−r̄ = F (1, L)−F1(1, L)
= F2(1, L)L > 0, where the first equality is due to r̄ = F1(1, L)−δ and the second
is due to the fact that since F is homogeneous of degree 1, we have, by Euler’s
theorem, F (1, L) = F1(1, L) · 1 +F2(1, L)L > F1(1, L) > δ, in view of (A1’). The
key property F (1, L)− F1(1, L) > 0 is illustrated in Fig. 11.6.
The solution of a linear differential equation of the form ẋ(t) + ax(t) = ceht,

with h 6= −a, is
x(t) = (x(0)− c

a+ h
)e−at +

c

a+ h
eht. (11.47)

Thus the solution to (11.46) is

kt = (k0 −
c0

F (1, L)− δ − γ )e(F (1,L)−δ)t +
c0

F (1, L)− δ − γ e
γt. (11.48)
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Figure 11.6: Illustration of the fact that for L given, F (1, L) > F1(1, L).

To check whether (TVC) is satisfied we consider

kte
−r̄t = (k0 −

c0

F (1, L)− δ − γ )e(F (1,L)−δ−r̄)t +
c0

F (1, L)− δ − γ e
(γ−r̄)t

→ (k0 −
c0

F (1, L)− δ − γ )e(F (1,L)−δ−r̄)t for t→∞,

since r̄ > γ, by (A2’). But r̄ = F1(1, L)− δ < F (1, L)− δ, and so (TVC) is only
satisfied if

c0 = (F (1, L)− δ − γ)k0. (11.49)

If c0 is less than this, there will be over-saving and (TVC) is violated (ate−r̄t →∞
for t → ∞, since at = kt). If c0 is higher than this, both the NPG and (TVC)
are violated (ate

−r̄t → −∞ for t→∞).
Inserting the solution for c0 into (11.48), we get

kt =
c0

F (1, L)− δ − γ e
γt = k0e

γt,

that is, k grows at the same constant rate as c “from the beginning”. Since y
≡ Y/L = F (1, L)k, the same is true for y. Hence, from start the system is in
balanced growth (there is no transitional dynamics).
This is a case of fully endogenous growth in the sense that the long-run growth

rate of c is positive without the support by growth in any exogenous factor. This
outcome is due to the absence of diminishing returns to aggregate capital, which
is implied by the assumed high value of the learning parameter. The empirical
foundation for being in a neighborhood of this high value is weak, however, cf.
Literature notes. A further problem with this special version of the learning
model is that the results are non-robust. With λ slightly less than 1, we are back
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in the Arrow case and growth peters out, since n = 0.With λ slightly above 1, it
can be shown that growth becomes explosive (infinite output in finite time).12

The Romer case, λ = 1, is thus a knife-edge case in a double sense. First,
it imposes a particular value for a parameter which apriori can take any value
within an interval. Second, the imposed value leads to theoretically non-robust
results; values in a hair’s breadth distance result in qualitatively different behavior
of the dynamic system. Still, whether the Romer case - or, more generally, a
fully-endogenous growth case - can be used as an empirical approximation to
its semi-endogenous “counterpart” for a suffi ciently long time horizon to be of
interest, is a debated question within growth analysis.
It is noteworthy that the causal structure in the long run in the diminishing

returns case is different than in the AK-case of Romer. In the diminishing returns
case the steady-state growth rate is determined first, as g∗c in (11.36), and then r

∗

is determined through the Keynes-Ramsey rule; finally, Y/K is determined by the
technology, given r∗. In contrast, the Romer case has Y/K and r directly given
as F (1, L) and r̄, respectively. In turn, r̄ determines the (constant) equilibrium
growth rate through the Keynes-Ramsey rule.

Economic policy in the Romer case

In the AK case, that is, the fully endogenous growth case, we have ∂γ/∂ρ < 0 and
∂γ/∂θ < 0. Thus, preference parameters matter for the long-run growth rate and
not “only”for the level of the growth path. This suggests that taxes and subsidies
can have long-run growth effects. In any case, in this model there is a motivation
for government intervention due to the positive externality of private investment.
This motivation is present whether λ < 1 or λ = 1. Here we concentrate on the
latter case, which is the simpler one. We first find the social planner’s solution.

The social planner The social planner faces the aggregate production function
Yt = F (1, L)Kt or, in per capita terms, yt = F (1, L)kt. The social planner’s
problem is to choose (ct)

∞
=0 to maximize

U0 =

∫ ∞
0

c1−θ
t

1− θe
−ρtdt s.t.

ct ≥ 0,

k̇t = F (1, L)kt − ct − δkt, k0 > 0 given, (11.50)

kt ≥ 0 for all t > 0. (11.51)

12See Solow (1997).
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The current-value Hamiltonian is

H(k, c, η, t) =
c1−θ

1− θ + η (F (1, L)k − c− δk) ,

where η = ηt is the adjoint variable associated with the state variable, which is
capital per unit of labor. Necessary first-order conditions for an interior optimal
solution are

∂H

∂c
= c−θ − η = 0, i.e., c−θ = η, (11.52)

∂H

∂k
= η(F (1, L)− δ) = −η̇ + ρη. (11.53)

We guess that also the transversality condition,

lim
t→∞

ktηte
−ρt = 0, (11.54)

must be satisfied by an optimal solution. This guess will be of help in finding a
candidate solution. Having found a candidate solution, we shall invoke a theorem
on suffi cient conditions to ensure that our candidate solution is really a solution.
Log-differentiating w.r.t. t in (11.52) and combining with (11.53) gives the

social planner’s Keynes-Ramsey rule,

ċt
ct

=
1

θ
(F (1, L)− δ − ρ) ≡ γSP . (11.55)

We see that γSP > γ. This is because the social planner internalizes the economy-
wide learning effect associated with capital investment, that is, the social planner
takes into account that the “social”marginal productivity of capital is ∂yt/∂kt
= F (1, L) > F1(1, L). To ensure bounded intertemporal utility we sharpen (A2’)
to

ρ > (1− θ)γSP . (A2”)

To find the time path of kt, note that the dynamic resource constraint (11.50)
can be written

k̇t = (F (1, L)− δ)kt − c0e
γSP t,

in view of (11.55). By the general solution formula (11.47) this has the solution

kt = (k0 −
c0

F (1, L)− δ − γSP
)e(F (1,L)−δ)t +

c0

F (1, L)− δ − γSP
eγSP t. (11.56)

In view of (11.53), in an interior optimal solution the time path of the adjoint
variable η is

ηt = η0e
−[(F (1,L)−δ−ρ]t,
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where η0 = c−θ0 > 0, by (11.52). Thus, the conjectured transversality condition
(11.54) implies

lim
t→∞

kte
−(F (1,L)−δ)t = 0, (11.57)

where we have eliminated η0. To ensure that this is satisfied, we multiply kt from
(11.56) by e−(F (1,L)−δ)t to get

kte
−(F (1,L)−δ)t = k0 −

c0

F (1, L)− δ − γSP
+

c0

F (1, L)− δ − γSP
e[γSP−(F (1,L)−δ)]t

→ k0 −
c0

F (1, L)− δ − γSP
for t→∞,

since, by (A2”), γSP < ρ+ θγSP = F (1, L)− δ in view of (11.55). Thus, (11.57)
is only satisfied if

c0 = (F (1, L)− δ − γSP )k0. (11.58)

Inserting this solution for c0 into (11.56), we get

kt =
c0

F (1, L)− δ − γSP
eγSP t = k0e

γSP t,

that is, k grows at the same constant rate as c “from the beginning”. Since y
≡ Y/L = F (1, L)k, the same is true for y. Hence, our candidate for the so-
cial planner’s solution is from start in balanced growth (there is no transitional
dynamics).
The next step is to check whether our candidate solution satisfies a set of

suffi cient conditions for an optimal solution. Here we can use Mangasarian’s
theorem. Applied to a continuous-time optimization problem like this, with one
control variable and one state variable, the theorem says that the following con-
ditions are suffi cient:

(a) Concavity: For all t ≥ 0 the Hamiltonian is jointly concave in the control
and state variables, here c and k.

(b) Non-negativity: There is for all t ≥ 0 a non-negativity constraint on the
state variable; in addition, the co-state variable, η, is non-negative for all
t ≥ 0 along the optimal path.

(c) TVC: The candidate solution satisfies the transversality condition
limt→∞ ktηte

−ρt = 0, where ηte
−ρt is the discounted co-state variable.

In the present case we see that the Hamiltonian is a sum of concave func-
tions and therefore is itself concave in (k, c). Further, from (11.51) we see that
condition (b) is satisfied. Finally, our candidate solution is constructed so as to
satisfy condition (c). The conclusion is that our candidate solution is an optimal
solution. We call it an SP allocation.
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Implementing the SP allocation in the market economy Returning to
the competitive market economy, we assume there is a policy maker, the govern-
ment, with only two activities. These are (i) paying an investment subsidy, s, to
the firms so that their capital costs are reduced to

(1− s)(r + δ)

per unit of capital per time unit; (ii) financing this subsidy by a constant con-
sumption tax rate τ .
Let us first find the size of s needed to establish the SP allocation. Firm i

now chooses Ki such that

∂Yi
∂Ki

|K fixed = F1(Ki, KLi) = (1− s)(r + δ).

By Euler’s theorem this implies

F1(ki, K) = (1− s)(r + δ) for all i,

so that in equilibrium we must have

F1(k,K) = (1− s)(r + δ),

where k ≡ K/L, which is pre-determined from the supply side. Thus, the equi-
librium interest rate must satisfy

r =
F1(k,K)

1− s − δ =
F1(1, L)

1− s − δ, (11.59)

again using Euler’s theorem.
It follows that s should be chosen such that the “right” r arises. What is

the “right” r? It is that net rate of return which is implied by the production
technology at the aggregate level, namely ∂Y/∂K − δ = F (1, L) − δ. If we can
obtain r = F (1, L)− δ, then there is no wedge between the intertemporal rate of
transformation faced by the consumer and that implied by the technology. The
required s thus satisfies

r =
F1(1, L)

1− s − δ = F (1, L)− δ,

so that

s = 1− F1(1, L)

F (1, L)
=
F (1, L)− F1(1, L)

F (1, L)
=
F2(1, L)L

F (1, L)
.
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It remains to find the required consumption tax rate τ . The tax revenue will
be τcL, and the required tax revenue is

T = s(r + δ)K = (F (1, L)− F1(1, L))K = τcL.

Thus, with a balanced budget the required tax rate is

τ =
T
cL

=
F (1, L)− F1(1, L)

c/k
=
F (1, L)− F1(1, L)

F (1, L)− δ − γSP
> 0, (11.60)

where we have used that the proportionality in (11.58) between c and k holds for
all t ≥ 0. Substituting (11.55) into (11.60), the solution for τ can be written

τ =
θ [F (1, L)− F1(1, L)]

(θ − 1)(F (1, L)− δ) + ρ
=

θF2(1, L)L

(θ − 1)(F (1, L)− δ) + ρ
.

The required tax rate on consumption is thus a constant. It therefore does not
distort the consumption/saving decision on the margin, cf. Appendix B.
It follows that the allocation obtained by this subsidy-tax policy is the SP

allocation. A policy, here the policy (s, τ), which in a decentralized system in-
duces the SP allocation, is called a first-best policy. In a situation where for some
reason it is impossible to obtain an SP allocation in a decentralized way (because
of adverse selection and moral hazard problems, say), a government’s optimiza-
tion problem would involve additional constraints to those given by technology
and initial resources. A decentralized implementation of the solution to such a
problem is called a second-best policy.

11.3 Concluding remarks

(not yet available)

11.4 Literature notes

(incomplete)
As to empirical evidence of learning-by-doing and learning-by-investing, see

...
As noted in Section 11.2.1, the citation of Arrow indicates that it was expe-

rience from cumulative gross investment, rather than net investment, he had in
mind as the basis for learning. Yet the hypothesis in (11.23) is the more popu-
lar one - seemingly for no better reason than that it leads to simpler dynamics.
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Another way in which (11.23) deviates from Arrow’s original ideas is by assum-
ing that technical progress is disembodied rather than embodied, a distinction we
touched upon in Chapter 2. Moreover, we have assumed a neoclassical technology
whereas Arrow assumed fixed technical coeffi cients.

11.5 Appendix

A. The golden-rule capital intensity in Arrow’s growth model

In our discussion of Arrow’s learning-by-investing model in Section 11.2.2 (where
0 < λ < 1), we claimed that the golden-rule capital intensity, k̃GR, will be that ef-
fective capital-labor ratio at which the social net marginal productivity of capital
equals the steady-state growth rate of output. In this respect the Arrow model
with endogenous technical progress is similar to the standard neoclassical growth
model with exogenous technical progress. This claim corresponds to a very gen-
eral theorem, valid also for models with many capital goods and non-existence of
an aggregate production function. This theorem says that the highest sustainable
path for consumption per unit of labor in the economy will be that path which
results from those techniques which profit maximizing firms choose under perfect
competition when the real interest rate equals the steady-state growth rate of
GNP (see Gale and Rockwell, 1975).
To prove our claim, note that in steady state, (11.35) holds whereby consump-

tion per unit of labor (here the same as per capita consumption as L = labor
force = population) can be written

ct ≡ c̃tTt =

[
f(k̃)− (δ +

n

1− λ)k̃

]
Kλ
t

=

[
f(k̃)− (δ +

n

1− λ)k̃

](
K0e

n
1−λ t
)λ

(by g∗K =
n

1− λ)

=

[
f(k̃)− (δ +

n

1− λ)k̃

](
(k̃L0)

1
1−λ e

n
1−λ t
)λ

(from k̃ =
Kt

Kλ
t Lt

=
K1−λ

0

L0

)

=

[
f(k̃)− (δ +

n

1− λ)k̃

]
k̃

λ
1−λL0

λ
1−λ e

λn
1−λ t ≡ ϕ(k̃)L0

λ
1−λ e

λn
1−λ t,

defining ϕ(k̃) in the obvious way.
We look for that value of k̃ at which this steady-state path for ct is at the

highest technically feasible level. The positive coeffi cient, L0

λ
1−λ e

λn
1−λ t, is the only

time dependent factor and can be ignored since it is exogenous. The problem is
thereby reduced to the static problem of maximizing ϕ(k̃) with respect to k̃ > 0.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



11.5. Appendix 467

We find

ϕ′(k̃) =

[
f ′(k̃)− (δ +

n

1− λ)

]
k̃

λ
1−λ +

[
f(k̃)− (δ +

n

1− λ)k̃

]
λ

1− λk̃
λ

1−λ−1

=

[
f ′(k̃)− (δ +

n

1− λ) +

(
f(k̃)

k̃
− (δ +

n

1− λ)

)
λ

1− λ

]
k̃

λ
1−λ

=

[
(1− λ)f ′(k̃)− (1− λ)δ − n+ λ

f(k̃)

k̃
− λ(δ +

n

1− λ)

]
k̃

λ
1−λ

1− λ

=

[
(1− λ)f ′(k̃)− δ + λ

f(k̃)

k̃
− n

1− λ

]
k̃

λ
1−λ

1− λ ≡ ψ(k̃)
k̃

λ
1−λ

1− λ, (11.61)

defining ψ(k̃) in the obvious way. The first-order condition for the problem,
ϕ′(k̃) = 0, is equivalent to ψ(k̃) = 0. After ordering this gives

f ′(k̃) + λ
f(k̃)− k̃f ′(k̃)

k̃
− δ =

n

1− λ. (11.62)

We see that
ϕ′(k̃) R 0 for ψ(k̃) R 0,

respectively. Moreover,

ψ′(k̃) = (1− λ)f ′′(k̃)− λf(k̃)− k̃f ′(k̃)

k̃2
< 0,

in view of f ′′ < 0 and f(k̃)/k̃ > f ′(k̃). So a k̃ > 0 satisfying ψ(k̃) = 0 is the
unique maximizer of ϕ(k̃). By (A1) and (A3) in Section 11.2.2 such a k̃ exists
and is thereby the same as the k̃GR we were looking for.
The left-hand side of (11.62) equals the social marginal productivity of capital

and the right-hand side equals the steady-state growth rate of output. At k̃ = k̃GR
it therefore holds that

∂Y

∂K
− δ =

(
Ẏ

Y

)∗
.

This confirms our claim in Section 11.2.2 about k̃GR.

Remark about the absence of a golden rule in the Romer case. In the Romer case
the golden rule is not a well-defined concept for the following reason. Along any
balanced growth path we have from (11.50),

gk ≡
k̇t
kt

= F (1, L)− δ − ct
kt

= F (1, L)− δ − c0

k0

,
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because gk (= gK) is by definition constant along a balanced growth path, whereby
also ct/kt must be constant. We see that gk is decreasing linearly from F (1, L)−δ
to −δ when c0/k0 rises from nil to F (1, L). So choosing among alternative techni-
cally feasible balanced growth paths is inevitably a choice between starting with
low consumption to get high growth forever or starting with high consumption
to get low growth forever. Given any k0 > 0, the alternative possible balanced
growth paths will therefore sooner or later cross each other in the (t, ln c) plane.
Hence, for the given k0, there exists no balanced growth path which for all t ≥ 0
has ct higher than along any other technically feasible balanced growth path.

B. Consumption taxation

Is a consumption tax distortionary - always? never? sometimes?
The answer is the following.
1. Suppose labor supply is elastic (due to leisure entering the utility func-

tion). Then a consumption tax (whether constant or time-dependent) is generally
distortionary (not neutral). This is because it reduces the effective opportunity
cost of leisure by reducing the amount of consumption forgone by working one
hour less. Indeed, the tax makes consumption goods more expensive and so the
amount of consumption that the agent can buy for the hourly wage becomes
smaller. The substitution effect on leisure of a consumption tax is thus positive,
while the income and wealth effects will be negative. Generally, the net effect
will not be zero, but can be of any sign; it may be small in absolute terms.
2. Suppose labor supply is inelastic (no trade-off between consumption and

leisure). Then, at least in the type of growth models we consider in this course,
a constant (time-independent) consumption tax acts as a lump-sum tax and is
thus non-distortionary. If the consumption tax is time-dependent, however, a
distortion of the intertemporal aspect of household decisions tends to arise.
To understand answer 2, consider a Ramsey household with inelastic labor

supply. Suppose the household faces a time-varying consumption tax rate τ t > 0.
To obtain a consumption level per time unit equal to ct per capita, the household
has to spend

c̄t = (1 + τ t)ct

units of account (in real terms) per capita. Thus, spending c̄t per capita per time
unit results in the per capita consumption level

ct = (1 + τ t)
−1c̄t. (11.63)

In order to concentrate on the consumption tax as such, we assume the tax
revenue is simply given back as lump-sum transfers and that there are no other
government activities. Then, with a balanced government budget, we have

xtLt = τ tctLt,
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where xt is the per capita lump-sum transfer, exogenous to the household, and
Lt is the size of the representative household.
Assuming CRRA utility with parameter θ > 0, the instantaneous per capita

utility can be written

u(ct) =
c1−θ
t

1− θ =
(1 + τ t)

θ−1c̄1−θ
t

1− θ .

In our standard notation the household’s intertemporal optimization problem is
then to choose (c̄t)

∞
t=0 so as to maximize

U0 =

∫ ∞
0

(1 + τ t)
θ−1c̄1−θ

t

1− θ e−(ρ−n)tdt s.t.

c̄t ≥ 0,

ȧt = (rt − n)at + wt + xt − c̄t, a0 given,

lim
t→∞

ate
−
∫∞
0 (rs−n)ds ≥ 0.

From now, we let the timing of the variables be implicit unless needed for
clarity. The current-value Hamiltonian is

H =
(1 + τ)θ−1c̄1−θ

1− θ + λ [(r − n)a+ w + x− c̄] ,

where λ is the co-state variable associated with financial per capita wealth, a. An
interior optimal solution will satisfy the first-order conditions

∂H

∂c̄
= (1 + τ)θ−1c̄−θ − λ = 0, so that (1 + τ)θ−1c̄−θ = λ, (FOC1)

∂H

∂a
= λ(r − n) = −λ̇+ (ρ− n)λ, (FOC2)

and a transversality condition which amounts to

lim
t→∞

ate
−
∫∞
0 (rs−n)ds = 0. (TVC)

We take logs in (FOC1) to get

(θ − 1) log(1 + τ)− θ log c̄ = log λ.

Differentiating w.r.t. time, taking into account that τ = τ t, gives

(θ − 1)
τ̇

1 + τ
− θ

·
c̄

c̄
=
λ̇

λ
= ρ− r.
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By ordering, we find the growth rate of consumption spending,
·
c̄

c̄
=

1

θ

[
r + (θ − 1)

τ̇

1 + τ
− ρ
]
.

Using (11.63), this gives the growth rate of consumption,

ċ

c
=

·
c̄

c̄
− τ̇

1 + τ
=

1

θ

[
r + (θ − 1)

τ̇

1 + τ
− ρ
]
− τ̇

1 + τ
=

1

θ
(r − τ̇

1 + τ
− ρ).

Assuming firms maximize profit under perfect competition, in equilibrium the
real interest rate will satisfy

r =
∂Y

∂K
− δ. (11.64)

But the effective real interest rate, r̂, faced by the consuming household, is

r̂ = r − τ̇

1 + τ
Q r for τ̇ R 0,

respectively. If for example the consumption tax is increasing, then the effective
real interest rate faced by the consumer is smaller than the market real interest
rate, given in (11.64), because saving implies postponing consumption and future
consumption is more expensive due to the higher consumption tax rate.
The conclusion is that a time-varying consumption tax rate is distortionary.

It implies a wedge between the intertemporal rate of transformation faced by the
consumer, reflected by r̂, and the intertemporal rate of transformation offered by
the technology of society, indicated by r in (11.64). On the other hand, if the
consumption tax rate is constant, the consumption tax is non-distortionary when
there is no utility from leisure.

A remark on tax smoothing
Outside steady state it is often so that maintaining constant tax rates is incon-
sistent with maintaining a balanced government budget. Is the implication of
this that we should recommend the government to let tax rates be continually
adjusted so as to maintain a forever balanced budget? No! As the above exam-
ple as well as business cycle theory suggest, maintaining tax rates constant (“tax
smoothing”), and thereby allowing government deficits and surpluses to arise, will
generally make more sense. In itself, a budget deficit is not worrisome. It only
becomes worrisome if it is not accompanied later by suffi cient budget surpluses
to avoid an exploding government debt/GDP ratio to arise. This requires that
the tax rates taken together have a level which in the long run matches the level
of government expenses.

11.6 Exercises
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Chapter 14

Fixed capital investment and
Tobin’s q

The models considered so far (the OLG models as well as the representative agent
models) have ignored capital adjustment costs. In the closed-economy version
of the models aggregate investment is merely a reflection of aggregate saving
and appears in a “passive” way as just the residual of national income after
households have chosen their consumption. We can describe what is going on by
telling a story in which firms just rent capital goods owned by the households
and households save by purchasing additional capital goods. In these models
only households solve intertemporal decision problems. Firms merely demand
labor and capital services with a view to maximizing current profits. This may
be a legitimate abstraction in some contexts within long-run analysis. In short-
and medium-run analysis, however, the dynamics of fixed capital investment is
important. So a more realistic approach is desirable.
In the real world the capital goods used by a production firm are usually

owned by the firm itself rather than rented for single periods on rental markets.
This is because inside the specific plant in which these capital goods are an
integrated part, they are generally worth much more than outside. So in practice
firms acquire and install fixed capital equipment to maximize discounted expected
earnings in the future.
Tobin’s q-theory of investment (after the American Nobel laureate James To-

bin, 1918-2002) is an attempt to model these features. In this theory,

(a) firms make the investment decisions and install the purchased capital goods
in their own businesses;

(b) there are certain adjustment costs associated with this investment: in ad-
dition to the direct cost of buying new capital goods there are costs of
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installation, costs of reorganizing the plant, costs of retraining workers to
operate the new machines etc.;

(c) the adjustment costs are strictly convex so that marginal adjustment costs
are increasing in the level of investment − think of constructing a plant in
a month rather than a year.

The strict convexity of adjustment costs is the crucial constituent of the the-
ory. It is that element which assigns investment decisions an active role in the
model. There will be both a well-defined saving decision and a well-defined in-
vestment decision, separate from each other. Households decide the saving, firms
the physical capital investment; households accumulate financial assets, firms ac-
cumulate physical capital. As a result, in a closed economy interest rates have to
adjust for aggregate demand for goods (consumption plus investment) to match
aggregate supply of goods. The role of interest rate changes is no longer to clear
a rental market for capital goods.
To fix the terminology, from now the adjustment costs of setting up new

capital equipment in the firm and the associated costs of reorganizing work
processes will be subsumed under the term capital installation costs. When faced
with strictly convex installation costs, the optimizing firm has to take the fu-
ture into account, that is, firms’forward-looking expectations become important.
To smooth out the adjustment costs, the firm will adjust its capital stock only
gradually when new information arises. We thereby avoid the counterfactual im-
plication from earlier chapters that the capital stock in a small open economy with
perfect mobility of goods and financial capital is instantaneously adjusted when
the interest rate in the world financial market changes. Moreover, sluggishness in
investment is exactly what the data show. Some empirical studies conclude that
only a third of the difference between the current and the “desired”capital stock
tends to be covered within a year (Clark 1979).
The q-theory of investment constitutes one approach to the explanation of this

sluggishness in investment. Under certain conditions, to be described below, the
theory gives a remarkably simple operational macroeconomic investment function,
in which the key variable explaining aggregate investment is the valuation of the
firms by the stock market relative to the replacement value of the firms’physical
capital. This link between asset markets and firms’aggregate investment is an
appealing feature of Tobin’s q-theory.

14.1 Convex capital installation costs

Let the technology of a single firm be given by

Ỹ = F (K,L),
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where Ỹ ,K, and L are “potential output”(to be explained), capital input, and
labor input per time unit, respectively, while F is a concave neoclassical produc-
tion function. So we allow decreasing as well as constant returns to scale (or a
combination of locally CRS and locally DRS), whereas increasing returns to scale
is ruled out. Until further notice technological change is ignored for simplicity.
Time is continuous. The dating of the variables will not be explicit unless needed
for clarity. The increase per time unit in the firm’s capital stock is given by

K̇ = I − δK, δ > 0, (14.1)

where I is gross fixed capital investment per time unit and δ is the rate of wearing
down of capital (physical capital depreciation). To fix ideas, we presume the
realistic case with positive capital depreciation, but most of the results go through
even for δ = 0.
Let J denote the firm’s capital installation costs (measured in units of output)

per time unit. The installation costs imply that a part of the potential output, Ỹ ,
is “used up”in transforming investment goods into installed capital; only Ỹ − J
is “true output”available for sale.
Assuming the price of investment goods is one (the same as that of output

goods), then total investment costs per time unit are I+J, i.e., the direct purchase
costs, 1 ·I, plus the indirect cost associated with installation etc., J. The q-theory
of investment assumes that the capital installation cost, J, is a strictly convex
function of gross investment and is either independent of or a decreasing function
of the current capital stock. Thus,

J = G(I,K),

where the installation cost function G satisfies

G(0, K) = 0, GI(0, K) = 0, GII(I,K) > 0, and GK(I,K) ≤ 0 (14.2)

for all K and all (I,K), respectively. For fixed K = K̄ the graph is as shown
in Fig. 14.1. Also negative gross investment, i.e., sell off of capital equipment,
involves costs (for dismantling, reorganization etc.). Therefore GI < 0 for I < 0.
The important assumption is that GII > 0 (strict convexity in I), implying that
the marginal installation cost is increasing in the level of gross investment. If the
firm wants to accomplish a given installation project in only half the time, then
the installation costs are more than doubled (the risk of mistakes is larger, the
problems with reorganizing work routines are larger etc.).
The strictly convex graph in Fig. 14.1 illustrates the essence of the matter.

Assume the current capital stock in the firm is K̄ and that the firm wants to
increase it by a given amount ∆K. If the firm chooses the investment level Ī >
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Figure 14.1: Installation costs as a function of gross investment when K = K̄.

0 per time unit in the time interval [t, t+ ∆t), then, in view of (14.1), ∆K
≈ (Ī − δK̄)∆t. So it takes ∆t ≈ ∆K/(Ī − δK̄) units of time to accomplish
the desired increase ∆K. If, however, the firm slows down the adjustment and
invests only half of Ī per time unit, then it takes approximately twice as long
time to accomplish ∆K. Total costs of the two alternative courses of action are
approximately G(Ī , K̄)∆t and G(1

2
Ī , K̄)2∆t, respectively (ignoring discounting

and assuming the initial increase in capital is small in relation to K̄). By drawing
a few straight line segments in Fig. 14.1 the reader will be convinced that the
last-mentioned cost is smaller than the first-mentioned due to strict convexity of
installation costs (see Exercise 14.1). Haste is waste.

On the other hand, there are of course limits to how slow the adjustment
to the desired capital stock should be. Slower adjustment means postponement
of the potential benefits of a higher capital stock. So the firm faces a trade-off
between fast adjustment to the desired capital stock and low adjustment costs.

In addition to the strict convexity of G with respect to I, (14.2) imposes
the condition GK(I,K) ≤ 0. Indeed, it often seems realistic to assume that
GK(I,K) < 0 for I 6= 0. A given amount of investment may require more
reorganization in a small firm than in a large firm (size here being measured
by K). When installing a new machine, a small firm has to stop production
altogether, whereas a large firm can to some extent continue its production by
shifting some workers to another production line. A further argument is that
the more a firm has invested historically, the more experienced it is now. So,
for a given I today, the associated installation costs are lower, given a larger
accumulated K.
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14.1.1 The decision problem of the firm

In the absence of tax distortions, asymmetric information, and problems with
enforceability of financial contracts, the Modigliani-Miller theorem (Modigliani
and Miller, 1958) says that the financial structure of the firm is both indeter-
minate and irrelevant for production decisions (see Appendix A). Although the
conditions required for this theorem are very idealized, the q-theory of investment
accepts them because they allow the analyst to concentrate on the production
aspects in a first approach.
With the output good as unit of account, let the operating cash flow (the net

payment stream to the firm before interest payments on debt, if any) at time t
be denoted Rt (for “receipts”). Then

Rt ≡ F (Kt, Lt)−G(It, Kt)− wtLt − It, (14.3)

where wt is the wage per unit of labor at time t. As mentioned, the installation
cost G(It, Kt) implies that a part of production, F (Kt, Lt), is used up in trans-
forming investment goods into installed capital; only the difference F (Kt, Lt) −
G(It, Kt) is available for sale.
We ignore uncertainty and assume the firm is a price taker. The interest rate

is rt, which we assume to be positive, at least in the long run. The decision
problem, as seen from time 0, is to choose a plan (Lt, It)

∞
t=0 so as to maximize the

firm’s market value, i.e., the present value of the future stream of expected cash
flows:

max
(Lt,It)∞t=0

V0 =

∫ ∞
0

Rte
−
∫ t
0 rsdsdt s.t. (14.3) and (14.4)

Lt ≥ 0, It free (i.e., no restriction on It), (14.5)

K̇t = It − δKt, K0 > 0 given, (14.6)

Kt ≥ 0 for all t. (14.7)

There is no specific terminal condition but we have posited the feasibility condi-
tion (14.7) saying that the firm can never have a negative capital stock.1

In the previous chapters the firm was described as solving a series of static
profit maximization problems. Such a description is no longer valid, however,
when there is dependence across time, as is the case here. When installation

1It is assumed that wt is a piecewise continuous function. At points of discontinuity (if
any) in investment, we will consider investment to be a right-continuous function of time.
That is, It0 = limt→t+0

It. Likewise, at such points of discontinuity, by the “time derivative”

of the corresponding state variable, K, we mean the right-hand time derivative, i.e., K̇t0 =
limt→t+0

(Kt − Kt0)/(t − t0). Mathematically, these conventions are inconsequential, but they
help the intuition.
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costs are present, current decisions depend on the expected future circumstances.
The firmmakes a plan for the whole future so as to maximize the value of the firm,
which is what matters for the owners. This is the general neoclassical hypothesis
about firms’behavior. As shown in Appendix A, when strictly convex installation
costs or similar dependencies across time are absent, then value maximization is
equivalent to solving a sequence of static profit maximization problems, and we
are back in the previous chapters’description.
To solve the problem (14.4) − (14.7), where Rt is given by (14.3), we apply

the Maximum Principle. The problem has two control variables, L and I, and
one state variable, K. We set up the current-value Hamiltonian:

H(K,L, I, q, t) ≡ F (K,L)− wL− I −G(I,K) + q(I − δK), (14.8)

where q (to be interpreted economically below) is the adjoint variable associated
with the dynamic constraint (14.6). For each t ≥ 0 we maximize H w.r.t. the
control variables. Thus, ∂H/∂L = FL(K,L)− w = 0, i.e.,

FL(K,L) = w; (14.9)

and ∂H/∂I = −1−GI(I,K) + q = 0, i.e.,

1 +GI(I,K) = q. (14.10)

Next, we partially differentiateH w.r.t. the state variable and set the result equal
to rq − q̇, where r is the discount rate in (14.4):

∂H

∂K
= FK(K,L)−GK(I,K)− qδ = rq − q̇. (14.11)

Then, the Maximum Principle says that for an interior optimal path (Kt, Lt, It)
there exists an adjoint variable q, which is a continuous function of t, written qt,
such that for all t ≥ 0 the conditions (14.9), (14.10), and (14.11) hold and the
transversality condition

lim
t→∞

Ktqte
−
∫ t
0 rsds = 0 (14.12)

is satisfied.
The optimality condition (14.9) is the usual employment condition equalizing

the marginal product of labor to the real wage. In the present context with
strictly convex capital installation costs, this condition attains a distinct role as
labor will in the short run be the only variable input. This is because the strictly
convex capital installation costs imply that the firm’s installed capital in the
short run is a quasi-fixed production factor. So, effectively there are diminishing
returns (equivalent with rising marginal costs) in the short run even though the
production function might have CRS.
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The left-hand side of (14.10) gives the cost of acquiring one extra unit of
installed capital at time t (the sum of the cost of buying the marginal investment
good and the cost of its installation). That is, the left-hand side is the marginal
cost, MC, of increasing the capital stock in the firm. Since (14.10) is a necessary
condition for optimality, the right-hand side of (14.10) must be the marginal
benefit, MB, of increasing the capital stock. Hence, qt represents the value to
the optimizing firm of having one more unit of (installed) capital at time t. To
put it differently: the adjoint variable qt can be interpreted as the shadow price
(measured in current output units) of capital along the optimal path.2

As to the interpretation of the differential equation (14.11), a condition for
optimality must be that the firm acquires capital up to the point where the
“marginal productivity of capital”, FK −GK , equals “capital costs”, rtqt + (δqt−
q̇t); the first term in this expression represents interest costs and the second
economic depreciation. In (14.11) the “marginal productivity of capital”appears
as FK−GK , because we should take into account the potential reduction, −GK , of
installation costs in the next instant brought about by the marginal unit of already
installed capital. The shadow price qt appears as the “overall”price at which the
firm can buy and sell the marginal unit of installed capital. In fact, in view of qt =
1+GI(Kt, Lt) along the optimal path (from (14.10)), qt measures, approximately,
both the “overall” cost increase associated with increasing investment by one
unit and the “overall”cost saving associated with decreasing investment by one
unit. In the first case the firm not only has to pay one extra unit of account
in the investment goods market but must also bear an installation cost equal to
GI(Kt, Lt), thereby in total investing qt units of account. And in the second case
the firm recovers qt by saving both on installation costs and purchases in the
investment goods market. Continuing along this line of thought, by reordering in
(14.11) we get the “no-arbitrage”condition

FK −GK − δq + q̇

q
= r, (14.13)

saying that along the optimal path the rate of return on the marginal unit of
installed capital must equal the interest rate.
The transversality condition (14.12) says that the present value of the capital

stock “left over”at infinity must be zero. That is, the capital stock should not
in the long run grow too fast, given the evolution of its discounted shadow price.
In addition to necessity of (14.12) it can be shown3 that the discounted shadow

2Recall that a shadow price, measured in some unit of account, of a good, from the point of
view of the buyer, is the maximum number of units of account that he or she is willing to offer
for one extra unit of the good.

3See Appendix B.
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price itself in the far future must along an optimal path be asymptotically nil,
i.e.,

lim
t→∞

qte
−
∫ t
0 rsds = 0. (14.14)

If along the optimal path, Kt grows without bound, then not only must (14.14)
hold but, in view of (14.12), the discounted shadow price must in the long run
approach zero faster than Kt grows. Intuitively, otherwise the firm would be
“over-accumulating”. The firm would gain by reducing the capital stock “left
over” for eternity (which is like“money left on the table”), since reducing the
ultimate investment and installation costs would raise the present value of the
firm’s expected cash flow.
In connection with (14.10) we claimed that qt can be interpreted as the shadow

price (measured in current output units) of capital along the optimal path. A
confirmation of this interpretation is obtained by solving the differential equation
(14.11). Indeed, multiplying by e−

∫ t
0 (rs+δ)ds on both sides of (14.11), we get by

integration and application of (14.14),4

qt =

∫ ∞
t

[FK(Kτ , Lτ )−GK(Iτ , Kτ )] e
−
∫ τ
t (rs+δ)dsdτ . (14.15)

The right-hand side of (14.15) is the present value, as seen from time t, of expected
future increases of the firm’s cash-flow that would result if one extra unit of
capital were installed at time t; indeed, FK(Kτ , Lτ ) is the direct contribution
to output of one extra unit of capital, while −GK(Iτ , Kτ ) ≥ 0 represents the
potential reduction of installation costs in the next instant brought about by the
marginal unit of installed capital. However, future increases of cash-flow should
be discounted at a rate equal to the interest rate plus the capital depreciation
rate; from one extra unit of capital at time t there are only e−δ(τ−t) units left at
time τ .
To concretize our interpretation of qt as representing the value to the opti-

mizing firm at time t of having one extra unit of installed capital, let us make
a thought experiment. Assume that a extra units of installed capital at time t
drops down from the sky. At time τ > t there are a · e−δ(τ−t) units of these still
in operation so that the stock of installed capital is

K ′τ = Kτ + a · e−δ(τ−t), (14.16)

where Kτ denotes the stock of installed capital as it would have been without
this “injection”. Now, in (14.3) replace t by τ and consider the optimizing firm’s

4For details, see Appendix A.
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cash-flow Rτ as a function of (Kτ , Lτ , Iτ , τ , t, a). Taking the partial derivative of
Rτ w.r.t. a at the point (Kτ , Lτ , Iτ , τ , t, 0), we get

∂Rτ

∂a |a=0
= [FK(Kτ , Lτ )−GK(Iτ , Kτ )] e

−δ(τ−t). (14.17)

Considering the value of the optimizing firm at time t as a function of installed
capital, Kt, and t itself, we denote this function V ∗(Kt, t). Then at any point
where V ∗ is differentiable, we have

∂V ∗(Kt, t)

∂Kt

=

∫ ∞
t

(
∂Rτ

∂a |a=0

)
e−

∫ τ
t rsdsdτ

=

∫ ∞
t

[FK(Kτ , Lτ )−GK(Iτ , Kτ )]e
−
∫ τ
t (rs+δ)dsdτ = qt (14.18)

when the firm moves along the optimal path. The second equality sign comes
from (14.17) and the third is implied by (14.15). So the value of the adjoint
variable, q, at time t equals the contribution to the firm’s maximized value of a
fictional marginal “injection” of installed capital at time t. This is just another
way of saying that qt represents the benefit to the firm of the marginal unit of
installed capital along the optimal path.
This story facilitates the understanding that the control variables at any point

in time should be chosen so that the Hamiltonian function is maximized. Thereby
one maximizes the properly weighted sum of the current direct contribution to the
criterion function and the indirect contribution, which is the benefit (as measured
approximately by qt∆Kt) of having a higher capital stock in the future.
As we know, the Maximum Principle gives only necessary conditions for an

optimal path, not suffi cient conditions. We use the principle as a tool for finding
candidates for a solution. Having found in this way a candidate, one way to pro-
ceed is to check whether Mangasarian’s suffi cient conditions are satisfied. Given
the transversality condition (14.12) and the non-negativity of the state variable,
K, the only additional condition to check is whether the Hamiltonian function
is jointly concave in the endogenous variables (here K, L, and I). If it is jointly
concave in these variables, then the candidate is an optimal solution. Owing
to concavity of F (K,L), inspection of (14.8) reveals that the Hamiltonian func-
tion is jointly concave in (K,L, I) if −G(I, K) is jointly concave in (I,K). This
condition is equivalent to G(I,K) being jointly convex in (I,K), an assumption
allowed within the confines of (14.2); for example, G(I,K) = (1

2
)βI2/K as well as

the simpler G(I,K) = (1
2
)βI2 (where in both cases β > 0) will do. Thus, assum-

ing joint convexity of G(I,K), the first-order conditions and the transversality
condition are not only necessary, but also suffi cient for an optimal solution.
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14.1.2 The implied investment function

From condition (14.10) we can derive an investment function. Rewriting (14.10),
we have that an optimal path satisfies

GI(It, Kt) = qt − 1. (14.19)

Combining this with the assumption (14.2) on the installation cost function, we
see that

It T 0 for qt T 1, respectively, (14.20)

cf. Fig. 14.2.5 In view of GII 6= 0, (14.19) implicitly defines optimal investment,
It, as a function of the shadow price, qt, and the state variable, Kt :

It =M(qt, Kt), (14.21)

where, in view of (14.20), M(1, Kt) = 0. By implicit differentiation w.r.t. qt and
Kt, respectively, in (14.19), we find

∂It
∂qt

=
1

GII(It, Kt)
> 0, and

∂It
∂Kt

= −GIK(It, Kt)

GII(It, Kt)
,

where the latter cannot be signed without further specification.
It follows that optimal investment is an increasing function of the shadow

price of installed capital. In view of (14.20),M(1, K) = 0. Not surprisingly, the
investment rule is: invest now, if and only if the value to the firm of the marginal
unit of installed capital is larger than the price of the capital good (which is
1, excluding installation costs). At the same time, the rule says that, because
of the convex installation costs, invest only up to the point where the marginal
installation cost, GI(It, Kt), equals qt − 1, cf. (14.19).
Condition (14.21) shows the remarkable information content that the shadow

price qt has. As soon as qt is known (along with the current capital stock Kt),
the firm can decide the optimal level of investment through knowledge of the
installation cost function G alone (since, when G is known, so is in principle the
inverse of GI w.r.t. I, the investment functionM). All the information about the
production function, input prices, and interest rates now and in the future that
is relevant to the investment decision is summarized in one number, qt. The form
of the investment function,M, depends only on the installation cost function G.
These are very useful properties in theoretical and empirical analysis.

5From the assumptions made in (14.2), we only know that the graph of GI(I, K̄) is an
upward-sloping curve going through the origin. Fig. 14.2 shows the special case where this
curve happens to be linear.
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Figure 14.2: Marginal installation costs as a function of the gross investment level, I,
for a given amount, K̄, of installed capital. The optimal gross investment, It, when
q = qt is indicated.

14.1.3 A not implausible special case

We now introduce the convenient case where the installation function G is homo-
geneous of degree one w.r.t. I and K so that we can, for K > 0, write

J = G(I,K) = G(
I

K
, 1)K ≡ g(

I

K
)K, or (14.22)

J

K
= g(

I

K
),

where g(·) represents the installation cost-capital ratio and g(0) ≡ G(0, 1) = 0,
by (14.2).

LEMMA 1 The function g(·) has the following properties:
(i) g′(I/K) = GI(I,K);
(ii) g′′(I/K) = GII(I,K)K > 0 for K > 0; and
(iii) g(I/K)− g′(I/K)I/K = GK(I,K) < 0 for I 6= 0.

Proof. (i) GI = Kg′/K = g′; (ii) GII = g′′/K; (iii) GK = ∂(g(I/K)K)/∂K
= g(I/K)− g′(I/K)I/K < 0 for I 6= 0 since, in view of g′′ > 0 and g(0) = 0, we
have g(x)/x < g′(x) for all x 6= 0. �
The graph of g(I/K) is qualitatively the same as that in Fig. 14.1 (imagine we

have K̄ = 1 in that graph). The installation cost relative to the existing capital
stock is now a strictly convex function of the investment-capital ratio, I/K.

EXAMPLE 1 Let J = G(I,K) = 1
2
βI2/K, where β > 0. Then G is homogeneous

of degree one w.r.t. I and K and gives J/K = 1
2
β(I/K)2 ≡ g(I/K). �
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A further important property of (14.22) is that the cash-flow function in (14.3)
becomes homogeneous of degree one w.r.t. K, L, and I in the “normal”case where
the production function has CRS. This has two implications. First, Hayashi’s
theorem applies (see below). Second, the q-theory can easily be incorporated
into a model of economic growth.6

Does the hypothesis of linear homogeneity of the cash flow in K, L, and I
make economic sense? According to the replication argument it does. Suppose a
given firm has K units of installed capital and produces Y units of output with
L units of labor. When at the same time the firm invests I units of account
in new capital, it obtains the cash flow R after deducting the installation costs,
G(I,K). Then it makes sense to assume that the firm could do the same thing at
another place, hereby doubling its cash-flow. (Of course, owing to the possibility
of indivisibilities, this reasoning does not take us all the way to linear homogeneity.
Moreover, the argument ignores that also land is a necessary input. As discussed
in Chapter 2, the empirical evidence on linear homogeneity is mixed.)
In view of (i) of Lemma 1, the linear homogeneity assumption for G allows us

to write (14.19) as
g′(I/K) = q − 1. (14.23)

This equation defines the investment-capital ratio, I/K , as an implicit function,
m, of q :

It
Kt

= m(qt), where m(1) = 0 and m′ =
1

g′′
> 0, (14.24)

by implicit differentiation in (14.23). In this case q encompasses all information
that is of relevance to the decision about the investment-capital ratio.
In Example 1 above we have g(I/K) = 1

2
β(I/K)2, in which case (14.23) gives

I/K = (q− 1)/β. So in this case we have m(q) = q/β − 1/β, a linear investment
function, as illustrated in Fig. 14.3. The parameter β can be interpreted as
the degree of sluggishness in the capital adjustment. The degree of sluggishness
reflects the degree of convexity of installation costs.7 The stippled lines in Fig.
14.3 are explained below. Generally the graph of the investment function is
positively sloped, but not necessarily linear.
To see how the shadow price q changes over time along the optimal path, we

rearrange (14.11):

q̇t = (rt + δ)qt − FK(Kt, Lt) +GK(It, Kt). (14.25)
6The relationship between the function g and other ways of formulating the theory is com-

mented on in Appendix C.
7For a twice differentiable function, f(x), with f ′(x) 6= 0, we define the degree of convexity

in the point x by f ′′(x)/f ′(x). So the degree of convexity of g(I/K) is g′′/g′ = (I/K)−1

= β(q − 1)−1 and thereby we have β = (q − 1)g′′/g′. So, for given q, the degree of sluggishness
is proportional to the degree of convexity of adjustment costs.
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Figure 14.3: Optimal investment-capital ratio as a function of the shadow price of
installed capital when g(I/K) = 1

2β(I/K)2.

Recall that −GK(It, Kt) indicates how much lower the installation costs are as
a result of the marginal unit of installed capital. In the special case (14.22) we
have from Lemma 1

GK(I,K) = g(
I

K
)− g′( I

K
)
I

K
= g(m(q))− (q − 1)m(q),

using (14.24) and (14.23).

Inserting this into (14.25) gives

q̇t = (rt + δ)qt − FK(Kt, Lt) + g(m(qt))− (qt − 1)m(qt). (14.26)

This differential equation is very useful in macroeconomic analysis, as we will
soon see, cf. Fig. 14.4 below.

In a macroeconomic context, for steady state to achievable, gross investment
must be large enough to match not only capital depreciation, but also growth in
the labor input. Otherwise a constant capital-labor ratio can not be sustained.
That is, the investment-capital ratio, I/K, must be equal to the sum of the
depreciation rate and the growth rate of the labor force, i.e., δ+n. The level of q
which is required to motivate such an investment-capital ratio is called q∗ in Fig.
14.3.
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14.2 Marginal q and average q

Our q above, determining investment, should be distinguished from what is usu-
ally called Tobin’s q or average q. In a more general context, let pIt denote
the current purchase price (in terms of output units) per unit of the invest-
ment good (before installment). Then Tobin’s q or average q, qat , is defined as
qat ≡ Vt/(pItKt), that is, Tobin’s q is the ratio of the market value of the firm to
the replacement value of the firm in the sense of the “reacquisition value of the
capital goods before installment costs”(the top index “a”stands for “average”).
In our simplified context we have pIt ≡ 1 (the price of the investment good is the
same as that of the output good). Therefore Tobin’s q can be written

qat ≡
Vt
Kt

=
V ∗(Kt, t)

Kt

, (14.27)

where the equality holds for an optimizing firm. Conceptually this is different
from the firm’s internal shadow price on capital, i.e., what we have denoted qt
in the previous sections. In the language of the q-theory of investment this qt is
the marginal q, representing the value to the firm of one extra unit of installed
capital relative to the price of un-installed capital equipment. The term marginal
q is natural since along the optimal path, as a slight generalization of (14.18), we
must have qt = (∂V ∗/∂Kt)/pIt. Letting qmt (“m”for “marginal”) be an alternative
symbol for this qt, we have in our model above, where we consider the special
case pIt ≡ 1,

qmt ≡ qt =
∂V ∗

∂Kt

. (14.28)

The two concepts, average q and marginal q, have not always been clearly dis-
tinguished in the literature. What is directly relevant to the investment decision
is marginal q. Indeed, the analysis above showed that optimal investment is an
increasing function of qm. Further, the analysis showed that a “critical”value of
qm is 1 and that only if qm > 1, is positive gross investment warranted.
The importance of qa is that it can be measured empirically as the ratio of the

sum of the share market value of the firm and its debt to the current acquisition
value of its total capital before installment. Since qm is much harder to measure
than qa, it is important to know the relationship between qm and qa. Fortunately,
we have a simple theorem giving conditions under which qm = qa.

THEOREM (Hayashi, 1982) Assume the firm is a price taker, that the production
function F is jointly concave in (K,L), and that the installation cost function G
is jointly convex in (I,K).8 Then, along an optimal path we have:

8That is, in addition to (14.2), we assume GKK ≥ 0 and GIIGKK −G2IK ≥ 0. The specifi-
cation in Example 1 above satisfies this.
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(i) qmt = qat for all t ≥ 0, if F and G are homogeneous of degree 1.
(ii) qmt < qat for all t, if F is strictly concave in (K, L) and/or G is strictly

convex in (I, K).
Proof. See Appendix D.

The assumption that the firm is a price taker may, of course, seem critical.
The Hayashi theorem has been generalized, however. Also a monopolistic firm,
facing a downward-sloping demand curve and setting its own price, may have a
cash flow which is homogeneous of degree one in the three variables K,L, and I.
If so, then the condition qmt = qat for all t ≥ 0 still holds (Abel 1990). Abel and
Eberly (1994) present further generalizations.
In any case, when qm is approximately equal to (or just proportional to)

qa, the theory gives a remarkably simple operational investment function, I =
m(qa)K, cf. (14.24). At the macro level we interpret qa as the market valuation
of the firms relative to the replacement value of their total capital stock. This
market valuation is an indicator of the expected future earnings potential of the
firms. Under the conditions in (i) of the Hayashi theorem the market valuation
also indicates the marginal earnings potential of the firms, hence, it becomes a
determinant of their investment. This establishment of a relationship between the
stock market and firms’aggregate investment is the basic point in Tobin (1969).

14.3 Applications

Capital installation costs in a closed economy

Allowing for convex capital installation costs in the economy has far-reaching
implications for the causal structure of a model of a closed economy. Investment
decisions attain an active role in the economy and forward-looking expectations
become important for these decisions. Expected future market conditions and an-
nounced future changes in corporate taxes and depreciation allowance will affect
firms’investment already today.
The essence of the matter is that current and expected future interest rates

have to adjust for aggregate saving to equal aggregate investment, that is, for the
output and asset markets to clear. Given full employment (Lt = L̄t), the output
market clears when

F (Kt, L̄t)−G(It, Kt) = value added ≡ GDPt = Ct + It,

where Ct is determined by the intertemporal utility maximization of the forward-
looking households, and It is determined by the intertemporal value maximization
of the forward-looking firms facing strictly convex installation costs. Like in the
determination of Ct, current and expected future interest rates now also matter
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for the determination of It. This is the first time in this book where clearing in the
output market is assigned an active role. In the earlier models investment was just
a passive reflection of household saving. Desired investment was automatically
equal to the residual of national income left over after consumption decisions had
taken place. Nothing had to adjust to clear the output market, neither interest
rates nor output. In contrast, in the present framework adjustments in interest
rates and/or the output level are needed for the continuous clearing in the output
market and these adjustments are decisive for the macroeconomic dynamics.
In actual economies there may of course exist “secondary markets” for used

capital goods and markets for renting capital goods owned by others. In view of
installation costs and similar, however, shifting capital goods from one plant to
another is generally costly. Therefore the turnover in that kind of markets tends
to be limited and there is little underpinning for the earlier models’supposition
that the current interest rate should be tied down by a requirement that such
markets clear.
In for instance Abel and Blanchard (1983) a Ramsey-style model integrating

the q-theory of investment is presented. The authors study the two-dimensional
general equilibrium dynamics resulting from the adjustment of current and ex-
pected future (short-term) interest rates needed for the output market to clear.
Adjustments of the whole structure of interest rates (the yield curve) take place
and constitute the equilibrating mechanism in the output and asset markets.
By having output market equilibrium playing this role in the model, a first

step is taken towards medium- and short-run macroeconomic theory. We take
further steps in later chapters, by allowing imperfect competition and nominal
price rigidities to enter the picture. Then the demand side gets an active role
both in the determination of q (and thereby investment) and in the determination
of aggregate output and employment. This is what Keynesian theory (old and
new) deals with.
In the remainder of this chapter we will still assume perfect competition in all

markets including the labor market. In this sense we will stay within the neoclas-
sical framework (supply-dominated models) where, by instantaneous adjustment
of the real wage, labor demand continuously matches labor supply. The next
two subsections present examples of how Tobin’s q-theory of investment can be
integrated into the neoclassical framework. To avoid the more complex dynamics
arising in a closed economy, we shift the focus to a small open economy. This
allows concentrating on a dynamic system with an exogenous interest rate.

A small open economy with capital installation costs

By introducing convex capital installation costs in a model of a small open econ-
omy (SOE), we avoid the counterfactual outcome that the capital stock adjusts
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instantaneously when the interest rate in the world financial market changes.
In the standard neoclassical growth model for a small open economy, without
convex capital installation costs, a rise in the interest rate leads immediately to
a complete adjustment of the capital stock so as to equalize the net marginal
productivity of capital to the new higher interest rate. Moreover, in that model
expected future changes in the interest rate or in corporate taxes and deprecia-
tion allowances do not trigger an investment response until these changes actually
happen. In contrast, when convex installation costs are present, expected future
changes tend to influence firms’investment already today.
We assume:

1. Perfect mobility across borders of goods and financial capital.

2. Domestic and foreign financial claims are perfect substitutes.

3. No mobility across borders of labor.

4. Labor supply is inelastic and constant and there is no technological progress.

5. The capital installation cost function G(I,K) is homogeneous of degree 1.

In this setting the SOE faces an exogenous interest rate, r, given from the
world financial market. We assume r is a positive constant. The aggregate pro-
duction function, F (K,L), is neoclassical and concave as in the previous sections.
With L̄ > 0 denoting the constant labor supply, continuous clearing in the labor
market under perfect competition gives Lt = L̄ for all t ≥ 0 and

wt = FL(Kt, L̄) ≡ w(Kt). (14.29)

At any time t, Kt is predetermined in the sense that due to the convex installation
costs, changes in K take time. Thus (14.29) determines the market real wage wt.
To pin down the evolution of the economy, we now derive two coupled differ-

ential equations in K and q. Inserting (14.24) into (14.6) gives

K̇t = (m(qt)− δ)Kt, K0 > 0 given. (14.30)

As to the dynamics of q, we have (14.26). Since the capital installation cost
function G(I,K) is assumed to be homogeneous of degree 1, point (iii) of Lemma
1 applies and we can write (14.26) as

q̇t = (r + δ)qt − FK(Kt, L̄) + g(m(qt))− (qt − 1)m(qt). (14.31)

As r and L̄ are exogenous, the capital stock, K, and its shadow price, q, are
the only endogenous variables in the differential equations (14.30) and (14.31).
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Figure 14.4: Phase diagram for investment dynamics in a small open economy (a case
where δ > 0).

In addition, we have an initial condition for K and a necessary transversality
condition involving q, namely

lim
t→∞

Ktqte
−rt = 0. (14.32)

Fig. 14.4 shows the phase diagram for these two coupled differential equations.
Let q∗ be defined as the value of q satisfying the equationm(q) = δ. Sincem′ > 0,
q∗ is unique. Suppressing for convenience the explicit time subscripts, we then
have

K̇ = 0 for m(q) = δ, i.e., for q = q∗.

As δ > 0, we have q∗ > 1. This is so because also mere reinvestment to offset
capital depreciation requires an incentive, namely that the marginal value to
the firm of replacing worn-out capital is larger than the purchase price of the
investment good (since the installation cost must also be compensated). From
(14.30) is seen that

K̇ ≷ 0 for m(q) ≷ δ, respectively, i.e., for q ≷ q∗, respectively,

cf. the horizontal arrows in Fig. 14.4.
From (14.31) we have

q̇ = 0 for 0 = (r + δ)q − FK(K, L̄) + g(m(q))− (q − 1)m(q). (14.33)
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If, in addition K̇ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ), this gives

0 = (r + δ)q∗ − FK(K, L̄) + g(δ)− (q∗ − 1)δ, (14.34)

where the right-hand-side is increasing in K, in view of FKK < 0. Hence, there
exists at most one value of K such that the steady state condition (14.34) is
satisfied;9 this value is denoted K∗, corresponding to the steady state point E
in Fig. 14.4. The question is now: what is the slope of the q̇ = 0 locus? In
Appendix E it is shown that at least in a neighborhood of the steady state point
E, this slope is negative in view of the assumption r > 0 and FKK < 0. From
(14.31) we see that

q̇ ≶ 0 for points to the left and to the right, respectively, of the q̇ = 0 locus,

since FKK(Kt, L̄) < 0. The vertical arrows in Fig. 14.4 show these directions of
movement.
Altogether the phase diagram shows that the steady state E is a saddle point,

and since there is one predetermined variable, K, and one jump variable, q, and
the saddle path is not parallel to the jump variable axis, the steady state is
saddle-point stable. At time 0 the economy will be at the point B in Fig. 14.4
where the vertical line K = K0 crosses the saddle path. Then the economy
will move along the saddle path towards the steady state. This solution satisfies
the transversality condition (14.32) and is the unique solution to the model (for
details, see Appendix F).

The effect of an unanticipated rise in the interest rate Suppose that
until time 0 the economy has been in the steady state E in Fig. 14.4. Then,
an unexpected shift in the interest rate occurs so that the new interest rate is
a constant r′ > r. We assume that the new interest rate is rightly expected to
remain at this level forever. From (14.30) we see that q∗ is not affected by this
shift, hence, the K̇ = 0 locus is not affected. However, (14.33) implies that the
q̇ = 0 locus and K∗ shift to the left, in view of FKK(K, L̄) < 0.
Fig. 14.5 illustrates the situation for t > 0. At time t = 0 the shadow price q

jumps down to a level corresponding to the point B in Fig. 14.5. There is now
a heavier discounting of the future benefits that the marginal unit of capital can
provide. As a result the incentive to invest is diminished and gross investment
will not even compensate for the depreciation of capital. Hence, the capital
stock decreases gradually. This is where we see a crucial role of convex capital
installation costs in an open economy. For now, the installation costs are the costs

9And assuming that F satisfies the Inada conditions, we are sure that such a value exists
since (14.34) gives FK(K, L̄) = rq∗ + g(δ) + δ > 0.
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Figure 14.5: Phase portrait of an unanticipated rise in r (the case δ > 0).

associated with disinvestment (dismantling and selling out of machines). If these
convex costs were not present, we would get the same counterfactual prediction
as from the previous open-economy models in this book, namely that the new
steady state is attained immediately after the shift in the interest rate.
As the capital stock is diminished, the marginal productivity of capital rises

and so does q. The economy moves along the new saddle path and approaches
the new steady state E’ as time goes by.
Suppose that for some reason such a decrease in the capital stock is not

desirable from a social point of view; this could be because of positive external
effects of capital and investment, e.g., a kind of “learning by doing”. Then the
government could decide to implement an investment subsidy σ, 0 < σ < 1, so
that to attain an investment level I, purchasing the investment goods involves a
cost of (1−σ)I. Assuming the subsidy is financed by some tax not affecting firms’
behavior (for example a constant tax on households’consumption), investment is
increased again and the economy may in the long run end up at the old steady-
state level of K (but the new q∗ will be lower than the old).

A growing small open economy with capital installation costs*

The basic assumptions are the same as in the previous section except that now
labor supply, L̄t, grows at the constant rate n ≥ 0, while the technology level, T,
grows at the constant rate γ ≥ 0 (both rates exogenous and constant) and the
production function is neoclassical with CRS. We assume that the world market
real interest rate, r, is a constant and satisfies r > γ + n. Still assuming full
employment, we have Lt = L̄t = L̄0e

nt.
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In this setting the production function on intensive form is useful:

Y = F (K,T L̄) = F (
K

TL̄
, 1)TL̄ ≡ f(k̃)TL̄,

where k̃ ≡ K/(TL̄) and f satisfies f ′ > 0 and f ′′ < 0. Still assuming perfect
competition, the market-clearing real wage at time t is determined as

wt = F2(Kt, TtL̄t)Tt =
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt,

where both k̃t and Tt are predetermined. By log-differentiation of k̃ ≡ K/(TL̄)

w.r.t. time we get
·
k̃t/k̃t = K̇t/Kt − (γ + n). Substituting (14.30), we get

·
k̃t = [m(qt)− (δ + γ + n)] k̃t. (14.35)

The change in the shadow price of capital is now described by

q̇t = (r + δ)qt − f ′(k̃t) + g(m(qt))− (qt − 1)m(qt), (14.36)

from (14.26). In addition, the transversality condition,

lim
t→∞

k̃tqte
−(r−γ−n)t = 0, (14.37)

must hold.
The differential equations (14.35) and (14.36) constitute our new dynamic

system. Fig. 14.6 shows the phase diagram, which is qualitatively similar to that
in Fig. 14.4. We have

·
k̃ = 0 for m(q) = δ + γ + n, i.e., for q = q∗,

where q∗ now is defined by the requirement m(q∗) = δ+ γ+n. Notice, that when
γ+n > 0, we get a larger steady state value q∗ than in the previous section. This
is so because now a higher investment-capital ratio is required for a steady state
to be possible. Moreover, the transversality condition (14.12) is satisfied in the
steady state.
From (14.36) we see that q̇ = 0 now requires

0 = (r + δ)q − f ′(k̃) + g(m(q))− (q − 1)m(q).

If, in addition
·
k̃ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ + γ + n), this gives

0 = (r + δ)q∗ − f ′(k̃) + g(δ + γ + n)− (q∗ − 1)(δ + γ + n).
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Figure 14.6: Phase portrait of an unanticipated fall in r (a growing economy with
δ + γ + n ≥ γ + n > 0).

Here, the right-hand-side is increasing in k̃ (in view of f ′′(k̃) < 0). Hence, the
steady state value k̃∗ of the effective capital-labor ratio is unique, cf. the steady
state point E in Fig. 14.6.

By the assumption r > γ + n we have, at least in a neighborhood of E in
Fig. 14.6, that the q̇ = 0 locus is negatively sloped (see Appendix E).10 Again
the steady state is a saddle point, and the economy moves along the saddle path
towards the steady state.

In Fig. 14.6 it is assumed that until time 0, the economy has been in the
steady state E. Then, an unexpected shift in the interest rate to a lower constant
level, r′, takes place. The q̇ = 0 locus is shifted to the right, in view of f ′′ < 0.
The shadow price, q, immediately jumps up to a level corresponding to the point
B in Fig. 14.6. The economy moves along the new saddle path and approaches
the new steady state E’ with a higher effective capital-labor ratio as time goes
by. In Exercise 14.2 the reader is asked to examine the analogue situation where
an unanticipated downward shift in the rate of technological progress takes place.

10In our perfect foresight model we in fact have to assume r > γ+n for the firm’s maximization
problem to be well-defined. If instead r ≤ γ + n, the market value of the representative firm
would be infinite, and maximization would loose its meaning.
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14.4 Concluding remarks

Tobin’s q-theory of investment gives a remarkably simple operational macroeco-
nomic investment function, in which the key variable explaining aggregate invest-
ment is the valuation of the firms by the stock market relative to the replacement
value of the firms’physical capital. This link between asset markets and firms’
aggregate investment is an appealing feature of Tobin’s q-theory.
When faced with strictly convex installation costs, the firm has to take the

future into account to invest optimally. Therefore, the firm’s expectations be-
come important. Owing to the strictly convex installation costs, the firm adjusts
its capital stock only gradually when new information arises. This investment
smoothing is analogue to consumption smoothing.
By incorporating these features, Tobin’s q-theory helps explaining the slug-

gishness in investment we see in the empirical data. And the theory avoids the
counterfactual outcome from earlier chapters that the capital stock in a small
open economy with perfect mobility of goods and financial capital is instanta-
neously adjusted when the interest rate in the world market changes. So the
theory takes into account the time lags in capital adjustment in real life, a fea-
ture which may, perhaps, be abstracted from in long-run analysis and models of
economic growth, but not in short- and medium-run analysis.
Many econometric tests of the q theory of investment have been made, often

with quite critical implications. Movements in qa, even taking account of changes
in taxation, seemed capable of explaining only a minor fraction of the movements
in investment. And the estimated equations relating fixed capital investment
to qa typically give strong auto-correlation in the residuals. Other variables, in
particular availability of current corporate profits for internal financing, seem
to have explanatory power independently of qa (see Abel 1990, Chirinko 1993,
Gilchrist and Himmelberg, 1995). So there is reason to be somewhat sceptical
towards the notion that all information of relevance for the investment decision
is reflected by the market valuation of firms. This throws doubt on the basic
assumption in Hayashi’s theorem or its generalization, the assumption that firms’
cash flow tends to be homogeneous of degree one w.r.t. K, L, and I.
Going outside the model, there are further circumstances relaxing the link

between qa and investment. In the real world with many production sectors,
physical capital is heterogeneous. If for example a sharp unexpected rise in the
price of energy takes place, a firm with energy-intensive technology will loose in
market value. At the same time it has an incentive to invest in energy-saving
capital equipment. Hence, we might observe a fall in qa at the same time as
investment increases.
Imperfections in credit markets are ignored by the model. Their presence
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further loosens the relationship between qa and investment and may help explain
the observed positive correlation between investment and corporate profits.

We might also question that capital installation costs really have the hy-
pothesized strictly convex form. It is one thing that there are costs associated
with installation, reorganizing and retraining etc., when new capital equipment
is procured. But should we expect these costs to be strictly convex in the vol-
ume of investment? To think about this, let us for a moment ignore the role
of the existing capital stock. Hence, we write total installation costs J = G(I)
with G(0) = 0. It does not seem problematic to assume G′(I) > 0 for I > 0.
The question concerns the assumption G′′(I) > 0. According to this assumption
the average installation cost G(I)/I must be increasing in I.11 But against this
speaks the fact that capital installation may involve indivisibilities, fixed costs,
acquisition of new information etc. All these features tend to imply decreasing
average costs. In any case, at least at the microeconomic level one should ex-
pect unevenness in the capital adjustment process rather than the above smooth
adjustment.

Because of the mixed empirical success of the convex installation cost hypoth-
esis other theoretical approaches that can account for sluggish and sometimes
non-smooth and lumpy capital adjustment have been considered: uncertainty,
investment irreversibility, indivisibility, or financial problems due to bankruptcy
costs (Nickell 1978, Zeira 1987, Dixit and Pindyck 1994, Caballero 1999, Adda and
Cooper 2003). These approaches notwithstanding, it turns out that the q-theory
of investment has recently been somewhat rehabilitated from both a theoretical
and an empirical point of view. At the theoretical level Wang and Wen (2010)
show that financial frictions in the form of collateralized borrowing at the firm
level can give rise to strictly convex adjustment costs at the aggregate level yet
at the same time generate lumpiness in plant-level investment. For large firms,
unlikely to be much affected by financial frictions, Eberly et al. (2008) find that
the theory does a good job in explaining investment behavior.

In any case, the q-theory of investment is in different versions widely used
in short- and medium-run macroeconomics because of its simplicity and the ap-
pealing link it establishes between asset markets and firms’investment. And the
q-theory has also had an important role in studies of the housing market and the
role of housing prices for household wealth and consumption, a theme to which
we return in the next chapter.

11Indeed, for I 6= 0 we have d[G(I)/I]/dI = [IG′(I)−G(I)]/I2 > 0, when G is strictly convex
(G′′ > 0) and G(0) = 0.
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14.5 Literature notes

A first sketch of the q-theory of investment is contained in Tobin (1969). Later
advances of the theory took place through the contributions of Hayashi (1982)
and Abel (1990).
Both the Ramsey model and the Blanchard OLG model for a closed market

economy may be extended by adding strictly convex capital installation costs, see
Abel and Blanchard (1983) and Lim and Weil (2003). Adding a public sector,
such a framework is useful for the study of how different subsidies, taxes, and
depreciation allowance schemes affect investment in physical capital as well as
housing, see, e.g., Summers (1981), Abel and Blanchard (1983), and Dixit (1990).
Groth andMadsen (2013) study medium-termfluctuations arising in a Ramsey-

Tobin’s q framework when extended by sluggishness in real wage adjustments.

14.6 Appendix

A.When value maximization is - and is not - equivalent with continuous
static profit maximization

For the idealized case where tax distortions, asymmetric information, and prob-
lems with enforceability of financial contracts are absent, the Modigliani-Miller
theorem (Modigliani and Miller, 1958) says that the financial structure of the firm
is both indeterminate and irrelevant for production outcomes. Considering the
firm described in Section 14.1, the implied separation of the financing decision
from the production and investment decision can be exposed in the following way.

Simple version of the Modigliani-Miller theorem Although the theorem
allows for risk, we here ignore risk. Let the real debt of the firm be denoted Bt

and the real dividends, Xt. We then have the accounting relationship

Ḃt = Xt − (F (Kt, Lt)−G(It, Kt)− wtLt − It − rtBt) .

A positive Xt represents dividends in the usual meaning (payout to the owners
of the firm), whereas a negative Xt can be interpreted as emission of new shares
of stock. Since we assume perfect competition, the time path of wt and rt is
exogenous to the firm.
We first consider the firm’s combined financing and production-investment

problem, which we call Problem I. We assume that those who own the firm at
time 0 want it to maximize its net worth, i.e., the present value of expected future
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dividends:

max
(Lt,It,Xt)∞t=0

Ṽ0 =

∫ ∞
0

Xte
−
∫ t
0 rsdsdt s.t.

Lt ≥ 0, It free,

K̇t = It − δKt, K0 > 0 given, Kt ≥ 0 for all t,

Ḃt = Xt − (F (Kt, Lt)−G(It, Kt)− wtLt − It − rtBt) ,

where B0 is given, (14.38)

lim
t→∞

Bte
−
∫ t
0 rsds ≤ 0. (NPG)

The last constraint is a No-Ponzi-Game condition, saying that a positive debt
should in the long run at most grow at a rate which is less than the interest rate.
In Section 14.1 we considered another problem, namely a separate investment-

production problem:

max
(Lt,It)∞t=0

V0 =

∫ ∞
0

Rte
−
∫ t
0 rsdsdt s.t.,

Rt ≡ F (Kt, Lt)−G(It, Kt)− wtLt − It,
Lt ≥ 0, It free,

K̇t = It − δKt, K0 > 0 given, Kt ≥ 0 for all t.

Let this problem, where the financing aspects are ignored, be called Problem
II. When considering the relationship between Problem I and Problem II, the
following mathematical fact is useful.

LEMMA A1 Consider a continuous function a(t) and a differentiable function
f(t). Then∫ t1

t0

(f ′(t)− a(t)f(t))e
−
∫ t
t0
a(s)ds

dt = f(t1)e−
∫ t1
t0
a(s)ds − f(t0).

Proof. Integration by parts from time t0 to time t1 yields∫ t1

t0

f ′(t)e
−
∫ t
t0
a(s)ds

dt = f(t)e
−
∫ t
t0
a(s)ds

∣∣t1
t0 +

∫ t1

t0

f(t)a(t)e
−
∫ t
t0
a(s)ds

dt.

Hence, ∫ t1

t0

(f ′(t)− a(t)f(t))e
−
∫ t
t0
a(s)ds

dt

= f(t1)e−
∫ t1
t0
a(s)ds − f(t0). �
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CLAIM 1 If (K∗t , B
∗
t , L

∗
t , I
∗
t , X

∗
t )∞t=0 is a solution to Problem I, then (K∗t , L

∗
t , I
∗
t )∞t=0

is a solution to Problem II.

Proof. By (14.38) and the definition of Rt, Xt = Rt + Ḃt − rtBt so that

Ṽ0 =

∫ ∞
0

Xte
−
∫ t
0 rsdsdt = V0 +

∫ ∞
0

(Ḃt − rtBt)e
−
∫ t
0 rsdsdt. (14.39)

In Lemma A1, let f(t) = Bt, a(t) = rt, t0 = 0, t1 = T and consider T → ∞.
Then

lim
T→∞

∫ T

0

(Ḃt − rtBt)e
−
∫ t
0 rsdsdt = lim

T→∞
BT e

−
∫ T
0 rsds −B0 ≤ −B0,

where the weak inequality is due to (NPG). Substituting this into (14.39), we
see that maximum of net worth Ṽ0 is obtained by maximizing V0 and ensuring
limT→∞BT e

−
∫ T
0 rsds = 0, in which case net worth equals ((maximized V0)− B0),

where B0 is given. So a plan that maximizes net worth of the firm must also
maximize V0 in Problem II. �
Consequently it does not matter for the firm’s production and investment

behavior whether the firm’s investment is financed by issuing new debt or by
issuing shares of stock. Moreover, if we assume investors do not care about
whether they receive the firm’s earnings in the form of dividends or valuation
gains on the shares, the firm’s dividend policy is also irrelevant. Hence, from now
on we can concentrate on the investment-production problem, Problem II above.

The case with no capital installation costs Suppose the firm has no capital
installation costs. Then the cash flow reduces to Rt = F (Kt, Lt)− wtLt − It.
CLAIM 2 When there are no capital installation costs, Problem II can be reduced
to a series of static profit maximization problems.

Proof. Current (pure) profit is defined as

Πt = F (Kt, Lt)− wtLt − (rt + δ)Kt ≡ Π(Kt, Lt).

It follows that Rt can be written

Rt = F (Kt, Lt)− wtLt − (K̇t + δKt) = Πt + (rt + δ)Kt − (K̇t + δKt). (14.40)

Hence,

V0 =

∫ ∞
0

Πte
−
∫ t
0 rsdsdt+

∫ ∞
0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt. (14.41)
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The first integral on the right-hand side of this expression is independent of the
second. Indeed, the firm can maximize the first integral by renting capital and
labor, Kt and Lt, at the going factor prices, rt + δ and wt, respectively, such that
Πt = Π(Kt, Lt) is maximized at each t. The factor costs are accounted for in the
definition of Πt.

The second integral on the right-hand side of (14.41) is the present value of
net revenue from renting capital out to others. In Lemma A1, let f(t) = Kt,
a(t) = rt, t0 = 0, t1 = T and consider T →∞. Then

lim
T→∞

∫ T

0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt = K0 − lim

T→∞
KT e

−
∫ T
0 rsds = K0, (14.42)

where the last equality comes from the fact that maximization of V0 requires
maximization of the left-hand side of (14.42) which in turn, since K0 is given,
requires minimization of limT→∞KT e

−
∫ T
0 rsds. The latter expression is always

non-negative and can be made zero by choosing any time path for Kt such that
limT→∞KT = 0. (We may alternatively put it this way: it never pays the firm to
accumulate costly capital so fast in the long run that limT→∞KT e

−
∫ T
0 rsds > 0,

that is, to maintain accumulation of capital at a rate equal to or higher than the
interest rate.) Substituting (14.42) into (14.41), we get V0 =

∫∞
0

Πte
−
∫ t
0 rsdsdt+K0.

The conclusion is that, given K0,12 V0 is maximized if and only if Kt and Lt
are at each t chosen such that Πt = Π(Kt, Lt) is maximized. �

The case with strictly convex capital installation costs Now we rein-
troduce the capital installation cost function G(It, Kt), satisfying in particular
the condition GII(I,K) > 0 for all (I,K). Then, as shown in the text, the firm
adjusts to a change in its environment, say a downward shift in r, by a gradual
adjustment of K, in this case upward, rather than attempting an instantaneous
maximization of Π(Kt, Lt). The latter would entail an instantaneous upward jump
in Kt of size ∆Kt = a > 0, requiring It ·∆t = a for ∆t = 0. This would require
It = ∞, which implies G(It, Kt) = ∞, which may interpreted either as such a
jump being impossible or at least so costly that no firm will pursue it.

12Note that in the absence of capital installation costs, the historically given K0 is no more
“given”than the firm may instantly let it jump to a lower or higher level. In the first case the
firm would immediately sell a bunch of its machines and in the latter case it would immediately
buy a bunch of machines. Indeed, without convex capital installation costs nothing rules out
jumps in the capital stock. But such jumps just reflect an immediate jump, in the opposite
direction, in another asset item in the balance sheet and leave the maximized net worth of the
firm unchanged.
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Proof that qt satisfies (14.15) along an interior optimal path Rearrang-
ing (14.11) and multiplying through by the integrating factor e−

∫ t
0 (rs+δ)ds, we

get

[(rt + δ)qt − q̇t] e−
∫ t
0 (rs+δ)ds = (FKt −GKt) e

−
∫ t
0 (rs+δ)ds, (14.43)

where FKt ≡ FK(Kt, Lt) and GKt ≡ GK(It, Kt). In Lemma A1, let f(t) = qt,
a(t) = rt + δ, t0 = 0, t1 = T. Then∫ T

0

[(rt + δ)qt − q̇t] e−
∫ t
0 (rs+δ)dsdt = q0 − qT e−

∫ T
0 (rs+δ)ds

=

∫ T

0

(FKt −GKt) e
−
∫ t
0 (rs+δ)dsdt,

where the last equality comes from (14.43). Letting T →∞, we get

q0 − lim
T→∞

qT e
−
∫ T
0 (rs+δ)ds = q0 =

∫ ∞
0

(FKt −GKt) e
−
∫ t
0 (rs+δ)dsdt, (14.44)

where the first equality follows from the transversality condition (14.14), which
we repeat here:

lim
t→∞

qte
−
∫ t
0 rsds = 0. (*)

Indeed, since δ ≥ 0, limT→∞(e−
∫ T
0 rsdse−δT ) = 0, when (*) holds. Initial time

is arbitrary, and so we may replace 0 and t in (14.44) by t and τ , respectively.
The conclusion is that (14.15) holds along an interior optimal path, given the
transversality condition (*). A proof of necessity of the transversality condition
(*) is given in Appendix B.13

B. Transversality conditions

In view of (14.44), a qualified conjecture is that the condition limt→∞ qte
−
∫ t
0 (rs+δ)ds

= 0 is necessary for optimality. This is indeed true, since this condition follows
from the stronger transversality condition (*) in Appendix A, the necessity of
which along an optimal path we will now prove.

Proof of necessity of (14.14) As the transversality condition (14.14) is the
same as (*) in Appendix A, from now we refer to (*).

13An equivalent approach to derivation of (14.15) can be based on applying the transversality
condition (*) to the general solution formula for linear inhomogeneous first-order differential
equations. Indeed, the first-order condition (14.11) provides such a differential equation in qt.
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Rearranging (14.11) and multiplying through by the integrating factor e−
∫ t
0 rsds,

we have
(rtqt − q̇t)e−

∫ t
0 rsds = (FKt −GKt − δqt) e−

∫ t
0 rsds.

In Lemma A1, let f(t) = qt, a(t) = rt, t0 = 0, t1 = T . Then∫ T

0

(rtqt − q̇t)e−
∫ t
0 rsdsdt = q0 − qT e−

∫ T
0 rsds =

∫ T

0

(FKt −GKt − δqt) e−
∫ t
0 rsdsdt.

Rearranging and letting T →∞, we see that

q0 =

∫ ∞
0

(FKt −GKt − δqt) e−
∫ t
0 rsdsdt+ lim

T→∞
qT e

−
∫ T
0 rsds. (14.45)

If, contrary to (*), limT→∞ qT e
−
∫ T
0 rsds > 0 along the optimal path, then (14.45)

shows that the firm is over-investing. By reducing initial investment by one unit,
the firm would save approximately 1 +GI(I0, K0) = q0, by (14.10), which would
be more than the present value of the stream of potential net gains coming from
this marginal unit of installed capital (the first term on the right-hand side of
(14.45)).
Suppose instead that limT→∞ qT e

−
∫ T
0 rsds < 0. Then, by a symmetric argu-

ment, the firm has under-invested initially.

Necessity of (14.12) In cases where along an optimal path,Kt remains bounded
from above for t→∞, the transversality condition (14.12) is implied by (*). In
cases where along an optimal path, Kt is not bounded from above for t→∞, the
transversality condition (14.12) is stronger than (*). A proof of the necessity of
(14.12) in this case can be based on Weitzman (2003) and Long and Shimomura
(2003).

C. On different specifications of the q-theory

The simple relationship we have found between I and q can easily be generalized
to the case where the purchase price on the investment good, pIt, is allowed to
differ from 1 (its value above) and the capital installation cost is pItG(It, Kt).
In this case it is convenient to replace q in the Hamiltonian function by, say, λ.
Then the first-order condition (14.10) becomes pIt + pItGI(It, Kt) = λt, implying

GI(It, Kt) =
λt
pIt
− 1,

and we can proceed, defining as before qt by qt ≡ λt/pIt.
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Sometimes in the literature installation costs, J , appear in a slightly different
form compared to the above exposition. But applied to a model with economic
growth this will result in installation costs that rise faster than output and ulti-
mately swallow the total produce.
Abel and Blanchard (1983), followed by Barro and Sala-i-Martin (2004, p.

152-160), introduce a function, φ, representing capital installation costs per unit
of investment as a function of the investment-capital ratio. That is, total in-
stallation cost is J = φ(I/K)I, where φ(0) = 0, φ′ > 0. This implies that
J/K = φ(I/K)(I/K). The right-hand side of this equation may be called g(I/K),
and then we are back at the formulation in Section 14.1. Indeed, defining
x ≡ I/K, we have installation costs per unit of capital equal to g(x) = φ(x)x,
and assuming φ(0) = 0, φ′ > 0, it holds that

g(x) = 0 for x = 0, g(x) > 0 for x 6= 0,

g′(x) = φ(x) + xφ′(x) R 0 for x R 0, respectively, and

g′′(x) = 2φ′(x) + xφ′′(x).

Now, g′′(x) must be positive for the theory to work. But the assumptions φ(0) =
0, φ′ > 0, and φ′′ ≥ 0, imposed in p. 153 and again in p. 154 in Barro and
Sala-i-Martin (2004), are not suffi cient for this (since x < 0 is possible). Since
in macroeconomics x < 0 is seldom, this is only a minor point, of course. Yet,
from a formal point of view the g(·) formulation may seem preferable to the φ(·)
formulation.
It is sometimes convenient to let the capital installation cost G(I, K) appear,

not as a reduction in output, but as a reduction in capital formation so that

K̇ = I − δK −G(I,K). (14.46)

This approach is used in Hayashi (1982) and Heijdra and Ploeg (2002, p. 573 ff.).
For example, Heijdra and Ploeg write the rate of capital accumulation as K̇/K
= ϕ(I/K)−δ, where the “capital installation function”ϕ(I/K) can be interpreted
as ϕ(I/K) ≡ [I −G(I,K)] /K = I/K − g(I/K); the latter equality comes from
assuming G is homogeneous of degree 1. In one-sector models, as we usually
consider in this text, this changes nothing of importance. In more general models
this installation function approach may have some analytical advantages; what
gives the best fit empirically is an open question. In our housing market model
in the next chapter we apply a specification analogue to (14.46), interpreting K̇
as the number of new houses per time unit.
Finally, some analysts assume that installation costs are a strictly convex

function of net investment, I−δK, not gross investment, I. This agrees well with
intuition if mere replacement investment occurs in a smooth way not involving
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new technology, work interruption, and reorganization. To the extent capital
investment involves indivisibilities and embodies new technology, it may seem
more plausible to specify the installation costs as a convex function of gross
investment.

D. Proof of Hayashi’s theorem

For convenience we repeat:

THEOREM (Hayashi) Assume the firm is a price taker, that the production
function F is jointly concave in (K, L), and that the installation cost function G
is jointly convex in (I, K). Then, along the optimal path we have:
(i) qmt = qat for all t ≥ 0, if F and G are homogeneous of degree 1.
(ii) qmt < qat for all t, if F is strictly concave in (K, L) and/or G is strictly

convex in (I, K).

Proof. The value of the firm as seen from time t is

Vt =

∫ ∞
t

(F (Kτ , Lτ )−G(Iτ , Kτ )− wτLτ − Iτ )e−
∫ τ
t rsdsdτ . (14.47)

We introduce the functions

A = A(K,L) ≡ F (K,L)− FK(K,L)K − FL(K,L)L, (14.48)

B = B(I,K) ≡ GI(I,K)I +GK(I,K)K −G(I,K). (14.49)

Then the cash-flow of the firm at time τ can be written

Rτ = F (Kτ , Lτ )− FLτLτ −G(Iτ , Kτ )− Iτ
= A(Kτ , Lτ ) + FKτKτ +B(Iτ , Kτ )−GIτIτ −GKτKτ − Iτ ,

where we have used first FLτ = w and then the definitions of A and B above.
Consequently, when moving along the optimal path,

Vt = V ∗(Kt, t) =

∫ ∞
t

(A(Kτ , Lτ ) +B(Iτ , Kτ )) e
−
∫ τ
t rsdsdτ (14.50)

+

∫ ∞
t

[(FKτ −GKτ )Kτ − (1 +GIτ )Iτ ]e
−
∫ τ
t rsdsdτ

=

∫ ∞
t

(A(Kτ , Lτ ) +B(Iτ , Kτ ))e
−
∫ τ
t rsdsdτ + qtKt,

cf. Lemma D1 below. Isolating qt, it follows that

qmt ≡ qt =
Vt
Kt

− 1

Kt

∫ ∞
t

[A(Kτ , Lτ ) +B(Iτ , Kτ )]e
−
∫ τ
t rsdsdτ , (14.51)
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when moving along the optimal path.
Since F is concave and F (0, 0) = 0, we have for all K and L, A(K,L) ≥ 0

with equality sign, if and only if F is homogeneous of degree one. Similarly, since
G is convex and G(0, 0) = 0, we have for all I and K, B(I,K) ≥ 0 with equality
sign, if and only if G is homogeneous of degree one. Now the conclusions (i) and
(ii) follow from (14.51) and the definition of qa in (14.27). �
LEMMAD1 The last integral on the right-hand side of (14.50) equals qtKt, when
investment follows the optimal path.

Proof. We want to characterize a given optimal path (Kτ , Iτ , Lτ )
∞
τ=t. Keeping t

fixed and using z as our varying time variable, we have

(FKz −GKz)Kz − (1 +GIz)Iz = [(rz + δ)qz − q̇z]Kz − (1 +GIz)Iz

= [(rz + δ)qz − q̇z]Kz − qz(K̇z + δKz) = rzqzKz − (q̇zKz + qzK̇z) = rzuz − u̇z,
where we have used (14.11), (14.10), (14.6), and the definition uz ≡ qzKz. We
look at this as a differential equation: u̇z − rzuz = ϕz, where ϕz ≡ −[(FKz −
GKz)Kz − (1 +GIz)Iz] is considered as some given function of z. The solution of
this linear differential equation is

uz = ute
∫ z
t rsds +

∫ z

t

ϕτe
∫ z
τ rsdsdτ ,

implying, by multiplying through by e−
∫ z
t rsds, reordering, and inserting the defi-

nitions of u and ϕ, ∫ z

t

[(FKτ −GKτ )Kτ − (1 +GIτ )Iτ ]e
−
∫ τ
t rsdsdτ

= qtKt − qzKze
−
∫ z
t rsds → qtKt for z →∞,

from the transversality condition (14.12) with t replaced by z and 0 replaced by
t. �
A different − and perhaps more illuminating − way of understanding (i) in

Hayashi’s theorem is the following.
Suppose F and G are homogeneous of degree one. Then A = B = 0, GII +

GKK = G = g(I/K)K, and FK = f ′(k), where f is the production function in
intensive form. Consider an optimal path (Kτ , Iτ , Lτ )

∞
τ=t and let kτ ≡ Kτ/Lτ and

xτ ≡ Iτ/Kτ along this path which we now want to characterize. As the path is
assumed optimal, from (14.47) follows

Vt = V ∗(Kt, t) =

∫ ∞
t

[f ′(kτ )− g(xτ )− xτ ]Kτe
−
∫ τ
t rsdsdτ . (14.52)
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From K̇t = (xt− δ)Kt follows Kτ = Kte
−
∫ τ
t (xs−δ)ds. Substituting this into (14.52)

yields

V ∗(Kt, t) = Kt

∫ ∞
t

[f ′(kτ )− g(xτ )− xτ ]e−
∫ τ
t (rs−xs+δ)dsdτ .

In view of (14.24), with t replaced by τ , the optimal investment ratio xτ depends,
for all τ , only on qτ , not on Kτ , hence not on Kt. Therefore,

∂V ∗/∂Kt =

∫ ∞
t

[f ′(kτ )− g(xτ )− xτ ]e−
∫ τ
t (rs−xs+δ)dsdτ = Vt/Kt.

Hence, from (14.28) and (14.27), we conclude qmt = qat .

Remark. We have assumed throughout that G is strictly convex in I. This does
not imply that G is jointly strictly convex in (I,K). For example, the function
G(I,K) = I2/K is strictly convex in I (since GII = 2/K > 0). But at the same
time this function has B(I,K) = 0 and is therefore homogeneous of degree one.
Hence, it is not jointly strictly convex in (I,K).

E. The slope of the q̇ = 0 locus in the SOE case

First, we shall determine the sign of the slope of the q̇ = 0 locus in the case
g + n = 0, considered in Fig. 14.4. Taking the total differential in (14.33) w.r.t.
K and q gives

0 = −FKK(K, L̄)dK + {r + δ + g′(m(q))m′(q)− [m(q) + (q − 1)m′(q)]} dq
= −FKK(K, L̄)dK + [r + δ −m(q)] dq,

since g′(m(q)) = q − 1, by (14.23) and (14.24). Therefore

dq

dK |q̇=0
=

FKK(K, L̄)

r + δ −m(q)
for r + δ 6= m(q).

From this it is not possible to sign dq/dK at all points along the q̇ = 0 locus. But
in a neighborhood of the steady state we have m(q) ≈ δ, hence r + δ −m(q) ≈
r > 0. And since FKK < 0, this implies that at least in a neighborhood of E in
Fig. 14.4 the q̇ = 0 locus is negatively sloped.
Second, consider the case g + n > 0, illustrated in Fig. 14.6. Here we get in

a similar way
dq

dk̃ |q̇=0

=
f ′′(k̃∗)

r + δ −m(q)
for r + δ 6= m(q).

From this it is not possible to sign dq/dk̃ at all points along the q̇ = 0 locus. But
in a small neighborhood of the steady state we have m(q) ≈ δ + γ + n, hence
r+ δ−m(q) ≈ r− γ − n. Since f ′′ < 0, then, at least in a small neighborhood of
E in Fig. 14.6, the q̇ = 0 locus is negatively sloped, when r > γ + n.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



14.7. Exercises 607

F. The divergent paths

Text not yet available.

14.7 Exercises

14.1 (induced sluggish capital adjustment). Consider a firm with capital instal-
lation costs J = G(I,K), satisfying

G(0, K) = 0, GI(0, K) = 0, GII(I,K) > 0, and GK(I,K) ≤ 0.

a) Can we from this conclude anything as to strict concavity or strict convexity
of the function G? If yes, with respect to what argument or arguments?

b) For two values of K, K and K̄, illustrate graphically the capital installation
costs J in the (I, J) plane. Comment.

c) By drawing a few straight line segments in the diagram, illustrate that
G(1

2
I, K̄)2 < G(I, K̄) for any given I > 0.

14.2 (see end of Section 14.3)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.
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Makroøkonomi. Note 2.

18.10.2015 Christian Groth

Uncertainty, expectations,
and asset price bubbles

This lecture note provides a framework for addressing themes where expectations

in uncertain situations are important elements. Our previous models have not taken

seriously the problem of uncertainty. Where agent’s expectations about future variables

were involved and these expectations were assumed to be model-consistent (“rational”),

we only considered a special case: perfect foresight. Shocks were treated in a peculiar

(almost self-contradictory) way: they might occur, but only as a complete surprise, a

once-for-all event. Agents’ expectations and actions never incorporated that new shocks

could arrive.

We will now allow recurrent shocks to take place. The environment in which the

economic agents act will be considered inherently uncertain. How can this be modeled

and how can we solve the resultant models? Since it is easier to model uncertainty

in discrete rather than continuous time, we examine uncertainty and expectations in a

discrete time framework.

Our emphasis will be on the hypothesis that when facing uncertainty a dominating

fraction of the economic agents form “rational expectations” in the sense of making prob-

abilistic forecasts which coincide with the forecast calculated on the basis of the “relevant

economic model”. But we begin with simple mechanistic expectation formation hypothe-

ses that have been used to describe day-to-day expectations of people who do not at all

think about the probabilistic properties of the economic environment.

1 Simple expectation formation hypotheses

One simple supposition is that expectations change gradually to correct past expectation

errors. Let  denote the general price level in period  and  ≡ ( − −1)−1

the corresponding inflation rate. Further, let −1 denote the “subjective expectation”,

formed in period − 1 of  i.e., the inflation rate from period − 1 to period We may

1



think of the “subjective expectation” as the expected value in a vaguely defined subjective

conditional probability distribution.

The hypothesis of adaptive expectations (the AE hypothesis) says that the expectation

is revised in proportion to the past expectation error,

−1 = −2−1 + (−1 − −2−1) 0   ≤ 1 (1)

where the parameter  is called the adjustment speed. If  = 1 the formula reduces to

−1 = −1 (2)

This limiting case is known as static expectations or myopic expectations; the subjective

expectation is that the inflation rate will remain the same or at least that it is not more

likely to go up than down.

We may write (1) on the alternative form

−1 = −1 + (1− )−2−1 (3)

This says that the expected value concerning this period (period ) is a weighted average

of the actual value for the last period and the expected value for the last period. By

backward substitution we find

−1 = −1 + (1− )[−2 + (1− )−3−2]

= −1 + (1− )−2 + (1− )2[−3 + (1− )−4−3]

= 

X
=1

(1− )−1− + (1− )−−1−

Since (1− ) → 0 for →∞, we have (for −−1− bounded as →∞)

−1 = 

∞X
=1

(1− )−1− (4)

Thus, according to the AE hypothesis with 0    1 the expected inflation rate is a

weighted average of the historical inflation rates back in time. The weights are geomet-

rically declining with increasing time distance from the current period. The weights sum

to one (in that
P∞

=1 (1− )−1 = (1− (1− ))−1 = 1)

The formula (4) can be generalized to the general backward-looking expectations for-

mula,

−1 =
∞X
=1

−1− where

∞X
=1

 = 1 (5)

2



If the weights  in (5) satisfy  = (1− )−1  = 1 2. . .  we get the AE formula (4).

If the weights are

1 = 1 +  2 = −  = 0 for  = 3 4 . . . ,

we get

−1 = (1 + )−1 − −2= −1 + (−1 − −2) (6)

This is called the hypothesis of extrapolative expectations and says:

if   0 then the recent direction of change in  is expected to continue;

if   0 then the recent direction of change in  is expected to be reversed;

if  = 0 then expectations are static as in (2).

There are cases where for instance myopic expectations are “rational” (in a sense to

be defined below). Exercise 1 provides an example. But in many cases purely backward-

looking formulas are too rigid, too mechanistic. They will often lead to systematic expec-

tation errors to one side or the other. It seems implausible that people should not then

respond to their experience and revise their expectations formula. And when expectations

are about things that really matter for people, they are likely to listen to professional fore-

casters who build their forecasting on statistical or econometric models. Such models are

based on a formal probabilistic framework, take the interaction between different variables

into account, and incorporate new information about future possible events.

2 The rational expectations hypothesis

2.1 Preliminaries

We first recapitulate a few concepts from statistics. A sequence {} of random variables
indexed by time is called a stochastic process. A stochastic process {} is called white
noise if for all   has zero expected value, constant variance, and zero covariance across

time.1 A stochastic process {} is called a first-order autoregressive process, abbreviated
AR(1), if  = 0 + 1−1 +  where 0 and 1 are constants, and {} is white noise;
if |1|  1 then {} is called a stationary RA(1) process. A stochastic process {} is
called a random walk if  = −1 +  where {} is white noise.

1The expression white noise derives from electrotechnics. In electrotechnical systems signals will often

be subject to noise. If this noise is arbitrary and has no dominating frequence, it looks like white light.

The various colours correspond to a certain wave length, but white light is light which has all frequences

(no dominating frequence).

3



Before defining the term rational expectation, it is useful to clarify a distinction be-

tween two ways in which expectations, whatever their nature, may enter a macroeconomic

model.

2.1.1 Two model types

Type A: models with past expectations of current endogenous variables Sup-

pose a given macroeconomic model can be reduced to two equations, the first being

 =   
−1 +    = 0 1 2  (7)

where  is some endogenous variable (not necessarily  )  and  are given constant

coefficients, and  is an exogenous random variable which follows some specified stochas-

tic process. In line with the notation from Section 1,  
−1 is the subjective expectation

formed in period −1 of the value of the variable  in period  The economic agents are in
simple models assumed to have the same expectations. Or, at least there is a dominating

expectation,  
−1 in the society. What the equation (7) claims is that the endogenous

variable, , depends, in the specified linear way, on the “generally held” expectation of

, formed in the previous period. It is natural to think of the outcome  as being the

aggregate result of agents’ decisions and market mechanisms, the decisions being made at

discrete points in time     −2 −1      immediately after the uncertainty concerning
the period in question is resolved.

The second equation specifies how the subjective expectation is formed. To fix ideas,

let us assume myopic expectations,

 
−1 = −1 (8)

as in (2) above. A solution to the model is a stochastic process for  such that (7) holds,

given the expectation formation (8) and the stochastic process which  follows.

EXAMPLE 1 (imported raw materials and the domestic price level) Let the endogenous

variable in (7) represent the domestic price level (the consumer price index)  and let

 be the price level of imported raw materials. Suppose the price level is determined

through a markup on unit costs,

 = ( + )(1 + ) 0   
1

1 + 
 (*)

where is the nominal wage level in period  = 0 1 2    , and  and  are positive tech-

nical coefficients representing the assumed constant labor and raw meterials requirements,
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respectively, per unit of output;  is a constant markup. Assume further that workers in

period − 1 negotiate next period’s wage level,  so as to achieve, in expected value, a

certain target real wage which we normalize to 1, i.e.,



 
−1

= 1

Inserting into (*), we have

 =   
−1 +   0   = (1 + )  1 0   = (1 + ) (9)

Suppose  = ̄ +  where ̄ is a positive constant and {} is white noise. Assuming
myopic expectations,

 
−1 = −1 (10)

the solution for the evolution of the price level is

 =  −1 + (̄+ )  = 0 1 2    

Without shocks, and starting from an arbitrary −1  0 the time path of the price

level would be  = (−1 −  ∗)+1 +  ∗ where  ∗ = ̄(1− ) Shocks to the price of

imported raw materials result in transitory deviations from  ∗ But as the shocks are only

temporary and ||  1 the domestic price level gradually returns towards the constant

level  ∗ The intervening changes in wage demands in response to the changes in the price

level changes prolong the time it takes to return to  ∗ in the absence of new shocks. ¤

Equation (7) can also be interpreted as a vector equation (such that  and  
−1 are

-vectors,  is an  ×  matrix,  an  × matrix, and  an -vector). The crucial

feature is that the endogenous variables dated  only depend on previous expectations of

date- values of these variables and on the exogenous variables.

Models with past expectations of current endogenous variables will serve as our point

of reference when introducing the concept of rational expectations below.

Type B: models with forward-looking expectations Another way in which agents’

expectations may enter is exemplified by

 =   
+1 +    = 0 1 2  (11)

Here  
+1 is the subjective expectation, formed in period  of the value of  in period

+1. Example: the equity price today depends on what the equity price is expected to be
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tomorrow. Or more generally: the current expectation of a future value of an endogenous

variable influences the current value of this variable. We name this the case of forward-

looking expectations. (In “everyday language” also  
−1 in model type 1 can be said to

be a forward-looking variable as seen from period  − 1. But the dividing line between
the two model types, (7) and (11), is whether current expectations of future values of the

endogenous variables do or do not influence the current values of these.)

The complete model with forward-looking expectations will include an additional equa-

tion, specifying how the subjective expectation,  
+1 is formed. We might again impose

myopic expectations,  
+1 =  A solution to the model is a stochastic process for 

satisfying (11), given the stochastic process followed by  and given the specified ex-

pectation formation and perhaps some additional restrictions in the form of boundary

conditions or similar. The case of forward-looking expectations is important in connec-

tion with many topics in macroeconomics, including the evolution of asset prices, and

issues of asset price bubbles. This case will be dealt with in sections 3 and 4 below.

In passing we note that in both model type 1 and model type 2, it is the mean (in the

subjective probability distribution) of the random variable(s) that enters. This is typical

of simple macroeconomic models which often ignore other measures such as the median,

mode, or higher-order moments. The latter, say the variance of , may be included in

more advanced models where for instance behavior towards risk is important.

2.1.2 The concept of a model-consistent expectation

The concepts of a rational expectation andmodel-consistent expectation are closely related,

but not the same. We start with the latter.

Let there be given a stochastic model represented by (7) combined with some given

expectation formation (8), say. We put ourselves in the position of the investigator or

model builder and ask what the model-consistent expectation of the endogenous variable

 is as seen from period  − 1. It is the mathematical conditional expectation that can
be calculated on the basis of the model and available relevant data revealed up to and

including period − 1. Let us denote this expectation

(|−1) (12)

where  is the expectation operator and −1 denotes the information available at time

− 1. We think of period − 1 as the half-open time interval [− 1 ) and imagine that
the uncertainty concerning the exogenous random variable −1 is resolved at time − 1

6



So −1 includes knowledge of −1 and thereby, via the model, also of −12

The information −1 may comprise knowledge of the realized values of  and  up

until and including period − 1 Instead of (12) we could, for instance, write

(|−1 = −1     − = −;−1 = −1    − = −)

Here information (some of which may be redundant) goes back to a given initial period,

say period 0, in which case  equals  Alternatively, perhaps information goes back to

“ancient times”, possibly represented by  = ∞ Anyway, as time proceeds, in general

more and more realizations of the exogenous and endogenous variables become known

and in this sense the information −1 expands with rising . The information −1 may

also be interpreted as “partial lack of uncertainty”, so that an “increasing amount of

information” and “reduced uncertainty” are seen as two sides of the same thing. The

“reduced uncertainty” lies in the fact that the space of possible time paths {( )}+−
as of time  shrinks as time proceeds ( denotes the time horizon as seen from time ).3

Indeed, this space shrinks precisely because more and more realizations of the variables

take place (more information appears) and thereby rule out an increasing subset of paths

that were earlier possible.

In Example 1, as long as the subjective expectation is the myopic expectation (10),

the model-consistent expectation is

(|−1) =  −1 + ̄

Inserting the investigator’s estimated values of the coefficients  and  the investigator’s

forecast of  is obtained.

2.2 The rational expectations hypothesis

Unsatisfied with mechanistic formulas like those of Section 1, the American economist

John F. Muth (1961) introduced a radically different approach, the hypothesis of rational

expectations. Muth stated the hypothesis the following way:

I should like to suggest that expectations, since they are informed predictions

of future events, are essentially the same as the predictions of the relevant

2We refer to −1 as the “available information” rather than the “information set” which is an alterna-
tive term used in the literature. The latter term is tricky, however, and has different meanings in different

branches of economics, hence we are hesitant to use it. The subtleties are accounted for in Appendix B,

dealing with mathematical conditional expectations in general.
3By “possible” is meant “ex ante feasible according to a given model”.
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economic theory. At the risk of confusing this purely descriptive hypothesis

with a pronouncement as to what firms ought to do, we call such expectations

’rational’ (Muth 1961).

Muth applied this hypothesis to simple microeconomic problems. The hypothesis was

subsequently extended and applied to general equilibrium theory and macroeconomics by

what since the early 1970s became known as the New Classical Macroeconomics school.

Nobel laureate Robert E. Lucas from the University of Chicago lead the way by a series of

papers starting with Lucas (1972) and Lucas (1973). Assuming rational expectations in a

model instead of, for instance, adaptive expectations may radically change the dynamics

and impact of economic policy.

2.2.1 The concept

Assuming the economic agents have rational expectations (RE) is to assume that their

subjective expectation equals the model-consistent expectation, that is, the mathematical

conditional expectation that can be calculated on the basis of the model and available

relevant information about the exogenous stochastic variables. In connection with the

model ingredient (7), assuming the agents have rational expectations thus means that

 
−1 = (|−1) (13)

i.e., agents’ subjective conditional expectation coincides with the “objective” or “true”

conditional expectation, given the model (7).

Together, the equations (7) and (13) constitute a simple rational expectations model

(henceforth an RE model). We may write the model in compact form as

 = (|−1) +    = 0 1 2  (14)

The assumption of rational expectations thus relies on idealized conditions.

2.2.2 Solving a simple RE model

To solve the model means to find the stochastic process followed by  given the sto-

chastic process followed by the exogenous variable  For a linear RE model with past

expectations of current endogenous variables, the solution procedure is the following.

1. By substitution, reduce the RE model (or the relevant part of the model) into a

form like (14) expressing the endogenous variable in period  in terms of its past
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expectation and the exogenous variable(s). (The case with multiple endogenous

variables is treated similarly.)

2. Take the conditional expectation on both sides of the equation and solve for the

conditional expectation of the endogenous variable.

3. Insert into the reduced form and rearrange.

In practice there is often a fourth step, namely to express other endogenous variables

in the model in terms of those found in step 3. Let us see how the procedure works by

way of the following example.

EXAMPLE 2 We modify Example 1 by replacing myopic expectations by rational expec-

tations, i.e., (10) is replaced by  
−1 = (|−1) Now “available information” includes

that the subjective expectations are rational expectations. Step 1:

 = (|−1) +   0    1   0 (15)

Step 2: (|−1) = (|−1) + ̄ implying

( |−1) = 
̄

1− 


Step 3: Insert into (15) to get

 = 
̄

1− 
+ (̄+ )

This is the solution of the model in the sense of a specification of the stochastic process

followed by .

To compare with myopic expectations, suppose the event  6= 0 is relatively seldom
and that at  = 0 1  0 − 1 it so happens that  = 0 hence  = ̄(1 − ) ≡  ∗

Then, at  = 0 0  0 so that 0 =  ∗+ 0   ∗ But for  = 0+1 0+2  0+

there is again a sequence of periods with  = 0 Then, under RE, domestic price level

returns to  ∗ already in period 0 + 1.

With myopic expectations, combined with −1 =  ∗ say, the positive shock to import

prices at  = 0 will imply 0 =  ∗ + (̄ + 0) =  ∗ + 0  0+1 = ( ∗ + ) + ̄

=  ∗ +  0+ =  ∗ +  for  = 1 2   After 0 there is a systematic positive

forecast error. This is because the mechanical expectation does not consider how the

economy really functions. ¤
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Returning to the general form (14), without specifying the process {}  the second
step gives

( |−1) = 
( |−1)
1− 

 (16)

when  6= 14 Then, in the third step we get

 = 
( |−1) + (1− )

1− 
= 

 − ( −( |−1))
1− 

 (17)

EXAMPLE 3 Let  follow the process  = ̄ + −1 +  where 0    1 and 

has zero expected value, given all observed past values of  and  Then (17) yields the

solution

 = 
 − 

1− 
= 

̄+ −1 + (1− )

1− 
  = 0 1 2 .

In Exercise 2 you are asked to solve a simple Keynesian model of this form and compare

the solution under rational expectations with the solution under static expectations. ¤

Rational expectations should be viewed as a simplifying assumption that at best offers

an approximation. First, the assumption entails essentially that the economic agents

share one and the same understanding about how the economic system functions (and in

this chapter they also share one and the same information, −1). This is already a big

mouthful. Second, this perception is assumed to comply with the model of the informed

economic specialist. Third, this model is supposed to be the true model of the economic

process, including the true parameter values as well as the true stochastic process which

 follows. By equalizing 

−1 with the true conditional expectation, (|−1) and not

at most some econometric estimate of this, it is presumed that agents know the true values

of the parameters  and  in the data-generating process which the model is supposed

to mimic. In practice it is not possible to attain such a model, at least not unless the

considered economic system has reached some kind of steady state and no structural

changes occur.

Nevertheless, a model based on the rational expectations hypothesis can in many

contexts be seen as a useful cultivation of a theoretical research question. The results

that emerge cannot be due to systematic expectation errors from the economic agents’

side. In this sense the assumption of rational expectations makes up a theoretically

interesting benchmark case.

4If  = 1, the model (14) is inconsistent unless ( |−1)) = 0 in which case there are multiple

solutions. Indeed, for any number  ∈ (−∞, +∞), the process  =  +  solves the model when

( |−1) = 0
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We shall stick to the term “rational expectation” because it is standard. The term

can easily be misunderstood, however. Usually, in economists’ terminology “rational”

refers to behavior based on optimization subject to the constraints faced by the agent.

So one might think that the RE hypothesis stipulates that economic agents try to get the

most out of a situation with limited information, contemplating the benefits and costs

of gathering more information and using adequate statistical estimation methods. But

this is a misunderstanding. The RE hypothesis presumes that the true model is already

known to the agents. The “rationality” refers to taking this assumed knowledge fully into

account.

2.2.3 The forecast error*

Let the forecast of some variable  one period ahead be denoted  
−1. Suppose the

forecast is determined by some given function,  , of realizations of  and  up to and

including period − 1 that is,  
−1 = (−1 −2  −1 −2 ) Such a function is

known as a forecast function. It might for instance be one of the mechanistic forecasting

principles in Section 1. At the other extreme the forecast function might, at least theo-

retically, coincide with the a model-consistent conditional expectation. In the latter case

it is a model-consistent forecast function and we can write

(−1 −2  −1 −2 ) = ( |−1) (18)

= ( |−1 = −1 −2 = −2  −1 = −1 −2 = −2 ) 

The forecast error is the difference between the actually occurring future value,  of

a variable and the forecasted value. So, for a given forecast,  
−1 the forecast error is

 ≡  −  
−1 and is itself a stochastic variable.

If the forecast function in (18) complies with the true data-generating process (a big

“if”), then the implied forecasts would have several ideal properties:

(a) the forecast error would have zero mean;

(b) the forecast error would be uncorrelated with any of the variable in the information

−1 and therefore also with its own past values; and

(c) the expected squared forecast error would be minimized.

To see these properties, note that the model-consistent forecast error is  =  −
( |−1)  From this follows that ( |−1) = 0 cf. (a). Also the unconditional expec-
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tation is nil, i.e., () = 0; this is because (( |−1)) = (0) = 0 at the same time as

(( |−1)) = () by the law of iterated expectations from statistics saying that the

unconditional expectation of the conditional expectation of a stochastic variable  is given

by the unconditional expectation of , cf. Appendix B. Considering the specific model

(7), the model-consistent-forecast error is  =  −( |−1) = ( −( |−1)) by
(16) and (17). An ex post error ( 6= 0) thus emerges if and only if the realization of the
exogenous variable deviates from its conditional expectation as seen from the previous

period.

As to property (b), for  = 1 2  let − be some variable value belonging to the

information −. Then, property (b) is the claim that the (unconditional) covariance

between  and − is zero, i.e., Cov(−) = 0 for  = 1 2 . This follows from the

orthogonality property of model-consistent expectations (see Appendix C). In particular,

with − = − we get Cov(−) = 0 i.e., the forecast errors exhibit lack of serial

correlation. If the covariance were not zero, it would be possible to improve the forecast

by incorporating the correlation into the forecast. In other words, under the assumption of

rational expectations economic agents have no more to learn from past forecast errors. As

remarked above, the RE hypothesis precisely refers to a fictional situation where learning

has been completed and underlying mechanisms do not change.

Finally, a desirable property of a forecast function (·) is that it maximizes “accuracy”,
i.e., minimizes an appropriate loss function. A popular loss function,  in this context is

the expected squared forecast error conditional on the information −1,

 = (( − (−1 −2  −1 −2 ))
2 |−1) 

Assuming  −1 −1−2  are jointly normally distributed, then the solution to

the problem of minimizing  is to set (·) equal to the conditional expectation ( |−1)
based on the data-generating model as in (18).5 This is what property (c) refers to.

EXAMPLE 4 Let  = ( |−1) +  with  = ̄ +  where ̄ is a constant and

 is white noise with variance 
2. Then (17) applies, so that

 =
̄

1− 
+   = 0 1 

with variance 22 The model-consistent forecast error is  = −( |−1) =  with

conditional expectation equal to ( |−1) = 0 This forecast error itself is white noise
and is therefore uncorrelated with the information on which the forecast is based. ¤

5For proof, see Pesaran (1987). Under the restriction of only linear forecast functions, property (c)

holds even without the joint normality assumption, see Sargent (1979).
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It is worth emphasizing that the “true” conditional expectation can not usually be

known − neither to the economic agents nor to the investigator. At best there can be a
reasonable estimate, probably somewhat different across the agents because of differences

in information and conceptions of how the economic system functions. A deeper model of

expectations would give an account of the mechanisms through which agents learn about

the economic environment. An important ingredient here would be how agents contem-

plate the costs and potential gains associated with further information search needed

to reduce systematic expectation errors where possible. This contemplation is intricate

because information search often means entering unknown territory. Moreover, for a sig-

nificant subset of the agents the costs may be prohibitive. A further complicating factor

involved in learning is that when the agents have obtained some knowledge about the

statistical properties of the economic variables, the resulting behavior of the agents may

change these statistical properties. The rational expectations hypothesis sets these prob-

lems aside. It is simply assumed that the structure of the economy remains unchanged

and that the learning process has been completed.

2.3 Perfect foresight as a special case

The notion of perfect foresight corresponds to the limiting case where the variance of

the exogenous variable(s) is zero so that with probability one,  = ( |−1) for all
. Then we have a non-stochastic model where rational expectations imply that agents’

ex post forecast error with respect to  is zero.
6 To put it differently: rational expec-

tations in a non-stochastic model is equivalent to perfect foresight. Note, however, that

perfect foresight necessitates the exogenous variable  to be known in advance. Real-

world situations are usually not like that. If we want our model to take this into account,

the model ought to be formulated in an explicit stochastic framework. And assumptions

should be stated about how the economic agents respond to the uncertainty. The ra-

tional expectations assumption is a one approach to the problem and has been much

applied in macroeconomics in recent decades, perhaps due to lack of compelling tractable

alternatives.

6Here we disregard zero probability events.
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3 Models with rational forward-looking expectations

We here turn to models where current expectations of a future value of an endogenous

variable have an influence on the current value of this variable, that is, the case exemplified

by equation (11). At the same time we introduce two simplifications in the notation. First,

instead of using capital letters to denote the stochastic variables (as we did above and

is common in mathematical statistics), we follow the tradition in macroeconomics and

use lower case letters. So a lower case letter may from now on represent a stochastic

variable or a specific value of this variable, depending on the context. So an equation

like (11) will now read  =  +1 +   Under rational expectations it takes the form

 = (+1 |) +    = 0 1 2    . Second, from now on we write this equation as

 = +1 +       = 0 1 2      6= 0 (19)

That is, the expected value of a stochastic variable, + conditional on the information

, will be denoted +

A stochastic difference equation of the form (19) is called a linear expectation difference

equation of first order with constant coefficient .7 A solution is a specified stochastic

process {} which satisfies (19), given the stochastic process followed by . In the

economic applications usually no initial value, 0, is given. On the contrary, the interpre-

tation is that  depends, for all  on expectations about the future.
8 So  is considered

a jump variable that can immediately shift its value in response to the emergence of new

information about the future ’s. For example, a share price may immediately jump to a

new value when the accounts of the firm become publicly known (often even before, due

to sudden rumors).

Due to the lack of an initial condition for  there can easily be infinitely many

processes for  satisfying our expectation difference equation. We have an infinite forward-

looking “regress”, where a variable’s value today depends on its expected value tomorrow,

this value depending on the expected value the day after tomorrow and so on. Then usu-

ally there are infinitely many expected sequences which can be self-fulfilling in the sense

that if only the agents expect a particular sequence, then the aggregate outcome of their

behavior will be that the sequence is realized. It “bites its own tail” so to speak. Yet, when

7To keep things simple, we let the coefficients  and  be constants, but a generalization to time-

dependent coefficients is straightforward.
8The reason we say “depends on” is that it would be inaccurate to say that  is determined (in a

one-way-sense) by expectations about the future. Rather there is mutual dependence. In view of  being

an element in the information  the expectation of +1 in (19) may depend on  just as much as 
depends on the expectation of +1.
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an equation like (19) is part of a larger model, there will often (but not always) be con-

ditions that allow us to select one of the many solutions to (19) as the only economically

relevant one. For example, an economy-wide transversality condition or another general

equilibrium condition may rule out divergent solutions and leave a unique convergent

solution as the final solution.

We assume  6= 0 since otherwise (19) itself is already the unique solution. It turns
out that the set of solutions to (19) takes a different form depending on whether ||  1
or ||  1:

The case ||  1 In general, there is a unique fundamental solution and infinitely many
explosive bubble solutions.

The case ||  1 In general, there is no fundamental solution but infinitely many non-
explosive solutions. (The case || = 1 resembles this.)

In the case ||  1 the expected future has modest influence on the present. Here we
will concentrate on this case, since it is the case most frequently appearing in macroeco-

nomic models with rational expectations.

4 Solutions when ||  1
Various solution methods are available. Repeated forward substitution is the most easily

understood method.

4.1 Repeated forward substitution

Repeated forward substitution consists of the following steps. We first shift (19) one

period ahead:

+1 =  +1+2 +  +1

Then we take the conditional expectation on both sides to get

+1 =  (+1+2) +  +1 =  +2 +  +1 (20)

where the second equality sign is due to the law of iterated expectations, which says that

(+1+2) = +2 (21)
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see Box 1. Inserting (20) into (19) then gives

 = 2+2 +  +1 +   (22)

The procedure is repeated by forwarding (19) two periods ahead; then taking the condi-

tional expectation and inserting into (22), we get

 = 3+3 + 2 +2 +  +1 +  

We continue in this way and the general form (for  = 0 1 2 ) becomes

+ =  +(++1) +  +

+ =  ++1 +  +

 = +1++1 +  + 

X
=1

+ (23)

Box 1. The law of iterated expectations

The method of repeated forward substitution is based on the law of iterated expecta-

tions which says that (+1+2) = +2 as in (21). The logic is the fol-

lowing. Events in period + 1 are stochastic as seen from period  and so +1+2
(the expectation conditional on these events) is a stochastic variable. Then the law

of iterated expectations says that the conditional expectation of this stochastic variable

as seen from period  is the same as the conditional expectation of +2 itself as seen

from period  So, given that expectations are rational, then an earlier expectation of

a later expectation of  is just the earlier expectation of . Put differently: my best

forecast today of how I am going to forecast tomorrow a share price the day after

tomorrow, will be the same as my best forecast today of the share price the day after

tomorrow. If beforehand we have good reasons to expect that we will revise our

expectations upward, say, when next period’s additional information arrives, the

original expectation would be biased, hence not rational.9

4.2 The fundamental solution

PROPOSITION 1 Consider the expectation difference equation (19), where  6= 0 If

lim
→∞

X
=1

+ exists, (24)

9A formal account of conditional expectations and the law of iterated expectations is given in Appendix

B.
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then

 = 

∞X
=0

+ =  + 

∞X
=1

+ ≡ ∗   = 0 1 2  (25)

is a solution to the equation.

Proof Assume (24). Then the formula (25) is meaningful. In view of (23), it satisfies

(19) if and only if lim→∞ +1++1 = 0 Hence, it is enough to show that the process

(25) satisfies this latter condition.

In (25), replace  by + + 1 to get ++1 = 
P∞

=0 
++1++1+ Using the law

of iterated expectations, this yields

++1 = 

∞X
=0

++1+ so that

+1++1 =  +1
∞X
=0

++1+ = 

∞X
=+1

+

It remains to show that lim→∞
P∞

=+1 
+ = 0 From the identity

∞X
=1

+ =

X
=1

+ +

∞X
=+1

+

follows ∞X
=+1

+ =

∞X
=1

+ −
X

=1

+

Letting →∞ this gives

lim
→∞

∞X
=+1

+ =

∞X
=1

+ −
∞X
=1

+ = 0

which was to be proved. ¤

The solution (25) is called the fundamental solution of (19), often marked by an

asterisk ∗. The fundamental solution is (for  6= 0) defined only when the condition (24)
holds. In general this condition requires that ||  1 In addition, (24) requires that the
absolute value of the expectation of the exogenous variable does not increase “too fast”.

More precisely, the requirement is that |+|, when  → ∞, has a growth factor less
than ||−1  As an example, let 0    1 and   0, and suppose that +  0 for 

= 0 1 2  and that 1 +  is an upper bound for the growth factor of + Then

+ ≤ (1 + )+−1 ≤ (1 + ) = (1 + )
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Multiplying by , we get + ≤ (1 + ) By summing from  = 1 to 

X
=1

+ ≤ 

X
=1

[(1 + )]



Letting →∞ we get

lim
→∞

X
=1

+ ≤  lim
→∞

X
=1

[(1 + )]

= 

(1 + )

1− (1 + )
∞

if 1 +   −1 using the sum rule for an infinite geometric series.

As noted in the proof of Proposition 1, the fundamental solution, (25), has the property

that

lim
→∞

+ = 0 (26)

That is, the expected value of  is not “explosive”: its absolute value has a growth factor

less than ||−1. Given ||  1 the fundamental solution is the only solution of (19) with
this property. Indeed, it is seen from (23) that whenever (26) holds, (25) must also hold.

In Example 1 below,  is interpreted as the market price of a share and  as dividends.

Then the fundamental solution gives the share price as the present value of the expected

future flow of dividends.

EXAMPLE 1 (the fundamental value of an equity share) Consider arbitrage between

shares of stock and a riskless asset paying the constant rate of return   0. Let period

 be the current period. Let + be the market price of the share at the beginning of

period +  and + the dividend paid out at the end of that period, +   = 0 1 2 .

As seen from period  there is uncertainty about + and + for  = 1 2 . An investor

who buys  shares at time  (the beginning of period ) thus invests  ≡  units

of account at time  At the end of the period the gross return comes out as the known

dividend  and the potential sales value of the shares at the beginning of next period.

This is unlike standard accounting and finance notation in discrete time, where  would

be the end-of-period- market value of the stock of shares that begins to yield dividends

in period + 1.10

10Our use of  for the price of a share bought at the beginning of period  is not inconsistent with

our use, in earlier chapters, of  to denote the price, possibly in the same unit of account, per unit

of consumption in period  but paid for at the end of the period. At the beginning of period  after

the uncertainty pertaining to period  has been resolved (thus updating the available information), a

consumer-investor will decide both the investment and the consumption flow for the period. But only

the investment expence,  is disbursed immediately.

It is convenient to think of the course of actions such that receipt of the previous period’s dividend,

−1 and payment for that period’s consumption, at the price −1 occur right before period  begins

and the new information arrives. Indeed, the resolution of uncertainty at discrete points in time motivates

a distinction between “end of” period − 1 and “beginning of” period , where the new information has

just arrived.
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Suppose investors have rational expectations and care only about expected return.

Then the no-arbitrage condition reads

 ++1 − 


=   0 (27)

This can be written

 =
1

1 + 
+1 +

1

1 + 
 (28)

which is of the same form as (19) with  =  = 1(1+ ) ∈ (0 1). Assuming dividends do
not grow “too fast”, we find the fundamental solution, denoted ∗  as

∗ =
1

1 + 
 +

1

1 + 

∞X
=1

1

(1 + )
+ =

∞X
=0

1

(1 + )+1
+ (29)

The fundamental solution is simply the present value of expected future dividends.

If the dividend process is +1 = ++1 where +1 is white noise, then the dividend

process is known as a random walk and + =  for  = 1 2   Thus 
∗
 = , by

the sum rule for an infinite geometric series. In this case the fundamental value is thus

itself a random walk. More generally, the dividend process could be a martingale, that is,

a sequence of stochastic variables with the property that the expected value next period

exists and equals the current actual value, i.e., +1 = ; but in a martingale, +1

≡ +1 −  need not be white noise; it is enough that +1 = 0
11 Given the constant

required return  we still have ∗ =  So the fundamental value itself is in this case a

martingale. ¤

In finance theory the present value of the expected future flow of dividends on an

equity share is referred to as the fundamental value of the share. It is by analogy with

this that the general designation fundamental solution has been introduced for solutions

of form (25). We could also think of  as the market price of a house rented out and

 as the rent. Or  could be the market price of an oil well and  the revenue (net of

extraction costs) from the extracted oil in period 

4.3 Bubble solutions

Other than the fundamental solution, the expectation difference equation (19) has infi-

nitely many bubble solutions. In view of ||  1, these are characterized by violating the
condition (26). That is, they are solutions whose expected value explodes over time.

11A random walk is thus a special case of a martingale.
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It is convenient to first consider the homogenous expectation equation associated with

(19). This is defined as the equation emerging when setting  = 0 in (19):

 = +1 (30)

Every stochastic process {} of the form

+1 = −1 + +1, where +1 = 0 (31)

has the property that

 = +1 (32)

and is thus a solution to (30). The “disturbance” +1 represents “new information” which

may be related to movements in “fundamentals”, +1 But it does not have to. In fact,

+1 may be related to conditions that per se have no economic relevance whatsoever.

For ease of notation, from now on we just write  even if we think of the whole process

{} rather than the value taken by  in the specific period  The meaning should be clear
from the context. A solution to (30) is referred to as a homogenous solution associated

with (19). Let  be a given homogenous solution and let  be an arbitrary constant.

Then  =  is also a homogenous solution (try it out for yourself). Conversely, any

homogenous solution  associated with (19) can be written in the form (31). To see this,

let  be a given homogenous solution, that is,  = +1. Let +1 = +1 − +1.

Then

+1 = +1 + +1 = −1 + +1

where +1 = +1 −+1 = 0. Thus,  is of the form (31).

For convenience we here repeat our original expectation difference equation (19):

 = +1 +       = 0 1 2      6= 0 (*)

PROPOSITION 2 Consider the expectation difference equation (*). Let ̃ be a particular

solution to the expectation difference equation (19), where  6= 0 Then:
(i) every stochastic process of the form

 = ̃ +  (33)

where  satisfies (31), is a solution to (*);

(ii) every solution to (*) can be written in the form (33) with  being an appropriately

chosen homogenous solution associated with (*).
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Proof. Let some particular solution ̃ be given. (i) Consider  = ̃+ where  satisfies

(31). Since ̃ satisfies (*), we have  =  ̃+1 +   + . Consequently, by (30),

 =  ̃+1 +   +  +1 =  (̃+1 + +1) +   =  +1 +  

saying that (33) satisfies (*). (ii) Let  be an arbitrary solution to (*). Define  = −̃.
Then we have

 =  − ̃ = +1 +  − (̃+1 + )

= (+1 − ̃+1) = +1

where the second equality follows from the fact that both  and ̃ are solutions to (*).

This shows that  is a solution to the homogenous equation (30) associated with (*).

Since  = ̃ + , the proposition is hereby proved. ¤

Proposition 2 holds for any  6= 0 In case the fundamental solution (25) exists and
||  1, it is convenient to choose this solution as the particular solution in (33). Thus,

referring to the right-hand side of (25) as ∗ , we can use the particular form,

 = ∗ +  (34)

When the component  is different from zero, the solution (34) is called a bubble

solution and  is called the bubble component. In the typical economic interpretation

the bubble component shows up only because it is expected to show up next period, cf.

(32). The name bubble springs from the fact that the expected value conditional on the

information available in period  explodes over time when ||  1. To see this, as an

example, let 0    1 Then, from (30), by repeated forward substitution we get

 =  (+1+2) = 2+2 =  = +  = 1 2 

It follows that + = −, and from this follows that the bubble, for  going to infinity,

is unbounded in expected value:

lim
→∞

+ =

½ ∞, if   0
−∞ if   0

 (35)

Indeed, the absolute value of + will for rising  grow geometrically towards infinity

with a growth factor equal to 1  1

Let us consider a special case of (*19) that allows a simple graphical illustration of

both the fundamental solution and some bubble solutions.
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Figure 1: Deterministic bubbles (the case 0    1   0 and  = ̄)

4.3.1 When  has constant mean

Suppose the stochastic process  (the “fundamentals”) takes the form  = ̄+  where

̄ is a constant and  is white noise. Then

 =  +1 + (̄+ ) 0  ||  1 (36)

The fundamental solution is

∗ =   + 

∞X
=1

̄ = ̄+  + 
̄

1− 
=

̄

1− 
+ 

Referring to (i) of Proposition 2,

 =
̄

1− 
+  +  (37)

is thus also a solution of (36) if  is of the form (31).

It may be instructive to consider the case where all stochastic features are eliminated.

So we assume  ≡  ≡ 0. Then we have a model with perfect foresight; the solution (37)
simplifies to

 =
̄

1− 
+ 0

− (38)

where we have used repeated backward substitution in (31). By setting  = 0 we see that

0 =
̄
1− + 0 Inserting this into (38) gives

 =
̄

1− 
+ (0 − ̄

1− 
)− (39)

In Fig. 1 we have drawn three trajectories for the case 0    1,   0. Trajectory

I has 0 = ̄(1 − ) and represents the fundamental solution. Trajectory II, with 0
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 ̄(1−) and trajectory III, with 0  ̄(1−) are bubble solutions. Since we have
imposed no boundary condition apriori, one 0 is as good as any other. The interpretation

is that there are infinitely many trajectories with the property that if only the economic

agents expect the economy will follow that particular trajectory, the aggregate outcome of

their behavior will be that this trajectory is realized. This is the potential indeterminacy

arising when  is not a predetermined variable. However, as alluded to above, in a

complete economic model there will often be restrictions on the endogenous variable(s)

not visible in the basic expectation difference equation(s), here (36). It may be that

the economic meaning of  precludes negative values (a share certificate would be an

example). In that case no-one can rationally expect a path such as III in Fig. 1. Or

perhaps, for some reason, there is an upper bound on  (think of the full-employment

ceiling for output in a situation where the “natural” growth factor for output is smaller

than −1). Then no one can rationally expect a trajectory like II in the figure.

To sum up: in order for a solution of a first-order linear expectation difference equation

with constant coefficient , where ||  1 to differ from the fundamental solution, the

solution must have the form (34) where  has the form described in (31). This provides

a clue as to what asset price bubbles might look like.

4.3.2 Asset price bubbles

A stylized fact of stock markets is that stock price indices are quite volatile on a month-to-

month, year-to-year, and especially decade-to-decade scale, cf. Fig. 2. There are different

views about how these swings should be understood. According to the Efficient Market

Hypothesis the swings just reflect unpredictable changes in the “fundamentals”, that is,

changes in the present value of rationally expected future dividends. This is for instance

the view of Nobel laureate Eugene Fama (1970, 2003) from University of Chicago.

In contrast, Nobel laureate Robert Shiller (1981, 2003, 2005) from Yale University,

and others, have pointed to the phenomenon of “excess volatility”. The view is that asset

prices tend to fluctuate more than can be rationalized by shifts in information about

fundamentals (present values of dividends). Although in no way a verification, graphs

like those in Fig. 2 and Fig. 3 are suggestive. Fig. 2 shows the monthly real Standard

and Poors (S&P) composite stock prices and real S&P composite earnings for the period

1871-2008. The unusually large increase in real stock prices since the mid-90’s, which

ended with the collapse in 2000, is known as the “dot-com bubble”. Fig. 3 shows, on a

monthly basis, the ratio of real S&P stock prices to an average of the previous ten years’
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Figure 2: Monthly real S&P composite stock prices from January 1871 to January 2008 (left)

and monthly real S&P composite earnings from January 1871 to September 2007 (right). Source:

http://www.econ.yale.edu/~shiller/data.htm.

real S&P earnings along with the long-term real interest rate. It is seen that this ratio

reached an all-time high in 2000, by many observers considered as “the year the dot-com

bubble burst”.

Shiller’s interpretation of the large stock market swings is that they are due to fads,

herding, and shifts in fashions and “animal spirits” (the latter being a notion from

Keynes).

A third possible source of large stock market swings was pointed out by Blanchard

(1979) and Blanchard and Watson (1982). They argued that bubble phenomena need

not be due to irrational behavior and absence of rational expectations. This lead to the

theory of rational bubbles − the idea that excess volatility can be explained as speculative
bubbles arising from self-fulfilling rational expectations.

Consider an asset which yields either dividends or services in production or consump-

tion in every period in the future. The fundamental value of the asset is, at the theoretical

level, defined as the present value of the expected future flow of dividends or services.12

An asset price bubble (or a speculative bubble) is then defined as a positive deviation of

12In practice there are many ambiguities involved in this definition of the fundamental value because

it relates to an unknown future.
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Figure 3: S&P price-earnings ratio and long-term real interest rates from January 1881

to January 2008. The earnings are calculated as a moving average over the preceding

ten years. The long-term real interest rate is the 10-year Treasury rate from 1953 and

government bond yields from Sidney Homer, “A History of Interest Rates” from before

1953. Source: http://www.econ.yale.edu/~shiller/data.htm.
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the market price,  of the asset from its fundamental value, ∗ :

 =  − ∗  (40)

An asset price bubble that emerges in a setting where the no-arbitrage condition (27)

holds under rational expectations, is called a rational bubble. It emerges only because

there is an economy-wide self-fulfilling expectation that it will appreciate at a rate high

enough to warrant the overcharge involved. In the definition in (40) and in the discussion

below we ignore that at a less abstract level it is a systematic deviation, rather than just

a temporary noise deviation, of  from ∗ which qualifies for an asset price bubble.

EXAMPLE 2 (an ever-expanding rational bubble) Consider again an equity share for

which the no-arbitrage condition is

 ++1 − 


=   0 (41)

As in Example 1, the implied expectation difference equation is  = +1+ with 

=  = 1(1+) ∈ (0 1) Let the price of the share at time  be  = ∗ + where 
∗
 is the

fundamental value and   0 a bubble component following the deterministic process,

+1 = (1+) 0  0 so that  = 0(1+)
 This is called a deterministic rational bubble.

Agents may be ready to pay a price over and above the fundamental value (whether or

not they know the “true” fundamental value) if they expect they can sell at a sufficiently

higher price later; trading with such motivation is called speculative behavior. If generally

held and lasting for some time, this expectation may be self-fulfilling. Note that (41)

implies that the asset price ultimately grows at the rate . Indeed, let  = 0(1 + )

   (if  ≤  the asset price would be infinite). By the rule of the sum of an infinite

geometrice series, we then have ∗ = (−) showing that the fundamental value grows
at the rate  Consequently,  = (

∗
 + ) = ∗+1→ 1 as    It follows that

the asset price in the long run grows at the same rate as the bubble, the rate 

We are not acquainted with ever-expanding incidents of that caliber in real world

situations, however. A deterministic rational bubble is implausible. ¤

In some contexts it may not matter whether or not we think of the “rational” market

participants as knowing the probability distribution of the “fundamentals”, hence knowing

∗ (by “fundamentals” is meant any information relating to the future dividend or service

capacity of an asset: a firm’s technology, resources, market conditions etc.). All the same,

it seems common to imply such a high level of information in the term “rational bubbles”.

Unless otherwise indicated, we shall let this implication be understood.
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While a deterministic rational bubble was found implausible, let us now consider an

example of a stochastic rational bubble which sooner or later bursts.

EXAMPLE 3 (a bursting bubble) Once again we consider the no-arbitrage condition is

(41) where for simplicity we still assume the required rate of return is constant, though

possibly including a risk premium. Following Blanchard (1979), we assume that the

market price,  of the share contains a stochastic bubble of the following form:

+1 =

½
1+

 with probability 

0 with probability 1− 
(42)

where  = 0 1 2  and 0  0. In addition we may assume that  = (∗  ) ∗ ≥ 0
 ≤ 0 If ∗  0 the probability that the bubble persists at least one period ahead is

higher the greater the fundamental value has become. If   0 the probability that

the bubble persists at least one period ahead is less, the greater the bubble has already

become. In this way the probability of a crash becomes greater and greater as the share

price comes further and further away from fundamentals. As a compensation, the longer

time the bubble has lasted, the higher is the expected growth rate of the bubble in the

absence of a collapse.

This bubble satisfies the criterion for a rational bubble. Indeed, (42) implies

 +1 = (
1 + 

+1
)+1 + 0 · (1− +1) = (1 + )

This is of the form (31) with −1 = 1 +  and the bubble is therefore a stochastic

rational bubble. The stochastic component is +1 = +1 − +1 = +1 − (1 + )

and has conditional expectation equal to zero. Although +1 must have zero conditional

expectation, it need not be white noise (it can for instance have varying variance). ¤

As this example illustrates, a stochastic rational bubble does not have the implausible

ever-expanding form of a deterministic rational bubble. Yet, under certain conditions

even stochastic rational bubbles can be ruled out or at least be judged implausible. The

next section reviews some arguments.

4.4 When rational bubbles in asset prices can or can not be

ruled out

We concentrate on assets whose services are valued independently of the price.13 Let 

be the market price and ∗ the fundamental value of the asset as of time . Even if the

13This is in contrast to assets that serve as means of payment.
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asset yields services rather than dividends, we think of ∗ as in principle the same for all

agents. This is because a user who, in a given period, values the service flow of the asset

relatively low can hire it out to the one who values it highest (the one with the highest

willingness to pay). Until further notice we assume ∗ known to the market participants.

4.4.1 Partial equilibrium arguments

The principle of reasoning to be used is called backward induction: If we know something

about an asset price in the future, we can conclude something about the asset price today.

(a) Assets which can be freely disposed of (“free disposal”) Can a rational asset

price bubble be negative? The answer is no. The logic can be illustrated on the basis

of Example 2 above. For simplicity, let the dividend be the same constant   0 for all

 = 0 1 2 . Then, from the formula (39) we have

 − ∗ = (0 − ∗)(1 + )

where   0 and ∗ =  Suppose there is a negative bubble in period 0, i.e., 0−∗  0
In period 1, since 1 +   1 the bubble is greater in absolute value. The downward

movement of  continues and sooner or later  is negative. The intuition is that the

low 0 in period 0 implies a high dividend-price ratio. Hence a negative capital gain

(+1 −   0) is needed for the no-arbitrage condition (41) to hold. Thereby 1  0

and so on.

But in a market with self-interested rational agents, an object which can be freely

disposed of can never have a negative price. A negative price means that the “seller”

has to pay to dispose of the object. Nobody will do that if the object can just be

thrown away. An asset which can be freely disposed of (share certificates for instance)

can therefore never have a negative price. We conclude that a negative rational bubble

can not be consistent with rational expectations. Similarly, with a stochastic dividend,

a negative rational bubble would imply that in expected value the share price becomes

negative at some point in time, cf. (35). Again, rational expectations rule this out.

Hence, if we imagine that for a short moment   ∗ , then everyone will want to buy

the asset and hold it forever, which by own use or by hiring out will imply a discounted

value equal to ∗  There is thus excess demand until  has risen to 
∗
 

When a negative rational bubble can be ruled out, then, if at the first date of trading

of the asset there were no positive bubble, neither can a positive bubble arise later. Let

28



us make this precise:

PROPOSITION 3 Assume free disposal of a given asset. Then, if a rational bubble in the

asset price is present today, it must be positive and must have been present also yesterday

and so on back to the first date of trading the asset. And if a rational bubble bursts, it

will not restart later.

Proof As argued above, in view of free disposal, a negative rational bubble in the asset

price can be ruled out. It follows that  =  − ∗ ≥ 0 for  = 0 1 2  where  = 0 is
the first date of trading the asset. That is, any rational bubble in the asset price must be

a positive bubble. We now show by contradiction that if, for an arbitrary  = 1 2  it

holds that   0 then −1  0. Let   0 Then, if −1 = 0 we have −1 = −1

= 0 (from (31) with  replaced by −1), implying, since   0 is not possible, that  = 0
with probability one as seen from period −1 Ignoring zero probability events, this rules
out   0 and we have arrived at a contradiction. Thus −1  0 Replacing  by  − 1
and so on backward in time, we end up with 0  0. This reasoning also implies that if

a bubble bursts in period , it can not restart in period  + 1 nor, by extension, in any

subsequent period. ¤

This proposition (due to Diba and Grossman, 1988) claims that a rational bubble in

an asset price must have been there since trading of the asset began. Yet such a conclusion

is not without ambiguities. If new information about radically new technology comes up

at some point in time, is a share in the firm then the same asset as before? In a legal

sense the firm is the same, but is the asset also the same? Even if an earlier bubble has

crashed, cannot a new rational bubble arise later in case of an utterly new situation?

These ambiguities reflect the difficulty involved in the concepts of rational expectations

and rational bubbles when we are dealing with uncertainties about future developments of

the economy. The market’s evaluation of many assets of macroeconomic importance, not

the least shares in firms, depends on vague beliefs about future preferences, technologies,

and societal circumstances. The fundamental value can not be determined in any objective

way. There is no well-defined probability distribution over the potential future outcomes.

Fundamental uncertainty, also called Knightian uncertainty,14 is present.

(b) Bonds with finite maturity The finite maturity ensures that the value of the bond

is given at some finite future date. Therefore, if there were a positive bubble in the market

14After the Chicago of University economist Frank Knight who in his book, Risk, Uncertainty, and

Profit (1921), coined the important distinction between measurable risk and unmeasurable uncertainty.
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price of the bond, no rational investor would buy just before that date. Anticipating this,

no one would buy the date before, and so on. Consequently, nobody will buy in the first

place. By this backward-induction argument follows that a positive bubble cannot get

started. And since there also is “free disposal”, all rational bubbles can be precluded.

From now on we take as given that negative rational bubbles are ruled out. So, the

discussion is about whether positive rational asset price bubbles may exist or not.

(c) Assets whose supply is elastic Real capital goods (including buildings) can be

reproduced and have clearly defined costs of reproduction. This precludes rational bubbles

on this kind of assets, since a potential buyer can avoid the overcharge by producing

instead. Notice, however, that building sites with a specific amenity value and apartments

in attractive quarters of a city are not easily reproducible. Therefore, rational bubbles on

such assets are more difficult to rule out.

Here are a few intuitive remarks about bubbles on shares of stock in an established

firm. An argument against a rational bubble might be that if there were a bubble, the

firm would tend to exploit it by issuing more shares. But thereby market participants

mistrust is raised and may pull market evaluation back to the fundamental value. On

the other hand, the firm might anticipate this adverse response from the market. So the

firm chooses instead to “fool” the market by steady financing behavior, calmly enjoying

its solid equity and continuing as if no bubble were present. It is therefore not obvious

that this kind of argument can rule out rational bubbles on shares of stock.

(d) Assets for which there exists a “backstop-technology” For some articles of

trade there exists substitutes in elastic supply which will be demanded if the price of

the article becomes sufficiently high. Such a substitute is called a “backstop-technology”.

For example oil and other fossil fuels will, when their prices become sufficiently high,

be subject to intense competition from substitutes (renewable energy sources). This

precludes an unbounded bubble process in the price of oil.

On account of the arguments (c) and (d), it seems more difficult to rule out rational

bubbles when it comes to assets which are not reproducible or substitutable, let alone

assets whose fundamentals are difficult to ascertain. For some assets the fundamentals

are not easily ascertained. Examples are paintings of past great artists, rare stamps,

diamonds, gold etc. Also new firms that introduce completely novel products and tech-

nologies are potential candidates. Think of the proliferation of radio broadcasting in the
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1920s before the wall Street crash in 1929 and the internet in the 1990s before the dotcom

bubble burst in 2000.

What these situations allow for may not be termed rational bubbles, if by definition

this concept requires a well-defined fundamental. Then we may think of a broader class

of real-world bubbly phenomena driven by self-reinforcing expectations.

4.4.2 Adding general equilibrium arguments

The above considerations are of a partial equilibrium nature. On top of this, general

equilibrium arguments can be put forward to limit the possibility of rational bubbles. We

may briefly give a flavour of two such general equilibrium arguments. We still consider

assets whose services are valued independently of the price and which, as in (a) above,

can be freely disposed of. A house, a machine, or a share in a firm yields a service in

consumption or production or in the form of a dividend stream. Since such an asset has

an intrinsic value, ∗  equal to the present value of the flow of services, one might believe

that positive rational bubbles on such assets can be ruled out in general equilibrium.

As we shall see, this is indeed true for an economy with a finite number of “neoclassical”

households (to be defined below), but not necessarily in an overlapping generations model.

Yet even there, rational bubbles can under certain conditions be ruled out.

(e) An economy with a finite number of infinitely-lived households Assume

that the economy consists of a finite number of infinitely-lived agents − here called house-
holds − indexed  = 1 2   . The households are “neoclassical” in the sense that they

save only with a view to future consumption.

Under free disposal in point (a) we saw that   ∗ can not be an equilibrium. We

now consider the case of a positive bubble, i.e.,   ∗  All owners of the bubble asset

who are users will in this case prefer to sell and then rent; this would imply excess supply

and could thus not be an equilibrium. Hence, we turn to households that are not users,

but speculators. Assuming “short selling” is legal, speculators may pursue “short selling”,

that is, they first rent the asset (for a contracted interval of time) and immediately sell

it at . This results in excess supply and so the asset price falls towards 
∗
 . Within the

contracted interval of time the speculators buy the asset back and return it to the original

owners in accordance with the loan accord. So   ∗ can not be an equilibrium.

Even ruling out “short selling” (which is sometimes outright forbidden), we can ex-

clude positive bubbles in the present setup with a finite number of households. To assume
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that owners who are not users would want to hold the bubble asset forever as a permanent

investment will contradict that these owners are “neoclassical”. Indeed, their transver-

sality condition would be violated because the value of their wealth would grow at a rate

asymptotically equal to the rate of interest. This would allow them to increase their

consumption now without decreasing it later and without violating their No-Ponzi-Game

condition.

We have to instead imagine that the “neoclassical” households who own the bubble

asset, hold it against future sale. This could on the face of it seem rational enough

if there were some probability that not only would the bubble continue to exist, but

it would also grow so that the return would be at least as high as that yielded on an

alternative investment. Owners holding the asset in the expectation of a capital gain, will

thus plan to sell at some later point in time. Let  be the point in time where household

 wishes to sell and let

 = max{1 2  }
Then nobody will plan to hold the asset after  The household speculator,  having

 =  will thus not have anyone to sell to (other than people who will only pay ∗ )

Anticipating this, no-one would buy or hold the asset the period before, and so on. So

no-one will want to buy or hold the asset in the first place.

The conclusion is that   ∗ cannot be a rational expectations equilibrium in a setup

with a finite number of “neoclassical” households.

The same line of reasoning does not, however, go through in an overlapping generations

model where new households − that is, new traders − enter the economy every period.

(f) An economy with interest rate above the output growth rate In an overlap-

ping generations (OLG) model with an infinite sequence of new decision makers, rational

bubbles are under certain conditions theoretically possible. The argument is that with

 →∞  as defined above is not bounded. Although this unboundedness is a necessary

condition for rational bubbles, it is not sufficient, however.

To see why, let us return to the arbitrage examples 1, 2, and 3 where we have −1 =

1 +  so that a hypothetical rational bubble has the form +1 = (1 + ) ++1 where

+1 = 0 So in expected value the hypothetical bubble is growing at a rate equal to

the interest rate,  If at the same time  is higher than the long-run output growth rate,

the value of the expanding bubble asset would sooner or later be larger than GDP and

aggregate saving would not suffice to back its continued growth. Agents with rational
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expectations anticipate this and so the bubble never gets started.

This point is valid when the interest rate in the OLG economy is higher than the

growth rate of the economy − which is normally considered the realistic case. Yet, the
opposite case is possible and in that situation it is less easy to rule out rational asset

price bubbles. This is also the case in situations with imperfect credit markets. It turns

out that the presence of segmented financial markets or externalities that create a wedge

between private and social returns on productive investment may increase the scope for

rational bubbles (Blanchard, 2008).

4.5 Conclusion

The empirical evidence concerning asset price bubbles in general and rational asset price

bubbles in particular seems inconclusive. It is very difficult to statistically distinguish

between bubbles and mis-specified fundamentals. Rational bubbles can also have more

complicated forms than the bursting bubble in Example 3 above. For example Evans

(1991) and Hall et al. (1999) study “regime-switching” rational bubbles.

Whatever the possible limits to the plausibility of rational bubbles in asset prices, it is

useful to be aware of their logical structure and the variety of forms they can take as logical

possibilities. Rational bubbles may serve as a benchmark for a variety of “behavioral asset

price bubbles”, i.e., bubbles arising through particular psychological mechanisms. This

would take us to behavioral finance theory. The reader is referred to, e.g., Shiller (2003).

For surveys on the theory of rational bubbles and econometric bubble tests, see Salge

(1997) and Gürkaynak (2008). For discussions of famous historical bubble episodes, see

the symposium in Journal of Economic Perspectives 4, No. 2, 1990, and Shiller (2005).

5 Appendix

A. The log-linear specification

In many macroeconomic models with rational expectations the equations are specified as

log-linear, that is, as being linear in the logarithms of the variables. If   and  are

the original positive stochastic variables, defining  = ln ,  = ln and  = ln, a

log-linear relationship between   and  is a relation of the form

 = + +  (43)
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where   and  are constants. The motivation for assuming log-linearity can be:

(a) Linearity is convenient because of the simple rule for the expected value of a sum:

(++) = +()+(), where  is the expectation operator. Indeed,

for a non-linear function, ( ) we generally have (( )) 6= (() ()).

(b) Linearity in logs may often seem a more realistic assumption than linearity in any-

thing else.

(c) In time series models a logarithmic transformation of the variables followed by

formation of first differences can be the road to eliminating a trend in the mean

and variance.

As to point (b) we state the following:

CLAIM To assume linearity in logs is equivalent to assuming constant elasticities.

Proof Let the positive variables  ,  and  be related by  =  (, ), where  is a

continuous function with continuous partial derivatives. Taking the differential on both

sides of ln  = ln () we get

 ln =
1

 ()




 +

1

 ()




 (44)

=











+












=  




+  




=   ln +   ln

where   and   are the partial elasticities of  w.r.t.  and , respectively. Thus,

defining  = ln ,  = ln and  = ln, gives

 =  +   (45)

Assuming constant elasticities amounts to putting   =  and   = , where  and

 are constants. Then we can write (45) as  = + . By integration, we get (43)

where  is now an arbitrary integration constant. Hereby we have shown that constant

elasticities imply a log-linear relationship between the variables.

Now, let us instead start by assuming the log-linear relationship (43). Then,




= 




=  (46)

But (43), together with the definitions of ,  and  implies that

 = ++ = + ln+ ln 
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from which follows that




=  

1


so that   ≡








= 

and



=  

1


so that   ≡








= 

That is, the partial elasticities are constant. ¤

So, when the variables are in logs, then the coefficients in the linear expressions are

the elasticities. Note, however, that the interest rate is normally an exception. It is often

regarded as more realistic to let the interest rate itself and not its logarithm enter linearly.

Then the associated coefficient indicates the semi-elasticity with respect to the interest

rate.

B. Conditional expectations and the law of iterated expectations

The mathematical conditional expectation is a weighted sum of the possible values of the

stochastic variable with weights equal to the corresponding conditional probabilities.

Let  and be two discrete stochastic variables with joint probability function ( )

and marginal probability functions () and () respectively. If the conditional probabil-

ity function for  given  = 0 is denoted ( |0)  we have ( |0) = ( 0)(0) as-

suming (0)  0 The conditional expectation of  given = 0 denoted ( | = 0)

is then

( | = 0) =
X



( 0)

(0)
 (47)

where the summation is over all the possible values of 

This conditional expectation is a function of 0 Since 0 is just one possible value of

the stochastic variable  we interpret the conditional expectation itself as a stochastic

variable and write it as( |)Generally, for a function of the discrete stochastic variable
 say () the expected value is

(()) =
X


()()

When we here let the conditional expectation ( |) play the role of () and sum over
all  for which ()  0 we get

(( |)) =
X


( |)() =
X


ÃX



( )

()

!
() (by (47))

=
X




ÃX


( )

!
=
X


() = ( )
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This result is a manifestation of the law of iterated expectations: the unconditional

expectation of the conditional expectation of  is given by the unconditional expectation

of 

Now consider the case where  and  are continuous stochastic variables with joint

probability density function ( ) and marginal density functions () and () respec-

tively. If the conditional density function for  given  = 0 is denoted ( |0)  we have
( |0) = ( 0)(0) assuming (0)  0 The conditional expectation of  given

 = 0 is

( | = 0) =

Z ∞

−∞

( 0)

(0)
 (48)

where we have assumed that the range of  is (−∞∞) Again, we may view the condi-
tional expectation itself as a stochastic variable and write it as ( |) Generally, for a
function of the continuous stochastic variable  say () the expected value is

(()) =

Z


()()

where  stands for the range of When we let the conditional expectation ( |) play
the role of () we get

(( |)) =

Z


( |)() =
Z


µZ ∞

−∞

( )

()


¶
() (by (48))

=

Z ∞

−∞


µZ


( )

¶
 =

Z ∞

−∞
() = ( ) (49)

This shows us the law of iterated expectations in action for continuous stochastic

variables: the unconditional expectation of the conditional expectation of  is given by

the unconditional expectation of 

EXAMPLE Let the two stochastic variables,  and  follow a two-dimensional normal

distribution. Then, frommathematical statistics we know that the conditional expectation

of  given  satisfies

( |) = ( ) +
Cov()

Var()
( −())

Taking expectations on both sides gives

(( |)) = ( ) +
Cov()

Var()
(()−()) = ( ) ¤

We may also express the law of iterated expectations in terms of subsets of the original

outcome space for a stochastic variable. Let the event A be a subset of the outcome space
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for  and let B be a subset of A. Then the law of iterated expectations takes the form

(( |B)|A) = ( |A) (50)

That is, when B ⊆ A the expectation, conditional on A of the expectation of  , condi-
tional on B, is the same as the expectation, conditional on A, of 
In the text of this and the subsequent chapters we consider a dynamic context where

expectations are conditional on dated information − ( = 1 2 ). By a, so far, “informal

analogy” with (49) we then write the law of iterated expectations this way:

((|−)) = () for  = 1 2  (51)

In words: the unconditional expectation of the conditional expectation of  given the

information up to time −  equals the unconditional expectation of  Similarly, by a,

so far, “informal analogy” with (50) we may write

((+2|+1)|) = (+2|) (52)

That is, the expectation today of the expectation tomorrow, when more may be known,

of a variable the day after tomorrow is the same as the expectation today of the variable

the day after tomorrow. Intuitively: you ask a stockbroker in which direction she expects

to revise her expectations upon the arrival of more information. If the broker answers

“upward”, say, then another broker is recommended.

The notation used in the transition from (50) to (52) might seem problematic, though.

That is why we talk of “informal analogy”. The sets A and B are subsets of the outcome
space and B ⊆ A In contrast, the “information” or “information content” represented by
our symbol  will, for the uninitiated, inevitably be understood in a meaning not fitting

the inclusion +1 ⊆ . Intuitively “information” dictates the opposite inclusion, namely

as a set which expands over time − more and more “information” (like “knowledge” or
“available data”) is revealed as time proceeds.

It is possible, however, to interpret the information  from another angle so as to

make the notation in (52) fully comply with that in (50). Let the outcome space Ω denote

the set of ex ante possible15 sequences {()}=0  where  and  are vectors of

date- endogenous and exogenous stochastic variables, respectively, and where  is the

time horizon, possibly  = ∞. For  ∈ {0 0 + 1 . . .  0 + }  let the subset Ω ⊆ Ω

be defined as the of time  still possible sequences {()}0+=0
 Now, as time proceeds,

15By “possible” is meant “ex ante feasible according to a given model”.
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more and more realizations occur, that is, more and more of the ex ante random states

( ) become historical data, ( ) Hence, as time proceeds, the subset Ω shrinks

in the sense that Ω+1 ⊆ Ω. The increasing amount of information and the “reduced

uncertainty” can thus be seen as two sides of the same thing. Interpreting  this way,

i.e., as “partial lack of uncertainty”, the expression (52) means the same thing as

((+2|Ω+1)|Ω) = (+2|Ω)

This is in complete harmony with (50).

C. Properties of the model-consistent forecast

As in the text of Section 24.2.2, let  denote the model-consistent forecast error  −
(|−1) Then, if −1 represents information contained in −1,

( |−1) = ( −( |−1) |−1) = ( |−1)−(( |−1) |−1)
= ( |−1)−( |−1) = 0 (53)

where we have used that (( |−1) |−1) = ( |−1)  by the law of iterated expec-
tations. With −1 = −1 we have, as a special case,

( |−1) = 0 as well as (54)

() = ( −( |−1)) = ()−(( |−1)) = 0

in view of (51) with  = 1. This proves property (a) in Section 24.2.3.

As to property (b) in Section 24.2.2, for  = 1 2  let − be an arbitrary variable

value belonging to the information −. Then, (− |−) = −( |−) = 0 by

(53) with −1 = − (since − is contained in −1). Thus, by the principle (51),

(−) =  ((− |−)) = (0) = 0 for  = 1 2  (55)

This result is known as the orthogonality property of model-consistent expectations (two

stochastic variables  and  are said to be orthogonal if ( ) = 0) From the general

formula for the (unconditional) covariance follows

Cov(−) = (−)−()(−) = 0− 0 = 0 for  = 1 2 

by (54) and (55). In particular, with − = − we get Cov(−) = 0 This proves that

model-consistent forecast errors exhibit lack of serial correlation.
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6 Exercises

1. Let {} be a stochastic process in discrete time. Suppose  =  + , where

 = −1 +  and  and  are white noise.

a) Is {} a random walk? Why or why not?

b) Is {} a random walk? Why or why not?

c) Calculate the rational expectation of  conditional on all relevant information up

to and including period − 1.

d) What is the rational expectation of  conditional on all relevant information up to

and including period − 1?

e) Compare with the subjective expectation of  based om the adaptive expectations

formula with adjustment speed equal to one.

2. Consider a simple Keynesian model of a closed economy with constant wages and

prices (behind the scene), abundant capacity, and output determined by demand:

 =  =  + ̄ + (1)

 = +  
−1   0 0    1 (2)

 = (1− )̄+ −1 +  ̄  0 0    1 (3)

where the endogenous variables are  = output (= income),  = aggregate demand,

 = consumption, and 

−1 = expected output (income) in period  as seen from period

−1 while , which stands for government spending on goods and services, is considered

exogenous as is , which is white noise. Finally, investment, ̄, and the parameters  

 and ̄ are given positive constants.

Suppose expectations are “static” in the sense that expected income in period  equals

actual income in the previous period.

a) Solve for .

b) Find the income multiplier (partial derivative of ) with respect to a change in

−1 and  respectively

39



Suppose instead that expectations are rational.

c) Explain what this means.

d) Solve for 

e) Find the income multiplier with respect to a change in −1 and  respectively.

f) Compare the result under e) with that under b). Comment.

3. Consider arbitrage between equity shares and a riskless asset paying the constant

rate of return   0. Let  denote the price at the beginning of period  of a share that

at the end of period  yields the dividend . As seen from period  there is uncertainty

about + and + for  = 1 2. . . . Suppose agents have rational expectations and care

only about expected return (risk neutrality).

a) Write down the no-arbitrage condition.

Suppose dividends follow the process  = ̄ +  where ̄ is a positive constant and

 is white noise, observable in period  but not known in advance.

b) Find the fundamental solution for  and let it be denoted ∗ . Hint: given 

= +1 +   the fundamental solution is  =  + 
P∞

=1 
+

Suppose someone claims that the share price follows the process

 = ∗ + 

with a given 0  0 and, for  = 0 1 2. . . ,

+1 =

½
1+

 with probability 

0 with probability 1− 

where  = () 
0  0

c) What is an asset price bubble and what is a rational asset price bubble?

d) Can the described  process be a rational asset price bubble? Hint: a bubble

component associated with the inhomogenous equation  = +1 +   is a

solution, different from zero, to the homogeneous equation,  = +1.

–
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Chapter 16

Money in macroeconomics

Money buys goods and goods buy money; but goods do not buy goods.

−Robert W. Clower (1967).

Up to now we have put monetary issues aside. The implicit assumption has
been that the exchange of goods and services in the market economy can be
carried out without friction as mere intra- or intertemporal barter. This is, of
course, not realistic. At best it can provide an acceptable approximation to reality
only for a limited set of macroeconomic issues. We now turn to models in which
there is a demand for money. We thus turn to monetary theory, that is, the study
of causes and consequences of the fact that a large part of the exchange of goods
and services in the real world is mediated through the use of money.

16.1 What is money?

16.1.1 The concept of money

In economics money is defined as an asset (a store of value) which functions as a
generally accepted medium of exchange, i.e., it can be used directly to buy any
good offered for sale in the economy. A note of IOU (a bill of exchange) may
also be a medium of exchange, but it is not generally accepted and is therefore
not money.1 Moreover, the extent to which an IOU is acceptable in exchange
depends on the general state in the economy. In contrast, money is characterized
by being a fully liquid asset. An asset is fully liquid if it can be used directly,
instantly, and without any extra costs or restrictions to make payments.

1Generally accepted mediums of exchange are also called means of payment.
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Figure 16.1: No direct exchange possible. A medium of exchange, here good 2, solves
the problem (details in text).

Generally, liquidity should be conceived as a matter of degree so that an asset
has a higher or lower degree of liquidity depending on the extent to which it can
easily be exchanged for money. By “easily”we mean “immediately, conveniently,
and cheaply”. So an asset’s liquidity is the ease with which the asset can be
converted into money or be used directly for making payments. Where to draw the
line between “money”and “non-money assets”depends on what is appropriate for
the problem at hand. In the list below of different monetary aggregates (Section
16.2),M1 corresponds most closely to the traditional definition of money. Defined
as currency in circulation plus demand deposits held by the non-bank public in
commercial banks, M1 embraces all under “normal circumstances” fully liquid
assets in the hands of the non-bank public.

The reason that a market economy uses money is that money facilitates trade
enormously, thereby reducing transaction costs. Money helps an economy to avoid
the need for a “double coincidence of wants”. The classical way of illustrating
this is by the exchange triangle in Fig. 16.1. The individuals A, B, and C are
endowed with one unit of the goods 1, 3, and 2, respectively. But A, B, and C
want to consume 3, 2, and 1, respectively. Thus, no direct exchange is possible
between two individuals each wanting to consume the other’s good. There is
a lack of double coincidence of wants. The problem can be solved by indirect
exchange where A exchanges good 1 for good 2 with C and then, in the next
step, uses good 2 in an exchange for good 3 with B. Here good 2 serves as a
medium of exchange. If good 2 becomes widely used and accepted as a medium
of exchange, it is money. Extending the example to a situation with n goods,
we have that exchange without money (i.e., barter) requires n(n− 1)/2 markets
(“trading spots”). Exchange with money, in the form of modern “paper money”,
requires only n markets.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.
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16.1.2 Historical remarks

In the past, ordinary commodities, such as seashells, rice, cocoa, precious metals
etc., served as money. That is, commodities that were easily divisible, handy
to carry, immutable, and involved low costs of storage and transportation could
end up being used as money. This form of money is called commodity money.
Applying ordinary goods as a medium of exchange is costly, however, because
these goods have alternative uses. A more effi cient way to trade is by using
currency, i.e., coins and notes in circulation with little or no intrinsic value, or
pieces of paper, checks, representing claims on such currency. Regulation by a
central authority (the state or the central bank) has been of key importance in
bringing about this transition into the modern payment system.
Coins, notes, pieces of paper like checks, and electronic signals from smart

phones to accounts in a bank have no intrinsic value. Yet they may be generally
accepted media of exchange, in which case we refer to them as paper money. By
having these pieces of paper circulating and the real goods moving only once,
from initial producer to final consumer, the trading costs in terms of time and
effort are minimized.
In the industrialized countries these paper monies were in the last third of

the nineteenth century and until the outbreak of the First World War backed
through the gold standard. And under the Bretton-Woods agreement, 1947-71,
the currencies of the developed Western countries outside the United States were
convertible into US dollars at a fixed exchange rate (or rather an exchange rate
which is adjustable only under specific circumstances); and US dollar reserves
of these countries were (in principle) convertible into gold by the United States
at a fixed price (though in practice with some discouragement from the United
States).
This indirect gold-exchange standard broke down in 1971-73, and nowadays

money in most countries is unbacked paper money (including electronic entries
in banks’ accounts). This feature of modern money makes its valuation very
different from that of other assets. A piece of paper money in a modern payments
system has no worth at all to an individual unless she expects other economic
agents to value it in the next instant. There is an inherent circularity in the
acceptance of money. Hence the viability of such a paper money system is very
much dependent on adequate juridical institutions as well as confidence in the
ability and willingness of the government and central bank to conduct policies
that sustain the purchasing power of the currency. One elementary juridical
institution is that of “legal tender”, a status which is conferred to certain kinds
of money. An example is the law that a money debt can always be settled by
currency and a tax always be paid by currency. A medium of exchange whose
market value derives entirely from its legal tender status is called fiat money
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(because the value exists through “fiat”, a ruler’s declaration). In view of the
absence of intrinsic value, maintaining the exchange value of fiat money over
time, that is, avoiding high or fluctuating inflation, is one of the central tasks of
monetary policy.

16.1.3 The functions of money

The following three functions are sometimes considered to be the definitional
characteristics of money:

1. It is a generally accepted medium of exchange.

2. It is a store of value.

3. It serves as a unit of account in which prices are quoted and books kept
(the numeraire).

On can argue, however, that the last function is on a different footing com-
pared to the two others. Thus, we should make a distinction between the func-
tions that money necessarily performs, according to our definition above, and the
functions that money usually performs. Property 1 and 2 certainly belong to the
essential characteristics of money. By its role as a device for making transactions
money helps an economy to avoid the need for a double coincidence of wants.
In order to perform this role, money must be a store of value, i.e., a device that
transfers and maintains value over time. The reason that people are willing to
exchange their goods for pieces of paper is exactly that these can later be used
to purchase other goods. As a store of value, however, money is dominated by
other stores of value such as bonds and shares that pay a higher rate of return.
When nevertheless there is a demand for money, it is due to the liquidity of this
store of value, that is, its service as a generally accepted medium of exchange.
Property 3, however, is not an indispensable function of money as we have

defined it. Though the money unit is usually used as the unit of account in which
prices are quoted, this function of money is conceptually distinct from the other
two functions and has sometimes been distinct in practice. During times of high
inflation, foreign currency has been used as a unit of account, whereas the local
money continued to be used as the medium of exchange. During the German
hyperinflation of 1922-23 US dollars were the unit of account used in parts of the
economy, whereas the mark was the medium of exchange; and during the Russian
hyperinflation in the middle of the 1990s again US dollars were often the unit of
account, but the rouble was still the medium of exchange.
This is not to say that it is of little importance that money usually serves

as numeraire. Indeed, this function of money plays an important role for the
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short-run macroeconomic effects of changes in the money supply. These effects
are due to nominal rigidities, that is, the fact that prices, usually denominated
in money, of most goods and services generally adjust only sluggishly (they are
not traded in auction markets).

16.2 The money supply

The money supply is the total amount of money available in an economy at a
particular point in time (a stock). As noted above, where to draw the line between
assets that should be counted as money and those that should not, depends on
the context.

16.2.1 Different measures of the money stock

Usually the money stock in an economy is measured as one of the following
alternative monetary aggregates:

• M0, i.e., the monetary base, alternatively called base money, central bank
money, or high-powered money. The monetary base is defined as fully liquid
claims on the central bank held by the private sector, that is, currency (coins
and notes) in circulation plus demand deposits held by the commercial
banks in the central bank.2 This monetary aggregate is under the direct
control of the central bank and is changed by open-market operations, that
is, by the central bank trading bonds, usually short-term government bonds,
with the private sector. But clearly the monetary base is an imperfect
measure of the liquidity in the private sector.

• M1, defined as currency in circulation plus demand deposits held by the
non-bank general public in commercial banks. These deposits are also called
checking accounts because they are deposits on which checks can be written
and payment cards (debit cards) be used. M1 does not include currency
held by commercial banks and demand deposits held by commercial banks
in the central bank. Yet M1 includes the major part of M0 and is generally
considerably larger than M0. The measure M1 is intended to reflect the
quantity of assets serving as media of exchange in the hands of the non-
bank general public, i.e., the non-bank part of the private sector.

Broader categories of money include:

2The commercial banks are usually part of the private sector and by law it is generally only
the commercial banks that are allowed to have demand deposits in the central bank − the
“banks’bank”.
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• M2 = M1 plus savings deposits with unrestricted access and small-denomination
time deposits (say below € 100,000). Although these claims may not be
instantly liquid, they are close to.

• M3 = M2 plus large-denomination (say above € 100,000) time-deposits.3

As we move down the list, the liquidity of the added assets decreases, while
their interest yield increases.4 Currency earns zero interest. When in macroeco-
nomic texts the term “money supply”is used, traditionally M1 or M2 has been
meant; there is, however, a rising tendency to focus on M3. Along with currency,
the demand deposits in the commercial banks are normally fully liquid, at least
as long as they are guaranteed by a governmental deposit insurance (although
normally only up to a certain maximum per account). The interest earned on
these demand deposits is usually low (at least for “small”depositors) and in fact
often ignored in simple theoretical models.
A related and theoretically important simple classification of money types is

the following:

1. Outside money = money that on net is an asset of the private sector.

2. Inside money = money that is not net wealth of the private sector.

Clearly M0 is outside money. Most money in modern economies is inside
money, however. Deposits at the commercial banks is an example of inside money.
These deposits are an asset to their holders, but a liability of the banks. Even
broader aggregates of money (or “near-money”) than M3 are sometimes consid-
ered. For instance, it has been argued that the amounts that people are allowed
to charge by using their credit cards should be included in the concept of “broad
money”. But this would involve double counting. Actually you do not pay when
you use a credit card at the store. It is the company issuing the credit card that
pays to the store (shortly after you made your purchases). You postpone your
payment until you receive your monthly bill from the credit card company. That
is, the credit card company does the payment for you and gives credit to you. It
is otherwise with a payment card where the amount for which you buy is instantly
charged your account in the bank.

3In casual notation, M1 ⊂M2 ⊂M3, but M0 *M1 since only a part of M0 belongs to M1.
4This could be an argument for weighing the different components of a monetary aggregate

by their degree of liquidity (see Barnett, 1980, and Spindt, 1985).
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16.2.2 The money multiplier

Bank lending is the channel through which the monetary base expands to an
effective money supply, the “money stock”, considerably larger than the monetary
base. The excess of the deposits of the general public over bank reserves (“vault
cash”and demand deposits in the central bank) is lent out in the form of bank
loans, or government or corporate bonds etc. The non-bank public then deposits
a fraction of these loans on checking accounts. Next, the banks lend out a fraction
of these and so on. This process is named the money multiplier process. And the
ratio of the “money stock”, measured as M1, say, to the monetary base is called
the money multiplier.
Let

CUR = currency held by the non-bank general public,

DEP = demand deposits held by the non-bank general public,
CUR

DEP
= cd, the desired currency-deposit ratio,

RES = bank reserves = currency held by the commercial banks

(“vault cash”) plus their demand deposits in the central bank,
RES

DEP
= rd, the desired reserve-deposit ratio.

Notice that the currency-deposit ratio, cd, is chosen by the non-bank public,
whereas the reserve-deposit ratio, rd, refers to the behavior of commercial banks.
In many countries there is a minimum reserve-deposit ratio required by law to
ensure a minimum liquidity buffer to forestall “bank runs” (situations where
many depositors, fearing that their bank will be unable to repay their deposits in
full and on time, simultaneously try to withdraw their deposits). On top of the
minimum reserve-deposit ratio the banks may hold “excess reserves”depending
on their assessment of their lending risks and need for liquidity.
To find the money multiplier, note that

M1 = CUR +DEP = (cd+ 1)DEP, (16.1)

where DEP is related to the monetary base, M0, through

M0 = CUR +RES = cdDEP + rdDEP = (cd+ rd)DEP.

Substituting into (16.1) gives

M1 =
cd+ 1

cd+ rd
M0 = mmM0, (16.2)

where mm = (cd+ 1)/(cd+ rd) is the money multiplier .
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As a not unrealistic example consider cd ≈ 0.7 and rd ≈ 0.07. Then we get
mm ≈ 2.2. When broader measures of money supply are considered, then, of
course, a larger money multiplier arises. It should be kept in mind that both cd
and rd, and therefore alsomm, are neither constant nor exogenous from the point
of view of monetary models. They are highly endogenous and depend on several
things, including degree of liquidity, expected returns, and risk on alternative
assets − from the banks’perspective as well as the customers’. In the longer run
cd and rd are affected by the evolution of payment technologies.
To some extent it is therefore a simple matter of identities and not particularly

informative, when we say that, given M0 and the currency-deposit ratio, the
money supply is smaller, the larger is the reserve-deposit ratio. Similarly, since
the latter ratio is usually considerably smaller than one, the money supply is
also smaller the larger is the currency-deposit ratio. Nevertheless, the money
multiplier turns out to be fairly stable under “normal circumstances”. But not
always. During 1929-33, in the early part of the Great Depression, the money
multiplier in the US fell sharply. AlthoughM0 increased by 15% during the four-
year period, liquidity (M1) declined by 27%.5 Depositors became nervous about
their bank’s health and began to withdraw their deposits (thereby increasing cd)
and this forced the banks to hold more reserves (thereby increasing rd). There is
general agreement that this banking panic contributed to the depression and the
ensuing deflation.
There is another way of interpreting the money multiplier. By definition

of cd, we have CUR = cdDEP. Let cm denote the non-bank public’s desired
currency-money ratio, i.e., cm = CUR/M1. Suppose cm is a constant. Then

CUR = cmM1 = cm(cd+ 1)DEP. (by (16.1))

It follows that cm = cd/(cd + 1) and 1− cm = 1/(cd + 1). Combining this with
(16.2) yields

M1 =
1

cd
cd+1

+ rd 1
cd+1

=
1

cm+ rd(1− cm)
=

1

1− (1− rd)(1− cm)
M0 = mmM0.

(16.3)
The way the central bank controls the monetary base is through open-market

operations, that is, by buying or selling bonds (typically short-term government
bonds) in the amount needed to sustain a desired level of the monetary base. In
the next stage the aim could be to obtain a desired level of M1 or a desired level
of the short-term interest rate or, in an open economy, a desired exchange rate
vis-a-vis other currencies.

5Blanchard (2003).
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An intuitive understanding of the money multiplier and the way commercial
banks “create”money can be attained by taking a dynamic perspective. Suppose
the central bank increases M0 by the amount ∆M0 through an open-market
operation, thus purchasing bonds. This is the first round. The seller of the bonds
deposits the fraction 1 − cm on a checking account in her bank and keeps the
rest as cash. The bank keeps the fraction rd of (1 − cm)∆M0 as reserves and
provides bank loans or buys bonds with the rest. This is the second round.
Thus, in the first round money supply is increased by ∆M0; in the second round
it is further increased by (1 − rd)(1 − cm)∆M0; in the third round further by
(1− rd)2(1− cm)2∆M0, etc.6 In the end, the total increase in money supply is

∆M1 = ∆M0 + (1− rd)(1− cm)∆M0 + (1− rd)2(1− cm)2∆M0 + ...

=
1

1− (1− rd)(1− cm)
∆M0 = mm∆M0.

The second last equality comes from the rule for the sum of an infinite geometric
series with quotient in absolute value less than one. The conclusion is that the
money supply is increased mm times the increase in the monetary base.

16.3 Money demand

Explaining in a precise way how paper money gets purchasing power and how
holding money - the “demand for money”in economists’traditional language - is
determined, is a diffi cult task and not our endeavour here. Suffi ce it to say that:

• In the presence of sequential trades and the absence of complete information
and complete markets, there is a need for a generally accepted medium of
exchange − money.

• The demand for money, by which we mean the quantity of money held by the
non-bank public, should be seen as part of a broader portfolio decision by
which economic agents allocate their financial wealth to different existing
assets, including money, and liabilities. The portfolio decision involves a
balanced consideration of after-tax expected return, risk, and liquidity.

Money is demanded primarily because of its liquidity service in transactions.
Money holding therefore depends on the amount of transactions expected to be
carried out with money in the near future. Money holding also depends on the
need for flexibility in spending when there is uncertainty: it is convenient to have
ready liquidity in case favorable opportunities should turn up. Generally money

6For simplicity, we assume here that cm and rd are constant.
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earns no interest at all or at least less interest than other assets. Therefore money
holding involves a trade-offbetween the need for liquidity and the wish for interest
yield.
The incorporation of a somewhat micro-founded money demand in macro-

models is often based on one or another kind of short-cut:

• The cash-in-advance constraint (also called the Clower constraint).7 Gen-
erally, households’purchases of nondurable consumption goods are in every
short period paid for by money held at the beginning of the period. With
the cash-in-advance constraint it is simply postulated that to be able to
carry out most transactions, you must hold money in advance. In continu-
ous time models the household holds a stock of money which is an increasing
function of the desired level of consumption per time unit and a decreasing
function of the opportunity cost of holding money.

• The shopping-costs approach. Here the liquidity services of money are mod-
elled as reducing shopping time or other kinds of non-pecuniary or pecu-
niary shopping costs. The shopping time needed to purchase a given level
of consumption, ct, is decreasing in real money holdings and increasing in
ct.

• The money-in-the-utility function approach. Here, the indirect utility that
money provides through reducing non-pecuniary as well as pecuniary trans-
action costs is modelled as if the economic agents obtain utility directly from
holding money. This will be our approach in the next chapter.

• The money-in-the-production-function approach. Here money facilitates
the firms’transactions, making the provision of the necessary inputs easier.
After all, typically around a third of the aggregate money stock is held by
firms.

16.4 What is then the “money market”?

In macroeconomic theory, by the “money market” is usually meant an abstract
market place (not a physical location) where at any particular moment the ag-
gregate demand for money “meets”the aggregate supply of money. Suppose the
aggregate demand for real money balances can be approximated by the function
L(Y, i), where LY > 0 and Li < 0 (“L” for liquidity demand). The level of
aggregate economic activity, Y, enters as an argument because it is an (approxi-
mate) indicator of the volume of transactions in the near future for which money

7After the American monetary theorist Robert Clower (1967).
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is needed. The short-term nominal interest rate, i, enters because it is the op-
portunity cost of holding cash instead of interest-bearing short-term securities,
for instance government bonds that mature in one year or less. 8 The latter
constitute a close substitute to money because they have a high degree of liquid-
ity. They are standardized and extensively traded in centralized auction markets
and under “normal circumstances”relatively safe. Because of the short term to
maturity, their market value is less volatile than longer-term securities.
Let the money supply in focus be M1 and let P be the general price level in

the economy (say the GDP deflator). Then money market equilibrium is present
if

M1 = PL(Y, i), (16.4)

that is, the available amount of money equals nominal money demand. Note that
supply and demand are in terms of stocks (amounts at a given point in time),
not flows. One of the issues in monetary theory is to account for how this stock
equilibrium is brought about at any instant. Which of the variables M1, P, Y,
and i is the equilibrating variable? Presuming that the central bank controlsM1,
classical (pre-Keynesian) monetary theory has P as the equilibrating variable
while in Keynes’monetary theory it is primarily i which has this role.9 Popular
specifications of the function L include L(Y, i) = Y αi−β and L(Y, i) = Y αe−βi,
where α and β are positive constants.
One may alternatively think of the “money market”in a more narrow sense,

however. We may translate (16.4) into a description of demand and supply for
base money:

M0 =
P

mm
L(Y, i), (16.5)

where mm is the money multiplier. The right-hand side of this equation reflects
that the demand for M1 via the actions of commercial banks is translated into a
demand for base money.10 If the public needs more cash, the demand for bank
loans rises and when granted, banks’ reserves are reduced. When in the next
round the deposits in the banks increase, then generally also the banks’reserves

8To simplify, we assume that none of the components in the monetary aggregate considered
earns interest. In practice demand deposits in the central bank and commercial banks may
earn a small nominal interest.

9If the economy has ended up in a “liquidity trap”with i at its lower bound, 0, an increase in
M1 will not generate further reductions in i. Agents would prefer holding cash at zero interest
rather than short-term bonds at negative interest. That is, the “=”in the equilibrium condition
(16.4) should be replaced by “≥”or, equivalently, L(Y, i) should at i = 0 be interpreted as a
“set-valued function”. The implications of this are taken up later in this book.
10Although the money multiplier tends to depend positively on i as well as other interest

rates, this aspect is unimportant for the discussion below and is ignored in the notation in
(16.5).
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have to increase. To maintain the required reserve-deposit ratio, banks which for
a few days have too little liquidity, borrow from other banks or other institutions
which have too much.
This narrowly defined money market is closely related to what is by the practi-

tioners and in the financial market statistics called the “money market”, namely
the trade in short-term debt-instruments that are close substitutes to holding
central bank money (think of commercial paper and government bonds with ma-
turity of less than one year). The agents trading in this market not only include
the central bank and the commercial banks but also the mortgage credit institu-
tions, life insurance companies, and other financial institutions. What is in the
theoretical models called the “short-term nominal interest rate”can normally be
identified with what is in the financial market statistics called the money market
rate or the interbank rate. This is the interest rate (usually measured as a per
year rate) at which the commercial banks provide unsecured loans (“signature
loans”) to each other, often on a day-to-day basis.

Open market operations The commercial banks may under certain condi-
tions borrow (on a secured basis) from the central bank at a rate usually called
the discount rate. This central bank lending rate will be somewhat above the
central bank deposit rate, that is, the interest rate, possibly nil, earned by the
commercial banks on their deposits in the central bank. The interval between the
discount rate and the deposit rate constitutes the interest rate corridor, within
which, under “normal circumstances”, the money market rate, i, fluctuates. The
central bank deposit rate acts as a floor for the money market rate and the cen-
tral bank lending rate as a ceiling. Sometimes, however, the money market rate
exceeds the central bank lending rate. This may happen in a financial crisis
where the potential lenders are hesitant because of the risk that the borrowing
bank goes bankrupt and because there are constraints on how much and when, a
commercial bank in need of cash can borrow from the central bank.
If the money market rate, i, tends to deviate from what the central bank

aims at (the “target rate”, also called the “policy rate”), the central bank will
typically through open-market operations provide liquidity to the money market
or withhold liquidity from it. The mechanism is as follows. Consider a one-period
government bond with a secured payoff equal to 1 euro at the end of the period
and no payoffs during the period (known as a zero-coupon bond or discount
bond). To fix ideas, let the period length be one month. In the financial market
language the maturity date is then one month after the issue date. Let v be the
market price (in euros) of the bond at the beginning of the month. The implicit
monthly interest rate, x, is then the solution to the equation v = (1 + x)−1, i.e.,

x = v−1 − 1.
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Translated into an annual interest rate, with monthly compounding, this amounts
to i = (1 + x)12 − 1 = v−12 − 1 per year. With v = 0.9975, we get i = 0.03049
per year.11

Suppose the central bank finds that i is too high and buys a bunch of these
bonds. Then less of them are available for the private sector, which on the other
hand now has a larger money stock at its disposal. According to the Keynesian
monetary theory (which is by now quite commonly accepted), under normal cir-
cumstances the general price level for goods and services is sticky in the short
run. It will be the bond price, v, which responds. In the present case it moves
up, thus lowering i, until the available stocks of bonds and money are willingly
held. In practice this adjustment of v, and hence i, to a new equilibrium level
takes place rapidly.
In recent decades the short-term interest rate has been the main monetary

policy tool when trying to stimulate or dampen the general level of economic
activity and control inflation. Under normal circumstances the open market
operations give the central bank a narrow control over the short-term interest rate.
Central banks typically announce their target level for the short-term interest rate
and then adjust the monetary base such that the actual money market rate ends
up close to the announced interest rate. This is what the European Central
Bank (the ECB) does when it announces its target for EONIA (euro overnight
index average) and what the U.S. central bank, the Federal Reserve, does when
it announces its target for the federal funds rate. In spite of its name, the latter
is not an interest rate charged by the U.S. central bank but a weighted average
of the interest rates commercial banks in the U.S. charge each other, usually
overnight.
In the narrowly defined “money market”close substitutes to money are traded.

From a logical point of view a more appropriate name for this market would be
the “short-term bond market”or the “near-money market”. This would entail
using the term “market” in its general meaning as a “place” where a certain
type of goods or assets are traded for money. Moreover, speaking of a “short-
term bond market”would be in line with the standard name for market(s) for
financial assets with maturity of more than one year, namelymarket(s) for longer-
term bonds and equity; by practitioners these markets are also called the capital
markets. Anyway, in this book we shall use the term “money market”in its broad
theoretical meaning as an abstract market place where the aggregate demand
for money “meets” the aggregate supply of money. As to what kind of money,
“narrow”or “broad”, further specification is always to be added.
The open-market operations by the central bank affect directly or indirectly

11With continuous compounding we have v = e−i/12 so that i = 12 ln v−1 = 0.03004 when v
= 0.9975.
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all the equilibrating prices in the financial markets as well as expectations about
the future path of these prices. This influence derives from the direct control
over the monetary base, M0. The central bank has no direct control, however,
over the money supply in the broader sense of M1, M2, or M3. These broader
monetary aggregates are also affected by the behavior of the commercial banks
and the non-bank public. The money supply in this broad sense can at most be
an intermediate target for monetary policy, that is, a target that can be reached
in some average-sense in the medium run.

16.5 Key questions in monetary theory and pol-
icy

Some of the central questions in monetary theory and policy are:

1. How is the level and the growth rate of the money supply (in the M0 sense,
say) linked to:

(a) the real variables in the economy (resource allocation),

(b) the price level and the rate of inflation?

2. How can monetary policy be designed to stabilize the purchasing power of
money and optimize the liquidity services to the inhabitants?

3. How can monetary policy be designed to stabilize the economy and “smooth”
business cycle fluctuations?

4. Do rational expectations rule out persistent real effects of changes in the
money supply?

5. What kind of regulation of commercial banks is conducive to a smooth
functioning of the credit system and reduced risk of a financial crisis?

6. Is hyperinflation always the result of an immense growth in the money
supply or can hyperinflation be generated by self-fulfilling expectations?

As an approach to answering long-run monetary issues, we will in the next
chapter consider a kind of neoclassical monetary model by Sidrauski (1967). In
this model money enters as a separate argument in the utility function. The
model has been applied to the study of long-run aspects like the issues 1, 2, and 6
above. The model is less appropriate, however, for short- and medium-run issues
such as 3, 4, and 5 in the list. These issues are dealt with in later chapters.
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16.6 Literature notes

In the Arrow-Debreu model, the basic microeconomic general equilibrium model,
there is assumed to exist a complete set of markets. That is, there is a market for
each “contingent commodity”, by which is meant that there are as many markets
as there are possible combinations of physical characteristics of goods, dates of
delivery, and “states of nature”that may prevail. In such an fictional world any
agent knows for sure the consequences of the choices made. All trades can be
made once for all and there will thus be no need for any money holding (Arrow
and Hahn, 1971).
For a detailed account of the different ways of modelling money demand in

macroeconomics, the reader is referred to, e.g., Walsh (2003). Concerning “money
in the production function”, see Mankiw and Summers (1986).

16.7 Exercises
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Makroøkonomi 2 Note 3

22.10.2015 Christian Groth

Back to short-run macroeconomics

In this lecture note we shift the focus from long-run macroeconomics to short-run

macroeconomics. The long-run models concentrated on mechanisms that are important

for the economic evolution over a time horizon of at least 10-15 years. With such a hori-

zon it is the development on the supply side (think of capital accumulation, population

growth, and technical progress) that is the primary determinant of cumulative changes

in output and consumption − the trend. The demand side and monetary factors are im-
portant for the fluctuations about the trend. In a long-run perspective these fluctuations

have limited quantitative importance. But within a short horizon, say up to four years,

the demand-side, monetary factors, nominal rigidities, and expectation errors are quan-

titatively important. The present note re-introduces these short-run factors and aims at

suggesting how short-run and long-run theory are linked. This also implies a few remarks

about theory dealing with the medium run, say 4 to 15 years.1 The purpose of medium-

run theory is to explain the regularities in the fluctuations (business cycles) about the

trend and to study what can be accomplished by monetary and fiscal stabilization pol-

icy. In that context the dynamic interaction between demand and supply factors and

the time-consuming adjustment in relative prices play an important role. In this way

medium-run theory bridges the gap between the long run and the short run.

1 Stylized facts about the short run

The idea that prices of most goods and services are sticky in the short run rests on

the empirical observation that in the short run firms in the manufacturing and service

industries typically let output do the adjustment to changes in demand while keeping

prices unchanged. In industrialized societies firms are able to do that because under

“normal circumstances” there is “abundant production capacity” available in the economy.

Three of the most salient short-run features that arise from macroeconomic time series

1These number-of-years declarations should not be understood as more than a rough indication. Their

appropriateness will depend on the specific historical circumstances and on the problem at hand.

1



analysis of industrialized market economies are the following (cf. Blanchard and Fischer,

1989, Christiano et al., 1999):

1) Shifts in aggregate demand (induced by sudden changes in the state of confidence,

exports, fiscal or monetary policy, or other events) are largely accommodated by

changes in quantities rather than changes in nominal prices − nominal price insen-
sitivity.

2) Even large movements in quantities are often associated with little or no movement

in relative prices − real price insensitivity. The real wage, for instance, exhibits

such insensitivity in the short run.

3) Nominal prices are sensitive to general changes in input costs.

These stylized facts pertain to final goods and services. It is not the case that all

nominal prices in the economy are in the short run insensitive vis-a-vis demand changes.

One must distinguish between production of most final goods and services on the one

hand and production of primary foodstuff and raw materials on the other. This leads to

the associated distinction between “cost-determined” and “demand- determined” prices.

Final goods and services are typically differentiated goods (imperfect substitutes).

Their production takes place under conditions of imperfect competition. As a result of

existing reserves of production capacity, generally speaking, the production is elastic w.r.t.

demand. An upward shift in demand tends to be met by a rise in production rather than

price. The price changes which do occur are mostly a response to general changes in costs

of production. Hence the name “cost-determined” prices.

For primary foodstuff and many raw materials the situation is different. To increase

the supply of most agricultural products requires considerable time. This is also true

(though not to the same extent) with respect to mining of raw materials as well as

extraction and transport of crude oil. When production is inelastic w.r.t. demand in

the short run, an increase in demand results in a diminution of stocks and a rise in

price. Hence the name “demand-determined prices”. The price rise may be enhanced by

a speculative element: temporary hoarding in the expectation of further price increases.

The price of oil and coffee − two of the most traded commodities in the world market
− fluctuate a lot. Through the channel of costs the changes in these demand-determined
prices spill over to the prices of final goods. Housing is also an area where, apart from

regulation, demand-determined prices is the rule in the short run.
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In industrialized economies manufacturing and services are the main sectors, and the

general price level is typically regarded as cost-determined rather than demand deter-

mined. Two further aspects are important. First, many wages and prices are set in

nominal terms by price setting agents like craft unions and firms operating in imperfectly

competitive output markets. Second, these wages and prices are in general deliberately

kept unchanged for some time even if changes in the environment of the agent occurs; this

aspect, possibly due to pecuniary or non-pecuniary costs of changing prices, is known as

nominal price stickiness. Both aspects have vast consequences for the functioning of the

economy as a whole compared with a regime of perfect competition and flexible prices.

2 A simple short-run model

The simple model presented below is close to what Paul Krugman named the World’s

Smallest Macroeconomic Model.2 The model is crude but nevertheless useful in at least

three ways:

• the model demonstrates the fundamental difference in the functioning of an economy
with flexible prices and one with sticky prices;

• by addressing spillovers across markets, the model is a suitable point of departure
for a definition of the Keynesian concept of effective demand;

• the model displays the logic behind the Keynesian refutation of Say’s law.

2.1 Elements of the model

We consider a monetary closed economy which produces a consumption good. There

are three sectors in the economy, a production sector, a household sector, and a public

sector with a consolidated government/central bank. Time is discrete. There is a current

period, of length a quarter of a year, say, and “the future”, compressing the next period

and onward. Labor is the only input in production. To simplify notation, the model

presents its story as if there is just one representative household and one representative

firm owned by the household, but the reader should imagine that there are numerous

agents of each kind.

2Krugman (1999). Krugman tells he learned the model back in 1975 from Robert Hall. As presented

here there is also an inspiration from Barro and Grossman (1971).
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The production function has CRS,

 =    0 (1)

where  is aggregate output of a consumption good which is perishable and therefore

cannot be stored,  is a technology parameter and  is aggregate employment in the

current period. In short- and medium-run macroeconomics the tradition is to use 

to denote labor input (“number of hours”), while  is typically used for either money

demand (“liquidity demand”) or supply of bank loans. We will follow this tradition.

The price of the consumption good in terms of money, i.e., the nominal price, is  The

wage rate in terms of money, the nominal wage, is We assume that the representative

firm maximizes profit, taking these current prices as given. The nominal profit, possibly

nil, is

Π =  − (2)

There is free exit from the production sector in the sense that the representative firm can

decide to produce nothing. Hence, an equilibrium with positive production requires that

profits are non-negative.

The representative household lives only one period, but leaves a bequest for the next

generation. The household supplies labor inelastically in the amount ̄ and receives the

profit obtained by the firm, if any. The household demands the consumption good in the

amount  in the current period (since we want to allow cases of non-market clearing,

we distinguish between consumption demand,  and realized consumption, . Current

income not consumed is saved for the future. As the output good cannot be stored, the

only non-human asset available in the economy is fiat money, which is thus the only asset

on hand for saving. There is no private banking sector in the economy. So “money”

means the “currency in circulation” (the monetary base) and is on net an asset in the

private sector as a whole. Until further notice the money stock is constant.

The preferences of the household are given by the utility function,

 = ln +  ln
̂

 
 0    1 (3)

where ̂ is the amount of money transferred to “the future”, and   is the expected

future price level. The utility discount factor  (equal to (1 + )−1 if  is the utility

discount rate) reflects “patience”.

Consider the household’s choice problem. Facing  and  and expecting that the
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future price level will be   the household chooses  and ̂ to maximize  s.t.

 + ̂ = + +Π ≡   ≤ ̄ (4)

Here,   0 is the stock of money held at the beginning of the current period and is

predetermined. The actual employment is denoted  and equals the minimum of the

amount of employment offered by the firm and the labor supply ̄ (the principle of

voluntary trade). The sum of initial financial wealth,  and nominal income,  +Π

constitutes the budget, 3 Nominal financial wealth at the beginning of the next period

is ̂ = + +Π−  i.e., the sum of initial financial wealth and planned saving

where the latter equals +Π− The benefit obtained by transferring ̂ depends

on the expected purchasing power of ̂ hence it is ̂  that enters the utility function.

Presumably the household expects some labor and profit income also in the future and

seemingly ownership rights to the firms’ profit are non-negotiable. How the decision

making is related to such matters is not specified in this minimalist way of representing

that there is a future.

Substituting ̂ =  −  into (3), we get the first-order condition




=
1


+ 

 

 − 
(− 

 
) = 0

which gives

 =
1

1 + 
 (5)

We see that the marginal (= average) propensity to consume is (1+)−1 hence inversely

related to the patience parameter  The planned stock of money to be held at the end

of the period is

̂ = (1− 1

1 + 
) =



1 + 


So, the expected price level,   in the future does not affect the demands,  and ̂

This is a special feature caused by the additive-logarithmic specification of the utility

function in (3). Indeed, with this specification the substitution and income effects of a

rise in the expected real gross rate of return, (1 )(1 ) on savings exactly offset each

other, and there is no wealth effect in this model.

Inserting (4) and (2) into (5) gives

 =


 (1 + )
=

 + +Π

 (1 + )
=



+ 

1 + 
 (6)

3As time is discrete, expressions like + +Π are legitimate. Although it is meaningless to add a

stock and a flow (since they have different denominations), the sum  + +Π should be interpreted

as  + ( + Π)∆ where ∆ is the period length. With the latter being the time unit, we have ∆

= 1

5



In our simple model output demand is the same as the consumption demand  So

clearing in the output market, in the sense of equality between demand and actual output,

requires  =  So, if this clearing condition holds, substituting into (6) gives the

relationship

 =



 (7)

This is only a relationship between  and  not a solution for any of them since both

are endogenous variables so far. Moreover, the relationship is conditional on clearing in

the output market.

We have assumed that agents take prices as given when making their demand and

supply decisions. But we have said nothing about whether nominal prices are flexible or

rigid as seen from the perspective of the system as a whole.

2.2 The case of fully flexible  and 

What Keynes called “classical economics” is nowadays also often called “Walrasian macro-

economics” (sometime just “pre-Keynesian macroeconomics”). In this theoretical tradi-

tion both wages and prices are assumed fully flexible and all markets perfectly competitive.

Firms’ ex ante output supply conditional on a hypothetical wage-price pair ( ) and

the corresponding labor demand will be denoted   and , respectively. As we know

from microeconomics, the pair (  ) need not be unique, it can easily be a “set-valued

function” of ( ) Moreover, with constant returns to scale in the production function,

the range of this function may for certain pairs ( ) include (∞∞).
The distinguishing feature of the Walrasian approach is that wages and prices are

assumed fully flexible. Both  and  are thought to adjust immediately so as to clear

the labor market and the output market like in a centralized auction market. Clearing

in the labor market requires that  and  are adjusted so that actual employment, 

equals labor supply,  which is here inelastic at the given level ̄ So

 =  = ̄ =  (8)

where the last equality indicates that this employment level is willingly demanded by the

firms.

We have assumed a constant-returns-to-scale production function (1). Hence, the

clearing condition (8) requires that firms have zero profit. In turn, by (1) and (2), zero
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profit requires that the real wage equals labor productivity:




=  (9)

With clearing in the labor market, output must equal full-employment output,

 = ̄ ≡   =   (10)

where the superscript “” stands for “full employment”, and where the last equality

indicates that this level of output is willingly supplied by the firms. For this level of

output to match the demand,  coming from the households, the price level must be

 =


 
≡   (11)

in view of (7) with  =    This price level is the classical equilibrium price, hence the

superscript “”. Substituting into (9) gives the classical equilibrium wage

 =   ≡  (12)

For general equilibrium we also need that the desired money holding at the end of the

period equals the available money stock. By Walras’ law this equality follows automat-

ically from the household’s Walrasian budget constraint and clearing in the output and

labor markets. To see this, note that theWalrasian budget constraint is a special case of

the budget constraint (4), namely the case

 + ̂ = + +Π (13)

where Π is the notional profit associated with the hypothetical production plan (  )

i.e.,

Π ≡   − (14)

The Walrasian budget constraint thus imposes replacement of the term for actual employ-

ment,  with the households’ desired labor supply, (= ̄) It also imposes replacement

of the term for actual profit, Π with the hypothetical profit Π (“” for “classical”) cal-

culated on the basis of the firms’ aggregate production plan (  ).

Now, let the Walrasian auctioneer announce an arbitrary price vector ( 1) with

  0   0 and 1 being the price of the numeraire, money. Then the values of excess

demands add up to

 ( −) +  ( −  ) + ̂ −

=  −   +  + ̂ − − (by rearranging)

=  −   +Π (by (13))

=  −   +Π ≡ 0 (from definition of Π in (14))
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This exemplifiesWalras’ law, saying that withWalrasian budget constraints the aggregate

value of excess demands is identically zero. Walras’ law reflects that when households

satisfy their Walrasian budget constraint, then as an arithmetic necessity the economy

as a whole has to satisfy an aggregate budget constraint for the period in question. It

follows that the equilibrium condition ̂ =  is ensured as soon as there is clearing in

the output and labor markets. And more generally: if there are  markets and − 1 of
these clear, so does the ’th market.

Consequently, when ( ) = (   ) all markets clear in this flexwage-flexprice

economy with perfect competition and a representative household with the “endowment”-

pair ( ̄). Such a state of affairs is known as a classical or Walrasian equilibrium.4 A

key feature is expressed by (8) and (10): output and employment are supply-determined,

i.e., determined by the supply of production factors, here labor.

The intuitive mechanism behind this equilibrium is the following adjustment process.

Imagine that in an ultra-short sub-period  − 6= 0 In case  −   0 ( 0)

there will be excess supply (demand) in the labor market. This drives down (up). Only

when  =  and full employment obtains, can the system be at rest. Next imagine

that  −  6= 0 In case  −   0 ( 0) there is excess supply (demand) in the output

market. This drives  down (up). Again, only when  =   and  =  (whereby

 = ), so that the output market clears under full employment, will the system be at

rest.

This adjustment process is fictional, however, because outside equilibrium the Wal-

rasian supplies and demands, which supposedly drive the adjustment, are artificial con-

structs. Being functions only of initial resources and price signals, the Walrasian supplies

and demands are mutually inconsistent outside equilibrium and can therefore not tell

what quantities will be traded during an adjustment process. The story needs a consider-

able refinement unless one is willing to let the mythical “Walrasian auctioneer” enter the

scene and bring about adjustment toward the equilibrium prices without allowing trade

until these prices are found.

Anyway, assuming that Walrasian equilibrium has been attained, by comparative stat-

ics based on (11) and (12) we see that in the classical regime: (a)  and are proportional

to ; and (b) output is at the unchanged full-employment level whatever the level of .

This is the neutrality of money result of classical macroeconomics.

4To underline its one-period nature, it may be called a Walrasian short-run or a Walrasian temporary

equilibrium.
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The neutrality result also holds in a quasi-dynamic context where we consider an actual

change in the money stock occurring in historical time. Suppose the government/central

bank at the beginning of the period brings about lump-sum transfers to the households

in the total amount ∆  0 As there is no taxation, this implies a budget deficit which

is thus fully financed by money issue.5 So (134) is replaced by

 + ̂ = +∆ +̄ +Π (15)

If we replace in the previous formulas by 0 ≡+∆ we see that money neutrality

still holds. As saving is income minus consumption, there is now positive nominal private

saving of size  = ∆ + ̄ + Π −  =  0 −  = ∆ On the other hand

the government dissaves, in that its saving is  = −∆ where ∆ is the government

budget deficit. So national saving is and remains  ≡ + = 0 (it must be nil as there

are no durable produced goods).

2.3 The case of  and  fixed in the short run

In standard Keynesian macroeconomics nominal wages are considered predetermined in

the short run, fixed in advance by wage bargaining between workers (or workers’ unions)

and employers (or employers’ unions). Those who end up unemployed in the period do

not try to − or are not able to − undercut those employed, at least not in the current
period.

Likewise, nominal prices are set in advance by firms facing downward-sloping demand

curves. It is understood that there is a large spectrum of differentiated products, and 

and  are composites of these. This heterogeneity ought of course be visible in the model

− and it will become so in Section 19.3. But at this point the model takes an easy way
out and ignores the involved aggregation issue.

Let in the current period be given at the level ̄  Because firms have market power,

the profit-maximizing price involves a mark-up on marginal cost, ̄ = ̄ (which

is also the average cost). We assume that the price setting occurs under circumstances

where the chosen mark-up becomes a constant   0, so that

 = (1 + )
̄


≡ ̄  (16)

5Within the model this is in fact the only way to increase the money stock. As money is the only asset

in the economy, a change in the money stock can not be brought about through open market operations

where the central bank buys or sells another financial asset.
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While ̄ is considered exogenous (not determined within the model), ̄ is endogenously

determined by the given ̄   and  There are barriers to entry in the short run.

Because of the fixed wage and price, the distinction between ex ante (also called

planned or intended) demands and supplies and the ex post carried out purchases and

sales are now even more important than before. This is because the different markets may

now also ex post feature excess demand or excess supply (to be defined more precisely

below). According to the principle that no agent can be forced to trade more than desired,

the actual amount traded in a market must equal the minimum of demand and supply.

So in the output market and the labor market the actual quantities traded will be

 = min(   ) and (17)

 = min( ) (18)

respectively, where the superscripts “” and “” are now used for demand and supply in

a new meaning to be defined below. This principle, that the short side of the market

determines the traded quantity, is known as the short-side rule. The other side of the

market is said to be quantity rationed or just rationed if there is discrepancy between  

and  . In view of the produced good being non-storable, intended inventory investment

is ruled out. Hence, the firms try to avoid producing more than can be sold. In (17) we

have thus identified the traded quantity with the produced quantity, 

But what exactly do we mean by “demand” and “supply” in this context where market

clearing is not guaranteed? We mean what is appropriately called the effective demand

and the effective supply (“effective” in the meaning of “operative” in the market, though

possibly frustrated in view of the short-side rule). To make these concepts clear, we need

first to define an agent’s effective budget constraint:

DEFINITION 1 An agent’s (typically a household’s) effective budget constraint is the

budget constraint conditional on the perceived price and quantity signals from the mar-

kets.

It is the last part, “and quantity signals from the markets”, which is not included in

the concept of a Walrasian budget constraint. The perceived quantity signals are in the

present context the actual employment constraint faced by the household and the profit

expected to be received from the firms and determined by their actual production.6 So

the household’s effective budget constraint is given by (4). In contrast, the Walrasian

6We assume the perceived quantity signals are deterministic.
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budget constraint is not conditional on quantity signals from the markets but only on the

“endowment” ( ̄) and the perceived price signals and profit.

DEFINITION 2 An agent’s effective demand in a given market is the amount the agent

bids for in the market, conditional on the perceived price and quantity signals that con-

strains its bidding. By “bids for” is meant that the agent is both able to buy that amount

and wishes to buy that amount, given the effective budget constraint. Summing over all

potential buyers, we get the aggregate effective demand in the market.

DEFINITION 3 An agent’s effective supply in a given market is the amount the agent

offers for sale in the market, conditional on perceived price and quantity signals that

constrains its offering. By “offers for sale” is meant that the agent is both able to bring

that amount to the market and wishes to sell that amount, given the set of opportunities

available. Summing over all potential sellers, we get the aggregate effective supply in the

market.

When  = ̄  the aggregate effective output demand,   is the same as households’

consumption demand given by (6) with  = ̄ , i.e.,

  =  =

̄
+ 

1 + 
 (19)

In view of the inelastic labor supply, households’ aggregate effective labor supply is simply

 = ̄

Firms’ aggregate effective output supply is

  =   ≡ ̄ (20)

Indeed, in the aggregate the firms are not able to bring more to the market than full-

employment output ,    And every individual firm is not able to bring to the market

than what can be produced by “its share” of the labor force. On the other hand, because

of the constant marginal costs, every unit sold at the preset price adds to profit. The

firms are therefore happy to satisfy any output demand forthcoming − which is in practice
testified by a lot of sales promotion.

Firms’ aggregate effective demand for labor is constrained by the perceived output

demand,   because the firm would loose by employing more labor. Thus,

 =
 


 (21)
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By the short-side rule (17), combined with (20), follows that actual aggregate output

(equal to the quantity traded) is

 = min(   ) 5   

So the following three mutually exclusive cases exhaust the possibilities regarding aggre-

gate output:

 =      (the Keynesian regime),

 =      (the repressed inflation regime),

 =   =   (the border case).

2.3.1 The Keynesian regime:  =      

In this regime we can substitute  =   into (19) and solve for  :

 =   =


̄
≡      ≡ 

 
=   (22)

where we have denoted the resulting output   (the superscript “” for “Keynesian”). The

inequality in (22) is required by the definition of the Keynesian regime, and the identity

comes from (11). Necessary and sufficient for the inequality is that ̄    ≡   In

view of (16), the economy is thus in the Keynesian regime if and only if

̄   (1 + ) (23)

Since     in this regime, we may say there is “excess supply” in the output market or,

with a perhaps better term, there is a “buyers’ market” situation (sale less than desired).

The reservation regarding the term “excess supply” is due to the fact that we should

not forget that  −    0 is a completely voluntary state of affairs on the part of the

price-setting firms.

From (1) and the short-side rule now follows that actual employment will be

 =  =



=



̄
 ̄ =  (24)

Also the labor market is thus characterized by “excess supply” or a “buyers’ market”

situation. Profits are Π = ̄ − ̄ = (1− ̄(̄))̄ = (1− (1 + )−1)−1  0

where we have used, first,  =  , then the price setting rule (16), and finally (22).

This solution for () is known as a Keynesian equilibrium for the current period.

It is named an equilibrium because the system is “at rest” in the following sense: (a)
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agents do the best they can given the constraints (which include the preset prices and

the quantities offered by the other side of the market); and (b) the chosen actions are

mutually compatible (purchases and sales match). The term equilibrium is here not used

in the Walrasian sense of market clearing through instantaneous price adjustment but in

the sense of a Nash equilibrium conditional on perceived price and quantity signals. To

underline its temporary character, the equilibrium may be called a Keynesian short-run

(or temporary) equilibrium. The flavor of the equilibrium is Keynesian in the sense that

there is unemployment and at the same time it is aggregate demand in the output market,

not the real wage, which is the binding constraint on the employment level. A higher

propensity to consume (lower discount factor ) results in higher aggregate demand,  

and thereby a higher equilibrium output,  . In contrast, a lower real wage due to either

a higher mark-up,  or a lower marginal (= average) labor productivity,  does not

result in a higher  . On the contrary,   becomes lower, and the causal chain behind

this goes via a higher ̄  cf. (16) and (22). In fact, the given real wage, ̄̄ = (1+)

is consistent with unemployment as well as full employment, see below. It is the sticky

nominal price at an excessive level, caused by a sticky nominal wage at an “excessive”

level, that makes unemployment prevail through a too low aggregate demand,   A lower

nominal wage would imply a lower ̄ and thereby, for a given  stimulate   and thus

raise  

In brief, the Keynesian regime leads to an equilibrium where output as well as em-

ployment are demand-determined.

The “Keynesian cross” and effective demand The situation is illustrated by the

“Keynesian cross” in the (  ) plane shown in Fig. 19.1, where   =  = (1 +

)−1( +̄ ) We see the vicious circle: Output is below the full-employment level

because of low consumption demand; and consumption demand is low because of the low

employment. The economy is in a unemployment trap. Even though at   we have Π  0

and there are constant returns to scale, the individual firm has no incentive to increase

production because the firm already produces as much as it rightly perceives it can sell

at its preferred price. We also see that here money is not neutral. For a given  = ̄ 

and thereby a given  = ̄  a higher  results in higher output and higher employment.

Although the microeconomic background we have alluded to is a specific “market

power story” (one with differentiated goods and downward sloping demand curves), the

Keynesian cross in Fig. 19.1 may turn up also for other microeconomic settings. The key

point is the fixed ̄    and fixed ̄  ̄ 
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Figure 1: The Keynesian regime (̄  

(1 + );  and   given, ̄ fixed).

The fundamental difference between the Walrasian and the present framework is that

the latter allows trade outside Walrasian equilibrium. In that situation the households’

consumption demand depends not on how much labor the households would prefer to sell

at the going wage, but on how much they are able to sell, that is, on a quantity signal

received from the labor market. Indeed, it is the actual employment,  that enters the

operative budget constraint, (4), not the desired employment as in classical or Walrasian

theory.

2.3.2 The repressed-inflation regime:  =     

This regime represents the “opposite” case of the Keynesian regime and arises if and only

if the opposite of (23) holds, namely

̄   (1 + )

In view of (16), this inequality is equivalent to ̄    ≡  . Hence (̄ ) 

( ) =   = ̄ In spite of the high output demand, the shortage of labor hinders

the firms to produce more than   . With  =    output demand, which in this model

is always the same as consumption demand,  is, from (6),

  =

̄
+  

1 + 
  =   =    (25)

As before, effective output supply,   equals full-employment output,   
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Figure 2: The repressed inflation regime (̄  

(1 + );  and   given, ̄ fixed).

The new element here in that firms perceive a demand level in excess of    As the

real-wage level does not deter profitable production, firms would thus prefer to employ

people up to the point where output demand is satisfied. But in view of the short side

rule for the labor market, actual employment will be

 =  = ̄   =
 




So there is excess demand in both the output market and the labor market. Presum-

ably, these excess demands generate pressure for wage and price increases. By assumption,

these potential wage and price increases do not materialize until possibly the next period.

So we have a repressed-inflation equilibrium () = (   ̄) although possibly short-

lived.

Fig. 19.2 illustrates the repressed-inflation regime. In the language of the microeco-

nomic theory of quantity rationing, consumers are quantity rationed in the goods market,

as realized consumption =  =      = consumption demand. Firms are quantity

rationed in the labor market, as   . This is the background for the parlance that in

the repressed inflation regime, output and employment are not demand-determined but

supply-determined. Both the output market and the labor market are sellers’ markets

(purchase less than desired). Presumably, the repressed inflation regime will not last long

unless there are wage and price controls imposed by the government, as for instance may

be the case for an economy in a war situation.7

7As another example of repressed inflation (simultaneous excess demand for consumption goods and
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2.3.3 The border case between the two regimes:  =   =   

This case arises if and only if ̄ =  (1 + ) which is in turn equivalent to ̄ =

(1 + )̄ =   ≡   ≡( ). No market has quantity rationing and we may

speak of both the output market and the labor market as balanced markets.

There are two differences compared with the classical equilibrium, however. The first

is that due to market power, there is a wedge between the real wage and the marginal

productivity of labor. In the present context, though, where labor supply is inelastic,

this does not imply inefficiency but only a higher profit/wage-income ratio than under

perfect competition (where the profit/wage-income ratio is zero). The second difference

compared with the classical equilibrium is that due to price stickiness, the impact of

shifts in exogenous variables will be different. For instance a lower  will here result

in unemployment, while in the classical model it will just lower  and  and not affect

employment.

2.3.4 In terms of effective demands and supplies Walras’ law does not hold

As we saw above, with Walrasian budget constraints, the aggregate value of excess de-

mands in the given period is zero for any given price vector, ( 1) with   0 and

  0 In contrast, with effective budget constraints, effective demands and supplies,

and the short-side rule, this is no longer so. To see this, consider a pair ( ) where

   and  6=   ≡ ( ) Such a pair leads to either the Keynesian regime or

the repressed-inflation regime. The pair may, but need not, equal one of the pairs (̄  ̄ )

considered above in Fig. 19.1 or 19.2 (we say “need not”, because the particular -markup

relationship between and  is not needed). We have, first, that in both the Keynesian

and the repressed-inflation regime, effective output supply equals full-employment output,

  =    (26)

The intuition is that in view of   , the representative firm wishes to satisfy any

output demand forthcoming but it is only able to do so up to the point of where the

availability of workers becomes a binding constraint.

Second, the aggregate value of excess effective demands is, for the considered price

labor) we may refer to Eastern Europe before the dissolution of the Soviet Union in 1991. In response to

severe and long-lasting rationing in the consumption goods markets, households tended to decrease their

labor supply (Kornai, 1979). This example illustrates that if labor supply is elastic, the effective labor

supply may be less than the Walrasian labor supply due to spillovers from the output market.
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vector ( 1) equal to

 ( −) +  ( −  ) + ̂ −

=  ( − ̄) +  + ̂ − −  

=  ( − ̄) + +Π−   (by (4))

=  ( − ̄) +  −   (by (2))

=  ( − ̄) +  ( −  )

½
 0 if   ( ) and

 0 if   ( ) and   
(27)

The aggregate value of excess effective demands is thus not identically zero. As expected, it

is negative in a Keynesian equilibrium and positive in a repressed-inflation equilibrium.8

The reason that Walras’ law does not apply to effective demands and supplies is that

outside Walrasian equilibrium some of these demands and supplies are not realized in the

final transactions.

This takes us to Keynes’ refutation of Say’s law and thereby what Keynes and others

have regarded as the core of his theory.

2.3.5 Say’s law and its refutation

The classical principle “supply creates its own demand” (or “income is automatically

spent on products”) is named Say’s law after the French economist and business man

Jean-Baptiste Say (1767-1832). In line with other classical economists like David Ricardo

and John Stuart Mill, Say maintained that although mismatch between demand and

production can occur, it can only occur in the form of excess production in some industries

at the same time as there is excess demand in other industries.9 General overproduction

is impossible. Or, by a classical catchphrase:

Every offer to sell a good implies a demand for some other good.

By “good” is here meant a produced good rather than just any traded article, including

for instance money. Otherwise Say’s law would be a platitude (a simple implication of

the definition of trade). So, interpreting “good” to mean a produced good, let us evaluate

8At the same time, (27) together with the general equations  = ̄ and   =    shows that we have

̂ =  in a Keynesian equilibrium (where  = ) and ̂   in a repressed-inflation equilibrium

(where  =   ).
9There were two dissidents at this point, Thomas Malthus and Karl Marx, two classical economists

that were otherwise not much aggreeing.
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Say’s law from the point of view of the result (27). We first subtract  ( − )

= ( − ̄) on both sides of (27), then insert (26) and rearrange to get

 ( −  ) + ̂ − = 0 (28)

for any   0 Consider the case    In this situation every unit produced and

sold is profitable. So any  in the interval 0   ≤   is profitable from the supply side

angle. Assume further that  = ̄    ≡( ) This is the case shown in Fig. 19.1.

The figure illustrates that aggregate demand is rising with aggregate production. So far

so well for Say’s law. We also see that if aggregate production is in the interval 0  

   then  (=  )   This amounts to excess demand for goods and in effect, by

(28), excess supply of money. Still, Say’s law is not contradicted. But if instead aggregate

production is in the interval     ≤    then  (=  )   ; now there is general

overproduction. Supply no longer creates its own demand. There is a general shortfall of

demand. By (28), the other side of the coin is that when    then ̂   which

means excess demand for money. People try to hoard money rather than spend on goods.

Both the Great Depression in the 1930s and the Great Recession 2008- can be seen in this

light.10

The refutation of Say’s law does not depend on the market power and constant markup

aspects we have adhered to above. All that is needed for the argument is that the agents

are price takers within the period. In addition, the refutation does not hinge on money

being the asset available for transferring purchasing power from one period to the next.

We may imagine an economy where  represents land available in limited supply. As

land is also a non-produced store of value, the above analysis goes through − with one
exception, though. The exception is that ∆ in (15) can no longer be interpreted as a

policy choice. Instead, a positive ∆ could be due to discovery of new land.

We conclude that general overproduction is possible and Say’s law thereby refuted.

It might be objected that our “aggregate reply” to Say’s law is not to the point since

Say had a disaggregate structure with many industries in mind. Considering an explicit

disaggregate production sector makes no essential difference, however, as a simple example

will now show.

10Paul Krugman stated it this way:

“When everyone is trying to accumulate cash at the same time, which is what happened

worldwide after the collapse of Lehman Brothers, the result is an end to demand [for output],

which produces a severe recession” (Krugman, 2009).
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Many industries Suppose there is still one labor market, but  industries with pro-

duction function  =  where  and  are output and employment in industry 

respectively,  = 1 2     Let the preferences of the representative household be given

by

 =
X


 ln  +  ln
̂

 
   0  = 1 2     0    1

In analogy with (4), the budget constraint isX


 + ̂ =  ≡ +
X


 +
X


Π = +
X




where the last equality comes from

Π =  −

Utility maximization gives  = (1 + ).

As a special case, consider  = 1 and  =  ,  = 1 2     Then

 =


(1 + )
 (29)

and

 = + 
X


 ≡ + 

Substituting into (29), we thus find demand for consumption good  as

 =




+ 

1 + 
≡  for all 

Let   min
£
( )

¤
 where   ≡ ̄ It follows that every unit produced and

sold is profitable and that

 =


+ 

1 + 
≤



+  

1 + 
   

where the weak inequality comes from  ≤   (always) and the strict inequality from

  ( )

Now, suppose good 1 is brought to the market in the amount 1, where   1

   Industry 1 thus experiences a shortfall of demand. Will there in turn necessarily

be another industry experiencing excess demand? No. To see this, consider the case 

     for all  All these supplies are profitable from a supply side point of view,

and enough labor is available. Indeed, by construction the resource allocation is such that

 
X

 ≡  ≤ ̄     (30)
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where ̄ = max [1     ]   . This is a situation where people try to save (hoard

money) rather than spend all income on produced goods. It is an example of general

overproduction, thus falsifying Say’s law.

In the special case where all  =  the situation for each single industry can be

illustrated by a diagram as that in Fig. ??. Just replace         and  in Fig.

?? by     ≡( )   and  respectively.

Could the evaluation of Say’s law be more favorable if we allow for the existence of

interest-bearing assets? The answer is no, as we shall see in Chapter ??.

2.4 Short-run adjustment dynamics

We now return to the aggregate setup. Apart from the border case of balanced markets,

we have considered two kinds of “fix-price equilibria”, repressed inflation and Keynesian

equilibrium. Most macroeconomists consider nominal wages and prices to be less sticky

upwards than downwards. So a repressed inflation regime is typically regarded as having

little durability (unless there are wage and price controls imposed by a government). It is

otherwise with the Keynesian equilibrium. A way of thinking about this is the following.

Suppose that up to the current period full-employment equilibrium has applied: 

=   = (̄ ) =   and ̄ = (1 + )̄ =   ≡   ≡ ( ) Then, for

some external reason, at the start of the current period a rise in the patience parameter

occurs, from  to 0 so that the new propensity to save is 
0
(1 + 0)  (1 + ). We

may interpret this as “precautionary saving” in response to a sudden fall in the general

“state of confidence”.

Let our “period” be divided into  sub-periods, indexed  = 0 1 2     −1 of length
1, where  is “large”. At least within the first of these sub-periods, the preset ̄ and

̄ are maintained and firms produce without having yet realized that aggregate demand

will be lower than in the previous period. After a while firms realize that sales do not

keep track with production.

There are basically two kinds of reaction to this situation. One is that wages and

prices are maintained throughout all the sub-periods, while production is scaled down

to the Keynesian equilibrium   = (0̄ ). Another is that wages and prices adjust

downward so as to soon reestablish full-employment equilibrium. Let us take each case

at a time.
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Wage and price stay fixed: Sheer quantity adjustment For simplicity we have

assumed that the produced goods are perishable. So unsold goods represent a complete

loss. If firms fully understand the functioning of the economy and have model-consistent

expectations, they will adjust production per time unit down to the level   as fast as

possible. Suppose instead that firms have naive adaptive expectations of the form


−1 = −1  = 0 1 2  

This means that the “subjective” expectation, formed in sub-period −1 of demand next
sub-period is that it will equal the demand in sub-period − 1 Let the time-lag between
the decision to produce and the observation of the demand correspond to the length of

the subperiods. It is profitable to satisfy demand, hence actual output in sub-period 

will be

 = 
−1 = 

−1 =
̄

1 + 0
+

−1
1 + 0



in analogy with (19). This is a linear first-order difference equation in , with constant

coefficients. The solution is (see Math Tools)

 = (0 −  ∗0)

µ
1

1 + 0

¶

+  ∗0  ∗0 =


0̄
=       (31)

Suppose 0 = 09 say. Then actual production,  converges fast towards the steady-state

value  . When  =   the system is at rest. Fig. 19.x illustrates. Although there is

excess supply in the labor market and therefore some downward pressure on wages, the

Keynesian presumption is that the workers’s side in the labor market generally withstand

the pressure.11

Fig. 19.x about here.

The process (31) also applies “in the opposite direction”. Suppose, starting from the

Keynesian equilibrium  = (0̄ ) a reduction in the patience parameter 0 occurs,

such that(0̄ ) increases, but still satisfies (0̄ )     Then the initial condition

in (31) is 0   ∗0 and the greater propensity to consume leads to an upward quantity

adjustment.

11Possible explanations of downward wage stickiness are discussed in Chapter ??.
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Downward wage and price adjustment Several of Keynes’ contemporaries, among

them A. C. Pigou, maintained that the Keynesian state of affairs with  =     

could only be very temporary. Pigou’s argument was that a fall in the price level would

take place and lead to higher purchasing power of  The implied stimulation of ag-

gregate demand would bring the economy back to full employment. This hypothetically

equilibrating mechanism is known as the “real balance effect” or the “Pigou effect” (after

Pigou, 1943).

Does the argument go through? To answer this, we imagine that the time interval

between different rounds of wage and price setting is as short as our sub-periods. We

imagine the time interval between households’ decision making to be equally short. Given

the fixed markup , an initial fall in the preset ̄ is needed to trigger a fall in the preset

̄  The new classical equilibrium price and wage levels will be

 0 =


0 
and  0 =  0

Both will thus be lower than the original ones − by the same factor as the patience

parameter has risen, i.e., the factor 0 In line with “classical” thinking, assume that

soon after the rise in the propensity to save, the incipient unemployment prompts wage

setters to reduce ̄ and thereby price setters to reduce ̄  Let both ̄ and ̄ after a few

rounds be reduced by the factor 0 Denoting the resulting wage and price ̄ 0 and ̄ 0

respectively, we then have

̄ 0 =
 0

1 + 
 ̄ 0 = (1 + )

̄ 0


=

 0


≡  0 ≡ 

0 


Seemingly, this restores aggregate demand at the full-employment level   = (0̄ 0)

=   .

While this “classical” adjustment is conceivable in the abstract, Keynesians question

its practical relevance for several reasons:

1. Empirically, it seems to be particularly in the downward direction that nominal

wages are sticky. And without an initial fall in the nominal wage, the downward

wage-price spiral does not get started.

2. A downward wage-price spiral, i.e., deflation, increases the implicit real interest

rate, ( − +1)+1 thus tending to dampen aggregate demand rather than the

opposite.

3. If we go outside our simple model, there are additional objections:
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(a) the monetary base is in reality only a small fraction of financial wealth, and so

the real balance effect can not be powerful unless the fall in the price level is

drastic;

(b) many firms and households have nominal debt, the real value of which would

rise dramatically, thereby leading to bankruptcies and a worsening of the con-

fidence crisis, thus counteracting a return to full employment.

One should be aware that there are two distinct kinds of “price flexibility”. It can

be “imperfect” or “perfect” (also called “full”). The first kind relates to a gradual price

process, for instance generated by a wage-price spiral as at item 2 above. The latter kind

relates to instantaneous and complete price adjustment as with a Walrasian auctioneer,

cf. Section 2. It is the first kind that may be destabilizing rather than the opposite.

2.5 Digging deeper

As it stands the above theoretical framework has many limitations:

(a) The wage and price setting should be explicitly modelled and in this connection

there should be an explanation of the wage and price stickiness.

(b) It should be made clear how to come from the existence of many differentiated

goods and markets with imperfect competition to aggregate output and income which in

turn constitute the environment conditioning individual agents’ actions.

(c) To incorporate better the role of asset markets, including the primary role of money

as a medium of exchange rather than a store of value, at least one alternative asset should

enter, an interest-bearing asset.

(d) The model should be truly dynamic with forward-looking endogenous expectations

and gradual wage and price changes depending on the market conditions, in particular

the employment situation.

We now comment briefly on these points.

3 Price adjustment costs

The classical theory of perfectly flexible wages and prices and neutrality of money seems

contradicted by overwhelming empirical evidence. At the theoretical level the theory
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ignores that the dominant market form is not perfect competition. Wages and prices

are usually set by agents with market power. And there may be costs associated with

changing prices and wages. Here we consider such costs.

The literature has modelled price adjustment costs in two different ways. Menu costs

refer to the case where there are fixed costs of changing price. Another case considered

in the literature is the case of strictly convex adjustment costs, where the marginal price

adjustment cost is increasing in the size of the price change.

The most obvious examples of menu costs are of course costs associated with

1. remarking commodities with new price labels,

2. reprinting price lists (“menu cards”) and catalogues.

But the term menu costs should be interpreted in a broader sense, including pecuniary

as well non-pecuniary costs of:

3. information-gathering,

4. recomputing optimal prices,

5. conveying the new directives to the sales force,

6. the risk of offending customers by frequent and/or large price changes,

7. search for new customers willing to pay a higher price,

8. renegotiating contracts.

Menu costs induce firms to change prices less often than if no such costs were present.

And some of the points mentioned in the list above, in particular point 7 and 8, may be

relevant also in the different labor markets.

The menu cost theory is one of the microfoundations provided by modern Keynesian

economics for the presumption that nominal prices and wages are sticky in the short run.

The main theoretical insight of the menu cost theory is the following. There are menu

costs associated with changing prices. Even small menu costs can be enough to prevent

firms from changing their price. This is because the opportunity cost of not changing

price is only of second order, i.e., “small”; this is a reflection of the envelope theorem (see
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Appendix). But owing to imperfect competition (price  MC), the effect on aggregate

output, employment, and welfare of not changing prices is of first order, i.e., “large”.

The menu cost theory provides the more popular explanation of nominal price rigidity.

Another explanation rests on the presumption of strictly convex price adjustment costs.

In this theory the price change cost for firm  is assumed to be  = ( − −1)2

  0 Under this assumption the firm is induced to avoid large price changes, which

means that it tends to make frequent, but small price adjustments. This theory is related

to the customer market theory. Customers search less frequently than they purchase. A

large upward price change may be provocative to customers and lead them to do search in

the market, thereby perhaps becoming aware of attractive offers from other stores. The

implied “kinked” demand curve can explain that firms are reluctant to suddenly increase

their price.

4 Adding interest-bearing assets

To incorporate the key role of financial markets for the performance of the macroeconomy,

at least one extra asset should enter in a short-run model, an interest-bearing asset. This

gives rise to the IS-LM model that should be familiar from Blanchard, Macroeconomics.

An extended IS-LM model is presented in the recent editions of the mentioned text

by Blanchard (alone) and in Blanchard et al., Macroeconomics: A European Perspective,

2010, Chapter 20. The advantage of the extended version is that the commercial banking

sector is introduced more explicitly so that the model incorporates both a centralized

bond market and decentralized markets for bank loans.

5 Adding dynamics and a Phillips curve

Adding dynamics, expectations formation, and a Phillips curve leads to a medium-run

model. An introduction is provided in the first-mentioned Blanchard textbook, chapters 8

and 14. Medium-run models describe fluctuations in production and employment around

a trend, often considered related to the “natural rate of unemployment”. Adding capital

accumulation, technical progress, and growth in the labor force to the model, GDP gets

a rising trend.

Roughly speaking, this course, Macroeconomics 2, can be interpreted as dealing with

an economy moving along this trend. We have more or less ignored the fluctuations,

25



simply by assuming flexible prices and perfect competition. In a realistic model with

imperfect competition and price stickiness in both output and labor markets the natural

rate of unemployment is likely to be higher than in an economy with perfect competition.

And hump-shaped deviations from trend GDP, that is, business cycles, are likely to arise

when the economy is hit by large shocks, for instance a financial crisis.

The third macro course, Macroeconomics 3, deals with short and medium run theory

and emphasizes issues related to monetary policy.

6 Appendix

ENVELOPE THEOREM Let  = ( ) be a continuously differentiable function of

two variables, of which one, , is conceived as a parameter and the other,  as a control

variable. Let () be a value of  at which 


( ) = 0, i.e., 


( ()) = 0. Let

 () ≡ ( ()). Provided  () is differentiable,

 0() =



( ())

where  denotes the partial derivative of (·) w.r.t. the first argument.

Proof  0() = 


( ()) + 


( ())0() = 


( ()), since 


( ()) = 0 by

definition of (). ¤

That is, when calculating the total derivative of a function w.r.t. a parameter and

evaluating this derivative at an interior maximum w.r.t. a control variable, the envelope

theorem allows us to ignore the terms that arise from the chain rule. This is also the case

if we calculate the total derivative at an interior minimum.12

–

12For extensions and more rigorous framing of the envelope theorem, see for example Sydsaeter et al.

(2006).
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