
Advanced Macroeconomics

16.01.2004. Christian Groth

A suggested solution to the problem set
at the exam January 19, 2004

Four hours. No auxiliary material

1. Solution to Problem 1

For convenience we repeat the basic equations. The model is:

Ċt = (FK(Kt, L)− δ − ρ)Ct − p(ρ+ p)(Kt +Bt), (1.1)

K̇t = F (Kt, L)− δKt − Ct −G, (1.2)

Ḃt = [FK(Kt, L)− δ]Bt +G− Tt, (1.3)

together with the condition

lim
t→∞

(Kt +Bt)e
−
R t
0 [FK(Ks,L)−δ+p]ds = 0, (1.4)

and a requirement that the government remains solvent.

a) Evidently, the model is a Blanchard OLG model for a closed economy with

public debt and lump-sum taxation. In this version there is a constant population,

and technical progress is ignored. Individuals have finite, but uncertain remaining

lifetime. The parameter p is the death rate, i.e., p is the expected number of deaths

per time unit, say per year, relatively to the size of population. The model relies

on the simplifying assumption that for a given individual the probability of having

a remaining lifetime, X, longer than some arbitrary number τ is P [X > τ ] = e−pτ ,

the same for all independently of age. It follows that for any person the probability

of dying within one year from now is approximately equal to p. Since a constant

population is assumed, the birth rate is equal to p. At the aggregate level the



model appeals to the law of large numbers and considers the actual number of

deaths (births) per year to be indistinguishable from the expected number.

Individuals can buy life annuity contracts from life insurance companies. These

companies have negligible administrative costs so that in equilibrium with free

entry (zero profits), the rate of return on these contracts is r + p until death,

where r is the safe (real) rate of interest (actuarial fairness).

Subject to their intertemporal budget constraint, individuals maximize expec-

ted lifetime utility

Et [Ut] = Et

∙Z t+X

t

e−ρ(v−t) log cj,vdv

¸
=

Z ∞

t

e−(ρ+p)(v−t) log cj,vdv,

where cj,v is consumption (per time unit) at time v for an individual born at

time j, and ρ is the "pure" rate of time preference (a measure of impatience).

Labour supply is inelastic and equal to 1 unit per time unit. This leads to the

Keynes-Ramsey rule (with elasticity of marginal utility equal to one)

ċj,t ≡
∂cj,t
∂t

= [rt + p− (ρ+ p)] cj,t = (rt − ρ)cj,t, (1.5)

which, combined with the transversality condition, (1.4), implies the consumption

function

cj,t = (ρ+ p)(aj,t + w̃j,t), (1.6)

where aj,t is financial wealth, and w̃j,t is ”human capital” (PDV of future net

earnings),

w̃j,t ≡
Z ∞

t

(wv −
Tv
L
)e−

R v
t (rs+p)dsdv. (1.7)

Here, wv is the real wage at time v, and Tv/L is the per capita lump sum tax at

time v.

Aggregating over all times of birth and relying on perfect competition and

clearing on factor markets, (1.6) leads to (1.1), using the fact that aggregate

financial wealth, At, must be equal to Kt +Bt.
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An interpretation of (1.1) runs as follows. The first term in (1.1) reflects the

Keynes-Ramsey rule (1.5) and the fact that rt = FK(Kt, L) − δ in equilibrium.

The subtraction of the term p(ρ + p)(Kt + Bt) in (1.1) is due to a generation

replacement effect. Indeed, in every short instant some people die and some people

are born. The first group has financial wealth, but the last group has not. The

arrival of newborns is Lp per time unit, and since they have no financial wealth

the inflow of these people lowers aggregate consumption by p(ρ + p)At per time

unit. Indeed, the average financial wealth in the population is At/L, and the

consumption effect of this is (ρ + p)At/L, cf. (1.6). This implies that, ceteris

paribus, aggregate consumption is reduced by

Lp(ρ+ p)
At

L
= p(ρ+ p)At

per time unit. Since At = Kt +Bt, this explains the last term in (1.1).

The second differential equation, (1.2), is easier. Since δ is the rate of physical

capital depreciation, (1.2) is just a way of writing the national income identity

for a closed economy: Gross investment, K̇t + δKt, equals gross national income,

F (Kt, L), minus the sum of private and public consumption, Ct +G.

The differential equation (1.3) gives the increase per time unit in real public

debt as equal to the budget deficit, that is, total government expenditure (interest

payments plus spending on goods and services) minus net tax revenue. This tells

us that the budget deficit is completely debt-financed (no money financing).

(This answer is more detailed than necessary.)

b) Given B0 and a balanced budget for all t ≥ 0, we have, from (1.3),

Tt = (FK(Kt, L)− δ)B0 +G. (1.8)

In order to be able to draw the phase diagram we introduce two baseline values

of K, namely the golden rule value, Kg, and the "critical" value, K̄, defined by,

FK (Kg, L)− δ = 0, and FK

¡
K̄, L

¢
− δ = ρ,
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Figure 1.1:

respectively. In view of the assumption that the production function F satisfies the

Inada conditions (and δ > 0), both values exist and are unique (since FKK < 0).

We have K̄ < Kg, in view of ρ > 0 and FKK < 0.

Equation (1.2) shows that K̇ = 0 for

C = F (K,L)− δK −G.

Fig. 1.1 illustrates how (in principle) the K̇ = 0 locus in Fig. 1.2 is constructed.

Equation (1.1) shows that Ċ = 0 for

C =
p (ρ+ p) (K +B0)

FK(K,L)− δ − ρ
.

Hence, along the Ċ = 0 locus

dC

dK
|Ċ=0 = p (ρ+ p)

FK(K,L)− δ − ρ− (K +B0)FKK (K,L)

(FK(K,L)− δ − ρ)2
,
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which is positive, when FK(K,L)− δ > ρ, that is, when K < K̄. Further, along

the Ċ = 0 locus

K % K̄ ⇒ C →∞.

In view of the lower Inada condition, along the Ċ = 0 locus we have, in addition,

K & 0⇒ C → 0.

The Ċ = 0 locus is shown in Fig. 1.2. It is assumed that, given K0, G and

B0 are "modest" relative to the production possibilities of the economy. Then the

Ċ = 0 curve crosses the K̇ = 0 curve for two positive values of K. Fig. 1.2 shows

these steady states as the points E and Ẽ with coordinates (K∗, C∗) and (K̃∗, C̃∗),

respectively. Obviously, K̃∗ < K∗ < K̄.

The direction of movement in the different regions of Fig. 1.2, as determined

by the differential equations, (1.1) and (1.2), are shown by arrows. It is seen that

E is a saddle point, whereas Ẽ is totally unstable. Since G and B0 are “modest",

we have that initial K, K0, is larger than K̃∗ as shown in the figure.

5



C  

0
.
=K

 
*K
−

K

gK  

''E  E

0IIC =
0C =  

 
*

IIK

Figure 1.3:

The capital stock is predetermined, whereas consumption is a jump variable.

It follows that the system is saddle-point stable. The only dynamic path satisfying

all the conditions of general equilibrium (individual utility maximization for given

expectations, continuous market clearing, perfect foresight) is the saddle path.

The other dynamic paths in the diagram either violate the transversality condition

of the individual household (paths that in the long run point South-East in Fig.

2) or the NPG condition1 of the household (paths that in the long run point

North-West in the diagram). Hence, initial consumption, C0, is determined as the

ordinate to the point where the vertical line K = K0 crosses the saddle path, and

over time the economy moves along the saddle path, approaching the steady state

point E with coordinates (K∗, C∗). If K̃∗ < K0 < K∗, as in Fig. 1.2, then K and

C grow over time until the steady state E is “reached”.

1And therefore also the transversality condition.
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c) Let B0 = BI
0 < BII

0 and K0 = KI
0 = KII

0 . Fig. 1.3 illustrates. In the

long run country II has less capital and a lower consumption level, due to the

crowding-out effect of government debt.

d) We assume that until time t0 (> 0) country I has been in the saddle-point

stable steady state E with a balanced government budget. The level of public

debt in this steady state is B0 > 0, and tax revenue is, by (1.8),

T = (FK(K
∗, L)− δ)B0 +G ≡ T ∗,

a positive constant, in view of FK(K
∗, L)− δ > ρ > 0.

At time t0 the government cuts taxes to a lower level T̄ , holding public con-

sumption unchanged. That is, at least for a while after time t0 we have

Tt = T̄ < T ∗. (1.9)

As a result Ḃt > 0. The tax cut make current generations feel more wealthy,

hence they increase their consumption. The rise in C combined with unchanged

G implies negative net investment, and K begins to fall, implying a rising rate of

interest r. For a while all the three differential equations that determine changes

in C, K, and B are active. These dynamics are complicated and cannot, of course,

be illustrated in a two-dimensional phase diagram.

In view of K∗ < K̄ < Kg, we have r∗ = FK(K
∗, L)− δ > FK(Kg, L)− δ = 0.

Therefore, rt (≥ r∗) is strictly positive, and in order to be sustainable, as seen

from time t0, where the level of debt is B0 > 0, a fiscal policy must satisfy the

NPG condition

lim
t→∞

Bte
−
R t
t0
rsds ≤ 0. (1.10)

This requires

lim
t→∞

Ḃt

Bt
< lim

t→∞
rt. (1.11)
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Now, the fiscal policy (G, T̄ ) implies increasing public debt Bt. Indeed, we have,

for t > t0,

Ḃt = rtBt +G− T̄ (1.12)

> r∗B0 +G− T̄ > r∗B0 +G− T ∗ = 0,

where the first inequality comes from Bt > B0 > 0 and rt = FK(Kt, L) − δ >

r∗ = FK(K
∗, L)− δ, in view of Kt < K∗. This implies Bt → ∞ for t → ∞, and

therefore, dividing by Bt in (1.12), we get

Ḃt

Bt
= rt +

G− T̄

Bt
→ rt for t→∞. (1.13)

But this violates the NPG condition (1.11), and the fiscal policy (G, T̄ ) is not

sustainable. Hence, sooner or later the fiscal policy must change, either by lowering

public consumption or by raising taxes.

e) Now we extend the model by assuming age-dependent labour supply. Let

the (inelastic) labour supply (per time unit) at time t for an individual born at

time j be

Et−j = me−ω(t−j),

where ω > 0 is the "retirement rate", and m is a positive constant. Normalizing

aggregate labour supply, N, so that N = L, implies fixing m such that

N =

Z t

−∞
me−ω(t−j)Lpe−p(t−j)dj = L,

which gives

m =
ω + p

p
.

The implication is that, whereas (1.2) is not affected by this extention, (1.1)

changes to

Ċt = (FK(Kt, L)− δ − ρ+ ω)Ct − (ω + p)(ρ+ p)(Kt +Bt). (1.14)
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This change comes about because the young that replace the old enter the economy

with more human capital than the old. This implies that, ceteris paribus, dW̃t =

ωW̃t per time unit, where W̃t is aggregate human capital at time t. Hence,

dCt = (ρ+ p)dW̃ = (ρ+ p)ωW̃ = ω(C − (ρ+ p)A)

= ωC − ω(ρ+ p)A,

where the third equality comes from the aggregate consumption function, Ct =

(ρ+ p)(At + W̃t), implied by (1.6). Since A = K +B, this explains the difference

between (1.14) and (1.1).

Now Ċ = 0 for

C =
(ω + p) (ρ+ p) (K +B0)

FK(K,L)− δ − ρ+ ω
.

We redefine the "critical" value, K̄, by

FK

¡
K̄, L

¢
= δ + ρ− ω,

To ensure a solution in K̄, we assume

ω < δ + ρ.

There are two cases to consider.

Case 1: ω ≤ ρ. Here ρ− ω ≥ 0, so that K̄ ≤ Kg , implying that the new steady

state value of K is below Kg. Hence, the new long-run rate of interest, r∗, is

positive. Therefore, solvency of fiscal policy still requires the NPG condition to

be satisfied, and the analysis of question d) above goes through. The fiscal policy

(G, T̄ ) is not sustainable.

Case 2: ρ < ω < δ + ρ. We now get K̄ > Kg, and it is possible that K∗ > Kg.

Hence, it is possible that r∗ = FK (K
∗, L) − δ < FK (Kg, L) − δ = 0, i.e., the

long-run real rate of interest may be negative. In that case, solvency (and thereby
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sustainability) of fiscal policy does not require the NPG condition to be satisfied.

Indeed, with KK(Kt, L)− δ = rt = r∗ < 0, (1.3) gives

Bt = (B0 −B∗)er
∗t +B∗, where B∗ = −G− T̄

r∗
R 0 for G R T̄ .

Anyway, public debt does not explode; instead, it converges to the constant B∗.

Indeed, even if there is a primary deficit (i.e., G− T̄ > 0), the positive payments

that the government receives from the public as long as Bt > 0, finance, in the

long run, that part of G which is not covered by T̄ . The fiscal policy (G, T̄ ) is

sustainable.

Of course, instead of this formal answer, an informal answer, based on aware-

ness of the critical importance of r > 0 versus r < 0 (or more generally, r >

(Ẏ /Y )∗ versus r < (Ẏ /Y )∗), is enough.

2. Solution to Problem 2

For convenience, the model is repeated here:

Ẏt = λ(D(Rt, Yt)− Yt), DR < 0, 0 < DY < 1, (2.1)
Mt

P
= L(Yt, it), LY > 0, Li < 0. (2.2)

Rt = 1/Qt, (2.3)

1 + Q̇e
t

Qt
= rt, (2.4)

rt ≡ it − πet , (2.5)

a) Evidently, the model is Blanchard’s dynamic IS/LM model, where the ad-

justment of output to demand takes time, and where there is a distinction between

a long-term bond (a consol) and a short-term bond. Equation (2.1) tells how out-

put adjusts to demand, D; the parameter λ is the speed of adjustment. Naturally,

output demand depends positively on income = Y, and negatively on the long-

term interest rate, since both consumption and investment are likely to depend

negatively on this rate.
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Equation (2.2) expresses equilibrium at the "money market". Naturally, real

money demand depends positively on Y (a proxy for the number of transactions

per time unit) and negatively on the short-term nominal rate of interest, the

opportunity cost of holding money.

The inverse relation between the long-term interest rate and the market value

of a long-term bond in equation (2.3) comes from the definition of the long-term

rate as the internal rate of return on the long-term bond, i.e., the solution in Rt

to

Qt =

Z ∞

t

e−Rt(s−t)ds =
1

Rt
.

Equation (2.4) is the no-arbitrage condition saying that, absent uncertainty, the

rate of return on the long-term bond is equal to the rate of return on the short-

term bond. Finally, equation (2.5) defines rt as the short-term nominal rate of

interest minus the expected rate of inflation, hence, rt is the short-term real rate

of interest.

The information about it being the instrument of the monetary authority

(the central bank) corresponds with the general conception nowadays about what

central banks actually do (and are able to do).

b) The assumption of perfect foresight implies Q̇e
t = EtQ̇t = Q̇t, and since the

price level P is an exogenous constant in the model, we have πet = Etπt = πt = 0

for all t. Therefore, equation (2.5) reduces to rt =
−
i > 0, given the policy it =

−
i .

Further, (2.3) gives Q̇t = d(R−1t )/dt = −R−2t Ṙt. Together with (2.4) this entails

Rt − Ṙt/Rt = rt =
−
i .

Ordering gives

Ṙt = (Rt −
−
i)Rt. (2.6)

The other differential equation is directly given by (2.1), which can be written

Ẏ = D̃(Y,R), D̃Y = λ(DY − 1) < 0, D̃R = λDR < 0. (2.7)
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The differential equations 2.6) and (2.7) constitute the dynamic system of the

model.

To draw the corresponding phase diagram, note that (2.6) implies

Ṙ = 0 for R =
−
i .

Hence, the Ṙ = 0 locus (the “LM curve”) is horizontal, cf. Fig. 2.1. Similarly,

(2.7) implies

Ẏ = 0 for D̃(Y,R) = 0. (2.8)

Totally differentiating this gives

dR

dY
|Ẏ=0 = −

D̃Y

D̃R

< 0. (2.9)

Hence, the Ẏ = 0 locus is downward-sloping as shown in Fig. 2.1. The figure

also shows the direction of movement in the different regions, as determined by
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(2.6) og (2.7). We see that the steady state point, E, is a saddle point.2 This

implies that two and only two solution paths − one from each side − converges
towards E. These two saddle paths coincide with the Ṙ = 0 locus. Since Y is (in

this model) a predetermined variable, and R is a jump variable, the steady state

is saddle-point stable.

At time t = 0, the economy must be somewhere on the vertical line Y = Y0.

In view of the absence of speculative bubbles, the explosive or implosive paths of

Q in Fig. 2.1 cannot arise. Hence, we are left with the saddle path, the path AE

in Fig. 2.1, as the unique solution to the model.

c) In steady state

rt = r̄ = Rt = R̄ =
−
i , (2.10)

and Y = Ȳ , where (Ȳ ,
−
i) satisfies (2.8). Hence, inserting (Ȳ ,

−
i) into (2.8), this

equation defines Ȳ as an implicit function of
−
i , Ȳ = φ(

−
i). The derivative, φ0(

−
i),

is the inverse of (2.9), that is,

dȲ

d
−
i
= −D̃R

D̃Y

< 0.

A permanently higher short-term rate of interest implies a higher long-term rate

of interest, hence lower output demand.

d) The unanticipated upward shift in the short-term interest rate,
−
i , to the

new level,
−
i0 is depicted in Fig. 2.2. Fig. 2.3 shows that the Ṙ = 0 locus (the LM

curve) is shifted upward, whereas the Ẏ = 0 locus (the IS curve) is unaffected.

Since the short-term interest rate is kept constant after t0, the long-term rate

immediately jumps to
−
i0 at time t0 and stays constant thereafter. This is because

the long-term rate is a kind of average of the future (constant) short-term rates.

2More formally, the determinant of the Jacobian matrix for the right hand sides of the two
differential equations, evaluated in the steady state point (Ȳ , R̄), is R̄D̃Y < 0.
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Indeed, as indicated by the hint,

Rt =
1

Qt
=

1R∞
t

e−
R s
t rτdτds

,

so that for rt =
−
i0 for all t ≥ t0,

Rt =
1R∞

t
e−

−
i0(s−t)ds

=
1

1/
−
i0
=
−
i0.

The higher R dampens output demand, and output gradually contracts during

the approach to the new steady state E0. Figure 2.4 shows the time profiles of

Y,M,R, r, and Q.

d) Fig. 2.5 is an illustration. At time t0 the monetary authority credibly

announces an upward shift in the instrument variable to take place at time t1 > t0.

The phase diagram is shown in Fig. 2.6, and the graphical time profiles are shown

in Fig. 2.7. Already at time t0, the time of the announcement, the long-term

rate jumps upward, anticipating the later permanent increase in the short-term

rate. This dampens demand, and output begins to contract already before t1,

that is, before the contractionary monetary policy is actually implemented. To

prevent the gradual decline in transactions to lower the short-term interest rate,
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money supply must be gradually reduced. At time t1, to implement the announced

increase in the short-term rate, money supply is reduced by a discrete amount

and is, thereafter, gradually reduced further, along with the gradual reduction in

output also after t1 (which implies lower money demand).

3. Solution to Problem 3

The decision problem, as seen from period 0, is:

maxE0(U0) = E0[
T−1X
t=0

(log ct − γ
σ

1 + σ
(1+σ)/σ
t )(1 + ρ)−t] s.t.

ct ≥ 0, 0 ≤ t ≤ ,̄ (3.1)

at+1 = (1 + rt)at + wt t − ct, a0 given, (3.2)

aT ≥ 0. (3.3)

a) Defining Ũt ≡ (1+ρ)tUt, the remainder of the problem as seen from period

t (t = 0, 1, .....) is:

max EtŨt = (1 + ρ)tEtUt

= log ct − γ
σ

1 + σ
(1+σ)/σ
t + (1 + ρ)−1Et[log ct+1 − γ

σ

1 + σ
(1+σ)/σ
t+1

(3.4)

+ (log ct+2 − γ
σ

1 + σ
(1+σ)/σ
t+2 )(1 + ρ)−1 + ...]

s.t. (3.1) - (3.3), at given.

To solve the problem we will use the substitution method. First, from (3.2)

we have

ct = (1 + rt)at + wt t − at+1, and (3.5)

ct+1 = (1 + rt+1)at+1 + wt+1 t+1 − at+2.
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Substituting this into (3.4), the problem is reduced to one of maximizing the

function EtŨt w.r.t. ( t, at+1), ( t+1, at+2), ..., ( T−1, aT ). We get

∂EtŨt

∂ t
=
1

ct
wt − γ

1/σ
t = 0,

that is,

γ
1/σ
t =

1

ct
wt t = 0, 1, 2, ..., T − 1, (*)

and
∂EtŨt

∂at+1
=
1

ct
· (−1) + (1 + ρ)−1Et[

1

ct + 1
(1 + rt+1)] = 0,

that is,

1

ct
= (1 + ρ)−1Et[

1

ct + 1
(1 + rt+1)], t = 0, 1, 2, ..., T − 2. (**)

In view of the solvency condition (3.3), in the last period consumption must be

cT−1 = (1 + rT−1)aT−1 + wT−1 T−1,

since it is not optimal to end up with aT > 0 (indeed, the transversality condition

is aT = 0).

b) The first order condition (*) describes the trade-off between leisure in

period t and consumption in the same period. The condition says that in the

optimal plan, the cost (in terms of current utility) of increasing labour supply by

one unit is equal to the benefit of obtaining an increased labour income and using

this increase for extra consumption (i.e., marginal cost = marginal benefit).

The other first order condition, (**), describes the trade-off between consump-

tion in period t and consumption in period t+1, as seen from period t. The optimal

plan must satisfy that the current utility loss by decreasing consumption ct by one

unit is equal to the discounted expected utility gain next period by having 1 + rt

extra units available for consumption, namely the gross return on saving one more

unit (i.e., marginal cost = marginal benefit).
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c) We rewrite (*) as

γ
1/σ
t ct = wt. (*’)

Apart from the finite horizon (which is not important in this context), the inter-

temporal utility function above could easily be a specification of the preferences of

a representative household in a RBC model. Further, the RBC theory maintains

that factor prices are always such that there is no unemployment. Hence, the

prediction from the RBC theory is the same as that from condition (*), namely

that, since employment is procyclical and fluctuates almost as much as GDP, and

consumption and employment are positively correlated, real wages will also be

procyclical and fluctuate almost as much as output. But according to the stylized

fact (iii), real wages are only weakly procyclical and do not fluctuate much. This

is one of the often mentioned difficulties facing RBC theory.

d) Replacing t by t+ 1 in (*) gives

γ
1/σ
t+1 =

1

ct+1
wt+1

so that

(
t

t+1
)1/σ =

ct+1
ct

wt

wt+1
. (3.6)

Ignoring uncertainty, (**) gives

ct+1
ct

= (1 + ρ)−1(1 + rt+1).

Substituting this into (3.6) and solving gives

t

t+1
= (1 + ρ)−σ(

wt

wt+1/(1 + rt+1)
)σ. (3.7)

We see from this expression that σ is the elasticity of t/ t+1 w.r.t. wt/wt+1. Hence,

σ measures what is called the intertemporal elasticity of substitution (in labour

supply). From microeconometric studies we have estimates of this parameter.

These estimates are quite small, at least for men (in the range 0 to 1.5, often
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considerably below 1). And since fluctuations in wt/wt+1 in the data are also

small, it is difficult to reconcile the theory with the stylized fact (i) saying that

employment fluctuates almost as much as GDP.

e) If fluctuations in the real wage are negligible, is it then likely that fluctu-

ations in rt+1 could be a driving force behind fluctuations in employment? Ac-

cording to equation (3.7) one might be tempted to answer “yes”. At least (3.7)

indicates a positive relation between t/ t+1 and rt+1. The interpretation of this

relation is that a high rate of interest has negative substitution and wealth effects

on leisure in the current period, hence positive substitution and wealth effects on

current labour supply.

But if the real wage doesn’t fluctuate, and an attempt is made to explain

fluctuations in employment by fluctuations in the real rate of interest, then, by (*’),

one would expect a negative correlation between employment and consumption.

But the stylized fact (ii) tells the opposite.

f) We now reintroduce uncertainty. Indeed, there is now also uncertainty as

to the prospect of employment in the future. The decision problem, as seen from

period 0, can now be written:

maxE0(U0) = E0[
T−1X
t=0

(log ct − γ
σ

1 + σ
(1+σ)/σ
t )(1 + ρ)−t] s.t.

ct ≥ 0, 0 ≤ t ≤ min(xt, )̄,

at+1 = (1 + rt)at + wt t − ct, a0 given,

aT ≥ 0.

where xt ≥ 0 is the exogenous maximum employment offered the household in

period t (this constraint coming from the demand side at the labour market).

When the employment constraint t ≤ xt is binding, (*) is replaced by

γ
1/σ
t <

1

ct
wt. (3.8)
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The interpretation is: Though in the optimal plan, the cost (in terms of current

utility) of increasing labour by one unit is less than the benefit of obtaining an

increased labour income and using this increase for extra consumption, this desired

increase in employment cannot be realized, due to the exogenous employment

constraint.

g) Yes, within this extended framework it is possible to reconcile theory with

the stylized facts. Indeed, rewriting (3.8) as

γ
1/σ
t ct < wt,

we see there is scope for employment to be procyclical and fluctuate almost as

much as GDP (fact (i)) and for consumption and employment to be positively

correlated (fact (ii)), whereas real wages do not fluctuate much (fact (iii)).

h) We now consider the effect of an increase in uncertainty, say a mean-

preserving spread. Since the period utility function, u(c), is logarithmic in the

model, it implies strictly convex marginal utility ((u0)00 > 0) so that increased

uncertainty as to future labour income (whether it is uncertainty about future

employment or the future real wage) results in "precautionary saving", that is,

lower current consumption. Further, this conclusion cannot be overturned by the

effect of increased uncertainty as to the rate of return on saving. This is because

logarithmic utility implies a coefficient of relative risk aversion equal to one. And

then increased uncertainty concerning the rate of return is neutral to saving.

4. Solution to Problem 4

a) "If leisure is a ‘normal good’, then the income effect as well as the wealth

effect on leisure of an increase in the wage rate are capable at offsetting the

substitution effect."

This is not true, since the income effect has the same sign as the substitution

effect.
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b) "Ignoring uncertainty, the difference between the short-term and the long-

term interest rate is determined only by expectations."

This is true. Absent uncertainty, the no-arbitrage condition (2.4) above is

valid. Then,

Rt =
1

Qt
= rt −

Qe
t

Qt
R rt for Qe

t S 0.

c) "In the Blanchard-Kiyotaki model with monopolistic competition and menu

costs, there may be more than one equilibrium."

This is true, and the phenomenon is due to self-fulfilling expectations. For an

individual firm, the minimummenu cost required for its price not to be increased in

a situation with an increase in money supply (hence increase in output demand)

depends positively on the aggregate proportion of firms that do change price.

Hence, the following is possible. If every firm expects no other firm to change its

price, the actual menu cost (the same for all firms) is large enough to prevent any

price change, so that no firm changes its price. At the same time, if every firm

expect all other firms to change their price, the actual menu cost is too small to

prevent a price change, so that all firms change their price.

–
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