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As formulated in the course description, a score of 12 is given if the student’s perform-

ance demonstrates (a) accurate and thorough understanding of the concepts, methods,

and models in the course, (b) knowledge of the major empirical regularities for aggreg-

ate economic variables, and (c) ability to use these theoretical tools and this empirical

knowledge to answer macroeconomic questions.

1. Solution to Problem 1

We consider a Blanchard OLG model for a closed economy with dynamics described by

the differential equations

Ċt = (FK(Kt, L)− δ − ρ)Ct −m(ρ+m)(Kt +Bt), (1.1)

K̇t = F (Kt, L)− δKt − Ct −G, (1.2)

Ḃt = [FK(Kt, L)− δ]Bt +G− Tt, (1.3)

the condition

lim
t→∞

Bte
− t

0 [FK(Ks,L)−δ]ds = 0, (1.4)

and a requirement that households satisfy their transversality conditions.

a) The parameters:

δ is the capital depreciation rate,

ρ is the pure rate of time preference, i.e., households’ utility discount rate (a measure

of impatience),

1The solution below contains more details and more precision than can be expected at a three hours
exam.



m is the mortality rate, i.e., the expected number of deaths per time unit, say per

year, relative to the size of population.

Individuals have finite, but uncertain remaining lifetime. The model relies on the

simplifying assumption that for a given individual, the probability of having a remaining

lifetime, X, longer than some arbitrary number τ is P [X > τ ] = e−mτ , the same for all

independently of age. It follows that for any person the probability of dying within one

year from now is approximately equal to m. Since a constant population is assumed, also

the birth rate equals m.

Individuals can buy life annuity contracts from life insurance companies. The depos-

itor’s rate of return on these contracts is r+m until death, where r is the risk-free (real)

rate of interest (the life annuity contracts are actuarially fair).

The differential equation (1.1) describes how the increase in aggregate consumption

per time unit is determined. In this version of the Blanchard model retirement from the

labor market and technical progress are ignored.

The instantaneous utility is logarithmic so that the Keynes-Ramsey rule for an indi-

vidual born at time v is

ċv,t ≡
∂cv,t
∂t

= [rt +m− (ρ+m)] cv,t = (rt − ρ)cv,t. (1.5)

Combining this with the individual transversality condition implies the consumption func-

tion

cv,t = (ρ+m)(av,t + ht), (1.6)

where av,t is financial wealth and ht is human wealth (PV of future labor earnings),

ht ≡
Z ∞

t

(ws − Ts/L)e
− s

t (rτ+m)dτds. (1.7)

Here, ws is the real wage at time s and Ts/L is the per capita tax at time s.

The first term in (1.1) comes from aggregation of the Keynes-Ramsey rule (1.5) and

the fact that rt = FK(Kt, L)− δ in competitive equilibrium. The subtraction of the term

m(ρ+m)(Kt +Bt) in (1.1) is due to the generation replacement effect and the fact that

aggregate financial wealth, At, must equal Kt + Bt. In every short instant some people

die and some people are born. The arrival of newborns is Lm per time unit, and since

they have no financial wealth, the inflow of these people lowers aggregate consumption

by m(ρ +m)At per time unit. Indeed, the average financial wealth in the population is

At/L, and the consumption effect of this is (ρ+m)At/L, cf. (1.6). This implies, ceteris

paribus, that aggregate consumption is reduced by

Lm(ρ+m)
At

L
= m(ρ+m)At
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per time unit, where At = Kt +Bt.

The second differential equation, (1.2), is easier. Essentially, it is just a way of writing

the national income identity for a closed economy: gross investment, K̇t+δKt, equals gross

national income, F (Kt, L), minus the sum of private and public consumption, Ct +G.

The third differential equation, (1.3), says that the increase per time unit in real

public debt equals the real budget deficit, that is, total government expenditure (interest

payments plus spending on goods and services) minus net tax revenue. This tells us that

the budget deficit is entirely debt-financed (i.e., no money financing).

Finally, equation (1.4) reflects a No-Ponzi-Game condition saying that the government

debt should in the long run at most grow at a rate less than the long-run interest rate. So

the government cannot run a fiscal policy involving permanent debt-roll-over. The reason

government solvency requires this constraint lies the fact that the long-run interest rate,

r∗, in the economy is higher than the long-run output growth rate, which is 0 (see below).

A No-Ponzi-Game condition in itself would only require ≤ instead of = in (1.4). Since
there is = in (1.4), the model assumes that the government does not procure more tax

revenue than needed to just satisfy its No-Ponzi-Game condition.

b) Given B0 and a balanced budget for all t ≥ 0, we have, from (1.3),

Tt = (FK(Kt, L)− δ)B0 +G. (1.8)

We introduce two baseline values of K, namely the golden rule value, KGR, and the

“critical” value, K̄, defined by,

FK (KGR, L)− δ = 0, and FK

¡
K̄, L

¢
− δ = ρ,

respectively. In view of the Inada conditions and δ > 0, both values exist and are unique

(since FKK < 0). We have K̄ < KGR, since ρ > 0 and FKK < 0.

Given Bt = B0, equation (1.2) shows that K̇ = 0 for

C = F (K,L)− δK −G,

cf. the strictly concave K̇ = 0 locus in Fig. 1.1.

Equation (1.1) shows that Ċ = 0 for

C =
m (ρ+m) (K +B0)

FK(K,L)− δ − ρ
. (1.9)

Thus, along the Ċ = 0 locus,

K % K̄ ⇒ C →∞
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and

K & 0⇒ C → 0,

the latter result following from the lower Inada condition. The Ċ = 0 locus is shown as

the strictly convex curve in Fig. 1.1.

It is assumed that, given K0, G and B0 are “modest” relative to the production

possibilities of the economy. Then the Ċ = 0 curve crosses the K̇ = 0 curve for two

positive values of K. Fig. 1.1 shows these steady states as the points E and Ẽ with

coordinates (K∗, C∗) and (K̃∗, C̃∗), respectively. Obviously, K̃∗ < K∗ < K̄.

The direction of movement in the different regions of Fig. 1.1, as determined by the

differential equations, (1.1) and (1.2), are shown by arrows. It is seen that E is a saddle

point, whereas Ẽ is totally unstable. Since G and B0 are “modest", we have that the

lower steady-state value, K̃∗, is smaller than K0, as shown in the figure.

The capital stock is predetermined, whereas consumption is a jump variable. And

since the slope of the saddle path is not parallel with the C axis, it follows that the

system is saddle-point stable. The only trajectory satisfying all the conditions of general

equilibrium (individual utility maximization for given expectations, continuous market

clearing, perfect foresight) is the saddle path. The other trajectories in the diagram

either violate the TVCs of the individual households (paths that in the long run point

South-East in Fig. 1.1) or the NPG condition2 of the households (paths that in the long

run point North-West in the diagram). Hence, initial consumption, C0, is determined as

the ordinate to the point where the vertical line K = K0 crosses the saddle path, and

2And therefore also the transversality condition.
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over time the economy moves along the saddle path, approaching the steady state point

E with coordinates (K∗, C∗).

c) Let B0 = BI
0 < BII

0 and K0 = KI
0 = KII

0 . Based on (1.9), Fig. 1.2 illustrates.

In the long run country II has less capital and a lower consumption level, due to the

crowding-out effect of government debt in a full-employment economy.

d) Until time t0 > 0 country I has been in the steady state E with a balanced govern-

ment budget. From now, the variables refer exclusively to country I although the index I

is suppressed. The level of public debt in the steady state is B0 > 0 and tax revenue is,

by (1.8),

T = (FK(K
∗, L)− δ)B0 +G ≡ T ∗,

a positive constant, in view of FK(K
∗, L)− δ > ρ > 0.

At time t0 the government cuts taxes to a lower level T̄ , holding public consumption

unchanged. That is, at least for a while after time t0 we have

Tt = T̄ < T ∗. (1.10)

As a result Ḃt > 0. The tax cut make current generations feel more wealthy, hence they

increase their consumption. The rise in C combined with unchanged G implies negative

net investment so that K begins to fall, implying a rising interest rate, r. For a while all

the three differential equations that determine changes in C, K, and B are active. These
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dynamics are complicated and cannot, of course, be illustrated in a two-dimensional phase

diagram.

The fiscal policy (G, T̄ ) is called sustainable if the government stays solvent under this

policy. We claim that the fiscal policy (G, T̄ ) is not sustainable. There are at least three

different approaches to the proof of this.

Approach 1. In view of K∗ < K̄ < KGR, we have r∗ = FK(K
∗, L)− δ > FK(K̄, L)− δ

= ρ > 0. Therefore, rt (≥ r∗) is strictly positive and thereby larger than the long-run

growth rate of output (income). In this situation, a sustainable fiscal policy must, as seen

from time t0, satisfy the NPG condition

lim
t→∞

Bte
− t

t0
rsds ≤ 0. (1.11)

This requires that there exists an ε > 0 such that

lim
t→∞

Ḃt

Bt
< lim

t→∞
rt − ε, (1.12)

i.e., the growth rate of the public debt is not in the long run as high as the long-run

interest rate.

The fiscal policy (G, T̄ ) implies increasing public debt Bt. Indeed, we have, for t > t0,

Ḃt = rtBt +G− T̄

> r∗B0 +G− T̄ > r∗B0 +G− T ∗ = 0, (1.13)

where the first inequality comes from Bt > B0 > 0 and rt = FK(Kt, L) − δ > r∗ =

FK(K
∗, L)− δ, in view of Kt < K∗. This implies Bt →∞ for t→∞. Hence, dividing by

Bt in (1.3) gives
Ḃt

Bt
= rt +

G− T̄

Bt
→ rt for t→∞. (1.14)

But this violates the NPG condition (1.12) and the fiscal policy (G, T̄ ) is not sustainable.

Approach 2. An alternative argument is the following. Since Kt < K∗, we have

Yt < Y ∗ = F (K∗, N) at the same time as Bt → ∞ for t → ∞. Hence, the debt-income
ratio, Bt/Yt, tends to infinity for t →∞, thus confirming that the fiscal policy (G, T̄ ) is

not sustainable.

Approach 3. Yet another way of showing absence of fiscal sustainability is to start

out from the intertemporal government budget constraint and check whether the primary

budget surplus, T̄ −G, which rules after time t0, satisfiesZ ∞

t0

(T̄ −G)e
− t

t0
rsdsdt ≥ Bt0 ,
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Figure 1.3: The adjustment after fiscal tightening at time t1, presupposing t1 − t0 “large”.

where Bt0 = B0 > 0. Obviously, if T̄ −G ≤ 0, this is not satisfied. Suppose T̄ − G > 0.

Then Z ∞

t0

(T̄ −G)e−
t
t0
rsdsdt <

Z ∞

t0

(T̄ −G)e−r
∗(t−t0)dt =

T̄ −G

r∗
< B0 = Bt0 ,

where the first inequality comes from rt = FK(Kt, N)− δ > r∗, the first equality from the

hint, and, finally, the second inequality from the last equality in (1.13) and the fact that

T̄ < T ∗. So the intertemporal government budget constraint is not satisfied. The current

fiscal policy is unsustainable.

e) After time t1 there is again a balanced budget. The most straightforward inter-

pretation is that this is obtained by raising taxation at time t1 and letting Tt adjust over

time ssuch that

Tt = (FK (Kt, N)− δ)Bt1 +G, (1.15)

for t ≥ t1. Dynamics are then again governed by a two-dimensional system:

Ċt = [FK(Kt, Nt)− δ − ρ]Ct −m(ρ+m)(Kt +Bt1), (1.16)

K̇t = F (Kt, N)− δKt − Ct −G, (1.17)

and phase diagram analysis can again be used. The new constant level of public debt

is Bt1 > B0. The new initial K is Kt1 , which is smaller than the previous steady-state

value, K∗, because of the negative net investment in the time interval (t0, t1). The phase

diagram for t ≥ t1 is depicted in Fig. 1.3. Relative to Fig. 1.1 the K̇ = 0 locus is

unchanged (since G is unchanged), but the Ċ = 0 locus has turned counter-clockwise.
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For any given K ∈ (0, K̄), the value of C required for Ċ = 0 is higher than before, cf.

(1.9). The new saddle-point stable steady state is denoted E’ and it has capital stock

K∗0 < K∗ and consumption level C∗0 < C∗.

The level of consumption immediately after t1, where the fiscal tightening sets in, is

found where the line K = Kt1 crosses the new saddle path, i.e., the point A in Fig. 1.3.

As the figure is drawn, Kt1 is smaller than K∗0. This reflects that the tax cut has lasted

a long time (t1 − t0 “relatively large”). The movement of the economy after t1 implies

gradual lowering of the capital stock and consumption until the new steady state, E00, is

“reached”. This induces a low consumption level − so low that net investment becomes
positive. Then the capital stock and output increase gradually during the adjustment to

the steady state E00.

In a situation where the tax cut did not last long (t1− t1 “relatively small”), the point
A in Fig. 1.2 would be to the right of the new steady state. Then the movement of the

economy after t1 would imply gradual lowering of the capital stock and consumption until

the new steady state is “reached”.

Thus, in both cases the long-run effect of the temporary budget deficit is qualitatively

the same, namely that the larger supply of government bonds crowds out physical capital

of the private sector. The time profiles of Tt, Bt, Ct, and Kt for t ≥ 0 are shown in Fig.
1.4.

Is there an alternative way for fiscal policy to change such that a balanced budget

for t ≥ t1 is obtained? One might contemplate maintaining taxation at the level T̄ , but

lowering public consumption, G.Within the model, G is a constant so only a once-for-all

shift in public consumption is consistent with the model. Can such a once-for-all shift be

consistent with a permanently balanced budget for t ≥ t1, given the constant tax revenue

T̄? By (1.3), the required new level of public consumption would have to satisfy

G0 = T̄ − (FK(Kt, L)− δ)Bt1, (1.18)

which in turn would require Kt constant at the level Kt1 for all t ≥ t1, that is, require the

economy to be in a new steady state already from time t1. This would not generally be

possible.

Finally, a balanced budget for t ≥ t1 could of course be obtained by a combination of

a lower level of government consumption, G00, and a time-varying tax revenue satisfying

(1.15) for t ≥ t1, with G replaced G00 < G. Then the K̇ = 0 locus would be raised

somewhat and the economy would in the long run settle down in a “higher” steady state

than in Fig. 1.3.
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All the results in this whole analysis of course hinge on the model’s assumption of full

capacity utilization.

2. Solution to Problem 2

The model is:

Ẏt = λ(D(Yt, Rt, ω) +G− Yt), λ > 0, 0 < DY < 1,DR < 0, 0 < Dω < 1,(2.1)
Mt

P
= L(Yt, it), LY > 0, Li < 0, (2.2)

it = α+ βYt, β > 0, (2.3)

Rt =
1

Qt
, (2.4)

1 + Q̇e
t

Qt
= rt = it − πet . (2.5)

The model is Blanchard’s dynamic IS/LM model, which is a short-run model where the

adjustment of output to demand takes time and where there is a distinction between

a long-term bond (a consol) and a short-term bond. Equation (2.1) tells how output

adjusts to demand; the parameter λ is the speed of adjustment. Naturally, output demand

depends positively on income = Y, and negatively on the long-term interest rate, since

investment is likely to depend negatively on this rate. And because of the wealth effect

so is in fact also consumption.

Equation (2.2) expresses equilibrium in the money market. Naturally, real money

demand depends positively on Y (a proxy for the number of transactions per time unit)

and negatively on the short-term nominal rate of interest, the opportunity cost of holding

money. Although in the short-run perspective of the model, production may deviate from

demand, the asset markets are assumed to clear instantaneously.

Equation (2.3) is the counter-cyclical monetary policy rule. It says that the central

bank raises the short-term interest rate when output goes up. In this way fluctuations in

Y are dampened (which explains the term “counter-cyclical”).

The inverse relation between the consol interest rate, Rt, and the real price of a consol

in equation (2.4) comes from the definition of the consol interest rate as the internal rate

of return on the consol, i.e., the solution for x in the equation

Qt =

Z ∞

t

1 · e−x(s−t)ds = 1

x
.

Equation (2.5) is a no-arbitrage condition saying that, absent uncertainty, the expected

rate of return on holding the consol one time unit is equal to the expected rate of return,

10



rt, on the short-term bond. The equation indicates that the consol pays an annuity of one

unit of account (worth one output unit) per time unit forever. Finally, the last equality

in (2.5) defines rt as the short-term nominal interest rate minus the expected rate of

inflation.

Parameters: λ is the speed of adjustment; α and β are parameters characterizing the

counter-cyclical monetary policy; ω is an index of market participants’ general degree of

confidence.

We now assume expectations are rational and that speculative bubbles never arise.

b) In view of rational expectations and absence of stochastic elements in the model,

there is perfect foresight as long as a once-for-all shock does not occur. Hence, Q̇e
t = EtQ̇t

= Q̇t, and so the first equation in (2.5) gives

1

Qt
+

Q̇t

Qt
= Rt −

Ṙt

Rt
= rt. (2.6)

Since the price level P is an exogenous constant, we have πet = Etπt = πt = 0 for all t so

that the second equation in (2.5) reduces to rt = it. Substituting this and (2.3) into (2.6)

and rearranging, we have

Ṙt = (Rt − (α+ βYt))Rt. (2.7)

We have another differential equation in Rt and Yt directly given in (2.1). The differ-

ential equations (2.7) and (2.1) constitute the dynamic system of the model.

Given R > 0, (2.7) implies

Ṙ T 0 for R T α+ βYt, respectively. (2.8)

Thus, ∂R
∂Y
|Ṙ=0 = β > 0. The Ṙ = 0 locus is illustrated as the upward sloping line, LM, in

Fig. 2.1.

From (2.1) we have

Ẏ T 0 for D (Y,R, ω) +G T Y, respectively. (2.9)

Hence, ∂R
∂Y
|Ẏ=0 = (1 − DY )/DR < 0. The Ẏ = 0 locus is illustrated as the downward

sloping curve, IS, in Fig. 2.1. In addition, the figure shows the direction of movement

in the different regions, as described by (2.8) and (2.9). We see that the steady state

point, E, with coordinates (Ȳ , R̄), is a saddle point. This implies that two and only two

solution paths − one from each side − converges towards E. These two saddle paths,

which together make up the stable arm, are shown in the figure (their slope must be

11



 

Y

R 

E 

IS 

LM 

A 

0Y =&  

0R =&  

0Y   Y

R

Figure 2.1: Phase diagram.

positive, according to the arrows). Also the unstable arm is displayed in the figure (the

negatively sloped stippled line).

At time t = 0, the economy must be somewhere on the vertical line Y = Y0. Since

speculative bubbles are by assumption ruled out, neither the explosive nor the implosive

paths of R in Fig. 2.1 can materialize. We are then left with the saddle path, the path

AE in the figure, as the unique solution to the model.

c) In steady state R = R̄ and Y = Ȳ , where

R̄ = α+ βȲ ,

Ȳ = D(Ȳ , α+ βȲ , ω) +G.

Taking the total differential on both sides of the latter equation gives dȲ = DY dȲ +

DRβdȲ +Dωdω + dG, from which follows

∂Ȳ

∂G
=

1

1−DY −DRβ
> 0, and

∂Ȳ

∂ω
=

Dω

1−DY −DRβ
> 0.

d) The effect of the downward shift in the general degree of confidence, ω, is shown

in Fig. 2.2. When ω shifts, the long-term interest rate jumps down to RA, reflecting that

the market value of the consol jumps up. This is where the given formula,

Rt =
1

Qt
=

1R∞
t

e−
s
t rτdτds

, (2.10)
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is useful. This formula indicates that the long-term interest rate is a kind of average of

the expected future short-term rates.

The mechanism behind the jump is as follows. The lower ω implies lower output

demand. This triggers an expectation of decreasing Y and therefore also an expectation

of decreasing i and r, in view of (2.3) and (2.5) with πet = 0. The implication is, by (2.10),

a higher Q and a lower R already immediately after time t0, as illustrated in Fig. 2.2. As

time proceeds and the economy gets closer to the expected low future values of r, these

lower values gradually become dominating in the determination of R. Hence, after t0 also

R gradually decreases toward its new steady-state value, the same as that for r.

Time profiles showing the evolution of Rt, rt, Qt, Yt, and Mt for t ≥ 0 are given in

Fig. 2.3. After t0, output Y and the short-term rate r gradually decrease toward their

new steady state values, Ȳ 0 and R̄0, respectively, as shown by Fig. 2.3. Whether the new

long-run M, M̄ 0, is higher or lower than the old, depends on the size of β.

To clarify this, note that even with laissez-faire monetary policy, the response of the

nominal interest rate to changes in output is so as to stabilize output compared to what

it would be at a constant nominal interest rate. Indeed, by (2.2), M = PL(Y, i) and

considering M fixed, we get 0 = P (LY dY + Lidi) so that

∂i

∂Y |(2.2),M fixed
= −LY

Li
> 0.

On the other hand, with M determined via the policy rule (2.3) we have M = PL(Y, α+

13
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βY ). Then dM = P (LY dY + LiβdY ) so that

∂M

∂Y
= P (LY + Liβ) R 0 for β Q −

LY

Li
,

respectively.

It follows that only if β > −LY /Li, is the monetary policy (2.3)more stabilizing (more

counter-cyclical) than the laissez-faire policy of keeping M fixed. We have in Fig. 2.3

assumed this case, implying that money supply is increased when Y decreases (but as the

text of the assignment is formulated, it is also OK to explicitly assume the opposite case).

e) The effect of the upward shift inG at time t1 is shown in Fig. 2.4 and is qualitatively

symmetric to that of the fall in ω. On impact, the long-term interest rate jumps up to RA0,

reflecting that the market value of the consol jumps down. The explanation is symmetric

with the story under d). The higher G implies higher output demand. This triggers an

expectation of increasing Y and therefore also an expectation of increasing i and r. The

implication is, by (2.10), that R immediately jumps up to RA0 and then, for rising t,

gradually approaches its new higher long-run level, R̄00.

Time profiles showing the evolution of Rt, rt, Qt, Yt, and Mt for t ≥ 0 are given in Fig.
2.5.
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By dampening output demand the higher R implies a financial crowding-out effect

on production.3 After t1, during the transition to the new steady state, we have R > r

because R “anticipates” all the future increases in r and incorporates them, cf. (2.10).

We may also note that (2.6) implies

R = r + Ṙ/R T r for Ṙ T 0, respectively.

For example, Ṙ > 0 reflects that Q̇ < 0, that is, a capital loss is expected. To compensate

for this, the level of R, which is always 1/Q, must be higher than r such that the no-

arbitrage condition (2.5) is still satisfied.

f) We assume that the private sector at time t1 becomes aware that G will shift to a

higher level at time t2. The implied expectation that the short-term interest rate will in

the future rise towards a higher level, R̄00, immediately triggers an upward jump in the

long-term rate, R, cf. Fig. 2.6. To what level? In order to find out, note that the market

participants understand that from time t2, the economy will move along the new saddle

path corresponding to the new steady state, E’, in Fig. 2.6. The market price, Q, of the

consol cannot have an expected discontinuity at time t2, since such a jump would imply an

infinite expected capital loss (or capital gain) per time unit immediately before t = t2 by

holding long-term bonds. Anticipating for example a capital loss, the market participants

would want to sell long-term bonds in advance. The implied excess supply would generate

an adjustment of Q downwards until no longer a jump is expected to occur at time t2. If

instead a capital gain is anticipated, an excess demand would arise. This would generate

3The crowding out is only partial, because Y still increases.
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Figure 2.5:

in advance an upward adjustment of Q, thus defeating the expected capital gain. This is

the general principle that arbitrage prevents an expected jump in an asset price.

In the time interval (t1, t2) the dynamics are determined by the “old” phase diagram,

based on the no-arbitrage condition which rules up to time t2. In this time interval the

economy must follow that path (A’B in Fig. 2.6), which, starting from a point on the

vertical line Y = Ȳ 0, takes precisely t2− t1 units of time to reach the new saddle path. At

time t1, therefore, R jumps to exactly the level RA0 in Fig. 2.6. This upward jump has

a contractionary effect on output demand. So output starts falling as shown by Fig. 2.6.

This is because the potentially counteracting force, the increase in G, has not yet taken

place. Not until time t2, when G shifts to G0, does output begin to rise. In the long run

both Y , R, and r are higher than in the old steady state.

The time profiles of Rt, rt, Qt, Yt, and Mt for t ≥ t1 are shown in Fig. 2.7.

A very good answer mentions both this temporary financial crowding out effect and

the fact that the yield curve (also called the term structure of interest rates) “twists” in

the time interval (t1, t2). The long-term rate R rises, because the time where a higher Y

(and thereby a higher r) is expected to show up, is getting nearer. But at the same time

the short-term rate r is falling because of the falling transaction need for money implied

by the initially falling Y, triggered by the rise in the long-term interest rate.
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3. Solution to Problem 3

a) As a benchmark case, consider the simple Keynesian money market equilibrium

condition.
M

P
= L(Y, i), LY > 0, Li < 0. (3.1)

Here, since P is sticky in the short run, an increase in M affects the economy via a lower

short-term nominal interest rate, i. This is called the interest rate channel.

In classical monetary theory money demand is simply proportional to income,M/P =

kY, and so the income velocity of money V , defined by V ≡ PY/M , is a constant, 1/k,

independent of i. The price level is perfectly flexible, whereas output is supply determined.

an increase in M affects the economy via a correspondingly higher price level. This may

be called the nominal price channel.

In an extended Keynesian model where bonds and bank loans are not perfect substi-

tutes, there is, in addition to the interest rate channel, a so-called credit channel.

In an open economy with floating exchange rate there is also the exchange rate channel.

b) Barro’s point of view is that anticipating higher taxes in the future due to current

budget deficits households will save more, and leave more as bequests to their descendents,

in order that the “dynasty” can be prepared for the higher taxes in the future. The higher

saving now more or less neutralizes the otherwise stimulating demand effect of the current

US fiscal policy.

Typical counter arguments are:

1) The dynasty-picture of the household sector is misleading. Tax payers today know

that future taxes will partly be paid by newcomers in the economy.

2) Because many people are credit constrained, a fiscal easing stimulates aggregate

consumption.

3) There is evidence that under economic recession and depression, with a lot of idle

resources, fiscal policy multipliers are sizeable.

c) False. The Sidrausky model, a typical neoclassical model, illustrates how the money

growth rate may have welfare implications. A higher money growth rate implies higher

steady state inflation with the implication that the nominal interest rate will be higher,

thereby the opportunity cost of holding money is higher and so real money holding ends

up lower. This implies lower liquidity services of money. And since consumption and
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capital accumulation in the steady state are unaffected by the money supply growth rate

(super neutrality), there is lower total lower welfare due to the lower liquidity services

(higher “shoe-leather costs”).

–
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