
Chapter 8

Optimal capital accumulation

In Barro’s dynasty model of the previous chapter, coordination across genera-
tions is brought about through a competitive market mechanism and bequests
induced by parental altruism. We will now study resource allocation in a con-
text where we imagine that the coordination across generations is brought about
by a benevolent and omniscient social planner discounting the utility of future
generations at a certain rate. The study of such problems was initiated already
by the British mathematician and economist Frank P. Ramsey (1903-1930). The
modeling framework is therefore sometimes referred to as Ramsey’s optimal sav-
ing problem. While the original contribution by Ramsey was in continuous time,
here we take a discrete time approach and leave the continuous-time formulation
for Chapter 10.
The coordination across generations leads to the social planner’s modified

golden rule. Whether the planning horizon is finite or infinite, the associated
time path of the economy features a distinctive stability attribute, known as the
turnpike property.
In the first section below, to solve the social planner’s dynamic optimization

problem, we use the simple substitution method. In Section 8.2 the more general
and advanced mathematical tool called optimal control theory is applied (in its
discrete time version). Optimal control theory is also applicable to cases where
other optimality criteria than maximization are needed. This is the topic of
Section 8.3. The sections 8.2 and 8.3 are relatively technical and can be skipped
in a first reading. Hence their headings are marked by an asterisk.

8.1 Command optimum

As to demography, technology, and individual preferences the framework is as
in the Diamond OLG model with Harrod-neutral technological progress and the
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302 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

notation is the same. Chapter 3 concluded that a competitive market economy
in this framework may suffer from dynamic ineffi ciency, hence absence of Pareto
optimality. In addition to this problem, however, one should be aware that even
if resource allocation is Pareto optimal, it may not be satisfactory from a societal
point of view. Pareto optimality is a weak optimality criterion. For example, if in
a Diamond economy each young generation has very high impatience, they save
very little for their old age and the economy may gradually shrink to the detriment
of future generations. Nevertheless, this can easily be a Pareto optimal resource
allocation. Similarly, if the queen of Denmark received almost all consumption
goods (and satiation were impossible), while the rest of the population received
just what is needed for subsistence, that would be a Pareto optimum.
Pareto optimality should be seen as only a minimum requirement of social

organization. A more ample optimality criterion is based on a social welfare
function, that is, an objective function which aggregates the welfare levels of the
various members of society, possibly including the as yet unborn members, into
an index of “social welfare”. How can a social welfare function be constructed in
a democratic society with conflicting interests? As is well-known from Arrow’s
Impossibility Theorem (see, e.g., Mas-Colell et al., 1995, Chapter 21), no definite
answer satisfying a series of “natural”minimal requirements, including Pareto-
optimality and independence of irrelevant alternatives, can be given. The theory
of public economics can help clarify achievable and, according to well-defined
criteria, desirable properties of a social welfare function. But in the last instance
a social welfare function relies on ethics and political choice.

8.1.1 A social planner

Consider a hypothetical centrally planned economy with a benevolent and omni-
scient social planner who can dictate every aspect of production and distribution
within the constraints given by technology and initial resources. The demography
and individual preferences are as in the Diamond OLG model of Chapter 3. It is
assumed that the social planner

• knows and respects the individual preferences as to the distribution of in-
dividual consumption over own lifetime;

• discounts the utility of future generations at a constant effective rate R̄,
which may deviate from the effective intergenerational discount rate of the
individuals.
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8.1. Command optimum 303

Technically feasible paths

The number of young is Lt = L0(1 + n)t, where L0 > 0 and n > −1. As in both
the Diamond and the Barro model, the aggregate production function is

Yt = F (Kt, TtLt) ≡ TtLtf(k̃t), (8.1)

where F has constant returns to scale and is neoclassical so that f ′ > 0 and
f ′′ < 0. The technology level Tt grows at a constant exogenous rate g ≥ 0. To save
notation we chose measurement units such that T0 = 1, whereby Tt = (1 + g)t.1

Only the young work and they all supply one unit of labor per period (the social
planner ensures full employment). The dynamic resource constraint is

Kt+1 = Kt + Yt − Ct − δKt, K0 > 0, 0 ≤ δ ≤ 1. (8.2)

Aggregate consumption Ct satisfies

Ct = Ltc1t + Lt(1 + n)−1c2t. (8.3)

Dividing through by Lt, isolating c1t and using (8.2) and (8.1) yields

c1t ≡ c̃1tTt =
[
f(k̃t) + (1− δ)k̃t − (1 + n)(1 + g)k̃t+1

]
Tt − (1 + n)−1c2t, (8.4)

where k̃0 > 0 is given. Essentially, this is just an aggregate book-keeping relation
saying that consumption by each young equals what is available per young minus
what is used for investment and consumption by the old.

Let the historically given initial effective capital-labor ratio be
_

k̃0 ≥ 0. Then

a technically feasible path from time 0 to time T is a sequence
{

(k̃t, c1t, c2t)
}T−1

t=0

such that k̃0 =
_

k̃0 and for t = 0, 1, 2, . . . , T − 1, the non-negativity constraints
c1t ≥ 0, c2t ≥ 0, and k̃t+1 ≥ 0 hold and the equation (8.4) is satisfied. A technically
feasible path with infinite horizon is defined similarly for T →∞.
To begin with our social planner is assumed to have a finite planning horizon.

For many practical planning problems this is certainly the realistic case. A plan-
ner often has inadequate information about available resources and technology in
the far future and may consequently refrain from very-long horizon planning, be
it infinite or finite.

1In this chapter we use T to denote the technology level, whereas T will be an integer
representing the planning horizon.
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304 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

Finite planning horizon

The social planner’s problem with a finite planning horizon, T, is to select from
the set of technically feasible paths the best one according to a criterion function
and possibly a specific terminal condition, see below. If such a member of the
set of technically feasible paths exists, it is called an optimal path or - in casual
jargon - a command optimum.
In the present context the criterion function, also known as a social welfare

function, is:

W0 = (1 + ρ)−1u(c20) +
T−2∑
t=0

(1 + R̄)−(t+1)[u(c1t) + (1 + ρ)−1u(c2t+1)]

+(1 + R̄)−Tu(c1T−1). (8.5)

The private rate of time preference is ρ (> −1), there is no utility from leisure,
and u′ > 0, u′′ < 0. To ensure interior solutions, we impose the usual No Fast
Assumption

lim
c→0

u′(c) =∞. (A1)

The social planner’s effective intergenerational discount rate, R̄, is defined by

(1 + R̄)−1 = (1 +R)−1(1 + n), (8.6)

where R is the pure intergenerational discount rate which enters the utility dis-
count factor by which the social planner translates the lifetime utility of a member
of a given generation into equivalent utility units for a member of the previous
generation. Until further notice, nothing is assumed about R (except of course
the conceptual restriction R > −1) and so, similarly, R̄ > −1. If R = 0, we have
(1 + R̄)−1 = 1 +n, implying that the social planner weighs the per capita lifetime
utility obtained by each generation according to the size of that generation. If
R > 0, we have (1 + R̄)−1 < 1 + n, and so future generations get less weight,
while R < 0 implies that future generations get more weight.
The dynasty criterion function as formulated in the Barro model, cf. Chapter

7, viewed the stream of present and future utilities from the perspective of the
young parent who in a market economy takes the welfare of the descendents into
account. The social welfare function (8.5) is slightly more inclusive in that it
takes into account that also in the first period, period 0, there is a trade-off
between utilities of two coexisting generations, the young and the old. Possibly
the allocation preferred by the social planner involves a transfer from the currently
young to the currently old. That kind of transfer would never happen in the
Barro model where parents’utility did not enter children’s utility function and
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8.1. Command optimum 305

children were exempted from responsibility for parental debts (in accordance with
a normal legal system of a market economy).
It is important that the social planner faces a historically given k̃0. When

studying the golden rule problem in Chapter 3, we just asked: what is the highest
sustainable path of consumption? We did not ask: given we are at some arbitrary
k̃0 today, where should we go and how fast? But this is what a planning problem is
about. Given a criterion function, which may involve discounting and diminishing
marginal utility, the problem is to find an optimal route to follow, starting from
a historically given initial condition.
In spite of the finite planning horizon, the planner may give some weight to

what happens after period T − 1.We therefore introduce the terminal condition,

k̃T ≥
_

k̃T , (8.7)

where
_

k̃T ≥ 0.

Solving the social planner’s problem

The planner’s problem is: choose a plan
(
c20, {(c1t, c2t+1)}T−2

t=0 , c1T−1

)
to maxi-

mize W0 subject to the constraints (8.4), (8.7), and non-negativity of c1t, c2t, and
k̃t+1. To solve the problem we insert (8.4) (both as it looks and shifted one period
forward) into (8.5) and maximize w.r.t. c2t and k̃t+1. An interior solution will for
t = 0, 1, . . . , T − 1 satisfy the first-order conditions:

∂W0

∂c2t

= (1 + R̄)−t(1 + ρ)−1u′ (c2t)− (1 + R̄)−(t+1)u′ (c1t) (1 + n)−1 = 0,

and

∂W0

∂k̃t+1

= (1 + R̄)−(t+1)u′ (c1t) · [−(1 + n)(1 + g)] Tt

+(1 + R̄)−(t+2)u′ (c1t+1)
[
f ′(k̃t+1) + 1− δ

]
Tt+1 = 0.

These two conditions can be written

(1 + ρ)−1u′(c2t) = (1 + R̄)−1u′ (c1t)
1

1 + n
and (8.8)

u′(c1t) = (1 + R̄)−1u′(c1t+1)
1 + f ′(k̃t+1)− δ

1 + n
, (8.9)

respectively, for t = 0, 1, ..., T − 1. Condition (8.8) is a MC = MB condition (in
terms of utility) referring to the distribution of consumption across generations
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in the same period. It states that, from the point of view of the social planner,
the utility loss by transferring one unit of consumption from the old in period t to
the young in the same period must equal the utility gain obtained by the young
(who can now consume more), discounted by the intergenerational discount rate
R̄. The rate of transformation is 1/(1 + n), since, for every old there are 1 + n
young.
Condition (8.9) is aMC = MB condition referring to the distribution of con-

sumption across time and generations. It states that the utility loss by decreasing
the consumption of the young in period t by one unit must equal the utility gain
obtained by the young in the next period discounted by the intergenerational
discount rate R̄. The rate of transformation is

[
f ′(k̃t+1) + 1− δ

]
/(1 + n), since

the saved unit is invested and gives a gross return of f ′(k̃t+1) + 1 − δ in period
t+ 1, but at the same time, for every young in period t there are 1 + n young in
period t+ 1.
Replacing u′(c1t+1) in (8.9) by its value from (8.8), shifted one period ahead,

we end up with

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + f ′(k̃t+1)− δ). (8.10)

This relation is identical to the familiar condition, the Euler equation, for in-
dividual intertemporal utility optimization in the Diamond model, if we insert
the equilibrium relation rt+1 = f ′(k̃t+1) − δ. The central planner thus holds the
individual’s intertemporal first-order condition in the market economy in respect.
To ensure that not only the relative consumption across time and generations,

but also the general “level”of the consumption path is “right”(optimal), we im-
pose the requirement that the terminal condition (8.7) holds with strict equality,
that is,

k̃T =
_

k̃T . (8.11)

Such a terminal optimality condition is called a transversality condition. The

intuition behind it is that the alternative, k̃T >
_

k̃T , would reflect overaccumula-
tion, since higher discounted utility, W0, could be obtained by consuming more
in period T − 1 (or an earlier period) without violating the terminal constraint
(8.7).
As formally shown in Section 8.2, the conditions above are not only necessary

but (essentially) also suffi cient for an optimal solution. So the optimal allocation
over generations and time is characterized by (8.4), (8.8), (8.9), and (8.11). Apart
from the presence of technological progress, the first three of these equations
are the same as in the competitive market economy when the bequest motive is
operative. The equations (7.12), (7.7), and (7.10) (where rt+1 = f ′(kt+1)−δ) from
Barro’s dynasty model in Chapter 7 confirm this. So the resource allocation in a
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8.1. Command optimum 307

perfectly-competitive market economy with altruistic parents looks similar to that
brought about by a social planner with an effective intergenerational discount rate
equal to the private one. We have not yet established full equivalence, however,
since the family dynasty in the Barro model has an infinite horizon. To get a
comparable situation we now consider an infinite planning horizon in the social
planner’s problem.

Infinite planning horizon

In the social welfare function (8.5) we let T → ∞. As before, we consider a
historically given initial effective capital-labor ratio k̃0 > 0. The natural terminal
constraint is no longer (8.7) but just the non-negativity condition limt→∞ k̃t ≥ 0,
which is in fact implicit in the technical feasibility condition

k̃t ≥ 0 for all t. (8.12)

When T → ∞ in the objective function (8.5), this function becomes a criterion
which in itself assigns a proper weight to what happens “ultimately”.
The first-order conditions (8.8) and (8.9) are still conditions which an interior

optimal solution has to satisfy. An additional necessary condition for optimality
is the transversality condition

lim
T→∞

(
1 + g

1 + R̄

)T
u′(c1T−1)(1 + n)k̃T = 0. (8.13)

A substantiation of the necessity of this condition for the problem in hand is
contained in Appendix C. Here we attempt an intuitive understanding. On the
one hand, a high k̃T is good for future production. On the other hand, over-
accumulation such that consumption possibilities are postponed forever should
be avoided. That is, the “ultimate” k̃T should not be too high. For a moment,

imagine as before there is a finite horizon, T, with terminal constraint k̃T ≥
_

k̃T .

Consider a technically feasible plan with k̃T >
_

k̃T , i.e., the terminal constraint
is not binding. This plan will not be optimal if the extra consumption in period
T − 1, made feasible by a small decrease of k̃T , creates extra discounted utility.
Indeed, by a small decrease in kT for the benefit of the young in period T − 1, we
get ∆c1T−1 = −(1 + n)∆kT > 0, since for every young in period T − 1 there are
1 + n young in period T. A change in k̃T of size ∆k̃T = −1 amounts to a change
in kT of size ∆kT = −(1 + g)T , since kT = k̃T (1 + g)T (in view of T0 = 1). Hence,
with ∆k̃T = −1, the utility gain for generation T−1 resulting from this reduction
of k̃T is u′(c1T−1)(1 + n)(1 + g)T . The present value of this gain, evaluated from
the social planner’s point of view, which is the point of view of generation −1
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308 CHAPTER 8. OPTIMAL CAPITAL ACCUMULATION

(the old generation in period 0), is (1 + R̄)−Tu′(c1T−1)(1 + n)(1 + g)T . This is
then the discounted shadow price of the marginal unit of capital per young in
period T.2 If this shadow price is positive, it cannot be optimal to end up with

k̃T >
_

k̃T ; this explains the transversality condition (8.11). But if the shadow
price were zero (say because c1T−1 and c2T−1 were already above a certain level

of saturation), then k̃T >
_

k̃T need not rule out optimality.
With finite horizon, T, the necessary transversality condition can thus be

written (
1 + g

1 + R̄

)T
u′(c1T−1)(1 + n)(k̃T −

_

k̃T ) = 0. (8.14)

This is a manifestation of the “complementary slackness condition” from the
general theory of maximization subject to inequality constraints. Here it says
that if more capital than required is leftover, its discounted shadow price as seen
from time 0 must be nil.
In the infinite horizon case we have

_

k̃T = 0. Then, taking the limit in (8.14)
for T → ∞ gives the condition (8.13). In this way this condition is a “natural”

extension of (8.14), with
_

k̃T = 0, to the limit for T →∞.
To obtain compatibility with a balanced growth path when g > 0, we have

to specify u(c) to be a CRRA function, c1−θ/(1− θ), with elasticity of marginal
utility equal to θ > 0. Then, in (8.13) we can substitute u′(c1T−1) = c−θ1T−1. In
order that maximization of the social welfare function is possible, we need that
the sum of discounted utilities, W0, converges for T → ∞ (an thereby remains
bounded). To ensure this condition satisfied, we now have to assume a positive
intergenerational discount rate, R̄, satisfying

1 + R̄ > (1 + g)1−θ. (A2)

This discounting might seem unjust and unethical towards future generations.
Yet, we shall see that to the extent the future generations are favoured by better
technology, they in fact tend to end up with higher lifetime utility in spite of the
discounting in the social welfare function.
The transversality condition (7.8) from the Barro model for a market economy

with positive bequests in Chapter 7 can be shown to be equivalent to (8.13). Thus,
in view of the equilibrium condition rt = f ′(k̃t)− δ, the equations describing the
equilibrium path in the Barro model for a competitive market economy with
positive bequests are the same as those describing the social planner’s solution.

2A discounted shadow price (measured in some unit of account) of a good is, from the point
of view of the buyer, the maximum number of units of account (here consumption utilities)
that the optimizing buyer is willing to offer at time 0 to obtain one extra unit of the good, here
k̃t+1, at time t+ 1.
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A necessary and suffi cient condition for positive bequests in a steady state of
that model was given by the condition (7.36). In terms of R̄ we may restate this
condition as

1 + R̄ <
1 + rD

(1 + n)(1 + g)
(1 + g)1−θ, (8.15)

where RD is the steady-state interest rate in the associated well-behaved Diamond
economy. This inequality is compatible with (A2) whenever 1+rD > (1+n)(1+g),
that is, whenever the associated Diamond economy has an effective capital-labor
ratio in steady state below the golden-rule value.
To summarize:

PROPOSITION 1 (equivalence theorem) Consider a perfectly competitive mar-
ket economy with technology, demography, labor force, and preferences as de-
scribed above. Assume (A1) and, if g > 0, (A2). Suppose (8.15) holds and that
households have perfect foresight and perfect computation ability. Let k̃0 > 0 be
given. If initial conditions are such that the bequest motive is operative for all
t ≥ 0, then the resulting resource allocation is the same as that brought about
by a social planner facing the same technology and initial resources and having
a positive effective intergenerational discount rate, R̄, equal to the private one.

Proof. See text above. The only point remaining is to show that the transversality
conditions of the two models are equivalent. This is done in Appendix C. �

Social discounting: different views

To get perspective on Proposition 1, note that there may be good reasons that
a social planner should have a lower intergenerational discount rate R̄ than the
private sector. One reason is put forward by Nobel laureate Amartya Sen who
refers to what he calls the isolation paradox (Sen 1961). Suppose each old has
an altruistic concern for all members of the next generation. Then a transfer
from any member of the old generation to the heir entails an externality that
benefits all other members of the old generation. A nation-wide coordination
(political agreement) that internalizes these externalities would raise bequests,
which corresponds to a lowering of the intergenerational utility discount rate, R̄.
More generally, members of the present generations may be willing to join in a

collective contract of more saving and investment by all, though unwilling to save
more in isolation. Other reasons for a relatively low social discount rate have been
suggested. One is based on the super-responsibility argument: the government has
responsibility over a longer time horizon than those currently alive. Another is
based on the dual-role argument : the members of the currently alive generations
may in their political or public role be more concerned about the welfare of the
future generations than they are in their private economic decisions.
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Varieties of utilitarianism An elementary principle may be that the utility
of all individuals should enter with the same weight in the social welfare function.
Adherence to this principle implies that the per capita lifetime utility obtained
by each generation from own lifetime consumption should be weighed by the
size of that generation. This size is here growing at the rate n. Thus, from a
social point of view the effective discount factor used to compare the per capita
utility of the next generation with that of the present generation should be 1 +n.
This principle may be called utilitarianism and implies a pure intergenerational
discount rate, R, equal to zero, see (8.6). If we ignore technological progress, this
“generation indifference”principle agrees with the principle that when setting up
a social welfare criterion we should imagine that members of current and future
generations agree on the value of R before knowing which generation they belong
to (the “veil of ignorance”principle). Then, as long as we ignore technological
progress, it seems likely that R = 0 would be agreed upon.

Taking into account that sustained technological progress is prevalent, many
economists argue, however, that because future generations are likely to benefit
from better technology, a counterbalancing positive value of R is ethically ac-
ceptable. This principle, sometimes called discounted utilitarianism, means that
less weight is placed on the utility of members of future generations than on the
utility of members of the present generations.3 In spite of an R > 0, future gen-
erations may be better off than present generations if there is sustained growth
in some measure of per capita welfare. The steady state considered in the next
sub-section has this property when g > 0.

An alternative− or supplementary− argument for a positive R, though small,
is that there is a positive but small probability of a meteorite or an atomic war
obliterating the human race in the future. Some argue that this is the only eth-
ically acceptable reason for an R > 0. This is for instance the position taken by
the “Stern Review”(the popular name for the voluminous report The Economics
of Climate Change, published 2007 by the British economist Nicholas Stern and
his associates and dealing with the huge negative externalities on future genera-
tions caused by the greenhouse gas emissions to the atmosphere). Because of the
positive but small probability of extinction, the Stern Review contends that R
on an annual basis should be considerably less than 0.001.4

3In contrast, the principle of discounted average utilitarianism uses R as effective intergen-
erational discount rate, thereby ignoring that generations generally are of different size.

4This is lower than the calibrated private own-generation preference R̃ equal to 0.0092, see
Section 7.4 of Chapter 7.
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8.1.2 The modified golden rule of the command optimum

In view of the equivalence theorem, it can be no surprise that also the social
planner’s solution in steady state satisfies the modified golden rule.
In steady state k̃t = k̃∗, c̃1t = c̃∗1, and c̃2t = c̃∗2 for all t = 0, 1, 2, ..., where k̃∗,

c̃∗1, and c̃
∗
2 are positive constants. Hence, c1t = c̃∗1Tt = c̃∗1(1 + g)t. Owing to the

CRRA utility function we have u′(c1t) = c−θ1t . Consequently, in steady state the
first-order condition (8.9) reads

c∗−θ1 = (1 + R̄)−1 [c∗1(1 + g)]−θ
f ′(k̃∗) + 1− δ

1 + n
.

Solving for the net marginal productivity of capital, we get f ′(k̃∗) − δ = (1 +
R̄)(1 + n)(1 + g)θ − 1. The capital intensity satisfying this condition is called the
modified-golden-rule capital intensity, k̃MGR, i.e.,

f ′(k̃MGR)− δ = (1 + R̄)(1 + n)(1 + g)θ − 1. (8.16)

The conclusion is that optimality of a steady state requires that the capital
intensity in this steady-state results in a net marginal productivity of capital equal
to the right-hand side of (8.16). In the previous chapter we considered Barro’s
model of a competitive market economy with an intergenerational discount rate
R̄. We saw that as long as the bequest motive is operative, the steady state
interest rate, r∗ = f ′(k̃∗)−δ, in that model takes exactly the modified-golden-rule
value given by the right-hand side of (8.16).
To help ensuring that a positive k̃∗ satisfying the modified golden rule exists,

we assume the following combined technology and parameter condition

lim
k̃→0

f ′(k̃) > (1 + R̄)(1 + n)(1 + g)θ − (1− δ) and (A3)

lim
k̃→∞

f ′(k̃) < (1 + n)(1 + g)− (1− δ).

Together with (A2), these two inequalities imply limk̃→0 f
′(k̃) > (1 + R̄)(1 +

n)(1 + g)θ − (1 − δ) > (1 + n)(1 + g) − (1 − δ) > limk̃→∞ f
′(k̃). By continuity

of f ′, hereby, existence of both the modified-golden-rule capital intensity, k̃MGR,
and the “simple”golden-rule capital intensity, k̃GR, is ensured, the latter being
defined by f ′(k̃GR) = (1 + g)(1 + n) − (1 − δ). With δ > 0, R̄ ≥ 0, n ≥ 0, and
g ≥ 0, the Inada conditions are of course suffi cient but not necessary for (A3) to
be satisfied.
When the effective intergenerational discount rate is at its lower bound, R̄

= (1 + g)1−θ − 1, given by (A2), the rule (8.16) simplifies to the simple golden
rule where k̃∗ = k̃GR. This is the rule saying that to obtain the highest possible
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sustainable consumption path, the net marginal product of capital should in
steady state equal the “natural growth rate”of GDP, which in turn equals g +
n+gn;5 when g and n are “small”, this sum can be approximated by g+n. In this
limiting case maximization of W0 does not make sense (when T →∞), since W0

will not be bounded. One can in such a case sometimes use another optimality
criterion, be it the overtaking criterion or the more robust catching-up criterion.
Indeed, our social planning problem turns out to be well-defined in terms of both
these criteria when 1 + R̄ = (1 + g)1−θ; and the first-order conditions (8.4), (8.8),
and (8.10) are still necessary for an optimal solution (see Section 8.3 below).
With the simple golden rule as the benchmark case, the predicate “modified”

in the term “modified golden rule” should be interpreted in the following way.
If the intergenerational discount rate is higher than needed to “compensate”for
technological progress (i.e., R̄ > (1 + g)1−θ − 1), then the social planner prefers
a permanent effective capital-labor ratio k̃MGR, lower than k̃GR. Though society
could attain a higher consumption path in the long run, if k̃GR were strived for,
this would not compensate for the cost in the form of reduced current consumption
required to arrive at k̃ = k̃GR (or stay there instead of moving to k̃MGR). The
long-run benefit is lower relative to this cost, the higher is the discount rate R̄.6

8.1.3 The turnpike property

In the next section it is shown that for 1 + R̄ > (1 + g)1−θ, the optimal path
converges over time from an arbitrary k̃0 > 0 to the unique steady state k̃∗

= k̃MGR. Even in the golden rule case, 1 + R̄ = (1 + g)1−θ, with overtaking or
catching-up as optimality criterion, convergence towards k̃∗ = k̃GR for t → ∞
holds. These stability properties of the golden rule and modified-golden-rule
paths are sometimes called “turnpike”properties. It is more common, however,
to reserve the term “turnpike”specifically to a situation with a finite planning
horizon.
We will here state, without proof, one such turnpike theorem for a finite-

horizon planning problem like the one considered above:

If the planning horizon T is “large”, then the best (i.e., optimal) way
to go from any initial capital intensity k̃0 > 0 to a specified terminal

5In our discrete time setting the growth rate of Y = TLf(k̃∗) in steady state is (1 + g)(1 +
n)− 1 = g + n+ gn.

6In the absence of technical progress, (8.16) simplifies to f ′(kMGR)− δ = (1 + R̄)(1 +n)− 1
= R̄+n+ R̄n ≈ R̄+n. This and similar approximations should be taken with caution because
the period length is not the usual one year, but around 30 years; therefore, the term R̄n might
not be negligible. Yet, the example calibrated at the end of Section 7.4 of the previous chapter
gives R̄n ' 0.037 · 0.270 ' 0.010, which is relatively small compared to R̄+ n ' 0.307.
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Figure 8.1: Finite horizon. Most of the time the optimal path has k̃ close to k̃MGR.

capital intensity
_

k̃ ≥ 0 is to stay close to the modified-golden-rule
capital intensity k̃MGR for a long time.

Fig. 8.1 illustrates this turnpike property of the modified-golden-rule path
(k̃ = k̃MGR) in a situation where at first glance moving close to k̃MGR seems
a detour. Compare with a highway (turnpike): the shortest way to go from
Hellerup to Helsinore is to take Strandvejen; yet, it is faster to go by the highway.7

This is similar to the economic planning problem. The intuition is that, first,
the desire for consumption smoothing favours steady consumption compared to
oscillating consumption. Second, the k̃ = k̃MGR path entails the proper balance
between consumption now and consumption later, given the intergenerational
discount rate and the growth rates of the labor force and technology. Hence, if
the economy is initially above k̃MGR, some initial dissaving pays, both because
dissaving directly means more consumption now and because maintaining a lower
k in the future requires less saving in the future. If alternatively, as in Fig. 8.1, the
economy is initially below k̃MGR, the cost in terms of forgone early consumption

of moving up to k̃MGR is compensated when finally we move down to
_

k̃T+1.

7Hellerup is a suburb of Copenhagen. Strandvejen (“Beach Road”) is the name of the narrow
and winding road along the coast to Helsinore.
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8.2 Optimal control theory and the social plan-
ner’s problem*

Heretofore we have solved intertemporal optimization problems by using the sub-
stitution method. The advantage of this method is that it is simple and straight-
forward. There are cases, however, where the method does not work. Another
drawback is that the method, in particular when the time horizon is infinite, is
not immediately supported by a general mathematical machinery providing nec-
essary and suffi cient conditions for optimality and for existence of solutions to a
broad class of optimization problems. Fortunately, two alternative mathematical
methods are available which are backed up by such general machinery: optimal
control theory (where the Hamiltonian function and shadow prices are the key
concepts) and dynamic programming (where the value function and the Bellman
equation are the key concepts). Here we will apply optimal control theory to the
social planner’s problem. As stated, the social planner’s problem is a determin-
istic problem (no stochastic disturbances occur). In that case optimal control
theory offers a simple method.

The main result within optimal control theory is Pontryagin’sMaximum Prin-
ciple. In its continuous time version this principle was developed in the 1950s by
the soviet mathematician L. S. Pontryagin and his associates with a view to en-
gineering applications, control of rockets, satellites, etc.8 Since then, the method
has been applied in other sciences like medicine, biology, ecology, and economics.
In economics the method is applied to a wide range of topics including the study
of consumption versus saving, optimal taxation, firms’fixed capital investment,
inventory control, pollution problems, and extraction of natural resources. Based
on Pontryagin’s principles a solution technique for discrete time dynamic opti-
mization problems has been developed and it is a special case of this technique
we will now use for solving the social planner’s problem. We first consider the
finite horizon case and next the infinite horizon case.

8.2.1 Decomposing the social planner’s problem

To prepare the ground we first have to convert the social planner’s problem into
a form convenient for the application of the discrete time Maximum Principle.
This conversion is of interest also in its own right. With β ≡ (1 + R̄)−1 ≡
(1 +R)−1(1 + n) ∈ (0, 1) and γ ≡ (1 + ρ)−1 > 0, the social welfare function with

8Pontryagin et al. (1962).
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a finite horizon is

W0 = γu(c20) +
T−2∑
t=0

βt+1[u(c1t) + γu(c2t+1)] + βTu(c1T−1). (8.17)

We order terms after periods instead of generations:

W0 = γu(c20) +

T−2∑
t=0

βt+1u(c1t) + γ
T−2∑
t=0

βt+1u(c2t+1) + βTu(c1T−1)

= βu(c10) + γu(c20) +
T−1∑
t=1

βt+1u(c1t) + γ
T−1∑
t=1

βtu(c2t)

= βu(c10) + γu(c20) +
T−1∑
t=1

βt (βu(c1t) + γu(c2t))

=
T−1∑
t=0

βt (βu(c1t) + γu(c2t)) .

It is natural to name the function ũ(c1t, c2t) ≡ βu(c1t) + γu(c2t) the social
planner’s period utility function. The arguments of this function are the per
capita consumption in the young and the old generation, respectively, alive in
period t.
With the social welfare function written this way, the optimization problem

can be decomposed into two separate problems. One is the intertemporal problem:
how to choose between less aggregate consumption in period t and more aggregate
consumption later. The other is a static one: given aggregate consumption per
unit of labor, ct ≡ Ct/Lt, in period t, how should this consumption be shared
among old and young?

The social planner’s optimized period utility function

Let us take the second problem first. Since the problem is a static one, to save
notation, we suppress the time index. The problem is: given c > 0,

max
c1,c2

ũ(c1, c2) = βu(c1) + γu(c2) s.t. (8.18)

c1 + (1 + n)−1c2 = c, (8.19)

c1 ≥ 0, c2 ≥ 0.

After substituting the constraint, c1 = c − (1 + n)−1c2, into the ũ function, we
find the first-order condition

γu′(c2) = βu′(c1)(1 + n)−1 = βu′
(
c− (1 + n)−1c2

)
(1 + n)−1. (8.20)
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Figure 8.2: Finding c2 as a solution of (8.20) for given c > 0.

This equation defines c2 as an implicit function of c, c2 = ϕ(c), where c2 > 0 in
view of (A1), cf. Fig. 8.2. By implicit differentiation, we find

ϕ′(c) = (1 + n)
βu′′(c1)

(1 + n)2γu′′(c2) + βu′′(c1)
∈ (0, 1 + n). (8.21)

On this basis it is convenient to introduce a new function, v(c), defined by

v(c) ≡ ũ(c− (1 + n)−1ϕ(c), ϕ(c)) = βu(c− (1 + n)−1ϕ(c)) + γu(ϕ(c)). (8.22)

This function, named the social planner’s optimized period utility function, inher-
its key properties from u. In optimum we have

v′(c) = βu′(c1)
[
1− (1 + n)−1ϕ′(c)

]
+ γu′(c2)ϕ′(c)

= βu′(c1)−
[
βu′(c1)(1 + n)−1 − γu′(c2)

]
ϕ′(c) = βu′(c1), (8.23)

in view of (8.20). This property is a manifestation of the envelope theorem.
Indeed, v(c) is a composite function of c. Considering βu(c−(1+n)−1c2)+γu(c2)

≡ ≈
u(c, c2) as the exterior function and c2 = ϕ(c) as the interior function, the

envelope theorem says that the total derivative of
≈
u w.r.t. c equals the partial

derivative w.r.t. c.9 That is,
≈
u1(c, c2)+

≈
u2(c, c2)ϕ′(c) =

≈
u1(c, c2) = βu′(c1), where

the second but last equality comes from the fact that
≈
u2(c, c2) = 0 in optimum

and the last equality from the definition of
≈
u(c, c2). Moreover,

v′′(c) = βu′′(c1)
[
1− (1 + n)−1ϕ′(c)

]
< 0, (8.24)

9Appendix A of Chapter 7.
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in view of the fact that u′′(c1) < 0 and 1− (1 + n)−1ϕ′(c) > 0, by (8.21). Finally,
by (8.19), we have that c → 0 implies c1 → 0, from which follows limc→0 v

′(c)
= limc1→0 βu

′(c1) = ∞, in view of the No Fast Assumption, (A1), stated in
Section 8.1.

The intertemporal optimization problem

The intertemporal optimization problem is to choose a plan {ct}T−1
t=0 so as to

maxW0 =
T−1∑
t=0

βtv(ct) s.t. (8.25)

0 ≤ ct ≤ (1 + g)t
[
f(k̃t) + (1− δ)k̃t

]
, (8.26)

k̃t+1 =
f(k̃t) + (1− δ)k̃t − ct/(1 + g)t

(1 + g)(1 + n)
, k̃0 =

_

k̃0 > 0, (8.27)

k̃T ≥
_

k̃ ≥ 0, (8.28)

for t = 0, 1, 2, ..., T − 1, where
_

k̃0and
_

k̃ are given numbers. The constraint (8.27)
comes from (8.19) in combination with the dynamic resource constraint (8.4),
using that c̃t = ct/(1 + g)t, given T0 = 1. We have here written the optimization
problem on the standard form for an optimal control problem in discrete time.
In the language of optimal control theory, ct is the control variable in the sense of
an instrument which the optimizing agent is able to directly control. Sometimes
the alternative term decision variable is used. The variable k̃t entering the first-
order difference equation (8.27) is called a state variable. It is in each period a
predetermined variable and its value in the next period is not directly chosen,
but is implied by the change caused by the chosen value of the control variable in
the current period. When the first-order difference equation for the state variable
is ordered such that it has the value of the state variable “next period”isolated
on the left-hand side of the equation, as in (8.27), it is known as a transition
function.
The set of admissible values of the control variable is called the control region.

In this example the control region is a closed interval as indicated by (8.26).
The lower end of this interval reflects that by definition consumption is non-
negative. The upper end of the interval depends on t as well as the current level
of the state variable and reflects that the consumed amount can never exceed the
available amount of goods. This requirement is equivalent to requiring k̃t+1 ≥ 0
in (8.27).10 There is given an initial value of the state variable, interpreted as

10If the capital good is not considered instantaneously convertible to a consumption good,
(8.26) should be replaced by the narrower constraint, 0 ≤ ct ≤ (1 + g)tf(k̃t).
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historically determined. In many cases, including the present one, there will be
a restriction on what values the state variable is allowed to take at the terminal
date, a terminal constraint, cf. (8.28). Owing to the nature of the state variable
in the problem, one might add a non-negativity constraint on the state variable
in every period. But in the present case this non-negativity will automatically
be satisfied in view of the upper bound on ct in (8.26).
To choose the “best” control, we need of course a criterion from which to

choose. This is provided by the objective function (8.25), also known as the
criterion function. There exist problems where, contrary to the present case,
both the control and the state variable (or only the latter) enter the criterion
function. The model could, for instance, include environmental quality as a state
variable and this state variable would then naturally enter the period utility
function as a separate argument besides consumption. The solution procedure
described below is also applicable in such cases.

If the path
{(
k̃t, ct

)}T−1

t=0
satisfies the initial condition, k̃0 =

_

k̃0, and the ter-

minal condition, k̃T ≥
_

k̃, and is consistent with the control region, (8.26), and the
transition function, (8.27), for t = 0, 1, 2, ..., T −1, the path is, in the terminology
of optimal control theory, an admissible path. In the present problem, if we have_

k̃ = 0, an admissible path is the same as what in our economic terminology from

Chapter 3 is called a technically feasible path. If the terminal constraint has
_

k̃ > 0,
the set of admissible paths is the subset of technically feasible paths satisfying

k̃T ≥
_

k̃ > 0. Anyway, an admissible path
{(
k̃t, ct

)}T−1

t=0
that solves the problem

is referred to as an optimal path or simply a solution. A solution,
{(
k̃t, ct

)}T−1

t=0
,

is an interior solution if the constraint (8.26) is not binding for t = 0, 1, ..., T −1.

8.2.2 Applying the Maximum Principle

After making sure that the dynamic constraint, here (8.27), is written as a tran-
sition function, i.e., in the form k̃t+1 = ψ(k̃t, c̃t, t), we are ready to solve the
optimization problem. The four-step solution procedure described below applies
to a large class of intertemporal optimization problems in discrete time:

1. Set up the current-value Hamiltonian function associated with the problem:

H(k̃t, ct, λt, t) ≡ v(ct) + λtψ(k̃t, c̃t, t)

= v(ct) + λt
f(k̃t) + (1− δ)k̃t − ct/(1 + g)t

(1 + g)(1 + n)
, (8.29)
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for t = 0, 1, ..., T − 1, where λt is an adjoint variable (also called a co-state
variable) associated with the dynamic constraint in the problem. That is,
λt is an auxiliary variable which is analogous to the Lagrange multiplier in
static optimization.

2. For t = 0, 1, ..., T −1, differentiate H partially w.r.t. to the control variable.
If looking for an interior solution, set the partial derivative equal to zero:

∂H

∂ct
= v′(ct)− λt(1 + g)−(t+1)(1 + n)−1 = 0, (8.30)

that is,
v′(ct) = λt(1 + g)−(t+1)(1 + n)−1, (8.31)

for t = 0, 1, ..., T − 1.11

3. Differentiate H partially w.r.t. the state variable. Then set the result for
period t equal to the adjoint variable dated t− 1, multiplied by the inverse
of the discount factor in the objective function, that is,

∂H

∂k̃t
= λt

f ′(k̃t) + 1− δ
(1 + g)(1 + n)

= λt−1β
−1, (8.32)

for t = 1, 2, ..., T − 1.

4. Now apply the Maximum Principle which (for this problem) states: an in-

terior optimal path
{(
k̃t, ct

)}T−1

t=0
will satisfy that there exists an adjoint

variable, λt, such that for t = 0, 1, ..., T − 1, (8.30) and the difference equa-
tion (8.32) hold along the path, and the transversality condition,

βT−1λT−1(k̃T −
_

k̃) = 0, (8.33)

is satisfied.

The optimality condition (8.30), written as in (8.31), can be seen as a MC
= MB condition: on the margin one unit of account (here the output good)
must be equally valuable in its two alternative uses: consumption and capital
accumulation. The utility cost by decreasing ct by one unit equals the left-hand
side of (8.31). The associated gain is that capital available next period is increased
by the amount dKt+1 = −Ltdct = Lt · 1. In view of k̃t+1 ≡ Kt+1/(Tt+1Lt+1),

11If we wish to allow for boundary solutions, (8.30) is replaced by a more general condition,
which (surprisingly) only if H is concave in c is equivalent to requiring that ct should maximize
H. For details, see Sydsæter et al. (2008, p. 441 ff.).
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the effective capital-labor ratio is hereby increased by dk̃t+1 = Lt/(Tt+1Lt+1)
= (1 + g)−(t+1)(1 +n)−1, where we have used that the initial technology level, T0,
is normalized to one. Since in the optimal plan such a marginal reallocation leaves
total welfare unchanged, the right-hand side of (8.31) must measure the utility
gain by this reallocation. The adjoint variable λt can thus be interpreted as the
shadow price, measured in utility units, of capital per unit of effective labor next
period along the optimal path.
This interpretation is confirmed when we rewrite (8.31) as

λt = v′(ct)(1 + g)t+1(1 + n). (8.34)

Here the right-hand side directly expresses the utility gain obtained by decreasing
k̃t+1 by one unit. Indeed, this decrease in k̃t+1 allows increasing consumption
per worker in period t by dct = L−1

t dCt = L−1
t dKt+1 = L−1

t Tt+1Lt+1dk̃t+1 =
(1 + g)t+1(1 + n) units (recall that T0 = 1). The utility gain from this appears
when we multiply by the marginal utility of consumption, v′(ct).
Substituting (8.34), as it stands and for t replaced by t−1, into the difference

equation (8.32) and reordering gives

v′(ct−1) = βv′(ct)
f ′(k̃t) + 1− δ

1 + n
. (8.35)

This is the familiar consumption Euler equation characterizing changes in con-
sumption along the optimal path, cf. (8.9). Finally, the transversality condition
(8.33) has the form of a complementary slackness condition. In the present prob-

lem the condition implies k̃T =
_

k̃. Indeed, in view of (8.34), an optimal plan has

λT−1 = v′(cT−1)(1 + g)T (1 + n) > 0 (no saturation). Thus, if k̃T >
_

k̃ (“over-
satisfaction” of the terminal condition in (8.28)), then higher welfare could be
obtained by decreasing k̃T and increasing cT−1 correspondingly. There would be
scope for this without violating the terminal condition.

Remark. A Hamiltonian function is often just called a Hamiltonian. More impor-
tantly, the prefix “current-value”is used to distinguish it from the present-value
Hamiltonian. The latter is defined as Ĥ ≡ βtH with βtλt in the second term
substituted by µt, which is the associated (discounted) adjoint variable. Apply-
ing the present-value Hamiltonian involves a similar solution procedure except
that step 3 is replaced by ∂Ĥ/∂k̃t = µt−1, and in the transversality condition,
βT−1λT−1 is replaced by µT−1. The two solution procedures are equivalent. For
many economic problems the current-value Hamiltonian has the advantage that
it makes the interpretation simpler. In the current-value Hamiltonian the adjoint
variable, λt, which acts as a shadow price of the state variable, is a current price
rather than a discounted price as µt. �
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The Maximum Principle gives necessary conditions for an optimal plan. That
is, from the above analysis we know that any interior optimal solution to the
social planner’s problem must satisfy the above conditions. These conditions are
helpful for finding a candidate for an optimal solution, but they do not guarantee
that this candidate is an optimal solution or that there at all exists an optimal
solution (as the problem is phrased).12 For these concerns we must appeal to
theorems about suffi cient conditions for an optimal plan and to circumstances
which verify that an optimal solution exists. Fortunately, optimal control theory
provides tools for these questions. As to suffi ciency, the simplest theorem isMan-
gasarian’s suffi ciency theorem.13 For problems like the present one this theorem
says that if the Hamiltonian is jointly concave in k̃t and ct for every t, then a plan{(
k̃t, ct

)}T−1

t=0
which satisfies the first-order conditions and the transversality con-

dition is optimal. By inspection of (8.29) we see that our specific Hamiltonian is
indeed jointly concave in k̃t and ct, because the first term in (8.29) is (strictly)
concave in ct and the second term is jointly concave in k̃t and ct. It follows that
the necessary conditions are also suffi cient.
Verifying existence of an optimal solution to the social planner’s problem is in

the finite horizon case straightforward on the basis of the extreme value theorem
(for details, see the end of Appendix A).
In economics we are also often interested in minimizing a criterion function.

The function could for instance represent costs of a given project. In that case
we can simply multiply the criterion function by minus 1 and then maximize.

Infinite horizon

In (8.25) and (8.28) we let T → ∞ and set
_

k̃ = 0. Then the social planner’s
dynamic problem is a standard “neoclassical optimal growth problem”with ex-
ogenous technological progress. The problem is also called “Ramsey’s optimal
saving problem in discrete time”because it has a close connection to Frank Ram-
sey’s classical analysis of a society’s optimal saving (Ramsey, 1928).
With infinite horizon the first-order conditions (8.30) and (8.32) are still neces-

sary conditions for an interior solution. The “natural”extension of the necessary
transversality condition (8.33) to an infinite horizon is

lim
T→∞

βT−1λT−1k̃T = 0. (8.36)

12Sydsæter et al. (2008) provide the following example of non-existence of a solution. A
person wants to keep a pan of boiling water as close as possible to the constant temperature
of 100◦C for one hour when it is being heated on an electric burner whose only control is an
on/off switch. Assuming there is no cost of switching, there is no limit to the number of times
the burner should be turned on and off.
13See Math tools.
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Although such a direct extension of a necessary transversality condition from a
finite horizon to an infinite horizon is not generally valid, it is valid in the present
case. Indeed, many intertemporal maximization problems with infinite horizon
in economics have a form such that an optimal solution, if it exists, must satisfy
a transversality condition like (8.36). The condition says that the present value
(in utility units) of the capital stock “left over”at infinity must be zero. That
is, the capital stock should not grow too fast vis-a-vis its generally decreasing
present value shadow price − otherwise there is over-accumulation. This sounds
intuitive, but requires a verification in each situation (see Appendix C).
Since the first-order condition (8.34) holds for any interior solution, (8.36),

can be written
lim
T→∞

βT−1v′(cT−1)(1 + g)T (1 + n)k̃T = 0. (8.37)

For later use this is a more convenient form for the necessary transversality con-
dition.

Suffi ciency of the first-order and transversality conditions In the present
optimization problem the first-order conditions and the transversality condition
are not only necessary for an (interior) optimal solution, but also suffi cient. In-
deed, since the Hamiltonian is concave w.r.t. (k̃t, ct) and both the state variable
and the shadow price λt are non-negative for every t, it follows from Mangasar-
ian’s suffi ciency theorem for an infinite horizon problem14 that the first-order
conditions together with the transversality condition (8.36) are suffi cient for an
optimal solution.
It remains to show that there exists an admissible path satisfying these con-

ditions and to characterize such a path. Are for instance oscillations possible or
does the solution display a monotonic pattern over time? Here, dynamic analysis
and phase diagrams are helpful.

Dynamic analysis

To allow balanced growth and make the dynamic analysis easily tractable, we spe-
cialize the investigation to the case where the household’s period utility function
is of CRRA form:

u(c) =
c1−θ

1− θ , θ > 0. (8.38)

In this case the partial similarity between social planner’s optimized period utility
function, v, and the household’s period utility function, u, commented on in
connection with the “envelope condition”(8.23) above, becomes complete:

14See Math tools.
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LEMMA 1 Suppose u(c) in (8.17) is a CRRA function with parameter θ. Then
so is the social planner’s optimized period utility function, v(c), defined in (8.22).
We can thus write

v(c) =
c1−θ

1− θ , θ > 0. (8.39)

Proof. Substituting u′(ci) = ci
−θ and u′′(ci) = −θci−θ−1, for i = 1, 2, into

(8.20) and (8.21) gives φ′(c) = c2/c in view of (8.19). Then, by (8.24), v′′(c)c
= βu′′(c1) [c− (1 + n)−1c2] = βu′′(c1)c1 in optimum. Combining this with (8.23),
we have

−cv
′′(c)

v′(c)
= −c1u

′′(c1)

u′(c1)
= θ, (8.40)

where the last equality is implied by (8.38). The result (8.40) holds for any
c > 0. From Appendix A of Chapter 3 we know that up to a positive linear
transformation v must then be of the form (8.39). �
Remark. The key in the proof is the observation that when the household’s
period utility function, u, is CRRA, the planner’s chosen c2 is a function, φ(c),
of the current per capita consumption level, c, with derivative φ′(c) = c2/c. This
result means that the elasticity of c2 w.r.t. the “budget”, c, is 1. Consequently,
the chosen c1 and c2 are proportional to c and to each other, implying that the
social planner’s period utility function ũ(c1, c2) in (8.18) is homothetic.15 This
implication of u being CRRA should be no surprise. From Chapter 4 we know
this implication for an additive utility function with sub-utility functions that are
CRRA with the same parameter θ. Also, recall that in case θ = 1, the expression
on the right-hand side of (8.38) and (8.39) should be interpreted as ln c. �
The model can be reduced to two coupled first-order difference equations in

k̃t and c̃t. In (8.35) we replace t by t+ 1, apply (8.39), and reorder to get

c−θt+1 = β−1 1 + n

f ′(k̃t+1) + 1− δ
c−θt . (8.41)

In view of ct = c̃t(1 + g)t, we have c−θt = c̃−θt (1 + g)−θt. Substituting into (8.41)
and rearranging yields

c̃−θt+1 = β−1 (1 + g)θ(1 + n)

f ′(k̃t+1) + 1− δ
c̃−θt . (8.42)

The transition function (8.27) can be written

k̃t+1 =
f(k̃t) + (1− δ)k̃t − c̃t

(1 + g)(1 + n)
≡ h(k̃t, c̃t), (8.43)

15See Appendix C of Chapter 4.
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where

h1 =
f ′(k̃t) + 1− δ
(1 + g)(1 + n)

> 0, (8.44)

h2 = − 1

(1 + g)(1 + n)
< 0. (8.45)

Substituting (8.43) into (8.42) gives

c̃t+1 =

(
β
f ′(h(k̃t, c̃t)) + 1− δ

(1 + g)θ(1 + n)

)1/θ

c̃t. (8.46)

The equations (8.43) and (8.46) constitute a system of two coupled first-order
difference equations in k̃t and c̃t and these equations are autonomous, i.e., they

do not depend on t separately. The initial k̃, k̃0, is historically given as
_

k̃0; from
now, to save notation, whenever we write k̃0, this symbol is understood to directly
indicate this historically given value. But the initial c̃, c̃0, is up to the social
planner’s choice, hence endogenous. As a substitute for knowing c̃0 in advance,
we have, fortunately, the transversality condition (8.37).
We may restate the parameter inequality (A2) from Section 8.1 as an upper

bound on the utility discount factor, β ≡ (1 + R̄)−1, this way:

0 < β < (1 + g)θ−1, where g ≥ 0. (A2’)

This inequality will ensure boundedness from above of the social welfare function.
Similarly, the condition (A3) on the range of the marginal productivity of capital
can be restated as

lim
k̃→0

f ′(k̃) > β−1(1 +n)(1 + g)θ− (1− δ) and lim
k̃→∞

f ′(k̃) < (1 +n)(1 + g)− (1− δ),
(A3’)

Together with (A2’), these two inequalities imply limk̃→0 f
′(k̃) > β−1(1 + n)(1 +

g)θ−(1−δ) > (1+n)(1+g)−(1−δ) > limk̃→∞ f
′(k̃). By continuity of f ′, hereby,

existence of both the golden-rule capital intensity, k̃GR, and the modified-golden-
rule capital intensity, k̃MGR, is ensured.16

Phase diagram By a phase diagram for the dynamic system (8.43) − (8.46)
is meant a graph in the (k̃, c̃) plane showing the projections of the time paths,
(k̃t, c̃t)

∞
t=0, that are consistent with the system for alternative arbitrary initial

points, (k̃0, c̃0). The phase diagram is shown in the lower panel of Fig. 8.3.

16The often presumed Inada conditions, limk̃→0 f
′(k̃) =∞ and limk̃→∞ f ′(k̃) = 0, are stricter

than (A3’) and not necessary.
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In the phase diagram the curve marked by “k̃t+1 = k̃t”shows the points (k̃, c̃)
with the property that if k̃t = k̃, then c̃ is the value of c̃t such that k̃t+1 in the
dynamic equation (8.43) takes the value k̃, that is, the same value as k̃t has.
In brief, the locus for k̃t+1 = k̃t is made up by the pairs (k̃, c̃) at which (8.43)
generates no change from t to t+ 1 in the effective capital-labor ratio. The pairs
(k̃, c̃) with this property satisfy the equation

c̃ = f(k̃)− [(1 + g)(1 + n)− (1− δ)] k̃ ≡ c̃(k̃),

by (8.43). The graph representing this equation in the phase diagram is called
the nullcline for k̃. The example shown Fig. 8.3 has the graph going through
the origin, i.e., f(0) = 0 is presumed. Here capital is thus essential. But all the
conclusions we shall consider go through also when capital is not essential. So we
only impose the condition f(0) ≥ 0.
The upper panel of Fig. 8.3 illustrates how the graph of c̃(k̃) can be con-

structed as the vertical distance between the curve ỹ = f(k̃) and the line ỹ
= [(1 + g)(1 + n)− (1− δ)] k̃ (to save space, the proportions are distorted). Both
the upper and lower panel indicate the position of the golden rule capital inten-
sity, k̃GR, defined by f ′(k̃GR) = (1 + g)(1 + n) − (1 − δ). In the upper panel the
tangent to the f curve having this slope tells where k̃GR is. In the lower panel,
k̃GR is at the point where the tangent to the OEB curve is horizontal, namely
where c̃′(k̃) = f ′(k̃) − [(1 + g)(1 + n)− (1− δ)] = 0. In view of (A3’), the tech-
nology guarantees existence of such a value of k̃. The horizontal arrows in the
lower panel indicate the direction in which k̃ moves if the economy is not at the
k̃t+1 = k̃t locus. These directions are determined by (8.43). Above the k̃t+1 = k̃t
locus, consumption is so high and saving so low that the capital intensity shrinks
(k̃t+1 < k̃t). Below the k̃t+1 = k̃t locus, consumption is so low and saving so high
that the capital intensity grows (k̃t+1 > k̃t).
Now, consider the nullcline for c̃, i.e., the c̃t+1 = c̃t locus. This is the collection

of points (k̃, c̃) with the property that no change in c̃ is generated by the dynamic
equation (8.46). These points are such that the pair (k̃, c̃) satisfies the equation

h(k̃, c̃) = k̃MGR, (8.47)

where h is the function defined in (8.43), and k̃MGR is the modified-golden-rule
capital intensity. This follows from (8.46), since k̃MGR, as defined in (8.16), is
given by

f ′(k̃MGR) + 1− δ = β−1(1 + g)θ(1 + n), (8.48)

in view of β ≡ (1 + R̄)−1.
Equation (8.47) defines c̃ as an implicit function of k̃, i.e., c̃ = η(k̃), where

η′(k̃) = −h1/h2 > 0, by (8.44) and (8.45). Consequently, the c̃t+1 = c̃t locus has
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Figure 8.3: Assembly of the phase diagram.

positive slope. In Fig. 8.3 it is represented by the curve DEF. This curve must
cross the k̃t+1 = k̃t locus exactly where k̃ = k̃MGR. Indeed, in view of the definition
of the function h in (8.43), the c̃t+1 = c̃t locus is such that k̃t+1 = k̃MGR. Hence, at
the point where the c̃t+1 = c̃t locus crosses the k̃t+1 = k̃t locus, we have k̃t = k̃t+1

= k̃MGR. Therefore, the (non-trivial) steady-state value of k̃ is k̃∗ = k̃MGR. The
corresponding steady-state value of c̃ is called c̃∗, cf. the point E in Fig. 8.3.17

The vertical arrows in the figure indicate the direction in which c̃ moves if
the economy is not at the c̃t+1 = c̃t locus. These directions are determined by
(8.46). To the left of the c̃t+1 = c̃t locus, we have k̃ < k̃MGR, hence the marginal
productivity of capital is above theMGR level. Given this high rate of return, it is

17The point D in Fig. 8.3 is located where the c̃t+1 = c̃t locus crosses the k̃-axis. This
happens to be at a k̃ > 0 if capital is essential (see Appendix D), but this is not crucial for any
of our conclusions.
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optimal to postpone consumption in order to enjoy higher consumption later and
so c̃t+1 > c̃t in (8.46). To the right of the c̃t+1 = c̃t locus, we have k̃t+1 > k̃MGR,
hence the marginal productivity of capital is below the MGR level. Given this
low rate of return, impatience “wins” and encourages consumption now to the
detriment of consumption in the future. So c̃t+1 < c̃t in (8.46).

The necessity of the transversality condition implies convergence to the
steady state By construction the first-order conditions are satisfied along the
trajectories in the phase diagram. In particular they are satisfied at the steady-
state point E. We claim that also the necessary transversality condition (8.37),
with v′(ct−1) = c−θt−1 is satisfied at E. Indeed, since c

−θ
t−1 = (c̃t−1(1 + g)t−1)−θ, the

transversality condition can be written

lim
t→∞

[
β(1 + g)1−θ]t−1

c̃−θt−1(1 + g)(1 + n)k̃t = 0. (8.49)

In the steady state c̃t−1 and k̃t can be replaced by the constants c̃∗ and k̃∗,
respectively. So (8.49) is satisfied in view of (A2’). The transversality condition
will then hold also along any trajectory converging toward the steady state E.
Since k̃0 is predetermined, the economy must at the initial date be at some point
on the vertical line k̃ = k̃0 in Fig. 8.3. Among the infinitely many admissible
c0, the social planner looks for an optimal one, knowing that over time optimal
consumption must move according to (8.46). Below we argue that the solution
to this problem is to choose c̃0 such that the economy converges to the steady
state, E, for t → ∞. As we shall see, this requires the unique choice c0 = c̃A in
Fig. 8.3.
The crucial step in the argument is the observation that the arrows in the

phase diagram suggest that the steady state, E, is a saddle point. By this is
meant a steady-state point with the following property: there exists exactly two
paths (one from each side of k̃∗) which points towards the steady state E, cf. the
stippled curve through E pointing North-East and South-West. All other paths
move away from the steady state and asymptotically approach one of the two
diverging paths depicted as the stippled curve through E pointing North-West
and South-East (a precise definition of a saddle point in terms of eigenvalues is
given in Appendix D). The two converging paths, I and IV, are called saddle
paths. In combination they make up what is known as the stable branch (or
stable arm). The two diverging paths going through E in combination make up
the unstable branch (or unstable arm).
A phase diagram for a dynamic system in discrete time, however, can only

suggest the convergence property. Contrary to a system in continuous time, the
system in discrete time will not move continuously along one of the trajectories.
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Only a countable number of points on the trajectory will be observed (this is why
the solution curves in the diagram are stippled). Jumps forth and back across
the steady state can not apriori be ruled out. An algebraic proof of convergence
is required. This is provided in Appendix D, where also monotonicity of the
adjustment is shown.
It follows that choosing c̃0 = c̃A in Fig. 8.3 implies choosing a path which

converges to the steady state E. Since this path, path I in the figure, satisfies
Mangasarian’s suffi cient conditions, the path is an optimal solution. If k̃0 were
above k̃∗, the optimal path would be on the upper stable branch, path IV in Fig.
8.3.
Is this optimal solution the only one? The answer is yes. Paths starting below

the saddle path (such as path III in the diagram) entail so low consumption, given
the value of the state variable k̃, and so high investment that the economy in finite
time ends up in the regime with k̃ > k̃GR and k̃ still growing. The necessary
transversality condition (8.49) is violated, and this signifies “overaccumulation”.
To see this, suppose, without loss of generality, that already at time 0, we have
k̃0 > k̃GR along such a path. Then k̃t > k̃GR for all t ≥ 0 so that

f ′(k̃t+1) + 1− δ < f ′(k̃GR) + 1− δ = (1 + g)(1 + n)

for all t ≥ 0. By (8.42), lagged two periods, this implies

c̃−θt−1 > β−1(1 + g)θ−1c̃−θt−2 >
[
β−1(1 + g)θ−1

]t−1
c̃−θ0 ,

by backward iteration. Consequently,

lim
t→∞

[
β(1 + g)1−θ]t−1

c̃−θt−1 ≥ c̃−θ0 > 0,

and since also limt→∞ k̃t =
_

k̃ > 0 along the path, the transversality condition
(8.49) is violated. If k̃0 were above k̃∗, it is paths like VI that are relevant.
Also these can be ruled out as optimal because they violate the transversality
condition.
Paths starting above the saddle path (such as path II in the diagram) can

also be ruled out as optimal. The intuition is that these paths entail so high
consumption, given the value of the state variable k̃, and so low investment that
k̃ is decreasing and in finite time reaches zero. That is, the economy reaches a
state where all capital is used up. Then consumption, c̃, drops sharply to f(0).
That this road to a foreseeable disaster in finite time will be avoided by the
optimizing planner is formally shown in Appendix D. If k̃0 were above k̃∗, it is
paths like V that are relevant, but they have the same doomsday implication and
cannot be optimal.
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Taking stock

The conclusion is that moving along the saddle path is the unique solution to the
social planner’s dynamic problem. To be precise:

PROPOSITION 2 (existence, uniqueness, and convergence) Assume (A2’) and

(A3’). Let k̃0 > 0. Then there exists a unique optimal path,
{

(k̃t, c̃t)
}∞
t=0
. It

starts at the point on the saddle path which corresponds to the given k̃0. The
optimal path then follows the saddle path and converges toward the steady state,
E. The steady state has k̃∗ = k̃MGR. The modified-golden-rule condition, (8.48),
thus holds in the long run.

As the steady state is a saddle point, the convergence property of the optimal
solution is known as saddle-point stability (for details see Appendix D).
Given the optimal path for k̃t and c̃t, the optimal paths for other variables are

easily found. For instance, given the optimal c̃t, the optimal level of consumption
per unit of labor in the economy will be ct = c̃t(1+g)t where c̃t → c̃∗ for t→∞.18
To find the optimal distribution of consumption between generations we insert
this ct into the first-order condition (8.20) from the static optimization problem.
In view of the CRRA utility specification, this first-order condition amounts to

γc−θ2t = β
(
ct − (1 + n)−1c2t

)−θ
(1 + n)−1. (8.50)

Given ct, this equation has a unique solution in c2t, from which we finally find c1t

= ct − (1 + n)−1c2t, by (8.19).
Note the chain of causality concerning the long-run properties of the optimal

solution. First, the preference parameters (β and θ) and growth parameters
(g and n) determine the net marginal productivity of capital in steady state
according to the modified golden rule. In the next step the technology factors
(the production function f and capital depreciation rate δ) determine the capital
intensity and consumption per unit of effective labor in steady state. Finally, the
optimal distribution of consumption between young and old is in every period
determined by the lifetime preference parameters, γ ≡ (1 + ρ)−1 and θ, and the
social planner’s effective intergenerational discount factor, β ≡ (1 + R̄)−1.

Combining Proposition 1 and Proposition 2, we can infer that assuming (A2’)
and (A3’), also the Barro model of a market economy for which (8.15) holds (so
that positive bequests obtain) will feature a unique and stable steady state which
satisfies the modified golden rule.

18Explicit analytical solutions are obtainable only in special cases, for example the log utility-
Cobb-Douglas case, see Exercise 8.x.
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8.3 The overtaking and catching-up criteria*

Here we will consider the case where the utility discount factor is at its upper
bound given in (A2’), that is

β = (1 + g)θ−1. (A2”)

Then the k̃MGR, defined by (8.48), coincides with the golden-rule capital intensity,
k̃GR, given by the requirement

f ′(k̃GR) + 1− δ = (1 + g)(1 + n).

In this case, maximization ofW0 in (8.25) with T =∞ (infinite horizon) does not
make sense, since the social welfare function, W0, is now unbounded. Because of
the relatively high discount factor (and thereby low discount rate), we are in a
situation where the distant future contributes suffi ciently much to the value of
the social welfare function to imply unboundedness from above of this function.
What can be done in this situation? Just leaving the problem for good be-

cause a maximum of W0 does not exist seems unsatisfactory. According to our
intuition, when the discount rate is low, gradually approaching the golden rule
from the historically given k̃0 should have some kind of optimality attribute in
this situation. Failing to come close to k̃GR in finite time would imply a forgone
“opportunity of infinite gain”.
Fortunately, there are other ways to meaningfully rank (at least partially)

alternative technically feasible paths with infinite horizon.19 The simplest al-
ternative optimality criterion is named the overtaking criterion. The idea is to
replace infinite sums (T =∞) with finite sums (T <∞) and then consider how
a certain difference behaves as T →∞. As above, let the period utility function
be denoted v(c). Let the sequence {ct} be an arbitrary technically feasible per
capita consumption path (by this is meant that it is the per capita consumption

part of a technically feasible path
{

(k̃t, ct)
}
). Let the sequence {ĉt} be a partic-

ular technically feasible per capita consumption path which we wish to test for
optimality. So {ĉt} is our “candidate”for an optimal path.
Define

DT ≡
T−1∑
t=0

βtv(ĉt)−
T−1∑
t=0

βtv(ct), (8.51)

where 0 < β ≤ 1. Then the path {ĉt} is overtaking optimal, if for any alternative
technically feasible path, {ct} , there exists an integer T ′ such that DT ≥ 0 for

19This is only relevant in the context of a social planner. In a market economy, as described
by the Barro model of Chapter 7, an equilibrium with positive bequests can only exist if β is
lower than the right-hand side of (A2”).
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Figure 8.4: Phase diagram for the case g = 0,β = 1.

all T ≥ T ′. That is, if for every alternative feasible path, the candidate path,
{ĉt} , has from some date on, cumulative utility up to all later dates at least as
great as that of the alternative technically feasible path, then the candidate path
is overtaking optimal. We say the candidate path is weakly preferred in case we
just know that DT ≥ 0 for all T ≥ T ′. If DT ≥ 0 can be replaced by DT > 0, we
say it is strictly preferred.
Consider again a social planner facing the same objective function, demogra-

phy, and technology as in the previous section, except that (A2’) is replaced by
(A2”). For simplicity, let us start with the case g = 0, i.e., there is no technolog-
ical change. In this case, k̃t ≡ kt ≡ Kt/Lt for all t, and β = 1 (i.e., R̄ = 0). To
ensure existence of a steady state, assume

lim
k→0

f ′(k) > n+ δ > lim
k→∞

f ′(k). (A3”)

Moreover, in the absence of technological change we do not require that the period
utility function, v(c), is of CRRA-type but only that it satisfies v′ > 0, v′′ < 0, as
well as the No-Fast Assumption (A1). To avoid having to deal with unimportant
technicalities, we also assume that capital is essential, i.e.,

f(0) = 0. (A4)

If the technically feasible path {ĉt} is overtaking optimal, it must satisfy
the first-order conditions (8.30) and (8.32) with (since local optimality remains
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necessary for global optimality). The new phase diagram, shown in Fig. 8.4, is
similar to that in Fig. 8.3 except that now the steady state point E is placed at
the top of the kt+1 = kt curve (since now k∗ = kMGR = kGR). The steady state
is still a saddle point and the associated saddle paths are trajectories I and IV
in the figure. The point of intersection between the vertical line k = k0 and the
relevant saddle path is called A. The figure shows the case where 0 < k0 < kGR,
and trajectory I is the relevant saddle path. If instead k0 > kGR, trajectory IV is
the relevant saddle path.

PROPOSITION 3 Assume g = 0, β = 1, the No-Fast Assumption (A1), (A3”),
and (A4). In Fig. 8.4, the trajectory starting at point A and converging, along
the saddle path, toward the steady-state point E is the unique overtaking-optimal
trajectory. The steady state has k∗ = kGR and thereby the golden-rule condition,
f ′(k∗)− δ = n, holds in the long run.

We provide two substantiations of this proposition, an intuitive “proof”and
a formal proof.

Intuitive “proof”. Let {cit} be the sequence of consumption along a path of type
i = I, II,. . . ,VI in Fig. 8.4. We need only compare paths emanating from the
vertical line k = k0. Presupposing k0 < kGR, our optimality candidate is path{
cIt
}
. We first compare this path with paths of type III. The phase diagram

directly shows that for all t = 0, 1, 2, ..., we have cIt > cIIIt . Hence, DT > 0 for
all T = 0, 1, 2,. . . . If instead k0 > kGR, the same argument makes clear that our
optimality candidate

{
cIVt
}
dominates paths of type VI.

Returning to the case k0 < kGR, we next compare
{
cIt
}
with paths of type

II. It can be shown that along a type II path at some point in time, t1 > 0, all
capital is used up (see Appendix D), so that cIIt = f(0) = 0 for t = t1, t1 + 1,. . . ,
in view of (A4). For every T > t1 we now have

DT =

t1−1∑
t=0

v(cIt ) +

T−1∑
t=t1

v(cIt )−
(
t1−1∑
t=0

v(cIIt ) +

T−1∑
t=t1

v(0)

)

≥
t1−1∑
t=0

v(cIt ) +
T−1∑
t=t1

v(cIt1)−
(
t1−1∑
t=0

v(cIIt ) + v(0)(T − t1)

)
(8.52)

=

t1−1∑
t=0

(
v(cIt )− v(cIIt )

)
+
(
v(cIt1)− v(0)

)
(T − t1)

where the weak inequality is due to cIt ≥ cIt1 , hence v(cIt ) ≥ v(cIt1), for t =
t1, t1 + 1, ... (here we use the monotonicity of ct along path I shown in Appendix
D). The first term in the last row is a negative constant, whereas the last term is
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positive and grows linearly with T.20 Hence, there exists a T ′ such that DT > 0
for all T ≥ T ′. In the case k0 > kGR it remains to compare

{
cIVt
}
with paths of

type V. In this case we replace cIt1 in the second and third row of (8.52) by cGR
so that (8.52) is again valid. Again, the desired conclusion follows. �
Formal proof. The sequence

{
cIt
}
, described in the intuitive “proof”above, satis-

fies Mangasarian’s suffi cient conditions and is thereby a solution according to the
overtaking-optimality criterion. Moreover, as the Hamiltonian is jointly strictly
concave in (kt, ct) for every t, we know from Mangasarian’s suffi ciency conditions
(see Math Tools) that the sequence

{
cIt
}
is a unique solution according to the

overtaking-optimality criterion. �
This result can be extended to the case of Harrod-neutral technological progress

at constant rate g > 0 and CRRA utility, v(c) = c1−θ/(1− θ), θ > 0. To also now
end up at the golden rule, we let β satisfy (A2”) for the given g > 0. We have v(ct)

= (c̃t(1 + g)t)
1−θ

/(1 − θ) = c̃1−θ
t (1 + g)(1−θ)t/(1 − θ), so that, by (A2”), βtv(ct)

= c̃1−θ
t /(1 − θ) = v(c̃t). Thus, with ct replaced by c̃t and assumption (A3”) by

(A3’) in Section 8.1, the logic in the proof of Proposition 3 goes through. Again,
the trajectory along the saddle path from point A to point E, is the unique
overtaking-optimal trajectory.
Generally, the overtaking criterion entails only a partial ordering of the al-

ternative technically feasible paths. Hence there are cases where the overtaking
criterion is not applicable. For example, technically feasible paths may oscillate
with the implication that the role as the “better”path switches indefinitely be-
tween alternative technically feasible paths as T → ∞. Then there is no path
which is overtaking optimal.
A slightly more general optimality criterion is the catching-up criterion. Let

again DT be defined as in (8.51). Then the technically feasible path {ĉt} is
catching-up optimal if, when comparing with any alternative technically feasible
path {ct} , we have

lim
T→∞

DT ≥ 0. (8.53)

Note that whenever a path is overtaking-optimal, it is also catching-up optimal,
but not the other way round.21

Note also the welcome property, that whenever a path is optimal according
to the traditional maximization criterion, it is also optimal according to both the
overtaking and the catching-up criterion.

20In case v(0) in (8.52) is not well-defined beforehand (for instance if v(c) = ln c), we define
v(0) = −∞ and consider ct = 0 as admissible.
21There are exceptional cases where a slightly more general definition of the catching-up

criterion is relevant, see Appendix E. This is related to the distinction between limT→∞ and
lim infT→∞ .
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8.4 Concluding remarks

Chapter 7 described coordination across generations as brought about by com-
petitive markets if a bequest motive due to parental altruism is and remains
operative in a two-period OLG model. This is Barro’s framework which is close
to a representative agent model in discrete time.
In the present chapter we have looked at the intergenerational coordination

problem from the perspective of a benevolent and omniscient social planner facing
the same neoclassical CRS production function and initial resources as in the
market economy. Whether the planning horizon is finite or infinite, the associated
time path of the economy features a distinctive stability attribute, known as the
turnpike property.
The fundamental result of the chapter, stated in Proposition 2, is that if the

effective intergenerational discount rate is large enough to allow existence of dy-
namic general equilibrium in Barro’s framework and existence of a maximum of
social welfare in the social planner’s infinite horizon problem, and if the range of
the marginal productivity of capital as a function of the effective capital inten-
sity is adequate, then the evolution of the economic system, whether governed
by competitive markets or a social planner, is uniquely determined and implies
convergence toward a steady state satisfying the modified golden rule. Moreover,
the analysis leads to the equivalence theorem saying that when parental altruism
lead to positive bequests, the resource allocation brought about by competitive
markets is the same as that brought about by a social planner with a certain
criterion function with infinite horizon. This result requires that (a) the social
planner’s criterion function respects individual preferences as to the distribution
of own consumption across lifetime; (b) the social planner discounts the utility
of future generations in the same way as the private families do.
In dealing with the dynamic optimization problems involved, we have de-

scribed and applied two alternative methods, the simple substitution method and
Pontryagin’s Maximum Principle (in discrete time). If the effective intergenera-
tional discount rate is not large enough to allow existence of a maximum of social
welfare in the social planner’s infinite horizon problem, other optimality criteria
than maximization can sometimes be applied. To these belong the overtaking
criterion and the catching-up criterion.
The period length in the models considered so far is half adult lifetime, that

is, quite long. This is both an advantage and a weakness: an advantage because
it simplifies a lot, but a weakness if we wish to study problems where, for exam-
ple, year-by-year changes are of interest. Therefore, in the next chapter we will
allow lifetime to consist of many periods. Indeed, we shall make a transition to
continuous time analysis.
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8.5 Literature notes

The “veil of ignorance” principle mentioned in Section 8.1 is one of the ethi-
cal ideas in the American philosopher John Rawls’The theory of Justice (Rawls
1971). This influential book proposed an alternative to utilitarianism, the max-
imin criterion. According to this criterion the social planner should maximize the
utility of the worst-off individual. This principle is less applicable to evolutionary
problems with technological progress than to static resource allocation problems.
Other alternatives to utilitarianism include the (pure) sustainability principle
according to which the social planner should maximize the level of per capita
human welfare that can be sustained forever; the human development extension
of the sustainability principle says that the social planner should maximize the
per capita level of human welfare that can not only be sustained forever but
is consistent with a given minimum growth rate in human welfare, see Roemer
(2008).
For discussion of reasons for allowing disparity between the social planner’s

and the private intergenerational utility discount rate, see Marglin (1963) and Sen
(1967, 1982). Social discounting, when natural resources and environmental risks
are taken into account, is treated in Lind et al. (1982), Heal (1998), Weitzman
(2007), and Stern (2008).
Introductions to turnpike theory are provided by Chakravarty (1969), Burmeis-

ter (1980), Blanchard and Fischer (1989), and Bewley (2007). For comprehensive
accounts, see McKenzie (1987) and Arkin and Evstigneev (1987).
More about Pontryagin’s Maximum Principle in discrete time and similar

methods can be found in Feichtinger and Hartl (1986), Pu (1991), Bewley (2007),
and Sydsaeter et al. (2008). Arkin and Evstigneev (1987) give a mathematically
advanced account with economic applications and including generalized optimal-
ity criteria.
The decomposition in Section 8.2.1 of the social planner’s problem into two

separate problems, a static and a dynamic one, is possible because of the assumed
additive separability of the lifetime utility function. The case of non-separability
gives more intricate results, see Michel and Venditti (1997).
The argument in Appendix C for the necessity of the infinite horizon transver-

sality condition relies on boundedness of the state variable, k̃, and is based on
identification of increments to a function with its differential when the changes in
the independent variables become “infinitely small”and thus constitute “infini-
tisimals”. This kind of somewhat imprecise reasoning is common in economics,
but largely abandoned by mathematicians. For a rigorous account, accessible for
non-mathematicians, of the necessity of the transversality condition in a class of
economic optimization problems in discrete time, see Kamihigashi (2002). Ex-
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tended results are contained in the specialized literature, for example Becker and
Boyd (1997) and Kamihigashi (2005).

8.6 Appendix

A. Boundedness

In this appendix we will show existence of a solution to the social planner’s
problem with finite horizon. As a by-product appears some background material
to be used in subsequent appendices. We start with the simple case where there
is no technological progress. In this case the model is called stationary.

A stationary model Assuming no technological progress, the dynamic re-
source constraint in (8.27) reads:

kt+1 =
f(kt) + (1− δ)kt − ct

1 + n
, (8.54)

where kt ≡ Kt/Lt, ct ≡ Ct/Lt, 0 ≤ δ ≤ 1, n > −1, f(0) ≥ 0, f ′ > 0, and
f ′′ < 0.We shall consider capital accumulation from the point of view of technical
feasibility. The path {(kt, ct)}∞t=0 is technically feasible if it satisfies (8.54) for all
t ≥ 0, with ct ≥ 0 and kt ≥ 0, where k0 equals the historically given initial
capital-labor ratio.
Assume

δ + n > 0 (8.55)

and
lim
k→0

f ′(k) > δ + n > lim
k→∞

f ′(k). (8.56)

Then, as indicated in Fig. 8.5, the graph of f(k) is above the line y = (δ + n)k
for k small and below for k large. In view of continuity of f and the fact that
f ′′ < 0, there is a unique k̄ > 0 such that

f(k) T (δ + n)k for k S k̄, (8.57)

respectively. An implication of this is the following. Consider the investment
per worker required to make up for capital depreciation per worker and to equip
the net inflow of workers with capital in the same amount per worker which
applies to the rest of the labor force. If the capital-labor ratio, k, is above k̄,
then this required investment per worker is larger than gross output per worker,
y. Therefore, the required investment per worker can not be realized, hence it is
technically impossible to maintain this high capital-labor ratio. To be precise:
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Figure 8.5: The maximum sustainable k is bark.

LEMMA A1 (boundedness of k and c) Assume (8.55) and (8.56). Let x̄0 ≡
max

{
k0, k̄

}
, where k̄ > 0 is defined in (8.57). Any technically feasible path,

{(kt+1, ct)}∞t=0 , satisfies

kt ≤ x̄0, (8.58)

ct ≤ f(x̄0) + (1− δ)x̄0, (8.59)

for t = 0, 1, 2, ....

Proof. By (8.54) and non-negativity of kt for all t,

kt+1 ≤
f(kt) + (1− δ)kt

1 + n
≡ ϕ(kt), (8.60)

where the inequality is due to ct ≥ 0. Note that for all k > 0, ϕ(k) > 0, ϕ′(k)
= (1 + n)−1 [f ′(k) + 1− δ] > 0, and ϕ′′(k) = (1 + n)−1f ′(k) < 0; moreover,
ϕ(k̄) = k̄. Hence,

ϕ(k) T k for k S k̄, (8.61)

respectively.
We prove (8.58) by induction. Suppose that for a fixed t ∈ {0, 1, 2, ...} , kt

≤ x̄0 = max
{
k0, k̄

}
. Then

kt+1 ≤ ϕ(kt) ≤ ϕ(x̄0) ≤ x̄0,

where the first (weak) inequality comes from (8.60), the second from the fact that
ϕ′(k) > 0, and the last from x̄0 ≥ k̄ combined with (8.61). Obviously, kt ≤ x̄0

holds for t = 0. Hence (8.58) holds for all t ≥ 0.
To prove (8.59), note that (8.54) combined with kt+1 ≥ 0 implies

ct ≤ f(kt) + (1− δ)kt ≡ ψ(kt) ≤ f(x̄0) + (1− δ)x̄0,
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where the last inequality follows from (8.58) combined with the fact that ψ′(k)
= f ′(k) + 1− δ > 0 for all k > 0. �

Technological progress. Reduction to a stationary model We now add
Harrod-neutral technological progress at the rate g > 0. We show that this case
can be reduced to a stationary case so that with an appropriate reinterpretation
of the variables, the results in Lemma A1 apply.
From (8.27) we have the dynamic resource constraint:

k̃t+1 =
f(k̃t) + (1− δ)k̃t − c̃t

(1 + g)(1 + n)
, (8.62)

where c̃t = ct/(1 +g)t. The assumptions (A2’) and (A3’) in Section 8.2 imply two
things:

(1 + g)(1 + n)− (1− δ) > 0 (8.63)

and
lim
k̃→0

f ′(k̃) > (1 + g)(1 + n)− (1− δ) > lim
k̃→∞

f ′(k̃). (8.64)

Hence, defining 1 + n′ ≡ (1 + g)(1 + n), we see that (8.54), (8.55), and (8.56) are
satisfied with n replaced by n′ and kt replaced by k̃t, t = 0, 1, 2, .... From Lemma
A1 we now conclude that for all t ≥ 0,

k̃t ≤
_

x̃0, (8.65)

c̃t ≤ f(
_

x̃0) + (1− δ)
_

x̃0, (8.66)

with
_

x̃0 ≡ max
{
k̃0, k̄

}
, where k̄ > 0 is defined as in (8.57), but with n replaced

by n′ and kt replaced by k̃t.
This boundedness from above of k̃t and c̃t implies that kt and ct can not in

the long run grow at a rate higher than g.
As to existence of a solution to the planner’s optimization problem, (8.25) -

(8.28), with T <∞, we shall appeal to the extreme value theorem.22 The period
utility function v and the production function f are continuous functions. By
substitution of the constraint (8.27), for t = 0, 1, ..., T − 1, into the objective
function, this becomes a continuous function of k̃1, k̃2, ..., k̃T . These k̃’s are non-
negative and have an upper bound, given by (8.65). Hence, by the extreme
value theorem there is a maximum and thereby a solution to the social planner’s
problem.

22The extreme value theorem states that a continuous function defined on a closed and
bounded set has both a maximum and a minimum.
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B. When T → ∞, a high enough discount rate is needed for bounded-
ness of the integral of discounted utilities

Here we shall substantiate the claim in Section 8.1 that with CRRA utility, u(c)
= c1−θ/(1− θ), θ > 0, the parameter restriction

1 + R̄ > (1 + g)1−θ (A2)

ensures that the social welfare function with an infinite horizon is bounded from
above. As R̄ > −1 and β ≡ (1 +R)−1, this inequality is equivalent to

0 < β < (1 + g)θ−1, (A2’)

which is the simpler form applied in Section 8.2.
The social welfare function with infinite horizon introduced in Section 8.1 is:

W0 = (1 + ρ)−1u(c20) +
∞∑
t=0

βt+1[u(c1t) + (1 + ρ)−1u(c2t+1)] (8.67)

where ρ > −1, u′ > 0, and u′′ < 0. In Section 8.2 we showed that the prob-
lem of maximizing W0 subject to technical feasibility could be decomposed into
two problems, the static problem, (8.18) - (8.19), and the dynamic problem of
maximizing

W0 =
∞∑
t=0

βtv(ct), (8.68)

subject to technical feasibility. Here ct ≡ Ct/Lt and v(ct) is the social planner’s
optimized period utility function,

v(ct) = βu(c1t(ct)) + (1 + ρ)−1u(c2t(ct)),

as defined in (8.22). Here we have inserted γ ≡ (1 + ρ)−1 > 0. It always holds
that v′ > 0 and v′′ < 0. In Lemma 1 of Section 8.2 it was shown that if u(c)
= c1−θ/(1− θ), where θ > 0, then we can always choose the function v such that
for the same θ, v(c) = c1−θ/(1− θ).
It is boundedness from above of the expression in (8.68) that is our concern.

We begin with the case g = 0.

The stationary model Define c̄ ≡ f(x̄0) + (1 − δ)x̄0, where x̄0 is given in
Lemma A1. In view of (8.59), we have for all t ≥ 0, ct ≤ c̄. Then, since v′ > 0,
v(ct) ≤ v(c̄). Consequently,

W0 ≤ v(c̄)

∞∑
t=0

βt = v(c̄)
1

1− β ,
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for 0 < β < 1, which is the form (A2’) takes for g = 0. We also see that if
β ≥ 1, there always exists a b > 0 such that for ṽ(c̄) ≡ v(c̄) + b, ṽ(c̄)

∑∞
t=0 β

t

is not bounded from above. So, 0 < β < 1 is suffi cient as well as necessary (up
to a positive constant added to the period utility function) for the social welfare
function to be bounded from above.

The case of technological progress Consider the case g > 0 combined with
v(c) = c1−θ/(1 − θ), where θ > 0. Define

_

c̃ ≡ f(
_

x̃0) + (1 − δ)
_

x̃0; here,
_

x̃0 ≡
max

{
k̃0, k̄

}
, where k̄ > 0 is defined as in (8.57), but with n replaced by n′ and

kt replaced by k̃t. We have ct ≡ c̃tTt = c̃t(1 + g)t ≤
_

c̃(1 + g)t in view of (8.66).
There are two cases to consider.
Case 1 : θ > 0, θ 6= 1. We get

v(ct) =
c1−θ
t

1− θ ≤
_

c̃
1−θ

1− θ (1 + g)(1−θ)t.

Consequently, with β satisfying (A2’),

W0 =
∞∑
t=0

βt
c1−θ
t

1− θ ≤
∞∑
t=0

βt
_

c̃
1−θ

1− θ (1 + g)(1−θ)t =

_

c̃
1−θ

1− θ

∞∑
t=0

[
β(1 + g)1−θ]t .

We see that this upper bound for W0 is finite if 0 < β(1 + g)1−θ < 1, i.e., if (A2’)
holds. This inequality ensures that if 0 < θ < 1, then 0 < W0 <∞, and if θ > 1,
then −∞ < W0 < 0.
In a steady state we have ct = c̃∗(1 + g)t, so that

W0 =
c̃∗1−θ

1− θ

∞∑
t=0

[
β(1 + g)1−θ]t ,

which is finite if (A2’) holds. If, on the other hand, β ≥ (1+g)θ−1, thenW0 =∞,
if 0 < θ < 1, and W0 = −∞, if θ > 1.
Case 2 : θ = 1, i.e., u(c) = ln c. Here

W0 =

∞∑
t=0

βt ln ct ≤
∞∑
t=0

βt
[
ln
_

c̃ + t ln(1 + g)
]

= (ln
_

c̃)
∞∑
t=0

βt +
∞∑
t=0

βtt ln(1 + g).

This upper bound for W0 is finite if 0 < β < 1 which is the form taken by (A2’).
The reason is that geometric decline (via βt) outweighs arithmetic growth (via
t ln(1 + g)).
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In a steady state,

W0 =

∞∑
t=0

βt [ln c̃∗ + t ln(1 + g)] = (ln c̃∗)

∞∑
t=0

βt +

∞∑
t=0

βtt ln(1 + g),

which is bounded from above if 0 < β < 1 (i.e., (A2’) holds) and not bounded
from above if β ≥ 1, since in this case the second term will dominate and outweigh
the first if ln c̃∗ < 0.

C. The transversality condition with infinite horizon

Necessity of the transversality condition In Section 8.2 we claimed that
the transversality condition (8.37) must be satisfied by an interior solution to the
optimization problem (8.25) − (8.28) with T →∞, when . Here we substantiate
this claim by a heuristic argument known as the unreversed arbitrage principle.23

For convenience we rewrite (8.37) as

lim
T→∞

βT−1v′(cT−1)(1 + g)T−1(1 + g)(1 + n)k̃T = 0. (*)

Imposing the conditions (A2’) and (A3’) (both from Section 8.2), kt can-
not in the long run grow at a rate higher than the rate of technological progress.
What amounts to the same is that the effective capital-labor ratio, k̃T , will remain
bounded from above for T →∞ (see Appendix A and B). So limT→∞

[
(1 + g)(1 + n)k̃T

]
<∞ in (*). It is therefore enough to show that

lim
T→∞

βT−1v′(cT−1)(1 + g)T−1 = 0 (8.69)

along an interior optimal path.

Let a given path
{(
k̃t, ct

)}∞
t=0

be an interior optimal path. This will be our

“reference path”. Since the reference path is optimal, no welfare improving real-
location of resources is possible. An example of a technically feasible reallocation
of resources is the following. We increase c0, c1,. . . , cT−1 so that k̃1, k̃2,. . . , k̃T
are all decreased by h units where h is a small positive number (for h suffi ciently
small this is always possible since we consider an interior path implying that Kt

is positive for all t). Finally, in period T per capita consumption is decreased
and gross investment thereby increased suffi ciently so as to bring k̃T+1 back to
its level in the reference path.
The implied changes in per capita consumption, ct, relative to the reference

path, can be calculated on the basis of the dynamic resource constraint expressed

23This draws upon Becker (2008).
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in growth-corrected variables:

c̃t ≡
ct

(1 + g)t
= f(k̃t) + (1− δ)k̃t − (1 + g)(1 + n)k̃t+1,

cf. (8.27). For any given changes in k̃t and k̃t+1, ∆k̃t and ∆k̃t+1, the differential
of c̃t is

dc̃t =
[
f ′(k̃t) + 1− δ

]
∆k̃t − (1 + g)(1 + n)∆k̃t+1.

The actual changes in ct are then

∆ct ≈ dct = (1 + g)tdc̃t, t = 0, 1, . . . , T.

The considered reallocation is such that ∆k̃0 = 0, ∆k̃t = −h for t = 1, 2,. . . ,
T, and ∆k̃T+1 = 0. It follows that

∆ct ≈


1 · (1 + g)(1 + n)h for t = 0,

−(1 + g)t
[
f ′(k̃t) + 1− δ − (1 + g)(1 + n)

]
h for t = 1, 2, . . . , T − 1,

−(1 + g)T
(
f ′(k̃T ) + 1− δ

)
h for t = T.

For period 0 this reallocation implies a utility gain approximately equal to

v′(c0)∆c0 ≈ v′(c0)(1 + g)(1 + n)h > 0.

In each of the periods 1, 2,. . . , T − 1 there tend to be a utility loss, although two
countervailing forces are in play. On the one hand the marginal product of the h
units of growth-corrected capital is lacking. On the other hand, the lower needed
investment than otherwise gives scope for higher consumption. In any event, the
total discounted utility loss incurred in these periods is approximately

T−1∑
t=1

βtv′(ct)(1 + g)t
[
f ′(k̃t) + 1− δ − (1 + g)(1 + n)

]
h.

Finally, in period T there is a utility loss because the marginal product of the h
units of growth-corrected capital is lacking. The discounted utility loss incurred
by this is approximately

βTv′(cT )(1 + g)T
(
f ′(k̃T ) + 1− δ

)
h.

Since the reference path is assumed optimal, the gain and the losses should
for small h cancel so that, approximately,

v′(c0) =

T−1∑
t=1

βtv′(ct)(1+g)t

[
f ′(k̃t) + 1− δ
(1 + g)(1 + n)

− 1

]
+βTv′(cT )(1+g)T

f ′(k̃T ) + 1− δ
(1 + g)(1 + n)

,

(8.70)
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where we have divided through by (1+g)(1+n)h. Like the Euler equation (8.35),
(8.70) is a necessary condition for optimality. The argument used in its derivation
is called a T − 1 periods reversed arbitrage argument. For T = 1 the first term
in (8.70) disappears and (8.70) reduces to (8.35).
An alternative reallocation − an unreversed arbitrage − is one where the h

units of growth-corrected capital are permanently sacrificed.24 In this case the
total discounted utility loss pertaining to period 1 and onward is approximately

∞∑
i=1

βtv′(ct)(1 + g)t
[
(1 + g)(1 + n)−

(
f ′(k̃t) + 1− δ

)]
h.

Ignoring approximation errors, the optimal reference path must satisfy

v′(c0) =

∞∑
i=1

βtv′(ct)(1 + g)t

[
f ′(k̃t) + 1− δ
(1 + g)(1 + n)

− 1

]
. (8.71)

But both (8.71) and (8.70), as T →∞, can hold only if

lim
T→∞

βTv′(cT )(1 + g)T
f ′(k̃T ) + 1− δ
(1 + g)(1 + n)

= 0.

In view of the first-order condition (8.35), this unreversed arbitrage argument
implies

lim
T→∞

βT−1v′(cT−1)(1 + g)T−1 = 0,

which is the transversality condition (8.69) as was to be shown. In the limit, for
h→ 0, the approximation errors implicit in the equations become negligible.25

The “generations-oriented”format of the transversality condition In-
stead of the above “period-oriented” format based on the social planner’s opti-
mized period utility function, v(ct), consider the social planner’s problem formu-
lated in a “generations-oriented”format based on the individual’s period utility
functions, u(c1t) and u(c2t+1), as in Section 8.1. For this format the transversality
condition reads

lim
T→∞

[β(1 + g)]T u′(c1T−1)(1 + n)k̃T = 0, (8.72)

24Here the argument presupposes that there is scope for this permanent reduction in k̃, i.e.,
that our reference path does not have limT→∞ k̃T = 0. If it does, we can use a symmetric
reasoning with h < 0, again leading to the conclusion that (8.69) must hold along an interior
optimal path.
25In case k̃T is unbounded from above for T →∞ (because (A2’) and/or (A3’) are violated),

the transversality condition (*) is stronger than (8.69) and requires an independent proof. See
Literature notes.
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cf. (8.13) where we have entered β ≡ (1 + R̄)−1. By inserting the “envelope
condition” v′(cT ) = βu′(c1T−1), from (8.23), we see that (8.72) is equivalent to
(*).

Application to Proposition 1 (equivalence) Proposition 1 in Section 8.1.1
compares the resource allocation in the Barro model of a market economy with
positive bequests (Chapter 7) to that of a social planner facing the same tech-
nology and initial resources as in the market economy and having an effective
intergenerational discount factor, β ≡ (1 + R̄)−1, equal to the private one; this
β is assumed to satisfy assumption (A2’) saying that 0 < β < (1 + g)θ−1.
We may write the intertemporal utility function of the altruistic parent be-

longing to generation t (Section 7.2.1) as

Ut =
∞∑
i=0

βi
[
u(c1t+i) + (1 + ρ)−1u(c2t+i+1)

]
.

Without loss of generality we specifically consider the altruistic young parent
belonging to generation 0:

U0 =
∞∑
T=0

βT
[
u(c1T ) + (1 + ρ)−1u(c2T+1)

]
,

where, for comparison with the present chapter, we have replaced i by T.
This intertemporal utility function is closely related to the social welfare func-

tion of the social planner. Indeed, from (8.67) we see that

W0 = (1 + ρ)−1u(c20) + βU0.

This is in fact exactly what the old in period 0 maximizes by choosing c20 ≥ 0
and b0 ≥ 0 subject to the budget constraint c20 + (1 + n)b0 = (1 + r0)s−1 and
taking into account that the chosen b0 indirectly affects the maximum lifetime
utility to be achieved by the next generation, cf. Section 7.2.1.
We showed in Section 8.1.1 that the equations describing the dynamics of

the Barro model for a competitive market economy with positive bequests are
equivalent to the equations describing the social planner’s resource constraints
and first-order conditions. By appealing to Mangasarian’s suffi ciency theorem,
we argued in Section 8.2 that the latter conditions, together with the transver-
sality condition (8.36), which is equivalent to (8.72), are suffi cient for an optimal
solution. To prove Proposition 1, the only point remaining is to show that also
the transversality conditions of the two models are equivalent.
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From the perspective of generation 0 in the Barro model, the transversality
condition is

lim
T→∞

βT−1(1 + ρ)−1u′(c2T )(1 + n)bT = 0, (8.73)

which follows from (7.8) by inserting β ≡ (1 + R̄)−1, letting t = 0, and replacing
i by T .
For the social planner’s problem formulated in “generations-oriented”format

as in Section 8.1, the transversality condition is given by (8.72) above. For com-
parison with (8.73), we substitute k̃T ≡ kT/(1 + g)T and divide through by β to
get

lim
T→∞

βT−1u′(c1T−1)(1 + n)kT = 0. (8.74)

LEMMA C1 Barro’s and the social planner’s transversality conditions, (8.73)
and (8.74), are equivalent.

Proof. (incomplete) From the budget constraint, (7.5), of the old parent in the
Barro model, with t replaced by T − 1, we have

0 ≤ bT = (1 + rT )kT −
c2T

1 + n
< (1 + rT )kT = (1 + f ′(k̃T )− δ)kT ,

in view of c2T > 0 and rT = f ′(k̃T ) − δ in the competitive market economy.
Multiplying through by βT−1(1 + ρ)−1u′(c2T )(1 + n) > 0 gives

0 ≤ βT−1(1 + ρ)−1u′(c2T )(1 + n)bT

< βT−1(1 + ρ)−1u′(c2T )(1 + n)(1 + f ′(k̃T )− δ)kT = βT−1u′(c1T−1)(1 + n)kT ,

where the equality follows from (8.10) with t replaced by T − 1. Hence, letting

T →∞, a technically feasible path satisfying (8.74) will also satisfy (8.73).
That the inverse also holds, follows from ...?? �

D. Saddle-point dynamics

We shall prove that the solution to the social planner’s problem with infinite
horizon in sections 8.3 and 8.4 coincides with the unique converging path in
figures 8.3 and 8.4 if the parameters satisfy either (A2’) or (A2”) (from Section
8.2 and 8.3, respectively), that is, if

0 < β ≤ (1 + g)θ−1 (A2*)

holds. Strict inequality here leads to the modified golden rule, whereas the lim-
iting case with equality leads to the golden rule.
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Of crucial importance is that the non-trivial steady state of the dynamic
system is a saddle point. A steady state of a two-dimensional dynamic system in
discrete time is called a saddle point if a certain associated matrix, known as the
Jacobian, evaluated in the steady state has one eigenvalue with absolute value
below one and one eigenvalue with absolute value above one.
Our dynamic system is given by (8.43) and (8.46). These non-linear first-order

difference equations can be written

k̃t+1 =
f(k̃t) + (1− δ)k̃t − c̃t

(1 + g)(1 + n)
, (8.75)

c̃t+1 =

(
β
f ′(k̃t+1) + 1− δ
(1 + g)θ(1 + n)

)1/θ

c̃t, (8.76)

where k̃0 is predetermined, whereas c̃0 is endogenous. The unique non-trivial
steady state is (k̃∗, c̃∗).

We start with the simple case where there is no technological progress.

The case with no technological progress

With g = 0 the dynamic system can be written

kt+1 =
f(kt) + (1− δ)kt − ct

1 + n
, (8.77)

ct+1 =

(
β
f ′(kt+1) + 1− δ

1 + n

)1/θ

ct. (8.78)

To calculate the Jacobian, we need to have the system on the form kt+1 = ϕ(kt, ct),
ct+1 = ψ(kt, ct).We get this form by first linearizing around the non-trivial steady
state. A convenient approach is based on taking the differential on both sides of
(8.77) and (8.78), respectively:

dkt+1 =
(f ′(k∗) + 1− δ) dkt − dct

1 + n
≡ a1dkt + a2dct, (a2 ≡ h2 in (8.45))

dct+1 =
c∗

θ
(f ′(k∗) + 1− δ)

1
θ
−1 f ′′(k∗)dkt+1 + (f ′(k∗) + 1− δ)

1
θ dct[

β−1(1 + n)
] 1
θ

≡ a3dkt+1 + a4dct = a3(a1dkt + a2dct) + a4dct

= a1a3dkt + (a2a3 + a4)dct.
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Using k∗ = kMGR and (8.48), we have

a1 = β−1 ≥ 1, by (A2*) for g = 0, a2 =
−1

1 + n
< 0, (8.79)

a3 =
c∗f ′′(k∗)

θβ−1(1 + n)
< 0, a1a3 =

c∗f ′′(k∗)

θ(1 + n)
< 0,

a2a3 =
−c∗f ′′(k∗)
θβ−1(1 + n)2

> 0, a4 = (
f ′(k∗) + 1− δ
β−1(1 + n)

)
1
θ = 1.

The linear approximation The approximating linear dynamic system in de-
viations from the steady state,

(
k∗

c∗

)
, is(

dkt+1

dct+1

)
= A

(
dkt
dct

)
,

where the matrix A is the Jacobian, defined by

A =

[
a1 a2

a1a3 a2a3 + a4

]
=

[
β−1 −1

1+n
c∗f ′′(k∗)
θ(1+n)

1 + b

]
,

with

b ≡ −c∗f ′′(k∗)
θβ−1(1 + n)2

> 0.

The determinant and trace of A are:

detA = a1(a2a3 + a4)− a1a3a2 = a1a4 = a1 ≥ 1, (by (8.79)) and(8.80)

trA = a1 + a2a3 + a4 = a1 + 1 + b > 2, (8.81)

respectively.
Let ε1 and ε2 be the eigenvalues of A. Then

ε1 =
1

2
(trA−

√
∆),

ε2 =
1

2
(trA+

√
∆),

where ∆ ≡ (trA)2 − 4 detA, which is known as the discriminant of A. From
matrix algebra we know the rules ε1 · ε2 = detA and ε1 + ε2 = trA. In view of
(8.80), detA > 0, hence the eigenvalues are of the same sign. And in view of
(8.81), trA > 0, hence the eigenvalues are both positive. Further,

(trA)2 = (a1 + 1)2 + b2 + 2(a1 + 1)b

= a1
2 + 1 + 2a1 + b2 + 2(a1 + 1)b,
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so that

∆ = a1
2 + 1 + 2a1 + b2 + 2(a1 + 1)b− 4a1

= a1
2 + 1− 2a1 + b2 + 2(a1 + 1)b = (a1 − 1)2 + b2 + 2(a1 + 1)b

= (a1 − 1)2 + b2 + 2(a1 − 1)b+ 4b = (a1 − 1 + b)2 + 4b > 0.

Both eigenvalues are thus real and, as b > 0, we have
√

∆ > a1− 1 + b. It follows
that

0 < ε1 =
1

2
(a1 + 1 + b−

√
∆) <

1

2
(1 + 1) = 1,

ε2 =
1

2
(a1 + 1 + b+

√
∆) >

1

2
(2a1 + 2b) = a1 + b > a1 ≥ 1,

where the last (weak) inequality comes from (8.79). Hereby we have shown that
the steady state, (k∗, c∗), is a saddle point. The next step is to show that the
steady state features a certain stability property called saddle-point stability.

Saddle-point stability A steady state of a two-dimensional dynamic system
is called (locally) saddle-point stable, if:

(a) the steady state is a saddle point;

(b) the dynamic system has one predetermined variable and one jump vari-
able;26

(c) for any initial value of the predetermined variable in a neighborhood of the
steady state, there is a unique value of the jump variable such that the
system starts (has initial point) on the saddle path; and

(d) there is a boundary condition on the system such that the diverging paths
are ruled out as solutions.

In our context (a) and (b) are already established, and (d) follows from the
transversality condition (8.49). It remains to check point (c). It is enough to
consider the approximating linear system. The general solution to this system
can be written (

kt
ct

)
= C1

(
v11

v12

)
εt1 + C2

(
v21

v22

)
εt2 +

(
k∗

c∗

)
, (8.82)

26A variable which is not pre-determined and can immediately jump to another value, is
called a jump variable. Such a jump may be triggered by the arrival of new information. Thus,
the control variable, c, in the problem is a jump variable.
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where
(
vi1
vi2

)
is an eigenvector associated with εi, i = 1, 2, and C1 and C2 are

constants related to the initial values, k0 and c0, in the following way:

C1

(
v11

v12

)
+ C2

(
v21

v22

)
+

(
k∗

c∗

)
=

(
k0

c0

)
. (8.83)

Here, k0 is predetermined, whereas c0 is to be chosen such that the system is on
the saddle path at time 0. This is equivalent to choosing c0 such that the solution,
(8.83), to the approximating linear system does not diverge, i.e., such that C2 = 0.
Since a2 6= 0, the eigenvector

(
v11

v12

)
can be written

(
1

(ε1−a1)/a2

)
. Substituting into

(8.83) and solving for C1 and c0 gives

C1 = k0 − k∗,

c0 = (k0 − k∗)
ε1 − a1

a2

+ c∗ = (k0 − k∗)(β−1 − ε1)(1 + n) + c∗ > 0,

in view of ε1 < 1 ≤ a1 = β−1 and a2 = −(1 + n)−1. So the particular solution we
have been looking for is

kt = (k0 − k∗)εt1 + k∗, (8.84)

ct = (k0 − k∗)(β−1 − ε1)(1 + n)εt1 + c∗. (8.85)

We have hereby proved property (c) for the approximating linear system. As
an implication, the “true”non-linear system is at least locally saddle-point stable.
Property (c) can alternatively (and simpler) be established graphically from

the phase diagram in Fig. 8.3. Indeed, this diagram reveals that the saddle
path is not (at least in a small neighborhood of the steady state) parallel to the
jump-variable axis.

Global saddle-point stability Proposition 2 of Section 8.2 not only claims
local saddle-point stability, but global saddle-point stability. This claim means
that point (c) above can be strengthened to the following. Given an arbitrary
positive initial value of the predetermined variable, there is a unique positive
value of the jump variable such that the system starts (has initial point) on the
saddle path. That is, global saddle-point stability requires that for any k0 > 0,
it is possible to start out on the stable arm. Suffi ce it to say that this condition
is satisfied by the present model. The proof is analogue to one used for the
continuous time case in Appendix A to Chapter 10.
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Including technological progress

The original system, (8.75) and (8.76), with g > 0 can be written

k̃t+1 =
f(k̃t) + (1− δ)k̃t − c̃t

1 + n′
,

c̃t+1 =

(
β′
f ′(k̃t+1) + 1− δ

1 + n′

)1/θ

c̃t,

where we have defined 1 + n′ ≡ (1 + g)(1 + n) and β′ ≡ β(1 + g)1−θ. In view
of (A2*), we have 0 < β′ ≤ 1. In this way we have reduced the system to the
same form as in the stationary case above. Thus, the conclusions go through with
appropriate reinterpretation of the variables.
Since ε1 > 0, the solution (8.84) - (8.85) approaches the non-trivial steady

state in a non-oscillatory way.

Why can the divergent paths not be optimal?

Whereas in the text our argument for ruling out divergent paths like III and VI
in Fig. 8.3 as optimal paths is rigorous, the argument concerning divergent paths
like II and V was only intuitive. We claimed, first, that these reach c̃ = 0 in
finite time. This follows from the fact that before this possibly happens, there is
a sequence of periods where not only is c̃t so large that k̃t is decreasing, but c̃t is
at the same time increasing over time.
Our second claim was that paths like II and V can not be optimal. A proof can

be based on the fact that the Hamiltonian function is strictly concave in (k̃t, c̃t).
Then, from Mangasarian’s suffi ciency theorem (see Math tools) follows that an
optimal solution is unique. Since we have already shown that the convergent path
is optimal, none of the divergent paths can be so.
The fact that all paths which start above the saddle path, hit the boundary

of the dynamic system in finite time, indicates that they are not interior paths.
One might then question whether they have at all satisfy the Euler equation in
the periods before they hit the boundary. That is, have we really constructed
these paths correctly? The answer is yes. As long as the boundary of the system
is not binding, the first-order conditions which lead to the Euler equation must
hold along an optimal path.

A technical issue concerning the point D in Fig. 8.3

The point D in Fig. 8.3 is located where the c̃t+1 = c̃t locus intersects the k̃-axis.
Whether it does so for a k̃ > 0 or a k̃ ≤ 0 is immaterial for our stated conclusions.
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In the case shown in Fig. 8.3, the intersection is at a k̃ > 0. This case occurs
when capital is essential, i.e., f(0) = 0. Indeed, by the definition of h in (8.43),
along the c̃t+1 = c̃t locus we have c̃t = f(k̃t) +(1 − δ)k̃t − (1 + g)(1 + n)k̃MGR

≡ m(k̃t). Now, m(k̃∗) = c̃∗ > 0 and m(0) = −(1 + g)(1 + n)k̃MGR < 0 when
f(0) = 0. Since m is continuous, there is therefore a k̃ ∈ (0, k̃∗) such that m(k̃)
= 0.

E. Limit inferior and limit superior

Both when discussing infinite horizon transversality conditions and when intro-
ducing the catching-up optimality criterion in Section 8.3, we assumed that the
relevant limits exist for T → ∞. If full generality were aimed at, we should for
example allow non-convergence of DT for T → ∞. Indeed, the set of feasible
paths might in theory be such that DT fluctuates forever with non-vanishing am-
plitude. If so, we would have to replace “limT→∞”in (8.53) by “lim infT→∞”, i.e.,
the limit inferior.
Let “j ≥ t”be a shorthand for “j = t, t+1,. . . ”. The limit inferior for t→∞

of a sequence {xt}∞t=0 is defined as limt→∞ inf {xn| n ≥ t} . Here inf of a set of
real numbers, say St = {xn| n ≥ t} , means the infimum of the set, that is, the
greatest lower bound for St.27 Fig. 8.6 illustrates. For t = t1, b1 is a lower bound,
but evidently not the greatest. As t→∞, the greatest lower bound tends to b2,
which then is the lim inft→∞ xt. Analogously, the “lim sup”or limit superior for
t → ∞ of a sequence {xt}∞t=0 is defined as limt→∞ sup {xn| n ≥ t} , where sup of
the set means the supremum of the set, that is, the least upper bound.28 In Fig.
8.6, for t = t1, the least upper bound for St is b4, but for t→∞ the least upper
bound tends to b3, which is thus the lim supt→∞ xt.

Obviously, lim inft→∞ xt ≤ lim supxt. If limt→∞ xt exists, then limt→∞ xt =
lim inft→∞ xt = lim supt→∞ xt. This is the case where b2 = b3 in Fig. 8.6. An
example of non-convergence is xt = (−1)t, t = 0, 1, 2,. . . , where lim inft→∞ xt =
−1 and lim supt→∞ xt = 1.

Due to strict concavity in many economic problems, however, infinitely fluctu-
ating paths that do not converge can often be shown to be inferior (see Koopmans,
1965). In “normal”economic optimization problems, as those considered in this
book, infinitely fluctuating paths never turn up. Hence, in our context essentially
nothing is lost by using the more narrow specification of both necessary and suf-
ficient transversality conditions and catching-up optimality presented in the text,
that is, using “lim”instead of “lim inf”.

27A number less than or equal to all numbers in a set S is called a lower bound for S.
28A number greater than or equal to all numbers in a set S is called an upper bound for S.
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Figure 8.6: limt→∞ xt does not exist, but limt→∞ inf xt and limt→∞ supxt do.

8.7 Exercises
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