
Chapter 6

Long-run aspects of fiscal policy
and public debt

We consider an economy with a government providing public goods and services.
It finances its spending by taxation and borrowing. The term fiscal policy refers
to the government’s decisions about spending and the financing of this spending,
be it by taxes or debt issue. The government’s choice concerning the level and
composition of its spending and how to finance it, may aim at:

1 affecting resource allocation (provide public goods that would otherwise not
be supplied in a suffi cient amount, correct externalities and other markets
failures, prevent monopoly ineffi ciencies, provide social insurance);

2 affecting income distribution, be it a) within generations or b) between
generations;

3 contribute to macroeconomic stabilization (dampening of business cycle
fluctuations through aggregate demand policies).

The design of fiscal policy with regard to the aims 1 and 2 at a disaggregate
level is a major theme within the field of public economics. Macroeconomics
studies ways of dealing with aim 3 as well as big-picture aspects of 1 and 2, like
overall policies to maintain and promote sustainable prosperity.
In this chapter we address fiscal sustainability and long-run implications of

debt finance. This relates to one of the conditions that constrain public financing
instruments. To see the issue of fiscal sustainability in a broader context, Section
6.1 provides an overview of conditions and factors that constrain public financ-
ing instruments. Section 6.2 introduces the basics of government budgeting and
Section 6.3 defines the concepts of government solvency and fiscal sustainability.
In Section 6.4 the analytics of debt dynamics is presented. As an example, the
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Stability and Growth Pact of the EMU (the Economic and Monetary Union of
the European Union) is discussed. Section 6.5 looks more closely at the link be-
tween government solvency and the government’s No-Ponzi-Game condition and
intertemporal budget constraint. In Section 6.6 we widen public sector accounting
by introducing separate operating and capital budgets so as to allow for proper
accounting of public investment. A theoretical claim, known as the Ricardian
equivalence proposition, is studied in Section 6.7. The question “is Ricardian
equivalence likely to be a good approximation to reality?”is addressed, applying
the Diamond OLG framework extended with a public sector.

6.1 An overview of government spending and
financing issues

Before entering the more specialized sections, it is useful to have a general idea
about circumstances that condition public spending and financing. These cir-
cumstances include:

(i) financing by debt issue is constrained by the need to remain solvent and
avoid catastrophic debt dynamics;

(ii) financing by taxes is limited by problems arising from:

(a) distortionary supply-side effects of many kinds of taxes;

(b) tax evasion (cf. the rise of the shadow economy, tax havens used by
multinationals, etc.).

(iii) time lags in spending as well as taxing may interfere with attempts to
stabilize the economy (recognition lag, decision lag, implementation lag,
and effect lag);

(iv) credibility problems due to time-inconsistency;

(v) conditions imposed by political processes, bureaucratic self-interest, lobby-
ing, and rent seeking.

Point (i) is the main focus of sections 6.2-6.6. Point (ii) is briefly considered
in Section 6.4.1 in connection with the so-called Laffer curve. In Section 6.6 point
(iii) is briefly commented on. The remaining points, (iv) - (v), are not addressed
specifically in this chapter. They should always be kept in mind, however, when
discussing fiscal policy. Hence a few remarks here.
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Point (iv) hints at the fact that when outcomes depend on forward-looking
expectations in the private sector, governments may face a time-inconsistency
problem. In this context time inconsistency refers to the possible temptation of
the government to deviate from its previously announced course of action once
the private sector has acted. An example: With the purpose of stimulating
private saving, the government announces that it will not tax financial wealth.
Nevertheless, when financial wealth has reached a certain level, it constitutes a
tempting base for taxation and so a tax on wealth might be levied. To the extent
the private sector anticipates this, the attempt to affect private saving in the first
place fails. This raises issues of commitment and credibility. We return to this
kind of problems in later chapters.
Finally, point (v) alludes to the fact that political processes, bureaucratic self-

interest, rent seeking, and lobbying by powerful interest groups interferes with
fiscal policy.1 This is a theme in the branch of economics called political economy
and is outside the focus of this chapter.
Now to the specifics of government budget accounting and debt financing.

6.2 The government budget

We generally perceive the public sector (or the nation state) as consisting of the
national government and a central bank. In economics the term “government”
does not generally refer to the particular administration in offi ce at a point in
time. The term is rather used in a broad sense, encompassing both legislation
and administration. In focus The aspects of legislation and administration in
focus are the rules and decisions concerning spending on public consumption,
public investment, transfers, and subsidies on the expenditure side and on levy-
ing taxes and incurring debts on the financing side. Within certain limits the
government has usually delegated the management of the nation’s currency to
the central bank, also called the monetary authority. Our accounting therefore
treats “government budgeting” as covering the public sector as a whole, that
is, the consolidated government (including local government) and central bank.
Government bonds held by the central bank are thus excluded from what we call
“government debt”. So the terms government debt, public debt, and state debt
are used synonymously.
The basics of government budget accounting cannot be described without

including money, nominal prices, and inflation. Elementary aspects of money and
inflation will therefore be included in this section. We shall not, however, consider

1Rent seeking refers to attempts to gain by increasing one’s share of existing wealth, instead
of trying to produce wealth.
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money and inflation in any systematic way until later chapters. Whether the
economy considered is a closed or open economy will generally not be important
in this chapter.
Table 6.1 lists key variables of government budgeting.

Table 6.1. List of main variable symbols
Symbol Meaning
Yt real GDP (= real GNP if the economy is closed)
Cg
t public consumption
Igt public fixed capital investment
Gt ≡ Cg

t + Igt real public spending on goods and services
Xt real transfer payments
T̃t real gross tax revenue

Tt ≡ T̃t −Xt real net tax revenue
Mt the monetary base (currency and bank reserves in the central bank)
Pt price level (in money) for goods and services (the GDP deflator)
Dt nominal net public debt

Bt ≡ Dt
Pt−1

real net public debt

bt ≡ Bt
Yt

government debt-to-income ratio
it nominal short-term interest rate

∆xt = xt − xt−1 (where x is some arbitrary variable)
πt ≡ ∆Pt

Pt−1
≡ Pt−Pt−1

Pt−1
inflation rate

1 + rt ≡ Pt−1(1+it)
Pt

≡ 1+it
1+πt

real short-term interest rate

Note that Yt, Gt, and Tt are quantities defined per period, or more generally,
per time unit, and are thus flow variables. On the other hand, Mt, Dt, and Bt

are stock variables, that is, quantities defined at a given point in time, here at
the beginning of period t. We measure Dt and Bt net of financial claims held
by the government. Almost all countries have positive government net debt, but
in principle Dt < 0 is possible.2 The monetary base, Mt, is currency plus fully
liquid deposits in the central bank held by the private sector at the beginning of
period t; Mt is by definition nonnegative.
We shall most of the time ignore uncertainty and risk of default. Then the

nominal interest rate on government bonds must be the same as that on other
interest-bearing assets in the economy. For ease of exposition we imagine that all
government bonds are one-period bonds. That is, each government bond promises

2If Dt < 0, the government has positive net financial claims on the private sector and earns
interest on these claims − which is then an additional source of government revenue besides
taxation.
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a payout equal to one unit of account at the end of the period and then the bond
expires. Given the interest rate, it, the market value of a bond at the start of
period t is vt = 1/(1 + it). If the number of outstanding bonds (the quantity of
bonds) in period t is qt, the government debt has face value (value at maturity)
equal to qt. The market value at the start of period t of this quantity of bonds
will be Dt = qt/(1 + it). The nominal expenditure to be made at the end of the
period to redeem the outstanding debt can then be written

qt = Dt(1 + it). (6.1)

This is the usual way of writing the expenditure to be made, namely as if the
government debt were like a given bank loan of size Dt with a variable rate of
interest. We should not forget, however, that given the quantity, qt, of the bonds,
the value, Dt, of the government debt at the issue date depends negatively on it.
Anyway, the total nominal government expenditure in period t can be written

Pt(Gt +Xt) +Dt(1 + it).

It is common to refer to this expression as expenditure “in period t”. Yet, in a
discrete time model (with a period length of a year or a quarter corresponding
to typical macroeconomic data) one has to imagine that the payment for goods
and services delivered in the period occurs either at the beginning or the end of
the period. We follow the latter interpretation and so the nominal price level Pt
for period-t goods and services refers to payment occurring at the end of period
t. As an implication, the real value, Bt, of government debt at the beginning of
period t (= end of period t− 1) is Dt/Pt−1. This may look a little awkward but
is nevertheless meaningful. Indeed, Dt is a stock of liabilities at the beginning
of period t while Pt−1 is a price referring to a flow paid for at the end of period
t − 1 which is essentially the same point in time as the beginning of period t.
Anyway, whatever timing convention is chosen, some kind of awkwardness will
always arise in discrete time analysis. This is because the discrete time approach
artificially treats the continuous flow of time as a sequence of discrete points in
time.3

The government expenditure is financed by a combination of taxes, bonds
issue, and increase in the monetary base:

PtT̃t +Dt+1 + ∆Mt+1 = Pt(Gt +Xt) +Dt(1 + it). (6.2)

By rearranging we have

∆Dt+1 + ∆Mt+1 = Pt(Gt +Xt − T̃t) + itDt. (6.3)

3In a theoretical model this kind of problems is avoided when government budgeting is
formulated in continuous time, cf. Chapter 13.
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In standard government budget accounting the nominal government budget
deficit, GBD, is defined as the excess of total government spending over govern-
ment revenue, PT̃ . That is, according to this definition the right-hand side of
(6.3) is the nominal budget deficit in period t, GBDt. The first term on the right-
hand side, Pt(Gt + Xt − T̃t), is named the primary budget deficit (non-interest
spending less taxes). The second term, itDt, is called the debt service. Simi-
larly, Pt(T̃t −Xt −Gt) is called the primary budget surplus. A negative value of
a “deficit” thus amounts to a positive value of a corresponding “surplus”, and
a negative value of a “surplus” amounts to a positive value of a corresponding
“deficit”.

We immediately see that this accounting deviates from “normal”principles.
Business companies typically have sharply separated capital and operating bud-
gets. In contrast, the budget deficit defined above treats that part of G which
represents government net investment as parallel to government consumption.
Government net investment is attributed as an expense in a single year’s ac-
count; according to “normal”principles it is only the depreciation on the public
capital that should figure as an expense. Likewise, the above accounting does
not consider that a part of D (or perhaps more than D) may be backed by the
value of public physical capital. And if the government sells a physical asset to
the private sector, the sale will appear as a reduction of the government budget
deficit while in reality it is merely a conversion of an asset from a physical form
to a financial form. So the cost and asset aspects of government net investment
are not properly dealt with in the standard public accounting.4

With the exception of Section 6.6 we will nevertheless stick to the traditional
vocabulary. Where this might create logical diffi culties, it helps to imagine that:

(a) all of G is public consumption, i.e., Gt = Cg
t for all t;

(b) there is no public physical capital.

Now, from (6.3) and the definition Tt ≡ T̃t−Xt (net tax revenue) follows that

4Another anomaly is related to the fact that some countries, for instance Denmark, have
large implicit government assets due to deferred taxes on the part of personal income invested
in pension funds. If the government then decides to reverse the deferred taxation (as the Danish
government did 2012 and 2014 to comply better with the 3%-deficit rule of the Stability and
Growth Pact of the EMU), the offi cial budget deficit is reduced, but essentially it is just a
matter of replacing one government asset by another.
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real government debt at the beginning of period t+ 1 is:

Bt+1 ≡
Dt+1

Pt
= Gt +Xt − T̃t + (1 + it)

Dt

Pt
− ∆Mt+1

Pt

= Gt − Tt + (1 + it)
Dt/Pt−1

Pt/Pt−1

− ∆Mt+1

Pt
= Gt − Tt +

1 + it
1 + πt

Bt −
∆Mt+1

Pt

≡ (1 + rt)Bt +Gt − Tt −
∆Mt+1

Pt
. (6.4)

We see from the second line that, everything else equal, inflation curtails the real
value of the debt and interest payments. Hence, sometimes not only the actual
nominal budget deficit is recorded but also a measure where πtDt is subtracted.
The last term, ∆Mt+1/Pt, in (6.4) is seigniorage, i.e., public sector revenue

obtained by issuing base money (ignoring the diminutive cost of printing money).
To get a sense of this variable, suppose real output grows at the constant rate gY
so that Yt+1 = (1 + gY )Yt. Then the public debt-to-income ratio can be written

bt+1 ≡
Bt+1

Yt+1

=
1 + rt
1 + gY

bt +
Gt − Tt

(1 + gY )Yt
− ∆Mt+1

Pt(1 + gY )Yt
. (6.5)

Apart from the growth-correcting factor, (1−gY )−1, the last term is the seigniorage-
income ratio,

∆Mt+1

PtYt
=

∆Mt+1

Mt

Mt

PtYt
.

If in the long run the base money growth rate, ∆Mt+1/Mt, as well as the nominal
interest rate (i.e., the opportunity cost of holding money) are constant, then the
velocity of money and its inverse, the money-nominal income ratio, Mt/(PtYt),
are also likely to be roughly constant. So is, therefore, the seigniorage-income
ratio.5 For the more developed countries this ratio tends to be a fairly small
number although not immaterial. For emerging economies with poor institutions
for collecting taxes seigniorage matters more.6

The U.S. has a single monetary authority, the central bank, and a single
fiscal authority, the treasury. The seigniorage created is immediately transferred

5A reasonable money demand function is Md
t = PtYte

−αi, α > 0, where i is the nominal
interest rate. With clearing in the money market, we thus have Mt/(PtYt) = e−αi. In view of
1 + i ≡ (1 + r)(1 + π), when r and π are constant, so is i and, thereby, Mt/(PtYt).

6In the U.S. over the period 1909-1950s seigniorage fluctuated a lot and peaked 4 % of GDP
in the 1930s and 3 % of GDP at the end of WW II. But over the period from the late 1960s
to 1986 seigniorage fluctuated less around an average close to 0.5 %.of GDP (Walsh, 2003, p.
177). In Denmark seigniorage was around 0.2 % of GDP during the 1990s (Kvartalsoversigt 4.
kvartal 2000, Danmarks Nationalbank). In Bolivia, up to the event of hyperinflation 1984-85,
seigniorage reached 5 % of GDP and more than 50 % of government revenue (Sachs and Larrain,
1993).
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from the first to the latter. The Eurozone has a single monetary authority but
multiple fiscal authorities, namely the treasuries of the member countries. The
seigniorage created by the ECB is every year shared by the national central banks
of the Eurozone countries in proportion to their equity share in the ECB. And
the national central banks then transfer their share to the national treasuries.
This makes up a ∆Mt+1 term for the consolidated public sector of the individual
Eurozone countries.

In monetary unions and countries with their own currency, government budget
deficits are thus generally financed both by debt creation and money creation, as
envisioned in the above equations. Nonetheless, from now on, for simplicity, in
this chapter we will predominantly ignore the seigniorage term in (6.5) and only
occasionally refer to the modifications implied by taking it into account.

We thus proceed with the simple government accounting equation:

Bt+1 −Bt = rtBt +Gt − Tt, (DGBC)

where the right-hand side is the real budget deficit. This equation is in macro-
economics often called the dynamic government budget constraint (or DGBC for
short). It is in fact just an accounting identity conditional on ∆M = 0. It says
that if the real budget deficit is positive and there is essentially no financing
by money creation, then the real public debt grows. We come closer to a con-
straint when combining (DGBC) with the requirement that the government stays
solvent.

6.3 Government solvency and fiscal sustainabil-
ity

To be solvent means being able to meet the financial commitments as they fall
due. In practice this concept is closely related to the government’s No-Ponzi-
Game condition and intertemporal budget constraint (to which we return in Sec-
tion 6.5), but at the theoretical level it is more fundamental.

We may view the public sector as an infinitely-lived agent in the sense that
there is no last date where all public debt has to be repaid. Nevertheless, as we
shall see, there tends to be stringent constraints on government debt creation in
the long run.
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6.3.1 The critical role of the growth-corrected interest
rate

Very much depends on whether the real interest rate in the long-run is higher
than the growth rate of GDP or not.
To see this, suppose the country considered has positive government debt at

time 0 and that the government levies taxes equal to its non-interest spending:

T̃t = Gt +Xt or Tt ≡ T̃t −Xt = Gt for all t ≥ 0. (6.6)

So taxes cover only the primary expenses while interest payments (and debt
repayments when necessary) are financed by issuing new debt. That is, the
government attempts a permanent roll-over of the debt including the interest
due for payment. In view of (DGBC), this implies that Bt+1 = (1 + rt)Bt, saying
that the debt grows at the rate rt. Assuming, for simplicity, that rt = r (a
constant), the law of motion for the public debt-to-income ratio is

bt+1 ≡
Bt+1

Yt+1

=
1 + r

1 + gY

Bt

Yt
≡ 1 + r

1 + gY
bt, b0 > 0,

where we have maintained the assumption of a constant output growth rate, gY .
The solution to this linear difference equation then becomes

bt = b0(
1 + r

1 + gY
)t,

where we consider both r and gY as exogenous. We see that the growth-corrected
interest rate, 1+r

1+gY
− 1 ≈ r − gY (for gY and r “small”) plays a key role. There

are contrasting cases to discuss.
Case 1: r > gY . In this case, bt →∞ for t→∞. Owing to compound interest,

the debt grows so large in the long run that the government will be unable to find
buyers for all the debt. Permanent debt roll-over is thus not feasible. Imagine for
example an economy described by the Diamond OLG model. Here the buyers of
the debt are the young who place part of their saving in government bonds. But
if the stock of these bonds grows at a higher rate than income, the saving of the
young cannot in the long run keep track with the fast-growing government debt.
In this situation the private sector will understand that bankruptcy is threatening
and nobody will buy government bonds except at a low price, which means a high
interest rate. The high interest rate only aggravates the problem. That is, the
fiscal policy (6.6) breaks down. Either the government defaults on the debt or T
must be increased or G decreased (or both) until the growth rate of the debt is
no longer higher than gY .
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If the debt is denominated in the country’s own currency, an alternative way
out is of course a shift to money financing of the budget deficit, that is, seignior-
age. When capacity utilization is high, this leads to rising inflation and thus
the real value of the debt is eroded. Bond holders will then demand a higher
nominal interest rate, thus aggravating the fiscal diffi culties. The economic and
social chaos of hyperinflation threatens.7 The hyperinflation in Germany 1922-23
peaked in Nov. 1923 at 29,525% per month; it eroded the real value of the huge
government debt of Germany after WW I by 95 percent.
Case 2: r = gY . If r = gY , we get bt = b0 for all t ≥ 0. Since the debt, increas-

ing at the rate r, does not increase faster than national income, the government
has no problem finding buyers of its newly issued bonds − the government stays
solvent. Thereby the government is able to finance its interest payments simply
by issuing new debt. The growing debt is passed on to ever new generations with
higher income and saving and the debt roll-over implied by (6.6) can continue
forever.
Case 3: r < gY . Here we get bt → 0 for t → ∞, and the same conclusion

holds a fortiori.
In Case 2 as well as Case 3, where the interest rate is not higher than the

growth rate of the economy, the government can thus pursue a permanent debt
roll-over policy as implied by (6.6) and still remain solvent. But in Case 1 ,
permanent debt roll-over is impossible and sooner or later the interest payments
must be tax financed.
Which of the cases is relevant in real life? Fig. 6.1 shows for Denmark (upper

panel) and the US (lower panel) the time paths of the real short-term interest
rate and the GDP growth rate, both on an annual basis. Overall the levels of
the two are more or less the same, although on average the interest rate is in
Denmark slightly higher but in the US somewhat lower than the growth rate.
Nevertheless, many macroeconomists believe there is good reason for paying

attention to the case r > gY , also for a country like the US. This is because we live
in a world of uncertainty, with many different interest rates, and imperfect credit
markets, aspects the above line of reasoning has not incorporated. The prudent
debt policy needed whenever, under certainty, r > gY can be shown to apply
to a larger range of circumstances when uncertainty is present (see Literature
notes). To give a flavor we may say that a prudent debt policy is needed when
the average interest rate on the public debt exceeds gY − ε for some “small”but
positive ε.8 On the other hand there is a different feature which draws the matter

7In economists’ standard terminology “hyperinflation” is present when the inflation rate
exceeds 50 percent per month. As we shall see in Chapter 18, the monetary financing route comes
to a dead end if the needed seigniorage reaches the backward-bending part of the “seigniorage
Laffer curve”.

8This is only a “rough”characterization, see, e.g., Blanchard and Weil (2001).
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Figure 6.1: Real short-term interest rate and annual growth rate of real GDP in Den-
mark and the US since 1875. The real short-term interest rate is calculated as the
money market rate minus the contemporaneous rate of consumer price inflation. Source:
Abildgren (2005) and Maddison (2003).
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in the opposite direction. This is the possibility that a tax, τ ∈ (0, 1), on interest
income is in force so that the net interest rate on the government debt is (1− τ)r
rather than r.

6.3.2 Sustainable fiscal policy

The concept of sustainable fiscal policy is closely related to the concept of gov-
ernment solvency. As already noted, to be solvent means being able to meet the
financial commitments as they fall due. A given fiscal policy is called sustainable
if by applying its spending and tax rules forever, the government stays solvent.
“Sustainable”conveys the intuitive meaning. The issue is: can the current tax
and spending rules continue forever?
To be more specific, suppose Gt and Tt are determined by fiscal policy rules

represented by the functions

Gt = G(x1t, ..., xnt, t), and Tt = T (x1t, ..., xnt, t),

where t = 0, 1, 2, . . . , and x1t,..., xnt are key macroeconomic and demographic
variables (like national income, old-age dependency ratio, rate of unemployment,
extraction of natural resources, say oil in the ground, etc.). In this way a given
fiscal policy is characterized by the rules G(·) and T (·). Suppose further that we
have an economic model,M, of how the economy functions.

DEFINITION Let the current period be period 0 and let the public debt at
the beginning of period 0 be given. Then, given a forecast of the evolution
of the demographic and foreign economic environment in the future and given
the economic model M, the fiscal policy (G(·), T (·)) is said to be sustainable
relative to this model if the forecast calculated on the basis of M is that the
government stays solvent under this policy. The fiscal policy (G(·), T (·)) is called
unsustainable, if it is not sustainable.

This definition of fiscal sustainability is silent about the presence of uncer-
tainty. Without going into detail about this diffi cult issue, suppose the model
M is stochastic and let ε be a “small”positive number. Then we may say that
the fiscal policy (G(·), T (·)) with 100-ε percent probability is sustainable relative
to the modelM if the forecast calculated on the basis ofM is that with 100-ε
percent probability the government stays solvent under this policy.
Governments, rating agencies, and other institutions evaluate sustainability

of fiscal policy on the basis of simulations of giant macroeconometric models.
Essentially, the operational criterion for sustainability is whether the fiscal policy
can be deemed compatible with upward boundedness of the public debt-to-income
ratio. Normally, the income measure applied here is GDP. Other measures are
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conceivable such as GNP, taxable income, or after-tax income. Moreover, even
if a debt spiral is not (yet) underway in a given country, a high level of the
debt-income ratio may in itself be worrisome. This is because a high level of
debt under certain conditions may trigger a spiral of self-fulfilling expectations of
default. We come back to this in the section to follow.
Owing to the increasing pressure on public finances caused by factors such

as reduced birth rates, increased life expectancy, and a fast-growing demand for
medical care, many industrialized countries have for a long time been assessed
to be in a situation where their fiscal policy is not sustainable (Elmendorf and
Mankiw 1999). The implication is that sooner or later one or more expenditure
rules and/or tax rules (in a broad sense) will probably have to be changed.
Two major kinds of strategies have been suggested. One kind of strategy is

the pre-funding strategy. The idea is to prevent sharp future tax increases by
ensuring a fiscal consolidation prior to the expected future demographic changes.
Another strategy (alternative or complementary to the former) is to attempt a
gradual increase in the labor force by letting the age limits for retirement and
pension increase along with expected lifetime − this is the indexed retirement
strategy. The first strategy implies that current generations bear a large part
of the adjustment cost. In the second strategy the costs are shared by current
and future generations in a way more similar to the way the benefits in the
form of increasing life expectancy are shared. We shall not go into detail about
these matters here, but refer the reader to a large literature about securing fiscal
sustainability in the ageing society, see Literature notes.

6.4 Debt arithmetic

A key tool for evaluating fiscal sustainability is debt arithmetic, i.e., the ana-
lytics of debt dynamics. The previous section described the important role of
the growth-corrected interest rate. The next subsection considers the minimum
primary budget surplus required for fiscal sustainability in different situations.

6.4.1 The required primary budget surplus

Ignoring the seigniorage term∆Mt+1/Pt in the dynamic government budget iden-
tity (6.4), we have:

Bt+1 = (1 + r)Bt − (Tt −Gt), (DGBC)

where Tt − Gt is the primary surplus in real terms. Suppose aggregate income,
Yt, grows at a given constant rate rate, gY . Let the spending-to-income ratio,
Gt/Yt, and the (net) tax revenue-to-income ratio, Tt/Yt, be constants, γ and τ ,
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respectively. We assume that interest income on government bonds is not taxed.
It follows that the public debt-to-income ratio bt ≡ Bt/Yt (from now just denoted
debt-income ratio) changes over time according to

bt+1 ≡
Bt+1

Yt+1

=
1 + r

1 + gY
bt −

τ − γ
1 + gY

, (6.7)

where we have assumed a constant interest rate, r. There are (again) three cases
to consider.
Case 1: r > gY . As emphasized above this case is generally considered the one

of most practical relevance. And it is in this case that latent debt instability is
present and the government has to pay attention to the danger of runaway debt
dynamics. To see this, note that the solution of the linear difference equation
(6.7) is

bt = (b0 − b∗)
(

1 + r

1 + gY

)t
+ b∗, where (6.8)

b∗ = − τ − γ
1 + gY

(
1− 1 + r

1 + gY

)−1

=
τ − γ
r − gY

≡ s

r − gY
, (6.9)

where s is the primary surplus as a share of GDP. Here b0 is historically given. But
the steady-state debt-income ratio, b∗, depends on fiscal policy. The important
feature is that the growth-corrected interest factor is in this case higher than 1
and has the exponent t. Therefore, if fiscal policy is such that b∗ < b0, the debt-
income ratio exhibits geometric growth. The solid curve in the topmost panel in
Fig. 6.2 shows a case where fiscal policy is such that τ − γ < (r− gY )b0 whereby
we get b∗ < b0 when r > gY , so that the debt-income ratio, bt, grows without
bound. The sequence of discrete points implied by our discrete-time model is
smoothed out as a continuous curve.
The American economist and Nobel Prize laureate George Akerlof (2004, p.

6) came up with this analogy:

“It takes some time after running off the cliff before you begin to fall.
But the law of gravity works, and that fall is a certainty”.

Somewhat surprisingly, perhaps, when r > gY , there can be debt explosion in
the long run even if τ > γ, namely if 0 < τ − γ < (r− gY )b0. Debt explosion can
even arise if b0 < 0, namely if τ − γ < (r − gY )b0 < 0.
The only way to avoid the snowball effects of compound interest when the

growth-corrected interest rate is positive is to ensure a primary budget surplus as
a share of GDP, τ − γ, high enough such that b∗ ≥ b0. So the minimum primary
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Figure 6.2: Evolution of the debt-income ratio, depending on the sign of b0− b∗, in the
cases r > gY (the three upper panels) and r < gY (the two lower panels), respectively.
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surplus as a share of GDP, ŝ, required for fiscal sustainability is the one implying
b∗ = b0, i.e., by (6.9),

ŝ = (r − gY )b0. (6.10)

If by adjusting τ and/or γ, the government obtains τ − γ = ŝ, then b∗ = b0

whereby bt = b0 for all t ≥ 0 according to (6.8), cf. the second from the top panel
in Fig. 6.2. The difference between ŝ and the actual primary surplus as a share
of GDP is named the primary surplus gap or the sustainability gap.
Note that ŝ will be larger:

- the higher is the initial level of debt, b0; and,
- when b0 > 0, the higher is the growth-corrected interest rate, r − gY .

Delaying the adjustment increases the size of the needed policy action, since
the debt-income ratio, and thereby ŝ, will become higher in the meantime.
For fixed spending-income ratio γ, the minimum tax-to-income ratio needed

for fiscal sustainability is
τ̂ = γ + (r − gY )b0. (6.11)

Given b0 and γ, this tax-to-income ratio is sometimes called the sustainable tax
rate. The difference between this rate and the actual tax rate, τ , indicates the
size of the needed tax adjustment, were it to take place at time 0.
Suppose that the debt build-up can be − and is − prevented already at time

0 by ensuring that the primary surplus as a share of income, τ−γ, at least equals
ŝ so that b∗ ≥ b0. The solid curve in the midmost panel in Fig. 6.2 illustrates the
resulting evolution of the debt-income ratio if b∗ is at the level corresponding to
the hatched horizontal line while b0 is unchanged compared with the top panel.
Presumably, the government would in such a state of affairs relax its fiscal policy
after a while in order not to accumulate large government financial net wealth.
Yet, the pre-funding strategy vis-a-vis the fiscal challenge of population ageing
(referred to above) is in fact based on accumulating some positive public financial
net wealth as a buffer before the substantial effects of population ageing set in. In
this context, the higher the growth-corrected interest rate, the shorter the time
needed to reach a given positive net wealth position.
Case 2: r = gY . In this knife-edge case there is still a danger of runaway dy-

namics, but of a less explosive form. The formula (6.8) is no longer valid. Instead
the solution of (6.7) is bt = b0 + [(γ − τ)/(1 + gY )] t = b0 − [(τ − γ)/(1 + gY )] t.
Here, a non-negative primary surplus is both necessary and suffi cient to avoid
bt →∞ for t→∞.
Case 3: r < gY . This is the case of stable debt dynamics. The formula (6.8)

is again valid, but now implying that the debt-income ratio is non-explosive.
Indeed, bt → b∗ for t → ∞, whatever the level of the initial debt-income ratio
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and whatever the sign of the budget surplus. Moreover, when r < gY ,

b∗ =
τ − γ
r − gY

S 0 for τ − γ T 0. (*)

So, if there is a forever positive primary surplus, the result is a negative long-run
debt, i.e., a positive government financial net wealth in the long run. And if there
is a forever negative primary surplus, the result is not debt explosion but just
convergence toward some positive long-run debt-income ratio. The second from
bottom panel in Fig. 6.2 illustrates this case for a situation where b0 > b∗ and
b∗ > 0, i.e., τ − γ < 0, by (*). When the GDP growth rate continues to exceed
the interest rate on government debt, a large debt-income ratio can be brought
down quite fast, as witnessed by the evolution of both UK and US government
debt in the first three decades after the second world war. Indeed, if the growth-
corrected interest rate remains negative, permanent debt roll-over can handle the
financing, and taxes need never be levied.9

Finally, the bottom panel in Fig. 6.2 shows the case where, with a large
primary deficit (τ − γ < 0 but large in absolute value), excess of output growth
over the interest rate still implies convergence towards a constant debt-income
ratio, albeit a high one.

Laffer curve

We return to Case 1 because we have ignored supply-side effects of taxation, and
such effects could be important in Case 1.
A Laffer curve (so named after the American economist Arthur Laffer, 1940-)

refers to a hump-shaped relationship between the income tax rate and the tax
revenue. For simplicity, suppose the tax revenue equals taxable income times
a given average tax rate. A 0% tax rate and most likely also a 100% tax rate
generate no tax revenue. As the tax rate increases from a low initial level, a rising
tax revenue is obtained. But after a certain point some people may begin to work
less (in the legal economy), stop reporting all their income, and stop investing.
So it is reasonable to think of a tax rate above which the tax revenue begins to
decline.
While Laffer was wrong about where USA was “on the curve” (see, e.g.,

Fullerton 2008), and while, strictly speaking, there is no such thing as the Laffer
curve and the tax rate,10 Laffer’s intuition is hardly controversial. Let us therefore

9On the other hand, we should not forget that this analysis presupposes absence of uncer-
tainty. As touched on in Section 6.3.1, in the presence of uncertainty and therefore existence of
many interest rates, the issue becomes more complicated.
10A lot of contingencies are involved: income taxes are typically progressive (i.e., average tax

rates rise with income); it matters whether a part of tax revenue is spent to reduce tax evasion,
etc.
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assume that for a given tax system there is a tax-income ratio, τL, above which
the tax revenue declines. Then, if the presumed sustainable tax-income ratio, τ̂ ,
in (6.11) exceeds τL, it can not be realized.
To see what the value of τL could be, suppose aggregate taxable income before

tax is a function, f, of the net-of-tax share 1− τ . Then tax revenue is

R(τ) = τ · f(1− τ),

which we assume is a hump-shaped function of τ in the interval [0, 1] . Taking
logs and differentiating w.r.t. τ gives the first-order condition R′(τ)/R(τ) =
1/τ − f ′(1− τ)/f(1− τ) = 0, which holds for τ = τL, the tax-income ratio that
maximizes R. It follows that 1/τL = f ′(1− τL)/f(1− τL), hence

1− τL
τL

=
1− τL

f(1− τL)
f ′(1− τL) ≡ E`1−τf(1− τL).

Rearranging gives

τL =
1

1 + E`1−τf(1− τL)
.

If the elasticity of income w.r.t. 1 − τ is given as 0.4,11 we get τL = 5/7 ≈ 0.7.
Thus, if the required tax-income ratio, τ̂ , calculated on the basis of (6.11), exceeds
0.7, fiscal sustainability can not be obtained by just raising taxation.

The level of the debt-income ratio and self-fulfilling expectations of
default

We again consider Case 1: r > gY . The incumbent chief economist at the IMF,
Olivier Blanchard remarked in the midst of the 2010-2012 debt crisis in the Eu-
rozone:

“The higher the level of debt, the smaller is the distance between
solvency and default”.12

The background for this remark is the following. There is likely to be an
upper bound for the tax-income ratio deemed politically or economically feasible
by the government as well as the market participants. Similarly, a lower bound
for the spending-income ratio exists, be it for economic or political reasons. In
the present framework we therefore let the government face the constraints τ ≤ τ̄
and γ ≥ γ̄, where τ̄ is the least upper bound for the tax-income ratio and γ̄ is

11As suggested for the U.S. by Gruber and Saez, 2002.
12Blanchard (2011).
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the greatest lower bound for the spending-income ratio. Then the actual primary
surplus, s, can at most equal s̄ ≡ τ̄ − γ̄.
Suppose that at first the situation in the considered country is as in the second

from the top panel in Fig. 6.2. That is, initially,

s = τ − γ = ŝ = (r − gY )b0 ≤ s̄ ≡ τ̄ − γ̄, (6.12)

with b0 > 0. Define r̄ to be the value of r satisfying

(r̄ − gY )b0 = s̄, i.e., r̄ =
s̄

b0

+ gY . (6.13)

Thereby r̄ is the maximum level of the interest rate consistent with absence of
an explosive debt-income ratio.
According to (6.12), fundamentals (tax- and spending-income ratios, growth-

corrected interest rate, and initial debt) are consistent with absence of an explo-
sive debt-income ratio as long as r is unchanged. Nevertheless financial investors
may be worried about default if b0 is high. Investors are aware that a rise in the
actual interest rate, r, can always happen and that if it does, a situation with
r > r̄ is looming, in particular if the country has high debt. The larger is b0, the
lower is the critical interest rate, r̄, as witnessed by (6.13).
The worrying scenario is that the fear of default triggers a risk premium, and

if the resulting level of the interest rate on the debt, say r′, exceeds r̄, unpleasant
debt dynamics like that in the top panel of Fig. 6.2 set in. To r′ corresponds a
new value of the primary surplus, say ŝ′, defined by ŝ′ = (r′ − gY )b0. So ŝ′ is the
minimum primary surplus (as a share of GDP) required for a non-accelerating
debt-income ratio in the new situation. Since b0 > 0,

r′ > r̄ ⇒ (r̄ − gY )b0 < (r′ − gY )b0 ⇒ s̄ < ŝ′,

with s̄ given in (6.12). The government could possibly increase its primary sur-
plus, s, but at most up to s̄, and this will not be enough since the required primary
surplus, ŝ′, exceeds s̄. The situation would be as illustrated in the top panel of
Fig. 6. 2 with b∗ given as s̄/(r′ − gY ) < b0.
That is, if the actual interest rate should rise above the critical interest rate,

r̄, runaway debt dynamics would take offand debt default thereby be threatening.
A fear that it may happen may be enough to trigger a fall in the market price of
government bonds which means a rise in the actual interest rate, r. So financial
investors’fear can be a self-fulfilling prophesy. Moreover, as we saw in connection
with (6.13), the risk that r becomes greater than r̄ is larger the larger is b0.
It is not so that across countries there is a common threshold value for a

“too large” public debt-to-income ratio. This is because variables like τ̄ , γ̄, r,
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and gY , as well as the net foreign debt position and the current account deficit
(not in focus in this chapter), differ across countries. Late 2010 Greece had
(gross) government debt of 148 percent of GDP and the interest rate on 10-year
government bonds skyrocketed. Conversely Japan had (gross) government debt
of more than 200 percent of GDP while the interest rate on 10-year government
bonds remained very low.

Finer shades

1. As we have just seen, even when in a longer-run perspective a solvency problem
is unlikely, self-fulfilling expectations can here and now lead to default. Such a
situation is known as a liquidity crisis rather than a true solvency crisis. In a
liquidity crisis there is an acute problem of insuffi cient cash to pay the next bill
on time (“cash-flow insolvency”) because lending is diffi cult due to actual and
potential creditors’fear of default. A liquidity crisis can be braked by the central
bank stepping in and acting as a “lender of last resort”by printing money. In a
country with its own currency, the central bank can do so and thereby prevent a
bad self-fulfilling expectations equilibrium to unfold.13

2. In the above analysis we simplified by assuming that several variables,
including γ, τ , and r, are constants. The upward trend in the old-age dependency
ratio, due to a decreased birth rate and rising life expectancy, together with a
rising request for medical care is likely to generate upward pressure on γ. Thereby
a high initial debt-income ratio becomes more challenging.
3. On the other hand, rBt is income to the private sector and can be taxed at

the same average tax rate τ as factor income, Yt. Then the benign inequality is
no longer r ≤ gY but (1− τ)r ≤ gY , which is more likely to hold. Taxing interest
income is thus supportive of fiscal sustainability (cf. Exercise B.28).
4. Having ignored seigniorage, there is an upward bias in our measure (6.10)

of the minimum primary surplus as a share of GDP, ŝ, required for fiscal sustain-
ability when r > gY . Imposing stationarity of the debt-income ratio at the level b̄
into the general debt-accumulation formula (6.5), multiplying through by 1 + gY ,

13In a monetary union which is not also a fiscal union (think of the eurozone), the situation
is more complicated. A single member country with large government debt (or large debt in
commercial banks for that matter) may find itself in an acute liquidity crisis without its own
means to solve it. Indeed, the elevation of interest rates on government bonds in the Southern
part of the eurozone in 2010-2012 can be seen as a manifestation of investors’fear of payment
diffi culties. The elevation was not reversed until the European Central Bank in September 2012
declared its willingness to effectively act as a “lender of last resort” (on a conditional basis),
see Box 6.2 in Section 6.4.2.
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and cancelling out, we find

ŝ = (r − gY )b̄− ∆Mt+1

PtYt
= (r − gY )b̄− ∆Mt+1

Mt

· Mt

PtYt
.

With r = 0.04, gY = 0.03, and b̄ = 0.60, we get (r − gY )b̄ = 0.006. With a
seigniorage-income ratio even as small as 0.003, the “true”required primary sur-
plus is 0.003 rather than 0.006. As long as the seigniorage-income ratio is approx-
imately constant, our original formula, given in (6.10), for the required primary
surplus as a share of GDP is in fact valid if we interpret τ as the (tax+seigniorage)-
income ratio.
5. Having assumed a constant gY , we have ignored business cycle fluctuations.

Allowing for booms and recessions, the timing of fiscal consolidation in a country
with a structural primary surplus gap (ŝ − s > 0) becomes a crucial issue. The
case study in the next section will be an opportunity to touch upon this issue.

6.4.2 Case study: The Stability and Growth Pact of the
EMU

The European Union (EU) is approaching its aim of establishing a “single mar-
ket”(unrestricted movement of goods and services, workers, and financial capital)
across the territory of its member countries, 28 sovereign nations. Nineteen of
these have joined the common currency, the euro. They constitute what is known
as the Eurozone with the European Central Bank (ECB) as supranational institu-
tion responsible for conducting monetary policy in the Eurozone. The Eurozone
countries as well as the nine EU countries outside the Eurozone (including UK,
Denmark, Sweden, and Poland) are, with minor exceptions, required to abide
with a set of fiscal rules, first formulated already in the Treaty of Maastrict from
1992. In that year a group of European countries decided a road map leading to
the establishment of the euro in 1999 and a set of criteria for countries to join.
These fiscal rules included a deficit rule as well as a debt rule. The deficit rule
says that the annual nominal government budget deficit must not be above 3
percent of nominal GDP. The debt rule says that the government debt should not
be above 60 percent of GDP. The fiscal rules were upheld and in minor respects
tightened in the Stability and Growth Pact (SGP) which was implemented in 1997
as the key fiscal constituent of the Economic and Monetary Union (EMU). The
latter name is a popular umbrella term for the fiscal and monetary legislation of
the EU. The EU member countries that have adopted the euro are often referred
to as “the full members of the EMU”.
Some of the EU member states (Belgium, Italy, and Greece) had debt-income

ratios above 100 percent since the early 1990s − and still have. Committing to
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the requirement of a gradual reduction of their debt-income ratios, they became
full members of the EMU essentially from the beginning (that is, 1999 except
Greece, 2001). The 60 percent debt rule of the SGP is to be understood as a
long-run ceiling that, by the stock nature of debt, can not be accomplished here
and now if the country is highly indebted.
The deficit and debt rules (with associated detailed contingencies and arrange-

ments including ultimate pecuniary fines for defiance) are meant as discipline de-
vices aiming at “sound budgetary policy”, alternatively called “fiscal prudence”.
The motivation is protection of the ECB against political demands to loosen mon-
etary policy in situations of fiscal distress. A fiscal crisis in one or more of the
Eurozone countries, perhaps “too big to fail”, could set in and entail a state of
affairs approaching default on government debt and chaos in the banking sector
with rising interest rates spreading to neighboring member countries (a negative
externality). This could lead to open or concealed political pressure on the ECB
to inflate away the real value of the debt, thus challenging the ECB’s one and
only concern with “price stability”.14 Or a fiscal crisis might at least result in
demands on the ECB to curb soaring interest rates by purchasing government
bonds from the country in trouble. In fact, such a scenario is close to what we
have seen in southern Europe in the wake of the Great Recession triggered by
the financial crisis starting 2007. Such “bailing out”could give governments in-
centives to be relaxed about deficits and debts (a “moral hazard”problem). And
the lid on deficit spending imposed by the SGP should help to prevent needs for
“bailing out”to arise.

The link between the deficit and the debt rule

Whatever the virtues or vices of the design of the deficit and debt rules, one may
ask the plain question: what is the arithmetical relationship, if any, between the
3 percent and 60 percent tenets?
First a remark about measurement. The measure of government debt, called

the EMU debt, used in the SGP criterion is based on the book value of the
financial liabilities rather than the market value. In addition, the EMU debt is
more of a gross nature than the theoretical net debt measure represented by our
D. The EMU debt measure allows fewer of the government financial assets to
be subtracted from the government financial liabilities.15 In our calculation and
subsequent discussion we ignore these complications.

14The ECB interprets “price stability”as a consumer price inflation rate “below, but close
to, 2 percent per year over the medium term”.
15For Denmark the difference between the EMU and the net debt is substantial. In 2013 the

Danish EMU debt was 44.6% of GDP while the government net debt was 5.5% of GDP (Danish
Ministry of Finance, 2014).
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Consider a deficit rule saying that the (total) nominal budget deficit must
never be above α · 100 percent of nominal GDP. By (6.3) with ∆Mt+1 “small”
enough to be ignored, this deficit rule is equivalent to the requirement

Dt+1 −Dt = GBDt = itDt + Pt(Gt − Tt) ≤ αPtYt. (6.14)

In the SGP, α = 0.03. Here we consider the general case: α > 0. To see the
implication for the (public) debt-to-income ratio in the long run, let us first
imagine a situation where the deficit ceiling, α, is always binding for the economy
we look at. Then Dt+1 = Dt + αPtYt and so

bt+1 ≡
Bt+1

Yt+1

≡ Dt+1

PtYt+1

=
Dt

(1 + π)Pt−1(1 + gY )Yt
+

α

1 + gY
,

assuming constant output growth rate, gY , and inflation rate π. This reduces to

bt+1 =
1

(1 + π)(1 + gY )
bt +

α

1 + gY
. (6.15)

Assuming that (1+π)(1+gY ) > 1 (as is normal over the medium run), this linear
difference equation has the stable solution

bt = (b0 − b∗)
(

1

(1 + π)(1 + gY )

)t
+ b∗ → b∗ for t→∞, (6.16)

where

b∗ =
(1 + π)

(1 + π)(1 + gY )− 1
α. (6.17)

Consequently, if the deficit rule (6.14) is always binding, the debt-income ratio
tends in the long run to be proportional to the deficit bound α. The factor of
proportionality is a decreasing function of the long-run growth rate of real GDP
and the inflation rate. This result confirms the general tenet that if there is
economic growth, perpetual budget deficits need not lead to fiscal problems.
If on the other hand the deficit rule is not always binding, then the budget

deficit is on average smaller than above so that the debt-income ratio will in the
long run be smaller than b∗.
The conclusion is the following. With one year as the time unit, suppose the

deficit rule is α = 0.03 and that gY = 0.03 and π = 0.02 (the upper end of
the inflation interval aimed at by the ECB). Suppose further the deficit rule is
never violated. Then in the long run the debt-income ratio will be at most b∗

= 1.02 × 0.03/(1.02 × 1.03 − 1) ≈ 0.60. This is in agreement with the debt rule
of the SGP according to which the maximum value allowed for the debt-income
ratio is 60%.
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Although there is nothing sacred about either of the numbers 0.60 or 0.03,
they are mutually consistent, given π = 0.02 and gY = 0.03.
We observe that the deficit rule (6.14) implies that:

• The upper bound, b∗, on the long-run debt income ratio is lower the higher
is inflation. The reason is that the growth factor β ≡ [(1 + π) (1 + gY )]−1

for bt in (6.15) depends negatively on the inflation rate, π. So does therefore
b∗ since, by (6.16), b∗ ≡ α(1 + gY )−1(1− β)−1.

• For a given π, the upper bound on the long-run debt income ratio is inde-
pendent of both the nominal and real interest rate (this follows from the
indicated formula for the growth factor for bt and the fact that (1+i)(1+r)−1

= 1 + π).

The debate about the design of the SGP

In addition to the aimed long-run implications, by its design the SGP has short-
run implications for the economy. Hence an evaluation of the SGP cannot ignore
the way the economy functions in the short run. How changes in government
spending and taxation affects the economy depends on the “state of the business
cycle”: is the economy in a boom with full capacity utilization or in a slump with
slack aggregate demand?
Much of the debate about the SGP has centered around the consequences

of the deficit rule in an economic recession triggered by a collapse of aggregate
demand (for instance due to private deleveraging in the wake of a banking crisis).
Although the Eurozone countries are economically quite different, they are sub-
ject to the same one-size-fits-all monetary policy. Facing dissimilar shocks, the
single member countries in need of aggregate demand stimulation in a recession
have by joining the euro renounced on both interest rate policy and currency de-
preciation.16 The only policy tool left for demand stimulation is therefore fiscal
policy. Instead of a supranational fiscal authority responsible for handling the
problem, it is up to the individual member countries to act − and to do so within
the constraints of the SGP.
On this background, the critiques of the deficit rule of the SGP include the fol-

lowing points. (It may here be useful to have at the back of one’s mind the simple
Keynesian income-expenditure model, where output is demand-determined and
below capacity while the general price level is sticky.)

16Denmark is in a similar situation. In spite of not joining the euro after the referendum in
2000, the Danish krone has been linked to the euro through a fixed exchange rate since 1999.
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Critiques 1. When considering the need for fiscal stimuli in a recession, a
ceiling at 0.03 is too low unless the country has almost no government debt in
advance. Such a deficit rule gives too little scope for counter-cyclical fiscal policy,
including the free working of the automatic fiscal stabilizers (i.e., the provisions,
through tax and transfer codes, in the government budget that automatically
cause tax revenues to fall and spending to rise when GDP falls).17 As an econ-
omy moves towards recession, the deficit rule may, bizarrely, force the government
to tighten fiscal policy although the situation calls for stimulation of aggregate
demand. The pact has therefore sometimes been called the “Instability and De-
pression Pact”− it imposes a wrong timing of fiscal consolidation.18
2. Since what really matters is long-run fiscal sustainability, a deficit rule

should be designed in a more flexible way than the 3% rule of the SGP. A mean-
ingful deficit rule would relate the deficit to the trend nominal GDP, which we
may denote (PY )∗. Such a criterion would imply

GBD ≤ α(PY )∗. (6.18)

Then
GBD

PY
≤ α

(PY )∗

PY
.

In recessions the ratio (PY )∗/(PY ) is high, in booms it is low. This has the
advantage of allowing more room for budget deficits when they are needed −
without interfering with the long-run aim of stabilizing government debt below
some specified ceiling.
3. A further step in this direction is a rule directly in terms of the structural

or cyclically adjusted budget deficit rather than the actual year-by-year deficit.
The cyclically adjusted budget deficit in a given year is defined as the value the
deficit would take in case actual output were equal to trend output in that year.
Denoting the cyclically adjusted budget deficit GBD∗, the rule would be

GBD∗

(PY )∗
≤ α.

In fact, in its original version as of 1997 the SGP contained an additional rule
like that, but in the very strict form of α ≈ 0. This requirement was implicit in
17Over the first 13 years of existence of the euro even Germany violated the 3 percent rule

five of the years.
18The SGP has an exemption clause referring to “exceptional”circumstances. These circum-

stances were originally defined as “severe economic recession”, interpreted as an annual fall
in real GDP of at least 1-2%. By the reform of the SGP in March 2005, the interpretation
was changed into simply “negative growth”. Owing to the international economic crisis that
broke out in 2008, the deficit rule was thus suspended in 2009 and 2010 for most of the EMU
countries. But the European Commission brought the rule into effect again from 2011, which
according to many critics was much too early, given the circumstances.
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the directive that the cyclically adjusted budget “should be close to balance or
in surplus”. By this requirement it is imposed that the debt-income ratio should
be close to zero in the long run. Many EMU countries certainly had − and have
− larger cyclically adjusted deficits. Taking steps to comply with such a low
structural deficit ceiling may be hard and endanger national welfare by getting in
the way of key tasks of the public sector. The minor reform of the SGP endorsed
in March 2005 allowed more contingencies, also concerning this structural bound.
By the more recent reform in 2012, the Fiscal Pact, the lid on the cyclically
adjusted deficit-income ratio was raised to 0.5% and to 1.0% for members with a
debt-income ratio “significantly below 60%”. These are still quite small numbers.
Abiding by the 0.5% or 1.0% rule implies a long-run debt-income ratio of at most
10% or 20%, respectively, given structural inflation and structural GDP growth
at 2% and 3% per year, respectively.19

4. Regarding the composition of government expenditure, critics have argued
that the SGP pact entails a problematic disincentive for public investment. The
view is that a fiscal rule should be based on a proper accounting of public invest-
ment instead of simply ignoring the composition of government expenditure. We
consider this issue in Section 6.6 below.
5. At a more general level critics have contended that policy rules and sur-

veillance procedures imposed on sovereign nations will hardly be able to do their
job unless they encompass stronger incentive-compatible elements. Enforcement
mechanisms are bound to be week. The SGP’s threat of pecuniary fines to a
country which during a recession has diffi culties to reduce its budget deficit seems
absurd (and has not been made use of so far). Moreover, abiding by the fiscal
rules of the SGP prior to the Great Recession was certainly no guarantee of not
ending up in a fiscal crisis in the wake of a crisis in the banking sector, as wit-
nessed by Ireland and Spain. A seemingly strong fiscal position can vaporize fast,
particularly if banks, “too big to fail”, need be bailed out.

Counter-arguments Among the counter-arguments raised against the criti-
cisms of the SGP has been that the potential benefits of the proposed alternative
rules are more than offset by the costs in terms of reduced simplicity, measurabil-
ity, and transparency. The lack of flexibility may even be a good thing because it
helps “tying the hands of elected policy makers”. Tight rules are needed because
of a “deficit bias”arising from short-sighted policy makers’temptation to promise
spending without ensuring the needed financing, especially before an upcoming
election. These points are sometimes linked to the view that market economies
are generally self-regulating. Keynesian stabilization policy is not needed and
may do more harm than good. Indeed, in its original design the EMU was much

19Again apply (6.17).
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influenced by European followers of Milton Friedman’s economic thinking named
monetarism.

Box 6.1. The 2010-2012 debt crisis in the Eurozone

What began as a banking crisis became a deep economic recession combined with a
government debt crisis.

At the end of 2009, in the aftermath of the global economic downturn, it became
evident that Greece faced an acute debt crisis driven by three factors: high government
debt, low ability to collect taxes, and lack of competitiveness due to cost inflation.
Anxiety broke out about the debt crisis spilling over to Spain, Portugal, Italy, and
Ireland, thus widening bond yield spreads in these countries vis-a-vis Germany in the
midst of a serious economic recession. Moreover, the solvency of big German banks
that were among the prime creditors of Greece was endangered. The major Eurozone
governments and the International Monetary Fund (IMF) reached an agreement to
help Greece (and indirectly its creditors) with loans and guarantees for loans, condi-
tional on the government of Greece imposing yet another round of harsh fiscal austerity
measures. The elevated bond interest rates of Greece, Italy, and Spain were not con-
vincingly curbed, however, until in August-September 2012 the president of the ECB,
Mario Draghi, launched the “Outright Monetary Transactions” (OMT) program ac-
cording to which, under certain conditions, the ECB will buy government bonds in
secondary bond markets with the aim of “safeguarding an appropriate monetary policy
transmission and the singleness of the monetary policy” and with “no ex ante quan-
titative limits”. Considerably reduced government bond spreads followed and so the
sheer announcement of the program seemed effective in its own right. Doubts raised by
the German Constitutional Court about its legality vis-à-vis Treaties of the European
Union were finally repudiated by the European Court of Justice mid-June 2015. At
the time of writing (late June 2015) the OMT program has not been used in practice.
Early 2015, a different massive program for purchases of government bonds, including
long-term bonds, in the secondary market as well as private asset-backed bonds was
decided and implemented by the ECB. The declared aim was to brake threatening de-
flation and return to “price stability”, by which is meant inflation close to 2 percent
per year.

So much about the monetary policy response. What about fiscal policy? On the
basis of the SGP, the EU Commission imposed “fiscal consolidation” initiatives to be
carried out in most EU countries in the period 2011-2013 (some of the countries were
required to start already in 2010). With what consequences? By many observers, partly
including the research department of IMF, the initiatives were judged self-defeating.
When at the same time comprehensive deleveraging in the private sector is going on,
“austerity” policy deteriorates aggregate demand further and raises unemployment.
Thereby, instead of budget deficits being decreased, the numerator in the debt-income
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ratio, D/(PY ), is decreased. Fiscal multipliers are judged to be large (“in the 0.9 to
1.7 range since the Great Recession”, IMF, World Economic Outlook, Oct. 2012) in
a situation of idle resources, monetary policy aiming at low interest rates, and nega-
tive spillover effects through trade linkages when “fiscal consolidation”is synchronized
across countries. The unemployment rate in the Eurozone countries was elevated from
7.5 percent in 2008 to 12 percent in 2013. The British economists, Holland and Portes
(2012), concluded: “It is ironic that, given that the EU was set up in part to avoid
coordination failures in economic policy, it should deliver the exact opposite”.

The whole crisis has pointed to a basic diffi culty faced by the Eurozone. In spite
of the member countries being economically very different sovereign nations, they are
subordinate to the same one-size-fits-all monetary policy without sharing a federal
government ready to use fiscal instruments to mitigate regional consequences of country-
specific shocks. Adverse demand shocks may lead to sharply rising budget deficits in
some countries, and financial investors may loose confidence and so elevate government
bond interest rates. A liquidity crisis may arise, thereby amplifying adverse shocks.
Even when a common negative demand shock hits all the member countries in a similar
way, and a general relaxation of both monetary and fiscal policy is called for, there is
the problem that the individual countries, in fear of boosting their budget deficit and
facing the risk of exceeding the deficit or debt limit, may wait for the others to initiate
a fiscal expansion. The possible consequence of this “free rider” problem is general
under-stimulation of the economies.

The dismal experience regarding the ability of the Eurozone to handle the Great
Recession has incited proposals along two dimensions. One dimension is about allowing
the ECB greater scope for acting as a “lender of last resort”. The other dimension is
about centralizing a larger part of the national budgets into a common union budget
(see, e.g., De Grauwe, 2014). (END OF BOX)

6.5 Solvency, the NPG condition, and the in-
tertemporal government budget constraint

Up to now we have considered the issue of government solvency from the per-
spective of dynamics of the government debt-to-income ratio. It is sometimes
useful to view government solvency from another angle − the intertemporal bud-
get constraint (GIBC). Under a certain condition stated below, the intertemporal
budget constraint is as relevant for a government as for private agents. A simple
condition closely linked to whether the government’s intertemporal budget con-
straint is satisfied or not is what is known as the government’s No-Ponzi-Game
(NPG) condition. It is convenient to first focus on this condition. We concentrate
on government net debt measured in real terms and ignore seigniorage.
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6.5.1 When is the NPG condition necessary for solvency?

Consider a situation with a constant interest rate, r. Suppose taxes are lump sum
or at least that there is no tax on interest income from owning government bonds.
Then the government’s NPG condition is that the present discounted value of the
public debt in the far future is not positive, i.e.,

lim
t→∞

Bt(1 + r)−t ≤ 0. (NPG)

This condition says that government debt is not allowed to grow in the long
run at a rate as high as (or even higher than) the interest rate.20 That is, a
fiscal policy satisfying the NPG condition rules out a permanent debt rollover.
Indeed, as we saw in Section 6.3.1, with B0 > 0, a permanent debt rollover
policy (financing all interest payments and perhaps even also part of the primary
government spending) by debt issue leads to Bt ≥ B0(1 + r)t for t = 0, 1, 2, . . . .
Substituting into (NPG) gives limt→∞Bt ≥ B0(1 + r)t(1 + r)−t = B0 > 0, thus
violating (NPG).
The designation No-Ponzi-Game condition refers to a guy fromBoston, Charles

Ponzi, who in the 1920s made a fortune out of an investment scam based on the
chain-letter principle. The principle was to pay off old investors with money from
new investors. Ponzi was sentenced to many years in prison for his transactions;
he died poor − and without friends!
To our knowledge, this kind of financing behavior is nowhere forbidden for

the government as it generally is for private agents. But under “normal”circum-
stances a government has to plan its expenditures and taxation so as to comply
with its NPG condition since otherwise not enough lenders will be forthcoming.
As the state is in principle infinitely-lived, however, there is no final date where

all government debt should be over and done with. Indeed, the NPG condition
does not even require that the debt has ultimately to be non-increasing. The
NPG condition “only” says that the debtor, here the government, can not let
the debt grow forever at a rate as high as (or higher than) the interest rate. For
instance the U.K. as well as the U.S. governments have had positive debt for
centuries − and high debt after both WW I and WW II.
Suppose Y (GDP) grows at the constant rate gY (actually, for most of the

following results it is enough that limt→∞ Yt+1/Yt = 1 + gY ). We have:

PROPOSITION 1 Let bt ≡ Bt/Yt and interpret “solvency”as absence of an for
ever accelerating debt-income ratio. Then:

20If there is effective taxation of interest income at the rate τ r ∈ (0, 1), then the after-
tax interest rate, (1 − τ r)r, is the relevant discount rate, and the NPG condition would read
limt→∞Bt [1 + (1− τ r)r]−t ≤ 0.
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(i) if r > gY , solvency requires (NPG) satisfied;

(ii) if r ≤ gY , the government can remain solvent without (NPG) being satisfied.

Proof. When bt 6= 0,

lim
t→∞

bt+1

bt
≡ lim

t→∞

Bt+1/Yt+1

Bt/Yt
= lim

t→∞

Bt+1/Bt

Yt+1/Yt
= lim

t→∞

Bt+1/Bt

1 + gY
. (6.19)

Case (i): r > gY . If limt→∞Bt ≤ 0, then (NPG) is trivially satisfied. As-
sume limt→∞Bt > 0. For this situation we prove the statement by contradic-
tion. Suppose (NPG) is not satisfied. Then, limt→∞Bt(1 + r)−t > 0, implying
that limt→∞Bt+1/Bt ≥ 1 + r. In view of (6.19) this implies that limt→∞ bt+1/bt
≥ (1+r)/(1+gY ) > 1. Thus, bt →∞, which violates solvency. By contradiction,
this proves that solvency implies (NPG) when r > gY .
Case (ii): r ≤ gY . Consider the permanent debt roll-over policy Tt = Gt for

all t ≥ 0, and assume B0 > 0. By (DGBC) of Section 6.2 this policy yields
Bt+1/Bt = 1 + r; hence, in view of (6.19), lim t→∞bt+1/bt = (1 + r)/(1 + gY )
≤ 1. The policy consequently implies solvency. On the other hand the solution
of the difference equation Bt+1 = (1 + r)Bt is Bt = B0(1 + r)t. Thus Bt(1 + r)−t

= B0 > 0 for all t, thus violating (NPG). �
Hence imposition of the NPG condition on the government relies on the in-

terest rate being in the long run higher than the growth rate of GDP. If instead
r ≤ gY , the government can cut taxes, run a budget deficit, and postpone the
tax burden indefinitely. In that case the government can thus run a Ponzi Game
and still stay solvent. Nevertheless, as alluded to earlier, if uncertainty is added
to the picture, there will be many different interest rates, matters become more
complicated, and qualifications to Proposition 1 are needed (Blanchard and Weil,
2001). The prevalent view among macroeconomists is that imposition of the NPG
condition on the government is generally warranted.
While in the case r > gY , the NPG condition is necessary for solvency, it is

not suffi cient. Indeed, we could have

1 + gY < lim
t→∞

Bt+1/Bt < 1 + r. (6.20)

Here, by the upper inequality, (NPG) is satisfied, yet, by the lower inequality
together with (6.19), we have limt→∞ bt+1/bt > 1 so that the debt-income ratio
explodes.

EXAMPLE 1 Let GDP = Y, a constant, and r > 0; so r > gY = 0. Let the
budget deficit in real terms equal εBt +α, where 0 ≤ ε < r and α > 0. Assuming
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no money-financing of the deficit, government debt evolves according to Bt+1−Bt

= εBt + α which implies a simple linear difference equation:

Bt+1 = (1 + ε)Bt + α. (*)

Case 1: ε = 0. Then the solution of (*) is

Bt = B0 + αt, (**)

B0 being historically given. Then Bt(1 + r)−t = B0(1 + r)−t +αt(1 + r)−t → 0 for
t → ∞. So, (NPG) is satisfied. Yet the debt-GDP ratio, Bt/Y, goes to infinity
for t→∞. That is, in spite of (NPG) being satisfied, solvency is not present. For
ε = 0 we thus get the insolvency result even though the lower strict inequality in
(6.20) is not satisfied. Indeed, (**) implies Bt+1/Bt = 1 + α/Bt → 1 for t→∞
and 1 + gY = 1.
Case 2: 0 < ε < r. Then the solution of (*) is

Bt = (B0 +
α

ε
)(1 + ε)t − α

ε
→∞ for t→∞,

if B0 > −α/ε. So Bt/Y → ∞ for t → ∞ and solvency is violated. Nevertheless
Bt(1 + r)−t → 0 for t→∞ so that (NPG) holds.
The example of this case fully complies with both strict inequalities in (6.20)

because Bt+1/Bt = 1 + ε+ α/Bt → 1 + ε for t→∞. �
An approach to fiscal budgeting that ensures debt stabilization and thereby

solvency is the following. First impose that the cyclically adjusted primary budget
surplus as a share of GDP equals a constant, s. Next adjust taxes and/or spending
such that s ≥ ŝ = (r− gY )b0, ignoring short-run differences between Yt+1/Yt and
1 + gY and between rt and its long-run value, r; as in (6.10), ŝ is the minimum
primary surplus as a share of GDP required to obtain bt+1/bt ≤ 1 for all t ≥ 0.
This ŝ is a measure of the burden that the government debt imposes on tax payers.
If the policy steps needed to realize at least ŝ are not taken, the debt-income ratio
will grow, thus worsening the fiscal position in the future by increasing ŝ.

6.5.2 Equivalence of NPG and GIBC

The condition under which the NPG condition is necessary for solvency is also
the condition under which the government’s intertemporal budget constraint is
necessary. To show this we let t denote the current period and t + i denote a
period in the future. As above, we ignore seigniorage. Debt accumulation is then
described by

Bt+1 = (1 + r)Bt +Gt +Xt − T̃t, where Bt is given. (6.21)
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The government intertemporal budget constraint (GIBC), as seen from the begin-
ning of period t, is the requirement

∞∑
i=0

(Gt+i +Xt+i)(1 + r)−(i+1) ≤
∞∑
i=0

T̃t+i(1 + r)−(i+1) −Bt. (GIBC)

This condition requires that the present value (PV) of current and expected
future government spending does not exceed the government’s net wealth. The
latter equals the PV of current and expected future tax revenue minus existing
government debt. By the symbol

∑∞
i=0 xi we mean limI→∞

∑I
i=0 xi. Until further

notice we assume this limit exists.
What connection is there between the dynamic accounting relationship (6.21)

and the intertemporal budget constraint, (GIBC)? To find out, we rearrange
(6.21) and use forward substitution to get

Bt = (1 + r)−1(T̃t −Xt −Gt) + (1 + r)−1Bt+1

=

j∑
i=0

(1 + r)−(i+1)(T̃t+i −Xt+i −Gt+i) + (1 + r)−(j+1)Bt+j+1

=
∞∑
i=0

(1 + r)−(i+1)(T̃t+i −Xt+i −Gt+i) + lim
j→∞

(1 + r)−(j+1)Bt+j+1

≤
∞∑
i=0

(1 + r)−(i+1)(T̃t+i −Xt+i −Gt+i), (6.22)

if and only if the government debt ultimately grows at a rate less than r so that

lim
j→∞

(1 + r)−(j+1)Bt+j+1 ≤ 0. (6.23)

This latter condition is exactly the NPG condition above (replace t in (6.23) by
0 and j by t − 1). And the condition (6.22) is just a rewriting of (GIBC). We
conclude:

PROPOSITION 2 Given the book-keeping relation (6.21), then:

(i) (NPG) is satisfied if and only if (GIBC) is satisfied;

(ii) there is strict equality in (NPG) if and only if there is strict equality in
(GIBC).

We know from Proposition 1 that in the “normal case”where r > gY , (NPG) is
needed for government solvency. The message of (i) of Proposition 2 is then that
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also (GIBC) need be satisfied. Given r > gY , to appear solvent a government has
to realistically plan taxation and spending profiles such that the PV of current and
expected future primary budget surpluses matches the current debt, cf. (6.22).
Otherwise debt default is looming and forward-looking investors will refuse to
buy government bonds or only buy them at a reduced price, thereby aggravating
the fiscal conditions.21

In view of the remarks around the inequalities in (6.20), however, satisfying
the condition (6.22) is only a necessary condition (if r > gY ), not in itself a
suffi cient condition for solvency. A simple condition under which satisfying the
condition (6.22) is suffi cient for solvency is that both Gt and Tt are proportional
to Yt, cf. Example 2.

EXAMPLE 2 Consider a small open economy facing an exogenous constant
real interest rate r. Suppose that at time t government debt is Bt > 0, GDP is
growing at the constant rate gY , and r > gY . Assume Gt = γYt and Tt ≡ T̃t−Xt

= τYt, where γ and τ are positive constants. What is the minimum size of the
primary budget surplus as a share of GDP required for satisfying the government’s
intertemporal budget constraint as seen from time t? Inserting into the formula
(6.22), with strict equality, yields

∑∞
i=0(1 + r)−(i+1)(τ − γ)Yt+i = Bt. This gives

τ−γ
1+gY

Yt
∑∞

i=0

(
1+gY
1+r

)(i+1)
= τ−γ

r−gY Yt = Bt, where we have used the rule for the
sum of an infinite geometric series. Rearranging, we conclude that the required
primary surplus as a share of GDP is

τ − γ = (r − gY )
Bt

Yt
.

This is the same result as in (6.10) above if we substitute ŝ = τ − γ and t = 0.
Thus, maintaining Gt/Yt and Tt/Yt constant while satisfying the government’s
intertemporal budget constraint ensures a constant debt-income ratio and thereby
government solvency. �
On the other hand, if r ≤ gY , it follows from propositions 1 and 2 together that

the government can remain solvent without satisfying its intertemporal budget
constraint (at least as long as we ignore uncertainty). The background for this
fact may become more apparent when we recognize how the condition r ≤ gY
affects the constraint (GIBC). Indeed, to the extent that the tax revenue tends
to grow at the same rate as national income, we have T̃t+i = T̃t(1 + gY )i. Then

∞∑
i=0

T̃t+i(1 + r)−(i+1) =
T̃t

1 + gY

∞∑
i=0

(
1 + gY
1 + r

)(i+1)

,

21Government debt defaults have their own economic as well as political costs, including loss
of credibility. Yet, they occur now and then. Recent examples include Russia in 1998 and
Argentina in 2001-2002. During 2010-12, Greece was on the brink of debt default. At the time
of writing (June 2015) such a situation has turned up again for Greece.
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which is clearly infinite if r ≤ gY . The PV of expected future tax revenues is thus
unbounded in this case. Suppose that also government spending, Gt+i + Xt+i,
grows at the rate gY . Then the evolution of the primary surplus is described by
T̃t+i − Xt+i − Gt+i = (T̃t − (Gt + Xt))(1 + gY )i, i = 1, 2, . . . . Although in this
case also the PV of future government spending is infinite, (6.22) shows that any
positive initial primary budget surplus, T̃t − (Gt + Xt), ever so small can repay
any level of initial debt in finite time.
In (GIBC) and (6.23) we allow strict inequalities to obtain. What is the

interpretation of a strict inequality here? The answer is:

COROLLARY OF PROPOSITION 2 Given the book-keeping relation (6.21),
then strict inequality in (GIBC) is equivalent to the government in the long run
accumulating positive net financial wealth.

Proof. Strict inequality in (GIBC) is equivalent to strict inequality in (6.22),
which in turn, by (ii) of Proposition 2, is equivalent to strict inequality in (6.23),
which is equivalent to limj→∞(1 + r)−(j+1)Bt+j+1 < 0. This latter inequality is
equivalent to limj→∞Bt+j+1 < 0, that is, positive net financial wealth in the long
run. Indeed, by definition, r > −1, hence limj→∞(1 + r)−(j+1) ≥ 0. �
It is common to consider as the regular case the case where the government

does not attempt to accumulate positive net financial wealth in the long run
and thereby become a net creditor vis-à-vis the private sector. Returning to
the assumption r > gY , in the regular case fiscal solvency thus amounts to the
requirement

∞∑
i=0

T̃t+i(1 + r)−(i+1) =
∞∑
i=0

(Gt+i +Xt+i)(1 + r)−(i+1) +Bt, (GIBC’)

which is obtained by rearranging (GIBC) and replacing weak inequality with strict
equality. It is certainly not required that the budget is balanced all the time. The
point is “only”that for a given planned expenditure path, a government should
plan realistically a stream of future tax revenues the PV of which matches the
PV of planned expenditure plus the current debt. If an unplanned budget deficit
is run so that the public debt rises − during a recession, say − then higher taxes
than otherwise must be levied in the future.
We may rewrite (GIBC’) as

∞∑
i=0

(
T̃t+i − (Gt+i +Xt+i)

)
(1 + r)−(i+1) = Bt. (GIBC”)

This expresses the basic principle that when r > gY , solvency requires that the
present value of planned future primary surpluses equals the initial debt. If debt
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is positive today, then the government has to run a positive primary surplus for
a suffi ciently long time in the future.

Finer shades

1. If the real interest rate varies over time, all the above formulas remain valid if
(1 + r)−(i+1) is replaced by Πi

j=0(1 + rt+j)
−1.

2. We have essentially ignored seigniorage. Under “normal” circumstances
seigniorage is present and this relaxes (GIBC”) somewhat. Indeed, as noted in
Section 6.2, the money-nominal income ratio,M/PY, tend to be roughly constant
over time, reflecting that money and nominal income tend to grow at the same
rate. So a rough indicator of gM is the sum π + gY . Seigniorage is S ≡ ∆M/P
= gMM/P = sY, where s is the seigniorage-income ratio. Taking seigniorage into
account amounts to subtracting the present value of expected future seigniorage,
PV(S), from the right-hand side of (GIBC”). With s constant and Y growing at
the constant rate gY < r, PV(S) can be written

PV(S) =
∞∑
i=0

St+i(1 + r)−(i+1) = s
∞∑
i=0

Yt+i(1 + r)−(i+1) =
sYt

1 + gY

∞∑
i=0

(
1 + gY
1 + r

)(i+1)

=
sYt

1 + gY

1 + gY
1 + r

1

1− 1+gY
1+r

=
sYt

r − gY
,

where the second to last equality comes from the rule for the sum of an infinite
geometric series. So the right-hand side of (GIBC”) becomes Bt − sYt/(r − gY )
≡ [bt − s/(r − gY )]Yt.

22

3. Should a public deficit rule not make a distinction between public con-
sumption and public investment? This question is taken up in the next section.

6.6 A proper accounting of public investment

Public investment as a share of GDP has been falling in the EMU countries since
the middle of the 1970s, in particular since the run-up to the euro 1993-97. This
later development is seen as in part induced by the deficit rule of the Maastrict
Treaty and the Stability and Growth Pact (SGP) which, like the standard gov-
ernment budget accounting we have considered up to now, attributes government
gross investment as an expense in a single year’s operating account instead of just
the depreciation of the public capital. Already Musgrave (1939) recommended

22In a recession where the economy is in a liquidity trap the non-conventional monetary policy
called Quantitative Easing may partly take the form of seigniorage. This is taken up in Chapter
24.
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applying separate capital and operating budgets. Thereby government net in-
vestment will be excluded from the definition of the public “budget deficit”. And
more meaningful deficit rules can be devised.
To see the gist of this, we partition G into public consumption, Cg, and public

investment, Ig, that is, G = Cg + Ig. Public investment produces public capital
(infrastructure etc.). Denoting the public capital Kg we may write

∆Kg = Ig − δKg, (6.24)

where δ is a (constant) capital depreciation rate. Let the annual (direct) financial
return per unit of public capital be rg. This is the sum of user fees and the
like. Net government revenue, T ′, now consists of net tax revenue, T, plus the
direct financial return rgKg.23 In that now only interest payments and the capital
depreciation, δKg, along with Cg, enter the operating account as “true”expenses,
the “true”budget deficit is rB + Cg + δKg − T ′, where T ′ = T + rgK

g.
We impose a rule requiring balancing the “true structural budget”in the sense

that on average over the business cycle

T ′ = rB + Cg + δKg (6.25)

should hold. The spending on public investment of course enters the debt accu-
mulation equation which now takes the form

∆B = rB + Cg + Ig − T ′.

Substituting (13.68) into this, we get

∆B = Ig − δKg = ∆Kg, (6.26)

by (13.67). So the balanced “structural”budget implies that public net invest-
ment is financed by an increase in public debt. Other public spending is tax
financed.
Suppose that public capital keeps pace with trend GDP, Y ∗t , thereby growing

at the same constant rate gY > 0. So∆Kg/Kg = gY and the ratioKg/Y ∗ remains
positive constant at some level, say h. Then (13.69) implies

Bt+1 −Bt = Kg
t+1 −K

g
t = gYK

g
t = gY hY

∗
t . (6.27)

23There is also an indirect financial return deriving from the fact that better infrastructure
may raise effi ciency in the supply of public services and increase productivity in the private
sector and thereby the tax base. While such expected effects matter for a cost-benefit analysis
of a public investment project, from an accounting point of view they will be included in the
net tax revenue, T, in the future.
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What is the implication for the evolution of the debt-to-trend-income ratio, b̂t ≡
Bt/Y

∗
t , over time? By (6.27) together with Y

∗
t+1 = (1 + gY )Y ∗t follows

b̂t+1 ≡
Bt+1

Y ∗t+1

=
Bt

(1 + gY )Y ∗t
+

gY h

1 + gY
≡ 1

1 + gY
b̂t +

gY h

1 + gY
.

This linear first-order difference equation has the solution

b̂t = (b̂0 − b̂∗)(1 + gY )−t + b̂∗, where b̂∗ =
1

1 + gY
b̂∗ +

gY h

1 + gY
= h,

assuming gY > 0. Then b̂t → h for t → ∞. Run-away debt dynamics is pre-
cluded.24 Moreover, the ratio Bt/K

g
t , which equals b̂t/h, approaches 1. Eventu-

ally the public debt is in relative terms thus backed by the accumulated public
capital.
Fiscal sustainability is here ensured in spite of a positive “budget deficit”in

the traditional sense of Section 6.2 and given by ∆B in (13.69). This result holds
even when rg < r, which is perhaps the usual case. Still, the public investment
may be worthwhile in view of indirect financial returns as well as non-financial
returns in the form of the utility contribution of public goods.

Additional remarks

1. The deficit rule described says only that the “true structural budget”should
be balanced “on average”over the business cycle. This invites deficits in slumps
and surpluses in booms. Indeed, in economic slumps government borrowing is
usually cheap. As Harvard economist Lawrence Summers put it: “Idle workers
+ Low interest rates = Time to rebuild infrastructure”(Summers, 2014).
2. When separating government consumption and investment in budget ac-

counting, a practical as well as theoretical issue arises: where to draw the border
between the two? A sizeable part of what is investment in an economic sense is in
standard public sector accounting categorized as “public consumption”: spending
on education, research, and health are obvious examples. Distinguishing between
such categories and public consumption in a narrower sense (administration, ju-
dicial system, police, defence) may be important when economic growth policy is
on the agenda. Apart from noting the issue, we shall not pursue the matter here.
3. That time lags, cf. point (iii) in Section 6.1, are a constraining factor

for fiscal policy is especially important for macroeconomic stabilization policy
aiming at dampening business cycle fluctuations. If the lags are ignored, there is
a risk that government intervention comes too late and ends up amplifying the

24This also holds if gY = 0. Indeed, in this case, (6.27) implies Bt+1 = Bt = B0.
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fluctuations instead of dampening them. In particular the monetarists, lead by
Milton Friedman (1912-2006), warned against this risk. Other economists find
awareness of this potential problem relevant but point to ways to circumvent the
problem. During a recession there is for instance the option of reimbursing a
part of last year’s taxes, a policy that can be quickly implemented. At a more
structural level, legislation concerning taxation, transfers, and other spending can
be designed with the aim of strengthening the automatic fiscal stabilizers.

6.7 Ricardian equivalence?

Having so far concentrated on the issue of fiscal sustainability, we shall now
consider how budget policy affects resource allocation and intergenerational dis-
tribution. The role of budget policy for economic activity within a time horizon
corresponding to the business cycle is not the issue here. The focus is on the
longer run: does it matter for aggregate consumption and aggregate saving in
an economy with full capacity utilization whether the government finances its
current spending by (lump-sum) taxes or borrowing?
There are two opposite answers in the literature to this question. Some macro-

economists tend to answer the question in the negative. This is the debt neutral-
ity view, also called the Ricardian equivalence view. The influential American
economist Robert Barro is in this camp. Other macroeconomists tend to answer
the question in the positive. This is the debt non-neutrality view or absence of
Ricardian equivalence view. The influential French-American economist Olivier
Blanchard is in this camp.
The two different views rest on two different models of the economic reality.

The two models have a common point of departure, though, namely a state of
affairs where:

1) r > gY ;

2) fiscal policy satisfies the intertemporal budget constraint with strict equal-
ity:

∞∑
t=0

T̃t(1 + r)−(t+1) =

∞∑
t=0

(Gt +Xt)(1 + r)−(t+1) +B0, (6.28)

where the initial debt, B0, and the planned path of Gt +Xt are given;

3) agents have rational (model consistent) expectations;

4) at least some of the taxes are lump sum and only these are varied in the
thought experiment to be considered;
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5) no money financing;

6) credit market imperfections are absent.

For a given planned time path of Gt +Xt, equation (6.28) implies that a tax
cut in any period has to be met by an increase in future taxes of the same present
discounted value as the tax cut.

6.7.1 Two differing views

Ricardian equivalence

The Ricardian equivalence view is the conception that government debt is neutral
in the sense that for a given time path of government spending, aggregate private
consumption is unaffected by a temporary tax cut. The temporary tax cut does
not make the households feel richer because they expect that the ensuing rise
in government debt will lead to higher taxes in the future. The essential claim
is that the timing of (lump-sum) taxes does not matter. The name Ricardian
equivalence comes from a − seemingly false − association of this view with the
early nineteenth-century British economist David Ricardo. It is true that Ricardo
articulated the possible logic behind debt neutrality. But he suggested several
reasons that debt neutrality would not hold in practice and in fact he warned
against high public debt levels (Ricardo, 1969, pp. 161-164). Therefore it is
doubtful whether Ricardo was a Ricardian.
Debt neutrality was rejuvenated, however, by Robert Barro in a paper entitled

“Are government bonds net wealth [of the private sector]?”, a question which
Barro answered in the negative (Barro 1974). Barro’s debt neutrality view rests
on a representative agent model, that is, a model where the household sector
is described as consisting of a fixed number of infinitely-lived forward-looking
“dynasties”. With perfect financial markets, a change in the timing of taxes
does not change the PV of the infinite stream of taxes imposed on the individual
dynasty. A cut in current taxes is offset by the expected higher future taxes.
Though current government saving (T −G− rB) goes down, private saving and
bequests left to the members of the next generation go up equally much.
More precisely, the logic of the debt neutrality view is as follows. Suppose, for

simplicity, that the government waits only 1 period to increase taxes and then does
so in one stroke. Then, for each unit of account current taxes are reduced, taxes
next period are increased by (1+r) units of account. The PV as seen from the end
of the current period of this future tax increase is (1+r)/(1+r) = 1. As 1−1 = 0,
the change in the time profile of taxation will make the dynasty feel neither richer
nor poorer. Consequently, its current and planned future consumption will be
unaffected. That is, its current saving goes up just as much as its current taxation
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is reduced. In this way the altruistic parents make sure that the next generation
is fully compensated for the higher future taxes. Current private consumption in
society is thus unaffected and aggregate saving stays the same.25

Absence of Ricardian equivalence

Other economists dissociate themselves from such representative agent models
because of their unrealistic description of the household sector. Instead attention
is drawn to overlapping generations models which emphasize finite lifetime and
life-cycle behavior of human beings and lead to a refutation of Ricardian equiva-
lence. The essential point is that those individuals who benefit from lower taxes
today will at most be a fraction of those who bear the higher tax burden in the
future. As taxes levied at different times are thereby levied at partly different
sets of agents, the timing of taxes generally matters. The current tax cut makes
current tax payers feel wealthier and so they increase their consumption and de-
crease their saving. The present generations benefit and future tax payers (partly
future generations) bear the cost in the form of access to less national wealth
than otherwise.
The next subsection provides an example showing in detail how a change

in the timing of taxes affects aggregate private consumption in an overlapping
generations framework.

6.7.2 A small open OLG economy with a temporary bud-
get deficit

We consider a Diamond-style overlapping generations (OLG) model of a small
open economy (henceforth named SOE) with a government sector. The rela-
tionship between SOE and international markets is described by the same four
assumptions as in Section 5.3 of Chapter 5:

(a) There is perfect mobility of goods and financial capital across borders.

(b) There is no uncertainty and domestic and foreign financial claims are perfect
substitutes.

(c) The need for means of payment is ignored; hence so is the need for a foreign
exchange market.

(d) There is no labor mobility across borders.

25The complete Barro model is presented in Chapter 7.
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The assumptions (a) and (b) imply real interest rate equality. That is, in
equilibrium the real interest rate in SOE must equal the real interest rate in
the world financial market, r. And by saying that SOE is “small” we mean
it is small enough to not affect the world market interest rate as well as other
world market factors. We imagine that all countries trade one and the same
homogeneous good. International trade will then be only intertemporal trade,
i.e., international borrowing and lending of this good.
We assume that r is constant over time and that r > n ≥ 0. As earlier

we let Lt denote the size of the young generation and Lt = L0(1 + n)t. Each
young supplies one unit of labor inelastically, hence Lt is aggregate labor supply.
Assuming full employment, gross domestic product, GDP, is Yt = F (Kt, Lt).

Some national accounting for the open economy

Gross national saving is

St = Yt − rNFDt − Ct −Gt = Yt − rNFDt − (c1tLt + c2tLt−1)−Gt, (6.29)

where NFDt is (net) foreign debt (also called external debt) at the beginning
of period t, Gt is government consumption in period t, and c1t and c2t are con-
sumption by a young and an old in period t, respectively. In the open economy,
generally, gross investment, It, differs from gross saving. If NFDt > 0, the in-
terpretation is that some of the capital stock, Kt, is directly or indirectly owned
by foreigners. On the other hand, if NFDt < 0, SOE has positive net claims on
resources in the rest of the world.
National wealth, Vt, of SOE at the beginning of period t is, by definition,

national assets minus national liabilities,

Vt ≡ Kt −NFDt.

National wealth is also, by definition, the sum of private financial (net) wealth,
At, and government financial (net) wealth, −Bt. We assume the government has
no physical assets and Bt is government (net) debt. Thus,

Vt ≡ At + (−Bt). (6.30)

We may also view national wealth from the perspective of national saving.
First, when the young save, they accumulate private financial wealth. The private
financial wealth at the start of period t+1 must in our Diamond framework equal
the (net) saving by the young in the previous period, SN1t , and the latter must
equal minus the (net) saving by the old in the next period, SN2t+1 :

At+1 = stLt ≡ SN1t = −SN2t+1. (6.31)
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Next, the increase in national wealth equals by definition net national saving,
SNt , which in turn equals the sum of net saving by the private sector, SN1t + SN2t ,
and the net saving by the public sector, SNgt . So

Vt+1 − Vt = St − δKt = SNt ≡ SN1t + SN2t + SNgt = At+1 + (−At) + (−GBDt)

= At+1 − At − (Bt+1 −Bt),

where the second to last equality comes from (6.31) and the identity SNgt ≡
−GBDt, while the last equality reflects the maintained assumption that bud-
get deficits are fully financed by debt issue.

Firms’behavior

GDP is produced by an aggregate neoclassical production function with CRS:

Yt = F (Kt, Lt) = LtF (kt, 1) ≡ Ltf(kt),

where Kt and Lt are input of capital and labor, respectively, and kt ≡ Kt/Lt.
Technological change is ignored. Imposing perfect competition in all markets,
markets clear so that Lt can be interpreted as both employment and labor supply
(exogenous). Profit maximization leads to f ′(kt) = r + δ, where δ is a constant
capital depreciation rate, 0 ≤ δ ≤ 1. When f satisfies the condition limk→0 f

′(k)
> r + δ > limk→∞ f

′(k), there is always a solution in k to this equation and it is
unique (since f ′′ < 0) and constant over time (as long as r and δ are constant).
Thus,

kt = f ′−1(r + δ) ≡ k, for all t. (6.32)

The stock of capital, Kt, is determined by the equation Kt = kLt.
In view of firms’profit maximization, the equilibrium real wage before tax is

wt =
∂Yt
∂Lt

= f(k)− f ′(k)k ≡ w, (6.33)

a constant. GDP will evolve according to

Yt = f(k)Lt = f(k)L0(1 + n)t = Y0(1 + n)t.

The growth rate of Y thus equals the growth rate of the labor force, i.e., gY = n.

Government and household behavior

We assume that the role of the government sector is to deliver some public good
or service in the amount Gt in period t. Think of a non-rival good like “rule of
law”, TV-transmitted theatre, or another public service free of charge. Suppose

Gt = G0(1 + n)t,
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where 0 < G0 < F (K0, L0). It is assumed that the production of Gt uses the
same technology and therefore involves the same unit production costs as the
other components of GDP. As the focus is not on distortionary effects of taxation,
taxes are assumed to be lump sum, i.e., levied on individuals irrespective of their
economic behavior.
To get explicit solutions, we specify the period utility function to be CRRA:

u(c) = (c1−θ − 1)/(1 − θ), where θ > 0. To keep things simple, the utility of
the public good enters the life-time utility additively so that it does not affect
marginal utilities of private consumption. In addition we assume that the public
good does not affect productivity in the private sector. There is a tax on the
young as well as the old in period t, τ 1 and τ 2, respectively. Until further notice
these taxes are time-independent. Possibly, τ 1 or τ 2 is negative, in which case
there is a transfer to either the young or the old.
The consumption-saving decision of the young will be the solution to the

following problem:

maxU(c1t, c2t+1) =
c1−θ

1t − 1

1− θ + v(Gt) + (1 + ρ)−1

[
c1−θ

2t+1 − 1

1− θ + v(Gt+1)

]
s.t.

c1t + st = w − τ 1,

c2t+1 = (1 + r)st − τ 2,

c1t ≥ 0, c1t+1 ≥ 0,

where the function v represents the utility contribution of the public good. The
implied Euler equation can be written

c2t+1

c1t

=

(
1 + r

1 + ρ

)1/θ

.

Inserting the two budget constraints and solving for st, we get

st =
w − τ 1 +

(
1+ρ
1+r

)1/θ
τ 2

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
≡ s(w, r, τ 1, τ 2). (6.34)

Consumption in the first and the second period then is

c1t = w − τ 1 − st = ĉ1(r)ht (6.35)

and
c2t+1 = ĉ2(r)ht, (6.36)
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respectively, where

ĉ1(r) ≡ 1 + ρ

1 + ρ+
(

1+r
1+ρ

)(1−θ)/θ ∈ (0, 1) and (6.37)

ĉ2(r) =

(
1 + r

1 + ρ

)1/θ

ĉ1(r) =
1 + r

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
(6.38)

are the marginal (= average) propensities to consume out of wealth, and where
ht is the after-tax human wealth of the young, i.e., the present value, evaluated
at the end of period t, of disposable lifetime income (the “endowment”). Thus,

ht = w − τ 1 −
τ 2

1 + r
≡ h. (6.39)

Under the given conditions human wealth is thus time-independent. We assume
τ 1 and τ 2 are such that h > 0. Given r, individual consumption in the first as well
as the second period of life is thus proportional to individual human wealth. This
is as expected in view of the homothetic life time utility function. If ρ = r, then
ĉ1(r) = ĉ2(r) = (1 + r)/(2 + r), that is, there is complete consumption smoothing
as also the Euler equation indicates when ρ = r.26

The tax revenue in period t is Tt = τ 1Lt + τ 2Lt−1 = (τ 1 + τ 2/(1 + n))Lt. Let
B0 = 0 and let the “reference path”be a path along which the budget is and
remains balanced for all t, i.e., Tt = Gt = G0(1 + n)t. In the reference path the
tax code (τ 1, τ 2) thus satisfies(

τ 1 +
τ 2

1 + n

)
L0 = G0.

Consistency with h > 0 in (6.39) requires a “not too large”G0.
Along the reference path, aggregate private consumption grows at the same

constant rate as GDP and public consumption, the rate n. Indeed,

Ct = c1tLt +
c2t

1 + n
Lt = (c1t +

c2t

1 + n
)L0(1 + n)t = C0(1 + n)t.

A one-off tax cut

As an alternative to the reference path, consider the case where an unexpected
one-off cut in taxation by x takes place in period 0 for every individual, whether

26By calculating backwards from (6.38) to (6.37) to (6.34), the reader may check whether the
calculated st, c1t and c2t+1 are consistent.
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young or old. Given 0 < x < τ 1, what are the consequences of this? The tax
cut amounts to creating a budget deficit in period 0 equal to (L0 + L−1)x. At
the start of period 1 there is thus a government debt B′1 = (L0 +L−1)x, while in
the reference path, B1 = 0. Since we assume r > n = gY , government solvency
requires that the present value of future taxes, as seen from the beginning of
period 1, rises by (L0 + L−1)x. This may be accomplished by, for instance,
raising the tax on all individuals from period 1 onward by m. Suppose this way
of addressing the arisen debt is already in period 0 credibly announced by the
government to be followed. The required value of m will satisfy

∞∑
t=1

(L0 + L−1)(1 + n)tm(1 + r)−t = (L0 + L−1)x.

This gives

m
∞∑
t=1

(
1 + n

1 + r

)t
= x.

As r > n, from the rule for the sum of an infinite geometric series follows that

m =
r − n
1 + n

x ≡ m̄. (6.40)

The needed rise in future taxes is thus higher the higher is the interest rate r.
This is because the interest burden of the debt will be higher. On the other
hand, a higher population growth rate, n, reduces the needed rise in future taxes.
This is because the interest burden per capita is mitigated by population growth.
Finally, a greater tax cut, x, in the first period implies greater tax rises in future
periods.
Let the value of the variables along this alternative path be marked with a

prime. In period 0 the tax cut unambiguously benefits the old whose increase in
consumption equals the saved tax:

c′20 − c20 = x > 0. (6.41)

The young in period 0 know that per capita taxes next period will be increased
by m̄. In view of the tax cut in period 0, the young nevertheless experiences an
increase in after-tax human wealth equal to

h′0 − h0 = w − τ 1 + x− τ 2 + m̄

1 + r
−
(
w − τ 1 −

τ 2

1 + r

)
=

(
1− r − n

(1 + r)(1 + n)

)
x (by (6.40))

=
1 + (2 + r)n

(1 + r)(1 + n)
x > 0.
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Consequently, through the wealth effect this generation enjoys increases in con-
sumption through life equal to

c′10 − c10 = ĉ1(r)(h′0 − h0) > 0, (6.42)

c′21 − c21 = ĉ2(r)(h′0 − h0) > 0, (6.43)

by (6.35) and (6.36), respectively. So the two generations alive in period 0 gain
from the temporary budget deficit. But all future generations are worse off. These
generations do not benefit from the tax relief in period 0, but they have to bear
the future cost of the tax relief by a reduction in individual after-tax human
wealth. Indeed, for t = 1, 2, . . . ,

h′t − ht = h′1 − h = w − τ 1 − m̄−
τ 2 + m̄

1 + r
−
(
w − τ 1 −

τ 2

1 + r

)
= −

(
m̄+

m̄

1 + r

)
< 0. (6.44)

All things considered, since both the young and the old in period 0 increase
their consumption, aggregate consumption in period 0 rises. Ricardian equiva-
lence thus fails.

National saving and wealth accumulation*

The direct impact on national wealth of the temporary tax cut How
does aggregate private net saving, SN10 + SN20, respond to the temporary tax cut?
In both the reference path and the alternative path, the old enter period 0 with
the financial wealth A0 and leave the period with zero financial wealth. So their
net saving is SN20 = −A0 in both fiscal regimes. Although the young in period 0
increase their consumption in response to the temporary tax cut, they increase
their period 0-saving as well. The increased saving by the young is revealed by
the fact that they in period 1, as old, can afford to increase their consumption
in spite of the tax increase of size m̄ in that period. Indeed, from (6.43) and the
period budget constraint as old follows

0 < c′21 − c21 = (1 + r)s′0 − (τ 2 + m̄)− ((1 + r)s0 − τ 2)

= (1 + r)(s′0 − s0)− m̄ < (1 + r)(s′0 − s0),

thus implying s′0−s0 > 0. Since A′1/L0 = s′0 > s0 = A1/L0, also aggregate private
financial wealth per old at the beginning of period 1 is larger than it would have
been without the temporary tax cut. This might seem paradoxical in view of the
higher aggregate private consumption in period 0. The explanation lies in the

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



6.7. Ricardian equivalence? 249

fact that the lower taxation in period 0 means higher disposable income, allowing
both higher private consumption and higher private saving in period 0.
Nevertheless, gross national saving, cf. (6.29), is lower than in the reference

path. Indeed, C ′0 > C0 implies

S ′0 = F (K0, L0)− rNFD0 − C ′0 −G0 < F (K0, L0)− rNFD0 − C0 −G0 = S0.

A counterpart of the increased private saving is the public dissaving, reflecting the
budget deficit created one-to-one by the reduction in taxation. As the increased
disposable income resulting from the latter partly goes to increased private saving
and partly to increased private consumption, the rise in private saving is smaller
than the public dissaving. Consequently, gross national saving ends up lower
than in the reference path.
Net national saving in the reference path is SN0 = S0 − δK0. The public

dissaving in the alternative path reduces net national saving by the amount

SN0 − SN ′0 = C ′0 − C0 = c′10L0 + c′20L−1 − (c10L0 + c20L−1)

= (c′10 − c10)L0 + (c′20 − c20)L−1 = ĉ1(r)(h′0 − h0)L0 + xL−1

= ĉ1(r)
1 + (2 + r)n

(1 + r)(1 + n)
xL0 + x

1

1 + n
L0

=

(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
L0x > 0. (6.45)

For our national income accounting to be consistent, national wealth should
decrease by the same amount as net national saving. Let us check. By the
definition (6.30) follows

V ′1 = A′1 −B′1 = s′0L0 − (1 +
1

1 + n
)L0x = (w − (τ 1 − x)− c′10 − x)L0 −

1

1 + n
L0x

= (w − τ 1 − ĉ1(r)h′0)L0 −
1

1 + n
L0x

=

(
w − τ 1 − ĉ1(r)

(
w − τ 1 + x− τ 2 + m̄

1 + r

))
L0 −

1

1 + n
L0x

=

(
w − τ 1 − ĉ1(r)

(
w − τ 1 −

τ 2

1 + r

))
L0 − ĉ1(r)

(
x− m̄

1 + r

)
L0 −

1

1 + n
L0x

= s0L0 − ĉ1(r)

(
1− r − n

(1 + r)(1 + n)

)
L0x−

1

1 + n
L0x

= s0L0 −
(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
L0x < s0L0 = V1. (6.46)

We see that national wealth has decreased by an amount equal to the decrease
in net national saving in (6.45), as it should.
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Later consequences As revealed by (6.44), all future generations (those born
in period 1, 2, . . . ) are worse off along the alternative path. One might think that
also aggregate private financial wealth per old along the alternative path would
necessarily be lower. But this is not so. As of period t = 2, 3,. . . , aggregate
private financial wealth per old along the alternative path is

A′t/Lt−1 = s′t−1 = w − (τ 1 + m̄)− c′1t−1 = w − (τ 1 + m̄)− ĉ1(r)h′t

= w − (τ 1 + m̄)− ĉ1(r)

(
w − τ 1 − m̄−

τ 2 + m̄

1 + r

)
= w − τ 1 − m̄− ĉ1(r)(w − τ 1) + ĉ1(r)m̄+ ĉ1(r)

τ 2

1 + r
+ ĉ1(r)

m̄

1 + r

= w − τ 1 − ĉ1(r)(w − τ 1 −
τ 2

1 + r
)− m̄+ ĉ1(r)m̄+ ĉ1(r)

m̄

1 + r

= w − τ 1 − ĉ1(r)

(
w − τ 1 −

τ 2

1 + r

)
−
(

1− ĉ1(r)

(
1 +

1

1 + r

))
m̄

= st−1 −
(

1− ĉ1(r)
2 + r

1 + r

)
r − n
1 + n

x. (6.47)

Thus, for t = 2, 3, . . . ,

A′t
Lt−1

Q At
Lt−1

holds for s′t−1 Q st−1, respectively, which in turn holds for

ĉ1(r) Q 1 + r

2 + r
, respectively. (6.48)

In the benchmark case θ = 1, (6.37) gives ĉ1(r) = (1 + r)/(2 + ρ). In combination
with (6.48), this implies that aggregate private financial wealth per old along the
alternative path is lower than, equal to, or higher than that along the reference
path if ρ R r, respectively (in the benchmark case θ = 1). The reason that it
may be higher is that the saving by the young, which next period constitutes the
private financial wealth, has to cover not only the consumption as old but also
the taxes as old which have been increased. In view of st = (c2t+1 + τ 2)/(1 + r),
a rise in τ 2 thus gives scope for a rise in st at the same time as c2t+1 decreases.

For certain, however, national wealth as of period t = 2, 3, . . . , is smaller
along the alternative path. In Exercise 6.? the reader is asked to show that for
t = 1, 2, . . . , we have B′t = [(2 + n)/(1 + n)]L1(1 +n)t−2x.With this evolution of
public debt, the evolution in national wealth per old along the alternative path
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as of period t = 2, 3, . . . , is

V ′t
Lt−1

≡ A′t
Lt−1

− Bt

Lt−1

= s′t−1 −
2 + n

1 + n
x

= st−1 −
[(

1− ĉ1(r)
2 + r

1 + r

)
(r − n) + 2 + n

]
1

1 + n
x (by (6.47))

= s0 −
(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
x− (1− ĉ1(r))

1 + r

1 + n
x

< s0 −
(
ĉ1(r)

1 + (2 + r)n

1 + r
+ 1

)
1

1 + n
x = V ′1/L0 (by (6.46))

< s0 =
A1

L0

=
At
Lt−1

=
Vt
Lt−1

,

where the second to last inequality is due to ĉ1(r) < 1, cf. (6.37), while the two
first equalities in the last line are due to the constancy of “per old” variables
along the reference path. The last equality is due to the absence of government
debt along that path. So, like period 1, also the subsequent periods experience a
reduction in national wealth as a consequence of the temporary tax cut in period
0.
Period 1 is special, though. While there is a per capita tax increase by m̄ like

in the subsequent periods, period 1’s old generation still benefits from the higher
disposable income in period 0. Hence, in period 2 national wealth per old is even
lower than in period 1 but remains constant henceforth.

A closed economy Also in a closed economy would the future generations be
worse offas a result of a temporary tax cut. Indeed, national wealth (which in the
closed economy equals K) would, in view of the reduced national saving in period
0, in period 1 be smaller than otherwise. As of period 2 national wealth would be
even smaller than in period 1, in view of the further reduction in national saving
that occurs in period 1.

Summary and perspectives

The fundamental point underlined by OLG models is that there is a difference
between the public sector’s future tax base, including the resources of individuals
yet to be born, and the future tax base emanating from individuals alive today.
This may be called the composition-of-tax-base argument for a tendency to non-
neutrality of shifting the timing of (lump-sum) taxation.27

27In Exercise 6.?? the reader is asked how the burden of the public debt is distributed across
generations if the debt should be completely wiped out through a tax increase in only periods
1 and 2.
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The conclusion that under full capacity utilization budget deficits imply a
burden for future generations may be seen in a somewhat different light if per-
sistent technological progress is included in the model. In that case, everything
else equal, future generations will generally be better off than current generations.
Then it might seem less unfair if the former carry some public debt forward to the
latter. In particular this is so if a part of Gt represents spending on infrastructure,
education, research, health, and environmental protection. As future generations
directly benefit from such investment, it seems fair that they also contribute to
the financing. This is the “benefits received principle”known from public finance
theory.

A further concern is whether the economy is a state of full capacity utiliza-
tion or serious unemployment. The above analysis assumes the first. What if the
economy in period 0 is in economic depression with high unemployment due to
insuffi cient aggregate demand? Some economists maintain that also in this situa-
tion is a cut in (lump-sum) taxes to stimulate aggregate demand futile because it
has no real effect. The argument is again that foreseeing the higher taxes needed
in the future, people will save more to prepare themselves (or their descendants
through higher bequests) for paying the higher taxes in the future. The opposite
view is, first, that the composition-of-tax-base argument speaks against this as
usual. Second, there is in a depression an additional and quantitatively impor-
tant factor. The “first-round”increase in consumption due to the temporary tax
cut raises aggregate demand. Thereby production and income is stimulated and
a further (but smaller) rise in consumption occurs in the “second round”and so
on (the Keynesian multiplier process).

This Keynesian mechanism is important for the debate about effects of budget
deficits because there are limits to how large deviations from Ricardian equiva-
lence the composition-of-tax-base argument alone can deliver. Indeed, taking into
account the sizeable life expectancy of the average citizen, Poterba and Summers
(1987) point out that the composition-of-tax-base argument by itself delivers only
modest deviations if the issue is timing of taxes over the business cycle.

Another concern is that in the real world, taxes tend to be distortionary and
not lump sum. On the one hand, this should not be seen as an argument against
the possible theoretical validity of the Ricardian equivalence proposition. The
reason is that Ricardian equivalence (in its strict meaning) claims absence of
allocational effects of changes in the timing of lump-sum taxes.

On the other hand, in a wider perspective the interesting question is, of course,
how changes in the timing of distortionary taxes is likely to affect resource allo-
cation. Consider first income taxes. When taxes are proportional to income or
progressive (average tax rate rising in income), they provide insurance through re-
ducing the volatility of after-tax income. The fall in taxes in a recession thus helps
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stimulating consumption through reduced precautionary saving (the phenomenon
that current saving tends to rise in response to increased uncertainty, cf. Chapter
??). In this way, replacing lump-sum taxation by income taxation underpins the
positive wealth effect on consumption, arising from the composition-of-tax-base
channel, of a debt-financed tax-cut in an economic recession.
What about consumption taxes? A debt-financed temporary cut in consump-

tion taxes stimulates consumption through a positive wealth effect, arising from
the composition-of-tax-base channel. On top of this comes a positive intertempo-
ral substitution effect on current consumption caused by the changed consumer
price time profile.
The question whether Ricardian non-equivalence is important from a quan-

titative and empirical point of view pops up in many contexts within macroeco-
nomics. We shall therefore return to the issue several times later in this book.

6.8 Literature notes

(incomplete)
Sargent and Wallace (1981) study consequences of − and limits to − a shift

from debt financing to money financing of sustained government budget deficits
in response to threatening increases in the government debt-income ratio.
How the condition r > gY for prudent debt policy to be necessary is modified

when the assumption of no uncertainty is dropped is dealt with in Abel et al.
(1989), Bohn (1995), Ball et al. (1998), and Blanchard and Weil (2001).
Readers wanting to go more into detail with the debate about the design of the

EMU and the Stability and Growth Pact is referred to the discussions in for exam-
ple Buiter (2003), Buiter and Grafe (2004), Fogel and Saxena (2004), Schuknecht
(2005), and Wyplosz (2005). As to discussions of the actual functioning of mone-
tary and fiscal policy in the Eurozone in response to the Great Recession, see for
instance the opposing views by De Grauwe and Ji (2013) and Buti and Carnot
(2013). Blanchard and Giavazzi (2004) discuss how proper accounting of public
investment would modify the deficit and debt rules of the EMU. Beetsma and
Giuliodori (2010) survey recent research of costs and benefits of the EMU.
On the theory of optimal currency areas, see Krugman, Obstfeld, and Melitz

(2012).
In addition to the hampering of Keynesian stabilization policy discussed in

Section 6.4.2, also demographic staggering (due to baby booms succeeded by
baby busts) may make rigid deficit rules problematic. In Denmark for instance
demographic staggering is prognosticated to generate considerable budget deficits
during several decades after 2030 where younger and smaller generations will suc-
ceed older and larger ones in the labor market. This is prognosticated to take
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place, however, without challenging the long-run sustainability of current fiscal
policy as assessed by the Danish Economic Council (see the English Summary in
De Økonomiske Råd, 2014). This phenomenon is in Danish known as “hængekø-
jeproblemet”(the “hammock problem”).
Sources for last part of Section 6.7 ....

6.9 Exercises

6.xx In the OLG model of Section 6.6.2, derive (6.37) and (6.38).

6.? In the OLG model of Section 6.6.2, show that for t = 1, 2, 3, . . . , public debt
along the “alternative path”evolves according to B′t = [(2 + n)/(1 + n)]L1(1 +
n)t−2x, where x is the temporary per capita tax cut in period 0. Hint: given
the information in Section 6.6.2 you may start by deriving a first-order difference
equation in bt ≡ Bt/Yt with constant coeffi cients. The information that the
“reference path" has a balanced budget for all t should be taken into account. In
addition, you should explain - and apply - that the initial condition is b1 = B1/Y1

= (2 + n)x/ [f(k)(1 + n)2] .

6.?? Consider the OLG model of Section 6.6.2. a) Show that if the temporary
per capita tax cut, x, is suffi ciently small, the debt can be completely wiped out
through a per capita tax increase in only periods 1 and 2. b) Investigate how in
this case the burden of the debt is distributed across generations. Compare with
the alternative debt policy described in the text.
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Chapter 7

Bequests and the modified
golden rule

This chapter modifies the Diamond OLG model by including a bequest motive.
Depending on what form and what strength the bequest motive has, distinctive
new conclusions arise. Under certain conditions the long-run real interest rate,
for instance, turns out to be determined by a very simple principle, the modified
golden rule. The chapter also spells out both the logic and the limitations of the
hypothesis of Ricardian equivalence (government debt neutrality).

7.1 Bequests

In Diamond’s OLG model individuals care only about their own lifetime utility
and never leave bequests. Yet, in reality a sizeable part of existing private wealth
is attributable to inheritance rather than own life-cycle saving. Among empiricists
there is considerable disagreement as to the exact quantities, though. Kotlikoff
and Summers (1981) estimate that 70-80 % of private financial wealth in the US
is attributable to intergenerational transfers and only 20-30 % to own life-cycle
savings. On the other hand, Modigliani (1988) suggests that these proportions
more or less should be reversed.
The possible motives for leaving bequests include:

1. “Altruism”. Parents care about the welfare of their descendants and leave
bequests accordingly. This is the hypothesis advocated by the American
economist Robert Barro (1974).

2. “Joy of giving”. Parents’ utility depends not on descendants’utility, as
with motive 1, but directly on the size of the bequest. That is, parents
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simply have taste for generosity. They enjoy giving presents to their chil-
dren (Andreoni, 1989, Bossman et al., 2007). Or a more sinister motive
may be involved, such as the desire to manipulate your children’s behavior
(Bernheim et al., 1985).

3. “Joy of wealth”. Dissaving may be undesirable even at old age if wealth, or
the power and prestige which is associated with wealth, is an independent
argument in the utility function (Zou, 1995). Then the profile of individual
financial wealth through life may have positive slope at all ages. At death
the wealth is simply passed on to the heirs.

In practice an important factor causing bequests is uncertainty about time of
death combined with the absence of complete annuity markets. In this situation
unintentional bequests arise. Gale and Scholz (1994) find that only about half of
net wealth accumulation in the US represents intended transfers and bequests.
How transfers and bequests affect the economy depends on the reasons why

they are made. We shall concentrate on a model where bequests reflect the
concern of parents for the welfare of their offspring (motive 1 above).

7.2 Barro’s dynasty model

We consider a model of overlapping generations linked through altruistic bequests,
suggested by Barro (1974). Among the interesting results of the model are that if
the extent of altruism is suffi ciently high so that the bequest motive is operative
in every period, then:

• the model becomes a representative agent model;

• a very simple formula determining the long-run real interest rate arises (the
modified golden rule);.

• the model implies Ricardian equivalence;

• the model implies that resource allocation in a competitive market economy
coincides with that accomplished by a social planner who has the same
intergenerational discount rate as the representative household dynasty.

This chapter considers the three first bullets in detail, while the last bullet is
postponed to the next chapter.
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7.2.1 A forward-looking altruistic parent

Technology, demography, and market conditions are as in Diamond’s OLGmodel.
There is no utility from leisure. Perfect foresight is assumed. Until further notice
technological progress is ignored.
The preferences of a member of generation t are given by the utility function

Ut = u(c1t) + (1 + ρ)−1u(c2t+1) + (1 +R)−1(1 + n)Ut+1. (7.1)

Here R is the pure intergenerational utility discount rate and 1 + n is the
number of offspring per parent in society. So R measures the extent of “own
generation preference” and n is the population growth rate; as usual we in
(7.1) ignore indivisibility problems and take an average view. The term u(c1t)
+(1 + ρ)−1u(c2t+1) is the “own lifetime utility”, reflecting the utility contribution
from one’s own consumption as young, c1t, and as old, c2t+1.The time preference
parameter ρ > −1 appears as the intragenerational utility discount rate. The
term (1 +R)−1(1 + n)Ut+1 is the contribution derived from the utility of the off-
spring. The intergenerational utility discount factor (1 + R)−1 is also known as
the altruism factor.
The effective intergenerational utility discount rate is the number R̄ satisfying

(1 + R̄)−1 = (1 +R)−1(1 + n). (7.2)

We assume R > n ≥ 0. So R̄ is positive and the utility of the next generation is
weighed through an effective discount factor (1 + R̄)−1 < 1. (Mathematically, the
model works well with the weaker assumption, n > −1; yet it helps intuition to
imagine that there always is at least one child per parent.)
We write (7.1) on recursive form,

Ut = Vt + (1 + R̄)−1Ut+1,

where Vt is the “direct utility”u(c1t)+(1+ρ)−1u(c2t+1), whereas (1+ R̄)−1Ut+1 is
the “indirect utility”through the offspring’s well-being. By forward substitution
j periods ahead in (7.1) we get

Ut =

j∑
i=0

(1 + R̄)−iVt+i + (1 + R̄)−(j+1)Ut+j+1.

Provided Ut+j+1 does not grow “too fast”, taking the limit for j →∞ gives

Ut =

∞∑
i=0

(1 + R̄)−iVt+i =

∞∑
i=0

(1 + R̄)−i
[
u(c1t+i) + (1 + ρ)−1u(c2t+i+1)

]
. (7.3)
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By
∑∞

i=0(1 + R̄)−iVt+i we mean limj→∞
∑j

i=0(1 + R̄)−iVt+i, assuming this limit
exists. Although each generation cares directly only about the next generation,
this series of intergenerational links implies that each generation acts as if it cared
about all future generations in the dynastic family, although with decreasing
weight. In this way the entire dynasty can be regarded as a single agent with
infinite horizon. At the same time the coexisting dynasties are completely alike.
So, in spite of starting from an OLG structure, we now have a representative
agent model, i.e., a model where the household sector consists of completely alike
decision makers.
Note that one-parent families fit Barro’s notion of clearly demarcated dynastic

families best. Indeed, the model abstracts from the well-established fact that
breeding arises through mating between a man and a woman who come from
two different parent families. In reality this gives rise to a complex network of
interconnected families. Until further notice we ignore such complexities and
proceed by imagining reproduction is not sexual.
In each period two (adult) generations coexist: the “young”, each of whom

supplies one unit of labor inelastically, and the “old”who do not supply labor.
Each old is a parent to 1 + n of the young. And each young is a parent to 1 + n
children, born when the young parent enters the economy and the grandparent
retires from the labor market. Next period these children become visible in the
model as the young generation in the period.
Let bt be the bequest received at the end of the first period of “economic

life”by a member of generation t from the old parent, belonging to generation
t− 1. In turn this member of generation t leaves in the next period a bequest to
the next generation in the family and so on. We will assume, realistically, that
negative bequests are ruled out by law; the legal system exempts children from
responsibility for parental debts. Thus the budget constraints faced by a young
member of generation t are:

c1t + st = wt + bt, (7.4)

c2t+1 + (1 + n)bt+1 = (1 + rt+1)st, bt+1 ≥ 0, (7.5)

where st denotes saving as young (during work life) out of the sum of labor income
and the bequest received (payment for the consumption and receipt of wt + bt
occur at the end of the period). In the next period the person is an old parent
and ends life leaving a bequest, bt+1, to each of the 1 + n children. Fig. 7.1
illustrates.
What complicates the analysis is that even though a bequest motive is present,

the market circumstances may be such that parents do not find it worthwhile
to transmit positive bequests. We then have a corner solution, bt+1 = 0. An
important element in the analysis is to establish when this occurs and when it
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Figure 7.1: The generational structure of the Barro model.

does not. To rule out the theoretical possibility of a corner solution also for st,
we impose the No Fast Assumption

lim
c→0

u′(c) =∞. (A1)

Given this assumption, the young will always choose st > 0 as soon as wt+bt > 0.
Consider a person belonging to generation t. This person has perfect foresight

with regard to future wages and interest rates and can compute the optimal
choices of the descendants conditional on the bequest they receive. The planning
problem is:

maxUt = u(c1t) + (1 + ρ)−1u(c2t+1)

+(1 + R̄)−1
[
u(c1t+1) + (1 + ρ)−1u(c2t+2)

]
+ ...

subject to the budget constraints (7.4) and (7.5) and knowing that the descen-
dants will respond optimally to the received bequest (see below). We insert into
Ut the two budget constraints in order to consider the objective of the parent
as a function, Ũt, of the decision variables, st and bt+1. We then maximize with
respect to st and bt+1. First:

∂Ũt
∂st

= −u′(c1t) + (1 + ρ)−1u′(c2t+1)(1 + rt+1) = 0, i.e.,

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1). (7.6)

This first-order condition deals with the distribution of own consumption across
time. The condition says that in the optimal plan the opportunity cost of saving
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one more unit as young must equal the discounted utility benefit of having 1+rt+1

more units for consumption as old.
As to maximizing with respect to the second decision variable, bt+1, we have

to distinguish between the case where the bequest motive is operative and the
case where it is not. Here we consider the first case and postpone the second for
a while.

7.2.2 Case 1: the bequest motive operative (bt+1 > 0 opti-
mal)

In addition to (7.6) we get the first-order condition

∂Ũt
∂bt+1

= (1 + ρ)−1u′(c2t+1) [−(1 + n)] + (1 + R̄)−1u′(c1t+1) · 1 = 0, i.e.,

(1 + ρ)−1u′(c2t+1) = (1 + R̄)−1u′(c1t+1)(1 + n)−1. (7.7)

This first-order condition deals with the distribution of consumption across gen-
erations in the same period. The condition says that in the optimal plan the
parent’s utility cost of increasing the bequest by one unit (thereby decreasing
the consumption as old by one unit) must equal the discounted utility benefit
derived from the next generation having 1/(1 + n) more units, per member, for
consumption in the same period. The factor, (1 +n)−1, is a “dilution factor”due
to total bequests being diluted in view of the 1 + n children for each parent.
A further necessary condition for an optimal plan is that the bequests are not

forever too high, which would imply postponement of consumption possibilities
forever. That is, we impose the condition

lim
i→∞

(1 + R̄)−(i−1)(1 + ρ)−1u′(c2t+i)(1 + n)bt+i = 0. (7.8)

Such a terminal condition is called a transversality condition; it acts as a necessary
first-order condition at the terminal date, here at infinity. Imagine a plan where
instead of (7.8) we had limi→∞(1 + R̄)−(i−1)(1 + ρ)−1u′(c2t+i)(1 + n)bt+i > 0. In
this case there would be “over-bequeathing” in the sense that Ut (the sum of
the generations’discounted lifetime utilities) could be increased by the ultimate
generation consuming more as old and bequeathing less. Decreasing the ultimate
bequest to the young, bt+i (i → ∞), by one unit would imply 1 + n extra units
for consumption for the old parent, thereby increasing this parent’s utility by
(1 + ρ)−1u′(c2t+i)(1 + n). From the perspective of the current generation t this
utility contribution should be discounted by the discount factor (1 + R̄)−(i−1).
With a finite time horizon entailing that only i − 1 future generations (i fixed)
were cared about, it would be waste to end up with bt+i > 0; optimality would
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require bt+i = 0. The condition (7.8) is an extension of this principle to an infinite
horizon.1

The optimality conditions (7.6), (7.7), and (7.8) illustrate a general principle of
intertemporal optimization. First, no gain should be achievable by a reallocation
of resources between two periods or between two generations. This is taken care
of by the Euler equations (7.6) and (7.7).2 Second, there should be nothing of
value leftover after the “last period”, whether the horizon is finite or infinite.
This is taken care of by a transversality condition, here (7.8). With a finite
horizon, the transversality condition takes the simple form of a condition saying
that the intertemporal budget constraint is satisfied with equality. In the two-
period models of the preceding chapters, transversality conditions were implicitly
satisfied in that the budget constraints were written with = instead of ≤ .

The reader might be concerned whether in our maximization procedure, in
particular regarding the first-order condition (7.7), we have taken the descen-
dants’optimal responses properly into account. The parent should choose st and
bt+1 to maximize Ut, taking into account the descendants’optimal responses to
the received bequest, bt+1. In this perspective it might seem inadequate that we
have considered only the partial derivative of Ut w.r.t. bt+1, not the total deriva-
tive. Fortunately, in view of the envelope theorem our procedure is valid. Applied
to the present problem, the envelope theorem says that in an interior optimum
the total derivative of Ut w.r.t. bt+1 equals the partial derivative w.r.t. bt+1,
evaluated at the optimal choice by the descendants. Indeed, since an objective
function “is flat at the top”, the descendants’response to a marginal change in
the received bequest has a negligible effect on the value of optimized objective
function (for details, see Appendix A).

The old generation in period t So far we have treated the bequest, bt,
received by the young in the current period, t, as given. But in a sense also this
bequest is a choice, namely a choice made by the old parent in this period, hence
endogenous. This old parent enters period t with assets equal to the saving made
as young, st−1, which, if period t is the initial period of the model, is part of
the arbitrarily given initial conditions of the model. From this perspective the
decision problem for this old parent is to choose bt ≥ 0 so as to

max
[
(1 + ρ)−1u(c2t) + (1 + R̄)−1Ut

]
1Although such a simple extension of a transversality condition from a finite horizon to an

infinite horizon is not always valid, it is justifiable in the present case. This and related results
about transversality conditions are dealt with in detail in the next chapter.

2Since Ũt(st, bt+1) is jointly strictly concave in its two arguments, the Euler equations are
not only necessary, but also suffi cient for a unique interior maximum.
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subject to the budget constraint c2t + (1 + n)bt = (1 + rt)st−1 and taking into
account that the chosen bt indirectly affects the maximum lifetime utility to be
achieved by the next generation. If the optimal bt is positive, the choice satisfies
the first-order condition (7.7) with t replaced by t− 1. And if no disturbance of
the economy has taken place at the transition from period t− 1 to period t, the
decision by the old in period 0 is simply to do exactly as planned when young in
the previous period.
It may seem puzzling that u(c2t) is discounted by the factor (1 + ρ)−1, when

standing in period t. Truly, when thinking of the old parent as maximizing (1 +
ρ)−1u(c2t) +(1+R̄)−1Ut, the utility is discounted back (as usual) to the first period
of adult life, in this case period t− 1. But this is just one way of presenting the
decision problem of the old. An alternative way is to let the old maximize the
present value of utility as seen from the current period t,

(1 + ρ)
[
(1 + ρ)−1u(c2t) + (1 + R̄)−1Ut

]
= u(c2t) + (1 + R̄)−1(1 + ρ)Ut

≡ u(c2t) + (1 + ψ)−1Ut,

where the last equality follows by merging the backward and forward discounts,
(1 + R̄)−1 and 1 + ρ, respectively, into the coeffi cient (1 + ψ)−1. Since both
utilities, u(c2t) and Ut, arise in the same period, the coeffi cient (1 + ψ)−1 is no
time discount factor but an expression for the degree of unselfishness, see the
remark below. As we have just multiplied the objective function by a positive
constant, 1 + β, the resulting behavior is unaffected.

Remark The effective intergenerational utility discount factor can be decomposed
as in (7.2) above, but also as:

(1 + R̄)−1 ≡ (1 + ρ)−1(1 + ψ)−1. (7.9)

The sub-discount factor, (1 + ρ)−1, applies because the prospective utility arrives
one period later and is, in this respect, comparable to utility from own consump-
tion when old, c2t+1. The sub-discount factor, (1+ψ)−1, can be seen as the degree
of unselfishness and ψ as reflecting the extent of selfishness. Indeed, when ψ is
positive, parents are selfish in the sense that, if a parent’s consumption when old
equals the children’s’consumption when young, then the parent prefers to keep
an additional unit of consumption for herself instead of handing it over to the
next generation (replace (1 + R̄)−1 in (7.7) by (7.9)). �

The equilibrium path

Inserting (7.7) on the right-hand side of (7.6) gives

u′(c1t) = (1 + R̄)−1u′(c1t+1)
1 + rt+1

1 + n
. (7.10)
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This is an Euler equation characterizing the optimal distribution of consumption
across generations in different periods: in an optimal intertemporal and intergen-
erational allocation, the utility cost of decreasing consumption of the young in
period t (that is, saving and investing one more unit) must equal the discounted
utility gain next period for the next generation which, per member, will be able
to consume (1 + rt+1)/(1 + n) more units.
With perfect competition and neoclassical CRS technology, in equilibrium the

real wage and interest rate are

wt = f(kt)− f ′(kt)kt and rt = f ′(kt)− δ, (7.11)

respectively, where f is the production function on intensive form, and δ is the
capital depreciation rate, 0 ≤ δ ≤ 1. Further, kt ≡ Kt/Lt, where Kt is aggregate
capital in period t owned by that period’s old, and Lt is aggregate labor supply
in period t which is the same as the number of young in that period.
As in the Diamond model, aggregate consumption per unit of labor satisfies

the technical feasibility constraint

ct ≡
Ct
Lt
≡ (c1tLt + c2tLt−1)/Lt = c1t + c2t/(1 + n) (7.12)

= f(kt) + (1− δ)kt − (1 + n)kt+1.

An equilibrium path for t = 0, 1, 2,. . . , is described by the first-order conditions
(7.7) (“backwarded”one period) and (7.10), the transversality condition (7.8), the
equilibrium factor prices in (7.11), the resource constraint (7.12), and an initial
condition in the form of a given k0 > 0. This k0 may be interpreted as reflecting
a given s−1 ≥ 0. Indeed, as in the Diamond model, for every t = 0, 1,. . . , we have

kt+1 ≡
Kt+1

Lt+1

=
stLt
Lt+1

=
st

1 + n
. (7.13)

This is simply a matter of accounting. At the beginning of period t + 1 the
available aggregate capital stock equals the financial wealth of the generation
which now is old but was young in the previous period and saved stLt out of
that period’s labor income plus received transfers in the form of bequests. So
Kt+1 = stLt. Indeed, the new young generation of period t + 1 own to begin
with nothing except their brain and bare hands, although they expect to receive
a bequest just before they retire from the labor market at the end of period t+ 1.
Still another interpretation of (7.13) starts from the general accounting principle
for a closed economy that the increase in the capital stock equals aggregate net
saving. In turn aggregate net saving is the sum of net saving by the young, S1t,
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and net saving by the old, S2t:

Kt+1 −Kt = S1t + S2t = stLt + [rtst−1 − (c2t + (1 + n)bt)]Lt−1

= stLt + [rtst−1Lt−1 − (1 + rt)st−1Lt−1] (by ((7.5))

= stLt + (−st−1Lt−1) = stLt −Kt, (7.14)

which by eliminating −Kt on both sides gives Kt+1 = stLt.
One of the results formally proved in the next chapter is that, given the

technology assumption limk→0 f
′(k) > R + δ > limk→∞ f

′(k), an equilibrium
path exists and converges to a steady state. In that chapter it is also shown that
the conditions listed are exactly those that also describe a certain “command
optimum”. This refers to the allocation brought about by a social planner having
(7.3) as the social welfare function.

Steady state with an operative bequest motive

A steady state of the system is a state where, for all t, kt = k∗, ct = c∗, c1t = c∗1,
c2t = c∗2, bt = b∗, and st = s∗. In a steady state with b∗ > 0, we have the
remarkably simple result that the interest rate, r∗, satisfies the modified golden
rule:

1 + r∗ = 1 + f ′(k∗)− δ = (1 + R̄)(1 + n) ≡ 1 +R. (7.15)

This follows from inserting the steady state conditions (kt = k∗, c1t = c1
∗, c2t =

c2
∗, for all t) into (7.10) and rearranging. In the golden rule of Chapter 3 the

interest rate (reflecting the net marginal productivity of capital) equals the output
growth rate (here n). The “modification”here comes about because of the strictly
positive effective intergenerational discount rate R̄, which implies a higher interest
rate.
Two things are needed for the economy with overlapping generations linked

through bequests to be in a steady state with positive bequests. First, it is
necessary that the rate of return on saving matches the rate of return, R, required
to tolerate a marginal decrease in own current consumption for the benefit of
the next generation. This is what (7.10) shows. Second, it is necessary that
the rate of return induces an amount of saving such that the consumption of
each of the children equals the parent’s consumption as young in the previous
period. Otherwise the system would not be in a steady state. If in (7.15) “=”
is replaced by “>”(“<”), then there would be a temptation to save more (less),
thus generating more (less) capital accumulation, thereby pushing the system
away from a steady state.
A steady state with an operative bequest motive is unique. Indeed, (7.15)

determines a unique k∗ (since f ′′ < 0), which gives s∗ = (1 + n)k∗ by (7.13)
and determines c∗ uniquely from the second line in (7.12). In turn, we can find
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Figure 7.2: Steady state consumption as young.

c∗1 and c
∗
2 from the Euler equation (7.6) which implies that the marginal rate of

substitution of c2 for c1 in steady state takes the form

MRS∗c2c1 =
u′(c∗1)

(1 + ρ)−1u′(c∗2)
=

u′(c∗1)

(1 + ρ)−1u′ ((1 + n)(c∗ − c∗1))
= 1 + r∗ = 1 +R,

(7.16)
where the second equality comes from (7.12). Given c∗, MRSc2c1 is a decreasing
function of c∗1 so that a solution for c

∗
1 in (7.16) is unique. In view of the No Fast

Assumption (A1), (7.16) always has a solution in c∗1, cf. Fig. 7.2. Then, from
(7.16), c∗2 = (1 + n)(c∗ − c∗1). Finally, from the period budget constraint (7.4), b∗

= c∗1 + s∗ − w∗ = c∗1 + (1 + n)k∗ − w∗, where w∗ = f(k∗)− f ′(k∗)k∗, from (7.11).

But what if the market circumstances and preferences in combination are
such that the constraint bt+1 ≥ 0 becomes binding? Then the bequest motive is
not operative. We get a corner solution such that the equality sign in (7.15) is
replaced by ≤ . The economy behaves like Diamond’s OLG model and a steady
state of the economy is not necessarily unique. To see these features, we now
reconsider the young parent’s optimization problem.
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Figure 7.3: Configuration where the constraint bt+1 ≥ 0 is binding (st fixed at s̄t).

7.2.3 Case 2: the bequest motive not operative (bt+1 = 0
optimal)

The first-order condition (7.6) involving st is still valid. But the first-order con-
dition involving bt+1 becomes an inequality:

∂Ũt
∂bt+1

= (1 + ρ)−1u′(c2t+1) [−(1 + n)] + (1 + R̄)−1u′(c1t+1) · 1 ≤ 0, i.e.,

(1 + ρ)−1u′(c2t+1) ≥ (1 + R̄)−1u′(c1t+1)(1 + n)−1. (7.17)

This condition says that in an optimal plan the parent’s utility cost of increasing
the bequest by one unit of account as an old parent must be larger than or equal
to the discounted benefit derived from the next generation having (1 +n)−1 more
units for consumption in the same period.
Why can we not exclude the possibility that ∂Ũt/∂bt+1 < 0 in the first line

of (7.17) when bt+1 = 0 is optimal? To provide an answer, observe first that if
we had ∂Ũt/∂bt+1 > 0 for bt+1 = 0, then at the prevailing market conditions a
state with bt+1 = 0 could not be an optimum for the individual. Instead positive
bequests would be induced. If, however, for bt+1 = 0, we have ∂Ũt/∂bt+1 ≤ 0,
then at the prevailing market conditions the state bt+1 = 0 is optimal for the
individual. This is so even if “<”holds, as in Fig. 7.3. Although the market
circumstances here imply a temptation to decrease bt+1 from the present zero
level, by law that temptation cannot be realized.
Substituting (7.17) and rt+1 = f ′(kt+1) − δ into (7.6) implies that (7.10) is

replaced by

u′(c1t) ≥ (1 + R̄)−1u′(c1t+1)
1 + f ′(kt+1)− δ

1 + n
. (7.18)

Inserting into this the steady state conditions (kt = k∗, c1t = c1
∗, c2t = c2

∗, for
all t) and rearranging give

1 + r∗ = 1 + f ′(k∗)− δ ≤ (1 + R̄)(1 + n) ≡ 1 +R. (7.19)
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Since optimal bt+1 in case 2 is zero, everything is as if the bequest-motivating
term, (1 + R)−1(1 + n)Ut+1, were eliminated from the right-hand side of (7.1).
Thus, as expected the model behaves like a Diamond OLG model.

7.2.4 Necessary and suffi cient conditions for the bequest
motive to be operative

An important question is: under what conditions does the bequest motive turn
out to be operative? To answer this we limit ourselves to an analysis of a neigh-
borhood of the steady state. We consider the thought experiment: if the bequest
term, (1 + R̄)−1Ut+1, is eliminated from the right-hand side of (7.1), what will
the interest rate be in a steady state? The utility function then becomes

Ūt = u(c1t) + (1 + ρ)−1u(c2t+1),

which is the standard lifetime utility function in a Diamond OLG model. We
will call Ūt the truncated utility function associated with the given true utility
function, Ut. The model resulting from replacing the true utility function of the
economy by the truncated utility function will be called the associated Diamond
economy.
It is convenient to assume that the associated Diamond economy is well-

behaved, in the sense of having a unique non-trivial steady state. Let rD denote
the interest rate in this Diamond steady state (the suffi x D for Diamond). Then:

PROPOSITION 1 (the cut-off value for the own-generation preference, R) Con-
sider an economy with a bequest motive as in (7.1) and satisfying the No Fast
Assumption (A1). Let R > n, i.e., R̄ > 0. Suppose that the associated Diamond
economy is well-behaved and has steady-state interest rate rD. Then in a steady
state of the economy with a bequest motive, bequests are positive if and only if

R < rD. (*)

Proof. From (7.7) we have in steady state of the original economy with a bequest
motive:

∂Ũt
∂bt+1

= (1 + ρ)−1u′(c2
∗)(−(1 + n)) + (1 + R̄)−1u′(c1

∗)

= −(1 + ρ)−1(1 + n)u′(c2
∗)

+(1 + R̄)−1(1 + ρ)−1(1 + r∗)u′(c2
∗) (from (7.6))

= (1 + ρ)−1u′(c2
∗)
[
(1 + R̄)−1(1 + r∗)− (1 + n)

]
T 0 if and only if

1 + r∗ T (1 + R̄)(1 + n), i.e., if and only if r∗ T R, respectively, (**)
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since (1 + R̄)(1 + n) ≡ 1 +R.

The “if”part: Suppose the associated Diamond economy is in steady state
with rD > R. Can this Diamond steady state (where by construction bt+1 = 0)
be an equilibrium also for the original economy? The answer is no because, if
we assume it were an equilibrium, then the interest rate would be r∗ = rD > R
and, by (**), ∂Ũt/∂bt+1 > 0. Therefore the parents would raise bt+1 from its
hypothetical zero level to some positive level, contradicting the assumption that
bt+1 = 0 were an equilibrium.
The “only if”part: Suppose instead that rD < R. Can this Diamond steady

state (where again bt+1 = 0, of course) be an equilibrium also for the original
economy with a bequest motive? Yes. From (**) we have ∂Ũt/∂bt+1 < 0. There-
fore the parents would be tempted to decrease their bt+1 from its present zero
level to some negative level, but that is not allowed. Hence, bt+1 = 0 is still an
equilibrium and the bequest motive does not become operative. Similarly, in a
case where R = rD, the situation bt+1 = 0 is still an equilibrium of the economy
with a bequest motive, since we get ∂Ũt/∂bt+1 = 0 when bt+1 = 0. �

Thus bequests will be positive if and only if the own-generation preference, R,
is suffi ciently small or, what amounts to the same, the altruism factor, (1 +R)−1,
is suffi ciently large − in short, if and only if parents “love their children enough”.
Fig. 7.4, where kMGR is defined by f ′(kMGR)− δ = R, gives an illustration. If the
rate R at which the parent discounts the utility of the next generation is relatively
high, then kMGR is relatively low and (*) will not be satisfied. This is the situation
depicted in the upper panel of Fig. 7.4 (low altruism). In this case the bequest
motive will not be operative and the economy ends up in the Diamond steady
state with k∗ = kD > kMGR. If on the other hand the own-generation preference,
R, is relatively low as in the lower panel (high altruism), then (*) is satisfied, the
bequest motive will be operative and motivates more saving so that the economy
ends up in a steady state satisfying the modified golden rule. That is, (7.15)
holds and k∗ = kMGR.
Both cases portrayed in Fig. 7.4 have kD < kGR, where kGR is the golden

rule capital-labor ratio satisfying f ′(kGR) − δ = n. But theoretically, we could
equally well have kD > kGR so that the Diamond economy would be dynamically
ineffi cient. The question arises: does the presence of a bequest motive help to
eliminate the potential for dynamic ineffi ciency? The answer is given by point (i)
of the following corollary of Proposition 1.

COROLLARY Let R > n. The economy with a bequest motive is:
(i) dynamically ineffi cient if and only if the associated Diamond economy is dy-
namically ineffi cient; and
(ii) the economy has positive bequests in steady state only if it is dynamically
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Figure 7.4: How the steady-state capital-labor ratio depends on the size of the own-
generation preference R (for a given kD < kGR). Upper panel: high R results in zero
bequest. Lower panel: low R induces additional saving and positive bequest so that
kMGR, which is larger the lower R is, becomes a steady state instead of kD (kMGR

satisfies f ′(kMGR)− δ = R > n and kGR satisfies f ′(kGR − δ = n).
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effi cient.

Proof. (i) “if”: suppose rD < n. Then, since by assumption R > n, (∗) is
not satisfied. Hence, the bequest motive cannot be operative and the economy
behaves like the associated Diamond economy which is dynamically ineffi cient in
view of rD < n.
(i) “only if”: suppose r∗ < n. Then the economy with a bequest motive is

dynamically ineffi cient. Since by assumption R > n, it follows that r∗ < R. So
(7.15) is not satisfied, implying by Proposition 1 that bequests cannot be positive.
Hence, the allocation is as in the associated Diamond economy which must then
also be dynamically ineffi cient.
(ii) We have just shown that r∗ < n implies zero bequests. Hence, if there are

positive bequests, we must have r∗ ≥ n, implying that the economy is dynamically
effi cient. �

The corollary shows that the presence of a bequest motive does not help in
eliminating a tendency for dynamic ineffi ciency. This is not surprising. Dynamic
ineffi ciency arises from perpetual excess saving. A bequest motive cannot be an
incentive to save less (unless negative bequests are allowed). On the contrary,
when a bequest motive is operative, you are motivated to increase saving as
young in order to leave bequests; aggregate saving will be higher. That is why,
when R < rD, the economy ends up, through capital accumulation, in a steady
state with r∗ = R, so that r∗ is smaller than rD (though r∗ > n still). On the
other hand, by the corollary follows also that the bequest motive can only be
operative in a dynamically effi cient economy. Indeed, we saw that an operative
bequest motive implies the modified golden rule (7.15) so that r∗ = R where, by
assumption, R > n and therefore kMGR < kGR always. (If R ≤ n, the effective
utility discount factor, (1 + R̄)−1, in (7.3) is no longer less than one, which may
result in non-existence of general equilibrium.)

7.3 Bequests and Ricardian equivalence

As we have seen, when the bequest motive is operative, the Barro model becomes
essentially a representative agent model in spite of starting from an OLG struc-
ture. So aggregate household behavior is simply a multiple of the behavior of a
single dynasty.
This feature has implications for the issue of Ricardian equivalence.3 To see

this, we add a government sector to the model. We assume that the government

3A first discussion of this issue, based on a very different model, the Diamond OLG model,
appears at the end of Chapter 6.
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finances its spending sometimes by lump-sum taxation, sometimes by issuing
debt. Ricardian equivalence, also called debt neutrality, is then present if, for a
given path of government spending, a shift between tax and debt financing does
not affect resource allocation. That is, a situation with a tax cut and ensuing
budget deficit is claimed to be “equivalent” to a situation without the tax cut.
Barro (1974) used the above model to substantiate this claim. Faced with a

tax cut in period t, the current generations will anticipate higher taxes in the
future. Indeed, to cover the government’s higher future interest payment, the
present value of future taxes will have to rise exactly as much as current taxes
are decreased. Assuming the government waits j periods to increase taxes and
then does it fully once for all in period t + j, for each unit of account current
taxes are reduced, taxes j periods ahead are increased by (1+r)j units of account.
The present value as seen from the end of period t of this future tax increase is
(1 + r)j/(1 + r)j = 1. So the change in the time profile of taxation will neither
make the dynasties feel richer or poorer. Consequently, their current and planned
future consumption will be unaffected.
The Ricardian Equivalence view is then that to compensate the descendants

j generations ahead for the higher taxes, the old generation will save the rise in
current after-tax income and leave higher bequests to their descendants (presup-
posing the bequest motive is operative). And the young generation will increase
their saving by as much as their after-tax income is raised as a consequence of
the tax cut and the higher bequests they expect to receive when retiring. In this
way all private agents maintain the consumption level they would have had in
the absence of the tax cut. The change in fiscal policy is thus completely nulli-
fied by the response of the private sector. The decrease in public saving is offset
by an equal increase in aggregate private saving. So national saving as well as
consumption remain unaffected.
We now formalize this story, taking population growth and fully specified

budget constraints into account. Let

Gt = real government spending on goods and services in period t,

Tt = real tax revenue in period t,

τ t = Tt/Lt = a lump-sum tax levied on each young in period t,

Bt = real government debt as inherited from the end of period t− 1.

To fix ideas, suppose Gt is primarily eldercare, including health services, and
therefore proportional to the number of old, i.e.,

Gt = γLt−1, γ > 0. (7.20)

We assume the public service enter in a separable way in the lifetime utility
function so that marginal utilities of private consumption are not affected by Gt.
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The resource constraint of the economy now is

ct ≡
Ct
Lt
≡ (c1tLt + c2tLt−1)/Lt = c1t + c2t/(1 + n)

= f(kt)− (1 + n)−1γ + (1− δ)kt − (1 + n)kt+1.

instead of (7.12) above.
From time to time the government runs a budget deficit (or surplus) and

in such cases, the deficit is financed by bond issue (or withdrawal).4 Along with
interest payments on government debt, elder care is the only government expense.
That is,

Bt+1 −Bt = rBt +Gt − Tt, B0 given, (7.21)

where the real interest rate r is for simplicity assumed constant. We further
assume r > n; this is in accordance with the above result that when a Barro
economy is in steady state with positive bequests, then, ignoring technological
progress, by (7.15), the interest rate equals the intergenerational utility discount
rate R (to ensure existence of general equilibrium, R was in connection with (7.2)
assumed larger than n).
In absence of technological progress the steady state growth rate of the econ-

omy equals the growth rate of the labor force, that is, gY = n < r. Since the
interest rate is thus higher than the growth rate, to maintain solvency the gov-
ernment must satisfy its intertemporal budget constraint,

∞∑
i=0

Gt+i(1 + r)−(i+1) ≤
∞∑
i=0

Tt+i(1 + r)−(i+1) −Bt. (7.22)

This says that the present value of current and expected future government spend-
ing is constrained by government wealth (the present value of current and ex-
pected future tax revenue minus existing government debt).
Let us concentrate on the “regular”case where the government does not tax

more heavily than needed to cover the spending Gt and the debt service, that is,
the government does not want to accumulate financial net wealth. Then there
is strict equality in (7.22). Applying (7.20) and that Lt+i = Lt(1 + n)i and
Tt+i = τ t+iLt+i, (??) with strict equality simplifies to

Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(τ t+i −

γ

1 + n
) = Bt. (7.23)

Suppose that for some periods taxes are cut so that Tt+i < Gt+i + rBt+i,
that is, a budget deficit is run. Is resource allocation − aggregate consumption

4The model ignores money.
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and investment − affected? Barro says “no”, given that the bequest motive is
operative. Each dynasty will then choose the same consumption path (c2t, c1t)

∞
t=0

as it planned before the shift in fiscal policy. The reason is that the change
in the time profile of lump-sum taxes will not make the dynasty feel richer or
poorer. Aggregate consumption and saving in the economy will therefore remain
unchanged.
The proof goes as follows. Suppose there are N dynasties in the economy,

all alike. Since Lt−1 is the total number of old agents in the economy in the
current period, period t, each dynasty has Lt−1/N old members. Each dynasty
must satisfy its intertemporal budget constraint. That is, the present value of
its consumption stream cannot exceed the total wealth of the dynasty. In the
optimal plan the present value of the consumption stream will equal the total
wealth. Thus

Lt−1

N

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i] = at + ht, (7.24)

where at is initial financial wealth of the dynasty and ht is its human wealth (after
taxes).5 Multiplying through in (7.24) by N, we get the intertemporal budget
constraint of the representative dynasty:

Lt−1

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i] = Nat +Nht ≡ At +Ht,

where At is aggregate financial wealth in the private sector and Ht is aggregate
human wealth (after taxes):

Ht ≡ Nht = Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i − τ t+i). (7.25)

The financial wealth consists of capital, Kt, and government bonds, Bt. Thus,

At +Ht = Kt +Bt +Ht. (7.26)

Since Bt and Ht are the only terms in (7.26) involving taxes, we consider their
sum:

Bt +Ht = Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(τ t+i −

γ

1 + n
+ wt+i − τ t+i)

= Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i −

γ

1 + n
),

5How to get from the generation budget constraints, c2t + (1 + n)bt = (1 + r)st−1 and
(1 + n)c1t + (1 + n)st = (1 + n)(wt − τ t + bt), to the intertemporal budget constraint of the
dynasty is shown in Appendix B.
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where we have used (7.23) and (7.25). We see that the time profile of τ has
disappeared and cannot affect Bt +Ht. Hence, the total wealth of the dynasty is
unaffected by a change in the time profile of taxation.
As a by-product of the analysis we see that higher initial government debt

has no effect on the sum, Bt +Ht, because Ht becomes equally much lower. This
is what Barro (1974) meant by answering no to the question: “Are government
bonds net [private] wealth?”(the title of his paper).
Ricardian equivalence will also manifest itself if there is a pay-as-you-go pen-

sion system. Suppose the mandatory contribution of the young (the workers) is
raised in period t, before the old generation has decided the size of the bequest
to be left to the young. Then, if the bequest motive is operative, the old gen-
eration will use the increase in their pension to leave higher bequests. In this
way the young generation is compensated for the higher contribution they have
to pay to the pay-as-you-go system. As a consequence all agents’consumption
remain unchanged and so does resource allocation. Indeed, within this framework
with perfect markets, as long as the bequest motive is operative, a broad class
of lump-sum government fiscal actions can be nullified by offsetting changes in
private saving and bequests.

Discussion

The picture of the household sector as a set of dynasties, all alike, seems re-
mote from reality. Universally, only a fraction of a country’s population leave
bequests.6 In the last section of Chapter 6 we considered the “pure” case as-
sumed in the Diamond OLG model where a bequest motive is entirely absent. In
that case, because the new generations are then new agents, and the future taxes
are levied partly on these new agents, the future taxes are no longer equivalent
to current taxes. This is the composition-of-the-tax-base argument for Ricardian
Non-equivalence. This argument is also relevant for “mixed”cases where only a
fraction of the population leave bequests or where the bequests are motivated in
other ways than assumed in the Barro model. Moreover, in a world of uncertainty
bequests may simply be accidental rather than planned.
Even if there is a bequest motive of the altruistic form assumed by Barro, it

will only be operative if it is strong enough, as we saw in Section 7.2.4. When
the bequest motive is not operative, Ricardian equivalence breaks down entirely.
Consider a situation where the constraint bt+1 ≥ 0 is binding. Then there will be
no bequests. Parents would in fact like to pass on debt to the next generation.
They are hindered by law, however. But the government can do what the private

6Wolf (2002) found that in 1998 around 30 per cent of US households of “age”above 55 years
(according to the age of the head of the household) reported to have received wealth transfer.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



7.3. Bequests and Ricardian equivalence 275

agents would like to do but cannot. Specifically, if for example rD < n, there will
be no bequests in the Barro economy and we have r∗ = rD < n in steady state.
So there is dynamic ineffi ciency. But the government can avoid this and achieve
r∗ = n within sight by, for example, a fiscal policy continually paying transfers
to the old generation, financed by creation of public debt. The private agents
cannot nullify this beneficial fiscal policy − and have no incentive to try doing so.
However, the logical validity of this point notwithstanding, its practical relevance
is limited since empirical evidence of dynamic ineffi ciency is absent.7

Another limitation of Barro’s analysis has to do with the implicit assumption
of “one-parent families”. The dynastic-family story portrays families as clearly
demarcated and harmonious infinitely-lived entities. This view abstracts from
the fact that:
(a) families are not usually formed by inbreeding, but by marriage of a man

and a woman coming from two different parent families;
(b) the preferences of distinct family members may conflict ; think for example

of the schismatic family feud of the Chicago-based Pritzker family.8

Point (a) gives rise to a complex network of interconnected families. In prin-
ciple, and perhaps surprisingly, this observation need not invalidate Ricardian
equivalence. As Bernheim and Bagwell (1988) ironically remark, the problem is
that “therein lies the diffi culty”. Almost all elements of fiscal policy, even on-the-
face-of-it distortionary taxes, tend to become neutral. This is because virtually all
the population is interconnected through chains involving parent-child linkages.
Bernheim and Bagwell (1988, p. 311) conclude that in this setting, “Ricardian
equivalence is merely one manifestation of a much more powerful and implausible
neutrality theorem”.9

Point (b) gives rise to broken linkages among the many linkages. This makes
it diffi cult to imagine that Ricardian equivalence comes up.
From an econometric point of view, by and large Barro’s hypothesis does not

seem to do a good job in explaining how families actually behave. If altruistically
linked extended family members really did pool their incomes across generations
when deciding how much each should consume, then the amount that any par-
ticular family member consumes would depend only on the present discounted
value of total future income stream of the extended family, not on that person’s
share of that total. To state it differently: if the dynasty hypothesis were a good
approximation to reality, then the ratio of the young’s consumption to that of

7On the other hand, this latter fact could be a consequence of the described fiscal policy.
8The Pritzker family is one of the wealthiest American families, owning among other things

the Hyatt hotel chain. In the early 2000s a long series of internal battles and lawsuits across
generations resulted in the family fortune being split between 11 family members. For an
account of this and other family owned business wars, see for example Gordon (2008).

9Barro (1989) answers the criticism of Bernheim and Bagwell.
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the parents should not depend systematically on the ratio of the young’s income
to that of the parents. But the empirical evidence goes in the opposite direction
− own resources do matter (see Altonji et al. 1992 and 1997).
The debt neutrality view is of interest as a theoretical benchmark case. In

practice, however, tax cuts and debt financing by the government seem to make
the currently alive generations feel wealthier and stimulate their consumption.
Bernheim (1987) reviews the theoretical controversy and the empirical evidence
concerning Ricardian equivalence. He concludes with the empirical estimate, for
the US, that private saving offset only roughly half the decline in government
saving that results from a shift from taxes to deficit finance.
We shall come across the issue of Ricardian equivalence or non-equivalence in

other contexts later in this book.

7.4 The modified golden rule when there is tech-
nological progress*

Heretofore we have abstracted from technological progress. What does the modi-
fied golden rule look like when it is recognized that actual economic development
is generally accompanied by technological progress?
To find out we extend the Barro model with Harrod-neutral technological

progress. As we want consistency with Kaldor’s stylized facts, we assume that
technological progress is Harrod-neutral:

Yt = F (Kt, TtLt),

where F is a neoclassical aggregate production function with CRS and Tt (not
to be confused with tax revenue Tt) is the technology level, which is assumed to
grow exogenously at the constant rate g > 0, that is, Tt = T0(1 + g)t, T0 > 0.
Apart from this (and the specification of u(c) below), everything is as in the
simple Barro model analyzed above. Owing to equilibrium in the factor markets,
Kt and Lt can be interpreted as predetermined variables, given from the supply
side.
We have

ỹt ≡
Yt
TtLt

≡ yt
Tt

= F (
Kt

TtLt
, 1) = F (k̃t, 1) ≡ f(k̃t), f ′ > 0, f ′′ < 0,

where k̃t ≡ Kt/(TtLt) ≡ kt/Tt. The dynamic aggregate resource constraint,
Kt+1 = (1− δ)Kt + Yt − Ct, can now be written

Kt+1

TtLt
= (1 + g)(1 + n)k̃t+1 = (1− δ)k̃t + f(k̃t)− c̃t, (7.27)
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where c̃t ≡ Ct/(TtLt) ≡ ct/Tt, the per capita “technology-corrected”consumption
level. With perfect competition we have the standard equilibrium relations

rt =
∂Yt
∂Kt

− δ =
∂
[
TtLtf(k̃t)

]
∂Kt

− δ = f ′(k̃t)− δ, (7.28)

wt =
∂Yt
∂Lt

=
∂
[
TtLtf(k̃t)

]
∂Lt

=
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt. (7.29)

We want the model to comply with Kaldor’s stylized facts. Thus, among
other things the model should be consistent with a constant rate of return in the
long run. Such a state requires k̃t to be constant, say equal to k̃∗; then rt =
f ′(k̃∗)− δ ≡ r∗. When k̃t is constant, then also c̃t and w̃t are constant, by (7.27)
and (7.29), respectively. In effect, the capital-labor ratio kt, output-labor ratio
yt, consumption-labor ratio ct, and real wage wt, all grow at the same rate as
technology, the constant rate g. So a constant k̃t implies a balanced growth path
with constant rate of return.
To be capable of maintaining a balanced growth path (and thereby be consis-

tent with Kaldor’stylized facts) when the bequest motive is operative, the Barro
model needs that the period utility function, u(c), is a CRRA function. Indeed,
when the bequest motive is operative, the Barro model becomes essentially a
representative agent model in spite of its OLG structure. And it can be shown
(see Appendix C) that for existence of a balanced growth path in a representative
agent model with Harrod-neutral technological progress, we have to assume that
the period utility function, u(c), is of CRRA form:

u(c) =
c1−θ

1− θ , θ > 0, (7.30)

where θ is the constant (absolute) elasticity of marginal utility. From now on
we shall often write the CRRA utility function this way, i.e., without adding
the constant −1/(1− θ). It saves notation and avoids the inconvenience that an
infinite sum of utilities, as in (7.3), may not be bounded for the sole reason that a
trivial constant has been added to the crucial part of the period utility function.
When the bequest motive is operative, the young parent’s optimality condition

(7.10) is also valid in the new situation with technological progress. Assuming
(7.30), we can write (7.10) as c−θ1t = c−θ1t+1(1 + rt+1)/(1 +R), where we have used
that (1 + R̄)(1 + n) ≡ 1 +R; this implies

(
c1t+1

c1t

)θ =
1 + rt+1

1 +R
, (7.31)

where c1t+1/c1t is 1+ the growth rate (as between generations) of consumption as
young. To the extent that the right-hand side of (7.31) is above one, it expresses
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the excess of the rate of return over and above the intergenerational discount rate.
The interpretation of (7.31) is that this excess is needed for c1t+1/c1t > 1. For
the young to be willing to save and in the next period leave positive bequests,
the return on saving must be large enough to compensate the parent for the
absence of consumption smoothing (across time as well as across generations).
The larger is θ (the desire for consumption smoothing), for a given c1t+1/c1t > 1,
the larger must rt+1 be in order to leave the parent satisfied with not consuming
more herself. In the same way, the larger is c1t+1/c1t (and therefore the inequality
across generations), for a given θ, the larger must rt+1 be in order to leave the
parent satisfied with not consuming more.
As observed in connection with (7.14), the old at the beginning of period t+1

own all capital in the economy. So the aggregate capital stock equals their saving
in the previous period: Kt+1 = stLt. Defining s̃t ≡ st/Tt, we get

k̃t+1 =
s̃t

(1 + g)(1 + n)
. (7.32)

Steady state

By (7.32), in steady state s̃t = (1+g)(1+n)k̃∗ ≡ s̃∗. The consumption per young
and consumption per old in period t add to total consumption in period t, that
is, Ct = Ltc1t + Lt(1 + n)−1c2t. Dividing through by effective labor gives

c̃t ≡
Ct
TtLt

= c̃1t + (1 + n)−1c̃2t,

where c̃1t ≡ c1t/Tt and c̃2t ≡ c2t/Tt. In this setting we define a steady state as a
path along which not only k̃t and c̃t, but also c̃1t and c̃2t separately, are constant,
say equal to c̃∗1 and c̃

∗
2, respectively. Dividing through by Tt in the two period

budget constraints, (7.4) and (7.5), we get b̃t ≡ bt/Tt = c̃∗1 + s̃∗ − w̃(k̃∗) ≡ b̃∗.
Consequently, in a steady state with an operative bequest motive, bequest per
young, bt, consumption per young, c1t, saving per young, st, and consumption per
old, c2t, all grow at the same rate as technology, the constant rate g.
But how are k̃∗ and r∗ determined? Inserting the steady state conditions

c1t+1 = c1t(1 + g) and rt+1 = r∗ into (7.31) gives

(1 + g)θ =
1 + r∗

1 +R
or

1 + r∗ = (1 +R)(1 + g)θ ≡ (1 + R̄)(1 + n)(1 + g)θ. (7.33)

This is themodified golden rule when there is Harrod-neutral technological progress
at the rate g and a constant (absolute) elasticity of marginal utility of consump-
tion θ. The modified golden rule says that for the economy to be in a steady state
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with positive bequests, it is necessary that the gross interest rate matches the
“subjective”gross discount rate, taking account of both (a) the own-generation
preference rate R, and (b) the fact that there is aversion (measured by θ) to the
lack of consumption smoothing arising from per capita consumption growth at
rate g. If in (7.33)“=”were replaced by “>”(“<”), then more (less) saving and
capital accumulation would take place, tending to push the system away from
a steady state. When g = 0 (no technological progress), (7.33) reduces to the
simple modified golden rule, (7.15).
The effective capital-labor ratio in steady state, k̃∗, satisfies f ′(k̃∗) − δ = r∗,

where r∗ is given from the modified golden rule, (7.33), when the bequest motive is
operative. Assuming f satisfies the Inada conditions, this equation has a (unique)
solution k̃∗ = f ′−1(r∗+δ) = f ′−1((1+R)(1+g)θ −1 +δ) ≡ k̃MGR. Since f ′′ < 0, it
follows that the higher are R and g, the lower is the modified-golden-rule capital
intensity, k̃MGR.
To ensure that the infinite sum of discounted lifetime utilities is bounded

from above along the steady state path (so that maximization is possible) we
need an effective intergenerational discount rate, R̄ ≡ (1 + R)/(1 + n)− 1, that
is not only positive, but suffi ciently large. In the next chapter it is shown that
1 + R̄ > (1 + g)1−θ is required and that this inequality also ensures that the
transversality condition (7.8) holds in a steady state with positive bequests. The
required inequality is equivalent to

1 +R > (1 + n)(1 + g)1−θ, (7.34)

which we assume satisfied, in addition to R > n.10 Combining this with (7.33),
we thus have

1 + r∗ = (1 +R)(1 + g)θ > (1 + n)(1 + g). (7.35)

Let k̃GR denote the golden rule capital intensity, defined by 1 + f ′(k̃GR) −
δ = (1 + n)(1 + g).11 Since f ′′ < 0, we conclude that k̃MGR < k̃GR. In the
“unmodified”golden rule with technological progress, the interest rate (reflecting
the net marginal productivity of capital) equals the output growth rate, which
with technological progress is (1 +n)(1 + g)− 1. The “modification”displayed by
(7.33) comes about because both the strictly positive effective intergenerational
discount rate R̄ and the elasticity of marginal utility enter the determination of
r∗. In view of the parameter inequality (7.34), the intergenerational discounting
results in a lower effective capital-labor ratio and higher rate of return than in the
golden rule. Indeed, in general equilibrium with positive bequests it is impossible
for the economy to reach the golden rule.

10Fortunately, (7.34) is more strict than the restriction R > n, used up to now, only if θ < 1,
which is not the empirically plausible case.
11See Chapter 4.
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The condition for positive bequests

Using that u′(c2t) = c−θ2t = (c̃∗2Tt)−θ in steady state, the proof of Proposition 1
can be extended to show that bequests are positive in steady state if and only if

1 +R < (1 + rD)(1 + g)−θ, (7.36)

where rD is the steady-state interest rate in the associated “well-behaved”Dia-
mond economy. It can moreover be shown that if both (7.36) and (7.34) (as well
as R > n) hold, and the initial k̃ is in a neighborhood of the modified-golden-rule
value, then the bequest motive is operative in every period and the economy con-
verges over time to the modified-golden-rule steady state. This stability result is
shown in the next chapter.
Intuition might make us think that a higher rate of technological progress, g,

would make the old more reluctant to leave bequests since they know that the
future generations will benefit from better future technology. For fixed rD, this
intuition is confirmed by (7.36). The inequality shows that for fixed rD, a higher
rate of technological progress implies a lower cut-off value for R. But rD is not
fixed but an increasing function of g. That is, whether or not it holds that a higher
g implies a lower cut-off value for R, depends on which effect is the stronger one,
the direct effect in (7.36) of the higher g or the indirect effect through the rise in
rD. See Exercise 7.??

Calibration

On the basis of (7.33) we shall give a rough indirect estimate of the intergen-
erational discount rate, R, by the method of calibration. Generally, calibration
means to choose parameter values such that the model matches a list of data
characteristics.12 Here the list has just one item; our guess on R will be cho-
sen such that the long-run real rate of return per year, r̃∗, calculated from the
model, equals 0.05. For Western European countries after the Second World War,
with one year as the time unit, a reasonable estimate of the rate of technological
progress is g̃ = 0.02. Further, θ = 2 is not an implausible guess. Then, since our
model has an implicit period length of around 30 years, we get:

1 + g = (1 + g̃)30 = 1.0230 = 1.8114

1 + r∗ = (1 + r̃∗)30 = 1.0530 = 4.3219

1 +R =
1 + r∗

(1 + g)θ
=

4.3219

1.81142
= 1.3172

12A next step (not pursued here) ought to consider other data and check whether the model
also fits them.
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Thus R = 0.3172. On a yearly basis the corresponding intergenerational discount
rate is then R̃ = (1 + R)1/30 − 1 ' 0.0092. As to R̄, with ñ = 0.008, we get
1 + n = (1 + ñ)30 = 1.00830 = 1.2700, so that 1 + R̄ ≡ (1 +R)/(1 + n) = 1.0371.
This gives an effective intergenerational discount rate on a yearly basis equal to
0.0012.13

Do these numbers indicate that we are in a situation where the bequest motive
is operative? The answer would be affi rmative if and only if r∗ < rD. Whether
the latter inequality holds, depends on the time preference rate, ρ, and the ag-
gregate production function, f . Exercise 7.? considers the Cobb-Douglas case for
alternative values of θ = 1.

7.5 Concluding remarks

We have studied Barro’s model of overlapping generations linked through al-
truistic bequests. Barro’s insight is that intergenerational altruism may extend
households’planning horizon. If the extent of altruism is suffi ciently high so that
the bequest motive is operative in every period, then:

• the model becomes a representative agent model and implies Ricardian
equivalence;

• a very simple formula determines the long-run real interest rate (the modi-
fied golden rule);

• Ricardian equivalence rules.

Even ignoring technological progress, a strictly positive intergenerational dis-
count rate, R, does not imply that future generations must end up worse off than
current generations. This is because positivity of R does not hinder existence of a
stable steady state. The role of R is to determine what steady state the economy
is heading to, that is, what effective capital-labor ratio and level of per capita
consumption is sustainable. Within the constraint displayed by (7.34), a higher
R results in a lower steady-state capital intensity and a lower level of per capita
consumption in an economy without technological progress and a lower position
of the upward-sloping time path of per capita consumption in an economy with
Harrod-neutral technological progress.
In the above analysis resource allocation and the coordination of economic

behavior across generations is brought about through the market mechanism and
an operative bequest motive due to parental altruism. In the next chapter we

13 Control of the calculation: 1+r̃∗

(1+ñ)(1+g̃)2 = 1.05
1.008·1.022 = 1.0012, hence OK.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



282
CHAPTER 7. BEQUESTS AND THE MODIFIED

GOLDEN RULE

shall study a situation where the coordination across generations is brought about
by a fictional social planner maximizing a social welfare function.

7.6 Literature notes

(incomplete)
The criticism by Bernheim and Bagwell is answered in Barro (1989).
We have concentrated on the Barro model where bequests reflect the concern

of parents for the welfare of their offspring. The Barro model was further de-
veloped and analyzed by Buiter (1980), Abel (1987), and Weil (1987) and our
treatment above draw on these contributions. Our analysis ruled out circum-
stances where children help support their parents. This is dealt with in Abel
(1987) and Kimball (1987); see also the survey in Bernheim (1987). For a more
general treatment of bequests in the economy, see for example Laitner (1997).
Reviews of how to model the distinction between “life-cycle wealth”and “in-

herited wealth”and of diverging views on the empirical importance of inherited
wealth are contained in Kessler and Masson (1988) and Malinvaud (1998a). How
much of net wealth accumulation in Scandinavia represents intended transfers
and bequests is studied by Laitner and Ohlsson (2001) and Danish Economic
Council (2004).

7.7 Appendix

A. The envelope theorem for an unconstrained maximum

In the solution of the parent’s decision problem in the Barro model of Section 7.2
we appealed to the envelope theorem which, in its simplest form, is the principle
that in an interior maximum the total derivative of a maximized function w.r.t.
a parameter equals the partial derivative w.r.t. that parameter. More precisely:

ENVELOPE THEOREM Let y = f(a, x) be a continuously differentiable func-
tion of two variables. The first variable, a, is conceived as a parameter and
the other variable, x, as a control variable. Let g(a) be a value of x at which
∂f
∂x

(a, x) = 0, i.e., ∂f
∂x

(a, g(a)) = 0. Let F (a) ≡ f(a, g(a)). Provided F (a) is
differentiable, we have

F ′(a) =
∂f

∂a
(a, g(a)),

where ∂f/∂a denotes the partial derivative of f(·) w.r.t. the first argument.
Proof F ′(a) = ∂f

∂a
(a, g(a)) + ∂f

∂x
(a, g(a))g′(a) = ∂f

∂a
(a, g(a)), since ∂f

∂x
(a, g(a))

= 0 by definition of g(a). �
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That is, when calculating the total derivative of a function w.r.t. a parameter
and evaluating this derivative at an interior maximum w.r.t. a control variable,
the envelope theorem allows us to ignore the second term arising from the chain
rule. This is also the case if we calculate the total derivative at an interior
minimum. Extension to a function of n control variables is straightforward.14

The envelope theorem in action For convenience we repeat the first-order
conditions (7.6) and (7.7):

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1), (*)

(1 + ρ)−1u′(c2t+1) = (1 + R̄)−1u′(c1t+1)(1 + n)−1. (**)

We described in Section 7.2 how the parent chooses st and bt+1 so as to
maximize the objective function Ũt, taking into account the descendants’optimal
responses to the received bequest bt+1. We claimed without proof that in view
of the envelope theorem, these two at first sight incomplete first-order conditions
are correct, both as they read and for t replaced by t + i, i = 1, 2, ..., and do
indeed characterize an optimal plan.
To clarify the issue we substitute the two period budget constraints of a young

into the objective function to get

Ũt(st, bt+1) = u(wt + bt − st) + (1 + ρ)−1u((1 + r)st (7.37)

−(1 + n)bt+1) + (1 + R̄)−1Ũt+1(ŝt+1, b̂t+2),

where ŝt+1 and b̂t+2 are the optimal responses of the next generation and where
Ũt+1(·) can be written in the analogue recursive way, and so on for all future
generations. The responses of generation t + 1 are functions of the received bt+1

so that we can write

ŝt+1 = ŝ(bt+1, t+ 2), b̂t+2 = b̂(bt+1, t+ 2),

where the second argument, t+ 2, represents the influence of wt+1 and rt+2.
Our at first sight questionable approach rests on the idea that the smooth

function Ũt+1(·) is flat at an interior maximum so that any small change in the
descendants’optimal responses induced by a small change in bt+1 has a negligible
effect on the value of the function, hence also on the value of Ũt(·). A detailed
argument goes as follows.
For the first-order conditions (*) and (**), both as they read and for t replaced

by t+ i, i = 1, 2, ..., to make up a correct characterization of optimal behavior by

14For extensions and more rigorous framing of the envelope theorem, see for example Syd-
saeter et al. (2006).
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a parent who takes the optimal responses by the descendants into account, the
first-order conditions must imply that the total derivative of the parent’s objec-
tive function w.r.t. bt+1 vanishes. To see whether our “half-way”optimization
procedure has ensured this, we first forward the period budget constraint (7.5)
one period to get:

c2t+2 + (1 + n)b̂t+2 = (1 + rt+2)ŝt+1. (7.38)

Using this expression we substitute for c2t+2 in (7.37) and let the function Ût(st, bt+1, ŝt+1, b̂t+2)
represent the right-hand side of (7.37).
Although the parent chooses both st and bt+1, only the choice of bt+1 affects

the next generation. Calculating the total derivative of Ût(·) w.r.t. bt+1, we get
dÛ(st, bt+1, ŝt+1, b̂t+2)/dbt+1 =

(1 + ρ)−1u′(c2t+1) (−(1 + n)) + (1 + R̄)−1u′(c1t+1)(1− ∂ŝt+1

∂bt+1

)

+(1 + R̄)−1

{
(1 + ρ)−1u′(c2t+2)

(
(1 + rt+2)

∂ŝt+1

∂bt+1

− (1 + n)
∂b̂t+2

∂bt+1

)

+(1 + R̄)−1u′(c1t+2)
∂b̂t+2

∂bt+1

}
+ ...

= (1 + ρ)−1u′(c2t+1) (−(1 + n)) + (1 + R̄)−1u′(c1t+1)

−(1 + R̄)−1
[
u′(c1t+1)− (1 + ρ)−1u′(c2t+2)(1 + rt+2)

] ∂ŝt+1

∂bt+1

+(1 + R̄)−1
[
(1 + ρ)−1u′(c2t+2) (−(1 + n)) + (1 + R̄)−1u′(c1t+2)

] ∂b̂t+2

∂bt+1

+ ...

= (1 + ρ)−1u′(c2t+1) (−(1 + n)) + (1 + R̄)−1u′(c1t+1) = 0. (7.39)

The second last equality sign is due to the first-order conditions (*) and (**), first
with t replaced by t + 1, implying that the two terms in square brackets vanish,
second with t replaced by t+ i, i = 2, 3,. . . , implying that also all the remaining
terms, represented by “...”, vanish (since the latter terms can be written in the
same way as the former). The last equality sign is due to (**) as it reads. Thus,
also the total derivative is vanishing as it should at an interior optimum.
Note that the expression in the last line of the derivation is the partial deriv-

ative of Ût(·), namely ∂Û(st, bt+1, ŝt+1, b̂t+2)/∂bt+1. The whole derivation is thus
a manifestation of the envelope theorem for an unconstrained maximum: in an
interior optimum the total derivative of a maximized function w.r.t. a parameter,
here bt+1, equals the partial derivative w.r.t. that parameter.
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B. The intertemporal budget constraint of a dynasty

We here show how to derive a dynasty’s intertemporal budget constraint as pre-
sented in (7.24) of Section 7.3. With lump-sum taxation and constant interest
rate, r, the period budget constraints of a member of generation t are

c1t + st = wt − τ t + bt, and (7.40)

c2t+1 + (1 + n)bt+1 = (1 + r)st. (7.41)

We isolate st in (7.41), substitute into (7.40), and reorder to get

bt = c1t +
c2t+1

1 + r
− (wt − τ t) +

1 + n

1 + r
bt+1.

Then, by forward substitution,

bt =

j∑
i=0

(
1 + n

1 + r
)i
[
c1t+i +

c2t+i+1

1 + r
− (wt+i − τ t+i)

]
+ (

1 + n

1 + r
)j+1bt+j+1

=
∞∑
i=0

(
1 + n

1 + r
)i
[
c1t+i +

c2t+i+1

1 + r
− (wt+i − τ t+i)

]
, (7.42)

assuming limj→∞(1+n
1+r

)j+1bt+j+1 = 0, in view of r > n. For every old in any given
period there are 1 + n young. We therefore multiply through in (7.42) by 1 + n
and reorder:

(1 +n)
∞∑
i=0

(
1 + n

1 + r
)i(c1t+i +

c2t+i+1

1 + r
) = (1 +n)bt + (1 +n)

∞∑
i=0

(
1 + n

1 + r
)i(wt+i− τ t+i).

To this we add the period budget constraint of an old member of the dynasty,

c2t + (1 + n)bt = (1 + r)st−1,

and get the consolidated intertemporal budget constraint of the dynasty in period
t:

c2t+(1+n)
∞∑
i=0

(
1 + n

1 + r
)i(c1t+i+

c2t+i+1

1 + r
) = (1+r)st−1+(1+n)

∞∑
i=0

(
1 + n

1 + r
)i(wt+i−τ t+i),

where (1 + n)bt has been cancelled out on both sides. Dividing through by 1 + r
and reordering gives

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i] = st−1 + (1 + n)

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i − τ t+i).
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This is the intertemporal budget constraint, as seen from the beginning of period
t, of a dynasty with one old member in period t. With Lt−1 old members, this
becomes

Lt−1

∞∑
i=0

(1 + n)i

(1 + r)i+1
[c2t+i + (1 + n)c1t+i]

= st−1Lt−1 + Lt

∞∑
i=0

(1 + n)i

(1 + r)i+1
(wt+i − τ t+i) = At +Ht,

where At = st−1Lt−1 is the financial wealth in the beginning of period t and Ht

is the human wealth, as defined in (7.25). Dividing through by N gives (7.24).

C. Proof that a representative agent model allows balanced growth
only if the period utility function is CRRA

This appendix refers to Section 7.4. When the bequest motive is operative, the
Barro model becomes a representative agent model where the intergenerational
Euler equation (7.10) holds for all dynasties and therefore also at the aggregate
level. For convenience we repeat the Euler equation in question here:

u′(c1t) =
1 + rt+1

1 +R
u′(c1t+1), (7.43)

in view of (1 + R̄)−1 ≡ (1 + R)−1(1 + n). In balanced growth, c1t+1 = (1 + g)c1t,
where g > 0 and rt+1 = r∗, so that (7.43) takes the form

u′(c1t) =
1 + r∗

1 +R
u′((1 + g)c1t) ≡ ω(c1t), (7.44)

which must hold for all c1t > 0 to be generally consistent with balanced growth.
Thus, the derivatives on both sides should also be equal for all c1t > 0:

u′′(c1t) = ω′(c1t) =
1 + r∗

1 +R
u′′((1 + g)c1t)(1 + g). (7.45)

Dividing through by u′(c1t) in accordance with (7.44) and multiplying by c1t yields

c1tu
′′(c1t)

u′(c1t)
=

(1 + g)c1tu
′′((1 + g)c1t)

u′((1 + g)c1t)
,

showing that for all c1t > 0, the (absolute) elasticity of marginal utility should
be the same at the consumption level c1t as at the consumption level (1 + g)c1t.
It follows that u(·) must be such that the (absolute) elasticity of marginal utility,
θ(c) ≡ cu′′(c)/u′(c), is independent of c, i.e., θ(c) = θ > 0.We know from Chapter
3 that this requires that u(·), up to a positive linear transformation, has the CRRA
form c1−θ/(1− θ).
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7.8 Exercises

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



288
CHAPTER 7. BEQUESTS AND THE MODIFIED

GOLDEN RULE

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



Chapter 9

The intertemporal
consumption-saving problem in
discrete and continuous time

In the next two chapters we shall discuss − and apply − the continuous-time ver-
sion of the basic representative agent model, the Ramsey model. As a preparation
for this, the present chapter gives an account of the transition from discrete time
to continuous time analysis and of the application of optimal control theory to
formalize and solve the household’s consumption/saving problem in continuous
time.

There are many fields in economics where a setup in continuous time is prefer-
able to one in discrete time. One reason is that continuous time formulations
expose the important distinction in dynamic theory between stock and flows in
a much clearer way. A second reason is that continuous time opens up for appli-
cation of the mathematical apparatus of differential equations; this apparatus is
more powerful than the corresponding apparatus of difference equations. Simi-
larly, optimal control theory is more developed and potent in its continuous time
version than in its discrete time version, considered in Chapter 8. In addition,
many formulas in continuous time are simpler than the corresponding ones in
discrete time (cf. the growth formulas in Appendix A).

As a vehicle for comparing continuous time modeling with discrete time mod-
eling we consider a standard household consumption/saving problem. How does
the household assess the choice between consumption today and consumption in
the future? In contrast to the preceding chapters we allow for an arbitrary num-
ber of periods within the time horizon of the household. The period length may
thus be much shorter than in the previous models. This opens up for capturing
additional aspects of economic behavior and for undertaking the transition to
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continuous time in a smooth way.
We first specify the market environment in which the optimizing household

operates.

9.1 Market conditions

In the Diamond OLG model no loan market was active and wealth effects on
consumption or saving through changes in the interest rate were absent. It is
different in a setup where agents live for many periods and realistically have a
hump-shaped income profile through life. This motivates a look at the financial
market and more refined notions related to intertemporal choice.

A perfect loan market Consider a given household or, more generally, a
given contractor. Suppose the contractor at a given date t wants to take a loan or
provide loans to others at the going interest rate, it, measured in money terms. So
two contractors are involved, a borrower and a lender. Let the market conditions
satisfy the following four criteria:

(a) the contractors face the same interest rate whether borrowing or lending
(that is, monitoring, administration, and other transaction costs are ab-
sent);

(b) there are many contractors on each side and none of them believe to be able
to influence the interest rate (the contractors are price takers in the loan
market);

(c) there are no borrowing restrictions other than the requirement on the part
of the borrower to comply with her financial commitments;

(d) the lender faces no default risk (the borrower can somehow cost-less be
forced to repay the debt with interest on the conditions specified in the
contract).

A loan market satisfying these idealized conditions is called a perfect loan
market. In such a market,

1. various payment streams can be subject to comparison in a simple way; if
they have the same present value (PV for short), they are equivalent;

2. any payment stream can be converted into another one with the same
present value;
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3. payment streams can be compared with the value of stocks.

Consider a payment stream {xt}T−1
t=0 over T periods, where xt is the payment

in currency at the end of period t. Period t runs from time t to time t + 1 for t
= 0, 1, ..., T − 1. We ignore uncertainty and so it is the interest rate on a riskless
loan from time t to time t + 1. Then the present value, PV0, as seen from the
beginning of period 0, of the payment stream is defined as1

PV0 =
x0

1 + i0
+

x1

(1 + i0)(1 + i1)
+ · · ·+ xT−1

(1 + i0)(1 + i1) · · · (1 + iT−1)
. (9.1)

If Ms. Jones is entitled to the income stream {xt}T−1
t=0 and at time 0 wishes

to buy a durable consumption good of value PV0, she can borrow this amount
and use a part of the income stream {xt}T−1

t=0 to repay the debt with interest over
the periods t = 0, 1, 2, ..., T − 1. In general, when Jones wishes to have a time
profile on the payment stream different from the income stream, she can attain
this through appropriate transactions in the loan market, leaving her with any
stream of payments of the same present value as the given income stream.

Real versus nominal rate of return In this chapter we maintain the as-
sumption of perfect competition in all markets, i.e., households take all prices as
given from the markets. In the absence of uncertainty, the various assets (real
capital, stocks, loans etc.) in which households invest give the same rate of return
in equilibrium. The good which is traded in the loan market can be interpreted
as a (riskless) bond. The borrower issues bonds and the lender buys them. In
this chapter all bonds are assumed to be short-term, i.e., one-period bonds. For
every unit of account borrowed at the end of period t−1, the borrower pays back
with certainty (1 + short-term interest rate) units of account at the end of period
t. If a borrower wishes to maintain debt through several periods, new bonds are
issued at the end of the current period and the obtained loans are spent rolling
over the older loans at the going market interest rate. For the lender, who lends
in several periods, this is equivalent to offering a variable-rate demand deposit
like in a bank.2

Our analysis will be in real terms, that is, inflation-corrected terms. In prin-
ciple the unit of account is a fixed bundle of consumption goods. In the simple
macroeconomic models to be studied in this and most subsequent chapters, such

1We use “present value” as synonymous with “present discounted value”. As usual our
timing convention is such that PV0 denotes the time-0 value of the payment stream, including
the discounted value of the payment (or dividend) indexed by 0.

2Unless otherwise specified, this chapter uses terms like “loan market”and “bond market”
interchangeably. As uncertainty is ignored, this is legitimate.
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a bundle is reduced to one consumption good. The models simply assume there
is only one consumption good in the economy. In fact, there will only be one
produced good, “the”output good, which can be used for both consumption and
capital investment. Whether our unit of account is seen as the consumption good
or the output good is thus immaterial.
The real (net) rate of return on an investment is the rate of return in units

of the output good. More precisely, the real rate of return in period t, rt, is the
(proportionate) rate at which the real value of an investment, made at the end
of period t− 1, has grown after one period.
The link between this rate of return and the more commonplace concept of a

nominal rate of return is the following. Imagine that at the end of period t − 1
you make a bank deposit of value Vt euro. The real value of the deposit when
you invest is then Vt/Pt−1, where Pt−1 is the price in euro of the output good at
the end of period t− 1. If the nominal short-term interest rate is it, the deposit is
worth Vt+1 = Vt(1 + it) euro at the end of period t. By definition of rt, the factor
by which the deposit in real terms has expanded is

1 + rt =
Vt+1/Pt
Vt/Pt−1

=
Vt+1/Vt
Pt/Pt−1

=
1 + it
1 + πt

, (9.2)

where πt ≡ (Pt − Pt−1)/Pt−1 is the inflation rate in period t. So the real (net)
rate of return on the investment is rt = (it − πt)/(1 + πt) ≈ it − πt for it and πt
“small”. The number 1 + rt is called the real interest factor and measures the
rate at which current units of output can be traded for units of output one period
later.
In the remainder of this chapter we will think in terms of real values and

completely ignore monetary aspects of the economy.

9.2 Maximizing discounted utility in discrete time

As mentioned, the consumption/saving problem faced by the household is as-
sumed to involve only one consumption good. The composition of consumption
in each period is not part of the problem. What remains is the question how to
distribute consumption over time.

The intertemporal utility function

A plan for consumption in the periods 0, 1, ..., T − 1 is denoted {ct}T−1
t=0 , where ct

is the consumption in period t. We say the plan has time horizon T. Period 0
(“the initial period”) need not refer to the “birth”of the household but is just
an arbitrary period within the lifetime of the household.
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We assume the preferences of the household can be represented by a time-
separable intertemporal utility function with a constant utility discount rate and
no utility from leisure. The latter assumption implies that the labor supply
of the household in each period is inelastic. The time-separability itself just
means that the intertemporal utility function is additive, i.e., U(c0, c1,. . . , cT−1)
= u(0)(c0) + u(1)(c1)+ . . . +u(T−1)(cT−1), where u(t)(ct) is the utility contribution
from period-t consumption, t = 0, 1,. . . , T − 1. In addition we assume geometric
utility discounting, meaning that utility obtained t periods ahead is converted
into a present equivalent by multiplying by the discount factor (1 + ρ)−t, where
ρ is a constant utility discount rate. So u(t)(ct) = u(ct)(1 + ρ)−t, where u(c)
is a time-independent period utility function. Together, these two assumptions
amount to

U(c0, c1, · · · , cT−1) = u(c0) +
u(c1)

1 + ρ
+ . . . +

u(cT−1)

(1 + ρ)T−1
=

T−1∑
t=0

u(ct)

(1 + ρ)t
. (9.3)

The period utility function is assumed to satisfy u′(c) > 0 and u′′(c) < 0. As
explained in Box 9.1, only linear positive transformations of the period utility
function are admissible.
As (9.3) indicates, the number 1+ρ tells how many units of utility in the next

period the household insists on “in return”for a decrease of one unit of utility in
the current period. So, a ρ > 0 will reflect that if the chosen level of consumption
is the same in two periods, then the individual always appreciates a marginal
unit of consumption higher if it arrives in the earlier period. This explains why
ρ is named the rate of time preference or, even more to the point, the rate of
impatience. The utility discount factor, 1/(1 + ρ)t, indicates how many units of
utility the household is at most willing to give up in period 0 to get one additional
unit of utility in period t.3

It is generally believed that human beings are impatient and that ρ should
therefore be assumed positive.4 There is, however, a growing body of evidence
suggesting that the utility discount rate is typically not constant, but declining
with the time distance from the current period to the future periods within the
horizon. This phenomenon is referred to as “present bias”or, with a more tech-
nical term, “hyperbolic discounting”. Macroeconomics often, as a first approach,

3Multiplying through in (9.3) by (1 + ρ)−1 would make the objective function appear in a
way similar to (9.1) in the sense that also the first term in the sum becomes discounted. At the
same time the ranking of all possible alternative consumption paths would remain unaffected.
For ease of notation, however, we use the form (9.3) which is more standard. Economically,
there is no difference.

4If uncertainty were included in the model, (1 + ρ)−1 might be interpreted as (roughly)
reflecting the probability of surviving to the next period. In this perspective, ρ > 0 is definitely
a plausible assumption.
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ignores the problem and assumes a constant ρ to keep things simple. We will
generally follow this practice.
For many issues the size of ρ is immaterial. Except when needed, we shall

therefore not impose any other constraint on ρ than the definitional requirement
in discrete time that ρ > −1.

Box 9.1. Admissible transformations of the period utility function

When preferences, as assumed here, can be represented by discounted utility, the
concept of utility appears at two levels. The function U in (9.3) is defined on
the set of alternative feasible consumption paths and corresponds to an ordinary
utility function in general microeconomic theory. That is, U will express the
same ranking between alternative consumption paths as any increasing transfor-
mation of U . The period utility function, u, defined on the consumption in
a single period, is a less general concept, requiring that reference to “utility
units”is legitimate. That is, the size of the difference in terms of period utility
between two outcomes has significance for choices. Indeed, the essence of the
discounted utility hypothesis is that we have, for example,

u(c0)− u(c′0) > 0.95
[
u(c′1)− u(c1)

]
⇔ (c0, c1) � (c′0, c

′
1),

meaning that the household, having a utility discount factor 1/(1 + ρ) = 0.95,
strictly prefers consuming (c0, c1) to (c′0, c

′
1) in the first two periods, if and only

if the utility differences satisfy the indicated inequality. (The notation x � y
means that x is strictly preferred to y.)

Only a linear positive transformation of the utility function u, that is,
v(c) = au(c) + b, where a > 0, leaves the ranking of all possible alternative
consumption paths, {ct}T−1

t=0 , unchanged. This is because a linear positive
transformation does not affect the ratios of marginal utilities (the marginal
rates of substitution across time).

The saving problem in discrete time

Suppose the household considered has income from two sources: work and fi-
nancial wealth. Let at denote the real value of (net) financial wealth held by
the household at the beginning of period t (a for “assets”). We treat at as pre-
determined at time t and in this respect similar to a variable-interest deposit with
a bank. The initial financial wealth, a0, is thus given, independently of what in
interest rate is formed in the loan market. And a0 can be positive as well as
negative (in the latter case the household is initially in debt).
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The labor income of the household in period t is denoted wt ≥ 0 and may
follow a typical life-cycle pattern, first rising, then more or less stationary, and
finally vanishing due to retirement. Thus, in contrast to previous chapters where
wt denoted the real wage per unit of labor, here a broader interpretation of wt
is allowed. Whatever the time profile of the amount of labor delivered by the
household through life, in this chapter, where the focus is on individual saving,
we regard this time profile, as well as the hourly wage as exogenous. The present
interpretation of wt will coincide with the one in the other chapters if we imagine
that the household in each period delivers one unit of labor.
To avoid corner solutions we impose the No Fast Assumption limc→0 u

′(c) =
∞. Since uncertainty is by assumption ruled out, the problem is to choose a plan
(c0, c1,. . . , cT−1) so as to maximize

U =

T−1∑
t=0

u(ct)(1 + ρ)−t s.t. (9.4)

ct ≥ 0, (9.5)

at+1 = (1 + rt)at + wt − ct, a0 given, (9.6)

aT ≥ 0, (9.7)

where rt is the interest rate. The control region (9.5) reflects the definitional
non-negativity of the control variable, consumption. The dynamic equation (9.6)
is an accounting relation telling how financial wealth moves over time. Indeed,
income in period t is rtat +wt and saving is then rtat +wt− ct. Since saving is by
definition the same as the increase in financial wealth, at+1− at, we obtain (9.6).
Finally, the terminal condition (9.7) is a solvency requirement that no financial
debt be left over at the terminal date, T . We shall refer to this decision problem
as the standard discounted utility maximization problem without uncertainty.

Solving the problem

To solve the problem, let us use the substitution method.5 From (9.6) we have ct
= (1 + rt)at + wt − at+1, for t = 0, 1,. . . , T − 1. Substituting this into (9.4), we
obtain a function of a1, a2,. . . , aT . Since u′ > 0, saturation is impossible and so an
optimal solution cannot have aT > 0. Hence we can put aT = 0 and the problem
is reduced to an essentially unconstrained problem of maximizing a function Ũ
w.r.t. a1, a2,. . . , aT−1. Thereby we indirectly choose c0, c1,. . . , cT−2. Given aT−1,
consumption in the last period is trivially given as

cT−1 = (1 + rT−1)aT−1 + wT−1,

5Alternative methods include the Maximum Principle as described in the previous chapter
or Dynamic Programming as described in Math Tools.
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ensuring
aT = 0, (9.8)

the terminal optimality condition, necessary when u′(c) > 0 for all c ≥ 0 (satu-
ration impossible).
To obtain first-order conditions we put the partial derivatives of Ũ w.r.t. at+1,

t = 0, 1,. . . , T − 2, equal to 0:

∂Ũ

∂at+1

= (1 + ρ)−t
[
u′(ct) · (−1) + (1 + ρ)−1u′(ct+1)(1 + rt+1)

]
= 0.

Reordering gives the Euler equations describing the trade-off between consump-
tion in two succeeding periods,

u′(ct) = (1 + ρ)−1u′(ct+1)(1 + rt+1), t = 0, 1, 2, ..., T − 2. (9.9)

One of the implications of this condition is that

ρ S rt+1 causes u′(ct) T u′(ct+1), i.e., ct S ct+1 (9.10)

in the optimal plan (due to u′′ < 0). Absent uncertainty the optimal plan entails
either increasing, constant, or decreasing consumption over time depending on
whether the rate of time preference is below, equal to, or above the rate of return
on saving.

Interpretation The interpretation of (9.9) is as follows. Let the consumption
path (c0, c1,. . . , cT−1) be our “reference path”. Imagine an alternative path which
coincides with the reference path except for the periods t and t + 1. If it is
possible to obtain a higher total discounted utility than in the reference path
by varying ct and ct+1 within the constraints (9.5), (9.6), and (9.7), at the same
time as consumption in the other periods is kept unchanged, then the reference
path cannot be optimal. That is, “local optimality”is a necessary condition for
“global optimality”. So the optimal plan must be such that the current utility
loss by decreasing consumption ct by one unit equals the discounted expected
utility gain next period by having 1 + rt+1 extra units available for consumption,
namely the gross return on saving one more unit in the current period.
A more concrete interpretation, avoiding the notion of “utility units”, is ob-

tained by rewriting (9.9) as

u′(ct)

(1 + ρ)−1u′(ct+1)
= 1 + rt+1. (9.11)

The left-hand side indicates the marginal rate of substitution, MRS, of period-
(t+1) consumption for period-t consumption, namely the increase in period-(t+1)
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consumption needed to compensate for a one-unit marginal decrease in period-t
consumption:

MRSt+1,t = −dct+1

dct
|U=Ū =

u′(ct)

(1 + ρ)−1u′(ct+1)
. (9.12)

And the right-hand side of (9.11) indicates the marginal rate of transformation,
MRT, which is the rate at which the loan market allows the household to shift
consumption from period t to period t+ 1.
So, in an optimal plan MRS must equal MRT. This has implications for the

time profile of optimal consumption as indicated by the relationship in (9.10).
The Euler equations, (9.9), can also be seen in a comparative perspective. Con-
sider two alternative values of rt+1. The higher interest rate will induce a negative
substitution effect on current consumption, ct. There is also an income effect,
however, and this goes in the opposite direction. The higher interest rate makes
the present value of a given consumption plan lower. This allows more consump-
tion in all periods for a given total wealth. Moreover, there is generally a third
effect of the rise in the interest rate, a wealth effect. As indicated by the in-
tertemporal budget constraint in (9.20) below, total wealth includes the present
value of expected future after-tax labor earnings and this present value depends
negatively on the interest rate, cf. (9.15) below.
From the formula (9.12) we see one of the reasons that the assumption of a

constant utility discount rate is convenient (but also restrictive). The marginal
rate of substitution between consumption this period and consumption next pe-
riod is independent of the level of consumption as long as this level is the same
in the two periods.
The formula for MRS between consumption this period and consumption two

periods ahead is

MRSt+2,t = −dct+2

dct
|U=Ū =

u′(ct)

(1 + ρ)−2u′(ct+2)
.

This displays one of the reasons that the time-separability of the intertemporal
utility function is a strong assumption. It implies that the trade-off between
consumption this period and consumption two periods ahead is independent of
consumption in the interim.

Deriving the consumption function when utility is CRRA The first-
order conditions (9.9) tell us about the relative consumption levels over time,
not the absolute level. The latter is determined by the condition that initial
consumption, c0, must be highest possible, given that the first-order conditions
and the constraints (9.6) and (9.7) must be satisfied.
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To find an explicit solution we have to specify the period utility function. As
an example we choose the CRRA function u(c) = c1−θ/(1 − θ), where θ > 0.6

Moreover we simplify by assuming rt = r, a constant > −1. Then the Euler
equations take the form (ct+1/ct)

θ = (1 + r)(1 + ρ)−1 so that

ct+1

ct
=

(
1 + r

1 + ρ

)1/θ

≡ γ, (9.13)

and thereby ct = γtc0, t = 0, 1,. . . , T − 1. Substituting into the accounting equa-
tion (9.6), we thus have at+1 = (1 + r)at + wt − γtc0. By backward substitution
we find the solution of this difference equation to be

at = (1 + r)t

[
a0 +

t−1∑
i=0

(1 + r)−(i+1)(wi − γic0)

]
.

Optimality requires that the left-hand side of this equation vanishes for t = T .
So we can solve for c0 :

c0 =
1 + r∑T−1

i=0

(
γ

1+r

)i
[
a0 +

T−1∑
i=0

(1 + r)−(i+1)wi

]
=

1 + r∑T−1
i=0

(
γ

1+r

)i (a0 + h0), (9.14)

where we have inserted the human wealth of the household (present value of
expected lifetime labor income) as seen from time zero:

h0 =
T−1∑
i=0

(1 + r)−(i+1)wi. (9.15)

Thus (9.14) says that initial consumption is proportional to initial total wealth,
the sum of financial wealth and human wealth at time 0. To allow for positive
consumption we need a0 + h0 > 0.
In (9.14) γ is not one of the original parameters, but a derived parameter. To

express the consumption function only in terms of the original parameters, not
that, by (9.14), the propensity to consume out of total wealth depends on:

T−1∑
i=0

(
γ

1 + r

)i
=

{
1−( γ

1+r )
T

1− γ
1+r

when γ 6= 1 + r,

T when γ = 1 + r,
(9.16)

6In later sections of this chapter we let the time horizon of the decision maker go to infinity.
To ease convergence of an infinite sum of discounted utilities, it is an advantage not to have to
bother with additive constants in the period utilities and therefore we write the CRRA function
as c1−θ/(1− θ) instead of the form, (c1−θ − 1)/(1− θ), introduced in Chapter 3. As implied by
Box 9.1, the two forms represent the same preferences.
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where the result for γ 6= 1 + r follows from the formula for the sum of a finite
geometric series. Inserting this together with (9.13) into (9.14), we end up with
the expression

c0 =


(1+r)[1−(1+ρ)−1/θ(1+r)(1−θ)/θ]

1−(1+ρ)−T/θ(1+r)(1−θ)T/θ (a0 + h0) when
(

1+r
1+ρ

)1/θ

6= 1 + r,

1+r
T

(a0 + h0) when
(

1+r
1+ρ

)1/θ

= 1 + r.
(9.17)

This, together with (9.14), thus says:

Result 1 : Consumption is proportional to total wealth, and the factor of
proportionality, often called the marginal propensity to consume out of wealth,
depends on the interest rate r, the time horizon T, and the preference parame-
ters ρ and θ, that is, the impatience rate and the strength of the preference for
consumption smoothing, respectively.

For the subsequent periods we have from (9.13) that

ct = c0

((
1 + r

1 + ρ

)1/θ
)t

, t = 1, . . . , T − 1. (9.18)

EXAMPLE 1 Consider the special case θ = 1 (i.e., u(c) = ln c) together with
ρ > 0. The upper case in (9.17) is here the relevant one and period-0 consumption
will be

c0 =
(1 + r)(1− (1 + ρ)−1)

1− (1 + ρ)−T
(a0 + h0) for θ = 1.

We see that c0 → (1 + r)ρ(1 + ρ)−1(a0 +h0) for T →∞, assuming the right-hand
side of (9.15) converges for T →∞.
We have assumed that payment for consumption occurs at the end of the

period at the price 1 per consumption unit. To compare with the corresponding
result in continuous time with continuous compounding (see Section 9.4), we
might want to have initial consumption in the same present value terms as a0

and h0. That is, we consider c̃0 ≡ c0(1 + r)−1 = ρ(1 + ρ)−1(a0 + h0) for T →∞.
�
So far the expression (9.17) is only a candidate consumption function. But

in view of strict concavity of the objective function, (9.17) is indeed the unique
optimal solution when a0 + h0 > 0.
The conclusion from (9.17) and (9.18) is that consumers look beyond current

income. More precisely:

Result 2 : Under the idealized conditions assumed, including a perfect loan
market and perfect foresight, and given the marginal propensity to consume out
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of total wealth shown in (9.17), the time profile of consumption is determined
by the total wealth and the interest rate (relative to impatience corrected for
the preference for consumption smoothing). The time profile of income does not
matter because consumption can be smoothed over time by drawing on the loan
market.

EXAMPLE 2 Consider the special case ρ = r > 0. Again the upper case in (9.17)
is the relevant one and period-0 consumption will be

c0 =
r

1− (1 + r)−T
(a0 + h0).

We see that c0 → r(a0 + h0) for T → ∞, assuming the right-hand side of (9.15)
converges for T → ∞. So, with an infinite time horizon current consumption
equals the interest on total current wealth. By consuming this the individual
or household maintains total wealth intact. This consumption function provides
an interpretation of Milton Friedman’s permanent income hypothesis. Friedman
defined “permanent income”as “the amount a consumer unit could consume (or
believes it could) while maintaining its wealth intact” (Friedman, 1957). The
key point of Friedman’s theory was the idea that a random change in current
income only affects current consumption to the extent that it affects “perma-
nent income”. Replacing Friedman’s awkward term “permanent income”by the
straightforward “total wealth”, this feature is a general aspect of all consump-
tion functions considered in this chapter. In contrast to this chapter, however,
Friedman emphasized credit market imperfections and thought of a “subjective
income discount rate”of as much as 33% per year. His interpretation of the em-
pirics was that households adopt a much shorter “horizon”than the remainder
of their expected lifetimes (Friedman, 1963, Carroll 2001). �

If the real interest rate varies over time, the discount factor (1 + r)−(i+1) for
a payment made at the end of period i is replaced by Πi

j=0(1 + rj)
−1.

Alternative approach based on the intertemporal budget constraint

There is another approach to the household’s saving problem. With its choice of
consumption plan the household must act in conformity with its intertemporal
budget constraint (IBC for short). The present value of the consumption plan
(c1, ..., cT−1), as seen from time zero, is

PV (c0, c1, ..., cT−1) ≡
T−1∑
t=0

ct
Πt
τ=0(1 + rτ )

. (9.19)
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This value cannot exceed the household’s total initial wealth, a0 + h0. So the
household’s intertemporal budget constraint is

T−1∑
t=0

ct
Πt
τ=0(1 + rτ )

≤ a0 + h0. (9.20)

In this setting the household’s problem is to choose its consumption plan so as
to maximize U in (9.4) subject to this budget constraint.
This way of stating the problem is equivalent to the approach above based

on the dynamic budget condition (9.6) and the solvency condition (9.7). Indeed,
given the accounting equation (9.6), the consumption plan of the household will
satisfy the intertemporal budget constraint (9.20) if and only if it satisfies the
solvency condition (9.7). And there will be strict equality in the intertemporal
budget constraint if and only if there is strict equality in the solvency condition
(the proof is similar to that of a similar claim relating to the government sector
in Chapter 6.2).
Moreover, since in our specific saving problem saturation is impossible, an

optimal solution must imply strict equality in (9.20). So it is straightforward to
apply the substitution method also within the IBC approach. Alternatively one
can introduce the Lagrange function associated with the problem of maximizing
U =

∑T−1
t=0 (1 + ρ)−tu(ct) s.t. (9.20) with strict equality.

Infinite time horizon In the Ramsey model of the next chapter the idea is
used that households may have an infinite time horizon. One interpretation of
this is that parents care about their children’s future welfare and leave bequests
accordingly. This gives rise to a series of intergenerational links. The household
is then seen as a family dynasty with a time horizon beyond the lifetime of
the current members of the family. Barro’s bequest model in Chapter 7 is an
application of this idea. Given a suffi ciently large rate of time preference, it is
ensured that the sum of achievable discounted utilities over an infinite horizon is
bounded from above.
One could say, of course, that infinity is a long time. The sun will eventually,

in some billion years, burn out and life on earth become extinct. Nonetheless,
there are several reasons that an infinite time horizon may provide a convenient
substitute for finite but remote horizons. First, in many cases the solution to
an optimization problem for T “large” is in a major part of the time horizon
close to the solution for T →∞.7 Second, an infinite time horizon tends to ease
aggregation because at any future point in time, remaining time is still infinite.
Third, an infinite time horizon may be a convenient notion when in any given

7The turnpike proposition in Chapter 8 exemplifies this.
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period there is a always a positive probability that there will be a next period to
be concerned about. This probability may be low, but this can be reflected in a
high effective utility discount rate. This idea will be applied in chapters 12 and
13.
We may perform the transition to infinite horizon by letting T →∞ in the ob-

jective function, (9.4) and the intertemporal budget constraint, (9.20). On might
think that, in analogy of (9.8) for the case of finite T, the terminal optimality
condition for the case of infinite horizon is limT→∞ aT = 0. This is generally not
so, however. The reason is that with infinite horizon there is no final date where
all debt must be settled. The terminal optimality condition in the present prob-
lem is simply that the intertemporal budget constraint should hold with strict
equality.
As with finite time horizon, the saving problem with infinite time horizon

may alternatively be framed in terms of a series of dynamic period-by-period
budget identities, in the form (9.6), together with the borrowing limit known as
the No-Ponzi-Game condition:

lim
t→∞

atΠ
t−1
i=0(1 + ri)

−1 ≥ 0.

As we saw in Section 6.5.2 of Chapter 6, such a “flow”formulation of the prob-
lem is equivalent to the formulation based on the intertemporal budget constraint.
We also recall from Chapter 6 that the name Ponzi refers to a guy, Charles Ponzi,
who in Boston in the 1920s temporarily became very rich by a loan arrangement
based on the chain letter principle. The fact that debts grow without bounds is
irrelevant for the lender if the borrower can always find new lenders and use their
outlay to pay off old lenders with the contracted interest. In the real world, en-
deavours to establish this sort of financial eternity machine sooner or later break
down because the flow of new lenders dries up. Such financial arrangements,
in everyday speech known as pyramid companies, are universally illegal.8 It is
exactly such arrangements the No-Ponzi-Game condition precludes.
The terminal optimality condition, known as a transversality condition, can

be shown9 to be
lim
t→∞

(1 + ρ)−(t−1)u′(ct−1)at = 0.

8A related Danish instance, though on a modest scale, could be read in the Danish newpaper
Politiken on the 21st of August 1992. “A twenty-year-old female student from Tylstrup in
Northern Jutland is charged with fraud. In an ad she offered to tell the reader, for 200 DKK,
how to make easy money. Some hundred people responded and received the reply: do like me”.
A more serious present day example is the Wall Street stockbroker, Bernard Madoff, who

admitted a Ponzi scheme that is considered to be the largest financial fraud in U.S. history. In
2009 Madoff was sentenced to 150 years in prison. Other examples of large-scale Ponzi games
appeared in Albania 1995-97 and Ukraine 2008.

9The proof is similar to that given in Chapter 8, Appendix C.
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9.3 Transition to continuous time analysis

In the discrete time framework the run of time is divided into successive periods
of equal length, taken as the time-unit. Let us here index the periods by i =
0, 1, 2, .... Thus financial wealth accumulates according to

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

Multiple compounding per year

With time flowing continuously, we let a(t) refer to financial wealth at time t.
Similarly, a(t + ∆t) refers to financial wealth at time t + ∆t. To begin with, let
∆t equal one time unit. Then a(i∆t) equals a(i) and is of the same value as ai.
Consider the forward first difference in a, ∆a(t) ≡ a(t+∆t)−a(t). It makes sense
to consider this change in a in relation to the length of the time interval involved,
that is, to consider the ratio ∆a(t)/∆t. As long as ∆t = 1, with t = i∆t we have
∆a(t)/∆t = (ai+1 − ai)/1 = ai+1 − ai.
Now, keep the time unit unchanged, but let the length of the time interval

[t, t+ ∆t) approach zero, i.e., let ∆t→ 0. When a is a differentiable function of
t, we have

lim
∆t→0

∆a(t)

∆t
= lim

∆t→0

a(t+ ∆t)− a(t)

∆t
=
da(t)

dt
,

where da(t)/dt, often written ȧ(t), is known as the derivative of a at the point t.
Wealth accumulation in continuous time can then be written

ȧ(t) = s(t), a(0) = a0 given, (9.21)

where s(t) is the saving flow (saving intensity) at time t. For ∆t “small”we have
the approximation ∆a(t) ≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have
∆a(t) = a(t+ 1)− a(t) ≈ s(t).
As time unit choose one year. Going back to discrete time, if wealth grows at

a constant rate g per year, then after i periods of length one year, with annual
compounding, we have

ai = a0(1 + g)i, i = 0, 1, 2, ... . (9.22)

If instead compounding (adding saving to the principal) occurs n times a year,
then after i periods of length 1/n year and a growth rate of g/n per such period,
we have

ai = a0(1 +
g

n
)i. (9.23)
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With t still denoting time measured in years passed since date 0, we have i = nt
periods. Substituting into (9.23) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

[
(1 +

1

m
)m
]gt

, where m ≡ n

g
.

We keep g and t fixed, but let n → ∞. Thus m → ∞. In the limit there is
continuous compounding and we get

a(t) = a0e
gt, (9.24)

where e is a mathematical constant called the base of the natural logarithm and
defined as e ≡ limm→∞(1 + 1/m)m ' 2.7182818285....
The formula (9.24) is the continuous-time analogue to the discrete time for-

mula (9.22) with annual compounding. A geometric growth factor is replaced by
an exponential growth factor, egt, and this growth factor is valid for any t in the
time interval (−τ 1, τ 2) for which the growth rate of a equals the constant g (τ 1

and τ 2 being some positive real numbers).
We can also view the formulas (9.22) and (9.24) as the solutions to a difference

equation and a differential equation, respectively. Thus, (9.22) is the solution to
the linear difference equation ai+1 = (1 + g)ai, given the initial value a0. And
(9.24) is the solution to the linear differential equation ȧ(t) = ga(t), given the
initial condition a(0) = a0. Now consider a time-dependent growth rate, g(t), a
continuous function of t. The corresponding differential equation is ȧ(t) = g(t)a(t)
and it has the solution

a(t) = a(0)e
∫ t
0 g(τ)dτ , (9.25)

where the exponent,
∫ t

0
g(τ)dτ , is the definite integral of the function g(τ) from 0

to t. The result (9.25) is called the accumulation formula in continuous time and
the factor e

∫ t
0 g(τ)dτ is called the growth factor or the accumulation factor.10

Compound interest and discounting in continuous time

Let r(t) denote the short-term real interest rate in continuous time at time t.
To clarify what is meant by this, consider a deposit of V (t) euro in a bank at
time t. If the general price level in the economy at time t is P (t) euro, the real
value of the deposit is a(t) = V (t)/P (t) at time t. By definition the real rate of
return on the deposit in continuous time (with continuous compounding) at time
t is the (proportionate) instantaneous rate at which the real value of the deposit
expands per time unit when there is no withdrawal from the account. Thus, if

10Sometimes the accumulation factor with time-dependent growth rate is written in a different
way, see Appendix B.
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the instantaneous nominal interest rate is i(t), we have V̇ (t)/V (t) = i(t) and so,
by the fraction rule in continuous time (cf. Appendix A),

r(t) =
ȧ(t)

a(t)
=
V̇ (t)

V (t)
− Ṗ (t)

P (t)
= i(t)− π(t), (9.26)

where π(t) ≡ Ṗ (t)/P (t) is the instantaneous inflation rate. In contrast to the
corresponding formula in discrete time, this formula is exact. Sometimes i(t) and
r(t) are referred to as the nominal and real force of interest.
Calculating the terminal value of the deposit at time t1 > t0, given its value at

time t0 and assuming no withdrawal in the time interval [t0, t1], the accumulation
formula (9.25) immediately yields

a(t1) = a(t0)e
∫ t1
t0
r(t)dt.

When calculating present values in continuous time, we use compound dis-
counting. We reverse the accumulation formula and go from the compounded or
terminal value to the present value, a(t0). Similarly, given a consumption plan
(c(t))t1t=t0 , the present value of this plan as seen from time t0 is

PV =

∫ t1

t0

c(t) e−rtdt, (9.27)

presupposing a constant interest rate, r. Instead of the geometric discount factor,
1/(1+r)t, from discrete time analysis, we have here an exponential discount factor,
1/(ert) = e−rt, and instead of a sum, an integral. When the interest rate varies
over time, (9.27) is replaced by

PV =

∫ t1

t0

c(t) e
−
∫ t
t0
r(τ)dτ

dt.

In (9.27) c(t) is discounted by e−rt ≈ (1 + r)−t for r “small”. This might not
seem analogue to the discrete-time discounting in (9.19) where it is ct−1 that is
discounted by (1 + r)−t, assuming a constant interest rate. When taking into
account the timing convention that payment for ct−1 in period t − 1 occurs at
the end of the period (= time t), there is no discrepancy, however, since the
continuous-time analogue to this payment is c(t).

The range for particular parameter values

The allowed range for parameters may change when we go from discrete time to
continuous time with continuous compounding. For example, the usual equation
for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (9.28)
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where K(t) is the capital stock, I(t) is the gross investment at time t and δ ≥ 0
is the (physical) capital depreciation rate. Unlike in discrete time, here δ > 1 is
conceptually allowed. Indeed, suppose for simplicity that I(t) = 0 for all t ≥ 0;
then (9.28) gives K(t) = K0e

−δt. This formula is meaningful for any δ ≥ 0.
Usually, the time unit used in continuous time macro models is one year (or, in
business cycle theory, rather a quarter of a year) and then a realistic value of δ
is of course < 1 (say, between 0.05 and 0.10). However, if the time unit applied
to the model is large (think of a Diamond-style OLG model), say 30 years, then
δ > 1 may fit better, empirically, if the model is converted into continuous time
with the same time unit. Suppose, for example, that physical capital has a half-
life of 10 years. With 30 years as our time unit, inserting into the formula 1/2
= e−δ/3 gives δ = (ln 2) · 3 ' 2.
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good is
1 and thus constant. More generally, if we let the relative price of the capital
good in terms of the consumption good at time t be p(t) and allow ṗ(t) 6= 0, then
we have to distinguish between the physical depreciation of capital, δ, and the
economic depreciation, that is, the loss in economic value of a machine per time
unit. The economic depreciation will be d(t) = p(t)δ− ṗ(t), namely the economic
value of the physical wear and tear (and technological obsolescence, say) minus
the capital gain (positive or negative) on the machine.
Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates of
return and discount rates in general.

Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make
a clear distinction between stocks (say wealth) and flows (say consumption or
saving). Recall, a stock variable is a variable measured as a quantity at a given
point in time. The variables a(t) and K(t) considered above are stock variables.
A flow variable is a variable measured as quantity per time unit at a given point
in time. The variables s(t), K̇(t) and I(t) are flow variables.
One can not add a stock and a flow, because they have different denomina-

tions. What is meant by this? The elementary measurement units in economics
are quantity units (so many machines of a certain kind or so many liters of oil
or so many units of payment, for instance) and time units (months, quarters,
years). On the basis of these elementary units we can form composite mea-
surement units. Thus, the capital stock, K, has the denomination “quantity of
machines”, whereas investment, I, has the denomination “quantity of machines
per time unit”or, shorter, “quantity/time”. A growth rate or interest rate has
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Figure 9.1: With ∆t small the integral of s(t) from t0 to t0 + ∆t ≈ the hatched area.

the denomination “(quantity/time)/quantity”= “time−1”. If we change our time
unit, say from quarters to years, the value of a flow variable as well as a growth
rate is changed, in this case quadrupled (presupposing annual compounding).
In continuous time analysis expressions like K(t) + I(t) or K(t) + K̇(t) are

thus illegitimate. But one can write K(t + ∆t) ≈ K(t) + (I(t) − δK(t))∆t, or
K̇(t)∆t ≈ (I(t) − δK(t))∆t. In the same way, suppose a bath tub at time t
contains 50 liters of water and that the tap pours 1

2
liter per second into the

tub for some time. Then a sum like 50 ` + 1
2
(`/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount
would be 50 ` + 1

2
· 60 ((`/sec)×sec) = 80 `. In analogy, economic flow variables

in continuous time should be seen as intensities defined for every t in the time
interval considered, say the time interval [0, T ) or perhaps [0, ∞). For example,
when we say that I(t) is “investment” at time t, this is really a short-hand
for “investment intensity” at time t. The actual investment in a time interval
[t0, t0 + ∆t) , i.e., the invested amount during this time interval, is the integral,∫ t0+∆t

t0
I(t)dt ≈ I(t0)∆t. Similarly, the flow of individual saving, s(t), should be

interpreted as the saving intensity (or saving density), at time t. The actual saving
in a time interval [t0, t0 + ∆t) , i.e., the saved (or accumulated) amount during
this time interval, is the integral,

∫ t0+∆t

t0
s(t)dt. If ∆t is “small”, this integral is

approximately equal to the product s(t0) ·∆t, cf. the hatched area in Fig. 9.1.
The notation commonly used in discrete time analysis blurs the distinction

between stocks and flows. Expressions like ai+1 = ai + si, without further com-
ment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are added.
In fact, however, it is wealth at the beginning of period i and the saved amount
during period i that are added: ai+1 = ai + si · ∆t. The tacit condition is that
the period length, ∆t, is the time unit, so that ∆t = 1. But suppose that, for
example in a business cycle model, the period length is one quarter, but the time
unit is one year. Then saving in quarter i is si = (ai+1 − ai) · 4 per year.
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The choice between discrete and continuous time formulation

In empirical economics, data typically come in discrete time form and data for
flow variables typically refer to periods of constant length. One could argue that
this discrete form of the data speaks for discrete time rather than continuous
time modelling. And the fact that economic actors often think, decide, and plan
in period terms, may seem a good reason for putting at least microeconomic
analysis in period terms. Nonetheless real time is continuous. Moreover, as for
instance Allen (1967) argued, it can hardly be said that the mass of economic
actors think and decide with the same time distance between successive decisions
and actions. In macroeconomics we consider the sum of the actions. In this
perspective the continuous time approach has the advantage of allowing variation
within the usually artificial periods in which the data are chopped up. In addition,
centralized asset markets equilibrate very fast and respond almost immediately
to new information. For such markets a formulation in continuous time seems a
good approximation.
There is also a risk that a discrete time model may generate artificial oscil-

lations over time. Suppose the “true”model of some mechanism is given by the
differential equation

ẋ = αx, α < −1. (9.29)

The solution is x(t) = x(0)eαt which converges in a monotonic way toward 0 for
t → ∞. However, the analyst takes a discrete time approach and sets up the
seemingly “corresponding”discrete time model

xt+1 − xt = αxt.

This yields the difference equation xt+1 = (1+α)xt, where 1+α < 0. The solution
is xt = (1+α)tx0, t = 0, 1, 2, . . . . As (1+α)t is positive when t is even and negative
when t is odd, oscillations arise (together with divergence if α < −2) in spite of
the “true”model generating monotonous convergence towards the steady state
x∗ = 0.
This potential problem can always be avoided, however, by choosing a suffi -

ciently short period length in the discrete time model. The solution to a differen-
tial equation can always be obtained as the limit of the solution to a corresponding
difference equation for the period length approaching zero. In the case of (9.29),
the approximating difference equation is xi+1 = (1 + α∆t)xi, where ∆t is the
period length, i = t/∆t, and xi = x(i∆t). By choosing ∆t small enough, the
solution comes arbitrarily close to the solution of (9.29). It is generally more
diffi cult to go in the opposite direction and find a differential equation that ap-
proximates a given difference equation. But the problem is solved as soon as a
differential equation has been found that has the initial difference equation as an
approximating difference equation.
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From the point of view of the economic contents, the choice between discrete
time and continuous time may be a matter of taste. Yet, everything else equal, the
clearer distinction between stocks and flows in continuous time than in discrete
time speaks for the former. From the point of view of mathematical convenience,
the continuous time formulation, which has worked so well in the natural sciences,
is preferable. At least this is so in the absence of uncertainty. For problems where
uncertainty is important, discrete time formulations are easier to work with unless
one is familiar with stochastic calculus.11

9.4 Maximizing discounted utility in continuous
time

9.4.1 The saving problem in continuous time

In continuous time the analogue to the intertemporal utility function, (9.3), is

U0 =
∫ T

0
u(c(t))e−ρtdt. (9.30)

In this context it is common to name the utility flow, u, the instantaneous utility
function. We still assume that u′ > 0 and u′′ < 0. The analogue in continuous
time to the intertemporal budget constraint (9.20) is∫ T

0
c(t)e−

∫ t
0
r(τ)dτdt ≤ a0 + h0, (9.31)

where, as before, a0 is the historically given initial financial wealth, while h0 is
the given human wealth,

h0 =
∫ T

0
w(t)e−

∫ t
0
r(τ)dτdt. (9.32)

The household’s problem is then to choose a consumption plan (c(t))T
t=0
so as

to maximize discounted utility, U0, subject to the budget constraint (9.31).

Infinite time horizon Transition to infinite horizon is performed by letting
T → ∞ in (9.30), (9.31), and (9.32). In the limit the household’s, or dynasty’s,
problem becomes one of choosing a plan, (c(t))∞t=0, which maximizes

U0 =

∫ ∞
0

u(c(t))e−ρtdt s.t. (9.33)∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ a0 + h0, (IBC)

11In the latter case, the arguments by Nobel laureate Robert C. Merton in favor of a contin-
uous time formulation are worth consideration.
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where h0 emerges by letting T in (9.32) approach ∞. With an infinite horizon
there may exist technically feasible paths along which the integrals in (9.30),
(9.31), and (9.32) go to ∞ for T → ∞. In that case maximization is not well-
defined. However, the assumptions we are going to make when working with
infinite horizon will guarantee that the integrals converge as T →∞ (or at least
that some feasible paths have −∞ < U0 < ∞, while the remainder have U0

= −∞ and are thus clearly inferior). The essence of the matter is that the rate
of time preference, ρ, must be assumed suffi ciently high.
Generally we define a person as solvent if she is able to meet her financial

obligations as they fall due. Each person is considered “small” relative to the
economy as a whole. As long as all agents in an economy with a perfect loan
market remain “small”, they will in general equilibrium remain solvent if and
only if their gross debt does not exceed their gross assets. The “gross assets”
should be understood as including the present value of the expected future labor
income. Considering the net debt d0 ≡ gross debt − gross assets, the solvency
requirement becomes

d0 ≤
∫ ∞

0

(w(t)− c(t))e−
∫ t
0 r(τ)dτdt,

where the right-hand side of the inequality is the present value of the expected
future primary saving.12 By the definition in (9.32), we see that this requirement
is identical to the intertemporal budget constraint (IBC) which consequently
expresses solvency.

The budget constraint in flow terms

The method which is particularly apt for solving intertemporal decision problems
in continuous time is based on the mathematical discipline optimal control theory.
To apply the method, we have to convert the household’s budget constraint from
the present-value formulation considered above into flow terms.
By mere accounting, in every short time interval (t, t + ∆t) the household’s

consumption plus saving equals the household’s total income, that is,

(c(t) + ȧ(t))∆t = (r(t)a(t) + w(t))∆t.

Here, ȧ(t) ≡ da(t)/dt is the increase per time unit in financial wealth, and thereby
the saving intensity, at time t (assuming no robbery). If we divide through by
∆t and rearrange, we get for all t ≥ 0

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given. (9.34)

12By primary saving is meant the difference between current earned income and current
consumption, where earned income means income before interest transfers.
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This equation in itself is just a dynamic budget identity. It tells how much
and in which direction the financial wealth is changing due to the difference
between current income and current consumption. The equation per se does
not impose any restriction on consumption over time. If this equation were the
only “restriction”, one could increase consumption indefinitely by incurring an
increasing debt without limits. It is not until we add the requirement of solvency
that we get a constraint. When T < ∞, the relevant solvency requirement is
a(T ) ≥ 0 (that is, no debt is left over at the terminal date). This is equivalent to
satisfying the intertemporal budget constraint (9.31).
When T =∞, the relevant solvency requirement is the No-Ponzi-Game con-

dition
lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

This condition says that the present value of debts, measured as −a(t), infinitely
far out in the future, is not permitted to be positive. We have the following
equivalency:

PROPOSITION 1 (equivalence of NPG condition and intertemporal budget con-
straint) Let the time horizon be infinite and assume that the integral (9.32)
remains finite for T →∞. Then, given the accounting relation (9.34), we have:
(i) the requirement (NPG) is satisfied if and only if the intertemporal budget
constraint, (IBC), is satisfied; and
(ii) there is strict equality in (NPG) if and only if there is strict equality in (IBC).

Proof. See Appendix C.

The condition (NPG) does not preclude that the household, or family dynasty,
can remain in debt. This would also be an unnatural requirement as the dynasty
is infinitely-lived. The condition does imply, however, that there is an upper
bound for the speed whereby debt can increase in the long term. The NPG
condition says that in the long term, debts are not allowed to grow at a rate as
high as (or higher than) the interest rate.
To understand the implication, consider the case with a constant interest rate

r > 0. Assume that the household at time t has net debt d(t) > 0, i.e., a(t)
≡ −d(t) < 0. If d(t) were persistently growing at a rate equal to or greater than
the interest rate, (NPG) would be violated.13 Equivalently, one can interpret
(NPG) as an assertion that lenders will only issue loans if the borrowers in the
long run cover their interest payments by other means than by taking up new
loans. In this way, it is avoided that ḋ(t) ≥ rd(t) in the long run. In brief, the
borrowers are not allowed to run a Ponzi Game.
13Starting from a given initial positive debt, d0, when ḋ(t)/d(t) ≥ r > 0, we have d(t) ≥ d0ert

so that d(t)e−rt ≥ d0 > 0 for all t ≥ 0. Consequently, a(t)e−rt = −d(t)e−rt ≤ −d0 < 0 for
all t ≥ 0, that is, lim t→∞a(t)e−rt < 0, which violates (NPG).
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9.4.2 Solving the saving problem

The household’s consumption/saving problem is one of choosing a path for the
control variable c(t) so as to maximize a criterion function, in the form of an in-
tegral, subject to constraints that include a first-order differential equation where
the control variable enters, namely (9.34). Choosing a time path for the con-
trol variable, this equation determines the evolution of the state variable, a(t).
Optimal control theory, which in Chapter 8 was applied to a related discrete
time problem, offers a well-suited apparatus for solving this kind of optimization
problems. We will make use of a special case of Pontryagin’s Maximum Principle
(the basic tool of optimal control theory) in its continuous time version. We shall
consider both the finite and the infinite horizon case. The only regularity con-
dition required is that the exogenous variables, here r(t) and w(t), are piecewise
continuous and that the control variable, here c(t), is piecewise continuous and
take values within some given set C ⊂ R, called the control region.
For T <∞ the problem is: choose a plan (c(t))Tt=0 that maximizes

U0 =

∫ T

0

u(c(t))e−ρtdt s.t. (9.35)

c(t) ≥ 0, (control region) (9.36)

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given, (9.37)

a(T ) ≥ 0. (9.38)

With an infinite time horizon, T in (9.35) is interpreted as∞ and the solvency
condition (9.38) is replaced by

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

Let I denote the time interval [0, T ] if T < ∞ and the time interval [0,∞)
if T = ∞. If c(t) and the corresponding evolution of a(t) fulfil (9.36) and (9.37)
for all t ∈ I as well as the relevant solvency condition, we call (a(t), c(t))Tt=0 an
admissible path. If a given admissible path (a(t), c(t))Tt=0 solves the problem, it is
referred to as an optimal path.14 We assume that w(t) > 0 for all t. No condition
on the impatience parameter ρ is imposed (in this chapter).

First-order conditions

The solution procedure for this problem is as follows:15

14The term “path”, sometimes “trajectory”, is common in the natural sciences for a solution
to a differential equation because one may think of this solution as the path of a particle moving
in two- or three-dimensional space.
15The four-step solution procedure below is applicable to a large class of dynamic optimization

problems in continuous time, see Math tools.
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1. We set up the current-value Hamiltonian function (often just called the
current-value Hamiltonian):

H(a, c, λ, t) ≡ u(c) + λ(ra+ w − c),

where λ is the adjoint variable (also called the co-state variable) associated
with the dynamic constraint (9.37).16 That is, λ is an auxiliary variable
which is a function of t and is analogous to the Lagrange multiplier in
static optimization.

2. At every point in time, we maximize the Hamiltonian w.r.t. the control
variable. Focusing on an interior optimal path,17 we calculate

∂H

∂c
= u′(c)− λ = 0.

For every t ∈ I we thus have the condition

u′(c(t)) = λ(t). (9.39)

3. We calculate the partial derivative of H with respect to the state variable
and put it equal to minus the time derivative of λ plus the discount rate
(as it appears in the integrand of the criterion function) multiplied by λ :

∂H

∂a
= λr = −λ̇+ ρλ.

This says that, for all t ∈ I, the adjoint variable λ should fulfil the differ-
ential equation

λ̇(t) = (ρ− r(t))λ(t). (9.40)

4. We now apply the Maximum Principle which applied to this problem says:
an interior optimal path (a(t), c(t))Tt=0 will satisfy that there exits a contin-
uous function λ = λ(t) such that for all t ∈ I, (9.39) and (9.40) hold along
the path, and the transversality condition,

a(T )λ(T ) = 0, if T <∞, and
lim
t→∞

a(t)λ(t)e−ρt = 0, if T =∞, (TVC)

is satisfied.
16The explicit dating of the time-dependent variables a, c, and λ is omitted where not needed

for clarity.
17A path, (at, ct)

T
t=0, is an interior path if for no t ∈ [0, T ) , (at, ct) is at a boundary point of

the set of admissible values. In the present case where at is not constrained, except at t = T,
(at, ct)

T
t=0, is an interior path if ct > 0 for all t ∈ [0, T ) .
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Let us provide some interpretation of these optimality conditions. Overall,
the Maximum Principle characterizes an optimal path as a path that for every
t maximizes the Hamiltonian associated with the problem. The intuition is that
the Hamiltonian weighs the direct contribution of the marginal unit of the con-
trol variable to the criterion function in the “right”way relative to the indirect
contribution, which comes from the generated change in the state variable (here
financial wealth); “right”means in accordance with the opportunities offered by
the rate of return vis-a-vis the time preference rate, ρ. The optimality condition
(9.39) can be seen as a MC = MB condition in utility terms: on the margin
one unit of account (here the consumption good) must be equally valuable in its
two uses: consumption and wealth accumulation. Together with the optimality
condition (9.40) this signifies that the adjoint variable λ can be interpreted as
the shadow price (measured in units of current utility) of financial wealth along
the optimal path.18

Reordering the differential equation (9.40) gives

rλ+ λ̇

λ
= ρ. (9.41)

This can be interpreted as a no-arbitrage condition. The left-hand side gives the
actual rate of return, measured in utility units, on the marginal unit of saving.
Indeed, rλ can be seen as a dividend and λ̇ as a capital gain. The right-hand side
is the required rate of return in utility units, ρ. Along an optimal path the two
must coincide. The household is willing to save the marginal unit of income only
up to the point where the actual return on saving equals the required return.
We may alternatively write the no-arbitrage condition as

r = ρ− λ̇

λ
. (9.42)

On the left-hand-side appears the actual real rate of return on saving and on
the right-hand-side the required real rate of return. The intuition behind this
condition can be seen in the following way. Suppose Mr. Jones makes a deposit
of V utility units in a “bank”that offers a proportionate rate of expansion of the
utility value of the deposit equal to i (assuming no withdrawal occurs), i.e.,

V̇

V
= i.

18Recall, a shadow price (measured in some unit of account) of a good is, from the point of
view of the buyer, the maximum number of units of account that the optimizing buyer is willing
to offer for one extra unit of the good.
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This is the actual utility rate of return, a kind of “nominal interest rate”. To
calculate the corresponding “real interest rate”let the “nominal price”of a con-
sumption good be λ utility units. Dividing the number of invested utility units,
V, by λ, we get the real value, m = V/λ, of the deposit at time t. The actual real
rate of return on the deposit is therefore

r =
ṁ

m
=
V̇

V
− λ̇

λ
= i− λ̇

λ
. (9.43)

Mr. Jones is just willing to save the marginal unit of income if this actual
real rate of return on saving equals the required real rate, that is, the right-hand
side of (9.42); in turn this necessitates that the “nominal interest rate”, i, in
(9.43) equals the required nominal rate, ρ. The formula (9.43) is analogue to the
discrete-time formula (9.2) except that the unit of account in (9.43) is current
utility while in (9.2) it is currency.
The transversality condition (TVC) is a terminal optimality condition. We

could, for the case T <∞, have expressed it on the equivalent form

a(T )λ(T )e−ρT = 0,

since e−ρT > 0 always. This form has the advantage of being “parallel” to the
transversality condition for the case T = ∞. More importantly, the transversal-
ity condition has affi nity with the principle of complementary slackness in linear
and nonlinear programming. Let us spell out in general terms. Consider the case
T <∞. Interpret the solvency condition a(T ) ≥ 0 as just an example of a general
terminal constraint a(T ) ≥ aT , where a(T ) is the terminal value of some general
state variable with a nonnegative shadow price λ(T ); besides, aT is an arbitrary
real number. Continuing this line of thought, interpret (9.35) as an abstract cri-
terion function and c(t) as an abstract control variable with control region R and
with the property that a higher value of c(t) makes ȧ(t) smaller. Then “comple-
mentary slackness”is the principle that given the terminal constraint a(T ) ≥ aT ,
the terminal optimality condition must be (a(T ) −aT )λ(T ) = 0. The intuition
is that if the shadow price λ(T ) > 0 (a “slackness”), then optimality requires
a(T ) = aT . Indeed, in this case a(T ) > aT has an avoidable positive opportunity
cost. On the other hand, if a(T ) > aT is optimal (another “slackness”), then the
shadow price must be nil, i.e., λ(T ) = 0. There is “complementary slackness”in
the sense that at most one of the weak inequalities a(T ) ≥ aT and λ(T ) ≥ 0 can
be strict in optimum.
Anyway, returning to the household’s saving problem, the transversality con-

dition becomes more concrete if we insert (9.39). For the case T < ∞, we then
have

a(T )u′(c(T ))e−ρT = 0. (9.44)
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Since u′(c(T ))e−ρT is always positive, an optimal plan obviouslymust satisfy a(T )
= aT = 0. The reason is that, given the solvency requirement a(T ) ≥ 0, the only
alternative to a(T ) = 0 is a(T ) > 0. But this would imply that the level of the
consumption path could be raised, and U0 thereby be increased, by allowing a
decrease in a(T ) without violating the solvency requirement.
Now, write the solvency requirement as a(T )e−ρT ≥ 0 and let T →∞. Then

in the limit the solvency requirement takes the form of (NPG) above (replace T
by t), and (9.44) is replaced by

lim
T→∞

a(T )u′(c(T ))e−ρT = 0. (9.45)

This says the same as (TVC) above. Intuitively, a plan that violates this condition
by having “>”instead “=”indicates scope for improvement and thus cannot be
optimal. There would be “purchasing power left for eternity”. This purchasing
power could be transferred to consumption on earth at an earlier date.
Generally, care must be taken when extending a necessary transversality con-

dition from a finite to an infinite horizon. But for the present problem, the
extension is valid. To see this, note that by Proposition 1, strict inequality in
the (NPG) condition is (by Proposition1) equivalent to strict inequality in the in-
tertemporal budget constraint (IBC). Such a path can always be improved upon
by raising c(t) a little in some time interval without decreasing c(t) in any other
time interval and without violating the (NPG) and (IBC). Hence, an optimal
plan must have strict equality in both NPG and IBC. This amounts to requiring
that none of these two conditions is “over-satisfied”. And this requirement can
be shown to be equivalent to the condition (TVC) above. Indeed:

PROPOSITION 2 (the household’s necessary transversality condition with in-
finite time horizon) Let T → ∞ in the criterion function (9.35) and assume
the human wealth integral (9.32) converges (and thereby remains bounded) for
T → ∞. Provided the adjoint variable, λ(t), satisfies the first-order conditions
(9.39) and (9.40), (TVC) holds if and only if (NPG) holds with strict equality.

Proof. See Appendix D.

In view of this proposition, we can write the transversality condition for T →
∞ as the NPG condition with strict equality:

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ = 0. (TVC’)

In view of the equivalence of the NPG condition with strict equality and the IBC
with strict equality, established in Proposition 1, the transversality condition for
T →∞ can also be written∫ ∞

0

c(t)e−
∫ t
0 r(τ)dτdt = a0 + h0. (IBC’)
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The current-value Hamiltonian versus the present-value Hamiltonian
The prefix “current-value” is used to distinguish the current-value Hamiltonian
from what is known as the present-value Hamiltonian. The latter is defined as
Ĥ ≡ He−ρt with λe−ρt substituted by µ, which is the associated (discounted)
adjoint variable. The solution procedure is similar except that step 3 is replaced
by ∂Ĥ/∂a = −µ̇ and λ(t)e−ρt in the transversality condition is replaced by µ(t).
The two methods are equivalent (and if the discount rate is nil, the formulas for
the optimality conditions coincide). But for many economic problems the current-
value Hamiltonian has the advantage that it makes both the calculations and the
interpretation slightly simpler. The adjoint variable, λ(t), which as mentioned
acts as a shadow price of the state variable, becomes a current price along with
the other prices in the problem, w(t) and r(t). This is in contrast to µ(t) which
is a discounted price.

9.4.3 The Keynes-Ramsey rule

The first-order conditions have interesting implications. Differentiate both sides
of (9.39) w.r.t. t to get u′′(c)ċ = λ̇. This equation can be written u′′(c)ċ/u′(c) =
λ̇/λ by drawing on (9.39) again. Applying (9.40) now gives

ċ(t)

c(t)
=

1

θ(c(t))
(r(t)− ρ), (9.46)

where θ(c) is the (absolute) elasticity of marginal utility w.r.t. consumption,

θ(c) ≡ − c

u′(c)
u′′(c) > 0. (9.47)

As in discrete time, θ(c) indicates the strength of the consumer’s preference for
consumption smoothing. The inverse of θ(c) measures the instantaneous in-
tertemporal elasticity of substitution in consumption, which in turn indicates the
willingness to accept variation in consumption over time when the interest rate
changes, see Appendix F.
The result (9.46) says that an optimal consumption plan is characterized in

the following way. The household will completely smooth − i.e., even out −
consumption over time if the rate of time preference equals the real interest rate.
The household will choose an upward-sloping time path for consumption if and
only if the rate of time preference is less than the real interest rate. In this case
the household will have to accept a relatively low level of current consumption
with the purpose of enjoying higher consumption in the future. The higher the
real interest rate relative to the rate of time preference, the more favorable is
it to defer consumption − everything else equal. The proviso is important. In-
deed, in addition to the negative substitution effect on current consumption of a
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Figure 9.2: Optimal consumption paths for a low and a high constant θ, given a constant
r > ρ.

higher interest rate there is a positive income effect due to the present value of
a given intertemporal consumption plan being reduced by a higher interest rate
(see (IBC)). On top of this comes a negative wealth effect due to a higher interest
rate causing a lower present value of expected future labor earnings (again see
(IBC)). The special case of a CRRA utility function provides a convenient agenda
for sorting these details out, see Example 1 in Section 9.5.

By (9.46) we also see that the greater the elasticity of marginal utility (that
is, the greater the curvature of the utility function), the greater the incentive to
smooth consumption for a given value of r(t) − ρ. The reason for this is that a
strong curvature means that the marginal utility will drop sharply if consumption
increases, and will rise sharply if consumption decreases. Fig. 9.2 illustrates this
in the CRRA case where θ(c) = θ, a positive constant. For a given constant
r > ρ, the consumption path chosen when θ is high has lower slope, but starts
from a higher level, than when θ is low.

The condition (9.46), which holds for all t within the time horizon whether this
is finite or infinite, is referred to as the Keynes-Ramsey rule. The name springs
from the English mathematician Frank Ramsey who derived the rule in 1928,
while his mentor, John Maynard Keynes, suggested a simple and intuitive way
of presenting it. The rule is the continuous-time counterpart to the consumption
Euler equation in discrete time.

The Keynes-Ramsey rule reflects the general microeconomic principle that
the consumer equates the marginal rate of substitution between any two goods to
the corresponding price ratio. In the present context the principle is applied to a
situation where the “two goods”refer to the same consumption good delivered at
two different dates. In Section 9.2 we used the principle to interpret the optimal
saving behavior in discrete time. How can the principle be translated into a
continuous time setting?
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Local optimality in continuous time* Let (t, t+∆t) and (t+∆t, t+2∆t) be
two short successive time intervals. The marginal rate of substitution,MRSt+∆t,t,
of consumption in the second time interval for consumption in the first, is19

MRSt+∆t,t ≡ −
dc(t+ ∆t)

dc(t)
|U=Ū =

u′(c(t))

e−ρ∆tu′(c(t+ ∆t))
, (9.48)

approximately. On the other hand, by saving −∆c(t) more per time unit (where
∆c(t) < 0) in the short time interval (t, t+∆t), one can, via the market, transform
−∆c(t) ·∆t units of consumption in this time interval into

∆c(t+ ∆t) ·∆t ≈ −∆c(t)∆t e
∫ t+∆t
t r(τ)dτ (9.49)

units of consumption in the time interval (t+ ∆t, t+ 2∆t). The marginal rate of
transformation is therefore

MRTt+∆t,t ≡ −dc(t+ ∆t)

dc(t)
|U=Ū ≈

= e
∫ t+∆t
t r(τ)dτ .

In the optimal plan we must have MRSt+∆t,t = MRTt+∆t,t which gives

u′(c(t))

e−ρ∆tu′(c(t+ ∆t))
= e

∫ t+∆t
t r(τ)dτ , (9.50)

approximately. When ∆t = 1 and ρ and r(t) are small, this relation can be
approximated by (9.11) from discrete time (generally, by a first-order Taylor
approximation, we have ex ≈ 1 + x, when x is close to 0).
Taking logs on both sides of (9.50), dividing through by ∆t, inserting (9.49),

and letting ∆t→ 0, we get (see Appendix E)

ρ− u′′(c(t))

u′(c(t))
ċ(t) = r(t). (9.51)

With the definition of θ(c) in (9.47), this is exactly the same as the Keynes-
Ramsey rule (9.46) which, therefore, is merely an expression of the general op-
timality condition MRS = MRT. When ċ(t) > 0, the household is willing to
sacrifice some consumption today for more consumption tomorrow only if it is
compensated by an interest rate suffi ciently above ρ. Naturally, the required com-
pensation is higher, the faster marginal utility declines with rising consumption,
i.e., the larger is (−u′′/u′)ċ already. Indeed, a higher ct in the future than today
implies a lower marginal utility of consumption in the future than of consumption
today. Saving of the marginal unit of income today is thus only warranted if the
rate of return is suffi ciently above ρ, and this is what (9.51) indicates.

19The underlying analytical steps can be found in Appendix E.
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9.4.4 Mangasarian’s suffi cient conditions

For dynamic optimization problems with one state variable, the Maximum Prin-
ciple delivers a set of first-order conditions and suggests a terminal optimality
condition, the transversality condition. The first-order conditions are necessary
conditions for an interior path to be optimal, while, with infinite horizon, the
necessity of the suggested transversality condition in principle requires a verifica-
tion in each case; in the present case the verification is implied by Proposition 2.
So, up to this point we have only shown that if the consumption/saving problem
has an interior solution, then this solution satisfies the Keynes-Ramsey rule and
a transversality condition, (TVC’).
But are these conditions also suffi cient? The answer is yes in the present case.

This follows from Mangasarian’s suffi ciency theorem (see Math tools) which, ap-
plied to the present problem, tells us that if the Hamiltonian is jointly concave
in (a, c) for every t within the time horizon, then the listed first-order conditions,
together with the transversality condition, are also suffi cient. Because the in-
stantaneous utility function (the first term in the Hamiltonian) is here strictly
concave in c and the second term is linear in (a, c), the Hamiltonian is jointly
concave in (a, c).

To sum up: if we have found a path satisfying the Keynes-Ramsey rule and
(TVC’), we have a candidate solution. Applying the Mangasarian theorem, we
check whether our candidate is an optimal solution. In the present case it is. In
fact the strict concavity of the Hamiltonian with respect to the control variable
in this problem ensures that the optimal solution is unique (Exercise 9.?).

9.5 The consumption function

We have not yet fully solved the saving problem. The Keynes-Ramsey rule gives
only the optimal rate of change of consumption over time. It says nothing about
the level of consumption at any given time. In order to determine, for instance,
the level c(0), we implicate the solvency condition which limits the amount the
household can borrow in the long term. Among the infinitely many consumption
paths satisfying the Keynes-Ramsey rule, the household will choose the “highest”
one that also fulfils the solvency requirement (NPG). Thus, the household acts
so that strict equality in (NPG) obtains. As we saw in Proposition 2, this is
equivalent to the transversality condition being satisfied.
To avoid misunderstanding: The examples below should not be interpreted

such that for any evolution of wages and interest rates there exists a solution to
the household’s maximization problem with infinite horizon. There is generally
no guarantee that integrals converge and thus have an upper bound for T →∞.
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The evolution of wages and interest rates which prevails in general equilibrium
is not arbitrary, however. It is determined by the requirement of equilibrium.
In turn, of course existence of an equilibrium imposes restrictions on the utility
discount rate relative to the potential growth in instantaneous utility. We shall
return to these aspects in the next chapter.

EXAMPLE 1 (constant elasticity of marginal utility; infinite time horizon). In
the problem in Section 9.4.2 with T =∞, we consider the case where the elasticity
of marginal utility θ(c), as defined in (9.47), is a constant θ > 0. From Appendix
A of Chapter 3 we know that this requirement implies that up to a positive linear
transformation the utility function must be of the form:

u(c) =

{
c1−θ

1−θ , when θ > 0, θ 6= 1,

ln c, when θ = 1.
(9.52)

This is our familiar CRRA utility function. In this case the Keynes-Ramsey rule
implies ċ(t) = θ−1(r(t)− ρ)c(t). Solving this linear differential equation yields

c(t) = c(0)e
1
θ

∫ t
0 (r(τ)−ρ)dτ , (9.53)

cf. the general accumulation formula, (9.25).
We know from Proposition 2 that the transversality condition is equivalent

to the NPG condition being satisfied with strict equality, and from Proposition 1
we know that this condition is equivalent to the intertemporal budget constraint
being satisfied with strict equality, i.e.,∫ ∞

0

c(t)e−
∫ t
0 r(τ)dτdt = a0 + h0, (IBC’)

where h0 is the human wealth,

h0 =

∫ ∞
0

w(t)e−
∫ t

0
r(τ)dτdt. (9.54)

This result can be used to determine c(0).20 Substituting (9.53) into (IBC’) gives

c(0)

∫ ∞
0

e
∫ t
0 [ 1
θ

(r(τ)−ρ)−r(τ)]dτdt = a0 + h0.

The consumption function is thus

c(0) = β0(a0 + h0), where

β0 ≡
1∫∞

0
e
∫ t
0 [ 1
θ

(r(τ)−ρ)−r(τ)]dτdt
=

1∫∞
0
e

1
θ

∫ t
0 [(1−θ)r(τ)−ρ]dτdt

(9.55)

20The method also applies if instead of T =∞, we have T <∞.
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is the marginal propensity to consume out of wealth. We have here assumed
that these improper integrals over an infinite horizon are bounded from above for
all admissible paths. We see that consumption is proportional to total wealth.
The factor of proportionality, often called the marginal propensity to consume
out of wealth, depends on the expected future interest rates and on the preference
parameters ρ and θ, that is, the impatience rate and the strength of the preference
for consumption smoothing, respectively.

Generally, an increase in the interest rate level, for given total wealth, a0 +h0,
can effect c(0) both positively and negatively.21 On the one hand, such an increase
makes future consumption cheaper in present value terms. This change in the
trade-off between current and future consumption entails a negative substitution
effect on c(0). On the other hand, the increase in the interest rates decreases the
present value of a given consumption plan, allowing for higher consumption both
today and in the future, for given total wealth, cf. (IBC’). This entails a positive
pure income effect on consumption today as consumption is a normal good. If θ
< 1 (small curvature of the utility function), the substitution effect will dominate
the pure income effect, and if θ > 1 (large curvature), the reverse will hold. This
is because the larger is θ, the stronger is the propensity to smooth consumption
over time.

In the intermediate case θ = 1 (the logarithmic case) we get from (9.55) that
β0 = ρ, hence

c(0) = ρ(a0 + h0). (9.56)

In this special case the marginal propensity to consume is time independent and
equal to the rate of time preference. For a given total wealth, a0 + h0, current
consumption is thus independent of the expected path of the interest rate. That
is, in the logarithmic case the substitution and pure income effects on current
consumption exactly offset each other. Yet, on top of this comes the negative
wealth effect on current consumption of an increase in the interest rate level.
The present value of future wage incomes becomes lower (similarly with expected
future dividends on shares and future rents in the housing market in a more
general setup). Because of this, h0 (and so a0 + h0) becomes lower, which adds
to the negative substitution effect. Thus, even in the logarithmic case, and a
fortiori when θ < 1, the total effect of an increase in the interest rate level is
unambiguously negative on c(0).

21By an increase in the interest rate level we mean an upward shift in the time-profile of the
interest rate. That is, there is at least one time interval within [0,∞) where the interest rate is
higher than in the original situation and no time interval within [0,∞) where the interest rate
is lower.
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If, for example, r(t) = r and w(t) = w (positive constants), we get

β0 = [(θ − 1)r + ρ]/θ,

a0 + h0 = a0 + w/r.

When θ = 1, the negative effect of a higher r on h0 is decisive. When θ < 1,
a higher r reduces both β0 and h0, hence the total effect on c(0) is even “more
negative”. When θ > 1, a higher r implies a higher β0 which more or less offsets
the lower h0, so that the total effect on c(0) becomes ambiguous. As referred to
in Chapter 3, available empirical studies generally suggest a value of θ somewhat
above 1. �
A remark on fixed-rate loans and positive net debt is appropriate here. Sup-

pose a0 < 0 and assume that this net debt is not in the form of a variable-rate
loan (as hitherto assumed), but for instance a fixed-rate mortgage loan. Then
a rise in the interest rate level implies a lowering of the present value of the
debt and thereby raises financial wealth and possibly total wealth. If so, the rise
in the interest rate level implies a positive wealth effect on current consumption,
thereby “joining”the positive pure income effect in counterbalancing the negative
substitution effect.

EXAMPLE 2 (constant absolute semi-elasticity of marginal utility; infinite time
horizon). In the problem in Section 9.4.2 with T = ∞, we consider the case
where the sensitivity of marginal utility, measured by the absolute value of the
semi-elasticity of marginal utility, −u′′(c)/u′(c) ≈ −(∆u′/u′)/∆c, is a positive
constant, α. The utility function must then, up to a positive linear transformation,
be of the form,

u(c) = −α−1e−αc, α > 0. (9.57)

This is known as the CARA utility function (where the name CARA comes from
“Constant Absolute Risk Aversion”). The Keynes-Ramsey rule now becomes
ċ(t) = α−1(r(t)− ρ).When the interest rate is a constant r > 0, we find, through
(IBC’) and partial integration, c(0) = r(a0 + h0) − (r − ρ)/(αr), presupposing
r ≥ ρ and a0 + h0 > (r − ρ)/(ar2).
This hypothesis of a “constant absolute variability aversion”implies that the

degree of relative variability aversion is θ(c) = αc and thus greater, the larger is
c. The CARA function is popular in the theory of behavior under uncertainty.
One of the theorems of expected utility theory is that the degree of absolute risk
aversion, −u′′(c)/u′(c), is proportional to the risk premium which the economic
agent will require to be willing to exchange a specified amount of consumption
received with certainty for an uncertain amount having the same mean value.
Empirically this risk premium seems to be a decreasing function of the level of
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consumption. Therefore the CARA function is generally considered less realistic
than the CRRA function of the previous example. �
EXAMPLE 3 (logarithmic utility; finite time horizon; retirement). We consider
a life-cycle saving problem. A worker enters the labor market at time 0 with
a financial wealth of 0, has finite lifetime T (assumed known), retires at time
t1 ∈ (0, T ] , and does not wish to pass on bequests. For simplicity we assume that
rt = r > 0 for all t ∈ [0, T ] and labor income is w(t) = w > 0 for t ∈ [0, t1], while
w(t) = 0 for t > t1. The decision problem is

max
(c(t))T

t=0

U0 =

∫ T

0

(ln c(t))e−ρtdt s.t.

c(t) ≥ 0,

ȧ(t) = ra(t) + w(t)− c(t), a(0) = 0,

a(T ) ≥ 0.

The Keynes-Ramsey rule becomes ċt/ct = r − ρ. A solution to the problem
will thus fulfil

c(t) = c(0)e(r−ρ)t. (9.58)

Inserting this into the differential equation for a, we get a first-order linear dif-
ferential equation the solution of which (for a(0) = 0) can be reduced to

a(t) = ert
[
w

r
(1− e−rz)− c0

ρ
(1− e−ρt)

]
, (9.59)

where z = t if t ≤ t1, and z = t1 if t > t1. We need to determine c(0). The
transversality condition implies a(T ) = 0. Having t = T , z = t1 and aT = 0 in
(9.59), we get

c(0) = (ρw/r)(1− e−rt1)/(1− e−ρT ). (9.60)

Substituting this into (9.58) gives the optimal consumption plan.22

If r = ρ, consumption is constant over time at the level given by (9.60). If, in
addition, t1 < T , this consumption level is less than the wage income per year up
to t1 (in order to save for retirement); in the last years the level of consumption
is maintained although there is no wage income; the retired person uses up both
the return on financial wealth and this wealth itself. �
The examples illustrate the importance of forward-looking expectations, here

expectations about future wage income and interest rates. The expectations
affect c(0) both through their impact on the marginal propensity to consume

22For t1 = T and T → ∞ we get in the limit c(0) = ρw/r ≡ ρh0, which is also what (9.55)
gives when a(0) = 0 and θ = 1.
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(cf. β0 in Example 1) and through their impact on the present value of expected
future labor income (or of expected future dividends on shares or imputed rental
income on owner-occupied houses in a more general setup).23

9.6 Concluding remarks

(incomplete)
...
The examples above − and the consumption theory in this chapter in gen-

eral − should only be seen as a first, crude approximation to actual consump-
tion/saving behavior. Real world factors such as uncertainty and narrow credit
constraints (absence of perfect loan and insurance markets) also affect the behav-
ior. When these factors are included, current income and expected income in the
near future tend to become important co-determinants of current consumption,
at least for a large fraction of the population with little financial wealth. We
return to this in connection with short- and medium-run macro models later in
this book.

9.7 Literature notes

(incomplete)
In Chapter 6, where the borrower was a “large”agent with fiscal and mon-

etary policy mandates, namely the public sector, satisfying the intertemporal
budget constraint was a necessary condition for solvency (when the interest rate
exceeds the growth rate of income), but not a suffi cient condition. When the
modelled borrowers are “small”private agents as in this chapter, the situation
is different. Neoclassical models with perfect markets then usually contain equi-
librium mechanisms such that the agents’compliance with their intertemporal
budget constraint is suffi cient for lenders’willingness and ability to supply the
demanded finance. See ...
Present-bias and time-inconsistency. Strots (1956). Laibson, QJE 1997: 1,

αβ, αβ2, ...
Loewenstein and Thaler (1989) survey the evidence suggesting that the utility

discount rate is generally not constant, but declining with the time distance from
the current period to the future periods within the horizon. This is known as
hyperbolic discounting.

23There exist cases where, due to new information, a shift in expectations occurs so that
a discontinuity in a responding endogenous variable results. How to deal with such cases is
treated in Chapter 11.
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The assumptions regarding the underlying intertemporal preferences which
allow them to be represented by the present value of period utilities discounted
at a constant rate are dealt with by Koopmans (1960), Fishburn and Rubinstein
(1982), and − in summary form − by Heal (1998).
Borovika, WP 2013, Recursive preferences, separation of risk aversion and

IES.
Deaton, A., Understanding Consumption, OUP 1992.
On continuous-time finance, see for instance Merton (1990).
Goldberg (1958).
Allen (1967).
To Math Tools: Rigorous and more general presentations of the Maximum

Principle in continuous time applied in economic analysis are available in, e.g.,
Seierstad and Sydsæter (1987), Sydsæter et al. (2008) and Seierstad and Sydsæter
(Optimization Letters, 2009, 3, 507-12).

9.8 Appendix

A. Growth arithmetic in continuous time

Let the variables z, x, and y be differentiable functions of time t. Suppose z(t),
x(t), and y(t) are positive for all t. Then:

PRODUCT RULE z(t) = x(t)y(t)⇒ ż(t)/z(t) = ẋ(t)/x(t) + ẏ(t)/y(t).

Proof. Taking logs on both sides of the equation z(t) = x(t)y(t) gives ln z(t) =
lnx(t)+ln y(t). Differentiation w.r.t. t, using the chain rule, gives the conclusion.
�

The procedure applied in this proof is called logarithmic differentiation w.r.t.
t.

FRACTION RULE z(t) = x(t)/y(t)⇒ ż(t)/z(t) = ẋ(t)/x(t)− ẏ(t)/y(t).

The proof is similar.

POWER FUNCTION RULE z(t) = x(t)α ⇒ ż(t)/z(t) = αẋ(t)/x(t).

The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time
the analogue formulas are only approximately true and the approximation can
be quite bad unless the growth rates of x and y are small, cf. Appendix A to
Chapter 4.
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B. Average growth and interest rates

Sometimes in the literature the accumulation formula in continuous time,

a(t) = a(0)e
∫ t
0 g(τ)dτ ,

is expressed in terms of the arithmetic average, also called the arithmetic mean,
of the growth rates in the time interval [0, t]. This average is defined as ḡ0,t

= (1/t)
∫ t

0
g(τ)dτ . So we can write

a(t) = a(0)eḡ0,tt, (9.61)

which has form similar to (9.24). Similarly, let r̄0,t denote the arithmetic average
of the (short-term) interest rates from time 0 to time t, i.e., r̄0,t = (1/t)

∫ t
0
r(τ)dτ .

Then we can write the present value of the consumption stream (c(t))Tt=0 as PV
=
∫ T

0
c(t)e−r̄0,ttdt.

The arithmetic average growth rate, ḡ0,t, coincides with the average compound
growth rate from time 0 to time t, that is, the number g satisfying

a(t) = a(0)egt, (9.62)

for the same a(0) and a(t) as in (9.61).
There is no similar concordance within discrete time modeling. To see this,

suppose that the period-by-period observations, a0, a1 . . . , an, are available. Let
ĝ0,n be the average compound growth rate from period 0 to period n, that is,
the number x satisfying an = a0(1 + x)n. We find 1 + ĝ0,n = 1 + x = (an/a0)1/n.
This compound growth factor is the geometric mean, mg, of the period-by-period
growth factors since

mg ≡
(
a1

a0

a2

a1

. . .
an
an−1

)1/n

= (
an
a0

)1/n.

The arithmetic mean, Ma, of the period-by-period growth factors is

ma ≡
1

n

(
a1

a0

+
a2

a1

+ · · ·+ an
an−1

)
≥ mg, (9.63)

where strict inequality holds unless all the n growth factors are identical. Indeed,
when the growth factors are not identical, we have, by Jensen’s inequality,

ϕ(

n∑
i=1

wixi) >

n∑
i=1

wiϕ(xi),
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when ϕ is strictly concave and
∑n

i=1 wi = 1, wi ≥ 0, i = 1, 2, . . . , n. So, by (9.63),

lnma = ln
n∑
i=1

1

n

ai
ai−1

>
n∑
i=1

1

n
ln

ai
ai−1

=
1

n

n∑
i=1

ln
ai
ai−1

= lnmg,

since ln is a strictly concave function. This inequality implies ma > mg since ln

is also an increasing function. Consequently, unless the period-by-period growth
rate is a constant, multiplying the initial value a0 with the arithmetic mean of
the growth factors results in a number larger than an.

Discrete versus continuous compounding Suppose the period length is
one year so that the given observations, a0, a1 . . . , an, are annual data. There
are two alternative ways of calculating an average compound growth rate (often
just called the “average growth rate”) for the data. We may apply the geometric
growth formula,

an = a0(1 +G)n, (9.64)

which is natural if the compounding behind the data is discrete and occurs annu-
ally. If the compounding is much more frequent, it is in principle better to apply
the exponential growth formula,

an = a0e
gn, (9.65)

corresponding to continuous compounding. Unless an = a0, the resulting g will
be smaller than the average compound growth rate G calculated from a geometric
growth formula (discrete time) for the same data. Indeed,

g =
ln an

a0

n
= ln(1 +G) / G

for G “small”, where “/”means “close to”(by a first-order Taylor approximation
about G = 0) but “less than”except if G = 0. The intuitive reason for “less than”
is that a given growth force is more powerful when compounding is continuous.
To put it differently: rewriting (1 + G)n into exponential form gives (1 + G)n

= (eln(1+G))n = egn < eGn, as ln(1 +G) < G for all G 6= 0.
Anyway, the difference betweenG and g is usually unimportant. If for example

G refers to the annual GDP growth rate, it will be a small number, and the
difference between G and g immaterial. For example, to G = 0.040 corresponds g
≈ 0.039. Even if G = 0.10, the corresponding g is 0.0953. But if G stands for the
inflation rate and there is high inflation, the difference between G and g will be
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substantial. During hyperinflation the monthly inflation rate may be, say, G =
100%, but the corresponding g will be only 69%.24

C. Proof of Proposition 1 (about equivalence between the No-Ponzi-
Game condition and the intertemporal budget constraint)

We consider the book-keeping relation

ȧ(t) = r(t)a(t) + w(t)− c(t), (9.66)

where a(0) = a0 (given), and the solvency requirement

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

Technical remark. The expression in (NPG) should be understood to include
the possibility that a(t)e−

∫ t
0 r(τ)dτ → ∞ for t → ∞. Moreover, if full generality

were aimed at, we should allow for infinitely fluctuating paths in both the (NPG)
and (TVC) and therefore replace “limt→∞” by “lim inft→∞”, i.e., the limit in-
ferior. The limit inferior for t → ∞ of a function f(t) on [0,∞) is defined as
limt→∞ inf {f(s)| s ≥ t}.25 As noted in Appendix E of the previous chapter, how-
ever, undamped infinitely fluctuating paths never turn up in “normal”economic
optimization problems, whether in discrete or continuous time. Hence, we apply
the simpler concept “lim”rather than “lim inf”. �
On the background of (9.66), Proposition 1 in the text claimed that (NPG)

is equivalent to the intertemporal budget constraint,∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ h0 + a0, (IBC)

being satisfied, where h0 is defined as in (9.54) and is assumed to be a finite
number. In addition, Proposition 1 in Section 9.4 claimed that there is strict
equality in (IBC) if and only there is strict equality in (NPG). A plain proof goes
as follows.

Proof. Isolate c(t) in (9.66) and multiply through by e−
∫ t

0
r(τ)dτ to obtain

c(t)e−
∫ t

0
r(τ)dτ = w(t)e−

∫ t
0
r(τ)dτ − (ȧ(t)− r(t)a(t))e−

∫ t
0
r(τ)dτ .

24Apart from the discrete compounding instead of continuous compounding, a geometric
growth factor is equivalent to a “corresponding” exponential growth factor. Indeed, we can
rewrite the growth factor (1+g)t, t = 0, 1, 2, . . . , into exponential form since (1+g)t = (eln(1+g))t

= e[ln(1+g)]t. Moreover, if g is “small”, we have e[ln(1+g)]t ≈ egt.
25By “inf” is meant infimum of the set, that is, the largest number less than or equal to all

numbers in the set.
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Integrate from 0 to T > 0 to get
∫ T

0
c(t)e−

∫ t
0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt−

∫ T

0

ȧ(t)e−
∫ t

0
r(τ)dτdt+

∫ T

0

r(t)a(t)e−
∫ t

0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt−

([
a(t)e−

∫ t
0
r(τ)dτ

]T
0

−
∫ T

0

a(t)e−
∫ t

0
r(τ)dτ (−r(t))dt

)

+

∫ T

0

r(t)a(t)e−
∫ t

0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt− (a(T )e−

∫ T
0 r(τ)dτ − a(0)),

where the second equality follows from integration by parts. If we let T →∞ and
use the definition of h0 and the initial condition a(0) = a0, we get (IBC) if and
only if (NPG) holds. It follows that when (NPG) is satisfied with strict equality,
so is (IBC), and vice versa. �
An alternative proof is obtained by using the general solution to a linear

inhomogeneous first-order differential equation and then let T → ∞. Since this
is a more generally applicable approach, we will show how it works and use it
for Claim 1 below (an extended version of Proposition 1) and for the proof of
Proposition 2 in the text. Claim 1 will for example prove useful in Exercise 9.1
and in the next chapter.

CLAIM 1 Let f(t) and g(t) be given continuous functions of time, t. Consider
the differential equation

ẋ(t) = g(t)x(t) + f(t), (9.67)

with x(t0) = xt0 , a given initial value. Then the inequality

lim
t→∞

x(t)e
−
∫ t
t0
g(s)ds ≥ 0 (9.68)

is equivalent to

−
∫ ∞
t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ ≤ xt0 . (9.69)

Moreover, if and only if (9.68) is satisfied with strict equality, then (9.69) is
satisfied with strict equality.

Proof. The linear differential equation, (9.67), has the solution

x(t) = x(t0)e
∫ t
t0
g(s)ds

+

∫ t

t0

f(τ)e
∫ t
τ g(s)dsdτ . (9.70)
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Multiplying through by e−
∫ t
t0
g(s)ds yields

x(t)e
−
∫ t
t0
g(s)ds

= x(t0) +

∫ t

t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ .

By letting t→∞, it can be seen that if and only if (9.68) is true, we have

x(t0) +

∫ ∞
t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ ≥ 0.

Since x(t0) = xt0 , this is the same as (9.69). We also see that if and only if (9.68)
holds with strict equality, then (9.69) also holds with strict equality. �
COROLLARY Let n be a given constant and let

ht0 ≡
∫ ∞
t0

w(τ)e
−
∫ τ
t0

(r(s)−n)ds
dτ , (9.71)

which we assume is a finite number. Then, given

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t), where a(t0) = at0 , (9.72)

it holds that

lim
t→∞

a(t)e
−
∫ t
t0

(r(s)−n)ds ≥ 0⇔
∫ ∞
t0

c(τ)e
−
∫ τ
t0

(r(s)−n)ds
dτ ≤ at0 + ht0 , (9.73)

where a strict equality on the left-hand side of “⇔”implies a strict equality on
the right-hand side, and vice versa.

Proof. In (9.67), (9.68) and (9.69), let x(t) = a(t), g(t) = r(t) − n and f(t) =
w(t)− c(t). Then the conclusion follows from Claim 1. �

By setting t0 = 0 in the corollary and replacing τ by t and n by 0, we have
hereby provided an alternative proof of Proposition 1.

D. Proof of Proposition 2 (about the transversality condition with an
infinite time horizon)

In the differential equation (9.67) we let x(t) = λ(t), g(t) = −(r(t) − ρ), and
f(t) = 0. This gives the linear differential equation λ̇(t) = (ρ − r(t))λ(t), which
is identical to the first-order condition (9.40) in Section 9.4. The solution is

λ(t) = λ(t0)e
−
∫ t
t0

(r(s)−ρ)ds
.
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Substituting this into (TVC) in Section 9.4 yields

λ(t0) lim
t→∞

a(t)e
−
∫ t
t0

(r(s)−n)ds
= 0. (9.74)

From the first-order condition (9.39) in Section 9.4 we have λ(t0) = u′(c(t0)) > 0
so that λ(t0) in (9.74) can be ignored. Thus, (TVC) in Section 9.4 is equivalent
to the condition that (NPG) in that section is satisfied with strict equality (let
t0 = 0 = n). This proves Proposition 2 in the text. �

E. Intertemporal consumption smoothing

We claimed in Section 9.4 that equation (9.48) gives approximately the marginal
rate of substitution of consumption in the time interval (t + ∆t, t + 2∆t) for
consumption in (t, t+∆t). This can be seen in the following way. To save notation
we shall write our time-dependent variables as ct, rt, etc., even though they are
continuous functions of time. The contribution from the two time intervals to the
criterion function is∫ t+2∆t

t

u(cτ )e
−ρτdτ ≈ e−ρt

(∫ t+∆t

t

u(ct)e
−ρ(τ−t)dτ +

∫ t+2∆t

t+∆t

u(ct+∆t)e
−ρ(τ−t)dτ

)
= e−ρt

(
u(ct)

[
e−ρ(τ−t)

−ρ

]t+∆t

t

+ u(ct+∆t)

[
e−ρ(τ−t)

−ρ

]t+2∆t

t+∆t

)

=
e−ρt(1− e−ρ∆t)

ρ

[
u(ct) + u(ct+∆t)e

−ρ∆t
]
.

Requiring unchanged utility integral U0 = Ū0 is thus approximately the same as
requiring ∆[u(ct) + u(ct+∆t)e

−ρ∆t] = 0, which by carrying through the differenti-
ation and rearranging gives (9.48).
The instantaneous local optimality condition, equation (9.51), can be inter-

preted on the basis of (9.50). Take logs on both sides of (9.50) to get

lnu′(ct) + ρ∆t− lnu′(ct+∆t) =

∫ t+∆t

t

rτdτ .

Dividing by ∆t, substituting (9.49), and letting ∆t→ 0 we get

ρ− lim
∆t→0

lnu′(ct+∆t)− lnu′(ct)

∆t
= lim

∆t→0

Rt+∆t −Rt

∆t
, (9.75)

where Rt is the antiderivative of rt. By the definition of a time derivative, (9.75)
can be written

ρ− d lnu′(ct)

dt
=
dRt

dt
.
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Carrying out the differentiation, we get

ρ− 1

u′(ct)
u′′(ct)ċt = rt,

which was to be shown.

F. Elasticity of intertemporal substitution in continuous time

The relationship between the elasticity of marginal utility and the concept of
instantaneous elasticity of intertemporal substitution in consumption can be ex-
posed in the following way: consider an indifference curve for consumption in the
non-overlapping time intervals (t, t+∆t) and (s, s+∆t). The indifference curve is
depicted in Fig. 9.3. The consumption path outside the two time intervals is kept
unchanged. At a given point (ct∆t, cs∆t) on the indifference curve, the marginal
rate of substitution of s-consumption for t-consumption, MRSst, is given by the
absolute slope of the tangent to the indifference curve at that point. In view of
u′′(c) < 0, MRSst is rising along the curve when ct decreases (and thereby cs
increases).
Conversely, we can consider the ratio cs/ct as a function of MRSst along the

given indifference curve. The elasticity of this consumption ratio w.r.t. MRSst
as we move along the given indifference curve then indicates the elasticity of
substitution between consumption in the time interval (t, t+∆t) and consumption
in the time interval (s, s+∆t). Denoting this elasticity by σ(ct, cs), we thus have:

σ(ct, cs) =
MRSst
cs/ct

d(cs/ct)

dMRSst
≈

∆(cs/ct)
cs/ct

∆MRSst
MRSst

.

At an optimum point, MRSst equals the ratio of the discounted prices of
good t and good s. Thus, the elasticity of substitution can be interpreted as
approximately equal to the percentage increase in the ratio of the chosen goods,
cs/ct, generated by a one percentage increase in the inverse price ratio, holding
the utility level and the amount of other goods unchanged. If s = t+ ∆t and the
interest rate from date t to date s is r, then (with continuous compounding) this
price ratio is er∆t, cf. (9.50). Inserting MRSst from (9.48) with t + ∆t replaced
by s, we get

σ(ct, cs) =
u′(ct)/[e

−ρ(s−t)u′(cs)]

cs/ct

d(cs/ct)

d{u′(ct)/[e−ρ(s−t)u′(cs)]}

=
u′(ct)/u

′(cs)

cs/ct

d(cs/ct)

d(u′(ct)/u′(cs))
, (9.76)
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Figure 9.3: Substitution of s-consumption for t-consumption as MRSst increases to
MRS

′
st.

since the factor e−ρ(t−s) cancels out.
We now interpret the d’s in (9.76) as differentials (recall, the differential of a

differentiable function y = f(x) is denoted dy and defined as dy = f ′(x)dx where
dx is some arbitrary real number). Calculating the differentials we get

σ(ct, cs) ≈
u′(ct)/u

′(cs)

cs/ct

(ctdcs − csdct)/c2
t

[u′(cs)u′′(ct)dct − u′(ct)u′′(cs)dcs]/u′(cs)2
.

Hence, for s→ t we get cs → ct and

σ(ct, cs)→
ct(dcs − dct)/c2

t

u′(ct)u′′(ct)(dct − dcs)/u′(ct)2
= − u′(ct)

ctu′′(ct)
≡ σ̃(ct).

This limiting value is known as the instantaneous elasticity of intertemporal sub-
stitution of consumption. It reflects the opposite of the preference for consump-
tion smoothing. Indeed, we see that σ̃(ct) = 1/θ(ct), where θ(ct) is the elasticity
of marginal utility at the consumption level c(t).

9.9 Exercises

9.1 We look at a household (or dynasty) with infinite time horizon. The house-
hold’s labor supply is inelastic and grows at the constant rate n > 0. The house-
hold has a constant rate of time preference ρ > n and the individual instantaneous
utility function is u(c) = c1−θ/(1 − θ), where θ is a positive constant. There is
no uncertainty. The household maximizes the integral of per capita utility dis-
counted at the rate ρ − n. Set up the household’s optimization problem. Show
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that the optimal consumption plan satisfies

c(0) = β0(a0 + h0), where

β0 =
1∫ ∞

0
e
∫ t
0

(
(1−θ)r(τ)−ρ

θ
+n)dτ

dt
, and

h0 =

∫ ∞
0

w(t)e−
∫ t
0 (r(τ)−n)dτdt,

where w(t) is the real wage per unit of labor and otherwise the same notation as
in this chapter is used. Hint: apply the corollary to Claim 1 in Appendix C and
the method of Example 1 in Section 9.5. As to h0, start by considering

H0 ≡ h0L0 =

∫ ∞
0

w(t)Lte
−
∫ t
0 (r(τ)−n)dτdt

and apply that L(t) = L0e
nt.
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Chapter 12

Overlapping generations in
continuous time

12.1 Introduction

In this chapter we return to issues where life-cycle aspects are important. A
representative agent framework is therefore not suitable. We shall see how an
overlapping generations (OLG) structure can be made compatible with continu-
ous time analysis.
The reason for the transition to continuous time is the following. The two-

period OLG models considered in chapters 3-5 have a coarse notion of time. The
implicit length of the period is something in the order of 25-30 years. This im-
plies very rough dynamics. And changes within a shorter time horizon can not
be studied. Under special conditions three-period OLG models are analytically
obedient, but complex. For OLG models with more than three coexisting gener-
ations analytical aggregation is close to unmanageable. Empirical OLG models,
for specific economies, with a period length of one or a few years, and thereby
many coexisting generations, have been developed. Examples include for the
U.S. economy the Auerbach-Kotlikoff (1987) model and for the Danish economy
the DREAM model (Danish Rational Economic Agents Model). The dynamics
and predictions from this kind of models are studied by numerical simulation
on a computer. Governments, large organizations and the financial companies
use this type of models to assess how changes in economic policy or in external
circumstances are likely to affect the economy.
For basic understanding of economic mechanisms, analytical tractability is

important, however. With this in mind, a tractable OLG model with a refined
notion of time was developed by the French-American economist, Olivier Blan-
chard, from Massachusetts Institute of Technology. In a paper from 1985 Blan-
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chard simply suggested an OLG model in continuous time, in which people have
finite, but uncertain lifetime. The model builds on earlier ideas by Yaari (1965)
about life-insurance and is sometimes called the Blanchard-Yaari OLG model.
For convenience, we stick to the shorter name Blanchard OLG model.
The usefulness of the model derives from its close connection to important

facts:

• economic interaction takes place between agents belonging tomany different
age groups;

• agents’working life lasts many periods; the present discounted value of
expected future labor income is thus a key variable in the system; hereby
the wealth effect of a change in the interest rate becomes important;

• owing to uncertainty about remaining lifetime and to retirement from the
labor market at old age, a large part of saving is channelled to pension
arrangements and various kinds of life-insurance;

• taking finite lifetime into account, the model offers a more realistic ap-
proach to the study of long-run effects of government budget deficits and
government debt than the Ramsey model;

• by including life expectancy among its parameters, the model opens up for
studying effects of demographic changes in the industrialized countries such
as increased life expectancy due to improved health conditions.

In the next sections we present and discuss Blanchard’s OLG model. A sim-
plifying assumption in the model is that expected remaining lifetime for any
individual is independent of age. The simplest version of the model assumes in
addition that people stay on the labor market until death. This version is known
as the model of perpetual youth and is presented in Section 12.2. Later in the
chapter we extend the model by including retirement at old age, thereby pro-
viding a more distinct life-cycle perspective. Among other things this leads to a
succinct theory of the interest rate in the long run. In Section 12.5 we apply the
Blanchard framework for a study of national wealth and foreign debt in a small
open economy. Key variables are listed in Table 12.1.
The model is in continuous time. Chapter 9 gave an introduction to continuous

time analysis. In particular we emphasized that flow variables in continuous time
should be interpreted as intensities.
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Table 12.1. Key variable symbols in the Blanchard OLG model.
Symbol Meaning

N(t) Size of population at time t
b Birth rate
m Death rate (mortality rate)
n ≡ b−m Population growth rate
ρ Pure rate of time preference
c(v, t) Consumption at time t by an individual born at time v
C(t) Aggregate consumption at time t
a(v, t) Financial wealth at time t by an individual born at time v
A(t) Aggregate financial wealth at time t
w(t) Real wage at time t
r(t) Risk-free real interest rate at time t
L(t) Labor force at time t
h(v, t) PV of expected future labor income by an individual
H(t) Aggregate PV of expected future labor income of

people alive at time t
δ Capital depreciation rate
g Rate of technological progress
λ Retirement rate

12.2 The model of perpetual youth

We first portray the household sector. We describe its demographic character-
istics, preferences, market environment (including a market for life annuities),
the resulting behavior by individuals, and the aggregation across the different
age groups. The production sector is as in the previous chapters. But in addi-
tion to production firms there are now life insurance companies. Finally, general
equilibrium and the dynamic evolution at the aggregate level are studied.
The economy is closed. Perfect competition and rational (model consistent)

expectations are assumed throughout. Apart from the uncertain lifetime there is
no uncertainty.

12.2.1 Households

Demography

We describe a household as consisting of a single adult whose lifetime is uncertain.
Let X denote the remaining lifetime (a stochastic variable) of this person. Then
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Figure 12.1: The survival probability, e−mx, the exponential cummulative distribution
function, F (x), and the associated density function, f(x).

the probability of experiencing X larger than x (an arbitrary positive number) is

P (X > x) = e−mx, (12.1)

where m > 0 is a parameter, reflecting the instantaneous death rate or mortality
rate. So (12.1) indicates the probability of surviving x more years. The special
feature here is that the parameter m is assumed independent of age and the same
for all individuals. The reason for introducing this coarse assumption, at least
as a first approach, is that it simplifies the analysis a lot by making aggregation
easy.
Let us choose one year as our time unit. It then follows from (12.1) that the

probability of dying within one year “from now”is approximately equal to m. To
see this, note that P (X ≤ x) = 1 − e−mx ≡ F (x) is the exponential cumulative
distribution function. It follows that the probability density function is f(x)
= F ′(x) = me−mx. We have P (x < X ≤ x + ∆x) ≈ f(x)∆x for ∆x “small”.
With x = 0, this gives P (0 < X ≤ ∆x) ≈ f(0)∆x = m∆x. So for a “small”
time interval “from now”, the probability of dying is approximately proportional
to the length of the time interval. And for ∆x = 1, we get P (0 < X ≤ 1) ≈ m,
as was to be explained. Fig. 12.1 illustrates.
The expected remaining lifetime is E(X) =

∫∞
0
xf(x)dx = 1/m and is thus

the same whatever the current age. This reflects that the exponential distribution
is “memory-less”. A related unwelcome implication of the assumption (12.1) is
that there is no upper bound on possible lifetime. Although according to the
exponential distribution, the probability of becoming for instance 200 years old
is extremely small for values of m consistent with a realistic life expectancy, it is
certainly larger than in reality.
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Let N(t) be the size of the adult population at time t. We ignore integer
problems and consider N(t) as a smooth function of time, t. We assume the
events of death are independent across individuals and that the population is
“large”. Then, by the law of large numbers the actual number of deaths per
year at time t is indistinguishable from the expected number, N(t)m.1 Let b > 0
denote the birth rate, referring to the inflow into the adult population. Like m,
b is assumed constant over time. Again, appealing to stochastic independence
and the law of large numbers, the actual number of births per year at time t
is indistinguishable from the expected number, N(t)b. So at the aggregate level
frequencies and probabilities coincide. By implication, N(t) is growing according
to N(t) = N(0)ent, where n ≡ b −m is the population growth rate, a constant.
Thus m and b correspond to what demographers call the crude mortality rate
and the crude birth rate, respectively.
Let N(v, t) denote the number of people from the birth cohort of the time

interval (v, v + 1) still alive at time t (they belong to “vintage” v). Thereby
N(v, t) is also the number of people of age t− v at time t, which we perceive as
“current time”. We have

N(v, t) ≈ N(v)bP (X > t− v) = N(0)envbe−m(t−v). (12.2)

Provided parameters have been constant for a long time back in history, from
this formula the age composition of the population at time t can be calculated.
The number of newborn (age below 1 year) around time t is N(t, t) ≈ N(t)b
= N(0)entb. The number of people of age j at time t is approximately

N(t, t− j) ≈ N(0)en(t−j)be−mj = N(0)entbe−bj = N(t)be−bj, (12.3)

since b = n+m.
Fig. 12.2 shows this age distribution and compares with a stylized empirical

age distribution (the hatched curve). The general concavity of the empirical curve
and in particular its concentrated “curvature”around 70-80 years’age is not well
captured by the theoretical model. Yet the model at least reflects that cohorts of
increasing age tend to be smaller and smaller.
By summing over all times of birth we get the total population:∫ t

−∞
N(v, t)dv =

∫ t

−∞
N(0)envbe−m(t−v)dv

= N(0)be−mt
∫ t

−∞
e(n+m)vdv = N(0)be−mt

[
e(n+m)v

n+m

]t
−∞

= N(0)be−mt
e(n+m)t − 0

b
= N(0)ent = N(t). (12.4)

1If m̂ denotes the frequency of deaths (relative to population), the law of large numbers in
this context says that for every ε > 0, P (|m̂−m| ≤ ε |N(t))→ 1 as N(t)→∞.
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Figure 12.2: Age distribution of the population at time t (the hatched curve depicts a
stylized empirical curve).

Preferences

We consider an individual born at time v ≤ t and still alive at time t. The
consumption flow at time t of the individual is denoted c(v, t). For s > t, we
interpret c(v, s) as the planned consumption flow at time s in the future. The
individual maximizes expected lifetime utility, where the instantaneous utility
function is u(c), u′ > 0, u′′ < 0, and the pure rate of time preference (impatience)
is a constant ρ ≥ 0. There is no bequest motive. Expected lifetime utility, as
seen from time t, is

Ut = Et

(∫ t+X

t

u (c(s, v)) e−ρ(s−t)ds

)
, (12.5)

where Et is the expectation operator conditional on information available at time
t. This formula for expected discounted utility is valid for all alive at time t
whatever the cohort v ≤ t to which they belong; this is due to their common
expected remaining lifetime. Hence we can do with only one time index, t, on
the symbol U.
There is a more convenient way of rewriting Ut. Given s > t, let Z(s) denote

a stochastic variable with two different possible outcomes:

Z(s) =

{
u (c(s, v)) , if X > s− t (i.e., the person is still alive at time s)

0, if X ≤ s− t (i.e., the person is dead at time s).

Then

Ut = Et

(∫ ∞
t

Z(s)e−ρ(s−t)ds

)
=

∫ ∞
t

Et
(
Z(s)e−ρ(s−t)) ds.
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Note that in this context the integration operator
∫∞
t

(·)ds acts like a discrete-time
summation operator

∑∞
0 . Hence,

Ut =

∫ ∞
t

e−ρ(s−t)Et(Z(s))ds

=

∫ ∞
t

e−ρ(s−t) (u (c(s, v))P (X > s− t) + 0 · P (X ≤ s− t))ds

=

∫ ∞
t

e−(ρ+m)(s−t)u (c(s, v)) ds. (12.6)

We see that the expected discounted utility can be written in a way similar to
the intertemporal utility function in the deterministic Ramsey model. The only
difference is that the pure rate of time preference, ρ, is replaced by an effective
rate of time preference, ρ + m. This rate is higher, the higher is the death rate
m. This reflects that the likelihood of being alive at time s in the future is a
decreasing function of the death rate.
For analytical convenience, we let u(c) = ln c.

The market environment

Since every individual faces an uncertain length of lifetime and there is no bequest
motive, there will be a demand for assets that pay a high return as long as the
investor is alive, but on the other hand is nullified at death. Assets with this
property are called life annuities. They will be demanded because they make it
possible to ensure a high return until the uncertain time of death and to convert
potential wealth after death to higher consumption while still alive.
So we assume there is a market for life annuities (also called “negative life

insurance”) issued by life insurance or pension companies. Consider a depositor
who at some point in time buys a life annuity contract for one unit of account. In
return the depositor receives r + m̂ units of account per year paid continuously
until death. Here r is the risk-free interest rate (for simplicity assumed time-
independent) and m̂ is an actuarial compensation over and above that rate. It is
a “compensation”for granting the insurance company ownership of the deposit
in the event the depositor dies.
How is the actuarial compensation determined in equilibrium? Well, since the

economy is large and deaths are assumed stochastically independent, the insur-
ance companies face no aggregate uncertainty. We further assume the insurance
companies have negligible administration costs and that there is free entry and
exit. We claim that in this case, m̂ must in equilibrium equal the mortality rate
m. To see this, let the aggregate deposit in the form of life annuity contracts be A
units of account and let the number of depositors be N (N “large”). The aggre-
gate revenue to the insurance company on these contracts is then rA+NmA/N
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per year. The first term is due to A being invested by the insurance company in
manufacturing firms, paying the risk-free interest rate r in return (by assumption
there is no risk associated with production). The second term is due to Nm of
the depositors dying per year. For each depositor who dies there is a transfer,
on average A/N, of wealth to the insurance company sector. This is because
the deposits are taken over by the insurance company at death (the company’s
liabilities to those who die are cancelled).
In the absence of administration costs the total costs faced by the insurance

company amount to the payout (r + m̂)A per year. So total profit is

Π = rA+NmA/N − (r + m̂)A.

Under free entry and exit, equilibrium requires Π = 0. It follows that m̂ = m.
That is, the actuarial compensation equals the mortality rate.
The conditional rate of return, r + m, obtained by the depositor as long as

alive is called the annuity rate of interest. The annuity rate of interest is called
“conditional”because it is conditional upon survival. In contrast, the expected
unconditional rate of return on holding a life annuity equals r when m̂ = m (see
Appendix A). A life annuity is said to be actuarially fair if it offers the customer
the same expected unconditional rate of return as a safe bond. So in the model
the life annuities are actuarially fair.2

In return for a high conditional rate of return, r+m, the estate of the deceased
person looses the deposit at the time of death. In this way individuals dying earlier
will support those living longer. The market for life annuities is thus a market
for longevity insurance.
Given r, the annuity rate of interest will be higher the higher is the mortality

rate, m. The intuition is that a higher m implies lower expected remaining
lifetime, 1/m. The expected duration of the life annuity to be paid is therefore
shorter. With an unchanged actuarial compensation, this would make issuing
these life annuity contracts more attractive to the life insurance companies and
competition among them will drive the compensation m̂ up until m̂ = m again.
In equilibrium all financial wealth will be placed in life annuities and earn the

conditional rate of return equal to r + m as long as the customer is alive. This
is illustrated in Fig. 12.3 where SN is aggregate net saving and A is aggregate
financial wealth. The flows in the diagram are in real terms with the output good
as the unit of account.
Whatever name is in practice used for the real world’s private pension arrange-

ments, many of them have life annuity ingredients and can in a macroeconomic
perspective be considered as belonging to the insurance company box in the di-
agram. Typical Danish “labor market pension” schemes are an example. The

2Appendix A considers the case of an age-dependent mortality rate.
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Figure 12.3: Overview of the economy. A is aggregate private financial wealth, SN is
aggregate private net saving.

stream of payouts from such pension arrangements to the customer usually does
not start until the customer retires from the labor market, however. This is in
contrast to the model where the flow of dividends to the depositor starts already
from the date of purchase of the contract (this is the case of “immediate annu-
ities”). With perfect credit and annuity markets as assumed in the model, this
difference is immaterial.
What about existence of a market for “positive life insurance”? In such a

market individuals contract to pay the life insurance company a continuous flow
of m̃ units of account per year until death and at death, in return the estate
of the deceased person receives one unit of account. Provided the market is
active, in equilibrium with free entry and no administration costs, we would have
m̃ = m (see Appendix A). In the real world the primary motivation for positive
life insurance is care for surviving relatives. But the Blanchard model ignores this
motive. Indeed, altruism is absent in the preferences specified in (12.5). Hence
there will be no demand for positive life insurance.

The consumption/saving problem

Recall that there is no utility from leisure and, in the present version of the model,
no retirement. Hence, labor supply of the individual is inelastic and constant over
time. We normalize it to be one unit of labor per year until death.
Let current time be time 0 and let s denote an arbitrary future point in time.

The decision problem for an arbitrary individual born at time v ≤ 0 is to choose
a plan, (c(v, s))∞s=0, so as to maximize expected lifetime utility, U0, subject to a
dynamic budget constraint. The plan is, of course, conditional in the sense of
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only going to be operative as long as the individual is alive. Letting u(c) = ln c,
the decision problem is:

maxU0 =

∫ ∞
0

ln (c (v, s)) e−(ρ+m)sds s.t.

c (v, s) ≥ 0,

∂a(v, s)

∂s
= (r (s) +m)a (v, s) + w (s)− c (v, s) , (12.7)

where a(v, 0) is given,

lim
s→∞

a (v, s) e−
∫ s
0 (r(τ)+m)dτ ≥ 0. (NPG)

Labor income per time unit at time s is w(s) · 1, where w(s) is the real
wage. The variable a(v, s) appearing in the dynamic budget identity (12.7) is
real financial wealth at time s and a (v, 0) is the historically given initial financial
wealth. Implicit in the way (12.7) and the solvency condition, (NPG), are written
is the assumption that the individual can procure debt (a(v, s) < 0) at the annuity
rate of interest r(s) +m. Nobody will offer loans to individuals at the going risk-
free interest rate r. There would be a risk that the borrower dies before having
paid off the debt including compound interest. But insurance companies will be
willing to offer loans at the annuity rate of interest, r(s) + m. As long as the
debt is not paid off, the borrower pays the interest rate r(s) + m per time unit.
In case the borrower dies before the debt is paid off, the estate is held free of any
obligation. In return for this risk the lender receives the actuarial compensation,
m, on top of r until the loan is paid off or the borrower dies.
Owing to heterogeneity in the population regarding survival probabilities,

asymmetric information, and related credit market imperfections, in real world
situations this kind of individual loan contracts are relatively rare.3 This is ig-
nored by the model. But this simplification is not intolerably serious since, in the
context of the model, it turns out that at least in a neighborhood of the steady
state, all individuals will save continuously, that is, buy actuarial notes issued by
the insurance companies.
All things considered we end up with a decision problem similar to that in

the Ramsey model, namely with an infinite time horizon and a No-Ponzi-Game
condition. The only difference is that ρ has been replaced by ρ + m and r by
r + m. The constraint implied by the NPG condition is that an eventual debt,
−a(v, s), is not allowed in the long run to grow at a rate higher than or equal

3And to the extent such loans exist, they tend to be associated with an interest cost over and
above the sum of the “actuarially fair”rate (the sum of the risk-free rate and the instantaneous
mortality rate). Think of what the interest rate on student loans would be in the absence of
government support.
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to the effective rate of interest r(s) + m. This precludes permanent financing of
interest payments by new loans.
We may construct the intertemporal budget constraint that corresponds to

the dynamic budget identity (12.7) combined with (NPG). This amounts to a
constraint saying that the present value (PV) of the planned consumption stream
can not exceed total initial wealth:∫ ∞

0

c (v, s) e−
∫ s
0 (r(τ)+m)dτds ≤ a(v, 0) + h(v, 0), (IBC)

where h(v, 0) is the initial human wealth of the individual. Human wealth is the
PV of the expected future labor income and can here, in analogy with (12.6), be
written4

h(v, 0) =

∫ ∞
0

w (s) e−
∫ s
0 (r(τ)+m)dτds =

H(0)

N(0)
≡ h̄(0), (12.8)

for all v ≤ 0. Here H(0) is total human wealth at time 0 and h̄(0) is average
human wealth in the economy. In this version of the Blanchard model there is no
retirement and everybody works the same per year until death. In view of the
age-independent death probability, expected remaining participation in the labor
market is thus the same for all alive. Hence h(v, 0) is independent of v and equal
to average human wealth.
From Proposition 1 of Chapter 9 we know that, given the relevant dynamic

budget identity, here (12.7), (NPG) holds if and only if (IBC) holds. Moreover,
there is strict equality in (NPG) if and only if there is strict equality in (IBC).

The individual consumption function

The consumption-saving problem has the same form as in the Ramsey model.
We can therefore apply the result from Chapter 9 saying that an interior optimal
solution must satisfy a set of first-order conditions leading to the Keynes-Ramsey
rule. In the present log utility case the latter takes the form

∂c(v, t)/∂t

c(v, t)
= r(t) +m− (ρ+m) = r(t)− ρ. (12.9)

Moreover, the transversality condition,

lim
t→∞

a (v, t) e−
∫ t
0 (r(τ)+m)dτ = 0, (12.10)

must hold. These conditions are also suffi cient for an optimal solution.

4For details, see Appendix B.
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The Keynes-Ramsey rule itself is only a rule for the rate of change of con-
sumption. We can, however, determine the level of consumption in the following
way. Considering the Keynes-Ramsey rule as a linear differential equation for c
as a function of t, the solution formula is c(v, t) = c(v, 0)e

∫ t
0 (r(τ)−ρ)dτ . But so far,

we do not know c(v, 0). Here the transversality condition (12.10) is of help. From
Chapter 9 we know that the transversality condition is equivalent to requiring
that the NPG condition is not “over-satisfied”which in turn requires strict equal-
ity in (IBC). Substituting our formula for c(v, t) into (IBC) with strict equality
yields

c(v, 0) =

∫ ∞
0

e
∫ t
0 (r(τ)−ρ)dτe−

∫ t
0 (r(τ)+m)dτdt = a(v, 0) + h(v, 0),

which reduces to c(v, 0) = (ρ+m) [a(v, 0) + h(v, 0)] . Since initial time is arbitrary
and the “effective”time horizon is infinite, we therefore have for any t ≥ 0 the
consumption function

c(v, t) = (ρ+m) [a(v, t) + h(v, t)] , (12.11)

where h(v, t), in analogy with (12.8), is the PV of the individual’s expected future
labor income, as seen from time t :

h(v, t) =

∫ ∞
t

w (s) e−
∫ s
t (r(τ)+m)dτds =

H(t)

N(t)
≡ h̄(t). (12.12)

That is, with logarithmic utility the optimal level of consumption is simply
proportional to total wealth, including human wealth.5 The factor of propor-
tionality equals the effective rate of time preference, ρ + m, and indicates the
marginal (and average) propensity to consume out of wealth. The higher is the
death rate, m, the shorter is expected remaining lifetime, 1/m, thus implying
a larger marginal propensity to consume (in order to reap the fruits while still
alive).

12.2.2 Aggregation

We will now aggregate over the different cohorts, that is, over the different times
of birth. Summing consumption over all times of birth, we get aggregate con-
sumption at time t,

C(t) =

∫ t

−∞
c(v, t)N(v, t)dv, (12.13)

5With a general CRRA utility function the marginal propensity to consume out of wealth
depends on current and expected future interest rates, as shown in Chapter 9.
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where N(v, t) equals N(v)be−m(t−v), cf. (12.2). Similarly, aggregate financial
wealth can be written

A(t) =

∫ t

−∞
a(v, t)N(v, t)dv, (12.14)

and aggregate human wealth is

H(t) ≡ N(t)h̄(t) = N(0)ent
∫ ∞
t

w (s) e−
∫ s
t (r(τ)+m)dτds. (12.15)

Since the propensity to consume out of wealth is the same for all individuals, i.e.,
independent of age, aggregate consumption becomes

C(t) = (ρ+m) [A(t) +H(t)] . (12.16)

The dynamics of household aggregates

There are two basic dynamic relations for the household aggregates.6 The first
relation is

Ȧ(t) = r(t)A(t) + w(t)L(t)− C(t). (12.17)

Note that the rate of return here is r(t) and thereby differs from the conditional
rate of return for the individual during lifetime, namely r(t) +m. The difference
derives from the fact that for the household sector as a whole, r(t) + m is only
a gross rate of return. Indeed, the actuarial compensation m is paid by the
household sector itself − via the life-insurance companies. There is a transfer
of wealth when people die, in that the liabilities of the insurance companies are
cancelled. First, N(t)m individuals die per time unit and their average wealth is
A(t)/N(t). The implied transfer is in total N(t)mA(t)/N(t) per time unit from
those who die. This is what finances the actuarial compensation m to those who
are still alive and have placed their savings in life annuity contracts issued by the
insurance sector. Hence, the average net rate of return on financial wealth for
the household sector as a whole is

(r(t) +m)A(t)−N(t)m
A(t)

N(t)
= r(t)A(t),

in conformity with (12.17). In short: the reason that (12.17) does not contain the
actuarial compensation is that this compensation is only a transfer from those
who die to those who are still alive. The unconditional rate of return in the
economy is just r(t).

6Here we only describe the intuition behind these relations. Their formal derivation is given
in Appendix C.
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The second important dynamic relation for the household sector as a whole is

Ċ(t) = [r(t)− ρ+ n]C(t)− b(ρ+m)A(t). (12.18)

To interpret this, note that three effects are in play:

1. The dynamics of consumption at the individual level follows the Keynes-
Ramsey rule

ċ(v, t) ≡ ∂c(v, t)

∂t
= (r (t)− ρ) c (v, t) .

This explains the term [r(t)− ρ+ n]C(t) in (12.18), except for nC(t).
2. The appearance of nC(t) is a trivial population growth effect; indeed,

defining C ≡ cN, we have

Ċ = (ċN + cṄ) = (
ċ

c
+
Ṅ

N
)cN ≡ (

ċ

c
+ n)C.

3. The subtraction of the term b(ρ + m)A(t) in (12.18) is more challenging.
This term is due to a generation replacement effect. In every short instant some
people die and some people are born. The first group has financial wealth, the last
group not. The inflow of newborns is N(t)b per time unit and since they have no
financial wealth, the replacement of dying people by these young people lowers
aggregate consumption. To see by how much, note that the average financial
wealth in the population is A(t)/N(t) and the consumption effect of this is (ρ+
m)A(t)/N(t), cf. (12.16). This implies, ceteris paribus, that the turnover of
generations reduces aggregate consumption by

N(t)b(ρ+m)
A(t)

N(t)
= b(ρ+m)A(t)

per time unit. This explains the last term in (12.18).
Whereas the Keynes-Ramsey rule describes individual consumption dynam-

ics, we see that the aggregate consumption dynamics do not follow the Keynes-
Ramsey rule. The reason is the generation replacement effect. This “compo-
sitional effect” is a characteristic feature of overlapping generations models. It
distinguishes these models from representative agent models, like the Ramsey
model.

12.2.3 The representative firm

The description of the technology, the firms, and the factor markets follows the
simple neoclassical competitive one-sector setup that we have seen several times in
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previous chapters. The technology of the representative firm in the manufacturing
sector is given by

Y (t) = F (K(t), T (t)L(t)), (12.19)

where F is a neoclassical production function with CRS, and Y (t), K(t), and
L(t) are output, capital input, and labor input, respectively, per time unit. To
ease exposition we assume that F satisfies all four Inada conditions. The tech-
nology level T (t) grows at a constant rate g ≥ 0, that is, T (t) = T (0)egt, where
T (0) > 0. Ignoring for the time being the explicit dating of the variables, profit
maximization under perfect competition leads to

∂Y

∂K
= F1(K,TL) = f ′(k̃d) = r + δ, (12.20)

∂Y

∂L
= F2(K,TL)T =

[
f(k̃d)− k̃df ′(k̃d)

]
T ≡ w̃(k̃d)T = w, (12.21)

where δ > 0 is the constant rate of capital depreciation, k̃d ≡ Kd/(TLd) is the
desired (effective) capital intensity, and f is defined by f(k̃d) ≡ F (k̃d, 1).We have
f ′ > 0, f ′′ < 0, and f(0) = 0 (the latter condition in view of the upper Inada
condition for the marginal productivity of labor, cf. Appendix C to Chapter 2).
We imagine that the production firms own the capital stock they use and

finance their gross investment by issuing (short-term) bonds. It still holds that
total costs per unit of capital is the sum of the interest rate and the capital
depreciation rate. The insurance companies use their deposits to buy the bonds
issued by the manufacturing firms.

12.2.4 General equilibrium (closed economy)

Clearing in the labor market entails Ld = N, where N is aggregate labor supply
which equals the size of population. Clearing in the market for capital goods
entails Kd = K, where K is the aggregate capital stock available in the economy.
Hence, in equilibrium k̃d = k̃ ≡ K/(TN), which is predetermined at any point in
time. The equilibrium factor prices at time t are thus given as

r(t) = f ′(k̃(t))− δ, and (12.22)

w(t) = w̃(k̃(t))T (t). (12.23)

Deriving the dynamic system

We will now derive a dynamic system in terms of k̃ and c̃ ≡ C/(TN). In a closed
economy where natural resources (land etc.) are ignored, aggregate financial
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wealth equals, by definition, the market value of the capital stock, which is 1 ·K.7
Thus

A = K for all t.

From (12.17) therefore follows:

K̇ = Ȧ = rK + wL− C
= [F1(K,TL)− δ]K + F2(K,TL)TL− C (by (12.20) and (12.21))

= F1(K,TL)K + F2(K,TL)TL− δK − C
= F (K,TL)− δK − C (by Euler’s theorem)

= Y − δK − C. (12.24)

So, not surprisingly, we end up with a standard national product accounting
relation for a closed economy. In fact we could directly have written down the
result (12.24). Its formal derivation here only serves as a check that our product
and income accounting is consistent.
To find the law of motion of k̃ ≡ K/(TN), we log-differentiate w.r.t. time

(take logs on both sides and differentiate w.r.t. time) so as to get
·
k̃

k̃
=
K̇

K
− Ṫ

T
− Ṅ

N
=
F (K,TN)− C − δK

K
− (g + n),

from (12.24). Multiplying through by k̃ ≡ K/(TN) gives
·
k̃ =

F (K,TN)− C
TN

− (δ + g + n)k̃ = f(k̃)− c̃− (δ + g + n)k̃,

since c̃ ≡ C/(TN). Any path (k̃t, c̃t)
∞
t=0 satisfying this equation and starting

from the historically given initial value, k̃0, is a technically feasible path. Which
of these paths become realized depends on households’effective utility discount
rate, ρ+m, and the market form, which is here perfect competition.
To find the law of motion of c̃, we first insert (12.22) and A = K into (12.18)

to get
Ċ =

[
f ′(k̃)− δ − ρ+ n

]
C − b(ρ+m)K. (12.25)

Log-differentiating C/(TN) w.r.t. time yields
·
c̃

c̃
=

Ċ

C
− Ṫ

T
− Ṅ

N
= f ′(k̃)− δ − ρ+ n− b(ρ+m)

K

C
− g − n (from (12.25))

= f ′(k̃)− δ − ρ− b(ρ+m)
k̃

c̃
− g,

7There are no capital installation costs and so the value of a unit of installed capital equals
the replacement cost per unit before installatio. This replacement cost is one.
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By rearranging:
·
c̃ =

[
f ′(k̃)− δ − ρ− g

]
c̃− b(ρ+m)k̃.

Our two coupled differential equations in k̃ and c̃ constitute the dynamic
system of the Blanchard model. Since the parameters n, b, and m are connected
through n ≡ b −m, one of them should be eliminated to avoid confusion. It is
natural to have b and m as the basic parameters and then consider n ≡ b−m as
a derived one. Consequently we write the system as

·
k̃ = f(k̃)− c̃− (δ + g + b−m)k̃, (12.26)
·
c̃ =

[
f ′(k̃)− δ − ρ− g

]
c̃− b(ρ+m)k̃. (12.27)

Observe that initial k̃ equals a predetermined value, k̃0, while initial c̃ is a
forward-looking variable, an endogenous jump variable. Therefore we need more
information to pin down the dynamic evolution of the economy. Fortunately, for
each individual household we have a transversality condition like that in (12.10).
Indeed, for any fixed pair (t0, v), where t0 ≥ 0 and v ≤ t0, the transversality
condition takes the form

lim
t→∞

a(v, t)e
−
∫ t
t0

(r(τ)+m)dτ
= 0. (12.28)

In comparison, note that the transversality condition (12.10) was seen from
the special perspective of (t0, v) = (0, v), which is only of relevance for those alive
already at time 0.

Phase diagram

To get an overview of the dynamics, we draw a phase diagram. There are two
reference values of k̃, namely the golden rule value, k̃GR, and a certain benchmark
value, k̃. These are given by

f ′
(
k̃GR

)
− δ = g + b−m = g + n, and f ′(k̃)− δ = ρ+ g, (12.29)

respectively. Since the original production function, F, satisfies the Inada condi-
tions and we assume b ≥ m, both values exist,8 and they are unique in view of
f ′′ < 0. We have k̃ Q k̃GR for ρ R b −m, respectively. The reason that k̃ is an
important benchmark value will be apparent in a moment.

8Here we use that b ≥ m combined with δ > 0, g ≥ 0, and ρ ≥ 0, implies δ + g + b−m > 0
and δ + ρ+ g > 0.
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Figure 12.4: Phase diagram of the model of perpetual youth.

Equation (12.26) shows that

·
k̃ = 0 for c̃ = f(k̃)− (δ + g + b−m)k̃. (12.30)

The locus
·
k̃ = 0 is shown in Fig. 12.4; it starts at the origin O, reaches its

maximum at the golden rule capital intensity, and crosses the horizontal axis at

the capital intensity
=

k̃ > k̃GR, satisfying f(
=

k̃) = (δ + g + b−m)
=

k̃. The existence

of a
=

k̃ with this property is guaranteed by the upper Inada condition for the
marginal productivity of capital.
Equation (12.27) shows that

·
c̃ = 0 for c̃ =

b (ρ+m) k̃

f ′(k̃)− δ − ρ− g
. (12.31)

Hence,

along the
·
c̃ = 0 locus, lim

k̃→k̃
c̃ =∞,

so that the
·
c̃ = 0 locus is asymptotic to the vertical line k̃ = k̃. Moving along

the
·
c̃ = 0 locus in the other direction, we see from (12.31) that limk̃→0 c̃ = 0, as

illustrated in Fig. 12.4. The
·
c̃ = 0 locus is positively sloped everywhere since, by
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Figure 12.5: Existence of a unique k̃∗.

(12.31),

dc̃

dk̃
| ·
c̃=0

= b (ρ+m)
f ′(k̃)− δ − ρ− g − k̃f ′′(k̃)(

f ′(k̃)− δ − ρ− g
)2 > 0 whenever f ′(k̃)− δ > ρ+ g.

The latter inequality holds whenever k̃ < k̃.

The diagram also shows the steady-state point E, where the
·
c̃ = 0 locus crosses

the
·
k̃ = 0 locus. The corresponding capital intensity is k̃∗, to which is associated

the (technology-corrected) consumption level c̃∗. Given our assumptions, includ-
ing the Inada conditions, there exists one and only one steady state with positive
capital intensity. To see this, notice that in steady state the right-hand sides of
(12.30) and (12.31) are equal to each other. After ordering this implies(

f(k̃)

k̃
− (δ + g + b−m)

)[
f ′(k̃)− δ − ρ− g

]
= b (ρ+m) . (12.32)

The left-hand side of this equation is depicted in Fig. 12.5. Since both the
average and marginal productivities of capital are decreasing in k̃, the value of k̃
satisfying the equation is unique, given the requirement k̃ < k̃. And such a value
exists due to the Inada conditions.9

Can we be sure that the transversality conditions (12.28) hold in the steady
state for every t0 ≥ 0 and every v ≤ t0? In steady state the discount factor in
(12.28) becomes e−

∫ t
t0

(r(s)+m)ds
= e−(r∗+m)(t−t0), where r∗ = f ′(k̃∗) − δ. And in

9There is also a trivial steady state, namely the origin, which will never be realised as long
as initial k̃ is positive.
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steady state, for fixed v, a(v, t) ultimately grows at the rate r∗−ρ (see Appendix
D), which is definitely smaller than r∗+m since ρ ≥ 0. Hence, the transversality
conditions hold in the steady state.
It remains to describe the transitional dynamics that arise when initial k̃

differs from k̃∗. The directions of movement in the different regions of the phase
diagram in Fig. 12.4 are shown by arrows. These arrows are determined by the
differential equations (12.26) and (12.27) in the following way. For some fixed
positive value of k̃ (not too large) we draw the corresponding vertical line in the
positive quadrant and let c̃ increase along this line. To begin with c̃ is small and

therefore, by (12.26),
·
k̃ is positive. At the point where the vertical line crosses

the
·
k̃ = 0 locus, we have

·
k̃ = 0. And above this point we have

·
k̃ < 0 due to the

now large consumption level. Similarly, for some fixed positive value of c̃ (not too
large) we draw the corresponding horizontal line in the positive quadrant and let
k̃ increase along this line. To begin with, k̃ is small and therefore f ′(k̃) is large

so that, by (12.27),
·
c̃ is positive. At the point where the horizontal line crosses

the
·
c̃ = 0 locus, we have

·
c̃ = 0. And to the right, we have

·
c̃ < 0 because k̃ is now

large and f ′(k̃) therefore small.
The arrows taken together indicate that the steady state E is a saddle point.10

Moreover, the dynamic system has one predetermined variable, k̃, and one jump
variable, c̃. And the saddle path is not parallel to the c̃ axis. It follows that the
steady state is (locally) saddle-point stable. The saddle path is the only path that
satisfies all the conditions of general equilibrium (individual utility maximization
for given expectations, profit maximization by firms, continuous market clearing,
and expectations are fulfilled). The other paths in the diagram violate either
the transversality conditions of the households (paths that in the long run point
South-East) or their NPG conditions − and therefore also their transversality
conditions (paths that in the long run point North-West).11

The initial average consumption level, c̃(0), is determined as the ordinate to
the point where the vertical line k̃ = k̃0 crosses the saddle path. Over time the
economy moves from this point along the saddle path towards the steady state
point E. If k̃0 < k̃∗ ≤ k̃GR, as illustrated in Fig. 12.4, then both k̃ and c̃ grow
over time until the steady state is “reached”. This is just one example, however.
We could alternatively have k̃0 > k̃∗ and then k̃ would be falling during the
adjustment process.
Per capita consumption and the real wage grow in the long run at the same

10A formal proof is in Appendix E.
11The formal argument, which is more intricate than for the Ramsey model, is given in

Appendix D, where also the arrows indicating paths that cross the k̃-axis are explained.
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rate as technology, the rate g. Indeed, for t→∞,

c(t) ≡ c̃(t)T (t)→ c̃∗T (0)egt, (12.33)

and
w(t) = w̃(k̃(t))T (t)→ w̃(k̃∗)T (0)egt, (12.34)

where the wage function w̃(·) is defined in (12.21). These results are similar
to what we have in the Ramsey model. More interesting are the following two
observations:

1. The real interest rate tends to be higher than in the “corresponding”Ramsey
model. For t→∞,

r(t) = f ′(k̃(t))− δ → f ′(k̃∗)− δ = r∗ > f ′(k̃)− δ = ρ+ g, (12.35)

where the inequality follows from k̃∗ < k̃. In the Ramsey model with the same
ρ and g and with u(c) = ln c, the long-run interest rate is r∗R = ρ + g. Owing to
finite lifetime (m > 0), this version of the Blanchard OLG model unambiguously
predicts a higher long-run interest rate than the “corresponding”Ramsey model.
The positive probability of not being alive at a certain time in the future leads
to less saving and therefore less capital accumulation. So the economy ends up
with a lower effective capital-labor ratio and thereby a higher real interest rate.12

2. General equilibrium may imply dynamic ineffi ciency. From the definition
of k̃GR and k̃ in (12.29) follows that k̃ Q k̃GR for ρ R b−m, respectively. Suppose
0 ≤ ρ < b −m. Then k̃ > k̃GR and we can have k̃GR < k̃∗ < k̃ without being in
conflict with existence of general equilibrium. That a too high k̃ can be sustained
forever is due to the absence of any automatic corrective feedback when k̃ is high
and r therefore low. It is different in the Ramsey model (a representative agent
model); when u(c) = ln c, Ramsey must from the beginning impose the parameter
restriction ρ > n ≡ b − m. Otherwise general equilibrium can not exist in the
model. In OLG models no similar parameter restriction is needed for general
equilibrium to exist.

We can relax the parameter restrictions δ > 0, ρ ≥ 0, and b ≥ m that have
hitherto been assumed for ease of exposition. To ensure existence of a solution to
the household’s decision problem, we need that the effective utility discount rate
is positive, i.e., ρ+m > 0.13 Further, from the definition of k̃GR and k̃ in (12.29)

12When retirement at old age is added to the model, this is, however, no longer necessarily
true, cf. Section 12.3 below.
13Of course we also need that the present discounted value of future labor income is well-

defined (i.e., not infinite) and this requires r∗ + m > g. In view of (12.35), however, this is
automatically satisfied when ρ ≥ 0 and m > 0.
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we need δ + g + b−m > 0 and δ + ρ+ g > 0 where, by definition, m > 0, δ ≥ 0,
and g ≥ 0. Hence, as long as δ + g > 0, we can allow n ≡ b−m and/or ρ to be
negative (not “too”negative, though) without interfering with the existence of
general equilibrium.

Remark on a seeming paradox It might seem like a paradox that the econ-
omy can be in steady state and at the same time have r∗ − ρ > g. By the
Keynes-Ramsey rule, when r∗ − ρ > g, individual consumption is growing faster
than productivity, which grows at the rate g. How can such an evolution be sus-
tained? The answer lies in the fact that we are not considering an economy with
a representative agent, but an economy with a composition effect in the form of
the generation replacement effect. Indeed, individual consumption can grow at
a relatively high rate, but this consumption only exists as long as the individual
is alive. Per capita consumption c ≡ C/N behaves differently. From (12.18) we
have in steady state

ċ

c
= r∗ − ρ− b(ρ+m)

a

c
< r∗ − ρ,

where a ≡ A/N (average financial wealth). The consumption by those who
die is replaced by that of the newborn who have less financial wealth, hence
lower consumption than the average citizen. To take advantage of r∗ − ρ > g ≥
0, the young (and in fact everybody) save, thereby becoming gradually richer
and improving their standard of living relatively fast. Owing to the generation
replacement effect, however, per capita consumption grows at a lower rate. In
steady state this rate equals g, as indicated by (12.33).
Is this consistent with the aggregate consumption function? The answer is

affi rmative since by dividing through by N(t) in (12.16) we end up with

c(t) = (ρ+m)(k(t) + h̄(t)) ≡ (ρ+m)(k̃(t) + h̃(t))T (t) = (ρ+m)(k̃∗+ h̃∗)T (0)egt,
(12.36)

in steady state, where

h̃∗ ≡
(
h̄(t)

T (t)

)∗
=

∫∞
t
w(s)e−(r∗+m)(s−t)ds

T (t)
=

∫∞
t
w̃(k̃∗)T (s)e−(r∗+m)(s−t)ds

T (t)

= w̃(k̃∗)

∫ ∞
t

eg(s−t)e−(r∗+m)(s−t)ds =
w̃(k̃∗)

r∗ +m− g . (12.37)

The last equality in the first row comes from (12.34); in view of r∗ > ρ + g, the
numerator, r∗ +m− g, in the second row is a positive constant. Hence, both k̃∗
and h̃∗ are constants. In this way the consumption function in (12.36) confirms
the conclusion that per capita consumption in steady state grows at the rate g.
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The demographic transition and the long-run interest rate

In the last more than one hundred years the industrialized countries have experi-
enced a gradual decline in the three demographic parameters m, b, and n. Indeed,
m has gone down, thereby increasing life expectancy, 1/m. Also n ≡ b −m has
gone down, hence b has gone even more down than m. What effect on r∗ should
we expect? A “rough answer”can be based on the Blanchard model.
It is here convenient to consider n andm as the basic parameters and b ≡ n+m

as a derived one. So in (12.26) and (12.27) we substitute b ≡ n+m. Then there is

only one demographic parameter affecting the position of the
·
k̃ = 0 locus, namely

n. Three effects are in play:

a. Labor-force growth effect. The lower n results in an upward shift of the
·
k̃

= 0 locus in Fig. 12.4, hence a tendency to expansion of k̃. This “capital
deepening”is due to the fact that slower growth in the labor force implies
less capital “dilution”.

b. Life-cycle effect. Given n, the lower m results in a clockwise turn of the
·
c̃

= 0 locus in Fig. 12.4. This enforces the tendency to expansion of k̃. The
explanation is that the higher life expectancy, 1/m, increases the incentive
to save and thus reduces consumption C = (ρ+m)(A+H). Thereby, capital
accumulation is promoted.

c. Generation replacement effect. Givenm, the lower b = n+m results in lower

n, hence a further clockwise turn of the
·
c̃ = 0 locus in Fig. 12.4. This addi-

tional capital deepening is explained by a composition effect. Lower b im-
plies a smaller proportion of young people (with the same human wealth as
others, but less financial wealth) in the population, thus leading to smaller
H/A, hence smaller [C/(ρ+m)] /A = (A + H)/A, by the consumption
function. As C/A is thus smaller, S/A ≡ (Y −C)/A will be larger, resulting
again in more capital accumulation.

Thus all three effects on the effective capital-labor ratio are positive. Conse-
quently, we should expect a lower marginal productivity of capital and a lower
real interest rate in the long run. There are a few empirical long-run studies
pointing in this direction (see, e.g., Doménil and Lévy, 1990).
We called our answer to this demographic question a “rough answer”. Being

based on a comparative method, the analysis has its limitations. The comparative
dynamics method compares the evolution of two distinct economies having the
same structure and parameter values except w.r.t. to that or those parameters
the role of which we want to study.
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A more appropriate approach would consider dynamic effects of a parameter
changing in historical time in a given economy. Such an approach is, however,
more complex, requiring an extended model with demographic dynamics. In
contrast the Blanchard OLG model presupposes a stationary age distribution in
the population. That is, the model depicts a situation where m, b, and n have
stayed at their current values for a long time and are not changing. A time-
dependent n, for example, would require expressions like N(t) = N(0)e

∫ t
0 nsds,

which gives rise to a much more complicated model.

12.3 Adding retirement

So far the model has assumed that everybody works full-time until death. This
is clearly a weakness of a model that is intended to reflect life-cycle aspects of
economic behavior. We therefore extend the model by incorporating gradual (but
exogenous) retirement from the labor market. Following Blanchard (1985), we
assume retirement is exponential (thereby still allowing simple analytical aggre-
gation across cohorts).

Gradual retirement and aggregate labor supply

Suppose labor supply, `, per year at time t for an individual born at time v
depends only on age, t− v, according to

`(t− v) = e−λ(t−v), (12.38)

where λ > 0 is the retirement rate. That is, higher age implies lower labor
supply.14 The graph of (12.38) in (t− v, `) space looks like the solid curve in Fig.
12.2 above. Though somewhat coarse, this gives at least a flavour of retirement:
old persons don’t supply much labor. Consequently an incentive to save for
retirement emerges.

14An alternative interpretation of (12.38) would be that labor productivity is a decreasing
function of age (as in Barro and Sala-i-Martin, 2004, pp. 185-86).
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Aggregate labor supply now is

L(t) =

∫ t

−∞
`(t− v)N(v, t)dv

=

∫ t

−∞
e−λ(t−v)N(0)envbe−m(t−v)dv (from (12.38) and (12.4))

= bN(0)e−(λ+m)t

∫ t

−∞
e(λ+b)vdv = bN(0)e−(λ+m)t e

(λ+b)t − 0

λ+ b

= bN(0)ent
1

λ+ b
=

b

λ+ b
N(t). (12.39)

For given population size N(t), earlier retirement (larger λ) implies lower aggre-
gate labor supply. Similarly, given N(t), a higher birth rate, b, entails a larger
aggregate labor supply. This is because a higher b amounts to a larger fraction of
young people in the population and the young have a larger than average labor
supply. Moreover, as long as the birth rate and the retirement rate are constant,
aggregate labor supply grows at the same rate as population.
By the specification (12.38) the labor supply per year of a newborn is one

unit of labor. In (12.39) we thus measure the labor force in units equivalent to
the labor supply per year of one newborn.
The essence of retirement is that the aggregate labor supply depends on the

age distribution in the population. The formula (12.39) presupposes that the age
distribution has been constant for a long time. Indeed, the derivation of (12.39)
assumes that the parameters b, m, and λ took their current values a long time ago
so that there has been enough time for the age distribution to reach its steady
state.

Human wealth

The present value at time t of expected future labor income for an individual
born at time v is

h(v, t) =

∫ ∞
t

w (s) `(s− v)e−
∫ s
t (r(τ)+m)dτds

=

∫ ∞
t

w (s) e−λ(s−v)e−
∫ s
t (r(τ)+m)dτds

= e−λ(t−v)

∫ ∞
t

w (s) e−λ(s−t)e−
∫ s
t (r(τ)+m)dτds

= e−λ(t−v)

∫ ∞
t

w (s) e−
∫ s
t (r(τ)+λ+m)dτds = e−λ(t−v)h(t, t) (12.40)
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where

h(t, t) =

∫ ∞
t

w (s) e−
∫ s
t (r(τ)+λ+m)dτds, (12.41)

which is the human wealth of a newborn at time t (in (12.40) set v = t). Hence,
aggregate human wealth for those alive at time t is

H(t) =

∫ t

−∞
h(v, t)N(v, t)dv = h(t, t)

∫ t

−∞
e−λ(t−v)N(v, t)dv

= h(t, t)

∫ t

−∞
e−λ(t−v)N(0)envbe−m(t−v)dv

= h(t, t)bN(0)e−(λ+m)t

∫ t

−∞
e(λ+b)vdv

= h(t, t)bN(0)e−(λ+m)t e
(λ+b)t − 0

λ+ b

= h(t, t)N(0)ent
b

λ+ b
= h(t, t)N(t)

b

λ+ b
= h(t, t)L(t), (12.42)

by substitution of (12.39). That is, aggregate human wealth at time t is the same
as the human wealth of a newborn at time t times the size of the labor force at
time t. This result is due to the labor force being measured in units equivalent to
the labor supply of one newborn.
Combining (12.41) and (12.42) gives

H(t) =
b

λ+ b
N(t)

∫ ∞
t

w (s) e−
∫ s
t (r(τ)+λ+m)dτds. (12.43)

If λ = 0, this reduces to the formula (12.15) for aggregate human wealth in the
simple Blanchard model. We see from (12.43) that the future wage level w (τ)
is effectively discounted by the sum of the interest rate, the retirement rate, and
the death rate. This is not surprising. The sooner you retire and the sooner you
are likely to die, the less important to you are the wage levels in the future.
Since the propensity to consume out of wealth is still the same for all individ-

uals, aggregate consumption is, as before,

C(t) = (ρ+m) [A(t) +H(t)] . (12.44)

Dynamics of household aggregates

The increase in aggregate financial wealth per time unit is

Ȧ(t) = r(t)A(t) + w(t)L(t)− C(t). (12.45)
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The only difference compared to the simple Blanchard model is that it is now
aggregate employment, L(t), rather than population, N(t), that enters the term
for aggregate labor income.
The second important dynamic relation for the household sector is the one

describing the increase in aggregate consumption per time unit. Instead of Ċ(t)
= [r(t) − ρ + n]C(t) − b(ρ + m)A(t) from the simple Blanchard model, we now
get

Ċ(t) = [r(t)− ρ+ λ+ n]C(t)− (λ+ b)(ρ+m)A(t). (12.46)

We see the retirement rate λ enters in two ways. This is because the generation
replacement effect now has two sides. On the one hand, as before, the young
that replace the old enter the economy with no financial wealth. On the other
hand now they arrive with more human wealth than the average citizen. Through
this channel the replacement of generations implies an increase per time unit in
human wealth equal to λH, ceteris paribus. Indeed, the “rejuvenation effect”on
individual labor supply is proportional to labor supply: ∂`(t− v)/∂v = λ`(t− v),
from (12.38). In analogy, with a slight abuse of notation we can express the ceteris
paribus effect on aggregate consumption as

∂C

∂t
= (ρ+m)

∂H

∂t
= (ρ+m)λH = λ(C − (ρ+m)A),

where the first and the last equality come from (12.44). This explicates the
difference between the new equation (12.46) and the corresponding one from the
simple model.15

The equilibrium path

With r = f ′(k̃)− δ and A = K, (12.46) can be written

Ċ =
[
f ′(k̃)− δ − ρ+ λ+ n

]
C − (λ+ b)(ρ+m)K. (12.47)

Once more, the dynamics of general equilibrium can be summarized in two differ-
ential equations in k̃ ≡ K/(TL) ≡ k/T and c̃ ≡ C/(TN) ≡ c/T. The differential
equation in k̃ can be based on the national product identity for a closed economy:
Y = C + K̇ + δK. Isolating K̇ and using the definition of k̃, we get

·
k̃ = f(k̃)− C

TL
− (δ + g + n)k̃ = f(k̃)− λ+ b

b
c̃− (δ + g + b−m)k̃, (12.48)

since C/(TL) ≡ cN/(TL) = (N/L)c/T = (λ+ b)c̃/b from (12.39).

15This explanation of (12.46) is only intuitive. A formal derivation can be made by using a
method analogous to that applied in Appendix C.
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As to the other differential equation, log-differentiating c̃ w.r.t. time yields

·
c̃

c̃
=
Ċ

C
− Ṫ

T
− Ṅ

N
= f ′(k̃)− δ − ρ+ λ+ n− (λ+ b)(ρ+m)

K

C
− g − n,

from (12.47). Hence,

·
c̃ =

[
f ′(k̃)− δ − ρ+ λ− g

]
c̃− (λ+ b)(ρ+m)

K

C
c̃

=
[
f ′(k̃)− δ − ρ+ λ− g

]
c̃− (λ+ b)(ρ+m)

K

TL
· L
N
,

implying, in view of (12.39),

·
c̃ =

[
f ′(k̃)− δ − ρ+ λ− g

]
c̃− b(ρ+m)k̃. (12.49)

The transversality conditions of the households are still given by (12.28).

Phase diagram The equation describing the
·
k̃ = 0 locus is

c̃ =
b

λ+ b

[
f(k̃)− (δ + g + b−m)k̃

]
. (12.50)

The equation describing the
·
c̃ = 0 locus is

c̃ =
b (ρ+m) k̃

f ′(k̃)− δ − ρ+ λ− g
. (12.51)

Let the value of k̃ such that the denominator of (12.51) vanishes be denoted k̃,
that is,

f ′(k̃) = δ + ρ− λ+ g. (12.52)

Such a value exists if, in addition to the Inada conditions, the inequality

λ < δ + ρ+ g

holds, saying that the retirement rate is not “too large”. We assume this to be

true. The
·
k̃ = 0 and

·
c̃ = 0 loci are illustrated in Fig. 12.6. The

·
c̃ = 0 locus is

everywhere to the left of the line k̃ = k̃ and is asymptotic to this line.
As in the simple Blanchard model, the steady state (k̃∗, c̃∗) is saddle-point

stable. The economy moves along the saddle path towards the steady state for
t→∞. Hence, for t→∞,

rt = f ′(k̃t)− δ → f ′(k̃∗)− δ ≡ r∗ > ρ+ g − λ, (12.53)
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Figure 12.6: Phase diagram of the Blanchard model with retirement.

where the inequality follows from k̃∗ < k̃. Again we may compare with the Ramsey
model which, with u(c) = ln c, has long-run interest rate equal to r∗R = ρ + g.
In the Blanchard OLG model extended with retirement, the long-run interest
rate may differ from this value because of two effects of life-cycle behavior, that
go in opposite directions. On the one hand, as mentioned earlier, finite lifetime
(m > 0) leads to a higher effective utility discount rate, hence less saving and
therefore a tendency for r∗ > ρ + g. On the other hand, retirement entails an
incentive to save more (for the late period in life with low labor income). This
results in a tendency for r∗ < ρ+ g, everything else equal.
The presence of retirement implies that a new kind of apparent paradox may

arise: the growth rate of individual consumption, c(v, t), may be lower than that
of per capita consumption, c(t) ≡ c̃(t)T (t). In steady state c(v, t) grows at the
rate r∗ − ρ as long as the individual is alive, while per capita consumption, c(t),
grows at the rate g. In view of (12.53) and g ≥ 0, the greatest lower bound
for the former growth rate is g − λ and there is scope for the inequality g − λ
< r∗ − ρ < g to hold. So every individual alive may have a growth rate of
consumption below the per capita consumption growth rate, g. The former may
even be negative (namely if g − λ < r∗ − ρ < 0) in spite of g > 0.16 How can
this be possible? Again the answer lies in the generation replacement effect. On
the one hand, r∗− ρ < 0 induces every individual to have declining consumption
until death (and, outside the model, may be also needs as old are smaller). On
the other hand, if at the same time g > 0, every new generation starts adult life
with higher initial consumption than the previous one. This is because technical

16Se Exercise 12.??
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progress endows new generations with higher initial human wealth than that with
which the previous generations entered the economy.
Another new phenomenon due to retirement is the theoretical possibility of

dynamic ineffi ciency which was absent before. Recall that the golden rule capital
intensity k̃GR is characterized by

f ′(k̃GR)− δ = g + n,

where in the present case n = b−m. There are two cases to consider:

Case 1: λ ≤ ρ − n. Then ρ − λ ≥ n, so that k̃ ≤ k̃GR, implying that k̃∗ is
below the golden rule value. In this case the long-run interest rate, r∗, satisfies
r∗ = f ′(k̃∗)− δ > g + n, that is, the economy is dynamically effi cient.

Case 2: λ > ρ−n.We now have ρ−λ < n, so that k̃ > k̃GR. Hence, it is possible
that k̃∗ > k̃GR, implying r∗ = f ′(k̃∗) − δ < g + n, so that there is sustained
over-saving and the economy is dynamically ineffi cient. Owing to the retirement,
this can arise even when ρ > n. A situation with r∗ ≤ g + n has theoretically
interesting implications for solvency and sustainability of fiscal policy, a theme we
considered in Chapter 6. On the other hand, as argued in Section 4.2 of Chapter
4, the empirics point to dynamic effi ciency as the most plausible case.

The reason that a high retirement rate λ (early retirement) may, theoretically,
lead to over-saving is that early retirement implies a longer span of the period as
almost fully retired. Hence there is a need to do more saving for retirement. In
general equilibrium, however, there is an effect in the opposite direction. This is
that early retirement reduces the labor force relative to population. Thereby the
drag on capital accumulation coming from a given level of per capita consumption
is enlarged, as revealed by the term ((λ+ b)/b)c̃ in (12.48).

12.4 The rate of return in the long run

Blanchard’s OLG model provides a succinct and yet multi-facetted theory of the
level of the interest rate in the long run. Of course, in the real world there are
many different types of uncertainty which simple macro models like the present
one ignore. Yet we may interpret the real interest rate of these models as reflecting
the general level around which the different interest rates of an economy fluctuate,
i.e., a kind of average rate of return.
In this perspective Blanchard’s theory of the rate of return differs from the

modified golden rule theory from Ramsey’s and Barro’s models by allowing a role
for demographic parameters. The Blanchard model predicts a long-run interest
rate in the interval

ρ+ g − λ < r∗ < ρ+ g + b. (12.54)
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The left-hand inequality, which reflects the role of retirement, was proved above
(see (12.53)). In the right-hand inequality appears the positive birth rate b which
allows the interest rate to exceed the level ρ+ g, i.e., the level of the interest rate
in the corresponding Ramsey model. An algebraic proof of this upper bound for
r∗ is provided in Appendix F. Here we give a graphical argument, which is more
intuitive.
Let k̃ > 0 be some value of k̃ less than k̃∗. The vertical line k̃ = k̃ in Fig.

12.6 crosses the horizontal axis and the
·
c̃ = 0 locus at the points Q1 and Q2,

respectively. Adjust the choice of k̃ such that the ray OQ2 is parallel to the

tangent to the
·
k̃ = 0 locus at k̃ = k̃ (evidently this can always be done). We then

have

slope of OQ2 =
|Q1Q2|
|OQ1|

=
b

λ+ b

[
f ′(k̃)− (δ + g + n)

]
.

By construction we also have

slope of OQ2 =
b(ρ+m)k̃

f ′(k̃)− δ − ρ− g + λ
· 1

k̃
,

where k̃ cancels out. Equating the two right-hand sides and ordering gives

b(ρ+m)

f ′(k̃)− δ − ρ− g + λ
=

b

λ+ b

[
f ′(k̃)− (δ + g + n)

]
⇒

(λ+ b)(ρ+m)

f ′(k̃)− δ − ρ− g + λ
= f ′(k̃)− (δ + g + n). (12.55)

This implies a quadratic equation in f ′(k̃) with the positive solution

f ′(k̃) = δ + ρ+ g + b. (12.56)

Indeed, with (12.56) we have:

left-hand side of (12.55) =
(λ+ b)(ρ+m)

δ + ρ+ g + b− δ − ρ− g + λ

=
(λ+ b)(ρ+m)

b+ λ
= ρ+m, and

right-hand side of (12.55) = ρ+m,

so that (12.55) holds. Now, from k̃∗ > k̃ and f ′′ < 0 follows that f ′(k̃∗) < f ′(k̃).
Hence,

r∗ = f ′(k̃∗)− δ < f ′(k̃)− δ = ρ+ g + b,
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where the last equality follows from (12.56). This confirms the right-hand in-
equality in (12.54).

EXAMPLE 1 Using one year as our time unit, a rough estimate of the rate of
technological progress g for the Western countries since World War II is g = 0.02.
To get an assessment of the birth rate b, we may coarsely estimate n = b−m to be
0.005. An expected lifetime (as adult) around 55 years, equal to 1/m in the model,
suggests that m = 1/55 ≈ 0.018. Hence b = n + m ≈ 0.023. What about the
retirement rate λ? An estimate of the labor force participation rate is L/N = 0.75,
equal to b/(b + λ) in the model, so that λ = b(1 − L/N)/(L/N) ≈ 0.008. Now,
guessing ρ = 0.02, (12.54) gives 0.032 < r∗ < 0.063. �
The interval (12.54) gives a rough idea about the level of r∗. More specifically,

given the production function f, we can determine r∗ as an implicit function of
the parameters. Indeed, in steady state, k̃ = k̃∗ and the right-hand sides of
(12.50) and (12.51) are equal to each other. After ordering we have(

f(k̃∗)

k̃∗
− (δ + g + b−m)

)[
f ′(k̃∗)− δ − ρ+ λ− g

]
= (λ+b) (ρ+m) . (12.57)

A diagram showing the left-hand side and right-hand side of this equation will
look qualitatively like Fig. 12.5 above. The equation defines k̃∗ as an implicit
function ϕ of the parameters g, δ, n,m, ρ, and λ, i.e., k̃∗ = ϕ(g, b,m, ρ, λ, δ). The
partial derivatives of ϕ have the sign structure {−,−, ?,−, ?,−} (to see this, use
implicit differentiation or simply curve shifting in a graph like Fig. 12.5). Then,
from r∗ = f ′(k̃∗) − δ follows ∂r∗/∂x = (∂r∗/∂k̃∗)∂ϕ/∂x = f ′′(k̃∗)∂ϕ/∂x for x ∈
{g, b,m, ρ, λ, δ} . These partial derivatives have the sign structure {+,+, ?,+, ?, ?} .
This tells us how the long-run interest rate qualitatively depends on these para-
meters.
For example, a higher rate of technological progress results in a higher rate of

return, r∗. Indeed, the higher g is, the greater is the expected future wage income
and the associated consumption possibilities even without any current saving.
This discourages current saving and thereby capital accumulation thus resulting
in a lower capital intensity in steady state, hence a higher interest rate. In turn
this is what is needed to sustain a higher steady-state per capita growth rate of
the economy equal to g. A higher mortality rate has an ambiguous effect on the

rate of return in the long run. On the one hand a higher m shifts the
·
k̃ = 0 curve

in Fig. 9.6 upward because of the implied lower labor force growth rate. For
given aggregate saving this entails more capital deepening in the economy. On
the other hand, a higher m also implies less incentive for saving and therefore a

counter-clockwise turn of the
·
c̃ = 0 curve. The net effect of these two forces on
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k̃∗, hence on r∗, is ambiguous. But as (12.57) indicates, if b is increased along
with m so as to keep n unchanged, k̃∗ falls and r∗ rises.
Earlier retirement similarly has an ambiguous effect on the rate of return in

the long run. On the one hand a higher λ shifts the
·
k̃ = 0 curve in Fig. 9.6

downward because the lower labor force participation rate reduces per capita

output. On the other hand, a higher λ also implies a clockwise turn of the
·
c̃ = 0

curve. This is because the need to provide for a longer period as retired implies
more saving and capital accumulation in the economy. The net effect of these
two forces on k̃∗, hence on r∗, is ambiguous.
Also ∂r∗/∂δ can not be signed without further specification, because ∂r∗/∂δ

= (∂r∗/∂k̃∗)∂ϕ/∂δ = f ′′(k̃∗)∂ϕ/∂δ−∂δ/∂δ = f ′′(k̃∗)∂ϕ/∂δ−1, where we cannot
apriori tell whether the first term exceeds 1 or not.

Further perspectives

A theoretically important factor for consumption-saving behavior − and thereby
r∗ − is missing in the version of the Blanchard model considered here. This
factor is the desire for consumption smoothing or its inverse, the intertemporal
elasticity of substitution in consumption. Since our version of the model is based
on the special case u(c) = ln c, the intertemporal elasticity of substitution in con-
sumption is fixed to be 1. Now assume, more generally, that u(c) = c1−θ/(1− θ),
where θ > 0 and 1/θ is the intertemporal elasticity of substitution in consump-
tion. Then the dynamic system becomes three-dimensional and in that way more
complicated. Nevertheless it can be shown that a higher θ implies a higher real
interest rate in the long run.17 The intuition is that in an economy with sustained
productivity growth, a higher θ means less willingness to offer current consump-
tion for more future consumption and this implies less saving. Thus, k̃∗ becomes
lower and r∗ higher. Also public debt tends to affect r∗ positively in a closed
economy, as we will see in the next chapter.
We end this section with some general reflections. Economic theory is a set

of propositions that are organized in a hierarchic way and have an economic
interpretation. A theory of the real interest rate should say something about
the factors and mechanisms that determine the level of the interest rate. In
fact, in a more realistic setup with uncertainty, it is the level of interest rates,
including the risk-free rate, that should be determined. We would like the theory
to explain both the short-run level of interest rates and the long-run level, that
is, the average level over several decades. The Blanchard model can be one part
of such a theory as far as long-run interest rates is concerned. Abstracting from

17See Blanchard (1985).
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monetary factors, nominal price rigidities, and short-run fluctuations in aggregate
demand, the model is certainly less reliable as a description of the short run.
Note that the interest rate considered so far is the short-term interest rate.

What is important for consumption and, in particular, investment is rather the
long-term interest rate (internal rate of return on long-term bonds). With perfect
foresight, the long-term rate is just a weighted average of expected future short-
term rates.18 In steady state these rates will be the same and so the present
theory applies. In a world with uncertainty, however, the link between the long-
term rate and the expected future short-term rates is more diffi cult to discern,
affected as it may be by changing risk and liquidity premia.

12.5 National wealth and foreign debt

We will embed the Blanchard setup in a small open economy (henceforth SOE).
The purpose is to study how national wealth and foreign debt in the long run are
determined, when technological change is exogenous. Our SOE is characterized
by:

(a) Perfect mobility across borders of goods and financial capital.

(b) Domestic and foreign financial claims are perfect substitutes.

(c) The need for means of payment is ignored and so is the need for a foreign
exchange market.

(d) No mobility of labor across borders.

(e) Labor supply is inelastic, but age-dependent.

The assumptions (a) and (b) imply interest rate equality (see Section 5.3 in
Chapter 5). That is, the interest rate in our SOE must equal the interest rate
in the world market for financial capital. This interest rate is exogenous to our
SOE. We denote it r and assume r is positive and constant over time.

Apart from this, households, firms, and market structure are as in the Blan-
chard model for the closed economy with gradual retirement. We maintain the
assumptions of perfect competition, no government sector, and no uncertainty
except with respect to individual life lifetime.

18See Chapter 22.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



12.5. National wealth and foreign debt 505

Elements of the model

Firms choose capital intensity k̃(t) so that f ′(k̃(t)) = r + δ. The unique solution
to this equation is denoted k̃∗. Thus,

f ′(k̃∗) = r + δ. (12.58)

How does k̃∗ depend on r? To find out, we interpret (12.58) as implicitly defining
k̃∗ as a function of r, k̃∗ = ϕ(r). Taking the total derivative w.r.t. r on both sides
of (12.58), then gives f ′′(k̃∗)ϕ′(r) = 1, from which follows

dk̃∗

dr
= ϕ′(r) =

1

f ′′(k̃∗)
< 0. (12.59)

With continuous clearing in the labor market, employment equals labor sup-
ply, which, as in (12.39), is

L(t) =
b

λ+ b
N(t), for all t,

where N(t) is population, b ≡ n+m is the birth rate, and λ ≥ 0 is the retirement
rate. We have k̃(t) = k̃∗, so that

K(t) = k̃∗T (t)L(t) = k̃∗T (t)
b

λ+ b
N(t), (12.60)

for all t ≥ 0. This gives the endogenous stock of physical capital in the SOE at
any point in time. If r shifts to a higher level, k̃∗ shifts to a lower level and the
capital stock immediately adjusts, as shown by (12.59) and (12.60), respectively.
This instantaneous adjustment is a counter-factual prediction of the model; it is a
signal that the model ought to be modified so that adjustment of the capital stock
takes place more gradually. We come back to this in Chapter 14 in connection
with the theory of convex capital adjustment costs. For the time being we ignore
adjustment costs and proceed as if (12.60) holds for all t ≥ 0. This simplification
would make short-run results very inaccurate, but is less problematic in long-run
analysis.
In equilibrium firms’profit maximization implies the real wage

w(t) =
∂Y (t)

∂L(t)
=
[
f(k̃∗)− k̃∗f ′(k̃∗)

]
T (t) ≡ w̃(k̃∗)T (t) = w̃∗T (t), (12.61)

where w̃∗ is the real wage per unit of effective labor. It is constant as long as
r and δ are constant. So the real wage, w, per unit of “natural” labor grows
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over time at the same rate as technology, the rate g ≥ 0. Notice that w̃∗ depends
negatively on r in that

dw̃∗

dr
=
dw̃(k̃∗)

dk̃∗
dk̃∗

dr
= −k̃∗f ′′(k̃∗) 1

f ′′(k̃∗)
= −k̃∗ < 0, (12.62)

where we have used (12.59).
From now we suppress the explicit dating of the variables when not needed

for clarity. As usual A denotes aggregate private financial wealth. Since the
government sector is ignored, A is the same as national wealth of the SOE. And
since land is ignored, we have

A ≡ K −D,

where D denotes net foreign debt, that is, financial claims on the SOE from the
rest of the world. Then Af ≡ −D is net holding of foreign assets. Net national
income of the SOE is rA + wL and aggregate net saving is SN = rA + wL− C,
where C is aggregate consumption. Hence,

Ȧ = SN = rA+ wL− C. (12.63)

So far essentially everything is as it would be in a Ramsey (representative
agent) model for a small open economy.19 When we consider the change over
time in aggregate consumption, however, an important difference emerges. In
the Ramsey model the change in aggregate consumption is given simply as an
aggregate Keynes-Ramsey rule. But the life-cycle feature arising from the finite
horizons leads to something quite different in the Blanchard model. Indeed, as
we saw in Section 12.3 above,

Ċ = (r − ρ+ λ+ n)C − (λ+ b)(ρ+m)A, (12.64)

where the last term is the generation replacement effect.

The law of motion

All parameters are non-negative and in addition we will throughout, not unreal-
istically, assume that

r > g −m. (A1)

This assumption ensures that the model has a solution even for λ = 0 (see
(12.66) below). To obtain a dynamic system capable of being in a steady state,

19The fact that labor supply, L, deviates from population, N , if the retirement rate, λ, is
positive, is a minor difference compared with the Ramsey model. As long as λ and b are
constant, L is still proportional to N.
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we introduce growth-corrected variables, ã ≡ A/(TN) ≡ a/T and c̃ ≡ C/(TN) ≡
c/T. Log-differentiating ã w.r.t. t gives

·
ã

ã
=

Ȧ

A
− Ṫ

T
− Ṅ

N
=
rA+ wL− C

A
− (g + n) or

·
ã(t) = (r − g − n)ã(t) + w̃∗

b

λ+ b
− c̃(t), (12.65)

where w̃∗ is given in (12.61) and we have used L(t)/N(t) = b/(λ + b) from
(12.39). We might proceed by using (12.64) to get a differential equation for c̃(t)
in terms of ã(t) and c̃(t) (analogous to what we did for the closed economy). The
interest rate is now a constant, however, and then a more direct approach to the
determination of c̃(t) in (12.65) is convenient.
Consider the aggregate consumption function C = (ρ + m)(A + H). Substi-

tuting (12.61) into (12.43) gives

H(t) =
b

λ+ b
N(t)w̃∗T (t)

∫ ∞
t

e−(r+λ+m−g)(τ−t)dτ =
bN(t)w̃∗T (t)

λ+ b

1

r + λ+m− g ,
(12.66)

where we have used that (A1) ensures r + λ+m− g > 0. It follows that

H(t)

T (t)N(t)
=

bw̃∗

(λ+ b)(r + λ+m− g)
≡ h̃∗,

where h̃∗ > 0 by (A1). Growth-corrected consumption can now be written

c̃(t) = (ρ+m)

(
A(t)

T (t)N(t)
+

H(t)

T (t)N(t)

)
= (ρ+m)(ã(t) + h̃∗). (12.67)

Substituting for c̃ into (12.65), inserting b ≡ n + m, and ordering gives the law
of motion of the economy:

·
ã(t) = (r − ρ− g − b)ã(t) +

(r + λ− ρ− g)bw̃∗

(r + λ+m− g)(λ+ b)
. (12.68)

The dynamics are thus reduced to one differential equation in growth-corrected
national wealth; moreover, the equation is linear and even has constant coeffi -
cients. If we want it, we can therefore find an explicit solution. Given ã(0) = ã0

and r 6= ρ+ g + b, the solution is

ã(t) = (ã0 − ã∗)e−(ρ+g+b−r)t + ã∗, (12.69)

where

ã∗ =
(r + λ− ρ− g)bw̃∗

(r + λ+m− g)(λ+ b)(ρ+ g + b− r) , (12.70)
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which is the growth-corrected national wealth in steady state. Substitution of
(12.69) into (12.67) gives the corresponding time path for growth-corrected con-
sumption, c̃(t). In steady state growth-corrected consumption is

c̃∗ =
(ρ+m)bw̃∗

(r + λ+m− g)(ρ+ g + b− r) . (12.71)

It can be shown that along the paths generated by (12.65), the transversality
conditions of the households are satisfied (see Appendix D).
Let us first consider the case of stability. That is, while (A1) is maintained,

we assume
r < ρ+ g + b. (12.72)

The phase diagram in (ã,
·
ã) space for this case is shown in the upper panel of

Fig. 12.7. The lower panel of the figure shows the path followed by the economy

in (ã, c̃) space, for a given initial ã above ã∗. The equation for the
·
ã = 0 line is

c̃ = (r − g − n)ã+ w̃∗
b

λ+ b
,

from (12.65). Different scenarios are possible. (Note that all conclusions to follow,
and in fact also the above steady-state values, can be derived without reference
to the explicit solution (12.69).)

The case of medium impatience In Fig. 12.7, as drawn, it is presupposed
that ã∗ > 0, which, given (12.72), requires r − (g + b) < ρ < r + λ − g. We
call this the case of medium impatience. Note that the economy is always at
some point on the line c̃ = (ρ + m)(ã + h̃∗), in view of (12.67). If we, as for the
closed economy, had based the analysis on two differential equations in ã and c̃,
respectively, then a saddle path would emerge and this would coincide with the
c̃ = (ρ+m)(ã+ h̃∗) line in Fig. 12.7.20

The case of high impatience Not surprisingly, a∗ in (12.70) is a decreasing
function of the impatience parameter ρ. A SOE with ρ > r + λ − g (high impa-
tience) has ã∗ < 0. That is, the country ends up with negative national wealth, a
scenario which from pure economic logic is definitely possible, if there is a perfect
international credit market. One should remember that “national wealth”, in its

20Although the
·
ã = 0 line is drawn with a positive slope, it could alternatively have a negative

slope (corresponding to r < g+n); stability still holds. Similarly, although growth-corrected per
capita capital, K/(TN) (L/N)K/(TL) = bk̃∗/(λ+ b), is in Fig. 12.7 smaller than ã∗, it could
just as well be larger. Both possibilities are consistent with the case of medium impatience.
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Figure 12.7: Adjustment process for an SOE with medium impatience, i.e., r−(g+b) <
ρ < r + λ− g.
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usual definition, also used here, includes only financial wealth. Theoretically it
can be negative if at the same time the economy has enough human wealth, H,
to make total wealth, A + H positive. Indeed, since c̃∗ > 0, a steady state must
have h̃∗ > −ã∗, in view of (12.67).
Negative national wealth of the SOE will reflect that all the physical capital of

the SOE and part of its human wealth is in a sense mortgaged. Such an outcome,
however, is not likely to be observed in practice. This is so for at least two reasons.
First, whereas the analysis assumes a perfect international credit market, in the
real world there is limited scope for writing enforceable international financial
contracts. Lenders’risk perceptions depend on the level of debt and even within
one’s own country, access to loans with human wealth as a collateral is limited.
Second, long before all physical capital of the impatient SOE is mortgaged or
has become directly taken over by foreigners, the government presumably would
intervene for political reasons.

The case of low impatience Alternatively, if (A1) is strengthened to r > g+b,
we can have 0 ≤ ρ ≤ r−(g+b). This is the case of low impatience or high patience.
Then the stability condition (12.72) is no longer satisfied.
Consider first the generic subcase 0 ≤ ρ < r− (g+ b). In this case the solution

formula (12.69) is still valid. The slope of the adjustment path in the upper panel
of Fig. 12.7 will now be positive and the c̃ line in the lower panel will be less steep

than the
·
ã = 0 line. There is no economic steady state any longer since the c̃ line

will no longer cross the
·
ã = 0 line for any positive level of consumption. There

is a “fictional”steady-state value, ã∗, which is negative and unstable. It is only
“hypothetical”because it is associated with negative consumption, cf. (12.71).
With ã0 > −h̃∗, the excess of r over ρ+g+b results in high sustained saving so as to
keep ã growing forever.21 This means that national wealth, A, grows permanently
at a rate higher than g + n. The economy grows large in the long run. But then,
sooner or later, the world market interest rate can no longer be independent of
what happens in this economy. The capital deepening resulting from the fast-
growing country’s capital accumulation will eventually affect the world economy
and reduce the gap between r and ρ, so that the incentive to accumulate receives
a check − like in a closed economy. Thus, the SOE assumption ceases to fit.
The alternative subcase is the knife-edge case ρ = r− (g+ b). In this case the

solution formula (12.69) is no longer valid. Instead we get

ã(t) = ã(0) +
(r + λ− ρ− g)bw̃∗

(r + λ+m− g)(λ+ b)
t→∞ for t→∞.

21The reader is invited to draw the phase diagram in (ã, c̃) space for this case, cf. Exercise
12.??.
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Foreign assets and debt

Returning to the stability case, where (12.72) holds, let us be more explicit about
the evolution of net foreign debt. Or rather, in order to visualize by help of
Fig. 12.7, we will consider net foreign assets, Af ≡ A − K = −D. How are
growth-corrected net foreign assets determined in the long run? We have

ãf ≡
Af
TN
≡ A−K

TN
= ã− L

N

K

TL
= ã− b

λ+ b
k̃∗ (by (12.39)).

Thus, by stability of ã, for t→∞

ãf → ã∗f = ã∗ − b

λ+ b
k̃∗.

The country depicted in Fig. 12.7 happens to have ã0 > ã∗ > bk̃∗/(λ+ b). So
growth-corrected net foreign assets decline during the adjustment process. Yet,
net foreign assets remain positive also in the long run. The interpretation of the
positive ãf is that only a part of national wealth is placed in physical capital in
the home country, namely up to the point where the net marginal productivity of
capital equals the world market rate of return r.22 The remaining part of national
wealth would result in a rate of return below r if invested within the country and
is therefore better placed in the world market for financial capital.
Implicit in the described evolution over time of net foreign assets is a unique

evolution of the current account surplus. By definition, the current account sur-
plus, CAS, equals the increase per time unit in net foreign assets, i.e.,

CAS ≡ Ȧf = Ȧ− K̇.
This says that CAS can also be viewed as the difference between net saving and
net investment. Taking the time derivative of ãf gives

·
ãf =

TNȦf − Af (TṄ +NṪ )

(TN)2
=
CAS

TN
− (g + n)ãf .

Consequently, the movement of the growth-corrected current account surplus is
given by

CAS

TN
=

·
ãf + (g + n)ãf =

·
ã+ (g + n)ã− (g + n)b

λ+ b
k̃∗

= (r − ρ−m)ã+
(r + λ− ρ− g)bw̃∗

(r + λ+m− g)(λ+ b)
− (g + n)b

λ+ b
k̃∗,

22The term foreign debt, as used here, need not have the contractual form of debt, but can
just as well be equity. Although it may be easiest to imagine that capital in the different
countries is always owned by the country’s own residents, we do not presuppose this. And as
long as we ignore uncertainty, the ownership pattern is in fact irrelevant from an economic point
of view.
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where the second equality follows from the definition of ãf and the third from
(12.68). Yet, in our perfect-markets-equilibrium framework there is no bankruptcy-
risk and no borrowing diffi culties and so the current account is not of particular
interest.
Returning to Fig. 12.7, consider a case where the rate of impatience, ρ, is

somewhat higher than in the figure, but still satisfying the inequality ρ < r+λ−g.
Then ã∗, although smaller than before, is still positive. Since k̃∗ is not affected
by a rise in ρ, it is ã∗f that adjusts and might now end up negative, tantamount
to net foreign debt, d̃∗ ≡ −ã∗f , being positive.
Let us take the US economy as an example. Even if it is not really a small

economy, the US economy may be small enough compared to the world economy
for the SOE model to have something to say.23 In the middle of the 1980s the
US changed its international asset position from being a net creditor to being a
net debtor. Since then, the US net foreign debt as a percentage of GDP has been
rising, reaching 22 % in 2004.24 With an output-capital ratio around 50 %, this
amounts to a debt-capital ratio D/K = (D/Y )Y/K = 11 %.
A different movement has taken place in the Danish economy (which of course

fits the notion of a SOE better). Ever since World War II Denmark has had
positive net foreign debt. In the aftermath of the second oil price shock in 1979-
80, the debt rose to a maximum of 42 % of GDP in 1983. After 1991 the debt
has been declining, reaching 11 % of GDP in 2004 (a development supported by
the oil and natural gas extracted from the North Sea).25

The adjustment speed

By speed of adjustment of a variable which converges in a monotonic way is meant
the proportionate rate of decline per time unit of its distance to its steady-state
value. Defining ψ ≡ ρ+ g + b− r, from (12.69) we find, for ã(t) 6= ã∗,

−d |ã(t)− ã∗| /dt
|ã(t)− ã∗| = −d(ã(t)− ã∗)/dt

ã(t)− ã∗ = −(ã0 − ã∗)e−ψt(−ψ)

ã(t)− ã∗ = ψ.

Thus, ψ measures the speed of adjustment of growth-corrected national wealth.
We get an estimate of ψ in the following way. With one year as the time unit,
let r = 0.04 and let the other parameters take values equal to those given in the

23The share of the US in world GDP was 29 % in 2003, but if calculated in purchasing
power-corrected exchange rates only 21 % (World Economic Outlook, April 2004, IMF). The
fast economic growth of, in particular, China and India since the early 1980s has produced a
downward trend for the US share.
24Source: US Department of Commerce.
25Source: Statistics Denmark.
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numerical example in Section 12.3. Then ψ = 0.023, telling us that 2.3 percent
of the gap, ã(t)− ã∗, is eliminated per year.
We may also calculate the half-life. By half-life is meant the time it takes for

half the initial gap to be eliminated. Thus, we seek the number τ such that

ã(τ)− ã∗
ã0 − ã∗

=
1

2
.

From (12.69) follows that (ã(τ) − ã∗)/(ã0 − ã∗) = e−ψτ . Hence, e−ψτ = 1/2,
implying that half-life is

τ =
ln 2

ψ
≈ 0.69

0.023
≈ 30 years.

The conclusion is that adjustment processes involving accumulation of national
wealth are slow.

12.6 Concluding remarks

One of the strengths of the Blanchard OLG model compared with the Ramsey
model comes to the fore in the analysis of a small open economy. The Ramsey
model is a representative agent model so that the Keynes-Ramsey rule holds at
both the individual and aggregate level. When applied to a small open economy
with exogenous r, the Ramsey model therefore needs the knife-edge condition
ρ + θg = r (where θ is the absolute value of the elasticity of marginal utility of
consumption).26 Indeed, if ρ + θg > r, the ã in a Ramsey economy approaches
a negative number (namely minus the growth-corrected human wealth) and c̃
tends to zero in the long run − an implausible scenario.27 And if ρ+ θg < r, the
economy will tend to grow large relative to the world economy and so, eventually,
the SOE framework is no longer appropriate for this economy. It is this lack of
robustness which motivates the term “knife-edge” condition. If the parameter
values are in a hair’s breadth distance from satisfying the condition, qualitatively
different behavior of the dynamic system results.

26A knife-edge condition is a condition imposed on a parameter value such that the set of
values satisfying this condition has an empty interior in the space of all possible values. For
the SOE all four terms entering the Ramsey condition ρ + θg = r are parameters. Assuming
the condition is satisfied thus amounts to imposing a knife-edge condition, which is unlikely to
hold in the real world and which may lead to non-robust results.
27For a Ramsey-type model with a finite number of infinitely-lived households with different

time-preference rates, Uzawa (1968) showed that asymptotically the entire private wealth will
be owned by the household with the lowest time-preference rate.
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In contrast to the Ramsey model, the Blanchard OLG model deals with life-
cycle behavior. Within a “fat”set of parameter values, namely those satisfying
the inequalities (A1) and (12.72), it gives robust results for a small open economy.
A further strength of Blanchard’s model is that it allows studying effects of

alternative age compositions of a population. Compared with Diamond’s OLG
model, the Blanchard model has a less coarse demographic structure and a more
refined notion of time. And by taking uncertainty about life-span into account,
the model opens up for incorporating markets for life annuities (and similar forms
of private pension arrangements). In this way important aspects of reality are
included. On the other hand, from an empirical point of view it is a weakness
that the propensity to consume out of wealth in the model is the same for a
young and an old. In this respect the model lacks a weighty life-cycle feature.
This limitation, of cause, comes from the unrealistic premise that the mortality
rate is the same for all age groups. Another limitation is that individual asset
ownership in the model depends only on age through own accumulated saving. In
reality, there is considerable intra-generation differences in asset ownership due
to differences in inheritance (Kotlikoff and Summers, 1981; Charles and Hurst,
2003; Danish Economic Council, 2004). Some extensions of the Blanchard OLG
model are mentioned in Literature notes.

12.7 Literature notes

Three-period OLG models are under special conditions analytically obedient, see
for instance de la Croix and Michel (2002).
Naive econometric studies trying to estimate consumption Euler equations

(the discrete time analogue to the Keynes-Ramsey rule) on the basis of aggregate
data and a representative agent approach can be seriously misleading. About
this, see Attanasio and Weber, RES 1993, 631-469, in particular p. 646.
That Blanchard’s OLG model in continuous time becomes three-dimensional

if θ 6= 1, is shown in Blanchard (1985). In that article it is also shown that a higher
θ implies a higher real interest rate in the long run. That in the perpetual youth
model in steady state, individual consumption is growing faster than productivity
is due to the young having less financial wealth than the average citizen. We
saw that in the Blanchard model with gradual retirement, as in Section 12.3,
there is a countervailing effect due to the young having more human wealth
than the average citizen. Wendner (2010) explores the possibility that the latter
effect may dominate and studies how this interferes with the issue of over- or
underconsumption created by a “keeping up with the Joneses”externality.
Blanchard (1985) also sketched a more refined life-cycle pattern of the age

profile of earned income involving initially rising labor income and then declining
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labor income with age. This can be captured by assuming that labor supply
(or productivity) is the difference between two negative exponentials, `(t − v)
= m1e

−ω1(t−v) − m2e
−ω2(t−v), where all parameters are positive and ω2/ω1 >

m1/m2 > 1.
Blanchard’s model has been extended in many different directions. Calvo

and Obstfeld (1988), Boucekkine et al. (2002), and Heijdra and Romp (2007,
2009) incorporate age-specific mortality. Endogenous education and retirement
are included in Boucekkine et al. (2002), Grafenhofer et al. (2005), Sheshinski
(2009), and Heijdra and Romp (2009). Matsuyama (1987) includes convex capital
adjustment costs. Reinhart (1999) uses the Blanchard framework in a study of
endogenous productivity growth. Blanchard (1985), Calvo and Obstfeld (1988),
Blanchard and Fischer (1989), and Klundert and Ploeg (1989) apply the frame-
work for studies of fiscal policy and government debt. These last issues will be
the topic of the next chapter.

12.8 Appendix

A. Actuarially fair life insurance

Negative life insurance A life annuity contract is defined as actuarially fair
if it offers the investor the same expected unconditional rate of return as a safe
bond. We now check whether the life annuity contracts in equilibrium of the
Blanchard model have this property. For simplicity, we assume that the risk-free
interest rate is a constant, r.
Buying a life annuity contract at time t means that the depositor invests one

unit of account at time t in such a contract. In return the depositor receives a
conditional continuous flow of receipts equal to r + m̂ per time unit until death.
At death the invested unit of account is lost from the point of view of the de-
positor. The time of death is stochastic, and so the unconditional rate of return,
R, is a stochastic variable. Given the constant and age-independent mortality
rate m, the expected unconditional return in the short time interval [t, t+ ∆t)
is approximately (r + m̂)∆t(1−m∆t) −1 ·m∆t, where m∆t is the approximate
probability of dying within the time interval [t, t+ ∆t) and 1 −m∆t is the ap-
proximate probability of surviving. The expected unconditional rate of return,
ER, is the expected return per time unit per unit of account invested. Thus,

ER ≈ (r + m̂)∆t(1−m∆t)−m∆t

∆t
= (r + m̂)(1−m∆t)−m. (12.73)

In the limit for ∆t → 0, we get ER = r + m̂ −m. In equilibrium, as shown in
Section 12.2.1, m̂ = m and so ER = r. This shows that the life annuity contracts
in equilibrium are actuarially fair.
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Positive life insurance To put negative life insurance in perspective, we also
considered positive life insurance. We claimed that the charge of m̃ per time unit
until death on a positive life insurance contract must in equilibrium equal the
death rate, m. This can be shown in the following way. The contract stipulates
that the depositor pays the insurance company a premium of m̃ units of account
per time unit until death. In return, at death the estate of the deceased person
receives one unit of account from the insurance company. The expected revenue
obtained by the insurance company on such a contract in the short time interval
[t, t+ ∆t) is approximately m̃∆t(1−m∆t) + 0 ·m∆t. In the absence of adminis-
tration costs the expected cost is approximately 0 · (1−m∆t) +1 ·m∆t.We find
the expected profit per time unit to be

Eπ ≈ m̃∆t(1−m∆t)−m∆t

∆t
= m̃− m̃m∆t−m.

In the limit for ∆t → 0 we get Eπ = m̃ − m. Equilibrium with free entry and
exit requires Eπ = 0, hence m̃ = m, as was to be shown.
Like the negative life insurance contract, the positive life insurance contract

is said to be actuarially fair if it offers the investor (now the insurance company)
the same expected unconditional rate of return as a safe bond. In equilibrium it
does so, indeed. We see this by replacing m̂ by m̃ and applying the argument
leading to (12.73) once more, this time from the point of view of the insurance
company. At time t the insurance company makes a demand deposit of one unit
of account in the financial market (or buys a short-term bond) and at the same
time contracts to pay one unit of account to a customer at death in return for
a flow of contributions, m̃, per time unit from the customer until death. The
payout of one unit of account to the estate of the deceased person is financed by
cashing the demand deposit (or stopping reinvesting in short-term bonds). Since
in equilibrium m̃ = m, the conclusion is that ER = r.

Age-dependent mortality rates Let X denote the age at death of an indi-
vidual. Ex ante X is a stochastic variable. Then the instantaneous mortality rate
for a person of age x, also called the hazard rate of death at age x, is defined as

m(x) = lim
∆x→0

P (x < X ≤ x+ ∆x)/∆x

P (X > x)
=

f(x)

1− F (x)
, (12.74)

where 1− F (x) is the survival function, that is, the unconditional probability of
becoming at least x years old. The associated cumulative distribution function is
F (x) (the probability of dying before age x). And f(x) = F ′(x) is the probability
density function. Empirically the instantaneous mortality rate is an increasing
function of age, x. The classical Gompertz-Makeham formula specifies m(x) as
m(x) = µ0 + µ1e

µ2x, where µ0 > 0, µ1 > 0, and µ2 > 0.
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The Blanchard assumption of an age independent mortality rate is the case
µ1 = 0 so that m(x) = µ0 ≡ m. Indeed, the Blanchard model assumes 1−F (x) =
e−mx so that, by (12.74) with f(x) = me−mx, we have m(x) = me−mx/e−mx = m,
a constant.

B. Present value of expected future labor income

Here we show, for the case without retirement (λ = 0), that the present value,
h(v, t), of an individual’s expected future labor income can be written as in (12.12)
(or as in (12.8) if t = 0). For the case with no retirement we have

h(v, t) ≡ Et

∫ t+X

t

w(s)e−
∫ s
t r(τ)dτds, (12.75)

where X stands for remaining lifetime, a stochastic variable. The rate of discount
for future labor income conditional on being alive at the moment concerned is the
risk-free interest rate r.
Now, consider labor income of the individual at time s > t as a stochastic

variable, Z(s), with two different possible outcomes:

Z(s) =

{
w(s), if still alive at time s

0, if dead at time s.

Then we can rewrite (12.75) as

h(v, t) = Et

∫ ∞
t

Z(s)e−
∫ s
t r(τ)dτds =

∫ ∞
t

Et(Z(s))e−
∫ s
t r(τ)dτds

=

∫ ∞
t

w(s)P (X > s− t) + 0 · P (X ≤ s− t)e−
∫ s
t r(τ)dτds

=

∫ ∞
t

w(s)e−m(s−t)e−
∫ s
t r(τ)dτds =

∫ ∞
t

w(s)e−
∫ s
t

(r(τ)+m)dτds.(12.76)

This confirms (12.12). When we discount the potential labor income in all future,
the relevant discount rate is the annuity rate of interest, i.e., the risk-free interest
rate plus the death rate.

C. Aggregate dynamics

C.1. Aggregate dynamics in the perpetual youth model (Section 12.2)

In Section 12.2.2 we gave an intuitive explanation of why aggregate financial
wealth and aggregate consumption follow the rules

Ȧ(t) = r(t)A(t) + w(t)L(t)− C(t), (*)
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and
Ċ(t) = [r(t)− ρ+ n]C(t)− b(ρ+m)A(t), (**)

respectively. Here we will prove these equations, appealing to Leibniz’s formula
for differentiating an integral with respect to a parameter appearing both in the
integrand and in the limits of integration.

Leibniz’s formula Let f(v, t) and ft(v, t) be continuous. Suppose too that g(t)
and h(t) are differentiable. Then

F (t) =

∫ h(t)

g(t)

f(v, t)dv ⇒

F ′(t) = f(t, h(t))h′(t)− f(t, g(t))g′(t) +

∫ h(t)

g(t)

∂f (v, t)

∂t
dv.

For proof, see, e.g., Sydsæter and Hammond (2008). In case g(t) = −∞, one
should replace g′(t) by 0. Similarly, if h(t) = +∞, h′(t) should be replaced by 0.

Proof of (*) The intuitive validity of the accounting rule (*) notwithstanding,
we cannot be sure that our concepts and book-keeping are consistent, until we
have provided a proof.
Aggregate financial wealth is

A(t) =

∫ t

−∞
a(v, t)N(0)envbe−m(t−v)dv, (12.77)

where we have inserted (12.2) into (12.14). Using Leibniz’s formula with g′(t) = 0
and h′(t) = 1, we get

Ȧ(t) = a(t, t)N(0)entb− 0 +

∫ t

−∞
N(0)b

∂

∂t
[a(v, t)enve−m(t−v)]dv

= 0− 0 +N(0)b

∫ t

−∞
env[a(v, t)e−m(t−v)(−m) +

∂a (v, t)

∂t
e−m(t−v)]dv

= −mN(0)b

∫ t

−∞
a(v, t)enve−m(t−v)dv +N(0)b

∫ t

−∞

∂a (v, t)

∂t
enve−m(t−v)dv,

where the second equality comes from a(t, t) = 0, which is due to the absence of
bequests. Inserting (12.77), this can be written

Ȧ(t) = −mA(t) +N(0)b

∫ t

−∞

∂a (v, t)

∂t
enve−m(t−v)dv. (12.78)
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Thus, the increase per time unit in aggregate financial wealth equals the “intake”
(i.e., the increase in financial wealth of those still alive) minus the “discharge”
due to death, mN(t)A(t)/N(t) = mA(t).
In (12.78) the term ∂a (v, t) /∂t stands for the increase per time unit in finan-

cial wealth of an individual born at time v and still alive at time t. By definition
this is the same as the saving of the individual, hence the same as income minus
consumption. Thus, ∂a (v, t) /∂t = (r(t) +m)a(v, t) +w(t)− c(v, t). Substituting
this into (12.78) gives

Ȧ(t) = −mA(t) +N(0)b

[
(r(t) +m)

∫ t

−∞
a(v, t)enve−m(t−v)dv

+w(t)

∫ t

−∞
enve−m(t−v)dv −

∫ t

−∞
c(v, t)enve−m(t−v)dv

]
= −mA(t) + (r(t) +m)A(t) + w(t)N(t)− C(t), (12.79)

by (12.77), (12.4), and (12.13). Reducing the last expression in (12.79) and noting
that N(t) = L(t) gives (*). �
We can prove (**) in a similar way:

Proof of (**) The PV, as seen from time t, of future labor income of any
individual is as in (12.76), since labor income is independent of age in this simple
version of the Blanchard model. Hence, aggregate human wealth is

H(t) = N(t)h̄(t) = N(0)ent
∫ ∞
t

w (τ) e−
∫ τ
t (r(s)+m)dsdτ . (12.80)

After substituting (12.3) into (12.13), differentiation w.r.t. t (use again Leibniz’s
formula with g′(t) = 0 and h′(t) = 1) gives

Ċ(t) = c(t, t)N(0)entb− 0 +

∫ t

−∞
N(0)b

∂

∂t
[c(v, t)enve−m(t−v)]dv

= c(t, t)N(t)b− 0 +N(0)b

∫ t

−∞
env[−c(v, t)e−m(t−v)m+

∂c (v, t)

∂t
e−m(t−v)]dv

= (ρ+m)h̄(t)N(t)b−mN(0)b

∫ t

−∞
c(v, t)enve−m(t−v)dv

+N(0)b

∫ t

−∞

∂c (v, t)

∂t
enve−m(t−v)dv, (12.81)

where the last equality derives from the fact that the consumption function for
an individual born at time v is c(v, t) = (ρ+m)

[
a(v, t) + h̄(t)

]
, which for v = t
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takes the form c(t, t) = (ρ + m)h̄(t), since a(t, t) = 0. Using (12.80) and (12.13)
in (12.81) yields

Ċ(t) = b(ρ+m)H(t)−mC(t) +N(0)b

∫ t

−∞

∂c (v, t)

∂t
enve−m(t−v)dv. (12.82)

From the Keynes-Ramsey rule we have ∂c (v, t) /∂t = (r(t)− ρ)c(v, t). Substi-
tuting this into (12.82) gives

Ċ(t) = b(ρ+m)H(t)−mC(t) +N(0)b(r(t)− ρ)

∫ t

−∞
c(v, t)enve−m(t−v)dv

= b(ρ+m)H(t)−mC(t) + (r(t)− ρ)C(t)

= b(ρ+m)H(t)− bC(t) + nC(t) + (r(t)− ρ)C(t)

= b(ρ+m)H(t)− b(ρ+m)(A(t) +H(t)) + (r(t)− ρ+ n)C(t)

= (r(t)− ρ+ n)C(t)− b(ρ+m)A(t),

where the second equality comes from (12.13), the third from n ≡ b−m, and the
fourth from the aggregate consumption function, C(t) = (ρ + m)(A(t) + H(t)).
Hereby we have derived (**). �

A more direct proof of (**) An alternative and more direct way of prov-
ing (**) may be of interest also in other contexts. The aggregate consumption
function immediately gives

Ċ(t) = (ρ+m)(Ȧ(t) + Ḣ(t)). (12.83)

Differentiation of (12.80) w.r.t. t (using Leibniz’s Formula with g′(t) = 1 and
h′(t) = 0) gives

Ḣ(t) = Ṅ(t)h̄(t) +N(t)

[
−w(t) +

∫ ∞
t

w (τ) e−
∫ τ
t (r(s)+m)ds(r(t) +m)dτ

]
= nH(t)− w(t)N(t) + (r(t) +m)N(t)

∫ ∞
t

w (τ) e−
∫ τ
t (r(s)+m)dsdτ

= (r(t) +m+ n)H(t)− w(t)N(t),

where the two last equalities follow from (12.80) and (12.76), respectively. In-
serting this together with (*) into (12.83) gives

Ċ(t) = (ρ+m) [r(t)A(t) + w(t)N(t)− C(t) + (r(t) +m+ n)H(t)− w(t)N(t)]

= (ρ+m)

[
r(t)A(t)− C(t) + (r(t) +m+ n)(

C(t)

ρ+m
− A(t))

]
= (ρ+m)r(t)A(t)− (ρ+m)C(t) + (r(t) +m+ n)C(t)

−(ρ+m)(r(t) + b)A(t)

= (r(t)− ρ+ n)C(t)− b(ρ+m)A(t),
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where the second equality comes from the aggregate consumption function and
the third from b ≡ m+ n. �

C.2. Aggregate dynamics in the model with retirement (Section 12.3-4)

(no text currently available)

D. Transversality conditions and why the diverging paths can not be
equilibrium paths

In Section 12.2.4 we claimed that for every given time of birth, v, individual
financial wealth, a(v, t), ultimately grows at the rate r∗− ρ, if lifetime allows. To
prove this, note that when λ = 0,

∂a(v, t)/∂t

a(v, t)
=

(r(t) +m)a(v, t) + w(t)− c(v, t)
a(v, t)

= r(t) +m+
w(t)− (ρ+m)(a(v, t) + h̄(t))

a(v, t)

= r(t)− ρ+
w(t)− (ρ+m)h̄(t)

a(v, t)

= r(t)− ρ+
w̃(k̃(t))− (ρ+m)h̃(t)

a(v, t)
T (t). (12.84)

In a small neighborhood of the steady state, where k̃(t) ≈ k̃∗ and h̃(t) ≡ h̄(t)/T (t)
≈ h̃∗, cf. (12.37), the right-hand side of (12.84) can be approximated by

r∗ − ρ+

[
w̃(k̃∗)− (ρ+m) w̃(k̃∗)

r∗+m−g

]
T (t)

a(v, t)

= r∗ − ρ+
(r∗ − ρ− g)w̃(k̃∗)T (t)

(r∗ +m− g)a(v, t)
> r∗ − ρ > g, (12.85)

where both inequalities come from (12.35). Thus, at least close to the steady state,
a(v, t) grows at a higher rate than technology. It follows that for an imaginary
person with infinite lifetime, T (t)/a(v, t) → 0 for t → ∞, so that, by (12.84),
(∂a(v, t)/∂t)/a(v, t) → r∗ − ρ for t→∞, as was to be shown.
Since, obviously, r∗ − ρ < r∗ +m, it follows that all the transversality condi-

tions, (12.28), hold along any path converging to the steady state. The argument
can be extended to the case with retirement and to the small open economy (even
in the case with “low impatience”).
Note that, by (12.85), even the limiting value of ∂a(v, t)/∂t)/a(v, t), r∗− ρ, is

higher than g. Thus, due to the generation replacement effect, individual financial
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wealth tends to grow faster than average wealth, A(t)/N(t), which (for λ = 0)
equals k and in the long run grows at the rate g. This explains why transversality
conditions can not be checked in the same simple way as in the Ramsey model.
In the text of Section 12.2.4 we also claimed that all the diverging paths in

the phase diagram of Fig. 12.4 violate the individual transversality conditions
(12.28). Let us first explain why in Fig. 12.4 paths starting from below the stable
arm tend to cross the k̃-axis. The slope of any path generated by the differential
equations for c̃ and k̃, is

dc̃

dk̃
=
dc̃/dt

dk̃/dt
=

·
c̃
·
k̃

=

[
f ′(k̃)− δ − ρ− g

]
c̃− b(ρ+m)k̃

f(k̃)− c̃− (δ + g + b−m)k̃
, (12.86)

whenever
·
k̃ 6= 0. Close to the k̃-axis, this slope is positive for 0 < k̃ <

=

k̃ and

negative for k̃ >
=

k̃ (to see this, put c̃ ≈ 0 in (12.86)). Even at the k̃-axis,
this holds true. Such paths violate the individual transversality conditions. In-
deed, along these paths consumption will in finite time be zero at the same time
as both financial wealth and human wealth are far from zero. This indicates
that people consume less than what their intertemporal budget constraint allows,
which is equivalent to the transversality condition not being satisfied: people
over-accumulate. Any individual expecting an evolution of w and r implied by
such a path will deviate from the consumption level along the path by choosing
higher consumption. Hence, the path can not be a perfect foresight equilibrium
path.
What about paths starting from above the stable arm in Fig. 12.4? These

paths will violate the NPG condition of the individuals (the argument is similar
to that used for the Ramsey model in Appendix C of Chapter 10). An individual
expecting an evolution of w and r implied by such a path will deviate from the
consumption level along the path by choosing a lower consumption level in order
to remain solvent, i.e., comply with the NPG condition.

E. Saddle-point stability in the perpetual youth model

First, we construct the Jacobian matrix of the right-hand sides of the differential
equations (12.26) and (12.27), that is, the matrix

J(k̃, c̃) =

 ∂
·
k̃/∂k̃ ∂

·
k̃/∂c̃

∂
·
c̃/∂k̃ ∂

·
c̃/∂c̃

 =

[
f ′(k̃)− (δ + g + b−m) −1

f ′′(k̃)c̃− b(ρ+m) f ′(k̃)− δ − ρ− g

]
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The determinant, evaluated at the steady state point (k̃∗, c̃∗), is det(J(k̃∗, c̃∗))

=
[
f ′(k̃∗)− (δ + g + b−m)

] [
f ′(k̃∗)− δ − ρ− g

]
+
[
f ′′(k̃∗)c̃∗ − b(ρ+m)

]
=

f ′(k̃∗)− (δ + g + b−m)
f(k̃∗)

k̃∗
− (δ + g + b−m)

− 1

 b(ρ+m) + f ′′(k̃∗)c̃∗ < f ′′(k̃∗)c̃∗ < 0,

where the second equality follows from (12.32) whereas the last inequality follows
from f ′′ < 0 and the second last from f ′(k̃∗) < f(k̃∗)/k̃∗.28 Since the determi-
nant is negative, J(k̃∗, c̃∗) has one positive and one negative eigenvalue. Hence
the steady state is a saddle point.29 The remaining needed conditions for (lo-
cal) saddle-point stability are: 1) the two differential equations should have one
predetermined variable and one jump variable, which is exactly what they have,
namely k̃ and c̃, respectively; 2) the saddle path should not be parallel to the
jump-variable axis, which it is not (because that would require the element in
the first row and last column of J(k̃∗, c̃∗) to vanish); and 3) there is a boundary
condition on the system, namely the transversality condition, such that the di-
verging paths are ruled out as solutions. It follows that the steady state is locally
saddle-point stable.
An argument analogue to that for the Ramsey model, see Appendix A to

Chapter 10, shows that the steady state is in fact globally saddle-point stable.

F. The upper bound for r∗ in the Blanchard model with retirement

An algebraic proof of the right-hand inequality in (12.54) is given here. Because
f satisfies the Inada conditions and f ′′ < 0, the equation

f ′(k̃)− δ = ρ+ g + b

has a unique solution in k̃. Let this solution be denoted k̃.
Since the inequality r∗ < ρ + g + b is equivalent with k̃ < k̃∗, it is enough to

prove the latter inequality. Suppose that on the contrary we have k̃ ≥ k̃∗. Then,
f ′(k̃∗)− δ ≥ ρ+ g + b and there exists an ε ≥ 0 such that

f ′(k̃∗) = δ + ρ+ g + b(1 + ε). (12.87)

This equation is equivalent to

ρ+m = f ′(k̃∗)− δ − g − b(1 + ε) +m = f ′(k̃∗)− δ − g − n− bε, (12.88)

28To convince yourself of this last inequality, draw a graph of the function f(k̃), reflecting
the properties f ′ > 0, f ′′ < 0, and f(0) ≥ 0.
29This also holds in the case with retirement, λ > 0.
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since n ≡ b−m. In steady state

c̃∗ =
b

λ+ b

[
f(k̃∗)− (δ + g + n)k̃∗

]
=

b (ρ+m) k̃∗

f ′(k̃∗)− δ − ρ− g + λ
,

which implies

f(k̃∗)

k̃∗
− (δ + g + n) =

(λ+ b) (ρ+m)

f ′(k̃∗)− δ − ρ− g + λ
.

Inserting (12.87) on the right-hand side gives

f(k̃∗)

k̃∗
− (δ + g + n) =

(λ+ b) (ρ+m)

b(1 + ε) + λ

=
λ+ b

b(1 + ε) + λ
(f ′(k̃∗)− δ − g − n− bε) (from 12.88))

≤ f ′(k̃∗)− δ − g − n− bε (since ε ≥ 0).

This inequality implies
f(k̃∗)

k̃∗
≤ f ′(k̃∗)− bε.

But this last inequality is impossible because of strict concavity of f. Indeed,
f ′′ < 0 together with f(0) = 0 implies f(k̃)/k̃ > f ′(k̃) for all k̃ > 0. Thus, from
the assumption that k̃ ≥ k̃∗ we arrive at a contradiction; hence, the assumption
must be rejected. It follows that k̃ < k̃∗. �

12.9 Exercises
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Chapter 13

General equilibrium analysis of
public and foreign debt

This chapter reviews long-run dynamics of public and foreign debt in the light of
the continuous time OLG model of the previous chapter. Section 13.1 reconsiders
the Ricardian equivalence issue. In Section 13.2 we extend the enquiry to a general
equilibrium analysis of budget deficits and debt dynamics in a closed economy.
Section 13.3 addresses general equilibrium aspects of public and foreign debt in a
small open economy. Issues of twin deficits and the current account of a growing
economy are considered. In Section 13.4 the assumption of lump-sum taxes is
replaced by income taxation in order to examine the relationship between debt
and distortionary taxation. The theme of optimal debt is addressed in Section
13.5, and the concluding Section 13.6 addresses the time-inconsistency problem
faced by economic policy when outcomes depend on private sector expectations.

13.1 Reconsidering the issue of Ricardian equiv-
alence

Recall that Ricardian equivalence is the claim that, given the (expected) future
path of government spending, it does not matter for aggregate private consump-
tion and saving whether the government finances its current spending by lump-
sum taxes or borrowing. Whether this claim is an acceptable approximation is
still a subject of debate among macroeconomists.
As we know from earlier chapters, the representative agent approach and the

life-cycle-OLG approach lead to opposite conclusions regarding the issue. In mod-
els with a representative household with infinite horizon (the Barro and Ramsey
dynasty models) a change in the timing of lump-sum taxes does not change the
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present value of the infinite stream of taxes imposed on the individual dynasty. A
cut in current taxes is offset by the expected higher future taxes. Private saving
goes up just as much as current taxes are reduced. This is exactly what is needed
for paying the higher taxes in the future and maintain the preferred time path
of consumption. Current consumption is thus not affected. And aggregate sav-
ing in society as a whole stays the same (the higher government dissaving being
matched by higher private saving).
It is different in the life-cycle-OLG models (without a Barro-style bequest

motive). For instance the Diamond OLG model with a public sector reveals how
taxes levied at different times are levied on different sets of agents. In the future
some of the currently alive will be gone and there will be newcomers to bear part
of the higher tax burden. A current tax cut thus makes current tax payers feel
wealthier and this leads to an increase in their current consumption. So current
private consumption in the economy ends up higher. The present generations
consequently benefit and future generations bear the cost in the form of smaller
national wealth than otherwise.
Because of the more refined notion of time in the Blanchard OLG model from

Chapter 12 and its capability of treating wealth effects more aptly, let us see what
this model precisely says about the issue. A simple book-keeping exercise will
show that the size of the public debt does matter. By affecting private wealth, it
affects private consumption.
To keep things simple, we ignore retirement (λ = 0). To avoid notational con-

fusion of the birth rate with the debt-income ratio, the former will in this chapter
be denoted β while we still denote the latter by b. As in the previous chapters, Bt

will denote net government debt, Gt government spending on goods and services,
and Tt net tax revenue, T̃t−Xt, where T̃t is gross tax revenue whileXt is transfers,
all in real terms. We assume that the interest rate is in the long run higher than
the output growth rate. Hence, to remain solvent the government has to satisfy
its intertemporal budget constraint. Ignoring seigniorage and presupposing the
government does not plan to procure more tax revenue than needed to satisfy its
intertemporal budget constraint, as seen from time 0 (interpreted as “now”), we
have the condition ∫ ∞

0

Tte
−
∫ t
0 rsdsdt =

∫ ∞
0

Gte
−
∫ t
0 rsdsdt+B0, (GIBC)

where the expected future time paths of Gt and rt are considered given and B0 is
historically given. In brief, (GIBC) says that the present value of future net tax
revenues must equal the sum of the present value of future spending on goods
and services and the current level of debt. A temporary cut in taxes in an early
time interval after time 0 must be offset in a later time interval by a rise in taxes
of the same present value.
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Given aggregate private financial wealth, A0, and aggregate human wealth,
H0, aggregate private consumption is

C0 = (ρ+m)(A0 +H0). (13.1)

Because of the logarithmic specification of instantaneous utility, the propensity
to consume out of wealth is a constant equal to the sum of the pure rate of time
preference, ρ, and the mortality rate, m. Human wealth is the present value of
expected future net-of-tax labor earnings of those currently alive:

H0 = N0

∫ ∞
0

(wt − τ t)e−
∫ t
0 (rs+m)dsdt. (13.2)

Here, τ t is the per capita lump-sum net taxation at time t, i.e., τ t ≡ Tt/Nt

≡ (T̃t − Xt)/Nt, where Nt is the size of the population (here equal to the labor
force, which in turn equals employment). The discount rate is the sum of the
risk-free interest rate, rt, and the actuarial compensation which is identical to the
mortality rate, m.
To fix ideas, consider a closed economy. In view of the presence of government

debt, aggregate private financial wealth in the closed economy is A0 = K0 + B0,
whereK0 is aggregate (private) physical capital andB0 is assumed positive. Thus,
(13.1) can be written

C0 = (ρ+m)(K0 +B0 +H0), (13.3)

where ρ is the pure rate of time preference and m is the mortality rate. We ask
whether B0 is net wealth , for a given K0, the sum B0 + H0 depends on the
size of B0, given the expected future path of Gt in (GIBC). We will see that the
answer is yes. This is because, contrary to the Ricardian equivalence hypothesis,
a higher B0 is not offset by an equally reduced H0 brought about by the higher
future lump-sum taxes. Such a fully offsetting reduction of H0 will not occur.
Therefore C0 is increased. Aggregate consumption depends positively on B0.

The argument is the following. Rewrite (13.2) as

H0 = N0

∫ ∞
0

wtNt − Tt
Nt

e−
∫ t
0 (rs+m)dsdt (from τ t = Tt/Nt)

=

∫ ∞
0

(wtNt − Tt)e−nte−
∫ t
0 (rs+m)dsdt (since N0 = Nte

−nt)

=

∫ ∞
0

(wtNt − Tt)e−
∫ t
0 (rs+n+m)dsdt =

∫ ∞
0

(wtNt − Tt)e−
∫ t
0 (rs+β)dsdt,
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using that the population growth rate, n, equals β −m. Therefore,

H0 +B0 =

∫ ∞
0

(wtNt − Tt)e−
∫ t
0 (rs+β)dsdt+B0 =

∫ ∞
0

(wtNt −Gt)e
−
∫ t
0 (rs+β)dsdt

−
∫ ∞

0

(Tt −Gt)e
−
∫ t
0 (rs+β)dsdt+B0. (13.4)

Note that the first integral on the right-hand side of (13.4) is given (independent
of a changed time profile of τ t).
Reordering (GIBC), we have

B0 =

∫ ∞
0

(Tt −Gt)e
−
∫ t
0 rsdsdt. (13.5)

Hence, the last line of (13.4) can be written

−
∫ ∞

0

(Tt −Gt)e
−
∫ t
0 (rs+β)dsdt+

∫ ∞
0

(Tt −Gt)e
−
∫ t
0 rsdsdt

=

∫ ∞
0

(
(Tt −Gt)e

−
∫ t
0 rsds − (Tt −Gt)e

−
∫ t
0 rsdse−

∫ t
0 βds

)
dt

=

∫ ∞
0

(Tt −Gt)e
−
∫ t
0 rsds

(
1− e−

∫ t
0 βds

)
dt. (13.6)

As B0 > 0, in view of (13.5), the primary surplus, Tt − Gt, is positive “most of
the time”. Then from (13.6) follows

H0 +B0 =

∫ ∞
0

(wtNt−Gt)e
−
∫ t
0 (rs+β)dsdt+

∫ ∞
0

(Tt−Gt)e
−
∫ t
0 rsds

(
1− e−

∫ t
0 βds

)
dt.

(13.7)
There are two cases regarding the birth rate β to consider: β = 0 and β > 0.

The first case turns the Blanchard model into a representative agent model. Now,
if β = 0, the second term on the right-hand side of (13.7) vanishes. Then the
remaining term indicates that H0 +B0 is independent of the time profile of taxes.
Only the given time path of Gt matters. A higher B0 does not affect the wtNt−Gt

flow, and so the sum H0 + B0 is unaffected. That is, the only effect of a higher
B0 is to make H0 equally much lower so as to leave H0 +B0 unchanged. The case
β = 0 thus implies Ricardian equivalence.
When β > 0 (positive birth rate), both terms on the right-hand side of (13.7)

becomes decisive (generally). When B0 > 0, the primary surplus, Tt − Gt, is
positive “most of the time”, in view of (13.5). The right-hand side of (13.7)
will thus generally depend on the time profile of taxes and so be affected by a
temporary tax cut. Moreover, a higher B0 will tend to make the second term in
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(13.7) larger (more or larger primary surpluses will be needed). This is exactly
what does not happen if β = 0, because in that case the second term is and
remains nil.
We conclude:{

H0 +B0 is independent of B0, if β = 0, while
H0 +B0 depends positively on B0, if β > 0.

(13.8)

The intuition is that when the birth rate is positive, the tax burden in the future
falls partly on new generations. Larger holdings of government bonds thus make
the current generations feel wealthier in spite of future taxes being raised.

EXAMPLE Let B0 > 0. Suppose T0 is proportional to G0 for all t ≥ 0 with the
factor of proportionality 1 + ξ. Then, inserting T0 = (1 + ξ)G0 into (13.7) gives

H0 +B0 =

∫ ∞
0

(wtNt −Gt)e
−
∫ t
0 (rs+β)dsdt+ ξ

∫ ∞
0

Gte
−
∫ t
0 rsds

(
1− e−

∫ t
0 βds

)
dt,

which for β > 0 is an increasing function of ξ. In turn, ξ is an increasing function
of B0 because inserting T0 = (1 + ξ)G0 into (13.5) and solving for ξ gives ξ =

B0/
∫∞

0
Gte

−
∫ t
0 rsdsdt > 0. So, for β > 0, H0 +B0 depends positively on B0. �

The result may be seen in the light of the different discount rates involved. The
discount rate relevant for the government when discounting future tax receipts
and future spending is just the market interest rate, r. But the discount rate
relevant for the households currently alive is r + β. This is because the present
generations are, over time, a decreasing fraction of the tax payers, the rate of
decrease being larger the larger is the birth rate. In the Barro and Ramsey
models the “birth rate”is effectively zero in the sense that no new tax payers are
born. When the bequest motive (in Barro’s form) is operative, those alive today
will take the tax burden of their descendents fully into account.
This takes us to the distinction between new individuals and new decision

makers, a distinction related to the fundamental difference between representative
agent models and overlapping generations models.

It is neither finite lives nor population growth

It is sometimes claimed that finite lives or the presence of population growth
are basic theoretical reasons for the absence of Ricardian equivalence. This is a
misunderstanding, however. The distinguishing feature is whether new decision
makers continue to enter the economy or not.
To sort this out, let β̄ be a constant birth rate of decision makers. That is,

if the population of decision makers is of size N, then Nβ̄ is the inflow of new
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decision makers per time unit.1 Given the assumption of a perfect credit market,
we claim:

there is Ricardian equivalence if and only if β̄ = 0. (13.9)

Indeed, with (13.8) in mind, when β̄ = 0, future taxes have to be paid by those
current tax payers who are still alive in the future. In the absence of credit
market imperfections the current tax payers will thus respond to deficit finance
(deferment of taxation) by increasing current saving out of the currently higher
after-tax income. This increase in saving matches the expected extra taxes in the
future. So current private consumption is unaffected by the deficit finance.
If β̄ > 0, however, deficit finance means shifting part of the tax burden from

current tax payers to new tax payers in the future whom current tax payers do
not care about. Even though representative agent models like the Ramsey and
Barro models may include population growth in a demographic sense, they have
a fixed number of dynastic families (decision makers) and whether the size of
these dynastic families rises (population growth) or not is of no consequence for
the question of Ricardian equivalence.
Another implication of (13.9) is that it is not the finite lifetime that is decisive

for absence of Ricardian equivalence in OLG models. Indeed, even if we imagine
the agents in a Blanchard-style model have a zero death rate, there will still be a
positive birth rate. New decision makers continue to enter the economy through
time. When deficit finance occurs, part of the tax burden is shifted to these
newcomers.
To be specific, let m̄ be a constant and age-independent death rate of existing

decision makers. Then n̄ ≡ β̄ − m̄ is the growth rate of the number of decision
makers. With β, m, and n denoting the birth rate, death rate, and population
growth rate, respectively, in the usual demographic sense, we have in Blanchard’s
model β̄ = β, m̄ = m, and n̄ = n. In the Ramsey model, however, β̄ = m̄ = n̄ =
0 ≤ n = β −m. With this interpretation, both the Blanchard and the Ramsey
model fit into (13.9). In the Blanchard model every new generation consists
of new decision makers, i.e., β̄ = β > 0. In that setting, whether or not the
population grows, the generations now alive know that the higher taxes in the
future implied by deficit finance today will in part fall on the new generations.
We therefore have n ≥ 0, β̄ = n̄+m̄ ≥ m̄ > 0, and in accordance with (13.9) there
is not Ricardian equivalence. In the Ramsey model where, in principle, the new
generations are not new decision makers since their utility were already taken care
of through bequests by their forerunners, there is Ricardian equivalence. This is
in accordance with (13.9), since β̄ = 0, whereas n ≥ 0.

1In view of the law of large numbers, we do not distinguish between expected and actual
inflow.
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The assumption in the Blanchard model that m̄ (= m) is independent of age
might be more acceptable if we interpret m̄ not as a biological mortality rate
but as a dynasty mortality rate.2 Thinking in terms of dynasties allows for some
intergenerational links through bequests. In this interpretation m̄ is the approxi-
mate probability that the family dynasty “ends”within the next time interval of
unit length (either because members of the family die without children or because
the preferences of the current members of the family no longer incorporate a be-
quest motive). Then, m̄ = 0 corresponds to the extreme Barro case where such
an event never occurs, i.e., that all existing families are infinitely-lived through
intergenerational bequests. Even in this limiting case we can interpret statement
(13.9) as telling that if new families still enter the economy (β̄ > 0), then Ricar-
dian equivalence does not hold. How could new families enter the economy? One
could imagine that immigrants are completely cut off from their relatives in their
home country or that a parent only loves the first-born. In that case children
who are not first-born, do not, effectively, belong to any preexisting dynasty, but
may be linked forward to a chain of their own descendants (or perhaps only their
first-born descendants). So in spite of the infinite horizon of every family alive,
there are newcomers; hence, Ricardian equivalence does not hold.
Statement (13.9) also implies that if β̄ = 0, then m̄ > 0 does not destroy

Ricardian equivalence. It is the difference between the public sector’s future tax
base (including the resources of individuals yet to be born) and the future tax base
emanating from the individuals that are alive today that in the above analysis
accounts for non-neutrality of variations over time in the pattern of lump-sum
taxation. This reasoning also reminds us that it is immaterial for the validity of
(13.9) whether there is productivity growth in the economy or not.

Additional sources of Ricardian non-equivalence

While the above demographic argument against Ricardian equivalence seems log-
ically convincing, it is another question how large quantitative deviations from
Ricardian equivalence it can deliver. Taking into account the sizeable life ex-
pectancy of the average citizen, Poterba and Summers (1987) point out that
demography alone delivers only modest deviations if the issue is timing of taxes
over the business cycle. Additional sources of deviation that have been put for-
ward in the literature include:

1. Short-sightedness. There is evidence that households on average are not
as forward-looking as required by the Ricardian equivalence hypothesis.
Behavioral economists and experimental economics question that people

2This interpretation was suggested already by Blanchard (1985, p. 225).
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conform to the assumption of full intertemporal rationality. Instead most
people have “present bias”.With a limited planning horizon (up to five
years, say) the effective discount rate becomes high and thereby capable of
generating substantial deviation from Ricardian equivalence.

2. Failure to leave bequests. Though the bequest motive is certainly of empiri-
cal relevance, it is operative for only a minority of the population (primarily
the wealthy families)3 and it need not have the altruistic form hypothesized
by Barro, cf. Chapter 7.

3. Imperfections in credit markets. In practice there are imperfections in the
credit markets. Many people can not borrow against expected future earn-
ings. When you are credit rationed, you effectively face an interest rate
higher than that faced by the government. Then, even if these people ex-
pect higher taxes in the future, the present value of the additional taxes is
for these people less than the current reduction of taxes. Incurring a debt-
financed tax cut the government helps credit-constrained people to tilt their
intertemporal consumption by doing what these people would like to do but
cannot, namely borrow - and in fact usually the government can do so at a
comparatively low interest rate.

4. Most taxes are distortionary, not lump sum. Strictly speaking, this should
not be seen as an argument against the possible theoretical validity of the
Ricardian equivalence hypothesis. Indeed, what the hypothesis claims is
that there are no allocational effects of changes in the timing of lump-sum
taxes. Nevertheless, widening the discussion to distortionary taxes is of
course relevant. Towards the end of Chapter 6 we briefly considered both
income taxes and consumption taxes.

5. The Keynesian view. The Keynesian point is that deviations from Ricardian
equivalence tend to be amplified in situations with unemployment and slack
aggregate demand. The reason is that otherwise unutilized resources may
be activated by a budget deficit resulting from a tax cut. By stimulating
aggregate consumption in the “first round”, a temporary tax cut stimulates
aggregate demand and thereby production. The higher level of production
amounts to higher income and thereby a further rise in consumption in
the “second round”- and so on in the Keynesian multiplier process. In a
recession also investment may be stimulated in the process due to increased
sales. All in all a positive demand spiral arises: T ↓ ⇒ C ↑ ⇒ Y ↑ ⇒ I ↑

3Wolf (2002).
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⇒ Y ↑ ⇒ C ↑ etc.4

To sum up, there are good reasons to believe that Ricardian equivalence fails.
Of course, this could in some sense be said about nearly all theoretical abstrac-
tions. But the prevalent view among macroeconomists is that Ricardian equiva-
lence systematically fails in one direction: it over-estimates the offsetting reaction
of private saving in response to budget deficits. Relaxing the restrictive assump-
tions on which the Ricardian equivalence hypothesis rests, tends to strengthen
the deviation from Ricardian equivalence implied by the simple demographic ar-
gument from OLG models.5

13.2 Dynamic general equilibrium effects of last-
ing budget deficits

The above analysis of effects of public debt is of a partial equilibrium nature,
leaving K, r, and w unaffected by the changes in government debt. To assess
the full dynamic effects of public debt we have to do general equilibrium analysis.
When aggregate saving changes in a closed economy, so does K and generally
also r and w. This should be taken into account.
Let us also here apply the Blanchard OLG model from Chapter 12. To sim-

plify, we ignore technological progress, population growth, and retirement all
together. Therefore g = n = λ = 0, so that birth rate = mortality rate = m,
and employment = population = N (a constant) for all t. Let public spending on
goods and services be a constant Ḡ > 0, assumed not to affect marginal utility of
private consumption. Suppose all this spending is (and has always been) public
consumption. There is thus no public capital. Let taxes and transfers be lump
sum so that we need keep track only of the net tax revenue, T.
We consider a closed economy described by

K̇t = F (Kt, N)− δKt − Ct − Ḡ, K0 > 0, given, (13.10)

Ċt = (FK(Kt, N)− δ − ρ)Ct −m(ρ+m)(Kt +Bt), (13.11)

Ḃt = [FK(Kt, N)− δ]Bt + Ḡ− Tt, B0 > 0, given, (13.12)

4According to Keynesian theory a similar multiplier process takes off as a result of a deficit-
financed increase in government spending on goods and services: G ↑ ⇒ Y ↑ ⇒ I ↑ ⇒ Y ↑
⇒ I ↑ ⇒ Y ↑. Here, however, more than just a change in the timing of taxes is involved,
namely a change in government spending on goods and services. So, we are outside the domain
of the Ricardian Equivalence controversy in the narrow sence. The broader issue of the size of
the government spending multiplier in alternative situations is treated in Part V of this book.

5Some empirical evidence was briefly discussed in chapters 6 and 7.
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where we have used the equilibrium relation rt = FK(Kt, N) − δ. Here (13.10)
is essentially just accounting for a closed economy; (13.11) describes changes in
aggregate consumption, taking into account the generation replacement effect;
and (13.12) describes how budget deficits give rise to increases in government
debt. All government debt is assumed to be short-term and of the same form
as a variable-rate loan in a bank. Hence, at any point in time Bt is historically
determined and independent of the current and expected future interest rates.
As we shall see, the long-run interest rate will exceed the long-run output

growth rate (which is nil). We know from Chapter 6 that in this case, to remain
solvent, the government must satisfy its No-Ponzi-Game condition which, as seen
from time zero, is

lim
t→∞

Bte
−
∫ t
0 [FK(Ks,N)−δ]ds ≤ 0. (13.13)

This says that the debt is not in the long run allowed to grow at a rate as high
as the long run interest rate. So, a permanent debt-rollover is ruled out.
In addition we assume that households satisfy their transversality conditions.

Thereby the aggregate consumption function will be

Ct = (ρ+m)(Kt +Bt +Ht), (13.14)

with

Ht = N

∫ ∞
t

(ws − τ s)e−
∫ s
t (rz+m)dzds, (13.15)

as in Section 13.1. These formulas will be useful when it comes to interpretation
of the dynamics in the economy. For ease of exposition, we let the aggregate
production function satisfy the Inada conditions, limK→0 FK(K,N) = ∞ and
limK→∞ FK(K,N) = 0. We assume δ > 0 and ρ ≥ 0.
So far the model is incomplete in the sense that there is nothing to pin down

the time profile of Tt, except that ultimately the stream of taxes should conform
to (13.13). Let us first consider a permanently balanced government budget.

Dynamics under a balanced budget

Suppose that from time 0 the government budget is balanced. Therefore, Ḃt = 0
and Bt = B0 for all t ≥ 0. So (13.12) is reduced to

Tt = (FK(Kt, N)− δ)B0 + Ḡ, (13.16)

giving the tax revenue required for the budget to be balanced, when the debt is
B0. This time path of Tt is determined after we have determined the time path
of Kt and Ct through the two-dimensional system

K̇t = F (Kt, N)− δKt − Ct − Ḡ, K0 > 0, given, (13.17)
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Figure 13.1: Building blocks for a phase diagram.

Ċt = [FK(Kt, N)− δ − ρ]Ct −m(ρ+m)(Kt +B0). (13.18)

This system is independent of Tt. The implied dynamics can usefully be analyzed
by a phase diagram.

Phase diagram Equation (13.17) shows that

K̇ = 0 for C = F (K,N)− δK − Ḡ. (13.19)

The right-hand side of (13.19) is the vertical distance between the Y = F (K,N)
curve and the Y = δK+Ḡ line in Fig. 13.1. On the basis of this we can construct
the K̇ = 0 locus in Fig. 13.2. We have indicated two benchmark values of K in
the figure, namely the golden rule value KGR and the value K̄. These values are
defined by

FK (KGR, N)− δ = 0, and FK
(
K̄,N

)
− δ = ρ,

respectively.6 We have K̄ ≤ KGR, since ρ ≥ 0 and FKK < 0.
From equation (13.18) follows that

Ċ = 0 for C =
m (ρ+m) (K +B0)

FK(K,N)− δ − ρ . (13.20)

6In this setup, where there is neither population growth nor technical progress, the golden
rule capital stock is that K which maximizes C = F (K,N) − δK − K̇ subject to the steady
state condition K̇ = 0.
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Figure 13.2: Phase diagram under a balanced budget.

Hence, for K → K̄ from below we have, along the Ċ = 0 locus, C → ∞. In
addition, for K → 0 from above, we have along the Ċ = 0 locus that C → 0, in
view of the lower Inada condition.
Fig. 13.2 also shows the Ċ = 0 locus. We assume that Ḡ and B0 are of

“modest” size relative to the production potential of the economy. Then the
Ċ = 0 curve crosses the K̇ = 0 curve for two positive values of K. Fig. 13.2
shows these steady states as the points E and Ẽ with coordinates (K∗, C∗) and
(K̃∗, C̃∗), respectively, where K̃∗ < K∗ < K̄.
The direction of movement in the different regions of Fig. 13.2 are indicated by

arrows determined by the differential equations (13.17) and (13.18). The steady
state E is seen to be a saddle point, whereas Ẽ is a source.7 We assume that
Ḡ and B0 are “modest”not only relative to the long-run production capacity of
the economy but also relative to the given K0. This means that K̃∗ < K0, as
indicated in the figure.8

7A steady state point with the property that all solution trajectories starting close to it
move away from it is called a source or sometimes a totally unstable steady state.

8The opposite case, K̃∗ > K0, would reflect that G0 and B0 were very large relative to the
initial production capacity of the economy, so large, indeed, that aggregate net saving would be
chronically negative. Then a forever shrinking capital stock would be in prospect. The economy
would in that case not converge to toward the steady state E. This steady state would only be
locally saddle-point stable, not globally saddle-point stable.
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Figure 13.3: Tax-financed shift to higher public consumption.

The capital stock is predetermined whereas consumption is a jump variable.
Since the slope of the saddle path is not parallel to the C axis, it follows that
the system is saddle-point stable. The only trajectory consistent with all the
conditions of general equilibrium (individual utility maximization for given ex-
pectations, continuous market clearing, perfect foresight) is the saddle path.9 The
other trajectories in the diagram violate the TVCs of the individual households.
Hence, initial consumption, C0, is determined as the ordinate to the point where
the vertical line K = K0 crosses the saddle path. Over time the economy moves
along the saddle path, approaching the steady state point E with coordinates
(K∗, C∗).
Although our main focus will be on effects of budget deficits and changes in

the debt, we start with the simpler case of a tax-financed increase in Ḡ.

Tax-financed shift to a higher level of public consumption Suppose that
until time t1 (> 0) the economy has been in the saddle-point stable steady state
E. Hence, for t < t1 we have zero net investment and r = FK(K∗, N) − δ ≡ r∗.
Moreover, as K∗ < K̄, r∗ > ρ (≥ 0).
At time t1 an unanticipated change in fiscal policy occurs. Public consumption

shifts to a new constant level Ḡ′ > Ḡ. Taxes are immediately increased by the

In
9By the same reasoning as in Appendix D of Chapter 12 it can be shown that when ρ ≥ 0,

the transversality conditions of the households will be satisfied in the steady state E, hence
along paths converging towards E.
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same amount so that the budget stays balanced. We assume that everybody
rightly expect the new policy to continue forever. The change to a higher G shifts
the K̇ = 0 curve downwards as shown in Fig. 13.3, but leaves the Ċ = 0 curve
unaffected. At time t1 when the policy shift occurs, private consumption jumps
down to the level corresponding to the point P in Fig. 13.3. The explanation is
that the net-of-tax human wealth, Ht1 , is immediately reduced as a result of the
higher current and expected future taxes.
As Fig. 13.3 indicates, the initial reduction in C is smaller than the increase

in G and T. Therefore net saving becomes negative and K decreases gradually
until the new steady state, E’, is “reached”. To find the long-run effects on K
and C we first equalize the right-hand sides of (13.19) and (13.20) and then use
implicit differentiation w.r.t. Ḡ to get

∂K∗

∂Ḡ
=

r∗ − ρ
C∗F ∗KK − (m+ r∗)(ρ+m− r∗) < 0;

next, from (13.19), by the chain rule we get

∂C∗

∂Ḡ
=
∂C∗

∂K∗
∂K∗

∂Ḡ
= r∗

∂K∗

∂Ḡ
− 1 < −1,

where r∗ = FK(K∗, N)− δ.10 In the long run the decrease in C is larger than the
increase in G because the economy ends up with a smaller capital stock. That is,
under full capacity utilization a tax-financed shift to higher G crowds out private
consumption and investment. Private consumption is in the long run crowded out
more than one to one due to reduced productive capacity. In this way the cost of
the higher G falls relatively more on the younger and as yet unborn generations
than on the currently elder generations.11

Higher public debt

To analyze the effect of a rise in public debt, let us first see how it might come
about.

A tax cut Assume again that until time t1 (> 0) the economy has had a
balanced government budget and been in the saddle-point stable steady state E.
The level of the public debt in this steady state is B0 > 0 and tax revenue is, by
(13.16),

T = (FK(K∗, N)− δ)B0 + Ḡ ≡ T ∗,

10For details, see Appendix B.
11This might be different if a part of G were public investment (in research and education,

say), and this part were also increased.
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a positive constant in view of FK(K∗, L)− δ = r∗ > ρ ≥ 0.
At time t1 the government unexpectedly cuts taxes to a lower constant level,

T̄ , holding public consumption unchanged. That is, at least for a while after time
t1 we have

Tt = T̄ < T ∗. (13.21)

As a result, Ḃt > 0. The tax cut make current generations feel wealthier, hence
they increase their consumption. They do so in spite of being forward-looking
and anticipating that the current fiscal policy sooner or later must come to an end
(because it is not sustainable, as we shall see). The prospect of higher taxes in
the future does not prevent the increase in consumption, since part of the future
taxes will fall on new generations entering the economy.
The rise in C combined with unchanged Ḡ implies negative net investment so

that K begins to fall, implying a rising interest rate, r. For a while all the three
differential equations that determine changes in C, K, and B are active. These
three-dimensional dynamics are complicated and cannot, of course, be illustrated
in a two-dimensional phase diagram. Hence, for now we leave the phase diagram.

The fiscal policy (Ḡ, T̄ ) is not sustainable By definition a fiscal policy
(G, T ) is sustainable if the government stays solvent under this policy. We claim
that the fiscal policy (Ḡ, T̄ ) is not sustainable. Relying on principles from Chapter
6, there are at least three different ways to prove this.
Approach 1. In view of K∗ < K̄ < KGR, we have r∗ = FK(K∗, L) − δ

> FK(K̄, L) − δ = ρ ≥ 0. After time t1 Kt is falling, at least for a while. So
Kt < K∗ and thus rt = FK(Kt, N)− δ > r∗ > 0. Thereby the fiscal policy (Ḡ, T̄ )
implies an interest rate forever larger than the long-run output growth rate which
in the absence of growth in technology or labor force is zero. From Chapter 6
we know that in this situation a sustainable fiscal policy must satisfy the NPG
condition

lim
t→∞

Bte
−
∫ t
t1
rsds ≤ 0. (13.22)

With a for ever positive debt, this requires that there exists an ε > 0 such that

lim
t→∞

Ḃt

Bt

< lim
t→∞

rt − ε, (13.23)

i.e., the long-run growth rate of the public debt should be less than the long-run
interest rate .
The fiscal policy (Ḡ, T̄ ) violates this condition, however. Indeed, we have for

t > t1

Ḃt = rtBt + Ḡ− T̄ (13.24)

> r∗B0 + Ḡ− T̄ > r∗B0 + Ḡ− T ∗ = 0,
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where the first inequality comes from Bt > B0 > 0 and rt = FK(Kt, L) − δ
> r∗ = FK(K∗, L) − δ, in view of Kt < K∗. This implies Bt → ∞ for t → ∞.
Hence, dividing by Bt in (13.24) gives

Ḃt

Bt

= rt +
Ḡ− T̄
Bt

→ rt for t→∞, (13.25)

which violates (13.23). So the fiscal policy (Ḡ, T̄ ) is not sustainable. The crux
of the matter is that in the absence of economic growth, lasting budget deficits
indicate an unsustainable fiscal policy.
Approach 2. An alternative argument, focusing not on the NPG condition,

but on the debt-income ratio, is the following. We have, for t > t1, Kt < K∗ so
that Yt < Y ∗ = F (K∗, N) at the same time as Bt → ∞ for t → ∞, by (13.24).
Hence, the debt-income ratio, Bt/Yt, tends to infinity for t→∞, thus confirming
that the fiscal policy (Ḡ, T̄ ) is not sustainable.
Approach 3. Yet another way of showing absence of fiscal sustainability is to

start out from the intertemporal government budget constraint and check whether
the primary budget surplus, T̄ −G, which rules after time t1, satisfies∫ ∞

t1

(T̄ −G)e
−
∫ t
t0
rsdsdt ≥ Bt1 , (13.26)

where Bt1 = B0 > 0. Obviously, if T̄ − G ≤ 0, (13.26) is not satisfied. Suppose
T̄ −G > 0. Then∫ ∞

t1

(T̄ −G)e
−
∫ t
t1
rsdsdt <

∫ ∞
t1

(T̄ −G)e−r
∗(t−t1)dt =

T̄ −G
r∗

< B0 = Bt1 ,

where the first inequality comes from rt > r∗, the first equality from carrying
out the integration

∫∞
t1
e−r

∗(t−t1)dt, and, finally, the second inequality from the
equality in the second row of (13.24) together with the fact that T̄ < T ∗. So the
intertemporal government budget constraint is not satisfied. The current fiscal
policy is unsustainable.

Fiscal tightening and thereafter To avoid default on the debt, sooner or
later the fiscal policy must change. This may take the form of lower of public
consumption or higher taxes or both.12 Suppose that the change occurs at time
t2 > t1 in the form of a tax increase so that for t ≥ t2 there is again a balanced
budget. This new policy is announced to be followed forever after time t2 and we
assume the market participants believe in this and that it holds true.

12We still ignore financing by seigniorage.
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The balanced budget after time t2 implies

Tt = (FK (Kt, N)− δ)Bt2 + Ḡ. (13.27)

The dynamics are therefore again governed by a two-dimensional system,

K̇t = F (Kt, N)− δKt − Ct − Ḡ. (13.28)

Ċt = [FK(Kt, Nt)− δ − ρ]Ct −m(ρ+m)(Kt +Bt2), (13.29)

Consequently phase diagram analysis can again be used.
The phase diagram for t ≥ t2 is depicted in Fig. 13.4. The new initialK isKt2 ,

which is smaller than the previous steady-state value K∗ because of the negative
net investment in the time interval [t1, t2). Relative to Fig. 13.2 the K̇ = 0 locus
is unchanged (since Ḡ is unchanged). But in view of the new constant debt level
Bt2 being higher than B0, the Ċ = 0 locus has turned counter-clockwise. For any
given K ∈ (0, K̄), the value of C required for Ċ = 0 is higher than before, cf.
(13.20). The intuition is that for every given K, private financial wealth is higher
than before in view of the possession of government bonds being higher. For every
given K, therefore, the generation replacement effect on the change in aggregate
consumption is greater and so is then the level of aggregate consumption that
via the operation of the Keynes-Ramsey rule is required to offset the generation
replacement effect and ensure Ċ = 0 (cf. Section 12.2 of the previous chapter).
The new saddle-point stable steady state is denoted E’in Fig. 13.4 and it has

capital stock K∗′ < K∗ and consumption level C∗′ < C∗. As the figure is drawn,
Kt2 is larger than K

∗′. This case represents a situation where the tax cut did not
last long (t2 − t1 “small”). The level of consumption immediately after t2, where
the fiscal tightening sets in, is found where the vertical line K = Kt2 crosses the
new saddle path, i.e., the point P in Fig. 13.4. The movement of the economy
after t2 implies gradual lowering of the capital stock and consumption until the
new steady state, E’, is reached.
Alternatively, it is possible that Kt2 is smaller than K∗′ so that the new

initial point, A, is to the left of the new steady state E’. This case is illustrated
in Fig. 13.5 and arises if the tax cut lasts a long time (t2 − t1 “large”). The low
amount of capital implies a high interest rate and the fiscal tightening must now
be tough. This induces a low consumption level − so low that net investment
becomes positive. Then the capital stock and output increase gradually during
the adjustment to the steady state E’.
Thus, in both cases the long-run effect of the transitory budget deficit is quali-

tatively the same, namely that the larger supply of government bonds crowds out
physical capital in the private sector. Intuitively, a certain feasible time profile
for financial wealth, A = K + B, is desired and the higher is B, the lower is

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



542
CHAPTER 13. GENERAL EQUILIBRIUM ANALYSIS OF

PUBLIC AND FOREIGN DEBT

Figure 13.4: The adjustment after fiscal tightening at time t2, presupposing t2 − t1
small.

Figure 13.5: The adjustment after fiscal tightening at time t2, presupposing t2 − t1
large.
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the needed K. To this “stock”interpretation we may add a “flow”interpretation
saying that the budget deficit offers households a saving outlet which is an alter-
native to capital investment. All the results of course hinge on the assumption of
permanent full capacity utilization in the economy.
To be able to quantify the long-run effects of a change in the debt level on

K and C we need the long-run multipliers. By equalizing the right-hand sides
of (13.19) and (13.20), with B0 replaced by B̄, and using implicit differentiation
w.r.t. B̄, we get

∂K∗

∂B̄
=
m (ρ+m)

D < 0, (13.30)

where D ≡ C∗F ∗KK − (r∗ +m)(ρ+m− r∗) < 0.13 Next, by using the chain rule
on C∗ = F (K∗, N)− δK∗ − Ḡ from (13.19), we get

∂C∗

∂B̄
=
∂C∗

∂K∗
∂K∗

∂B̄
= (FK(K∗, N)− δ)m (ρ+m)

D = r∗
m (ρ+m)

D < 0.

The multiplier ∂K∗/∂B̄ tells us the approximate size of the long-run effect on
the capital stock, when a temporary tax cut causes a unit increase in pub-
lic debt. The resulting change in long-run output is approximately ∂Y ∗/∂B̄
= (∂Y ∗/∂K∗)(∂K∗/∂B̄) = (r∗ + δ)m (ρ+m) /D < 0.

Time profiles It is also useful to consider the time profiles of the variables.
Case 1 : t2− t1 small (expeditious fiscal tightening). Fig. 13.6 shows the time

profile of T and B, respectively. The upper panel visualizes that the increase in
taxation at time t2 is larger than the decrease at time t1. As (13.27) shows, this
is due to public expenses being larger after t2 because both the government debt
Bt and the interest rate, FK(Kt, Nt)− δ, are higher. The further gradual rise in
Tt towards its new steady-state level is due to the rising interest service along
with a rising interest rate, caused by the falling K.
The middle panel of Fig. 13.6 is self-explanatory.
As visualized by the lower panel of Fig. 13.6, the tax cut at time t1 results in

an upward jump in consumption. This implies negative net investment, so that
K begins to fall. The size of the upward jump in consumption at time t1 and
the subsequent time path of consumption in the time interval [t1, t2) can not be
precisely pinned down. We can not even be sure that C will be gradually falling.
Therefore the downward-sloping time path of C in the lower panel of Fig. 13.6
in this time interval illustrates just one of the possibilities.
The ambiguity arises for the following reason. Though the current generations

will immediately feel wealthier and increase their consumption as a result of the

13For details, see Appendix B.
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Figure 13.6: Case 1: t2 − t1 small (expeditious fiscal tightening; C falling throughout
(t1, t2)).
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tax cut, they have rational expectations and are thereby aware that sooner or later
fiscal policy will have to be changed again. As the households may have uncertain
and different beliefs about when and how the fiscal sustainability problem will
be remedied, we can not theoretically assign a specific value to the new after-
tax human wealth, even less a constant value. What we can tell is that Ht1 ,
and therefore Ct1 , will be “somewhat” larger than immediately before time t1.
Also private saving will rise, however. This is because the rise in consumption
at time t1 will be less than the fall in taxes. To see this, imagine first that the
households expect a constant level, T, to last for a long time during which also the
real interest rate and the real wage remain approximately unchanged. Perceived
human wealth would then be H ≈ (w∗N − T )/(r∗ + m), from (13.15). By Ct
= (ρ+m)(At +H), we would have

∆Ct ≈ dCt =
∂Ct
∂T

dT = (ρ+m)
∂H

∂T
dT = − ρ+m

r∗ +m
dT < −dT, (13.31)

in view of dT = T̄ −T ∗ < 0 and r∗ > ρ. To the extent that the households expect
the new tax level T̄ to last a shorter time, the boost to H, and therefore also to
C, will be less than indicated by this equation. The boost to H and C is further
dampened by the (correct) anticipation that the ongoing negative net investment
will imply a falling K and thereby a falling real wage (due to the falling marginal
productivity of labor) and a rising interest rate (due to the rising net marginal
productivity of capital). So there will be positive private saving, hence rising
private financial wealth A, for a while. Meanwhile H will be falling after t1 due
to the falling real wage, the rising interest rate, and the fact that the date of
likely fiscal tightening is approaching, although uncertain.
So the two components of total wealth, A and H, move in opposite directions.

Depending of which of these opposite movements is dominating, consumption will
be rising or falling for a while after t1 (Fig. 13.6 depicts the latter case). Anyway,
because the exact time and form of the fiscal tightening is not anticipated, a
sharp decrease in the present discounted value of after-tax labor income occurs
at time t2, which induces the downward jump in consumption. Although the fall
in consumption makes room for increased net investment, by definition of t2 − t1
being “small”, net investment remains negative so that the fall in K continues
after t2. Therefore, also the real wage continues to fall, implying continued fall
in H, hence further fall in C, until the new steady-state level is reached.
If the time of the fiscal tightening were anticipated, consumption would not

jump at time t2. But the long-run result would be qualitatively the same.
Case 2: t2 − t1 large (deferred fiscal tightening). In this case the tax revenue

after t2 has to exceed what is required in the new steady state. During the
subsequent adjustment the taxation level will be gradually falling which reflects
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Figure 13.7: Case 1: t2 − t1 large (deferred fiscal tightening; C falling throughout
(t1, t2)).
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the gradual fall in the interest rate generated by the rising K, cf. Fig. 13.5.
Private consumption will at time t2 jump to a level below the new (in itself lower)
steady state level, C∗′.
The above analysis is in a sense “biased”against budget deficits because it

ignores economic growth. Thereby persistent budget deficits necessarily become
incompatible with fiscal sustainability. With economic growth persistent budget
deficits are compatible with fiscal sustainability as long as the resulting govern-
ment debt does not persistently grow faster than GDP. A further limitation of the
analysis is its abstraction from the role of Keynesian aggregate demand factors
in the process.

13.3 Public and foreign debt: a small open econ-
omy

Now we let the country considered be a small open economy (SOE). Our SOE
is characterized by perfect substitutability and mobility of goods and financial
capital across borders, but no mobility of labor. The main difference compared
with the above analysis is that the interest rate will not be affected by the public
debt of the country (as long as its fiscal policy seems sound). Besides making the
analysis simpler, this entails a stronger crowding out effect of public debt than in
the closed economy. The lack of an offsetting increase in the interest rate means
absence of the feedback which in a closed economy limits the fall in aggregate
saving. In the open economy national wealth equals the stock of physical capital
plus net foreign assets. And it is national wealth rather than the capital stock
which is crowded out.

The model

The analytical framework is still Blanchard’s OLG model with constant popula-
tion. As above we concentrate on the simple case: g = λ = 0 and birth rate =
mortality rate = m > 0. The real interest rate is given from the world financial
market and is a constant r > 0. Table 13.1 lists key variables for an open economy.

Table 13.1. New variable symbols
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Ant = At −Bt = Kt + Aft = national wealth
−Bt = − government (net) debt = government financial wealth
Aft = net foreign assets (the country’s net financial claims on the rest of the world)
Dt = −Aft = net foreign debt
At = Kt +Bt + Aft = private financial wealth
Ȧt = Spt = private net saving
−Ḃt = Sgt = Tt −G− rBt = government net saving = budget surplus
Ȧnt = Ȧt − Ḃt = Spt + Sgt = Snt = aggregate net saving
NXt = net exports
Ȧft = Ȧt − Ḃt − K̇t = NXt + rAft = CASt = current account surplus
CADt = −CASt = rDt −NXt = current account deficit

In view of profit-maximization, the equilibrium capital stock, K∗, satisfies
FK(K∗, N) = r + δ and is thus a constant. The equilibrium real wage is w∗ =
FL(K∗, N). The increase per time unit in real private financial wealth is

Ȧt = rAt + w∗N − Tt − Ct = rAt + (w∗ − τ t)N − Ct, (13.32)

where τ t ≡ Tt/N is a per capita lump-sum tax. The corresponding differential
equation for Ct reads Ċt = (r−ρ)Ct−m(ρ+m)At. To keep track of consumption
in the SOE, however, it is easier to focus directly on the level of consumption:

Ct = (ρ+m)(At +Ht), (13.33)

where Ht is (after-tax) human wealth, given by

Ht = N

∫ ∞
t

(w∗ − τ s)e−(r+m)(s−t)ds =
Nw∗

r +m
−N

∫ ∞
t

τ se
−(r+m)(s−t)ds. (13.34)

Suppose that from time 0 the government budget is balanced, so that Bt is
constant at the level B0 and Tt = rB0 + Ḡ ≡ T ∗. Consequently,

τ t =
T ∗

N
=
rB0 + Ḡ

N
≡ τ ∗. (13.35)

Under “normal” circumstances τ ∗ < w∗, that is, B0 and Ḡ are not so large as
to leave non-positive after-tax earnings. Then, in view of the constant per capita
tax, (13.34) gives

Ht =
w∗ − τ ∗
r +m

N ≡ H∗ > 0. (13.36)
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Consequently, (13.32) simplifies to

Ȧt = (r − ρ−m)At + (w∗ − τ ∗)N − (ρ+m)
w∗ − τ ∗
r +m

N

= (r − ρ−m)At +
r − ρ
r +m

(w∗ − τ ∗)N. (13.37)

Presupposing r 6= ρ+m, this linear differential equation has the solution

At = (A0 − A∗)e(r−ρ−m)t + A∗, (13.38)

where A∗ is the steady-state national wealth,

A∗ =
(r − ρ)(w∗ − τ ∗)N
(r +m)(ρ+m− r) . (13.39)

(For economic relevance of the solution (13.38) it is required that A0 > −H∗,
since otherwise C0 would be zero or negative in view of (13.33).) Substitution
into (13.33) gives steady-state consumption,

C∗ =
m(ρ+m)(w∗ − τ ∗)N
(r +m)(ρ+m− r) . (13.40)

By an argument similar to that in Appendix D of Chapter 12, it can be shown
that the transversality conditions of the individual households are satisfied along
the path (13.38).
By (13.37) we see that the steady state, A∗, is asymptotically stable if and

only if
r < ρ+m. (13.41)

Let us consider this case first. The phase diagram describing this case is shown
in the upper panel of Fig. 13.8. The lower panel of the figure illustrates the
movement of the economy in (A,C) space, given A0 < A∗. The Ȧ = 0 line
represents the equation C = rA+(w∗− τ ∗)N, which in view of (13.32) must hold
when Ȧ = 0. Its slope is lower than that of the line representing the consumption
function, C = (ρ + m)(A + H∗). The economy is always at some point on this
line.14 A sub-case of (13.41) is the following case.

Medium impatience: r −m < ρ < r

As Fig. 13.8 is drawn, it is presupposed that A∗ > 0, which, given (13.41),
requires r −m < ρ < r. This is the case of “medium impatience”.

14If we (as for the closed economy) had based the analysis on two differential equations in A
and C, then a saddle path would arise and this path would coincide with the C = (ρ+m)(A+H∗)
line in Fig. 13.8.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



550
CHAPTER 13. GENERAL EQUILIBRIUM ANALYSIS OF

PUBLIC AND FOREIGN DEBT

Figure 13.8: Dynamics of an SOE withmedium impatience, i.e., r−m < ρ < r (balanced
budget).
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A fiscal easing Imagine that until time t1 > 0 the system has been in the
steady state E. At time t1 an unforeseen tax cut occurs so that at least for
some spell of time after t1 we have T = T̄ < T ∗, hence τ = τ̄ ≡ T̄ /N < τ ∗. Since
government spending remains unchanged, there is now a budget deficit and public
debt begins to rise. We know from the partial equilibrium analysis of Section 13.1
that current generations will feel wealthier and increase their consumption. Like
in the similar situation in the closed economy of Section 13.2, we can not assign
a specific value to the new after-tax human wealth, even less a constant value.
The phase diagram as in Fig. 13.8 is thus no longer applicable and for now we
leave phase diagram analysis.
We claim that the rise in consumption at time t1 will be less than the fall in

taxes. This amounts to positive private saving and rising private financial wealth
for a while. To see this provisional outcome, imagine first that the agents expect
taxation to be at a constant level, T, forever. Perceived human wealth would then
be H = (w∗N−T )/(r+m), in analogy with (13.36). From Ct = (ρ+m)(At+H)
we would have

dCt ≈
∂Ct
∂T

dT = (ρ+m)
∂H

∂T
dT = −ρ+m

r +m
dT < −dT, (13.42)

in view of dT = T̄ −T ∗ < 0 and r > ρ. To the extent that the households expect
the new tax level T̄ to last a shorter time, the boost to H and C will be less than
indicated by (13.42). This fortifies the rise in saving and the resulting growth in
A.

Fiscal tightening at a higher debt level As hinted at, the fiscal policy
(Ḡ, T̄ ) is not sustainable. It generates a growth rate of government debt which
approaches r, whereas income and net exports are clearly bounded in the absence
of economic growth.15 To end the runaway debt spiral a fiscal tightening sooner
or later is carried into effect. Suppose this happens at time t2 > t1. Let the fiscal
tightening take the form of a return to a balanced budget with unchanged Ḡ.
That is, for t ≥ t2 the tax revenue is

T = rBt2 + Ḡ ≡ T ∗′ > T ∗,

where the inequality is due to Bt2 > B0. The corresponding per-capita tax is τ ∗′

≡ T ∗′/N > τ ∗.
Since the budget is now balanced, a phase diagram of the same form as in Fig.

13.8 is again valid and is depicted in Fig. 13.9. Compared with Fig. 13.8 the

15Indeed, as in the analogue situation for the closed economy, Ḃt/Bt = r+(Ḡ−T̄ )/Bt → r for
t → ∞. Because we ignore economic growth, lasting budget deficits indicate an unsustainable
fiscal policy.
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Figure 13.9: The adjustment after time t2 showing the effect of a higher level of gov-
ernment debt.

Ȧ = 0 line is shifted downwards because w∗− τ ∗′ is lower than before t1. For the
same reason the new level of human wealth, H∗′, is lower than the old, H∗. So the
line representing the consumption function is also shifted down compared to the
situation before t1. Immediately after time t2 the economy is at some point like
P, where the vertical line A = At2 (> A∗) crosses the new line representing the
consumption function. The economy then moves along that line and converges
toward the new steady state, E’. At that point we have A = A∗′ < A∗ and C
= C∗′ < C∗.

As a consequence national wealth goes down more than one to one with the
increase in government debt when we are in the medium impatience case. Indeed,
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for a given level B̄ of government debt, long-run national wealth is

An∗ ≡ A∗ − B̄. (13.43)

An increase in government debt by dB̄ increases national wealth by ∆An∗ ≈
dAn∗ = (∂A∗/∂B̄ − 1)dB̄ < −dB̄, since ∂A∗/∂B̄ < 0 when r − m < ρ < r.
The explanation follows from the analysis above. On top of the reduction of
government wealth by dB̄ there is a reduction of private financial wealth due
to the private dissaving during the adjustment process. This dissaving occurs
because consumption responds less than one to one (in the opposite direction)
when T is changed, cf. (13.42).
To find the exact long-run effect on national wealth of a rise in B̄, in (13.35)

replace B0 by B̄ and substitute into (13.39) to get

A∗ =
(r − ρ)(w∗N − rB̄ − Ḡ)

(r +m)(ρ+m− r) . (13.44)

Inserting this into (13.43), we find the effect of public debt on national wealth in
steady state to be

∂An∗

∂B̄
= − (r − ρ)r

(r +m)(ρ+m− r) − 1. (13.45)

This gives the size of the long-run effect on national wealth when a temporary tax
cut causes a unit increase in long-run government debt. In our present medium
impatience case, r −m < ρ < r and so (13.45) implies ∂An∗/∂B̄ < −1.16

Very high impatience: ρ > r

Also this case with high impatience is a sub-case of (13.41). When ρ > r,
(13.45) gives −1 < ∂An∗/∂B̄ < 0. This is because such an economy will have
0 < ∂A∗/∂B̄ < 1. In view of the high impatience, A∗ < 0. That is, in the long
run the SOE has negative private financial wealth reflecting that all physical cap-
ital in the country and some of the human wealth is essentially mortgaged to
foreigners. This outcome is not plausible in practice. Owing to credit market
imperfections there is likely to be diffi culties of refinancing the debt in such a
situation. In addition, politically motivated government intervention will pre-
sumably hinder such a development before national wealth is in any way close to
zero.

16In the knife-edge case ρ = r, we get A∗ = 0. In this case ∂An∗/∂B̄ = −1.
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Very low impatience: ρ < r −m

When ρ < r − m, an economically relevant steady state no longer exists since
that would, by (13.40), require negative consumption. In the lower panel of Fig.
13.9 the slope of the C = (ρ + m)(A + H∗) line will be smaller than that of the
Ȧ = 0 line and the two lines will never cross for a positive C.17 With initial total
wealth positive (i.e., A0 > −H∗), the excess of r over ρ + m results in sustained
positive saving so as to keep A growing forever along the C = (ρ + m)(A + H∗)
line. That is, the economy grows large. In the long run the interest rate in the
world financial market can no longer be considered independent of this economy
− the SOE framework ceases to fit.
As long as the country is still relatively small, however, we may use the model

as an approximation. Though there is no steady state level of national wealth to
focus at, we may still ask how the time path of national wealth, Ant , is affected by
a rise in government debt caused by a temporary tax cut during the time interval
[t1, t2). We consider the situation after time t2, where there is again a balanced
government budget. For all t ≥ t2 we have Ant = At − B̄, where B̄ = Bt2 and, in
analogy with (13.38),

At = (At2 − A∗)e(r−ρ−m)(t−t2) + A∗,

with A∗ defined as in (13.44) (now a repelling state). For a given At2 > −H∗′ we
find for t > t2

∂Ant
∂B̄

=
∂At
∂B̄
− 1 =

(
1− e(r−ρ−m)(t−t2)

) ∂A∗
∂B̄
− 1

=
(
1− e(r−ρ−m)(t−t2)

)(
− (r − ρ)r

(r +m)(ρ+m− r)

)
− 1, (13.46)

by (13.44).18 Since ρ < r −m, the right-hand side of (13.46) is less than −1 and
over time rising in absolute value. In spite of the lower private saving triggered by
the higher taxation after time t2, private saving remains positive due to the low
rate of impatience. Financial wealth is thus still rising and so is private income.
But the lower saving out of a rising income implies more and more “forgone future
income”. This explains the rising crowding out envisaged by (13.46).

17In the upper panel of Fig. 13.9 the line representing Ȧ as a function of A will have positive
slope. The stability condition (13.41) is no longer satisfied. There is still a “mathematical”
steady-state value A∗ < 0, but it can not be realized, because it requires negative consumption.
18The condition At2 > −H∗′ is needed for economic relevance since otherwise Ct2 ≤ 0. The

condition also ensures At2 > A∗, since A∗ < −H∗′ when ρ < r −m.
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Current account deficits and foreign debt

Do persistent current account deficits in the balance of payments signify future
borrowing problems and threatening bankruptcy? To address this question we
need a few new variables.
Let NXt denote net exports (exports minus imports). Then, the output-

expenditure identity reads

Yt = Ct + It +Gt +NXt. (13.47)

Net foreign assets are denoted Aft and equals minus net foreign debt, −Dt =

At − Bt − Kt. Gross national income is Yt + rAft = Yt − rDt.
19 The current

account surplus at time t is

CASt = Ȧft = Ȧt − Ḃt − K̇t = rAft +NXt (13.48)

= Yt + rAft − (Ct + It +Gt),

by (13.47). The first line views CAS from the perspective of changes in assets
and liabilities. The second line views it from an income-expenditure perspective,
that is, the current account surplus is the excess of gross national income over
and above home expenditure. Gross national saving, St, equals, by definition,
gross national income minus the sum of private and public consumption, that is,
St = Yt + rAft −Ct −Gt. Hence, the current account surplus can also be written
as the excess of gross national saving over and above gross investment: CASt
= St − It. Of course, the current account deficit is CADt ≡ −CASt = It − St.
In our SOE model above, with constant r > 0 and no economic growth, the

capital stock is a constant, K∗. Then (13.47) gives net exports as a residual:

NXt = F (K∗, N)− Ct − δK∗ − Ḡ, (13.49)

where Ct = (ρ + m)(At + Ht). We concentrate on the case where an economic
steady state exists and is asymptotically stable, i.e., (13.41) holds. In the steady
state being in force for t < t1, Bt = B0, Ht = H∗, and At = A∗, as given in
(13.36) and (13.39), respectively. Thus, Aft = A∗ − B0 − K∗ ≡ Af∗ ≡ −D∗ so
that 0 = Ȧft = CASt ≡ −CADt. Then, by (13.48),

NXt = −rAf∗ = rD∗. (13.50)

This should also be the value of net exports we get from (13.49) in steady
state. To check this, we consider

NXt = F (K∗, N)− C∗ − δK∗ − Ḡ = FK(K∗, N)K∗ + FL(K∗, N)N − C∗ − δK∗ − Ḡ
= (r + δ)K∗ + w∗N − C∗ − δK∗ − Ḡ,

19In a more general setup also net foreign worker remittances, which we here ignore, should
be added to GDP to calculate gross national income.
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where we have used Euler’s theorem on a function homogeneous of degree one.
Combining with (13.32) evaluated in steady state, we thus have

NXt = (r + δ)K∗ + w∗N − (rA∗ + (w∗ − τ ∗)N)− δK∗ − Ḡ
= r(K∗ − A∗) + τ ∗N − Ḡ = r(K∗ − A∗ −B0) = rD∗,

where the third equality follows from the assumption of a balanced budget. Our
accounting is thus coherent.
We see that permanent foreign debt is consistent with a steady state if net

exports are suffi cient to match the interest payments on the debt. That is, a
steady state does not require trade balance, but a balanced current account.
As we shall see in a moment, in an economy with economic growth not even
the current account need be balanced. Before leaving the non-growing economy,
however, a few remarks about the current account out of steady state are in place.

Emergence of twin deficits Consider again the fiscal easing regime ruling
in the time interval [t1, t2). The higher Ct resulting from the fiscal easing leads
to a lower NXt than before t1, cf. (13.49). As a result, CADt > 0. So a cur-
rent account deficit has emerged in response to the government budget deficit.
This situation is known as the twin deficits. As we argued, the situation is not
sustainable. Sooner or later, the incipient lack of solvency will manifest itself in
diffi culties with continued borrowing. Something must be changed.
From mere accounting we know that the current account deficit can also be

written as the difference between aggregate net investment, Int , and aggregate net
saving, Snt . So

CADt = It − St = It − δKt − (St − δKt) = Int − Snt
= Int − (Spt + Sgt ) = Int − S

p
t + Ḃt, (13.51)

since public saving, Sgt , equals −Ḃt, the negative of the budget deficit. Now,
starting from a balanced budget and balanced current account, whether a budget
deficit tends to generate a current account deficit depends on how net investment
and net private saving respond. In the present example we have Kt = K∗ and
thereby Int = 0 for all t. For t < t1, also S

p
t = rA∗ + (w∗ − τ ∗)N − C∗ = 0 and

Ḃt = 0. In the time interval [t1, t2) , we have Spt > 0 as well as Ḃt > 0, but the
budget deficit dominates and results in CADt > 0.
As before, suppose the government addresses the lack of fiscal sustainability

by increasing taxation as of time t2 so that the government budget is balanced
for t ≥ t2. Then again Ḃt = 0. Yet for a while CADt > 0 because now Spt < 0 as
reflected in Ȧt < 0, cf. Fig. 13.9. The deficit on the current account is, however,
only temporary and not a signal of an impending default. It reflects that it takes
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time to complete the full downward adjustment of private consumption after the
fiscal tightening.20

Let us consider a different scenario, namely one where the fiscal easing after
time t1 takes the form of a shift in government consumption to Ḡ′ > Ḡ with-
out any change in taxation. Suppose the household sector expects that a fiscal
tightening will not happen for a long time to come. Then, Ht and Ct are es-
sentially unaffected, i.e., Ct = C∗ and Ht = H∗ as before t1. So also A remains
at its steady-state value A∗ from before t1, given in (13.39). Owing to the ab-
sence of private saving, the government deficit must be fully financed by foreign
borrowing. Indeed, by (13.51),

CADt = Ḃt > 0

in this case. Here the two deficits exactly match each other. The situation is
not sustainable, however. Government debt is mounting and if default is to be
avoided, sooner or later fiscal policy must change.
It is the absence of Ricardian equivalence that suggests a positive relationship

between budget and current account deficits. On the other hand, the course of
events after t2 in this example illustrates that a current account deficit need not
coincide with a budget deficit. The empirical evidence on the relationship between
budget and current account deficits is not entirely clear-cut. A cross-country
regression analysis for 19 OECD countries with each country’s data averaged over
the 1981-86 period pointed to a positive relationship.21 In fact, the attention
to twin deficits derives from this period. Moreover, time series for the U.S.
in the 1980s and first half of the 1990s also indicated a positive relationship.
Nevertheless, other periods show no significant relationship. This mixed empirical
evidence becomes more understandable when short-run mechanisms, with output
determined from aggregate demand rather than supply, are taken into account.

The current account of a growing economy The above analysis ignored
growth in GDP and therefore steady state required the current account to be
balanced. It is different if we allow for economic growth. To see this, suppose
there is Harrod-neutral technological progress at the constant rate g and that the
labor force grows at the constant rate n. Then in steady state GDP grows at the
rate g+n. From (13.48) follows, in analogy with the analysis of government debt
in Chapter 6, that the law of movement of the foreign-debt/GDP ratio d ≡ D/Y
is

ḋ = (r − g − n)d− NX

Y
. (13.52)

20By construction of the model, households agents in the private sector are never insolvent.
21See Obstfeld and Rogoff (1996, pp. 144-45).
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A necessary condition for the SOE to remain solvent is that circumstances are
such that the foreign-debt/GDP ratio does not tend to explode. For brevity, as-
sume NX/Y remains equal to a constant, x̄. Then the linear differential equation
(13.52) has the solution

dt = (d0 − d∗)e(r−g−n)t + d∗,

where d∗ = x̄/(r − g − n). If r > g + n > 0, the SOE will have an exploding
foreign-debt/GDP ratio and become insolvent vis-a-vis the rest of the world unless
x̄ ≥ (r− g−n)d0. The right-hand-side of this inequality is an increasing function
of the initial foreign debt and the growth-corrected interest rate.
Suppose d0 > 0 and x̄ = (r− g−n)d0. Then d remains positive and constant.

The SOE has a permanent current account deficit in that foreign debt, D, is
permanently increasing. But net exports continue to match the growth-corrected
interest payments on the debt, which then grows at the same constant rate as
GDP. The conclusion is that, contrary to the presumption arising from the case
with no GDP growth and prevalent in the media, a country can have a permanent
current account deficit without this being a sign of economic disease and mounting
solvency problems. In this example the permanent current account deficit merely
reflects that the country for some historical reason has an initial foreign debt
and at the same time a rate of time preference such that only part of the interest
payment is financed by net exports, the remaining part being financed by allowing
the foreign debt to grow at the same speed as production.
The required net exports-income ratio, (r − g − n)d0, measures the burden

that the foreign debt imposes on the country. And if the foreign debt directly
or indirectly is public debt, the additional problem of levying suffi cient taxation
to service the debt arises. If we go a little outside the model and allow credit
market imperfections, the higher the net exports-income ratio the greater the
likelihood that the debtors will face financial troubles. As in Section 6.4.1, a
vicious self-fulfilling expectations spiral may arise.
A worrying feature of the U.S. economy is that its foreign debt has been

growing since the middle of the 1980s accompanied by a permanent trade deficit.
The triple deficits characterizing the U.S. economy in the new millennium (gov-
ernment budget deficit, current account deficit, and trade deficit) looks like an
unsustainable state of affairs.22

The debt crisis in Latin America in the 1980s From the mid-1970s there
was an almost worldwide slowdown in economic growth. In the early 1980s, the
real interest rate for Latin American countries rose sharply and net lending to

22How long time the role of the US dollar as the world’s principal currency reserve can
postpone a substantial depreciation of the dollar is an open question.
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Figure 13.10

corporations and governments in Latin America fell severely, as shown in Fig.
13.10. The solid line in the figure indicates the London Inter-Bank Offered Rate
(LIBOR) deflated by the rate of change in export unit prices; the LIBOR is
the short-term interest rate that the international banks charge each other for
unsecured loans in the London wholesale money market. Interest rates charged
on bank loans to Latin American countries were typically variable and based on
LIBOR.23 A debt crisis ensued in the sense of mounting diffi culties to refinance the
debt. High interest rates and defaults resulted. Mexico suspended its payments
in August 1982. By 1985, 15 countries were identified as requiring coordinated
international assistance. The average debt-exports ratio (our d/x) peaked at 384
per cent in 1986 (Cline, 1995).

23The correlation coeffi cient between the two variables in Fig. 13.10 is -0.615. The growth rate
of total external debt is based on data for the following countries: Argentina, Bolivia, Brazil,
Chile, Columbia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala,
Haiti, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Uruguay, and Venezuela.
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13.4 Government debt when taxes are distor-
tionary*

So far we have, for simplicity, assumed that taxes are lump sum. Now we in-
troduce a simple form of income taxation. We build on the same version of the
Blanchard OLG model as was considered in Section 13.1. That is, the economy
is closed, there is technological progress at the rate g ≥ 0, and the population
grows at the rate n ≥ 0, whereas retirement is ignored (i.e., λ = 0). In addition
to income taxation we bring in specific assumptions about government expendi-
ture, namely that spending on goods and services as well as transfers grow at
the rate g + n. The focus is on capital income taxation. Two main points of the
analysis are that (a) capital income taxation results in lower capital intensity and
consumption in the long run (if the economy is dynamically effi cient); and (b)
a higher level of government debt requires higher taxation and tends thereby to
increase the excess burden of taxation.

Elements of the model

The household sector Assume there is a flat tax on the return on financial
wealth at the rate τ r. That is, an individual, born at time v and still alive at
time t ≥ 0, with financial wealth avt has to pay a tax equal to τ rrtavt per time
unit, where τ r is a given constant capital-income tax rate, 0 ≤ τ r < 1. The
actuarial compensation is not taxed since it does not represent genuine income.
There is symmetry in the sense that if avt < 0, then the tax acts as a subsidy
(tax deductibility of interest payments). Labor income and transfers are taxed
at a flat time-dependent rate, τwt < 1. Only in steady state is the labor-income
tax rate constant. Because labor supply is inelastic in the model, τwt acts like a
lump-sum tax and is not of interest per se. Yet we include τwt in the analysis in
order to have a simple tax instrument which can be adjusted to ensure a balanced
budget when needed.
The dynamic accounting equation for the individual is

ȧvt = [(1− τ r)rt +m] avt + (1− τwt)(wt + xt)− ct, av0 given,

where xt is a lump-sum per-capita transfer. The No-Ponzi-Game condition, as
seen from time t0 ≥ v, is

lim
t→∞

avte
−
∫ t
t0

[(1−τr)rs+m]ds ≥ 0,

and the transversality condition requires that this holds with strict equality.
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With logarithmic utility the Keynes-Ramsey rule takes the form

ċvt
cvt

= (1− τ r)rt +m− (ρ+m) = (1− τ r)rt − ρ,

where ρ ≥ 0 is the rate of time preference and m > 0 is the actuarial compensa-
tion, which equals the death rate. The consumption function is

cvt = (ρ+m)(avt + ht), (13.53)

where

ht =

∫ ∞
t

(1− τws)(ws + xs)e
−
∫ s
t [(1−τr)rz+m]dzds. (13.54)

At the aggregate level changes in financial wealth and consumption are:

Ȧt = (1− τ r)rtAt + (1− τwt)(wt + xt)Nt − Ct, and

Ċt = [(1− τ r)rt − ρ+ n]Ct − β(ρ+m)At,

respectively, where β is the birth rate.

Production The description of production follows the standard one-sector neo-
classical competitive setup. The representative firm has a neoclassical production
function, Yt = F (Kt, TtLt), with constant returns to scale, where Tt (to be dis-
tinguished from the tax revenue T ) is the exogenous technology level, assumed
to grow at the constant rate g ≥ 0. In view of profit maximization under perfect
competition we have

∂Yt
∂Kt

= f ′(k̃t) = rt + δ, k̃t ≡ Kt/(TtLt), (13.55)

∂Yt
∂Lt

=
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt = wt, (13.56)

where δ > 0 is the constant capital depreciation rate and f is the production
function in intensive form, given by ỹ ≡ Y/(T L) = F (k̃, 1) ≡ f(k̃), f ′ > 0, f ′′ < 0.
We assume f satisfies the Inada conditions. In equilibrium, Lt = Nt, so that
k̃t = Kt/(TtNt), a pre-determined variable.

The government sector Government spending on goods and services, G, and
transfers, X, grow at the same rate as the work force measured in effi ciency units.
Thus,

Gt = γTtNt, Xt = χTtNt, γ, χ > 0. (13.57)
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Gross tax revenue, T̃t, is given by

T̃t = τ rrtAt + τwt(wt + xt)Nt. (13.58)

Budget deficits are financed by bond issue whereby

Ḃt = rtBt +Gt +Xt − T̃t (13.59)

= (1− τ r)rtBt + γTtNt + (1− τwt)χTtNt − τ rrtKt − τwtwtNt,

where we have used (13.57) and the fact that in general equilibrium At = Kt+Bt.
We assume parameters are such that in the long run the after-tax interest rate
is higher than the output growth rate. Then government solvency requires the
No-Ponzi-Game condition

lim
t→∞

Bte
−
∫ t
0 (1−τr)rsds ≤ 0.

It is convenient to normalize the government debt by dividing with the effec-
tive labor force, T N . Thus, we consider the ratio b̃t ≡ Bt/(TtNt). By logarithmic

differentiation w.r.t. t we find
·
b̃t/b̃t = Ḃt/Bt − (g + n), so that

·
b̃t =

Ḃt

TtNt

− (g + n)b̃t = [(1− τ r)rt − g − n] b̃t + γ + (1− τwt)χ− τ rrtk̃t − τwtw̃t,

where w̃t ≡ wt/Tt. The tax τ r redistributes income from the wealthy (here the
old) to the poor (here the young), because the old have above-average financial
wealth and the young have below-average wealth.

General equilibrium

Using that n ≡ β − m, we end up with three differential equations in k̃, c̃ ≡
C/(TN), and b̃:

·
k̃t = f(k̃t)− c̃t − γ − (δ + g + β −m)k̃t, (13.60)
·
c̃t =

[
(1− τ r)(f ′(k̃t)− δ)− ρ− g

]
c̃t − β(ρ+m)(k̃t + b̃t), (13.61)

·
b̃t =

[
(1− τ r)(f ′(k̃t)− δ)− g − (β −m)

]
b̃t + γ + (1− τwt)χ

−τ r(f ′(k̃t)− δ)k̃t − τwtw̃(k̃t), (13.62)

where w̃(k̃t) ≡ f(k̃t) − k̃tf ′(k̃t), cf. (13.56). Initial values of k̃ and b̃ are histori-
cally given and from the NPG condition of the government we get the terminal
condition

lim
t→∞

b̃te
−
∫ t
0 [(1−τr)(f ′(k̃s)−δ)−g−(β−m)]ds = 0, (13.63)
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assuming that the NPG condition is not “over-satisfied”.
Suppose that for t ≥ 0 the growth-corrected budget deficit is “structurally

balanced”in the sense that the growth-corrected debt is constant. Thus, b̃t = b̃0

for all t ≥ 0. This requires that the labor income tax τwt is continually adjusted
so that, from (13.62),

τwt =
1

χ+ w̃(k̃t)

{[
(1− τ r)(f ′(k̃t)− δ)− g − (β −m)

]
b̃0 + γ + χ− τ r(f ′(k̃t)− δ)k̃t

}
.

(13.64)
Then (13.61) simplifies to

·
c̃t =

[
(1− τ r)(f ′(k̃t)− δ)− ρ− g

]
c̃t − β(ρ+m)(k̃t + b̃0),

which together with (13.60) constitutes an autonomous two-dimensional dynamic
system. Only the capital income tax, τ r, enters these dynamics. The labor
income tax τwt does not. This is a trivial consequence of the model’s simplifying
assumption that labor supply is inelastic.
To construct the phase diagram for this system, note that

·
k̃ = 0 for c̃ = f(k̃)− γ − (δ + g + β −m)k̃, (13.65)
·
c̃ = 0 for c̃ =

β(ρ+m)(k̃ + b̃0)

(1− τ r)(f ′(k̃)− δ)− ρ− g
. (13.66)

There are two benchmark values of the effective capital-labor ratio, k̃. The first is
the golden rule value, k̃GR, given by f ′(k̃GR)−δ = g+n. The second is that value

at which the denominator in (13.66) vanishes, that is, the value, k̃, satisfying

(1− τ r)(f ′(k̃)− δ) = ρ+ g.

The phase diagram is shown in Fig. 13.11. We assume b̃0 > 0. But at the same
time b̃0 and γ are assumed to be “modest”, given k̃0, such that the economy
initially is to the right of the totally unstable steady state close to the origin.
We impose the parameter restriction ρ ≥ n, which implies k̃ ≤ kGR for any

τ r ∈ [0, 1) , thus ensuring k̃∗ < kGR, in view of k̃∗ < k̃. That is,

f ′(k̃∗)− δ > f ′(k̃)− δ =
ρ+ g

1− τ r
≥ g + n

1− τ r
≥ g + n.

It follows that (13.63) holds at the steady state, E.24 At time 0 the economy will
be where the vertical line k̃ = k̃0 crosses the (stippled) saddle path. Over time

24And so do the transversality conditions of the households. The argument is the same as in
Appendix D of Chapter 12.
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Figure 13.11: Phase diagram illustrating the effect of a fully financed reduction of
capital income taxation.

the economy moves along this saddle path toward the steady state E with real
interest rate equal to r∗ = f ′(k̃∗) − δ. Further, in steady state the labor income
tax rate is a constant,

τ ∗w =

[
(1− τ r)(f ′(k̃∗)− δ)− g − n

]
b̃0 + γ + χ− τ r(f ′(k̃∗)− δ)k̃∗

χ+ w̃(k̃∗)
, (13.67)

from (13.64).
The capital income tax drives a wedge between the marginal transformation

rate over time faced by the household, (1− τ r)(f ′(k̃)− δ), and that given by the
production technology, f ′(k̃) − δ. The implied effi ciency loss is called the excess
burden of the tax. A higher τ r implies a greater wedge (higher excess burden)
and for a given b̃0, a lower k̃∗, cf. (13.66). Similarly, for a given τ r, a higher level
of debt, b̃0, implies a lower k̃∗ and a higher r∗ (and a corresponding adjustment of
τ ∗w).25 Finally, if for some reason (of a political nature, perhaps) τ ∗w is fixed, then
a higher level of the debt may imply crowding out of k̃∗ for two reasons. First,
there is the usual direct effect that higher debt decreases the scope for capital in

25We can not say in what direction τw has to be adjusted. This is because it is theoretically
ambiguous in what direction (f ′(k̃∗)− δ)k̃∗ moves when k∗ goes down.
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households’portfolios. Second, there is the indirect effect, that higher debt may
require a higher distortionary tax, τ r, which further reduces capital accumulation
and increases the excess burden.
We may reconsider the Ricardian equivalence issue from the perspective of

both these effects. The Ricardian equivalence proposition says that when taxes
are lump-sum, their timing does not affect aggregate consumption and saving.
In the first section of this chapter we highlighted some of the reasons to doubt
the validity of this proposition under “normal circumstances”. Encompassing the
fact that most taxes are not lump sum casts further doubt that debt neutrality
should be a reliable guide for practical policy.

A fully financed reduction of capital income taxation

Now, suppose that until time t1, the economy has been in its steady state E.
Then, unexpectedly, the tax rate τ r is reduced to a lower constant level, τ ′r. The
tax rate is then expected by the public to remain at this lower level forever.
The government budget remains “balanced” in the sense that taxation of labor
income is immediately increased such that (13.64) holds for τ r replaced by τ ′r.

This shift in taxation policy does not affect the
·
k̃ = 0 locus, but the

·
c̃ = 0 locus

is turned clockwise. At time t1, when the shift in taxation policy occurs, the
economy jumps to the point P and follows the new saddle path toward the new
steady state with higher effective capital-labor ratio. (As noted at the end of the
previous chapter, such adjustments may be quite slow.)
We see that the immediate effect on consumption is negative, whereas the

long-run effect is positive (as long as everything takes place to the left of the
golden rule capital intensity k̃GR). The positive long-run effect on k̃ is due to
the higher saving brought about by the initial fall in consumption. But what
is the intuition behind this initial fall? Four effects are in play, a substitution
effect, a pure income effect, a wealth effect, and a government budget effect.
To understand these effects from a micro perspective, the intertemporal budget
constraint as seen from time t1 of an individual born at time v ≤ tt is helpful:∫ ∞

t1

cvte
−
∫ t
t1

[(1−τ ′r)rs+m]ds
dt = avt1 + ht1 . (IBC)

The point of departure is that the after-tax interest rate immediately rises. As a
result:

1) Future consumption becomes relatively cheaper as seen from time t1. Hence
there is a negative substitution effect on current consumption cvt1 .
2) For given total wealth avt1 +ht1 , it becomes possible to consume more at any

time in the future (because the present discounted value of a given consumption
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plan has become smaller, see the left-hand side of (IBC)). This amounts to a
positive pure income effect on current consumption.
3) At least for a while the after-tax interest rate, (1− τ ′r)r+m, is higher than

without the tax decrease. Everything else equal, this affects ht1 negatively, which
amounts to a negative wealth effect.
On top of these three “standard”effects comes the fact that:
4) At least initially, a rise in τw is necessitated by the lower capital income

taxation if an unchanged b̃ is to be maintained, cf. (13.64). Everything else equal,
this also affects ht1 negatively and gives rise to a further negative effect on current
consumption through what we may call the government budget effect.26

To sum up, the total effect on current individual consumption of a permanent
decrease in the capital income tax rate and a concomitant rise in the tax on labor
income and transfers consists of the following components:

substitution effect + pure income effect + wealth effect

+ effect through the change in the government budget = total effect.

From the consumption function cvt = (ρ + m)(avt + ht), cf. (13.53), we see that
the substitution and income effects exactly cancel each other out (due to the
logarithmic specification of the utility function). This implies that the negative
general equilibrium effect on current consumption, visible in the phase diagram,
reflects the influence of the two remaining effects.
The conclusion is that whereas a tax on an inelastic factor (in this model

labor) obviously does not affect its supply, a tax on capital or on capital income
affects saving and thereby capital in the future. Yet such a tax may have intended
effects on income distribution. The public finance literature studies, among other
things, under what conditions such effects could be obtained by other means (see,
e.g., Myles 1995).

13.5 Public debt policy

Main text for this section not yet available. See instead Elmendorf and Mankiw,
Section 5 (Course Material).

26The proviso “everything else equal” both here and under 3) is due to the fact that at
the aggregate level counteracting feedbacks in the form of higher future real wages and lower
interest rates arise during the general equilibrium adjustment.
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13.6 Credibility problems due to time inconsis-
tency

(incomplete)
When outcomes depend on expectations in the private sector, government

policy may face a time-inconsistency problem.
As an example consider the question: What is the stance taken by a govern-

ment on negotiating with terrorists over the release of hostages? The offi cial line,
of course, is that the government will never negotiate. But .... ...

13.7 Literature notes

(incomplete)
For very readable surveys about how important − empirically − the depar-

tures from Ricardian equivalence are, see for example “Symposium on the Budget
Deficit”in Journal of Economic Perspectives, vol. 3, 1989, Himarios (1995), and
Elmendorf and Mankiw (1999).
In their analysis of 26 high public debt episodes in advanced economies 1800-

2011 Reinhardt et al. (2012) find higher interest rate for 15 of the episodes. They
find low economic growth in 23 of the episodes.

13.8 Appendix

A. A growth formula useful for debt arithmetic

Not yet available.

B. Long-run multipliers

We show here in detail how to calculate the long-run “crowding-out” effects of
increases in government consumption and debt in the closed economy model of
Section 13.2. In steady state we have K̇t = Ċt = Ḃt = Ṫt = 0, hence

F (K∗, N)− δK∗ = C∗ + Ḡ, (13.68)

(FK(K∗, N)− δ − ρ)C∗ = m(ρ+m)(K∗ + B̄), (13.69)

T ∗ = (FK(K∗, N)− δ)B̄ + Ḡ. (13.70)

We consider the level B̄ of public debt as exogenous along with public consump-
tion Ḡ and the labor force N. The tax revenue T ∗ in steady state is endogenous.
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Assume (realistically) that K∗ + B̄ > 0. Now, at zero order in the causal
structure, (13.68) and (13.69) simultaneously determine K∗ and C∗ as implicit
functions of Ḡ and B̄, i.e., K∗ = K(Ḡ, B̄) and C∗ = C(Ḡ, B̄). Hereafter, (13.70)
determines the required tax revenue T ∗ at first order as an implicit function of Ḡ
and B̄, i.e., T ∗ = T (Ḡ, B̄).
To calculate the partial derivatives of these implicit functions, insert C∗ =

F (K∗, N)− δK∗ − Ḡ from (13.68) into (13.69) to get

(F ∗K − δ − ρ)(F ∗ − δK∗ − Ḡ) = m(ρ+m)(K∗ +B0).

Next take the total differential on both sides:

(F ∗K − δ − ρ)
[
(F ∗K − δ)dK∗ − dḠ

]
+ C∗F ∗KKdK

∗ = m(ρ+m)(dK∗ + dB̄), i.e.,

D · dK∗ = (F ∗K − δ − ρ)dḠ+m(ρ+m)dB̄, (13.71)

where
D ≡ C∗F ∗KK + (F ∗K − δ − ρ)(F ∗K − δ)−m(ρ+m), (13.72)

and the partial derivatives are evaluated in steady state.
We now show that in the interesting steady state we have D < 0. As demon-

strated in Section 13.2, normally there are two steady-state points in the (K,
C) plane.27 The lower steady-state point, that with K = K̃∗ in Fig. 13.2, is a
“source”in the sense that all trajectories in its neighborhood points away from it.
So the lower steady-state point is completely unstable. The upper steady-state
point, that with K = K∗, is saddle-point stable. This is the interesting steady
state (when Ḡ and B̄ are of moderate size). In that state the Ċ = 0 locus crosses
the K̇ = 0 locus from below. Hence

∂C

∂K
|Ċ=0 > F ∗K − δ, i.e.,

m(ρ+m)
F ∗K − δ − ρ− (K∗ + B̄)F ∗KK

(F ∗K − δ − ρ)2
> F ∗K − δ ⇒

m(ρ+m)−m(ρ+m)
(K∗ + B̄)

r∗ − ρ F ∗KK > (r∗ − ρ)r∗ ⇒

m(ρ+m)− C∗F ∗KK > (r∗ − ρ)r∗ ⇒
0 > C∗F ∗KK + (r∗ − ρ)r∗ −m(ρ+m) = D,

(13.73)

27This is so, unless Ḡ and B̄ are so large that there is only one (a knife-edge case) or no
steady state with K > 0.
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where the first implication arrow follows from F ∗K = FK(K∗, N)−δ = r∗, the sec-
ond from (13.69), and the third by rearranging. A perhaps more useful formula28

for D is obtained by noting that

(r∗−ρ)r∗−m(ρ+m) = r∗2 +mr∗−mr∗−ρr∗−m(ρ+m) = (r∗+m)(r∗−(ρ+m)).

Hence, by (13.73),

D = C∗F ∗KK − (r∗ +m)(ρ+m− r∗) < 0.

So the implicit function K∗ = K(Ḡ, B̄) has the partial derivatives, also called
the long-run or steady-state multipliers,

KḠ =
∂K∗

∂Ḡ
=
r∗ − ρ
D < 0, (13.74)

KB̄ =
∂K∗

∂B̄
=
m (ρ+m)

D < 0, (13.75)

using (13.71) and r∗ = FK(K∗, N) − δ > ρ. As to the effect on K∗ of balanced
changes in Ḡ, it follows that∆K∗ ≈ dK∗ = (∂K∗/∂Ḡ)dḠ = (r∗−ρ)dḠ/D < 0 for
dḠ > 0. This gives the size of the long-run effect on the capital stock, when public
consumption is increased by dḠ (dḠ “small”), and at the same time taxation is
increased so as to balance the budget and leave public debt unchanged in the
indefinite future.
As to the effect on K∗ of higher public debt, it follows that ∆K∗ ≈ dK∗

= (∂K∗/∂B̄)dB̄ = m (ρ+m) dB̄/D < 0 for dB̄ > 0. This formula tells us the
size of the long-run effect on the capital stock, when a tax cut implies, for some
time, a budget deficit and thereby a cumulative increase, dB̄, in public debt;
afterwards the government increases taxation to balance the budget forever.29

Similarly, ∆r∗ ≈ dr∗ = FKK(K∗, N)dK∗ ≈ FKK(K∗, N) · (∂K∗/∂B̄)dB̄ > 0, for
dB̄ > 0.
The long-run or steady-state multipliers associated with the implicit function

C∗ = C(Ḡ, B̄) are now found by implicit differentiation in (13.68) w.r.t. Ḡ and B̄,
respectively. We get ∂C∗/∂Ḡ = (FK(K∗, N)− δ)∂K∗/∂Ḡ−1 < −1 and ∂C∗/∂B̄
= (FK(K∗, N)− δ)∂K∗/∂B̄ < 0.
Similarly, from (13.70) we get ∂T ∗/∂Ḡ = FKK(K∗, N)(∂K∗/∂Ḡ) ·B̄ +1 > 1

and ∂T ∗/∂B̄ = FKK(K∗, N)· (∂K∗/∂B̄)B̄ +FK(K∗, N)−δ > 0 (since FKK < 0).

28More useful in the sense of being more in line with analogue formulas for a small open
economy, cf. Section 13.3.
29We assume that t2− t1, hence dB̄, is not so large as to not allow existence of a saddle-point

stable steady state with K > 0 after t2.
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13.9 Exercises

13.1
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Chapter 14

Fixed capital investment and
Tobin’s q

The models considered so far (the OLG models as well as the representative agent
models) have ignored capital adjustment costs. In the closed-economy version
of the models aggregate investment is merely a reflection of aggregate saving
and appears in a “passive” way as just the residual of national income after
households have chosen their consumption. We can describe what is going on by
telling a story in which firms just rent capital goods owned by the households
and households save by purchasing additional capital goods. In these models
only households solve intertemporal decision problems. Firms merely demand
labor and capital services with a view to maximizing current profits. This may
be a legitimate abstraction in some contexts within long-run analysis. In short-
and medium-run analysis, however, the dynamics of fixed capital investment is
important. So a more realistic approach is desirable.
In the real world the capital goods used by a production firm are usually

owned by the firm itself rather than rented for single periods on rental markets.
This is because inside the specific plant in which these capital goods are an
integrated part, they are generally worth much more than outside. So in practice
firms acquire and install fixed capital equipment to maximize discounted expected
earnings in the future.
Tobin’s q-theory of investment (after the American Nobel laureate James To-

bin, 1918-2002) is an attempt to model these features. In this theory,

(a) firms make the investment decisions and install the purchased capital goods
in their own businesses;

(b) there are certain adjustment costs associated with this investment: in ad-
dition to the direct cost of buying new capital goods there are costs of
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installation, costs of reorganizing the plant, costs of retraining workers to
operate the new machines etc.;

(c) the adjustment costs are strictly convex so that marginal adjustment costs
are increasing in the level of investment − think of constructing a plant in
a month rather than a year.

The strict convexity of adjustment costs is the crucial constituent of the the-
ory. It is that element which assigns investment decisions an active role in the
model. There will be both a well-defined saving decision and a well-defined in-
vestment decision, separate from each other. Households decide the saving, firms
the physical capital investment; households accumulate financial assets, firms ac-
cumulate physical capital. As a result, in a closed economy interest rates have to
adjust for aggregate demand for goods (consumption plus investment) to match
aggregate supply of goods. The role of interest rate changes is no longer to clear
a rental market for capital goods.
To fix the terminology, from now the adjustment costs of setting up new

capital equipment in the firm and the associated costs of reorganizing work
processes will be subsumed under the term capital installation costs. When faced
with strictly convex installation costs, the optimizing firm has to take the fu-
ture into account, that is, firms’forward-looking expectations become important.
To smooth out the adjustment costs, the firm will adjust its capital stock only
gradually when new information arises. We thereby avoid the counterfactual im-
plication from earlier chapters that the capital stock in a small open economy with
perfect mobility of goods and financial capital is instantaneously adjusted when
the interest rate in the world financial market changes. Moreover, sluggishness in
investment is exactly what the data show. Some empirical studies conclude that
only a third of the difference between the current and the “desired”capital stock
tends to be covered within a year (Clark 1979).
The q-theory of investment constitutes one approach to the explanation of this

sluggishness in investment. Under certain conditions, to be described below, the
theory gives a remarkably simple operational macroeconomic investment function,
in which the key variable explaining aggregate investment is the valuation of the
firms by the stock market relative to the replacement value of the firms’physical
capital. This link between asset markets and firms’aggregate investment is an
appealing feature of Tobin’s q-theory.

14.1 Convex capital installation costs

Let the technology of a single firm be given by

Ỹ = F (K,L),
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where Ỹ ,K, and L are “potential output”(to be explained), capital input, and
labor input per time unit, respectively, while F is a concave neoclassical produc-
tion function. So we allow decreasing as well as constant returns to scale (or a
combination of locally CRS and locally DRS), whereas increasing returns to scale
is ruled out. Until further notice technological change is ignored for simplicity.
Time is continuous. The dating of the variables will not be explicit unless needed
for clarity. The increase per time unit in the firm’s capital stock is given by

K̇ = I − δK, δ > 0, (14.1)

where I is gross fixed capital investment per time unit and δ is the rate of wearing
down of capital (physical capital depreciation). To fix ideas, we presume the
realistic case with positive capital depreciation, but most of the results go through
even for δ = 0.
Let J denote the firm’s capital installation costs (measured in units of output)

per time unit. The installation costs imply that a part of the potential output, Ỹ ,
is “used up”in transforming investment goods into installed capital; only Ỹ − J
is “true output”available for sale.
Assuming the price of investment goods is one (the same as that of output

goods), then total investment costs per time unit are I+J, i.e., the direct purchase
costs, 1 ·I, plus the indirect cost associated with installation etc., J. The q-theory
of investment assumes that the capital installation cost, J, is a strictly convex
function of gross investment and is either independent of or a decreasing function
of the current capital stock. Thus,

J = G(I,K),

where the installation cost function G satisfies

G(0, K) = 0, GI(0, K) = 0, GII(I,K) > 0, and GK(I,K) ≤ 0 (14.2)

for all K and all (I,K), respectively. For fixed K = K̄ the graph is as shown
in Fig. 14.1. Also negative gross investment, i.e., sell off of capital equipment,
involves costs (for dismantling, reorganization etc.). Therefore GI < 0 for I < 0.
The important assumption is that GII > 0 (strict convexity in I), implying that
the marginal installation cost is increasing in the level of gross investment. If the
firm wants to accomplish a given installation project in only half the time, then
the installation costs are more than doubled (the risk of mistakes is larger, the
problems with reorganizing work routines are larger etc.).
The strictly convex graph in Fig. 14.1 illustrates the essence of the matter.

Assume the current capital stock in the firm is K̄ and that the firm wants to
increase it by a given amount ∆K. If the firm chooses the investment level Ī >
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Figure 14.1: Installation costs as a function of gross investment when K = K̄.

0 per time unit in the time interval [t, t+ ∆t), then, in view of (14.1), ∆K
≈ (Ī − δK̄)∆t. So it takes ∆t ≈ ∆K/(Ī − δK̄) units of time to accomplish
the desired increase ∆K. If, however, the firm slows down the adjustment and
invests only half of Ī per time unit, then it takes approximately twice as long
time to accomplish ∆K. Total costs of the two alternative courses of action are
approximately G(Ī , K̄)∆t and G(1

2
Ī , K̄)2∆t, respectively (ignoring discounting

and assuming the initial increase in capital is small in relation to K̄). By drawing
a few straight line segments in Fig. 14.1 the reader will be convinced that the
last-mentioned cost is smaller than the first-mentioned due to strict convexity of
installation costs (see Exercise 14.1). Haste is waste.

On the other hand, there are of course limits to how slow the adjustment
to the desired capital stock should be. Slower adjustment means postponement
of the potential benefits of a higher capital stock. So the firm faces a trade-off
between fast adjustment to the desired capital stock and low adjustment costs.

In addition to the strict convexity of G with respect to I, (14.2) imposes
the condition GK(I,K) ≤ 0. Indeed, it often seems realistic to assume that
GK(I,K) < 0 for I 6= 0. A given amount of investment may require more
reorganization in a small firm than in a large firm (size here being measured
by K). When installing a new machine, a small firm has to stop production
altogether, whereas a large firm can to some extent continue its production by
shifting some workers to another production line. A further argument is that
the more a firm has invested historically, the more experienced it is now. So,
for a given I today, the associated installation costs are lower, given a larger
accumulated K.
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14.1.1 The decision problem of the firm

In the absence of tax distortions, asymmetric information, and problems with
enforceability of financial contracts, the Modigliani-Miller theorem (Modigliani
and Miller, 1958) says that the financial structure of the firm is both indeter-
minate and irrelevant for production decisions (see Appendix A). Although the
conditions required for this theorem are very idealized, the q-theory of investment
accepts them because they allow the analyst to concentrate on the production
aspects in a first approach.
With the output good as unit of account, let the operating cash flow (the net

payment stream to the firm before interest payments on debt, if any) at time t
be denoted Rt (for “receipts”). Then

Rt ≡ F (Kt, Lt)−G(It, Kt)− wtLt − It, (14.3)

where wt is the wage per unit of labor at time t. As mentioned, the installation
cost G(It, Kt) implies that a part of production, F (Kt, Lt), is used up in trans-
forming investment goods into installed capital; only the difference F (Kt, Lt) −
G(It, Kt) is available for sale.
We ignore uncertainty and assume the firm is a price taker. The interest rate

is rt, which we assume to be positive, at least in the long run. The decision
problem, as seen from time 0, is to choose a plan (Lt, It)

∞
t=0 so as to maximize the

firm’s market value, i.e., the present value of the future stream of expected cash
flows:

max
(Lt,It)∞t=0

V0 =

∫ ∞
0

Rte
−
∫ t
0 rsdsdt s.t. (14.3) and (14.4)

Lt ≥ 0, It free (i.e., no restriction on It), (14.5)

K̇t = It − δKt, K0 > 0 given, (14.6)

Kt ≥ 0 for all t. (14.7)

There is no specific terminal condition but we have posited the feasibility condi-
tion (14.7) saying that the firm can never have a negative capital stock.1

In the previous chapters the firm was described as solving a series of static
profit maximization problems. Such a description is no longer valid, however,
when there is dependence across time, as is the case here. When installation

1It is assumed that wt is a piecewise continuous function. At points of discontinuity (if
any) in investment, we will consider investment to be a right-continuous function of time.
That is, It0 = limt→t+0

It. Likewise, at such points of discontinuity, by the “time derivative”

of the corresponding state variable, K, we mean the right-hand time derivative, i.e., K̇t0 =
limt→t+0

(Kt − Kt0)/(t − t0). Mathematically, these conventions are inconsequential, but they
help the intuition.
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costs are present, current decisions depend on the expected future circumstances.
The firmmakes a plan for the whole future so as to maximize the value of the firm,
which is what matters for the owners. This is the general neoclassical hypothesis
about firms’behavior. As shown in Appendix A, when strictly convex installation
costs or similar dependencies across time are absent, then value maximization is
equivalent to solving a sequence of static profit maximization problems, and we
are back in the previous chapters’description.
To solve the problem (14.4) − (14.7), where Rt is given by (14.3), we apply

the Maximum Principle. The problem has two control variables, L and I, and
one state variable, K. We set up the current-value Hamiltonian:

H(K,L, I, q, t) ≡ F (K,L)− wL− I −G(I,K) + q(I − δK), (14.8)

where q (to be interpreted economically below) is the adjoint variable associated
with the dynamic constraint (14.6). For each t ≥ 0 we maximize H w.r.t. the
control variables. Thus, ∂H/∂L = FL(K,L)− w = 0, i.e.,

FL(K,L) = w; (14.9)

and ∂H/∂I = −1−GI(I,K) + q = 0, i.e.,

1 +GI(I,K) = q. (14.10)

Next, we partially differentiateH w.r.t. the state variable and set the result equal
to rq − q̇, where r is the discount rate in (14.4):

∂H

∂K
= FK(K,L)−GK(I,K)− qδ = rq − q̇. (14.11)

Then, the Maximum Principle says that for an interior optimal path (Kt, Lt, It)
there exists an adjoint variable q, which is a continuous function of t, written qt,
such that for all t ≥ 0 the conditions (14.9), (14.10), and (14.11) hold and the
transversality condition

lim
t→∞

Ktqte
−
∫ t
0 rsds = 0 (14.12)

is satisfied.
The optimality condition (14.9) is the usual employment condition equalizing

the marginal product of labor to the real wage. In the present context with
strictly convex capital installation costs, this condition attains a distinct role as
labor will in the short run be the only variable input. This is because the strictly
convex capital installation costs imply that the firm’s installed capital in the
short run is a quasi-fixed production factor. So, effectively there are diminishing
returns (equivalent with rising marginal costs) in the short run even though the
production function might have CRS.
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The left-hand side of (14.10) gives the cost of acquiring one extra unit of
installed capital at time t (the sum of the cost of buying the marginal investment
good and the cost of its installation). That is, the left-hand side is the marginal
cost, MC, of increasing the capital stock in the firm. Since (14.10) is a necessary
condition for optimality, the right-hand side of (14.10) must be the marginal
benefit, MB, of increasing the capital stock. Hence, qt represents the value to
the optimizing firm of having one more unit of (installed) capital at time t. To
put it differently: the adjoint variable qt can be interpreted as the shadow price
(measured in current output units) of capital along the optimal path.2

As to the interpretation of the differential equation (14.11), a condition for
optimality must be that the firm acquires capital up to the point where the
“marginal productivity of capital”, FK −GK , equals “capital costs”, rtqt + (δqt−
q̇t); the first term in this expression represents interest costs and the second
economic depreciation. In (14.11) the “marginal productivity of capital”appears
as FK−GK , because we should take into account the potential reduction, −GK , of
installation costs in the next instant brought about by the marginal unit of already
installed capital. The shadow price qt appears as the “overall”price at which the
firm can buy and sell the marginal unit of installed capital. In fact, in view of qt =
1+GI(Kt, Lt) along the optimal path (from (14.10)), qt measures, approximately,
both the “overall” cost increase associated with increasing investment by one
unit and the “overall”cost saving associated with decreasing investment by one
unit. In the first case the firm not only has to pay one extra unit of account
in the investment goods market but must also bear an installation cost equal to
GI(Kt, Lt), thereby in total investing qt units of account. And in the second case
the firm recovers qt by saving both on installation costs and purchases in the
investment goods market. Continuing along this line of thought, by reordering in
(14.11) we get the “no-arbitrage”condition

FK −GK − δq + q̇

q
= r, (14.13)

saying that along the optimal path the rate of return on the marginal unit of
installed capital must equal the interest rate.
The transversality condition (14.12) says that the present value of the capital

stock “left over”at infinity must be zero. That is, the capital stock should not
in the long run grow too fast, given the evolution of its discounted shadow price.
In addition to necessity of (14.12) it can be shown3 that the discounted shadow

2Recall that a shadow price, measured in some unit of account, of a good, from the point of
view of the buyer, is the maximum number of units of account that he or she is willing to offer
for one extra unit of the good.

3See Appendix B.
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price itself in the far future must along an optimal path be asymptotically nil,
i.e.,

lim
t→∞

qte
−
∫ t
0 rsds = 0. (14.14)

If along the optimal path, Kt grows without bound, then not only must (14.14)
hold but, in view of (14.12), the discounted shadow price must in the long run
approach zero faster than Kt grows. Intuitively, otherwise the firm would be
“over-accumulating”. The firm would gain by reducing the capital stock “left
over” for eternity (which is like“money left on the table”), since reducing the
ultimate investment and installation costs would raise the present value of the
firm’s expected cash flow.
In connection with (14.10) we claimed that qt can be interpreted as the shadow

price (measured in current output units) of capital along the optimal path. A
confirmation of this interpretation is obtained by solving the differential equation
(14.11). Indeed, multiplying by e−

∫ t
0 (rs+δ)ds on both sides of (14.11), we get by

integration and application of (14.14),4

qt =

∫ ∞
t

[FK(Kτ , Lτ )−GK(Iτ , Kτ )] e
−
∫ τ
t (rs+δ)dsdτ . (14.15)

The right-hand side of (14.15) is the present value, as seen from time t, of expected
future increases of the firm’s cash-flow that would result if one extra unit of
capital were installed at time t; indeed, FK(Kτ , Lτ ) is the direct contribution
to output of one extra unit of capital, while −GK(Iτ , Kτ ) ≥ 0 represents the
potential reduction of installation costs in the next instant brought about by the
marginal unit of installed capital. However, future increases of cash-flow should
be discounted at a rate equal to the interest rate plus the capital depreciation
rate; from one extra unit of capital at time t there are only e−δ(τ−t) units left at
time τ .
To concretize our interpretation of qt as representing the value to the opti-

mizing firm at time t of having one extra unit of installed capital, let us make
a thought experiment. Assume that a extra units of installed capital at time t
drops down from the sky. At time τ > t there are a · e−δ(τ−t) units of these still
in operation so that the stock of installed capital is

K ′τ = Kτ + a · e−δ(τ−t), (14.16)

where Kτ denotes the stock of installed capital as it would have been without
this “injection”. Now, in (14.3) replace t by τ and consider the optimizing firm’s

4For details, see Appendix A.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



14.1. Convex capital installation costs 581

cash-flow Rτ as a function of (Kτ , Lτ , Iτ , τ , t, a). Taking the partial derivative of
Rτ w.r.t. a at the point (Kτ , Lτ , Iτ , τ , t, 0), we get

∂Rτ

∂a |a=0
= [FK(Kτ , Lτ )−GK(Iτ , Kτ )] e

−δ(τ−t). (14.17)

Considering the value of the optimizing firm at time t as a function of installed
capital, Kt, and t itself, we denote this function V ∗(Kt, t). Then at any point
where V ∗ is differentiable, we have

∂V ∗(Kt, t)

∂Kt

=

∫ ∞
t

(
∂Rτ

∂a |a=0

)
e−

∫ τ
t rsdsdτ

=

∫ ∞
t

[FK(Kτ , Lτ )−GK(Iτ , Kτ )]e
−
∫ τ
t (rs+δ)dsdτ = qt (14.18)

when the firm moves along the optimal path. The second equality sign comes
from (14.17) and the third is implied by (14.15). So the value of the adjoint
variable, q, at time t equals the contribution to the firm’s maximized value of a
fictional marginal “injection” of installed capital at time t. This is just another
way of saying that qt represents the benefit to the firm of the marginal unit of
installed capital along the optimal path.
This story facilitates the understanding that the control variables at any point

in time should be chosen so that the Hamiltonian function is maximized. Thereby
one maximizes the properly weighted sum of the current direct contribution to the
criterion function and the indirect contribution, which is the benefit (as measured
approximately by qt∆Kt) of having a higher capital stock in the future.
As we know, the Maximum Principle gives only necessary conditions for an

optimal path, not suffi cient conditions. We use the principle as a tool for finding
candidates for a solution. Having found in this way a candidate, one way to pro-
ceed is to check whether Mangasarian’s suffi cient conditions are satisfied. Given
the transversality condition (14.12) and the non-negativity of the state variable,
K, the only additional condition to check is whether the Hamiltonian function
is jointly concave in the endogenous variables (here K, L, and I). If it is jointly
concave in these variables, then the candidate is an optimal solution. Owing
to concavity of F (K,L), inspection of (14.8) reveals that the Hamiltonian func-
tion is jointly concave in (K,L, I) if −G(I, K) is jointly concave in (I,K). This
condition is equivalent to G(I,K) being jointly convex in (I,K), an assumption
allowed within the confines of (14.2); for example, G(I,K) = (1

2
)βI2/K as well as

the simpler G(I,K) = (1
2
)βI2 (where in both cases β > 0) will do. Thus, assum-

ing joint convexity of G(I,K), the first-order conditions and the transversality
condition are not only necessary, but also suffi cient for an optimal solution.
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14.1.2 The implied investment function

From condition (14.10) we can derive an investment function. Rewriting (14.10),
we have that an optimal path satisfies

GI(It, Kt) = qt − 1. (14.19)

Combining this with the assumption (14.2) on the installation cost function, we
see that

It T 0 for qt T 1, respectively, (14.20)

cf. Fig. 14.2.5 In view of GII 6= 0, (14.19) implicitly defines optimal investment,
It, as a function of the shadow price, qt, and the state variable, Kt :

It =M(qt, Kt), (14.21)

where, in view of (14.20), M(1, Kt) = 0. By implicit differentiation w.r.t. qt and
Kt, respectively, in (14.19), we find

∂It
∂qt

=
1

GII(It, Kt)
> 0, and

∂It
∂Kt

= −GIK(It, Kt)

GII(It, Kt)
,

where the latter cannot be signed without further specification.
It follows that optimal investment is an increasing function of the shadow

price of installed capital. In view of (14.20),M(1, K) = 0. Not surprisingly, the
investment rule is: invest now, if and only if the value to the firm of the marginal
unit of installed capital is larger than the price of the capital good (which is
1, excluding installation costs). At the same time, the rule says that, because
of the convex installation costs, invest only up to the point where the marginal
installation cost, GI(It, Kt), equals qt − 1, cf. (14.19).
Condition (14.21) shows the remarkable information content that the shadow

price qt has. As soon as qt is known (along with the current capital stock Kt),
the firm can decide the optimal level of investment through knowledge of the
installation cost function G alone (since, when G is known, so is in principle the
inverse of GI w.r.t. I, the investment functionM). All the information about the
production function, input prices, and interest rates now and in the future that
is relevant to the investment decision is summarized in one number, qt. The form
of the investment function,M, depends only on the installation cost function G.
These are very useful properties in theoretical and empirical analysis.

5From the assumptions made in (14.2), we only know that the graph of GI(I, K̄) is an
upward-sloping curve going through the origin. Fig. 14.2 shows the special case where this
curve happens to be linear.
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Figure 14.2: Marginal installation costs as a function of the gross investment level, I,
for a given amount, K̄, of installed capital. The optimal gross investment, It, when
q = qt is indicated.

14.1.3 A not implausible special case

We now introduce the convenient case where the installation function G is homo-
geneous of degree one w.r.t. I and K so that we can, for K > 0, write

J = G(I,K) = G(
I

K
, 1)K ≡ g(

I

K
)K, or (14.22)

J

K
= g(

I

K
),

where g(·) represents the installation cost-capital ratio and g(0) ≡ G(0, 1) = 0,
by (14.2).

LEMMA 1 The function g(·) has the following properties:
(i) g′(I/K) = GI(I,K);
(ii) g′′(I/K) = GII(I,K)K > 0 for K > 0; and
(iii) g(I/K)− g′(I/K)I/K = GK(I,K) < 0 for I 6= 0.

Proof. (i) GI = Kg′/K = g′; (ii) GII = g′′/K; (iii) GK = ∂(g(I/K)K)/∂K
= g(I/K)− g′(I/K)I/K < 0 for I 6= 0 since, in view of g′′ > 0 and g(0) = 0, we
have g(x)/x < g′(x) for all x 6= 0. �
The graph of g(I/K) is qualitatively the same as that in Fig. 14.1 (imagine we

have K̄ = 1 in that graph). The installation cost relative to the existing capital
stock is now a strictly convex function of the investment-capital ratio, I/K.

EXAMPLE 1 Let J = G(I,K) = 1
2
βI2/K, where β > 0. Then G is homogeneous

of degree one w.r.t. I and K and gives J/K = 1
2
β(I/K)2 ≡ g(I/K). �
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A further important property of (14.22) is that the cash-flow function in (14.3)
becomes homogeneous of degree one w.r.t. K, L, and I in the “normal”case where
the production function has CRS. This has two implications. First, Hayashi’s
theorem applies (see below). Second, the q-theory can easily be incorporated
into a model of economic growth.6

Does the hypothesis of linear homogeneity of the cash flow in K, L, and I
make economic sense? According to the replication argument it does. Suppose a
given firm has K units of installed capital and produces Y units of output with
L units of labor. When at the same time the firm invests I units of account
in new capital, it obtains the cash flow R after deducting the installation costs,
G(I,K). Then it makes sense to assume that the firm could do the same thing at
another place, hereby doubling its cash-flow. (Of course, owing to the possibility
of indivisibilities, this reasoning does not take us all the way to linear homogeneity.
Moreover, the argument ignores that also land is a necessary input. As discussed
in Chapter 2, the empirical evidence on linear homogeneity is mixed.)
In view of (i) of Lemma 1, the linear homogeneity assumption for G allows us

to write (14.19) as
g′(I/K) = q − 1. (14.23)

This equation defines the investment-capital ratio, I/K , as an implicit function,
m, of q :

It
Kt

= m(qt), where m(1) = 0 and m′ =
1

g′′
> 0, (14.24)

by implicit differentiation in (14.23). In this case q encompasses all information
that is of relevance to the decision about the investment-capital ratio.
In Example 1 above we have g(I/K) = 1

2
β(I/K)2, in which case (14.23) gives

I/K = (q− 1)/β. So in this case we have m(q) = q/β − 1/β, a linear investment
function, as illustrated in Fig. 14.3. The parameter β can be interpreted as
the degree of sluggishness in the capital adjustment. The degree of sluggishness
reflects the degree of convexity of installation costs.7 The stippled lines in Fig.
14.3 are explained below. Generally the graph of the investment function is
positively sloped, but not necessarily linear.
To see how the shadow price q changes over time along the optimal path, we

rearrange (14.11):

q̇t = (rt + δ)qt − FK(Kt, Lt) +GK(It, Kt). (14.25)
6The relationship between the function g and other ways of formulating the theory is com-

mented on in Appendix C.
7For a twice differentiable function, f(x), with f ′(x) 6= 0, we define the degree of convexity

in the point x by f ′′(x)/f ′(x). So the degree of convexity of g(I/K) is g′′/g′ = (I/K)−1

= β(q − 1)−1 and thereby we have β = (q − 1)g′′/g′. So, for given q, the degree of sluggishness
is proportional to the degree of convexity of adjustment costs.
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Figure 14.3: Optimal investment-capital ratio as a function of the shadow price of
installed capital when g(I/K) = 1

2β(I/K)2.

Recall that −GK(It, Kt) indicates how much lower the installation costs are as
a result of the marginal unit of installed capital. In the special case (14.22) we
have from Lemma 1

GK(I,K) = g(
I

K
)− g′( I

K
)
I

K
= g(m(q))− (q − 1)m(q),

using (14.24) and (14.23).

Inserting this into (14.25) gives

q̇t = (rt + δ)qt − FK(Kt, Lt) + g(m(qt))− (qt − 1)m(qt). (14.26)

This differential equation is very useful in macroeconomic analysis, as we will
soon see, cf. Fig. 14.4 below.

In a macroeconomic context, for steady state to achievable, gross investment
must be large enough to match not only capital depreciation, but also growth in
the labor input. Otherwise a constant capital-labor ratio can not be sustained.
That is, the investment-capital ratio, I/K, must be equal to the sum of the
depreciation rate and the growth rate of the labor force, i.e., δ+n. The level of q
which is required to motivate such an investment-capital ratio is called q∗ in Fig.
14.3.
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14.2 Marginal q and average q

Our q above, determining investment, should be distinguished from what is usu-
ally called Tobin’s q or average q. In a more general context, let pIt denote
the current purchase price (in terms of output units) per unit of the invest-
ment good (before installment). Then Tobin’s q or average q, qat , is defined as
qat ≡ Vt/(pItKt), that is, Tobin’s q is the ratio of the market value of the firm to
the replacement value of the firm in the sense of the “reacquisition value of the
capital goods before installment costs”(the top index “a”stands for “average”).
In our simplified context we have pIt ≡ 1 (the price of the investment good is the
same as that of the output good). Therefore Tobin’s q can be written

qat ≡
Vt
Kt

=
V ∗(Kt, t)

Kt

, (14.27)

where the equality holds for an optimizing firm. Conceptually this is different
from the firm’s internal shadow price on capital, i.e., what we have denoted qt
in the previous sections. In the language of the q-theory of investment this qt is
the marginal q, representing the value to the firm of one extra unit of installed
capital relative to the price of un-installed capital equipment. The term marginal
q is natural since along the optimal path, as a slight generalization of (14.18), we
must have qt = (∂V ∗/∂Kt)/pIt. Letting qmt (“m”for “marginal”) be an alternative
symbol for this qt, we have in our model above, where we consider the special
case pIt ≡ 1,

qmt ≡ qt =
∂V ∗

∂Kt

. (14.28)

The two concepts, average q and marginal q, have not always been clearly dis-
tinguished in the literature. What is directly relevant to the investment decision
is marginal q. Indeed, the analysis above showed that optimal investment is an
increasing function of qm. Further, the analysis showed that a “critical”value of
qm is 1 and that only if qm > 1, is positive gross investment warranted.
The importance of qa is that it can be measured empirically as the ratio of the

sum of the share market value of the firm and its debt to the current acquisition
value of its total capital before installment. Since qm is much harder to measure
than qa, it is important to know the relationship between qm and qa. Fortunately,
we have a simple theorem giving conditions under which qm = qa.

THEOREM (Hayashi, 1982) Assume the firm is a price taker, that the production
function F is jointly concave in (K,L), and that the installation cost function G
is jointly convex in (I,K).8 Then, along an optimal path we have:

8That is, in addition to (14.2), we assume GKK ≥ 0 and GIIGKK −G2IK ≥ 0. The specifi-
cation in Example 1 above satisfies this.
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(i) qmt = qat for all t ≥ 0, if F and G are homogeneous of degree 1.
(ii) qmt < qat for all t, if F is strictly concave in (K, L) and/or G is strictly

convex in (I, K).
Proof. See Appendix D.

The assumption that the firm is a price taker may, of course, seem critical.
The Hayashi theorem has been generalized, however. Also a monopolistic firm,
facing a downward-sloping demand curve and setting its own price, may have a
cash flow which is homogeneous of degree one in the three variables K,L, and I.
If so, then the condition qmt = qat for all t ≥ 0 still holds (Abel 1990). Abel and
Eberly (1994) present further generalizations.
In any case, when qm is approximately equal to (or just proportional to)

qa, the theory gives a remarkably simple operational investment function, I =
m(qa)K, cf. (14.24). At the macro level we interpret qa as the market valuation
of the firms relative to the replacement value of their total capital stock. This
market valuation is an indicator of the expected future earnings potential of the
firms. Under the conditions in (i) of the Hayashi theorem the market valuation
also indicates the marginal earnings potential of the firms, hence, it becomes a
determinant of their investment. This establishment of a relationship between the
stock market and firms’aggregate investment is the basic point in Tobin (1969).

14.3 Applications

Capital installation costs in a closed economy

Allowing for convex capital installation costs in the economy has far-reaching
implications for the causal structure of a model of a closed economy. Investment
decisions attain an active role in the economy and forward-looking expectations
become important for these decisions. Expected future market conditions and an-
nounced future changes in corporate taxes and depreciation allowance will affect
firms’investment already today.
The essence of the matter is that current and expected future interest rates

have to adjust for aggregate saving to equal aggregate investment, that is, for the
output and asset markets to clear. Given full employment (Lt = L̄t), the output
market clears when

F (Kt, L̄t)−G(It, Kt) = value added ≡ GDPt = Ct + It,

where Ct is determined by the intertemporal utility maximization of the forward-
looking households, and It is determined by the intertemporal value maximization
of the forward-looking firms facing strictly convex installation costs. Like in the
determination of Ct, current and expected future interest rates now also matter
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for the determination of It. This is the first time in this book where clearing in the
output market is assigned an active role. In the earlier models investment was just
a passive reflection of household saving. Desired investment was automatically
equal to the residual of national income left over after consumption decisions had
taken place. Nothing had to adjust to clear the output market, neither interest
rates nor output. In contrast, in the present framework adjustments in interest
rates and/or the output level are needed for the continuous clearing in the output
market and these adjustments are decisive for the macroeconomic dynamics.
In actual economies there may of course exist “secondary markets” for used

capital goods and markets for renting capital goods owned by others. In view of
installation costs and similar, however, shifting capital goods from one plant to
another is generally costly. Therefore the turnover in that kind of markets tends
to be limited and there is little underpinning for the earlier models’supposition
that the current interest rate should be tied down by a requirement that such
markets clear.
In for instance Abel and Blanchard (1983) a Ramsey-style model integrating

the q-theory of investment is presented. The authors study the two-dimensional
general equilibrium dynamics resulting from the adjustment of current and ex-
pected future (short-term) interest rates needed for the output market to clear.
Adjustments of the whole structure of interest rates (the yield curve) take place
and constitute the equilibrating mechanism in the output and asset markets.
By having output market equilibrium playing this role in the model, a first

step is taken towards medium- and short-run macroeconomic theory. We take
further steps in later chapters, by allowing imperfect competition and nominal
price rigidities to enter the picture. Then the demand side gets an active role
both in the determination of q (and thereby investment) and in the determination
of aggregate output and employment. This is what Keynesian theory (old and
new) deals with.
In the remainder of this chapter we will still assume perfect competition in all

markets including the labor market. In this sense we will stay within the neoclas-
sical framework (supply-dominated models) where, by instantaneous adjustment
of the real wage, labor demand continuously matches labor supply. The next
two subsections present examples of how Tobin’s q-theory of investment can be
integrated into the neoclassical framework. To avoid the more complex dynamics
arising in a closed economy, we shift the focus to a small open economy. This
allows concentrating on a dynamic system with an exogenous interest rate.

A small open economy with capital installation costs

By introducing convex capital installation costs in a model of a small open econ-
omy (SOE), we avoid the counterfactual outcome that the capital stock adjusts
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instantaneously when the interest rate in the world financial market changes.
In the standard neoclassical growth model for a small open economy, without
convex capital installation costs, a rise in the interest rate leads immediately to
a complete adjustment of the capital stock so as to equalize the net marginal
productivity of capital to the new higher interest rate. Moreover, in that model
expected future changes in the interest rate or in corporate taxes and deprecia-
tion allowances do not trigger an investment response until these changes actually
happen. In contrast, when convex installation costs are present, expected future
changes tend to influence firms’investment already today.
We assume:

1. Perfect mobility across borders of goods and financial capital.

2. Domestic and foreign financial claims are perfect substitutes.

3. No mobility across borders of labor.

4. Labor supply is inelastic and constant and there is no technological progress.

5. The capital installation cost function G(I,K) is homogeneous of degree 1.

In this setting the SOE faces an exogenous interest rate, r, given from the
world financial market. We assume r is a positive constant. The aggregate pro-
duction function, F (K,L), is neoclassical and concave as in the previous sections.
With L̄ > 0 denoting the constant labor supply, continuous clearing in the labor
market under perfect competition gives Lt = L̄ for all t ≥ 0 and

wt = FL(Kt, L̄) ≡ w(Kt). (14.29)

At any time t, Kt is predetermined in the sense that due to the convex installation
costs, changes in K take time. Thus (14.29) determines the market real wage wt.
To pin down the evolution of the economy, we now derive two coupled differ-

ential equations in K and q. Inserting (14.24) into (14.6) gives

K̇t = (m(qt)− δ)Kt, K0 > 0 given. (14.30)

As to the dynamics of q, we have (14.26). Since the capital installation cost
function G(I,K) is assumed to be homogeneous of degree 1, point (iii) of Lemma
1 applies and we can write (14.26) as

q̇t = (r + δ)qt − FK(Kt, L̄) + g(m(qt))− (qt − 1)m(qt). (14.31)

As r and L̄ are exogenous, the capital stock, K, and its shadow price, q, are
the only endogenous variables in the differential equations (14.30) and (14.31).
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Figure 14.4: Phase diagram for investment dynamics in a small open economy (a case
where δ > 0).

In addition, we have an initial condition for K and a necessary transversality
condition involving q, namely

lim
t→∞

Ktqte
−rt = 0. (14.32)

Fig. 14.4 shows the phase diagram for these two coupled differential equations.
Let q∗ be defined as the value of q satisfying the equationm(q) = δ. Sincem′ > 0,
q∗ is unique. Suppressing for convenience the explicit time subscripts, we then
have

K̇ = 0 for m(q) = δ, i.e., for q = q∗.

As δ > 0, we have q∗ > 1. This is so because also mere reinvestment to offset
capital depreciation requires an incentive, namely that the marginal value to
the firm of replacing worn-out capital is larger than the purchase price of the
investment good (since the installation cost must also be compensated). From
(14.30) is seen that

K̇ ≷ 0 for m(q) ≷ δ, respectively, i.e., for q ≷ q∗, respectively,

cf. the horizontal arrows in Fig. 14.4.
From (14.31) we have

q̇ = 0 for 0 = (r + δ)q − FK(K, L̄) + g(m(q))− (q − 1)m(q). (14.33)
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If, in addition K̇ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ), this gives

0 = (r + δ)q∗ − FK(K, L̄) + g(δ)− (q∗ − 1)δ, (14.34)

where the right-hand-side is increasing in K, in view of FKK < 0. Hence, there
exists at most one value of K such that the steady state condition (14.34) is
satisfied;9 this value is denoted K∗, corresponding to the steady state point E
in Fig. 14.4. The question is now: what is the slope of the q̇ = 0 locus? In
Appendix E it is shown that at least in a neighborhood of the steady state point
E, this slope is negative in view of the assumption r > 0 and FKK < 0. From
(14.31) we see that

q̇ ≶ 0 for points to the left and to the right, respectively, of the q̇ = 0 locus,

since FKK(Kt, L̄) < 0. The vertical arrows in Fig. 14.4 show these directions of
movement.
Altogether the phase diagram shows that the steady state E is a saddle point,

and since there is one predetermined variable, K, and one jump variable, q, and
the saddle path is not parallel to the jump variable axis, the steady state is
saddle-point stable. At time 0 the economy will be at the point B in Fig. 14.4
where the vertical line K = K0 crosses the saddle path. Then the economy
will move along the saddle path towards the steady state. This solution satisfies
the transversality condition (14.32) and is the unique solution to the model (for
details, see Appendix F).

The effect of an unanticipated rise in the interest rate Suppose that
until time 0 the economy has been in the steady state E in Fig. 14.4. Then,
an unexpected shift in the interest rate occurs so that the new interest rate is
a constant r′ > r. We assume that the new interest rate is rightly expected to
remain at this level forever. From (14.30) we see that q∗ is not affected by this
shift, hence, the K̇ = 0 locus is not affected. However, (14.33) implies that the
q̇ = 0 locus and K∗ shift to the left, in view of FKK(K, L̄) < 0.
Fig. 14.5 illustrates the situation for t > 0. At time t = 0 the shadow price q

jumps down to a level corresponding to the point B in Fig. 14.5. There is now
a heavier discounting of the future benefits that the marginal unit of capital can
provide. As a result the incentive to invest is diminished and gross investment
will not even compensate for the depreciation of capital. Hence, the capital
stock decreases gradually. This is where we see a crucial role of convex capital
installation costs in an open economy. For now, the installation costs are the costs

9And assuming that F satisfies the Inada conditions, we are sure that such a value exists
since (14.34) gives FK(K, L̄) = rq∗ + g(δ) + δ > 0.
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Figure 14.5: Phase portrait of an unanticipated rise in r (the case δ > 0).

associated with disinvestment (dismantling and selling out of machines). If these
convex costs were not present, we would get the same counterfactual prediction
as from the previous open-economy models in this book, namely that the new
steady state is attained immediately after the shift in the interest rate.
As the capital stock is diminished, the marginal productivity of capital rises

and so does q. The economy moves along the new saddle path and approaches
the new steady state E’ as time goes by.
Suppose that for some reason such a decrease in the capital stock is not

desirable from a social point of view; this could be because of positive external
effects of capital and investment, e.g., a kind of “learning by doing”. Then the
government could decide to implement an investment subsidy σ, 0 < σ < 1, so
that to attain an investment level I, purchasing the investment goods involves a
cost of (1−σ)I. Assuming the subsidy is financed by some tax not affecting firms’
behavior (for example a constant tax on households’consumption), investment is
increased again and the economy may in the long run end up at the old steady-
state level of K (but the new q∗ will be lower than the old).

A growing small open economy with capital installation costs*

The basic assumptions are the same as in the previous section except that now
labor supply, L̄t, grows at the constant rate n ≥ 0, while the technology level, T,
grows at the constant rate γ ≥ 0 (both rates exogenous and constant) and the
production function is neoclassical with CRS. We assume that the world market
real interest rate, r, is a constant and satisfies r > γ + n. Still assuming full
employment, we have Lt = L̄t = L̄0e

nt.
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In this setting the production function on intensive form is useful:

Y = F (K,T L̄) = F (
K

TL̄
, 1)TL̄ ≡ f(k̃)TL̄,

where k̃ ≡ K/(TL̄) and f satisfies f ′ > 0 and f ′′ < 0. Still assuming perfect
competition, the market-clearing real wage at time t is determined as

wt = F2(Kt, TtL̄t)Tt =
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt ≡ w̃(k̃t)Tt,

where both k̃t and Tt are predetermined. By log-differentiation of k̃ ≡ K/(TL̄)

w.r.t. time we get
·
k̃t/k̃t = K̇t/Kt − (γ + n). Substituting (14.30), we get

·
k̃t = [m(qt)− (δ + γ + n)] k̃t. (14.35)

The change in the shadow price of capital is now described by

q̇t = (r + δ)qt − f ′(k̃t) + g(m(qt))− (qt − 1)m(qt), (14.36)

from (14.26). In addition, the transversality condition,

lim
t→∞

k̃tqte
−(r−γ−n)t = 0, (14.37)

must hold.
The differential equations (14.35) and (14.36) constitute our new dynamic

system. Fig. 14.6 shows the phase diagram, which is qualitatively similar to that
in Fig. 14.4. We have

·
k̃ = 0 for m(q) = δ + γ + n, i.e., for q = q∗,

where q∗ now is defined by the requirement m(q∗) = δ+ γ+n. Notice, that when
γ+n > 0, we get a larger steady state value q∗ than in the previous section. This
is so because now a higher investment-capital ratio is required for a steady state
to be possible. Moreover, the transversality condition (14.12) is satisfied in the
steady state.
From (14.36) we see that q̇ = 0 now requires

0 = (r + δ)q − f ′(k̃) + g(m(q))− (q − 1)m(q).

If, in addition
·
k̃ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ + γ + n), this gives

0 = (r + δ)q∗ − f ′(k̃) + g(δ + γ + n)− (q∗ − 1)(δ + γ + n).
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Figure 14.6: Phase portrait of an unanticipated fall in r (a growing economy with
δ + γ + n ≥ γ + n > 0).

Here, the right-hand-side is increasing in k̃ (in view of f ′′(k̃) < 0). Hence, the
steady state value k̃∗ of the effective capital-labor ratio is unique, cf. the steady
state point E in Fig. 14.6.

By the assumption r > γ + n we have, at least in a neighborhood of E in
Fig. 14.6, that the q̇ = 0 locus is negatively sloped (see Appendix E).10 Again
the steady state is a saddle point, and the economy moves along the saddle path
towards the steady state.

In Fig. 14.6 it is assumed that until time 0, the economy has been in the
steady state E. Then, an unexpected shift in the interest rate to a lower constant
level, r′, takes place. The q̇ = 0 locus is shifted to the right, in view of f ′′ < 0.
The shadow price, q, immediately jumps up to a level corresponding to the point
B in Fig. 14.6. The economy moves along the new saddle path and approaches
the new steady state E’ with a higher effective capital-labor ratio as time goes
by. In Exercise 14.2 the reader is asked to examine the analogue situation where
an unanticipated downward shift in the rate of technological progress takes place.

10In our perfect foresight model we in fact have to assume r > γ+n for the firm’s maximization
problem to be well-defined. If instead r ≤ γ + n, the market value of the representative firm
would be infinite, and maximization would loose its meaning.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



14.4. Concluding remarks 595

14.4 Concluding remarks

Tobin’s q-theory of investment gives a remarkably simple operational macroeco-
nomic investment function, in which the key variable explaining aggregate invest-
ment is the valuation of the firms by the stock market relative to the replacement
value of the firms’physical capital. This link between asset markets and firms’
aggregate investment is an appealing feature of Tobin’s q-theory.
When faced with strictly convex installation costs, the firm has to take the

future into account to invest optimally. Therefore, the firm’s expectations be-
come important. Owing to the strictly convex installation costs, the firm adjusts
its capital stock only gradually when new information arises. This investment
smoothing is analogue to consumption smoothing.
By incorporating these features, Tobin’s q-theory helps explaining the slug-

gishness in investment we see in the empirical data. And the theory avoids the
counterfactual outcome from earlier chapters that the capital stock in a small
open economy with perfect mobility of goods and financial capital is instanta-
neously adjusted when the interest rate in the world market changes. So the
theory takes into account the time lags in capital adjustment in real life, a fea-
ture which may, perhaps, be abstracted from in long-run analysis and models of
economic growth, but not in short- and medium-run analysis.
Many econometric tests of the q theory of investment have been made, often

with quite critical implications. Movements in qa, even taking account of changes
in taxation, seemed capable of explaining only a minor fraction of the movements
in investment. And the estimated equations relating fixed capital investment
to qa typically give strong auto-correlation in the residuals. Other variables, in
particular availability of current corporate profits for internal financing, seem
to have explanatory power independently of qa (see Abel 1990, Chirinko 1993,
Gilchrist and Himmelberg, 1995). So there is reason to be somewhat sceptical
towards the notion that all information of relevance for the investment decision
is reflected by the market valuation of firms. This throws doubt on the basic
assumption in Hayashi’s theorem or its generalization, the assumption that firms’
cash flow tends to be homogeneous of degree one w.r.t. K, L, and I.
Going outside the model, there are further circumstances relaxing the link

between qa and investment. In the real world with many production sectors,
physical capital is heterogeneous. If for example a sharp unexpected rise in the
price of energy takes place, a firm with energy-intensive technology will loose in
market value. At the same time it has an incentive to invest in energy-saving
capital equipment. Hence, we might observe a fall in qa at the same time as
investment increases.
Imperfections in credit markets are ignored by the model. Their presence
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further loosens the relationship between qa and investment and may help explain
the observed positive correlation between investment and corporate profits.

We might also question that capital installation costs really have the hy-
pothesized strictly convex form. It is one thing that there are costs associated
with installation, reorganizing and retraining etc., when new capital equipment
is procured. But should we expect these costs to be strictly convex in the vol-
ume of investment? To think about this, let us for a moment ignore the role
of the existing capital stock. Hence, we write total installation costs J = G(I)
with G(0) = 0. It does not seem problematic to assume G′(I) > 0 for I > 0.
The question concerns the assumption G′′(I) > 0. According to this assumption
the average installation cost G(I)/I must be increasing in I.11 But against this
speaks the fact that capital installation may involve indivisibilities, fixed costs,
acquisition of new information etc. All these features tend to imply decreasing
average costs. In any case, at least at the microeconomic level one should ex-
pect unevenness in the capital adjustment process rather than the above smooth
adjustment.

Because of the mixed empirical success of the convex installation cost hypoth-
esis other theoretical approaches that can account for sluggish and sometimes
non-smooth and lumpy capital adjustment have been considered: uncertainty,
investment irreversibility, indivisibility, or financial problems due to bankruptcy
costs (Nickell 1978, Zeira 1987, Dixit and Pindyck 1994, Caballero 1999, Adda and
Cooper 2003). These approaches notwithstanding, it turns out that the q-theory
of investment has recently been somewhat rehabilitated from both a theoretical
and an empirical point of view. At the theoretical level Wang and Wen (2010)
show that financial frictions in the form of collateralized borrowing at the firm
level can give rise to strictly convex adjustment costs at the aggregate level yet
at the same time generate lumpiness in plant-level investment. For large firms,
unlikely to be much affected by financial frictions, Eberly et al. (2008) find that
the theory does a good job in explaining investment behavior.

In any case, the q-theory of investment is in different versions widely used
in short- and medium-run macroeconomics because of its simplicity and the ap-
pealing link it establishes between asset markets and firms’investment. And the
q-theory has also had an important role in studies of the housing market and the
role of housing prices for household wealth and consumption, a theme to which
we return in the next chapter.

11Indeed, for I 6= 0 we have d[G(I)/I]/dI = [IG′(I)−G(I)]/I2 > 0, when G is strictly convex
(G′′ > 0) and G(0) = 0.
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14.5 Literature notes

A first sketch of the q-theory of investment is contained in Tobin (1969). Later
advances of the theory took place through the contributions of Hayashi (1982)
and Abel (1990).
Both the Ramsey model and the Blanchard OLG model for a closed market

economy may be extended by adding strictly convex capital installation costs, see
Abel and Blanchard (1983) and Lim and Weil (2003). Adding a public sector,
such a framework is useful for the study of how different subsidies, taxes, and
depreciation allowance schemes affect investment in physical capital as well as
housing, see, e.g., Summers (1981), Abel and Blanchard (1983), and Dixit (1990).
Groth andMadsen (2013) study medium-termfluctuations arising in a Ramsey-

Tobin’s q framework when extended by sluggishness in real wage adjustments.

14.6 Appendix

A.When value maximization is - and is not - equivalent with continuous
static profit maximization

For the idealized case where tax distortions, asymmetric information, and prob-
lems with enforceability of financial contracts are absent, the Modigliani-Miller
theorem (Modigliani and Miller, 1958) says that the financial structure of the firm
is both indeterminate and irrelevant for production outcomes. Considering the
firm described in Section 14.1, the implied separation of the financing decision
from the production and investment decision can be exposed in the following way.

Simple version of the Modigliani-Miller theorem Although the theorem
allows for risk, we here ignore risk. Let the real debt of the firm be denoted Bt

and the real dividends, Xt. We then have the accounting relationship

Ḃt = Xt − (F (Kt, Lt)−G(It, Kt)− wtLt − It − rtBt) .

A positive Xt represents dividends in the usual meaning (payout to the owners
of the firm), whereas a negative Xt can be interpreted as emission of new shares
of stock. Since we assume perfect competition, the time path of wt and rt is
exogenous to the firm.
We first consider the firm’s combined financing and production-investment

problem, which we call Problem I. We assume that those who own the firm at
time 0 want it to maximize its net worth, i.e., the present value of expected future
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dividends:

max
(Lt,It,Xt)∞t=0

Ṽ0 =

∫ ∞
0

Xte
−
∫ t
0 rsdsdt s.t.

Lt ≥ 0, It free,

K̇t = It − δKt, K0 > 0 given, Kt ≥ 0 for all t,

Ḃt = Xt − (F (Kt, Lt)−G(It, Kt)− wtLt − It − rtBt) ,

where B0 is given, (14.38)

lim
t→∞

Bte
−
∫ t
0 rsds ≤ 0. (NPG)

The last constraint is a No-Ponzi-Game condition, saying that a positive debt
should in the long run at most grow at a rate which is less than the interest rate.
In Section 14.1 we considered another problem, namely a separate investment-

production problem:

max
(Lt,It)∞t=0

V0 =

∫ ∞
0

Rte
−
∫ t
0 rsdsdt s.t.,

Rt ≡ F (Kt, Lt)−G(It, Kt)− wtLt − It,
Lt ≥ 0, It free,

K̇t = It − δKt, K0 > 0 given, Kt ≥ 0 for all t.

Let this problem, where the financing aspects are ignored, be called Problem
II. When considering the relationship between Problem I and Problem II, the
following mathematical fact is useful.

LEMMA A1 Consider a continuous function a(t) and a differentiable function
f(t). Then∫ t1

t0

(f ′(t)− a(t)f(t))e
−
∫ t
t0
a(s)ds

dt = f(t1)e−
∫ t1
t0
a(s)ds − f(t0).

Proof. Integration by parts from time t0 to time t1 yields∫ t1

t0

f ′(t)e
−
∫ t
t0
a(s)ds

dt = f(t)e
−
∫ t
t0
a(s)ds

∣∣t1
t0 +

∫ t1

t0

f(t)a(t)e
−
∫ t
t0
a(s)ds

dt.

Hence, ∫ t1

t0

(f ′(t)− a(t)f(t))e
−
∫ t
t0
a(s)ds

dt

= f(t1)e−
∫ t1
t0
a(s)ds − f(t0). �
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CLAIM 1 If (K∗t , B
∗
t , L

∗
t , I
∗
t , X

∗
t )∞t=0 is a solution to Problem I, then (K∗t , L

∗
t , I
∗
t )∞t=0

is a solution to Problem II.

Proof. By (14.38) and the definition of Rt, Xt = Rt + Ḃt − rtBt so that

Ṽ0 =

∫ ∞
0

Xte
−
∫ t
0 rsdsdt = V0 +

∫ ∞
0

(Ḃt − rtBt)e
−
∫ t
0 rsdsdt. (14.39)

In Lemma A1, let f(t) = Bt, a(t) = rt, t0 = 0, t1 = T and consider T → ∞.
Then

lim
T→∞

∫ T

0

(Ḃt − rtBt)e
−
∫ t
0 rsdsdt = lim

T→∞
BT e

−
∫ T
0 rsds −B0 ≤ −B0,

where the weak inequality is due to (NPG). Substituting this into (14.39), we
see that maximum of net worth Ṽ0 is obtained by maximizing V0 and ensuring
limT→∞BT e

−
∫ T
0 rsds = 0, in which case net worth equals ((maximized V0)− B0),

where B0 is given. So a plan that maximizes net worth of the firm must also
maximize V0 in Problem II. �
Consequently it does not matter for the firm’s production and investment

behavior whether the firm’s investment is financed by issuing new debt or by
issuing shares of stock. Moreover, if we assume investors do not care about
whether they receive the firm’s earnings in the form of dividends or valuation
gains on the shares, the firm’s dividend policy is also irrelevant. Hence, from now
on we can concentrate on the investment-production problem, Problem II above.

The case with no capital installation costs Suppose the firm has no capital
installation costs. Then the cash flow reduces to Rt = F (Kt, Lt)− wtLt − It.
CLAIM 2 When there are no capital installation costs, Problem II can be reduced
to a series of static profit maximization problems.

Proof. Current (pure) profit is defined as

Πt = F (Kt, Lt)− wtLt − (rt + δ)Kt ≡ Π(Kt, Lt).

It follows that Rt can be written

Rt = F (Kt, Lt)− wtLt − (K̇t + δKt) = Πt + (rt + δ)Kt − (K̇t + δKt). (14.40)

Hence,

V0 =

∫ ∞
0

Πte
−
∫ t
0 rsdsdt+

∫ ∞
0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt. (14.41)
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The first integral on the right-hand side of this expression is independent of the
second. Indeed, the firm can maximize the first integral by renting capital and
labor, Kt and Lt, at the going factor prices, rt + δ and wt, respectively, such that
Πt = Π(Kt, Lt) is maximized at each t. The factor costs are accounted for in the
definition of Πt.

The second integral on the right-hand side of (14.41) is the present value of
net revenue from renting capital out to others. In Lemma A1, let f(t) = Kt,
a(t) = rt, t0 = 0, t1 = T and consider T →∞. Then

lim
T→∞

∫ T

0

(rtKt − K̇t)e
−
∫ t
0 rsdsdt = K0 − lim

T→∞
KT e

−
∫ T
0 rsds = K0, (14.42)

where the last equality comes from the fact that maximization of V0 requires
maximization of the left-hand side of (14.42) which in turn, since K0 is given,
requires minimization of limT→∞KT e

−
∫ T
0 rsds. The latter expression is always

non-negative and can be made zero by choosing any time path for Kt such that
limT→∞KT = 0. (We may alternatively put it this way: it never pays the firm to
accumulate costly capital so fast in the long run that limT→∞KT e

−
∫ T
0 rsds > 0,

that is, to maintain accumulation of capital at a rate equal to or higher than the
interest rate.) Substituting (14.42) into (14.41), we get V0 =

∫∞
0

Πte
−
∫ t
0 rsdsdt+K0.

The conclusion is that, given K0,12 V0 is maximized if and only if Kt and Lt
are at each t chosen such that Πt = Π(Kt, Lt) is maximized. �

The case with strictly convex capital installation costs Now we rein-
troduce the capital installation cost function G(It, Kt), satisfying in particular
the condition GII(I,K) > 0 for all (I,K). Then, as shown in the text, the firm
adjusts to a change in its environment, say a downward shift in r, by a gradual
adjustment of K, in this case upward, rather than attempting an instantaneous
maximization of Π(Kt, Lt). The latter would entail an instantaneous upward jump
in Kt of size ∆Kt = a > 0, requiring It ·∆t = a for ∆t = 0. This would require
It = ∞, which implies G(It, Kt) = ∞, which may interpreted either as such a
jump being impossible or at least so costly that no firm will pursue it.

12Note that in the absence of capital installation costs, the historically given K0 is no more
“given”than the firm may instantly let it jump to a lower or higher level. In the first case the
firm would immediately sell a bunch of its machines and in the latter case it would immediately
buy a bunch of machines. Indeed, without convex capital installation costs nothing rules out
jumps in the capital stock. But such jumps just reflect an immediate jump, in the opposite
direction, in another asset item in the balance sheet and leave the maximized net worth of the
firm unchanged.
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Proof that qt satisfies (14.15) along an interior optimal path Rearrang-
ing (14.11) and multiplying through by the integrating factor e−

∫ t
0 (rs+δ)ds, we

get

[(rt + δ)qt − q̇t] e−
∫ t
0 (rs+δ)ds = (FKt −GKt) e

−
∫ t
0 (rs+δ)ds, (14.43)

where FKt ≡ FK(Kt, Lt) and GKt ≡ GK(It, Kt). In Lemma A1, let f(t) = qt,
a(t) = rt + δ, t0 = 0, t1 = T. Then∫ T

0

[(rt + δ)qt − q̇t] e−
∫ t
0 (rs+δ)dsdt = q0 − qT e−

∫ T
0 (rs+δ)ds

=

∫ T

0

(FKt −GKt) e
−
∫ t
0 (rs+δ)dsdt,

where the last equality comes from (14.43). Letting T →∞, we get

q0 − lim
T→∞

qT e
−
∫ T
0 (rs+δ)ds = q0 =

∫ ∞
0

(FKt −GKt) e
−
∫ t
0 (rs+δ)dsdt, (14.44)

where the first equality follows from the transversality condition (14.14), which
we repeat here:

lim
t→∞

qte
−
∫ t
0 rsds = 0. (*)

Indeed, since δ ≥ 0, limT→∞(e−
∫ T
0 rsdse−δT ) = 0, when (*) holds. Initial time

is arbitrary, and so we may replace 0 and t in (14.44) by t and τ , respectively.
The conclusion is that (14.15) holds along an interior optimal path, given the
transversality condition (*). A proof of necessity of the transversality condition
(*) is given in Appendix B.13

B. Transversality conditions

In view of (14.44), a qualified conjecture is that the condition limt→∞ qte
−
∫ t
0 (rs+δ)ds

= 0 is necessary for optimality. This is indeed true, since this condition follows
from the stronger transversality condition (*) in Appendix A, the necessity of
which along an optimal path we will now prove.

Proof of necessity of (14.14) As the transversality condition (14.14) is the
same as (*) in Appendix A, from now we refer to (*).

13An equivalent approach to derivation of (14.15) can be based on applying the transversality
condition (*) to the general solution formula for linear inhomogeneous first-order differential
equations. Indeed, the first-order condition (14.11) provides such a differential equation in qt.
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Rearranging (14.11) and multiplying through by the integrating factor e−
∫ t
0 rsds,

we have
(rtqt − q̇t)e−

∫ t
0 rsds = (FKt −GKt − δqt) e−

∫ t
0 rsds.

In Lemma A1, let f(t) = qt, a(t) = rt, t0 = 0, t1 = T . Then∫ T

0

(rtqt − q̇t)e−
∫ t
0 rsdsdt = q0 − qT e−

∫ T
0 rsds =

∫ T

0

(FKt −GKt − δqt) e−
∫ t
0 rsdsdt.

Rearranging and letting T →∞, we see that

q0 =

∫ ∞
0

(FKt −GKt − δqt) e−
∫ t
0 rsdsdt+ lim

T→∞
qT e

−
∫ T
0 rsds. (14.45)

If, contrary to (*), limT→∞ qT e
−
∫ T
0 rsds > 0 along the optimal path, then (14.45)

shows that the firm is over-investing. By reducing initial investment by one unit,
the firm would save approximately 1 +GI(I0, K0) = q0, by (14.10), which would
be more than the present value of the stream of potential net gains coming from
this marginal unit of installed capital (the first term on the right-hand side of
(14.45)).
Suppose instead that limT→∞ qT e

−
∫ T
0 rsds < 0. Then, by a symmetric argu-

ment, the firm has under-invested initially.

Necessity of (14.12) In cases where along an optimal path,Kt remains bounded
from above for t→∞, the transversality condition (14.12) is implied by (*). In
cases where along an optimal path, Kt is not bounded from above for t→∞, the
transversality condition (14.12) is stronger than (*). A proof of the necessity of
(14.12) in this case can be based on Weitzman (2003) and Long and Shimomura
(2003).

C. On different specifications of the q-theory

The simple relationship we have found between I and q can easily be generalized
to the case where the purchase price on the investment good, pIt, is allowed to
differ from 1 (its value above) and the capital installation cost is pItG(It, Kt).
In this case it is convenient to replace q in the Hamiltonian function by, say, λ.
Then the first-order condition (14.10) becomes pIt + pItGI(It, Kt) = λt, implying

GI(It, Kt) =
λt
pIt
− 1,

and we can proceed, defining as before qt by qt ≡ λt/pIt.
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Sometimes in the literature installation costs, J , appear in a slightly different
form compared to the above exposition. But applied to a model with economic
growth this will result in installation costs that rise faster than output and ulti-
mately swallow the total produce.
Abel and Blanchard (1983), followed by Barro and Sala-i-Martin (2004, p.

152-160), introduce a function, φ, representing capital installation costs per unit
of investment as a function of the investment-capital ratio. That is, total in-
stallation cost is J = φ(I/K)I, where φ(0) = 0, φ′ > 0. This implies that
J/K = φ(I/K)(I/K). The right-hand side of this equation may be called g(I/K),
and then we are back at the formulation in Section 14.1. Indeed, defining
x ≡ I/K, we have installation costs per unit of capital equal to g(x) = φ(x)x,
and assuming φ(0) = 0, φ′ > 0, it holds that

g(x) = 0 for x = 0, g(x) > 0 for x 6= 0,

g′(x) = φ(x) + xφ′(x) R 0 for x R 0, respectively, and

g′′(x) = 2φ′(x) + xφ′′(x).

Now, g′′(x) must be positive for the theory to work. But the assumptions φ(0) =
0, φ′ > 0, and φ′′ ≥ 0, imposed in p. 153 and again in p. 154 in Barro and
Sala-i-Martin (2004), are not suffi cient for this (since x < 0 is possible). Since
in macroeconomics x < 0 is seldom, this is only a minor point, of course. Yet,
from a formal point of view the g(·) formulation may seem preferable to the φ(·)
formulation.
It is sometimes convenient to let the capital installation cost G(I, K) appear,

not as a reduction in output, but as a reduction in capital formation so that

K̇ = I − δK −G(I,K). (14.46)

This approach is used in Hayashi (1982) and Heijdra and Ploeg (2002, p. 573 ff.).
For example, Heijdra and Ploeg write the rate of capital accumulation as K̇/K
= ϕ(I/K)−δ, where the “capital installation function”ϕ(I/K) can be interpreted
as ϕ(I/K) ≡ [I −G(I,K)] /K = I/K − g(I/K); the latter equality comes from
assuming G is homogeneous of degree 1. In one-sector models, as we usually
consider in this text, this changes nothing of importance. In more general models
this installation function approach may have some analytical advantages; what
gives the best fit empirically is an open question. In our housing market model
in the next chapter we apply a specification analogue to (14.46), interpreting K̇
as the number of new houses per time unit.
Finally, some analysts assume that installation costs are a strictly convex

function of net investment, I−δK, not gross investment, I. This agrees well with
intuition if mere replacement investment occurs in a smooth way not involving
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new technology, work interruption, and reorganization. To the extent capital
investment involves indivisibilities and embodies new technology, it may seem
more plausible to specify the installation costs as a convex function of gross
investment.

D. Proof of Hayashi’s theorem

For convenience we repeat:

THEOREM (Hayashi) Assume the firm is a price taker, that the production
function F is jointly concave in (K, L), and that the installation cost function G
is jointly convex in (I, K). Then, along the optimal path we have:
(i) qmt = qat for all t ≥ 0, if F and G are homogeneous of degree 1.
(ii) qmt < qat for all t, if F is strictly concave in (K, L) and/or G is strictly

convex in (I, K).

Proof. The value of the firm as seen from time t is

Vt =

∫ ∞
t

(F (Kτ , Lτ )−G(Iτ , Kτ )− wτLτ − Iτ )e−
∫ τ
t rsdsdτ . (14.47)

We introduce the functions

A = A(K,L) ≡ F (K,L)− FK(K,L)K − FL(K,L)L, (14.48)

B = B(I,K) ≡ GI(I,K)I +GK(I,K)K −G(I,K). (14.49)

Then the cash-flow of the firm at time τ can be written

Rτ = F (Kτ , Lτ )− FLτLτ −G(Iτ , Kτ )− Iτ
= A(Kτ , Lτ ) + FKτKτ +B(Iτ , Kτ )−GIτIτ −GKτKτ − Iτ ,

where we have used first FLτ = w and then the definitions of A and B above.
Consequently, when moving along the optimal path,

Vt = V ∗(Kt, t) =

∫ ∞
t

(A(Kτ , Lτ ) +B(Iτ , Kτ )) e
−
∫ τ
t rsdsdτ (14.50)

+

∫ ∞
t

[(FKτ −GKτ )Kτ − (1 +GIτ )Iτ ]e
−
∫ τ
t rsdsdτ

=

∫ ∞
t

(A(Kτ , Lτ ) +B(Iτ , Kτ ))e
−
∫ τ
t rsdsdτ + qtKt,

cf. Lemma D1 below. Isolating qt, it follows that

qmt ≡ qt =
Vt
Kt

− 1

Kt

∫ ∞
t

[A(Kτ , Lτ ) +B(Iτ , Kτ )]e
−
∫ τ
t rsdsdτ , (14.51)
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when moving along the optimal path.
Since F is concave and F (0, 0) = 0, we have for all K and L, A(K,L) ≥ 0

with equality sign, if and only if F is homogeneous of degree one. Similarly, since
G is convex and G(0, 0) = 0, we have for all I and K, B(I,K) ≥ 0 with equality
sign, if and only if G is homogeneous of degree one. Now the conclusions (i) and
(ii) follow from (14.51) and the definition of qa in (14.27). �
LEMMAD1 The last integral on the right-hand side of (14.50) equals qtKt, when
investment follows the optimal path.

Proof. We want to characterize a given optimal path (Kτ , Iτ , Lτ )
∞
τ=t. Keeping t

fixed and using z as our varying time variable, we have

(FKz −GKz)Kz − (1 +GIz)Iz = [(rz + δ)qz − q̇z]Kz − (1 +GIz)Iz

= [(rz + δ)qz − q̇z]Kz − qz(K̇z + δKz) = rzqzKz − (q̇zKz + qzK̇z) = rzuz − u̇z,
where we have used (14.11), (14.10), (14.6), and the definition uz ≡ qzKz. We
look at this as a differential equation: u̇z − rzuz = ϕz, where ϕz ≡ −[(FKz −
GKz)Kz − (1 +GIz)Iz] is considered as some given function of z. The solution of
this linear differential equation is

uz = ute
∫ z
t rsds +

∫ z

t

ϕτe
∫ z
τ rsdsdτ ,

implying, by multiplying through by e−
∫ z
t rsds, reordering, and inserting the defi-

nitions of u and ϕ, ∫ z

t

[(FKτ −GKτ )Kτ − (1 +GIτ )Iτ ]e
−
∫ τ
t rsdsdτ

= qtKt − qzKze
−
∫ z
t rsds → qtKt for z →∞,

from the transversality condition (14.12) with t replaced by z and 0 replaced by
t. �
A different − and perhaps more illuminating − way of understanding (i) in

Hayashi’s theorem is the following.
Suppose F and G are homogeneous of degree one. Then A = B = 0, GII +

GKK = G = g(I/K)K, and FK = f ′(k), where f is the production function in
intensive form. Consider an optimal path (Kτ , Iτ , Lτ )

∞
τ=t and let kτ ≡ Kτ/Lτ and

xτ ≡ Iτ/Kτ along this path which we now want to characterize. As the path is
assumed optimal, from (14.47) follows

Vt = V ∗(Kt, t) =

∫ ∞
t

[f ′(kτ )− g(xτ )− xτ ]Kτe
−
∫ τ
t rsdsdτ . (14.52)
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From K̇t = (xt− δ)Kt follows Kτ = Kte
−
∫ τ
t (xs−δ)ds. Substituting this into (14.52)

yields

V ∗(Kt, t) = Kt

∫ ∞
t

[f ′(kτ )− g(xτ )− xτ ]e−
∫ τ
t (rs−xs+δ)dsdτ .

In view of (14.24), with t replaced by τ , the optimal investment ratio xτ depends,
for all τ , only on qτ , not on Kτ , hence not on Kt. Therefore,

∂V ∗/∂Kt =

∫ ∞
t

[f ′(kτ )− g(xτ )− xτ ]e−
∫ τ
t (rs−xs+δ)dsdτ = Vt/Kt.

Hence, from (14.28) and (14.27), we conclude qmt = qat .

Remark. We have assumed throughout that G is strictly convex in I. This does
not imply that G is jointly strictly convex in (I,K). For example, the function
G(I,K) = I2/K is strictly convex in I (since GII = 2/K > 0). But at the same
time this function has B(I,K) = 0 and is therefore homogeneous of degree one.
Hence, it is not jointly strictly convex in (I,K).

E. The slope of the q̇ = 0 locus in the SOE case

First, we shall determine the sign of the slope of the q̇ = 0 locus in the case
g + n = 0, considered in Fig. 14.4. Taking the total differential in (14.33) w.r.t.
K and q gives

0 = −FKK(K, L̄)dK + {r + δ + g′(m(q))m′(q)− [m(q) + (q − 1)m′(q)]} dq
= −FKK(K, L̄)dK + [r + δ −m(q)] dq,

since g′(m(q)) = q − 1, by (14.23) and (14.24). Therefore

dq

dK |q̇=0
=

FKK(K, L̄)

r + δ −m(q)
for r + δ 6= m(q).

From this it is not possible to sign dq/dK at all points along the q̇ = 0 locus. But
in a neighborhood of the steady state we have m(q) ≈ δ, hence r + δ −m(q) ≈
r > 0. And since FKK < 0, this implies that at least in a neighborhood of E in
Fig. 14.4 the q̇ = 0 locus is negatively sloped.
Second, consider the case g + n > 0, illustrated in Fig. 14.6. Here we get in

a similar way
dq

dk̃ |q̇=0

=
f ′′(k̃∗)

r + δ −m(q)
for r + δ 6= m(q).

From this it is not possible to sign dq/dk̃ at all points along the q̇ = 0 locus. But
in a small neighborhood of the steady state we have m(q) ≈ δ + γ + n, hence
r+ δ−m(q) ≈ r− γ − n. Since f ′′ < 0, then, at least in a small neighborhood of
E in Fig. 14.6, the q̇ = 0 locus is negatively sloped, when r > γ + n.
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F. The divergent paths

Text not yet available.

14.7 Exercises

14.1 (induced sluggish capital adjustment). Consider a firm with capital instal-
lation costs J = G(I,K), satisfying

G(0, K) = 0, GI(0, K) = 0, GII(I,K) > 0, and GK(I,K) ≤ 0.

a) Can we from this conclude anything as to strict concavity or strict convexity
of the function G? If yes, with respect to what argument or arguments?

b) For two values of K, K and K̄, illustrate graphically the capital installation
costs J in the (I, J) plane. Comment.

c) By drawing a few straight line segments in the diagram, illustrate that
G(1

2
I, K̄)2 < G(I, K̄) for any given I > 0.

14.2 (see end of Section 14.3)
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Chapter 15

Further applications of
adjustment cost theory

In the previous chapter we studied how strictly convex capital installation costs
affect firms’fixed capital investment and how changes in the world market inter-
est rate affect aggregate fixed capital investment in a small open economy with
perfect mobility of financial capital. In the first part of the present chapter this
basic setup is extended by adding a third production factor, imported oil, and
then considering the effects on the economy of an oil price shock. This includes the
effects on households’aggregate consumption where the modeling of the house-
hold sector is based on the Blanchard OLG framework. The aim is not only to
examine effects of an oil price shock per se, but also to set up a more complete
accounting framework for an open economy than in earlier chapters. In the con-
cluding remarks virtues of the OLG approach compared with the representative
agent approach as modeling devices for open economies are discussed.
The strictly convex capital installation costs can be seen as an exemplification

of the more general notion of strictly convex adjustment costs. This leads to the
second part of the chapter where we apply the adjustment cost theory in an
analysis of macroeconomic aspects of the housing market. The idea is that like
firms’ fixed capital investment, residential investment can be seen as a time-
consuming activity involving strictly convex adjustment costs.

15.1 Oil price shock in a small oil importing
economy

Our focus is here on the medium- and long-run effects on a small open economy
(henceforth called SOE) of a supply shock in the form of a shift in the world
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market price of some raw material or energy, that the SOE imports. The reader
may think of any imported raw material of some importance. But for concreteness
we consider the imported good to be “oil”. This is an obvious candidate because
of its considerable weight in many countries’imports and because of the large and
sudden changes that sometimes occur in the world market price of this natural
resource. In 1973-74 the real price of oil almost tripled, and in 1979-80 more than
a doubling of the real price of oil took place, see Fig. 15.1.
We assume:

1. Perfect mobility of goods and financial capital across borders.

2. Domestic and foreign financial claims are perfect substitutes.

3. No mobility of labor across borders.

4. Labor supply is inelastic and constant.

5. There is no government sector and no technological progress.

6. The capital adjustment cost functionG(I,K) is homogeneous of degree one.

7. There is perfect competition in all markets.

Our SOE thus faces an exogenous real interest rate, rt, given from the world
financial market. For convenience, let rt = r for all t ≥ 0, where r is a positive
constant. It should be emphasized straight away that our analysis takes output
to be supply-determined as if there is always full employment. That is, we ignore
the short-term Keynesian demand effects of an oil price shock; such effects are
due to the purchasing power of consumers being undermined by a sudden increase
in the price of imported oil. We shall see that even without Keynesian effects,
the overall effect of an adverse oil price shock is an economic contraction in both
the short and the long run.

15.1.1 Three inputs: capital, labor, and raw material

The models in the previous chapters assumed that all output is produced in one
sector using only capital and labor. We could also say that the earlier models
implicitly assume that raw material is continuously produced at a low stage of
production, but is in the next instant used up immediately at a higher stage of
production. In effect, raw material need not be treated a separate input.
When raw material is imported, we have to treat it as a separate input. The

technology of the representative firm in the SOE is consequently given as a three-
factor production function,

Ỹt = F (Kt, Lt,Mt), Fi > 0, Fii < 0 for i = K,L,M, (15.1)
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Figure 15.1: Real oil price per barrel and U.S. unemployment rate 1948-2013. Source:
Bureau of Labor Statistics and Federal Reserve Bank of St. Louis.

where Ỹ is aggregate output gross of adjustment costs and physical capital
depreciation, K is capital input, and L is labor input, whereas M is the input of
the imported raw material, say oil, all measured per time unit.1 The production
function F is assumed neoclassical with CRS w.r.t. its three arguments. Thus,
as usual there are positive, but diminishing marginal productivities of all three
production factors. But in addition we shall need the assumption that the three
inputs are direct complements in the sense that all the cross derivatives of F are
positive:

Fij > 0, i 6= j. (15.2)

In words: the marginal productivity of any of the production factors is greater,
the more input there is of any of the other production factors.2

The increase per time unit in the firm’s capital stock is given by

K̇t = It − δKt, δ ≥ 0,

1Of course, as long as we have oil import in our mind, we should not primarily think of,
for example, Denmark (even less so UK and Norway) as our case in point. Denmark has cince
1996 been a net exporter of oil and natural gas. But most other European countries will fit as
good examples.

2For a two-factor neoclassical production function with CRS we always have direct comple-
mentarity, i.e., F12 > 0. But with more than two production factors, direct complementarity
for all pairs of production factors is not assured. Therefore, in general, direct complementarity
is an additional assumption. However, the Cobb-Douglas function, Y = Kα1Lα2M1−α1−α2 ,
where αi > 0, i = 1, 2, and α1 + α2 < 1, automatically satisfies all the conditions in (15.2).
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Figure 15.2: Capital adjustment cost per unit of installed capital.

where I is gross investment per time unit and δ is the rate of physical wearing-
down of capital (physical depreciation in this model has to be distinguished from
economic depreciation, cf. Section 15.1.3 below).
The firm faces strictly convex capital installation costs. Let these installation

costs (measured in units of output) at time t be denoted Jt and assume they
depend only on the level of investment and the existing capital stock; that is Jt
= G(It, Kt). The installation cost function G is assumed homogeneous of degree
one so that we can write

J = G(I,K) = g(
I

K
)K, (15.3)

where the function g is strictly convex and satisfies

g(0) = 0, g′(0) = 0 and g′′ > 0. (15.4)

The graph of g is shown in Fig. 15.2.
Gross domestic product (value added) at time t is

GDPt ≡ Ỹt − Jt − pMMt, (15.5)

where pM is the real price of oil, this price being exogenous to the SOE. For
simplicity we assume that this price is a constant, but it may shift to another
level (i.e., we use pM as a shift parameter).

The decision problem of the firm

Let cash flow (before interest payments) at time t be denoted Rt. Then

Rt ≡ F (Kt, Lt,Mt)− g(
It
Kt

)Kt − wtLt − pMMt − It, (15.6)
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where wt is the real wage. The decision problem, as seen from time 0, is to choose
a plan (Lt,Mt, It)

∞
t=0 to maximize the market value of the firm,

V0 =

∫ ∞
0

Rte
−rtdt s.t. (15.6), and (15.7)

Lt ≥ 0,Mt ≥ 0, It free, (i.e., no restriction on It) (15.8)

K̇t = It − δKt, K0 given, (15.9)

Kt ≥ 0 for all t. (15.10)

To solve the problem we use the Maximum Principle. The problem has three
control variables, L, M, and I, and one state variable, K. We set up the current-
value Hamiltonian:

H(K,L,M, I, q, t) ≡ F (K,L,M)−g(
I

K
)K−wL−pMM−I+q(I−δK), (15.11)

where qt is the adjoint variable associated with the dynamic constraint (15.9). For
each t ≥ 0 we maximize the Hamiltonian w.r.t. the control variables: ∂H/∂L =
FL(K,L,M)− w = 0, i.e.,

FL(K,L,M) = w; (15.12)

∂H/∂M = FM(K,L,M)− pM = 0, i.e.,

FM(K,L,M) = pM ; (15.13)

and ∂H/∂I = −g′( I
K

)− 1 + q = 0, i.e.,

1 + g′(
I

K
) = q. (15.14)

Next, we partially differentiate H w.r.t. the state variable, K, and set this deriv-
ative equal to rqt − q̇t, since r is the discount rate in (15.7):

∂H
∂K

= FK(K,L,M)−
∂
[
g( I

K
)K
]

∂K
− δq = rqt − q̇. (15.15)

The Maximum Principle now says that an interior optimal path (Kt, Lt,Mt, It)
satisfies that there exists an adjoint variable qt such that for all t ≥ 0, the condi-
tions (15.12), (15.13), (15.14), and (15.15) hold along the path, and the transver-
sality condition,

lim
t→∞

Ktqte
−rt = 0, (15.16)

is satisfied.
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Figure 15.3

The only new optimality condition compared to the previous chapter is (15.13)
which just says that optimality requires equalizing the marginal productivity of
the imported input to its real price, pM . By (15.14), the adjoint variable, qt, can
be interpreted as a shadow price (measured in current output units) of installed
capital along the optimal path. That is, qt represents the value to the firm
of the marginal unit of installed capital at time t along the optimal path. The
transversality condition says that the present value of the stock of installed capital
“left over”at infinity must be vanishing.

The implied investment function

Since g′′ > 0, the optimality condition (15.14) implicitly defines the optimal
investment ratio, I/K, as a function of the shadow price q,

It
Kt

= m(qt), where m(1) = 0 and m′ = 1/g′′ > 0. (15.17)

An example of the investment function m is illustrated in Fig. 15.3.
To see what the optimality condition (15.15) implies, notice that

∂
[
g( I

K
)K
]

∂K
= g(

I

K
) +Kg′(

I

K
)
−I
K2

= g(
I

K
)− g′( I

K
)
I

K
= g(m(q))− g′(m(q))m(q) = g(m(q))− (q − 1)m(q)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



15.1. Oil price shock in a small oil importing economy 615

from (15.14) and (15.17). Insert this into (15.15) to get

q̇t = (r + δ)qt − FK(Kt, Lt,Mt) + g(m(qt))− (qt − 1)m(qt). (15.18)

By reordering, this can be written as a no-arbitrage condition,

FK(Kt, Lt,Mt)− [g(m(qt))− (qt − 1)m(qt)]− δqt + q̇t
qt

= r, (15.19)

saying that, the rate of return on the marginal unit of installed capital must equal
the (real) interest rate.
To simplify the expression for the marginal product of capital in the differential

equation (15.18) we shall now invoke some general equilibrium conditions.

15.1.2 General equilibrium and dynamics

We assume households’ behavior is as described by a simple Blanchard OLG
model. Yet, in the general equilibrium of the SOE, firms’choices are independent
of households’consumption/saving behavior; therefore we postpone description
of the details of that behavior.
Clearing in the labor market implies that employment, Lt, equals the ex-

ogenous (and constant) labor supply, L̄, for all t ≥ 0. In view of the convex
installation costs, Kt is given in the short run and changes only gradually. We
now show that the demand for oil, the market clearing wage, and the marginal
product of capital all can be written as functions of Kt and pM (for fixed L̄).
First, since FMM < 0, the firm’s optimality condition (15.13) determines oil

demand, Mt, as an implicit function of Kt, pM , and L̄ :

Mt = M(Kt, pM), MK =
−FMK

FMM

> 0,MpM =
1

FMM

< 0, (15.20)

where the exogenous constant L̄ has been suppressed as an argument, for sim-
plicity. The alleged signs on the partial derivatives are implied (see Appendix A)
by the standard assumption FMM < 0 and the assumption of direct complemen-
tarity: FMK > 0.
Second, by inserting (15.20) and Lt = L̄ in the optimality condition (15.12),

we find an expression for the real wage,

wt = FL(Kt, L̄,M(Kt, pM)) ≡ w(Kt, pM), wK > 0, wpM < 0. (15.21)

The alleged signs on the partial derivatives are implied (see Appendix A) by the
direct complementarity assumptions FLK > 0 and FLM > 0.
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Third, in view of (15.20) and Lt = L̄ we can can simplify the expression for
the marginal product of capital:

FK(Kt, L̄,M(Kt, pM)) ≡MPK(Kt, pM), MPKK < 0,MPKpM < 0, (15.22)

The label MPK for this function comes from “Marginal Product of K”. The al-
leged sign on the first mentioned partial derivative is implied by F being neoclas-
sical with non-increasing returns to scale combined with the input factors being
complementary (see Appendix A). ThatMPKpM < 0 follows from FMM < 0 and
FKM > 0.

Dynamics of the capital stock

We have thus established that even when the effect of increased K on oil input
is taken into account, increased K implies lower marginal product of capital. By
implication, the analysis of the dynamics of the capital stock is completely similar
to that in Chapter 14, Section 14.3. Indeed, inserting (15.22) into (15.18) we get

q̇t = (r + δ)qt −MPK(Kt, pM) + g(m(qt))−m(qt)(qt − 1). (15.23)

Since r and pM are exogenous, this is a differential equation with the capital
stock, K, and its shadow price, q, as the only endogenous variables. Another
differential equation with these two variables as the only endogenous ones can be
obtained by inserting (15.17) into (15.9) to get

K̇t = (m(qt)− δ)Kt. (15.24)

Fig. 15.4 shows the phase diagram for these two coupled differential equations.
We have (suppressing, for convenience, the explicit time subscripts)

K̇ = 0 for m(q) = δ, i.e., for q = q∗,

where q∗ is defined by the requirement m(q∗) = δ. Notice, that this implies q∗ > 1
as soon as δ > 0. We see that

K̇ ≷ 0 for m(q) ≷ δ, respectively, i.e., for q ≷ q∗, respectively.

This is illustrated by the horizontal arrows in Fig. 15.4.
From (15.23) we have q̇ = 0 for

0 = (r + δ)q −MPK(K, pM) + g(m(q))−m(q)(q − 1). (15.25)

If, in addition K̇ = 0 (hence, q = q∗ and m(q) = m(q∗) = δ), this gives 0
= (r + δ)q∗ −MPK(K, pM) +g(δ) −δ(q∗ − 1) or

rq∗ = MPK(K, pM)− g(δ)− δ, (15.26)
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Figure 15.4

where the right-hand-side is decreasing in K, in view of MPKK < 0, see (15.22).
Hence, there exists at most one value of K such that the steady state condition
(15.26) is satisfied;3 this value is called K∗, corresponding to the steady state
point E in Fig. 15.4.

The question now is: what is the slope of the q̇ = 0 locus? In the appendix of
the previous chapter it was shown that at least in a neighborhood of the steady
state point E this slope is negative, in view of MPKK < 0 and the assumption
r > 0. From (15.23) we see that

q̇ ≶ 0 for points to the left and to the right, respectively, of the q̇ = 0 locus,

since MPKK < 0. The vertical arrows in Fig. 15.4 show these directions of
movement.

Altogether the phase diagram shows that the steady state, E, is a saddle
point, and since there is one predetermined variable, K, and one jump variable,
q, and the saddle path is not parallel to the jump variable axis, this steady
state is saddle-point stable. We can exclude the divergent paths by appealing
to the representative firm’s necessary transversality condition (15.16). Hence, a
movement along the saddle path towards the steady state is the unique solution
for the path of the capital stock and the shadow price of installed capital.

3Assuming that F satisfies the Inada conditions, (15.26) shows that such a value does exist.
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Figure 15.5

Effect of an oil price shock

Assume that until time 0 the economy has been in the steady state E in Fig. 15.4.
Then, an unexpected shift in the world market price of oil occurs so that the new
price is a constant p′M > pM (and is expected to remain for ever at this level).
From (15.24) we see that q∗ is not affected by this shift, hence, the K̇ = 0 locus
is not affected. But the q̇ = 0 locus shifts downward, in view of MPKpM < 0.
Indeed, to offset the fall ofMPK when pM increases, a lower K is required, given
q.
Fig. 15.5 illustrates the situation for t ≥ 0. At time t = 0 the shadow price

q jumps down to a level corresponding to the point B in Fig. 15.5. This is
because the cost of oil is now higher, reducing current and future optimal input
of oil and therefore (by complementarity) reducing also the current and future
marginal product of capital. As a result, the value to the firm of the marginal unit
of capital is immediately diminished, implying a diminished incentive to invest.
Hence, gross investment jumps to a lower level not suffi cient to make up for the
wearing-down of capital. The capital stock decreases gradually. But this implies
increasing marginal productivity of capital, hence, increasing q, and the economy
moves along the new saddle path and approaches the new steady state E’as time
goes by.4

4This is where we see the crucial role of strictly convex capital installation costs. If these
costs were not present, the model would lead to the counterfactual prediction that the new
steady state would be attained instantaneously when the oil price shock occurs.
Notice, however, an important limitation of the theory. In a Keynesian short-run perspective,

where firms solve a cost minimization problem for a given desired level of output (equal to the
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The reader should recognize that to determine the investment dynamics of the
SOE we did not need to consider the households’saving decision. Indeed, one of
the convenient features of the SOE model is that it can be solved recursively: the
total system can be decomposed into an investment subsystem, describing the
dynamics of physical capital, and a saving subsystem, describing the dynamics
of human wealth and financial wealth of households, H and A. Though the total
system has five endogenous variables, K, q,H,A, and C (aggregate consumption),
the dynamics of K and q are determined by (15.24) and (15.23) independently
of the other variables. Thus, (15.24) and (15.23) constitute a self-contained sub-
system of zero order (using the language of causal ordering, cf. Simon 1953 and
Kogiku 1968). We shall soon see that, given the solution of this subsystem of
zero order, the dynamics of H are determined in a subsystem of first order in
the causal ordering, and, given this determination, the dynamics of A are deter-
mined in a subsystem of second order in the causal ordering. Finally, given the
determination of H and A, the path of C is determined in a subsystem of third
order.
Before turning to household behavior, however, some remarks on national

income accounting for this open economy with capital installation costs may be
useful.

15.1.3 National income accounting for an open economy
with capital installation costs

We ignore the government sector, and therefore national wealth is identical to
aggregate private financial wealth, which is here, as usual, called A. We have, by
definition,

A = V + Af ,

where V is the market value of firms and Af is net foreign assets (financial claims
on the rest of the world).5 Sometimes, it is more convenient to consider net
foreign debt, say D, so that A = V −D. As usual, we define qa (average q) by

qa ≡
Vt
Kt

,

demand faced by the firms), the increase in the price of oil leads to less demand for oil, but more
demand for capital equipment (a pure substitution effect). Hence, in the real world we may
observe a fall in qa (due to higher production costs) at the same time as investment increases,
contrary to what the q-theory of investment predicts under perfect competition.

5Housing wealth and land are ignored.
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i.e., qa is the ratio of the market value of firms to the replacement cost of the
capital stock. Therefore, national wealth can be written

A = qaK + Af , (15.27)

The current account surplus is

Ȧf = NX + rAf , (15.28)

where NX is net export of goods and services (the trade surplus). We have

NX ≡ GDP − C − I = Ỹ − J − pMM − C − I, (15.29)

by (15.5).
Now, look at the matter from the income side rather than the production

side. Gross national income, also called gross national product, GNP, is generally
defined as the gross income of inputs owned by residents of the home country, i.e.,
GNP ≡ GDP +rAf +wLf . Here rAf +wLf is total net factor income earned in
other countries by residents of the home country, the first term, rAf , being net
capital income from abroad, and the second term, wLf , represents labor income
earned in other countries by residents of the home country minus labor income
earned in the home country by residents in the rest of the world. Our present
model ignores mobility of labor so that wLf = 0. Hence,

GNP = GDP + rAf . (15.30)

At the theoretical level net national product, NNP, is defined, following Hicks
(1939), as that level of consumption which would leave financial wealth, A, un-
changed. We shall see that this is equivalent to defining NNP as GNP minus
economic depreciation, that is,

NNP = GNP −D, (15.31)

where D is economic depreciation, defined by

D ≡ I − In, (15.32)

where I is, as hitherto, (domestic) gross investment, whereas In is (domestic) net
investment in the following value sense:6

In ≡
d(qaK)

dt
= qaK̇ + q̇aK. (15.33)

6Net investment in a physical sense is K̇ = I−δK, since δ is the rate of physical wearing-down
of capital.
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To check whether this is consistent with the theoretical (Hicksian) definition of
NNP , insert (15.32) and (15.33) into (15.31) to get

NNP = GNP − I +
d(qaK)

dt
= GDP + rAf − I +

d(qaK)

dt
(by (15.30))

= C +NX + rAf +
d(qaK)

dt
(by (15.29))

= C + Ȧf +
d(qaK)

dt
(by (15.28))

= C + Ȧ, (15.34)

where the last equality follows from (15.27)). This is consistent with the theoret-
ical definition of NNP as the level of consumption which would leave financial
wealth, A, unchanged.
From (15.34) we get

Ȧ = NNP − C ≡ Sn, (15.35)

where Sn is aggregate net saving. This is consistent with the standard definition
of aggregate gross saving as S ≡ GNP − C, since

Sn ≡ NNP − C = GNP −D − C (by (15.31))

≡ S −D.

Observe also that

S ≡ Sn +D = GNP − C = GDP + rAf − C (by (15.30))

= rAf +NX + I (by (15.29)) (15.36)

= Ȧf + I. (by (15.28) and (15.32))

So we end up with the national accounting relationship that the current account
surplus, Ȧf , is the same as the excess of saving over (domestic) investment, S−I.
Finally, in a steady state with Ȧ = 0 and d(qaK)/dt = 0, (15.27) gives Ȧf = 0.

Hence, by (15.28), we have
NX = −rAf (15.37)

in the steady state, so that (in this model without economic growth) net exports
exactly matches interest payments on net foreign debt, −Af .

15.1.4 Household behavior and financial wealth

As already mentioned, households are described as in the simple Blanchard OLG
framework with constant population, no retirement, no technical progress, and
no government sector. Hence, aggregate consumption at time t is

Ct = (ρ+ µ)(At +Ht), (15.38)
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where ρ (≥ 0) is the pure rate of time preference, and µ (> 0) denotes the
mortality rate (= the birth rate, since n = 0). Human wealth, Ht, is the present
discounted value of future labor income of those people who are alive at time t,
that is,

Ht =

∫ ∞
t

wτ L̄e
−(r+µ)(τ−t)dτ =

∫ ∞
t

w(Kτ , pM)L̄e−(r+µ)(τ−t)dτ , (15.39)

in view of (15.21). Inserting the solution for (Kτ )
∞
τ=t, found above, (15.39) gives

the solution for (Ht)
∞
t=0. Notice, that whatever the initial value of K, we know

from Section 15.1.2 above that Kt → K∗ for t → ∞. Applying this on (15.39)
we see that, for t→∞,

Ht →
∫ ∞
t

w(K∗, pM)L̄e−(r+µ)(τ−t)dτ =
w(K∗, pM)L̄

r + µ
≡ H∗. (15.40)

In view of perfect competition and that the production function F and the
capital installation cost function G are homogeneous of degree one, we know from
Hayashi’s theorem that “average q”= “marginal q”, i.e., qa = q (= ∂V ∗/∂Kt).

7

Therefore, by (15.27), national wealth can be written

A = qK + Af . (15.41)

Before finding how A moves over time, observe that

GDP = Ỹ − pMM − J = F (K, L̄,M)− FM(K, L̄,M)M − J
(by (15.5) and (15.13))

= FK(K, L̄,M)K + FL(K, L̄,M)L̄− J
= FK(K, L̄,M)K + wL̄− J, (by (15.12)) (15.42)

where the second equality comes from Euler’s Theorem.8

Wealth and consumption dynamics

The solution for the path of national wealth can now be found in the following
way. From (15.35) we have

Ȧ = Sn = NNP − C = GNP −D − C (by (15.35) and (15.31))

= GDP + rAf −D − C (by (15.30))

= FK(K, L̄,M)K + wL̄− J − (I − In) + rAf − C (by (15.42) and (15.32))

= FK(K, L̄,M)K + wL̄− J − (I − qK̇ − q̇K) + rAf − C
7See the previous chapter. Hayashi’s theorem is valid also when, as here, there are three (or

more) production factors.
8Euler’s Theorem says that if f(x1, ...., xn) is a continuously differentiable function and ho-

mogeneous of degree 1, then
∑n
i=1 xifi(x1, ...., xn) = f(x1, ...., xn). Here we apply this theorem

to F (K, L̄,M).
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by (15.33) and the fact that qa equals q. Continuing, we have

Ȧ = FK(K, L̄,M)K + wL̄− J + (q − 1)I − δqK + q̇K + rAf − C (by (15.9))

=
[
FK(K, L̄,M)− g(m(q)) +m(q)(q − 1)− δq + q̇

]
K + rAf + wL̄− C

(by (15.3) and (15.17))

= rqK + rAf + wL̄− C, (by the no-arbitrage condition (15.19))

= rA+ wL̄− C. (by (15.41)).

Comparing this with (15.27) we see that in equilibrium, NNP = r(qK+Af )+wL̄.
That is, national income is equal to the sum of income from financial wealth and
income from labor, as expected. The rate of return on financial wealth is given
from the world capital market, and the pay of labor is the market clearing real
wage in the SOE.
Using (15.21) and (15.38), our differential equation for financial wealth can

be written
Ȧt = rAt + w(Kt, pM)L̄− (ρ+ µ)(At +Ht),

that is,
Ȧt = (r − ρ− µ)At + w(Kt, pM)L̄− (ρ+ µ)Ht. (15.43)

Since initial national wealth, A0, is historically given, and the paths of Kt and
Ht have already been determined, this differential equation determines uniquely
the path of national wealth, At.
Suppose

ρ+ µ > r, (15.44)

that is, we are not in the case of “very low impatience”.9 Then (15.43) implies
stability of At so that, for t→∞,

At →
w(K∗, pM)L̄− (ρ+ µ)H∗

ρ+ µ− r =
(r − ρ)H∗

ρ+ µ− r =
(r − ρ)w(K∗, pM)L̄

(ρ+ µ− r)(r + µ)
≡ A∗,

(15.45)
where we have used (15.40).
Finally, given the solution for Ht and At, (15.38) shows the solution for Ct.

When the stability condition (15.44) holds, we have, for t→∞,

Ct → (ρ+ µ)(A∗ +H∗) = (ρ+ µ)
µw(K∗, pM)L̄

(ρ+ µ− r)(r + µ)
≡ C∗. (15.46)

9Otherwise, i.e., if ρ ≤ r − p, no steady state would exist (see (15.46) below)) and the SOE
would grow large in the long run. Then the world market interest rate r could no longer be
considered independent of what happens in this economy.
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Given the stability condition (15.44), the steady-state value of national wealth
in (15.45) is positive, if and only if r − µ < ρ < r. This is the case of “medium
impatience”where our SOE has a degree of impatience, ρ, that is not violently
different from that of the “average country”in the world economy.10

If on the other hand our SOE is very impatient (ρ > r), then, even supposing
that initial national wealth is positive, so that interest income is positive, the
economy consumes more than it earns so that net saving is negative and national
wealth decreases over time. Indeed, we know from the Blanchard model that the
change in aggregate consumption per time unit is given by

Ċt = (r − ρ)Ct − µ(ρ+ µ)At,

so that, with ρ > r, we get Ċt < 0, at least as long as At ≥ 0. The economy
ends up with negative national wealth in the long run, as shown by (15.45). This
entails a net foreign debt over and above the market value, q∗K∗, of the firms:

−A∗f = q∗K∗ − A∗ = q∗K∗ − (r − ρ)H∗

ρ+ µ− r > q∗K∗. (15.47)

This is theoretically possible in view of the fact that the economy still has its
human wealth, H, as a source of income. Indeed, as long as (15.44) holds, a
steady state with A∗ +H∗ > 0 exists, as indicated by (15.46).
What (15.47) shows is that a very impatient country asymptotically mortgages

all of its physical capital and part of its human capital. This is a counterfactual
prediction, and below we return to the question why such an outcome is not likely
to occur in practice.

Intertemporal interpretation of current account movements

Finally, the level of net exports is

NX = Ỹ − pMM − J − I − C (by (15.29) and (15.5))

= FK(K, L̄,M)K + wL̄− J − I − C (by (15.42))

= Ȧ− In − rAf . (by the third row in the derivation of Ȧ above)

In steady state, Ȧ = 0 = In, hence,

NX∗ = −rA∗f (15.48)

= −r
[
q∗K∗ − (r − ρ)w(K∗, pM)L̄

(ρ+ µ− r)(r + µ)

]
. (from (15.47))

10If all countries can be described by the simple Blanchard model, then the interest rate r
in the world market is somewhat larger than the pure rate of time preference of the “average
country”, cf. Chapter 12.
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This determines the long-run level of net exports as being equal to the interest
payments on net foreign debt, D ≡ −Af , so that in the steady state, the current
account deficit, rD−NX, is zero. As expected, the economy remains solvent. In
fact, the consumption function (15.38) of the Blanchard model is derived under
the constraint that solvency, through a NPG condition on the long-run path of
financial wealth (or debt), is satisfied.
Whatever the size relation between ρ and r, it is not necessary for equilibrium

that net foreign debt is zero in the long run. Necessary in this model is that in the
long run net foreign debt is constant, i.e., that the current account is ultimately
zero. Even this condition, however, is only necessary because the model has
ignored economic growth. With economic growth, the SOE can have a permanent
current account deficit and thus permanently increasing foreign D and yet remain
solvent forever. What is in the long run needed, however, is that the foreign debt
does not grow faster than GDP. As we saw in Chapter 13, this condition will be
satisfied if net exports as a fraction of GDP are suffi cient to cover the growth-
corrected interest payments on the debt. (This analysis ignores that the scope for
writing enforceable international credit contracts is somewhat limited and so, in
practice, there is likely to be an upper bound on the debt-income ratio acceptable
to the lenders. Such a bound is in fact apt to be operative well before the foreign
debt moves beyond the value of the capital stock in the economy.)

Overall effect of an oil price shock

Returning to the model, without economic growth, analyzed in detail above, let
us summarize. An oil price shock such that pM shifts to a higher (constant) level
implies a lower equilibrium real wage, wt = w(Kt, pM), both on impact and in
the longer run. The impact effect comes from lower input of oil, hence a lower
marginal product of labor, cf. (15.21). This implies, on impact, a fall in Ht,
see (15.39), and therefore also in Ct, see (15.38). In addition, as was shown in
Section 15.1.2, Kt is gradually reduced over time and this decreases output and
the marginal product of labor further. As a result the long-run values of H and
A become lower than before, and so does the long-run value of C. Whether in
the long run net foreign assets, A∗f , and net exports, NX

∗, become lower or not
we cannot know, because the fall in national wealth, A∗, may, but need not, be
larger than the fall in the capital stock, K∗.
To summarize: The overall effect of an adverse oil price shock is an economic

contraction. If the model were extended by including short-term Keynesian de-
mand effects, arising from the purchasing power of consumers being undermined
by a sudden increase in the general price level, then the economic contraction
may become more severe, leading to a pronounced recession.
Going further outside the model we could imagine that trade unions, by de-
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manding compensation for price increases, resist the real wage decrease required
for unchanged employment, when the oil price rises. As a result unemployment
tends to go up. If in addition the wage-price spiral is accommodated by expan-
sionary monetary policy, as after the first oil price shock in 1973-74, then simul-
taneous high inflation and low output may arise. This is exactly the phenomenon
of stagflation that we saw in the aftermath of the first oil price shock.

15.1.5 General aspects of modeling a small open economy

Let us return to the case of a very impatient society (ρ > r) and focus on (15.45)
and (15.47). If the mortality rate µ is very small, the model predicts that the
country asymptotically mortgages, in addition to its physical capital, all its hu-
man capital. The long-run prospect could be a very low consumption level.
Interestingly, the Ramsey model as well as the Barro model with an operative
bequest motive, are examples of models with a very low µ since, effectively, they
have µ = 0. Hence, a Ramsey-style model for a small open economy (ignor-
ing technical progress) with ρ > r will satisfy the condition (15.44) and entail
At → −H∗, implying de-cumulation forever, that is, Ct → 0, by (15.46. The
fact that Ramsey-style models can predict such outcomes, is a warning that such
models are in some contexts of limited value.
If, on the other hand, ρ < r, then the Ramsey model implies low consumption

and high saving. Indeed, the country will forever accumulate financial claims
on the rest of the world. This is because, in the Ramsey model the Keynes-
Ramsey rule holds not only at the individual level, but also at the aggregate
level. Eventually, the country becomes a large economy and begins to affect the
world interest rate, contradicting the assumption that it is a small open economy.
To avoid these extreme outcomes, when applying the Ramsey model for study-

ing a small open economy, one has to assume ρ = r. But this is an unwelcome
knife-edge condition, a parameter restriction which is very unlikely to hold in
reality.
It is otherwise with the Blanchard OLG model, where the generation replace-

ment effect implies that the Keynes-Ramsey rule does not hold at the aggregate
level. Therefore, the OLG model for a small open economy needs no knife-edge
condition on parameters. The model works well whatever the size relation be-
tween ρ and r, as long as the stability condition (15.44) is satisfied. Or, to be
more precise: the Blanchard model works well in the case ρ < r; in the oppo-
site case, where ρ > r, the model works at least better than the Ramsey model,
because it never implies that Ct → 0 in the long run.
It should be admitted, however, that in the case of a very impatient coun-

try (ρ > r), even the OLG model implies a counterfactual prediction. What
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(15.47) tells us is that the impatient small open economy in a sense asymptot-
ically mortgages all of its physical capital and part of its human capital. The
OLG model predicts this will happen, if financial markets are perfect, and if the
political sphere does not intervene. It certainly seems unlikely that an economic
development, ending up with negative national wealth, is going to be observed in
practice. There are two - complementary - explanations of this.
First, the international credit market is far from perfect. Because a full-scale

supranational legal authority comparable with domestic courts is lacking, credit
default risk in international lending is generally a more serious problem than in
domestic lending. Physical capital can to some extent be used as a collateral
on foreign loans, while human wealth is not suitable. Human wealth cannot be
repossessed. This implies a constraint on the ability to borrow.11 And lenders’
risk perceptions depend on the level of debt.
Second, long before all the physical capital of an impatient country is mort-

gaged or have directly become owned by foreigners, the government presumably
would intervene. In fear of losing national independence, it would use its political
power to end the pawning of economic resources to foreigners.
This is a reminder, that we should not forget that the economic sphere of

a society is just one side of the society. Politics as well as culture and religion
are other sides, and the economic outcome may be conditioned on these social
factors, interaction of all these spheres determines the final outcome.

15.2 Housing and the macroeconomy

The housing market is from a macroeconomic point of view important for sev-
eral reasons: a) housing makes up a substantial proportion of the consumption
budget; b) housing wealth makes up a substantial part of private wealth of a
major fraction of the population; c) like firms’fixed capital investment, house-
hold’s residential investment is a time-consuming activity involving adjustment
costs; d) fluctuations in house prices and in construction activity are considerable
and constitute important factors in business cycles. The analysis will be based
on a simple dynamic partial equilibrium model with rising marginal construction
costs.
Let time be continuous. Let Ht denote the aggregate stock of houses at time

11We have been speaking as if domestic residents own the physical capital stock in the country,
but have obtained part or all the financing of the stock by issuing bonds to foreigners. The
results would not change if we allowed for foreign direct investment. Then foreigners would
themselves own part of the physical capital rather than bonds. In such a context a similar
constraint on foreign investment is likely to arise, since a foreigner can buy a factory or the
shares issued by a firm, but it is diffi cult to buy someone else’s stream of future labour income.
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t and St the aggregate flow of housing services at time t. Ignoring heterogeneity,
the stock of houses can be measured in terms of m2 floor area at a given point in
time. For convenience we will talk about the stock as a certain number of houses
of a standardized size. The housing services at time t constitute a flow, thereby
being measured per time unit, say per year: so and so many square meter-months
are at the disposal for utilization (accommodation) for the public during the year.
The two concepts are related through

St = αHt, α > 0, (15.49)

where α is the rate of utilization of the stock. We assume α is a constant which
only depends on the measurement unit for housing services. If these are measured
in square meter-months, α equals the number of square meters of a normal-sized
house times 12.

15.2.1 The housing service market and the house market

There are two goods, houses and housing services, and therefore also two markets
and two prices:

pt = the (real) price of houses at time t,

Rt = the (real) price of housing services at time t.

The price Rt of housing services is known as the rental rate at the housing market.
Buying a housing service means renting the apartment or the house for a certain
period. Or, if we consider an owner-occupied house (or apartment), Rt is the
imputed rental rate, that is, the owner’s opportunity cost of occupying the house.
The prices Rt and pt are measured in real terms, or more precisely, they are
deflated by the consumer price index. We assume perfect competition in both
markets.

The market for housing services

In the short run the stock of houses is historically given. It takes time to change
Ht. Owing to the long life of houses, investment in new houses per year (house
building) tends to be a small proportion of the available stock of houses (about
3 percent, say).
So also the supply St of housing services is given in the short run. Suppose

the aggregate demand for housing services at time t is

Sdt = D(Rt, A, PV (wL)), D1 < 0, D2 > 0, D3 > 0, (15.50)
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where A is aggregate financial wealth and PV (wL) is human wealth, i.e., the
present discounted value of expected future labor income after tax for those alive.
In our partial equilibrium framework, we consider A and PV (wL) as exogenous
and as approximately constant (i.e., economic growth is ignored). We may thus
think of A and PV (wL) as shift parameters.12 Additional variables could be
considered as determinants of the demand for housing services, population size
for instance.
That demand is likely to depend negatively on the rental rate reflects that

both the substitution effect and the income effect of a higher rental rate are
negative.
The market for housing services is depicted in Fig. 15.6. We can get a

characterization of the equilibrium rental rate in the following way. In equilibrium
at time t, Sdt = St, that is,

D(Rt, A, PV (wL)) = αHt. (15.51)

This equation determines Rt as an implicit function, Rt = R̃(Ht, A, PV (wL)),
of Ht, A, and PV (wL). By implicit differentiation in (15.51) we find the partial
derivatives of this function, R̃H = α/DR < 0, R̃A = −DA/DS > 0, and R̃PW

= −DPV /DR > 0. Since A and PV (wL) are assumed constant, we suppress
them as arguments and define R(Ht) ≡ R̃(Ht, A, PV (wL)), with derivative R′

= α/DR < 0. The supply of housing services is inelastic in the short run and the
market clearing rental rate immediately moves up and down as the demand curve
shifts rightward or leftward.
From now on our time unit will be one year and we define one unit of housing

service per year to mean disposal of a house of standard size one year. By this,
α in (15.49) equals 1.

The market for houses

Because a house is a durable good, it is an asset. This asset constitutes a sub-
stantial share of wealth for a major fraction of the population. The supply of the
asset can change only slowly. Considering the asset motive associated with hous-
ing, a series of aspects are central. We will assume that there is an exogenous and

12A simple microeconomic “rationale”behind the aggregate demand function (15.50) is ob-
tained by assuming there is a representative household with instantaneous utility function
u(ht, ct) = ln(hγt c

1−γ
t ), where 0 < γ < 1 and ht is consumption of housing services at time

t while ct is non-housing consumption. Then the share of housing expenditures in the total
instantaneous consumption budget is a constant, γ, which is broadly in line with empirical
evidence for the US (Davis and Heathcote, 2005). In turn, according to standard neoclassi-
cal thinking, the consumption budget tends to be roughly proportional to total wealth of the
household, cf. Chapter 9.
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Figure 15.6: Supply and demand in the market for housing services at time t.

constant risk-free real interest rate r > 0. This is a standard assumption in partial
equilibrium analysis. If the economy is a small open economy, the exogeneity of
r (if not constancy) is warranted even in general equilibrium analysis.
Suppose houses depreciate physically at a constant rate δ > 0. Suppose there

is a constant tax rate τR ∈ [0, 1) applied to rental income (possibly imputed)
after allowance for depreciation. In case of an owner-occupied house the owner
must pay the tax τR(Rt − δpt) out of the imputed income (Rt − δpt) per house
per year. Assume further there is a constant property tax (real estate tax) τ p ≥ 0
applied to the market value of houses. Finally, suppose that a constant tax rate
τ r ∈ [0, 1) applies to interest income. There is symmetry in the sense that if you
are a debtor and have negative interest income, then the tax acts as a rebate. We
assume capital gains are not taxed and we ignore all complications arising from
the fact that most countries have tax systems based on nominal income rather
than real income. In a low-inflation world this limitation may not be serious.13

Suppose the user of housing services value these services independently of
whether he/she owns or rent. Assume further there are no credit market imper-
fections, no transaction costs, and no uncertainty. Under these circumstances the
price of houses, pt, will adjust so that the expected after-tax rate of return on
owning a house equals the after-tax rate of return on a safe bond, that is,

(1− τR)(R(Ht)− δpt)− τ ppt + ṗet
pt

= (1− τ r)r, (15.52)

where ṗet denotes the expected capital gain per time unit (so far ṗ
e
t is just a

commonly held subjective expectation). This equation is a no-arbitrage condition.

13Note, however, that if all capital income should be taxed at the same rate, capital gains
should also be taxed at the rate τ r, and τR should equal τ r. In Denmark, in the early 2000s,
the government replaced the rental value tax, τR, on owner-occupied houses by a lift in the
property tax, τp. Since then, due to a nominal “tax freeze”, τp has been gradually decreasing
in real terms.
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For given ṗet we find the equilibrium price

pt =
(1− τR)R(Ht) + ṗet

(1− τ r)r + (1− τR)δ + τ p
.

Thus pt depends on Ht, ṗ
e
t , r, and tax rates in the following way:

∂pt
∂Ht

=
(1− τR)R′(Ht)

(1− τ r)r + (1− τR)δ + τ p
< 0,

∂pt
∂ṗet

=
1

(1− τ r)r + (1− τR)δ + τ p
> 0,

∂pt
∂τR

=
− [(1− τ r)r + τ p]R(Ht) + δṗet
[(1− τ r)r + (1− τR)δ + τ p]

2 S 0 for ṗet S
[(1− τ r)r + τ p]R(Ht)

δ
,

∂pt
∂τ r

=
[(1− τR)R(Ht) + ṗet ] r

[(1− τ r)r + (1− τR)δ + τ p]
2 > 0,

∂pt
∂τ p

= − (1− τR)R(Ht) + ṗet
[(1− τ r)r + (1− τR)δ + τ p]

2 < 0,

∂pt
∂r

= − [(1− τR)R(Ht) + ṗet ] (1− τ r)
[(1− τ r)r + (1− τR)δ + τ p]

2 < 0,

where the sign of the last three derivatives are conditional on ṗet being nonnegative
or at least not “too negative”.
Note that a higher expected increase in pt, ṗet , implies a higher house price

pt. Over time this feeds back and may confirm and sustain the expectation, thus
generating a further rise in pt. Like other assets, a house is thus a good with the
property that price increases, if they are expected to continue, make the good
more attractive to buyers than otherwise.

15.2.2 Construction activity

It takes time for the stock H to change. Marginal construction costs are rising
because it is costly to adjust the stock of houses abruptly (it takes time to plan and
execute construction activity, there are capacity constraints, “haste makes waste”
etc.). We will model these adjustment costs by considering house construction
as a two-stage process. That is, we imagine that the representative construction
firm has two separate divisions, D1 and D2. In the first stage, division D1
produces “intermediate goods for residential construction”at minimum costs and
one using these goods to set up new houses. The intermediate goods for residential
construction, I, are produced under constant returns to scale using capital and
labor in the same proportion as that applied in the production of other goods
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Figure 15.7: The number of new houses as a function of residential investment (for
given H = H̄).

that are part of the all-purpose aggregate output Y. By definition, I ≥ 0.14 The
uses of aggregate output (value added) are

Y = C +G+ IK + I +NX,

where C is private consumption, G public spending on goods and services, IK
investment in business fixed capital (equipment etc.), I investment in interme-
diates for residential construction (in brief residential investment), and NX net
exports, all deflated by the consumer price index and measured per time unit.
At the second stage division D2 of the construction firm instantly transforms

the intermediate goods for residential construction into new houses. The key
assumption is that the rate at which a unit increase in I per time unit is trans-
formed into new houses becomes smaller and smaller the higher is I. That is, we
assume there is a transformation function T which is strictly concave in the level
of construction activity per time unit, I (residential investment).
So, letting B denote the aggregate amount of new houses built per time unit

(B for “building”), we assume

B = Ḣ + δH = T (I,H), where

T (0, H) = 0, TI(0, H) = 1, TI > 0, TII < 0, TH ≥ 0. (15.53)

The hypothesis is that there are control, coordination, and communication prob-
lems implying diseconomies of scale in the assembling process, hence implying
TII(I,H) < 0. This process is marked by less routine, hence more dependent on

14For notational simplicity we denote the residential investment flow I, rather than, for
instance, IH .
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scarce managerial resources; these are fixed production factors while construction
activity fluctuates considerably. Moreover, the pre-determined stock H, which is
exogenous to the construction firm, may matter for the ease at which the interme-
diate goods I, are transformed into new houses. The larger is H, the larger is the
accumulated experience (learning). Hence, for a larger H, the productivity of a
given I tends to be higher.15 In a long-run perspective, the increasing scarcity of
available land may hamper the productivity of the intermediate goods, for given
I and H. This is ignored in our medium-run perspective. Moreover, construction
technology improves over time and the limited availability of land can be dealt
with by building taller structures.
For fixed H = H̄, Fig. 15.7 shows the graph of B as a function of I. The

assumptions TI(0, H̄) = 1 and TII < 0 imply TI(I, H̄) < 1 for I > 0 as visualized
in the figure. From the perspective of Chapter 14, we may interpret the strictly
concave transformation function T (I, H̄) as being equal to I − G(I, H̄), where
G(I, H̄) reflects strictly convex “waste due to haste”− errors and mistakes in the
assembling process, due to limited management and communication resources. In
Chapter 14 these costs were associated with the installation of firms’fixed capital
and acted as a reduction in the firms’output available for sale. In residential
construction analogue costs are assumed present and act as a reduction in the
productivity of the intermediate goods in the construction process.16 fluctuations
in house prices and in construction activity
The individual construction firm takes the current economy-wide H = H̄ as

exogenous. The gross revenue of the firm is pB and variable costs are 1·I. Given
the market price p, the firm maximizes profit:

max
I

Π = pB − I s.t. B = T (I, H̄) and

I ≥ 0.

Inserting B = T (I, H̄), we find that an interior solution satisfies

dΠ

dI
= pTI(I, H̄)− 1 = 0. (15.54)

In view of TI(I, H̄) < 1 for I > 0, this equation has a solution I > 0 only if
p > 1. For p ≤ 1, we get the corner solution I = 0. Implicitly solving (15.54)

15It would be more logical to use
∫ t
−∞ Isds as an indicator of accumulated learning. It is

considerably simpler to use H, however. At least if the model were embedded in an economic
growth context where H is almost never decreasing, this simplified modelling of the learning
effect would seem an acceptable first approximation.
16The phenomenon is known as a Penrose effect, after the American economist Edith Penrose

(1914-1996).
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Figure 15.8: Construction activity (relative to the housing stock) as a function of the
market price of houses.

for construction activity, I, gives I = M(p, H̄) for p > 1, where, by implicit
differentiation in (15.54), Mp = −1/(p2TII) > 0.
The representative construction firm thus supplies new houses up to the point

where the increasing marginal costs are equal to the current house price p.17

Special case

From now we assume the transformation function T is homogeneous of degree
one. Thus, B = T (I/H, 1)H. By Euler’s theorem, TI(I,H) is homogeneous of
degree 0..So (15.54) can be written

TI

(
It
Ht

, 1

)
=

1

p
.

This first-order condition defines I/H as an implicit function, I/H = m(p), of p
such that

It = m(pt)Ht, m(1) = 0, m′ = − 1

p2TII (It/Ht, 1)
> 0.

A construction activity function m with this property is shown in Fig. 15.8.
Like Tobin’s q, the house price p is the market value of an asset whose supply

changes only slowly. As is the case for firms’fixed capital there are strictly convex
stock adjustment costs, I−namely the construction costs. As a result the stock
of houses does not change instantaneously if for instance p changes. But the
flow variable, residential investment, responds to changes in p in a similar way as
firm’s investment in fixed capital responds to changes in Tobin’s q. Moreover, in
line with Tobin’s q being defined as the ratio V/K, where V is the market value
of the firms and K is the book value of their capital stock, p can be seen as the
ratio p ·H/(pI ·H) where in the above analysis pI = 1.

17Details about how to come from the transformation function T (I,H) to the marginal cost
schedule are explained in Appendix B.
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15.2.3 Equilibrium dynamics

To determine the evolution over time in H and p, we derive two coupled dif-
ferential equations in these two variables. When the transformation function
T is homogeneous of degree one, (15.53) implies at the aggregate level Ḣt =
(T (It/Ht, 1)− δ)Ht. Substituting It = m(pt)Ht into this gives

Ḣt = (T (m(pt), 1)− δ)Ht ≡ (b(pt)− δ)Ht, (15.55)

where we have implicitly defined the “construction function” in intensive form,
Bt/Ht = b(pt), and where b(1) = T (m(1), 1) = T (0, 1) = 0, b′ = TIm

′ > 0.
Assuming perfect foresight, we have ṗet = ṗt for all t. Then we can write

(15.52) on the standard form for a first-order differential equation:

ṗt = [(1− τ r)r + (1− τR)δ + τ p] pt − (1− τR)R(Ht), (15.56)

where R′ < 0.We have hereby obtained a dynamic system inH and p, the coupled
differential equations (15.55) and (15.56). The corresponding phase diagram is
shown in Fig. 15.9.
We have Ḣ = 0 for b(p) = δ > 0; the unique p satisfying this equation is

the steady state value p∗. Thus the Ḣ = 0 locus is horizontal. The direction of
movement for H is positive if p > p∗ and negative if p < p∗. Since b(1) = 0 and
b′ > 0, we have p∗ > 1.
We have ṗ = 0 for p = (1 − τR)R(H)/ [(1− τ r)r + (1− τR)δ + τ p] . Since

R′(H) < 0, the ṗ = 0 locus has negative slope. The unique steady state value of
H is denoted H∗. To the right of the ṗ = 0 locus, p is rising, and to the left p
is falling. The directions of movement of H and p in the different regions of the
phase plane are shown in Fig. 15.9.
The unique steady state is seen to be a saddle point with house stock H∗

and house price p∗. The initial housing stock, H0, is predetermined. Hence,
at time t = 0, the economic system must be somewhere on the vertical line
H = H0. The question is whether there can be asset price bubbles in the system.
An asset price bubble is present if the market value of the asset for some time
systematically exceeds its fundamental value (the present value of the expected
future services or dividends from the asset). Agents might be willing to buy at a
price above the fundamental value if they expect the price will rise further in the
future. The divergent paths ultimately moving North-East in the phase diagram
are actually, by construction, consistent with the no-arbitrage condition and are
thus candidates for asset price bubbles generated by self-fulfilling expectations.
The fact that houses have clearly defined reproduction costs, however, implies a
ceiling on the ultimate level of p since potential buyers of old houses have the
alternative of initiating construction at “normal pace”of a new house at the total
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Figure 15.9: Phase diagram of aggregate construction activity.

cost p∗. Then, by backward induction, these explosive price paths will not under
rational expectations get started in the first place. Given rational expectations,
these paths - and therefore “rational bubbles” - can thus be ruled out.18 This
leaves us with the converging path as the unique solution to the model. At time
0 the residential construction sector will be at the point A in the diagram and
then it will move along the saddle path and after some time the housing stock
and the house price settle down at the steady state E.
In this model (without economic growth) the steady-state price level, p∗, of

houses equal the marginal building costs when building activity exactly matches
the physical wearing down of houses so that the stock of houses is stationary. Due
to the positive relationship between building productivity and H, the marginal
building costs are unchanged in the medium run. The steady-state level of H is
at the level required for the rental rate R(H) to yield an after-tax rate of return
on owning a house equal to (1 − τ r)r. This level of H is H∗. The corresponding
level of R is R∗ = R(H∗), which is that level at which the demand for housing
services equals the steady-state supply, i.e., D(R∗, A, PV (wl)) = S∗ = H∗.

Effect of a fall in the property tax

Suppose the residential construction sector has been in the steady state E in Fig.
15.10 until time t1. Then there is an unanticipated downward shift in the property
tax τ p to a new constant level τ ′p rightly expected to last forever in the future.

18In the last section we briefly return to the issue of housing bubbles.
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Figure 15.10: Response to a fall in the property tax.

The resulting evolution of the system is shown in the figure. The new steady state
is called E’. The new medium-run level of H is H∗′ > H∗, because R′(H) < 0.
On impact, p jumps up to the point where the vertical line H = H

∗
crosses the

new (downward-sloping) saddle path. The intuition is that the after-tax return
on owning a house has been increased. Hence, by arbitrage the market price
p rises to a level such that the after-tax rate of return on houses is as before,
namely equal to (1− τ r)r. After t1, owing to the high p relative to the unchanged
building cost schedule, H increases gradually and p falls gradually (due to R
falling with the rising H). This continues until the new steady state is reached
with unchanged p∗, but higher H.

The dichotomy between the short and medium run

There is a dichotomy between the price and quantity adjustment in the short and
medium run:

1. In the short run, H, hence also the supply of housing services, is given. The
rental rate R as well as the house price p immediately shifts up (down) if
the demand for housing services shifts up (down).

2. In the medium run (i.e., without new disturbances), it isH that adjusts and
does so gradually. The adjustment of H is in a direction indicated by the
sign of the initial price difference, p − p∗, which in turn reflects the initial
level of the demand curve. On the other hand, the house price, p, converges
towards the cost-determined level, p∗. This price level is constant as long as
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technical progress in the production of intermediate goods for construction
follows the general trend in the economy.

15.2.4 Discussion

In many countries a part of the housing market is under some kind of rent control.
Then there is, of course, rationing on the demand side of the housing market. It
may still be possible to use the model in a modified version since the part of
the housing market, which is not under regulation and therefore has a market
determined price, p, usually includes the new build activity.
We have carried out partial equilibrium analysis. In a general equilibrium

approach one could base the demand function D on household optimization with
an explicit distinction between durable consumption (housing demand) and non-
durable consumption in the problem. Moreover, a general equilibrium approach
would take into account the possible feedbacks on the financial wealth, A, from
changes in H and possibly also p.19 Allowing economic growth with rising wages
in the model would also be preferable, so that a steady state with a growing
housing stock could be considered (a growing housing stock at least in terms of
quality-adjusted housing units). A more complete analysis would also include
land prices and ground rent.

The issue of housing bubbles After a decade of sharply rising house prices,
the US experienced between 2006 and 2009 a fall in house prices of about 30%
(Shiller, ), in Denmark about 25% (Economic Council, ). We argued briefly
that in the present model with fully rational expectations, housing bubbles can
be ruled out. Let us here go a little more into detail about the concepts involved.
The question is whether there can exist house price bubbles in the system. A
house price bubble, also known as a speculative housing bubble, is present if the
market value, pt, of houses for some time systematically exceeds the fundamental
value, that is, if pt − p̂t > 0, where p̂t is the fundamental value (the present
value of the expected future services or dividends from the asset). The latter
can be found as the solution to the differential equation (15.56), implied by the

19Feedbacks from changes in p are more intricate than one might imagine at first glance. In
a representative agent model everybody is an average citizen and owns the house she lives in.
So in a sense nobody is better off by a rise in house prices. In a model with heterogeneous
agents, those who own more houses than they use themselves gain by a rise in house prices.
And those in the opposite situation loose. Whether and how aggregate consumption is affected
depends on differences in the marginal propensity to consume and on the role of collaterals in
credit markets. In two papers by Case, Quigley, and Shiller (2005, 2011) empirical evidence of
a positive relationship between consumption and housing wealth is furnished.
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no-arbitrage equation (15.52), assuming perfect foresight and absence of housing
bubbles (see Appendix C).
Our model assumes rational expectations which in the absence of stochastic el-

ements in the model amounts to perfect foresight. What we ruled out by referring
to the well-defined reproduction costs of houses was that a rational deterministic
asset price bubble could occur in the system. A rational asset price bubble is
an asset price bubble that is consistent with the relevant no-arbitrage condition,
here (15.52), under model-consistent expectations. If stochastic elements, and
therefore uncertainty, is added to the present model, a rational housing bubble
(which would in this case be stochastic) can still be ruled out (the argument is
similar to the one given for the deterministic case).
Including land and unique building sites with specific amenity values into the

model will, however, make the argument against rational bubbles less compelling
(see, e.g., Kocherlakota, 2011). Moreover, there are good reasons to believe that
in the real world expectations are far from always fully rational. The behavioral
finance literature has suggested an alternative theories of speculative bubbles
where market psychology (herding, fads, etc.) plays a key role. We postpone a
more detailed discussion of asset price bubbles to chapters 25 and 27.

15.3 Literature notes

(incomplete)
The Penrose effect is so named after a book on management by Edith Penrose

(1959). Uzawa (1969) explores the ideas in different economic contexts.
Uzawa, H., 1969, explores the role of the Penrose effect
Buiter, Housing wealth isn’t wealth, WP, London School of Economics, 20-

07-2008.
Campbell and Cocco, 2007.
Attanasio et al., 2009.

15.4 Appendix

A. Complementary inputs

In Section 15.1.2 we claimed, without proof, certain properties of the oil demand
function and the marginal products of capital and labor in general equilibrium,
given firms’ profit maximization subject to a three-factor production function
with inputs that exhibit direct complementarity. Here, we use the attributes of
the production function F , including (15.2), and the first-order conditions of the
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representative firm, to derive the claimed signs of the partial derivatives of the
functions M(K, pM), w(K, pM), and MPK(K, pM).
First, taking the total derivative w.r.t. K and M in (15.13) gives

FMKdK + FMMdM = dpM .

Hence, ∂M/∂K = −FMK/FMM > 0, and ∂M/∂pM = 1/FMM < 0.

Second, taking the total derivative w.r.t. K and pM in (15.12) gives

dw = FLKdK + FLM(MKdK +MpMdpM).

Hence, ∂w/∂K = FLK + FLMMK > 0, and ∂w/∂pM = FLMMpM < 0.

Third, ∂MPK/∂pM = FKMMpM < 0, since FKM > 0 and MpM < 0. As to
the sign of ∂MPK/∂K, observe that

∂MPK/∂K = FKK + FKMMK = FKK + FKM(−FMK/FMM)

=
1

FMM

(FKKFMM − FKM 2) < 0,

where the inequality follows from FMM < 0 and the lemma below.

Lemma. Let f(x1, x2,x3) be some arbitrary concave C2-function defined on R3
+.

Assume fii < 0 for i = 1, 2, 3, and fij > 0, i 6= j. Then, concavity of f implies
that

fiifjj − fij2 > 0 for i 6= j. (15.57)

Proof. By the general theorem on concave C2-functions (see Math Tools), f
satisfies

f11 ≤ 0, f11f22 − f12
2 ≥ 0 and

f11(f22f33 − f23
2)− f12(f21f33 − f23f31) + f13(f21f32 − f22f31) ≤ 0 (15.58)

in the interior of R3
+. Combined with the stated assumptions on f , (15.58) implies

(15.57) with i = 2, j = 3. In view of symmetry, the numbering of the arguments
of f is arbitrary. So (15.57) also holds with i = 1, j = 3 as well as i = 1, j = 2. �

Since F is neoclassical and has non-increasing returns to scale, F is concave.
Then, using the direct complementarity assumption, (15.2), the lemma implies
FKKFMM − FKM 2 > 0, which was to be shown.
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Figure 15.11: Marginal costs in house construction (housing stock given).

B. Interpreting construction behavior in a marginal cost framework

We may look at the construction activity of division D2 of the representative
construction firm from the point of view of increasing marginal costs. Indeed,
the total variable costs, T VC, associated with the construction of B (= T (I,H))
new houses per time unit, given the economy-wide stock H, are T VC = I. These
total variable costs are an implicit function of B and H through the equation
B = T (I,H) where TI > 0, i.e., I = T VC(B,H). There is also a fixed produc-
tion factor, namely managerial resources. These are pre-determined in the short
run. This is what in the short run gives rise to increasing marginal costs in the
construction activity.

CLAIM 1 The short-run marginal costs,MC, of the representative construction
firm are increasing.

Proof. By definition, MC = ∂I/∂B = ∂T VC(B,H)/∂B. Taking the total dif-
ferential on both sides of T (I,H) = B gives TIdI + THdH = dB so that MC
= ∂I/∂B = 1/TI(I,H) > 0, from which follows ∂MC/∂B = (∂MC/∂I)(∂I/∂B)
= −TII(I,H)/TI(I,H)3 > 0, since TI > 0 and TII < 0. �

The construction sector produces new houses up the point whereMC = p, cf.
Fig. 15.11.

CLAIM 2 The short-run marginal cost, c, of building “the first”new house is
approximately 1.

Proof. MC = p gives 1/TI(I,H) = p, which is the same as the first-order
condition found in the text. The cost of building ∆B = 1, when B = 0, is then
c ≈ [1/TI(0, H)] ·∆B = 1 ·∆B = 1 for ∆B = 1, where we have used (15.53). �
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C. Solving the no-arbitrage equation for pt in the absence of house price
bubbles

By definition, in the absence of housing bubbles the market price of a house equals
its fundamental value, i.e., the present value of expected (possibly imputed) after-
tax rental income from owning the house. Denoting the fundamental value p̂t, we
thus have

p̂t = (1− τR)

∫ ∞
t

R(Hs)e
−(τp+δ)(s−t)eτRδ(s−t)e−(1−τr)r(s−t)ds, (15.59)

= (1− τR)

∫ ∞
t

R(Hs)e
−[(1−τR)δ+τp+(1−τr)r](s−t)ds,

where τ p + δ is the rate of “leakage”from the investment in the house due to the
property tax and wear and tear, τRδ is the tax allowance due to wear and tear,
and, finally, (1− τ r)r is the discount rate.
In the final sub-section we claimed that in the absence of housing bubbles, the

differential equation, (15.56), implied by the no-arbitrage equation (15.52) under
perfect foresight, has a solution pt equal to the fundamental value of the house,
i.e., pt = p̂t. To prove this, we write (15.56) on the standard form for a linear
differential equation,

ṗt + apt = −(1− τR)R(Ht), (15.60)

where
a ≡ − [(1− τ r)r + τ p + (1− τR)δ] < 0. (15.61)

The general solution to (15.60) is

pt = pt0e
−a(t−t0) − (1− τR)e−a(t−t0)

∫ t

t0

R(Hs)e
asds.

Multiplying through by ea(t−t0) gives

pte
a(t−t0) = pt0 − (1− τR)

∫ t

t0

R(Hs)e
asds.

Rearranging and letting t→∞, we get

pt0 = (1− τR)

∫ t

t0

R(Hs)e
asds+ lim

t→∞
pte

a(t−t0).

Inserting (15.61), replacing t by T and t0 by t, and comparing with (15.59), we
see that

pt = p̂t + lim
T→∞

pT e
−[(1−τr)r+τp+(1−τR)δ](T−t).
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The first term on the right-hand side is the fundamental value of the house at
time t and the second term on the right-hand side thus amounts to the difference
between the market price of the house and its fundamental value. By definition,
this difference represents a bubble. In the absence of a bubble, the difference is
nil and so the market price, pt, coincides with the fundamental value, as was to
be shown.
On the other hand, we see that a bubble being present requires that

lim
T→∞

pT e
−[(1−τr)r+τp+(1−τR)δ](T−t) > 0.

In turn, this requires that the house price is explosive in the sense of in the
medium run growing at a rate not less than (1− τ r)r + τ p + (1− τR)δ.

15.5 Exercises
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Chapter 16

Money in macroeconomics

Money buys goods and goods buy money; but goods do not buy goods.

−Robert W. Clower (1967).

Up to now we have put monetary issues aside. The implicit assumption has
been that the exchange of goods and services in the market economy can be
carried out without friction as mere intra- or intertemporal barter. This is, of
course, not realistic. At best it can provide an acceptable approximation to reality
only for a limited set of macroeconomic issues. We now turn to models in which
there is a demand for money. We thus turn to monetary theory, that is, the study
of causes and consequences of the fact that a large part of the exchange of goods
and services in the real world is mediated through the use of money.

16.1 What is money?

16.1.1 The concept of money

In economics money is defined as an asset (a store of value) which functions as a
generally accepted medium of exchange, i.e., it can be used directly to buy any
good offered for sale in the economy. A note of IOU (a bill of exchange) may
also be a medium of exchange, but it is not generally accepted and is therefore
not money.1 Moreover, the extent to which an IOU is acceptable in exchange
depends on the general state in the economy. In contrast, money is characterized
by being a fully liquid asset. An asset is fully liquid if it can be used directly,
instantly, and without any extra costs or restrictions to make payments.

1Generally accepted mediums of exchange are also called means of payment.
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Figure 16.1: No direct exchange possible. A medium of exchange, here good 2, solves
the problem (details in text).

Generally, liquidity should be conceived as a matter of degree so that an asset
has a higher or lower degree of liquidity depending on the extent to which it can
easily be exchanged for money. By “easily”we mean “immediately, conveniently,
and cheaply”. So an asset’s liquidity is the ease with which the asset can be
converted into money or be used directly for making payments. Where to draw the
line between “money”and “non-money assets”depends on what is appropriate for
the problem at hand. In the list below of different monetary aggregates (Section
16.2),M1 corresponds most closely to the traditional definition of money. Defined
as currency in circulation plus demand deposits held by the non-bank public in
commercial banks, M1 embraces all under “normal circumstances” fully liquid
assets in the hands of the non-bank public.

The reason that a market economy uses money is that money facilitates trade
enormously, thereby reducing transaction costs. Money helps an economy to avoid
the need for a “double coincidence of wants”. The classical way of illustrating
this is by the exchange triangle in Fig. 16.1. The individuals A, B, and C are
endowed with one unit of the goods 1, 3, and 2, respectively. But A, B, and C
want to consume 3, 2, and 1, respectively. Thus, no direct exchange is possible
between two individuals each wanting to consume the other’s good. There is
a lack of double coincidence of wants. The problem can be solved by indirect
exchange where A exchanges good 1 for good 2 with C and then, in the next
step, uses good 2 in an exchange for good 3 with B. Here good 2 serves as a
medium of exchange. If good 2 becomes widely used and accepted as a medium
of exchange, it is money. Extending the example to a situation with n goods,
we have that exchange without money (i.e., barter) requires n(n− 1)/2 markets
(“trading spots”). Exchange with money, in the form of modern “paper money”,
requires only n markets.
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16.1.2 Historical remarks

In the past, ordinary commodities, such as seashells, rice, cocoa, precious metals
etc., served as money. That is, commodities that were easily divisible, handy
to carry, immutable, and involved low costs of storage and transportation could
end up being used as money. This form of money is called commodity money.
Applying ordinary goods as a medium of exchange is costly, however, because
these goods have alternative uses. A more effi cient way to trade is by using
currency, i.e., coins and notes in circulation with little or no intrinsic value, or
pieces of paper, checks, representing claims on such currency. Regulation by a
central authority (the state or the central bank) has been of key importance in
bringing about this transition into the modern payment system.
Coins, notes, pieces of paper like checks, and electronic signals from smart

phones to accounts in a bank have no intrinsic value. Yet they may be generally
accepted media of exchange, in which case we refer to them as paper money. By
having these pieces of paper circulating and the real goods moving only once,
from initial producer to final consumer, the trading costs in terms of time and
effort are minimized.
In the industrialized countries these paper monies were in the last third of

the nineteenth century and until the outbreak of the First World War backed
through the gold standard. And under the Bretton-Woods agreement, 1947-71,
the currencies of the developed Western countries outside the United States were
convertible into US dollars at a fixed exchange rate (or rather an exchange rate
which is adjustable only under specific circumstances); and US dollar reserves
of these countries were (in principle) convertible into gold by the United States
at a fixed price (though in practice with some discouragement from the United
States).
This indirect gold-exchange standard broke down in 1971-73, and nowadays

money in most countries is unbacked paper money (including electronic entries
in banks’ accounts). This feature of modern money makes its valuation very
different from that of other assets. A piece of paper money in a modern payments
system has no worth at all to an individual unless she expects other economic
agents to value it in the next instant. There is an inherent circularity in the
acceptance of money. Hence the viability of such a paper money system is very
much dependent on adequate juridical institutions as well as confidence in the
ability and willingness of the government and central bank to conduct policies
that sustain the purchasing power of the currency. One elementary juridical
institution is that of “legal tender”, a status which is conferred to certain kinds
of money. An example is the law that a money debt can always be settled by
currency and a tax always be paid by currency. A medium of exchange whose
market value derives entirely from its legal tender status is called fiat money
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(because the value exists through “fiat”, a ruler’s declaration). In view of the
absence of intrinsic value, maintaining the exchange value of fiat money over
time, that is, avoiding high or fluctuating inflation, is one of the central tasks of
monetary policy.

16.1.3 The functions of money

The following three functions are sometimes considered to be the definitional
characteristics of money:

1. It is a generally accepted medium of exchange.

2. It is a store of value.

3. It serves as a unit of account in which prices are quoted and books kept
(the numeraire).

On can argue, however, that the last function is on a different footing com-
pared to the two others. Thus, we should make a distinction between the func-
tions that money necessarily performs, according to our definition above, and the
functions that money usually performs. Property 1 and 2 certainly belong to the
essential characteristics of money. By its role as a device for making transactions
money helps an economy to avoid the need for a double coincidence of wants.
In order to perform this role, money must be a store of value, i.e., a device that
transfers and maintains value over time. The reason that people are willing to
exchange their goods for pieces of paper is exactly that these can later be used
to purchase other goods. As a store of value, however, money is dominated by
other stores of value such as bonds and shares that pay a higher rate of return.
When nevertheless there is a demand for money, it is due to the liquidity of this
store of value, that is, its service as a generally accepted medium of exchange.
Property 3, however, is not an indispensable function of money as we have

defined it. Though the money unit is usually used as the unit of account in which
prices are quoted, this function of money is conceptually distinct from the other
two functions and has sometimes been distinct in practice. During times of high
inflation, foreign currency has been used as a unit of account, whereas the local
money continued to be used as the medium of exchange. During the German
hyperinflation of 1922-23 US dollars were the unit of account used in parts of the
economy, whereas the mark was the medium of exchange; and during the Russian
hyperinflation in the middle of the 1990s again US dollars were often the unit of
account, but the rouble was still the medium of exchange.
This is not to say that it is of little importance that money usually serves

as numeraire. Indeed, this function of money plays an important role for the
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short-run macroeconomic effects of changes in the money supply. These effects
are due to nominal rigidities, that is, the fact that prices, usually denominated
in money, of most goods and services generally adjust only sluggishly (they are
not traded in auction markets).

16.2 The money supply

The money supply is the total amount of money available in an economy at a
particular point in time (a stock). As noted above, where to draw the line between
assets that should be counted as money and those that should not, depends on
the context.

16.2.1 Different measures of the money stock

Usually the money stock in an economy is measured as one of the following
alternative monetary aggregates:

• M0, i.e., the monetary base, alternatively called base money, central bank
money, or high-powered money. The monetary base is defined as fully liquid
claims on the central bank held by the private sector, that is, currency (coins
and notes) in circulation plus demand deposits held by the commercial
banks in the central bank.2 This monetary aggregate is under the direct
control of the central bank and is changed by open-market operations, that
is, by the central bank trading bonds, usually short-term government bonds,
with the private sector. But clearly the monetary base is an imperfect
measure of the liquidity in the private sector.

• M1, defined as currency in circulation plus demand deposits held by the
non-bank general public in commercial banks. These deposits are also called
checking accounts because they are deposits on which checks can be written
and payment cards (debit cards) be used. M1 does not include currency
held by commercial banks and demand deposits held by commercial banks
in the central bank. Yet M1 includes the major part of M0 and is generally
considerably larger than M0. The measure M1 is intended to reflect the
quantity of assets serving as media of exchange in the hands of the non-
bank general public, i.e., the non-bank part of the private sector.

Broader categories of money include:

2The commercial banks are usually part of the private sector and by law it is generally only
the commercial banks that are allowed to have demand deposits in the central bank − the
“banks’bank”.
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• M2 = M1 plus savings deposits with unrestricted access and small-denomination
time deposits (say below € 100,000). Although these claims may not be
instantly liquid, they are close to.

• M3 = M2 plus large-denomination (say above € 100,000) time-deposits.3

As we move down the list, the liquidity of the added assets decreases, while
their interest yield increases.4 Currency earns zero interest. When in macroeco-
nomic texts the term “money supply”is used, traditionally M1 or M2 has been
meant; there is, however, a rising tendency to focus on M3. Along with currency,
the demand deposits in the commercial banks are normally fully liquid, at least
as long as they are guaranteed by a governmental deposit insurance (although
normally only up to a certain maximum per account). The interest earned on
these demand deposits is usually low (at least for “small”depositors) and in fact
often ignored in simple theoretical models.
A related and theoretically important simple classification of money types is

the following:

1. Outside money = money that on net is an asset of the private sector.

2. Inside money = money that is not net wealth of the private sector.

Clearly M0 is outside money. Most money in modern economies is inside
money, however. Deposits at the commercial banks is an example of inside money.
These deposits are an asset to their holders, but a liability of the banks. Even
broader aggregates of money (or “near-money”) than M3 are sometimes consid-
ered. For instance, it has been argued that the amounts that people are allowed
to charge by using their credit cards should be included in the concept of “broad
money”. But this would involve double counting. Actually you do not pay when
you use a credit card at the store. It is the company issuing the credit card that
pays to the store (shortly after you made your purchases). You postpone your
payment until you receive your monthly bill from the credit card company. That
is, the credit card company does the payment for you and gives credit to you. It
is otherwise with a payment card where the amount for which you buy is instantly
charged your account in the bank.

3In casual notation, M1 ⊂M2 ⊂M3, but M0 *M1 since only a part of M0 belongs to M1.
4This could be an argument for weighing the different components of a monetary aggregate

by their degree of liquidity (see Barnett, 1980, and Spindt, 1985).
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16.2.2 The money multiplier

Bank lending is the channel through which the monetary base expands to an
effective money supply, the “money stock”, considerably larger than the monetary
base. The excess of the deposits of the general public over bank reserves (“vault
cash”and demand deposits in the central bank) is lent out in the form of bank
loans, or government or corporate bonds etc. The non-bank public then deposits
a fraction of these loans on checking accounts. Next, the banks lend out a fraction
of these and so on. This process is named the money multiplier process. And the
ratio of the “money stock”, measured as M1, say, to the monetary base is called
the money multiplier.
Let

CUR = currency held by the non-bank general public,

DEP = demand deposits held by the non-bank general public,
CUR

DEP
= cd, the desired currency-deposit ratio,

RES = bank reserves = currency held by the commercial banks

(“vault cash”) plus their demand deposits in the central bank,
RES

DEP
= rd, the desired reserve-deposit ratio.

Notice that the currency-deposit ratio, cd, is chosen by the non-bank public,
whereas the reserve-deposit ratio, rd, refers to the behavior of commercial banks.
In many countries there is a minimum reserve-deposit ratio required by law to
ensure a minimum liquidity buffer to forestall “bank runs” (situations where
many depositors, fearing that their bank will be unable to repay their deposits in
full and on time, simultaneously try to withdraw their deposits). On top of the
minimum reserve-deposit ratio the banks may hold “excess reserves”depending
on their assessment of their lending risks and need for liquidity.
To find the money multiplier, note that

M1 = CUR +DEP = (cd+ 1)DEP, (16.1)

where DEP is related to the monetary base, M0, through

M0 = CUR +RES = cdDEP + rdDEP = (cd+ rd)DEP.

Substituting into (16.1) gives

M1 =
cd+ 1

cd+ rd
M0 = mmM0, (16.2)

where mm = (cd+ 1)/(cd+ rd) is the money multiplier .
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As a not unrealistic example consider cd ≈ 0.7 and rd ≈ 0.07. Then we get
mm ≈ 2.2. When broader measures of money supply are considered, then, of
course, a larger money multiplier arises. It should be kept in mind that both cd
and rd, and therefore alsomm, are neither constant nor exogenous from the point
of view of monetary models. They are highly endogenous and depend on several
things, including degree of liquidity, expected returns, and risk on alternative
assets − from the banks’perspective as well as the customers’. In the longer run
cd and rd are affected by the evolution of payment technologies.
To some extent it is therefore a simple matter of identities and not particularly

informative, when we say that, given M0 and the currency-deposit ratio, the
money supply is smaller, the larger is the reserve-deposit ratio. Similarly, since
the latter ratio is usually considerably smaller than one, the money supply is
also smaller the larger is the currency-deposit ratio. Nevertheless, the money
multiplier turns out to be fairly stable under “normal circumstances”. But not
always. During 1929-33, in the early part of the Great Depression, the money
multiplier in the US fell sharply. AlthoughM0 increased by 15% during the four-
year period, liquidity (M1) declined by 27%.5 Depositors became nervous about
their bank’s health and began to withdraw their deposits (thereby increasing cd)
and this forced the banks to hold more reserves (thereby increasing rd). There is
general agreement that this banking panic contributed to the depression and the
ensuing deflation.
There is another way of interpreting the money multiplier. By definition

of cd, we have CUR = cdDEP. Let cm denote the non-bank public’s desired
currency-money ratio, i.e., cm = CUR/M1. Suppose cm is a constant. Then

CUR = cmM1 = cm(cd+ 1)DEP. (by (16.1))

It follows that cm = cd/(cd + 1) and 1− cm = 1/(cd + 1). Combining this with
(16.2) yields

M1 =
1

cd
cd+1

+ rd 1
cd+1

=
1

cm+ rd(1− cm)
=

1

1− (1− rd)(1− cm)
M0 = mmM0.

(16.3)
The way the central bank controls the monetary base is through open-market

operations, that is, by buying or selling bonds (typically short-term government
bonds) in the amount needed to sustain a desired level of the monetary base. In
the next stage the aim could be to obtain a desired level of M1 or a desired level
of the short-term interest rate or, in an open economy, a desired exchange rate
vis-a-vis other currencies.

5Blanchard (2003).
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An intuitive understanding of the money multiplier and the way commercial
banks “create”money can be attained by taking a dynamic perspective. Suppose
the central bank increases M0 by the amount ∆M0 through an open-market
operation, thus purchasing bonds. This is the first round. The seller of the bonds
deposits the fraction 1 − cm on a checking account in her bank and keeps the
rest as cash. The bank keeps the fraction rd of (1 − cm)∆M0 as reserves and
provides bank loans or buys bonds with the rest. This is the second round.
Thus, in the first round money supply is increased by ∆M0; in the second round
it is further increased by (1 − rd)(1 − cm)∆M0; in the third round further by
(1− rd)2(1− cm)2∆M0, etc.6 In the end, the total increase in money supply is

∆M1 = ∆M0 + (1− rd)(1− cm)∆M0 + (1− rd)2(1− cm)2∆M0 + ...

=
1

1− (1− rd)(1− cm)
∆M0 = mm∆M0.

The second last equality comes from the rule for the sum of an infinite geometric
series with quotient in absolute value less than one. The conclusion is that the
money supply is increased mm times the increase in the monetary base.

16.3 Money demand

Explaining in a precise way how paper money gets purchasing power and how
holding money - the “demand for money”in economists’traditional language - is
determined, is a diffi cult task and not our endeavour here. Suffi ce it to say that:

• In the presence of sequential trades and the absence of complete information
and complete markets, there is a need for a generally accepted medium of
exchange − money.

• The demand for money, by which we mean the quantity of money held by the
non-bank public, should be seen as part of a broader portfolio decision by
which economic agents allocate their financial wealth to different existing
assets, including money, and liabilities. The portfolio decision involves a
balanced consideration of after-tax expected return, risk, and liquidity.

Money is demanded primarily because of its liquidity service in transactions.
Money holding therefore depends on the amount of transactions expected to be
carried out with money in the near future. Money holding also depends on the
need for flexibility in spending when there is uncertainty: it is convenient to have
ready liquidity in case favorable opportunities should turn up. Generally money

6For simplicity, we assume here that cm and rd are constant.
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earns no interest at all or at least less interest than other assets. Therefore money
holding involves a trade-offbetween the need for liquidity and the wish for interest
yield.
The incorporation of a somewhat micro-founded money demand in macro-

models is often based on one or another kind of short-cut:

• The cash-in-advance constraint (also called the Clower constraint).7 Gen-
erally, households’purchases of nondurable consumption goods are in every
short period paid for by money held at the beginning of the period. With
the cash-in-advance constraint it is simply postulated that to be able to
carry out most transactions, you must hold money in advance. In continu-
ous time models the household holds a stock of money which is an increasing
function of the desired level of consumption per time unit and a decreasing
function of the opportunity cost of holding money.

• The shopping-costs approach. Here the liquidity services of money are mod-
elled as reducing shopping time or other kinds of non-pecuniary or pecu-
niary shopping costs. The shopping time needed to purchase a given level
of consumption, ct, is decreasing in real money holdings and increasing in
ct.

• The money-in-the-utility function approach. Here, the indirect utility that
money provides through reducing non-pecuniary as well as pecuniary trans-
action costs is modelled as if the economic agents obtain utility directly from
holding money. This will be our approach in the next chapter.

• The money-in-the-production-function approach. Here money facilitates
the firms’transactions, making the provision of the necessary inputs easier.
After all, typically around a third of the aggregate money stock is held by
firms.

16.4 What is then the “money market”?

In macroeconomic theory, by the “money market” is usually meant an abstract
market place (not a physical location) where at any particular moment the ag-
gregate demand for money “meets”the aggregate supply of money. Suppose the
aggregate demand for real money balances can be approximated by the function
L(Y, i), where LY > 0 and Li < 0 (“L” for liquidity demand). The level of
aggregate economic activity, Y, enters as an argument because it is an (approxi-
mate) indicator of the volume of transactions in the near future for which money

7After the American monetary theorist Robert Clower (1967).
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is needed. The short-term nominal interest rate, i, enters because it is the op-
portunity cost of holding cash instead of interest-bearing short-term securities,
for instance government bonds that mature in one year or less. 8 The latter
constitute a close substitute to money because they have a high degree of liquid-
ity. They are standardized and extensively traded in centralized auction markets
and under “normal circumstances”relatively safe. Because of the short term to
maturity, their market value is less volatile than longer-term securities.
Let the money supply in focus be M1 and let P be the general price level in

the economy (say the GDP deflator). Then money market equilibrium is present
if

M1 = PL(Y, i), (16.4)

that is, the available amount of money equals nominal money demand. Note that
supply and demand are in terms of stocks (amounts at a given point in time),
not flows. One of the issues in monetary theory is to account for how this stock
equilibrium is brought about at any instant. Which of the variables M1, P, Y,
and i is the equilibrating variable? Presuming that the central bank controlsM1,
classical (pre-Keynesian) monetary theory has P as the equilibrating variable
while in Keynes’monetary theory it is primarily i which has this role.9 Popular
specifications of the function L include L(Y, i) = Y αi−β and L(Y, i) = Y αe−βi,
where α and β are positive constants.
One may alternatively think of the “money market”in a more narrow sense,

however. We may translate (16.4) into a description of demand and supply for
base money:

M0 =
P

mm
L(Y, i), (16.5)

where mm is the money multiplier. The right-hand side of this equation reflects
that the demand for M1 via the actions of commercial banks is translated into a
demand for base money.10 If the public needs more cash, the demand for bank
loans rises and when granted, banks’ reserves are reduced. When in the next
round the deposits in the banks increase, then generally also the banks’reserves

8To simplify, we assume that none of the components in the monetary aggregate considered
earns interest. In practice demand deposits in the central bank and commercial banks may
earn a small nominal interest.

9If the economy has ended up in a “liquidity trap”with i at its lower bound, 0, an increase in
M1 will not generate further reductions in i. Agents would prefer holding cash at zero interest
rather than short-term bonds at negative interest. That is, the “=”in the equilibrium condition
(16.4) should be replaced by “≥”or, equivalently, L(Y, i) should at i = 0 be interpreted as a
“set-valued function”. The implications of this are taken up later in this book.
10Although the money multiplier tends to depend positively on i as well as other interest

rates, this aspect is unimportant for the discussion below and is ignored in the notation in
(16.5).
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have to increase. To maintain the required reserve-deposit ratio, banks which for
a few days have too little liquidity, borrow from other banks or other institutions
which have too much.
This narrowly defined money market is closely related to what is by the practi-

tioners and in the financial market statistics called the “money market”, namely
the trade in short-term debt-instruments that are close substitutes to holding
central bank money (think of commercial paper and government bonds with ma-
turity of less than one year). The agents trading in this market not only include
the central bank and the commercial banks but also the mortgage credit institu-
tions, life insurance companies, and other financial institutions. What is in the
theoretical models called the “short-term nominal interest rate”can normally be
identified with what is in the financial market statistics called the money market
rate or the interbank rate. This is the interest rate (usually measured as a per
year rate) at which the commercial banks provide unsecured loans (“signature
loans”) to each other, often on a day-to-day basis.

Open market operations The commercial banks may under certain condi-
tions borrow (on a secured basis) from the central bank at a rate usually called
the discount rate. This central bank lending rate will be somewhat above the
central bank deposit rate, that is, the interest rate, possibly nil, earned by the
commercial banks on their deposits in the central bank. The interval between the
discount rate and the deposit rate constitutes the interest rate corridor, within
which, under “normal circumstances”, the money market rate, i, fluctuates. The
central bank deposit rate acts as a floor for the money market rate and the cen-
tral bank lending rate as a ceiling. Sometimes, however, the money market rate
exceeds the central bank lending rate. This may happen in a financial crisis
where the potential lenders are hesitant because of the risk that the borrowing
bank goes bankrupt and because there are constraints on how much and when, a
commercial bank in need of cash can borrow from the central bank.
If the money market rate, i, tends to deviate from what the central bank

aims at (the “target rate”, also called the “policy rate”), the central bank will
typically through open-market operations provide liquidity to the money market
or withhold liquidity from it. The mechanism is as follows. Consider a one-period
government bond with a secured payoff equal to 1 euro at the end of the period
and no payoffs during the period (known as a zero-coupon bond or discount
bond). To fix ideas, let the period length be one month. In the financial market
language the maturity date is then one month after the issue date. Let v be the
market price (in euros) of the bond at the beginning of the month. The implicit
monthly interest rate, x, is then the solution to the equation v = (1 + x)−1, i.e.,

x = v−1 − 1.
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Translated into an annual interest rate, with monthly compounding, this amounts
to i = (1 + x)12 − 1 = v−12 − 1 per year. With v = 0.9975, we get i = 0.03049
per year.11

Suppose the central bank finds that i is too high and buys a bunch of these
bonds. Then less of them are available for the private sector, which on the other
hand now has a larger money stock at its disposal. According to the Keynesian
monetary theory (which is by now quite commonly accepted), under normal cir-
cumstances the general price level for goods and services is sticky in the short
run. It will be the bond price, v, which responds. In the present case it moves
up, thus lowering i, until the available stocks of bonds and money are willingly
held. In practice this adjustment of v, and hence i, to a new equilibrium level
takes place rapidly.
In recent decades the short-term interest rate has been the main monetary

policy tool when trying to stimulate or dampen the general level of economic
activity and control inflation. Under normal circumstances the open market
operations give the central bank a narrow control over the short-term interest rate.
Central banks typically announce their target level for the short-term interest rate
and then adjust the monetary base such that the actual money market rate ends
up close to the announced interest rate. This is what the European Central
Bank (the ECB) does when it announces its target for EONIA (euro overnight
index average) and what the U.S. central bank, the Federal Reserve, does when
it announces its target for the federal funds rate. In spite of its name, the latter
is not an interest rate charged by the U.S. central bank but a weighted average
of the interest rates commercial banks in the U.S. charge each other, usually
overnight.
In the narrowly defined “money market”close substitutes to money are traded.

From a logical point of view a more appropriate name for this market would be
the “short-term bond market”or the “near-money market”. This would entail
using the term “market” in its general meaning as a “place” where a certain
type of goods or assets are traded for money. Moreover, speaking of a “short-
term bond market”would be in line with the standard name for market(s) for
financial assets with maturity of more than one year, namelymarket(s) for longer-
term bonds and equity; by practitioners these markets are also called the capital
markets. Anyway, in this book we shall use the term “money market”in its broad
theoretical meaning as an abstract market place where the aggregate demand
for money “meets” the aggregate supply of money. As to what kind of money,
“narrow”or “broad”, further specification is always to be added.
The open-market operations by the central bank affect directly or indirectly

11With continuous compounding we have v = e−i/12 so that i = 12 ln v−1 = 0.03004 when v
= 0.9975.
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all the equilibrating prices in the financial markets as well as expectations about
the future path of these prices. This influence derives from the direct control
over the monetary base, M0. The central bank has no direct control, however,
over the money supply in the broader sense of M1, M2, or M3. These broader
monetary aggregates are also affected by the behavior of the commercial banks
and the non-bank public. The money supply in this broad sense can at most be
an intermediate target for monetary policy, that is, a target that can be reached
in some average-sense in the medium run.

16.5 Key questions in monetary theory and pol-
icy

Some of the central questions in monetary theory and policy are:

1. How is the level and the growth rate of the money supply (in the M0 sense,
say) linked to:

(a) the real variables in the economy (resource allocation),

(b) the price level and the rate of inflation?

2. How can monetary policy be designed to stabilize the purchasing power of
money and optimize the liquidity services to the inhabitants?

3. How can monetary policy be designed to stabilize the economy and “smooth”
business cycle fluctuations?

4. Do rational expectations rule out persistent real effects of changes in the
money supply?

5. What kind of regulation of commercial banks is conducive to a smooth
functioning of the credit system and reduced risk of a financial crisis?

6. Is hyperinflation always the result of an immense growth in the money
supply or can hyperinflation be generated by self-fulfilling expectations?

As an approach to answering long-run monetary issues, we will in the next
chapter consider a kind of neoclassical monetary model by Sidrauski (1967). In
this model money enters as a separate argument in the utility function. The
model has been applied to the study of long-run aspects like the issues 1, 2, and 6
above. The model is less appropriate, however, for short- and medium-run issues
such as 3, 4, and 5 in the list. These issues are dealt with in later chapters.
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16.6 Literature notes

In the Arrow-Debreu model, the basic microeconomic general equilibrium model,
there is assumed to exist a complete set of markets. That is, there is a market for
each “contingent commodity”, by which is meant that there are as many markets
as there are possible combinations of physical characteristics of goods, dates of
delivery, and “states of nature”that may prevail. In such an fictional world any
agent knows for sure the consequences of the choices made. All trades can be
made once for all and there will thus be no need for any money holding (Arrow
and Hahn, 1971).
For a detailed account of the different ways of modelling money demand in

macroeconomics, the reader is referred to, e.g., Walsh (2003). Concerning “money
in the production function”, see Mankiw and Summers (1986).

16.7 Exercises
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Chapter 19

The theory of effective demand

In essence, the “Keynesian revolution”was a shift of emphasis from
one type of short-run equilibrium to another type as providing the
appropriate theory for actual unemployment situations.

−Edmund Malinvaud (1977), p. 29.

In this and the following chapters the focus is shifted from long-run macro-
economics to short-run macroeconomics. The long-run models concentrated on
factors that are important for the economic evolution over a time horizon of at
least 10-15 years. With such a horizon it is the development on the supply side
(think of capital accumulation, population growth, and technological progress)
that is the primary determinant of cumulative changes in output and consump-
tion − the trend. The demand side and monetary factors are of key importance
for the fluctuations of output and employment about the trend. In a long-run
perspective these fluctuations can be considered of only secondary quantitative
importance, and the preceding chapters have ignored them. But within shorter
horizons, fluctuations are the focal point and this brings the demand-side, mon-
etary factors, market imperfections, nominal rigidities, and expectation errors to
the fore. The present and subsequent chapters deal with the role of these short-
and medium-run factors.
This chapter introduces building blocks of Keynesian theory of the short run.

By “Keynesian theory”we mean a macroeconomic framework that (a) aims at un-
derstanding “what determines the actual employment of the available resources”,1

including understanding why mass unemployment arises from time to time, and
(b) in this endeavor ascribes a primary role to aggregate demand. Whether a
particular building block in this framework comes from Keynes himself, post-war
Keynesians, or “new”Keynesians of some sort is not our concern. We present

1Keynes, 1936, p. 4.
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the basic concept of effective demand. We compare with the pre-Keynesian (Wal-
rasian) macroeconomic theory which did not distinguish systematically between
ex ante demand and supply on the one hand and actual transactions on the other.
Attention to this distinction leads to a refutation of Say’s law, the doctrine that
“supply creates its own demand”. Next we present some microfoundation for the
notion of nominal price stickiness, in particular themenu cost theory is discussed.
We also address the conception of “abundant capacity”as the prevailing state of
affairs in an industrialized economy.

19.1 Stylized facts about the short run

The idea that prices of most goods and services are sticky in the short run rests
on the empirical observation that in the short run firms in the manufacturing and
service industries typically let output do the adjustment to changes in demand
while keeping prices unchanged. In industrialized societies firms are able to do
that because under “normal circumstances”there is “abundant production capac-
ity”available in the economy. Three of the most salient short-run features that
arise from macroeconomic time series analysis of industrialized market economies
are the following (cf. Blanchard and Fischer, 1989, Christiano et al., 1999):

1) Shifts in aggregate demand (induced by sudden changes in the state of
confidence, exports, fiscal or monetary policy, or other events) are largely
accommodated by changes in quantities rather than changes in nominal
prices − nominal price insensitivity.

2) Even large movements in quantities are often associated with little or no
movement in relative prices − real price insensitivity. The real wage, for
instance, exhibits such insensitivity in the short run.

3) Nominal prices are sensitive to general changes in input costs.

These stylized facts pertain to final goods and services. It is not the case
that all nominal prices in the economy are in the short run insensitive vis-a-
vis demand changes. One must distinguish between production of most final
goods and services on the one hand and production of primary foodstuff and
raw materials on the other. This leads to the associated distinction between
“cost-determined”and “demand- determined”prices.
Final goods and services are typically differentiated goods (imperfect substi-

tutes). Their production takes place under conditions of imperfect competition.
As a result of existing reserves of production capacity, generally speaking, the
production is elastic w.r.t. demand. An upward shift in demand tends to be met
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by a rise in production rather than price. The price changes which do occur are
mostly a response to general changes in costs of production. Hence the name
“cost-determined”prices.
For primary foodstuff and many raw materials the situation is different. To

increase the supply of most agricultural products requires considerable time. This
is also true (though not to the same extent) with respect to mining of raw materi-
als as well as extraction and transport of crude oil. When production is inelastic
w.r.t. demand in the short run, an increase in demand results in a diminution
of stocks and a rise in price. Hence the name “demand-determined prices”. The
price rise may be enhanced by a speculative element: temporary hoarding in
the expectation of further price increases. The price of oil and coffee − two of
the most traded commodities in the world market − fluctuate a lot. Through
the channel of costs the changes in these demand-determined prices spill over to
the prices of final goods. Housing is also an area where, apart from regulation,
demand-determined prices is the rule in the short run.
In industrialized economies manufacturing and services are the main sectors,

and the general price level is typically regarded as cost-determined rather than
demand determined. Two further aspects are important. First, many wages and
prices are set in nominal terms by price setting agents like craft unions and firms
operating in imperfectly competitive output markets. Second, these wages and
prices are in general deliberately kept unchanged for some time even if changes
in the environment of the agent occurs; this aspect, possibly due to pecuniary
or non-pecuniary costs of changing prices, is known as nominal price stickiness.
Both aspects have vast consequences for the functioning of the economy as a
whole compared with a regime of perfect competition and flexible prices.
Note that price insensitivity just refers to the sheer observation of absence of

price change in spite of changes in the “environment”− as in the context of facts
1) and 2) above. Price stickiness refers to more, namely that prices do not move
quickly enough to clear the market in the short run. While price stickiness is in
principle a matter of degree, the term includes the limiting case where prices are
entirely “fixed”over the period considered − the case of price rigidity.

19.2 A simple short-run model

The simple model presented below is close to what Paul Krugman named the
World’s Smallest Macroeconomic Model.2 The model is crude but nevertheless
useful in at least three ways:

2Krugman (1999). Krugman tells he learned the model back in 1975 from Robert Hall. As
presented here there is also an inspiration from Barro and Grossman (1971).
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• the model demonstrates the fundamental difference in the functioning of an
economy with fully flexible prices and one with sticky prices;

• by addressing spillovers across markets, the model is a suitable point of
departure for a definition of the Keynesian concept of effective demand;

• the model displays the logic behind the Keynesian refutation of Say’s law.

19.2.1 Elements of the model

We consider a monetary closed economy which produces a consumption good.
There are three sectors in the economy, a production sector, a household sec-
tor, and a public sector with a consolidated government/central bank. Time is
discrete. There is a current period, of length a quarter of a year, say, and “the
future”, compressing the next period and onward. Labor is the only input in pro-
duction. To simplify notation, the model presents its story as if there is just one
representative household and one representative firm owned by the household,
but the reader should imagine that there are numerous agents of each kind.
The production function has CRS,

Y = AN, A > 0, (19.1)

where Y is aggregate output of a consumption good which is perishable and
therefore cannot be stored, A is a technology parameter and N is aggregate
employment in the current period. In short- and medium-run macroeconomics
the tradition is to use N to denote labor input (“number of hours”), while L is
typically used for either money demand (“liquidity demand”) or supply of bank
loans. We will follow this tradition.
The price of the consumption good in terms of money, i.e., the nominal price,

is P. The wage rate in terms of money, the nominal wage, is W. We assume that
the representative firm maximizes profit, taking these current prices as given.
The nominal profit, possibly nil, is

Π = PY −WN. (19.2)

There is free exit from the production sector in the sense that the representa-
tive firm can decide to produce nothing. Hence, an equilibrium with positive
production requires that profits are non-negative.
The representative household lives only one period, but leaves a bequest for

the next generation. The household supplies labor inelastically in the amount
N̄ and receives the profit obtained by the firm, if any. The household demands
the consumption good in the amount Cd in the current period (since we want to
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allow cases of non-market clearing, we distinguish between consumption demand,
Cd, and realized consumption, C. Current income not consumed is saved for
the future. As the output good cannot be stored, the only non-human asset
available in the economy is fiat money, which is thus the only asset on hand for
saving. There is no private banking sector in the economy. So “money”means
the “currency in circulation”(the monetary base) and is on net an asset in the
private sector as a whole. Until further notice the money stock is constant.
The preferences of the household are given by the utility function,

U = lnCd + β ln
M̂

P e
, 0 < β < 1, (19.3)

where M̂ is the amount of money transferred to “the future”, and P e is the
expected future price level. The utility discount factor β (equal to (1 + ρ)−1 if ρ
is the utility discount rate) reflects “patience”.
Consider the household’s choice problem. Facing P andW and expecting that

the future price level will be P e, the household chooses Cd and M̂ to maximize
U s.t.

PCd + M̂ = M +WN + Π ≡ B, N ≤ N̄ . (19.4)

Here,M > 0 is the stock of money held at the beginning of the current period and
is predetermined. The actual employment is denoted N and equals the minimum
of the amount of employment offered by the firm and the labor supply N̄ (the
principle of voluntary trade). The sum of initial financial wealth,M, and nominal
income, WN + Π, constitutes the budget, B.3 Nominal financial wealth at the
beginning of the next period is M̂ = M +WN + Π−PCd, i.e., the sum of initial
financial wealth and planned saving where the latter equalsWN + Π−PCd. The
benefit obtained by transferring M̂ depends on the expected purchasing power of
M̂, hence it is M̂/P e that enters the utility function. Presumably the household
expects some labor and profit income also in the future and seemingly ownership
rights to the firms’profit are non-negotiable. How the decision making is related
to such matters is not specified in this minimalist way of representing that there
is a future.
Substituting M̂ = B − PCd into (19.3), we get the first-order condition

dU

dCd
=

1

Cd
+ β

P e

B − PCd
(− P

P e
) = 0,

3As time is discrete, expressions likeM+WN+Π are legitimate. Although it is meaningless
to add a stock and a flow (since they have different denominations), the sum M + WN + Π
should be interpreted as M + (WN + Π)∆t, where ∆t is the period length. With the latter
being the time unit, we have ∆t = 1.
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which gives

PCd =
1

1 + β
B. (19.5)

We see that the marginal (= average) propensity to consume is (1 + β)−1, hence
inversely related to the patience parameter β. The planned stock of money to be
held at the end of the period is

M̂ = (1− 1

1 + β
)B =

β

1 + β
B.

So, the expected price level, P e, in the future does not affect the demands, Cd and
M̂. This is a special feature caused by the additive-logarithmic specification of
the utility function in (19.3). Indeed, with this specification the substitution and
income effects of a rise in the expected real gross rate of return, (1/P e)/(1/P ),
on savings exactly offset each other, and there is no wealth effect in this model.
Inserting (19.4) and (19.2) into (19.5) gives

Cd =
B

P (1 + β)
=
M +WN + Π

P (1 + β)
=

M
P

+ Y

1 + β
, (19.6)

In our simple model output demand is the same as the consumption demand Cd.
So clearing in the output market, in the sense of equality between demand and
actual output, requires Cd = Y. So, if this clearing condition holds, substituting
into (19.6) gives the relationship

Y =
M

βP
. (19.7)

This is only a relationship between Y and P, not a solution for any of them since
both are endogenous variables so far. Moreover, the relationship is conditional
on clearing in the output market.
We have assumed that agents take prices as given when making their demand

and supply decisions. But we have said nothing about whether nominal prices
are flexible or rigid as seen from the perspective of the system as a whole.

19.2.2 The case of fully flexible W and P

What Keynes called “classical economics” is nowadays also often called “Wal-
rasian macroeconomics” (sometime just “pre-Keynesian macroeconomics”). In
this theoretical tradition both wages and prices are assumed fully flexible and all
markets perfectly competitive.
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Firms’ex ante output supply conditional on a hypothetical wage-price pair
(W,P ) and the corresponding labor demand will be denoted Y s and Nd, respec-
tively. As we know from microeconomics, the pair (Y s, Nd) need not be unique, it
can easily be a “set-valued function”of (W,P ). Moreover, with constant returns
to scale in the production function, the range of this function may for certain
pairs (W,P ) include (∞,∞).
The distinguishing feature of the Walrasian approach is that wages and prices

are assumed fully flexible. Both W and P are thought to adjust immediately so
as to clear the labor market and the output market like in a centralized auction
market. Clearing in the labor market requires that W and P are adjusted so
that actual employment, N, equals labor supply, N s, which is here inelastic at
the given level N̄ . So

N = N s = N̄ = Nd, (19.8)

where the last equality indicates that this employment level is willingly demanded
by the firms.
We have assumed a constant-returns-to-scale production function (19.1). Hence,

the clearing condition (19.8) requires that firms have zero profit. In turn, by (19.1)
and (19.2), zero profit requires that the real wage equals labor productivity:

W

P
= A. (19.9)

With clearing in the labor market, output must equal full-employment output,

Y = AN̄ ≡ Y f = Y s, (19.10)

where the superscript “f”stands for “full employment”, and where the last equal-
ity indicates that this level of output is willingly supplied by the firms. For this
level of output to match the demand, Cd, coming from the households, the price
level must be

P =
M

βY f
≡ P c, (19.11)

in view of (19.7) with Y = Y f . This price level is the classical equilibrium price,
hence the superscript “c”. Substituting into (19.9) gives the classical equilibrium
wage

W = AP c ≡ W c. (19.12)

For general equilibrium we also need that the desired money holding at the
end of the period equals the available money stock. By Walras’ law this equal-
ity follows automatically from the household’s Walrasian budget constraint and
clearing in the output and labor markets. To see this, note that the Walrasian
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budget constraint is a special case of the budget constraint (19.4), namely the
case

PCd + M̂ = M +WN s + Πc, (19.13)

where Πc is the notional profit associated with the hypothetical production plan
(Y s, Nd), i.e.,

Πc ≡ PY s −WNd. (19.14)

The Walrasian budget constraint thus imposes replacement of the term for actual
employment, N, with the households’ desired labor supply, N s(= N̄). It also
imposes replacement of the term for actual profit, Π, with the hypothetical profit
Πc (“c”for “classical”) calculated on the basis of the firms’aggregate production
plan (Y s, Nd).
Now, let theWalrasian auctioneer announce an arbitrary price vector (W,P, 1),

with W > 0, P > 0, and 1 being the price of the numeraire, money. Then the
values of excess demands add up to

W (Nd −N s) + P (Cd − Y s) + M̂ −M
= WNd − PY s + PCd + M̂ −M −WN s (by rearranging)

= WNd − PY s + Πc (by (19.13))

= WNd − PY s + Πc ≡ 0. (from definition of Πc in (19.14))

This exemplifies Walras’law, saying that with Walrasian budget constraints the
aggregate value of excess demands is identically zero. Walras’law reflects that
when households satisfy their Walrasian budget constraint, then as an arithmetic
necessity the economy as a whole has to satisfy an aggregate budget constraint
for the period in question. It follows that the equilibrium condition M̂ = M is
ensured as soon as there is clearing in the output and labor markets. And more
generally: if there are n markets and n−1 of these clear, so does the n’th market.
Consequently, when (W,P ) = (W c, P c), all markets clear in this flexwage-

flexprice economy with perfect competition and a representative household with
the “endowment”-pair (M, N̄). Such a state of affairs is known as a classical
or Walrasian equilibrium.4 A key feature is expressed by (19.8) and (19.10):
output and employment are supply-determined, i.e., determined by the supply of
production factors, here labor.
The intuitive mechanism behind this equilibrium is the following adjustment

process. Imagine that in an ultra-short sub-periodW/P −A 6= 0. In caseW/P−A
> 0 (< 0), there will be excess supply (demand) in the labor market. This drives
W down (up). Only whenW/P = A and full employment obtains, can the system

4To underline its one-period nature, it may be called a Walrasian short-run or a Walrasian
temporary equilibrium.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



19.2. A simple short-run model 735

be at rest. Next imagine that P − P c 6= 0. In case P − P c > 0 (< 0), there is
excess supply (demand) in the output market. This drives P down (up). Again,
only when P = P c and W/P = A (wherebyW = W c), so that the output market
clears under full employment, will the system be at rest.
This adjustment process is fictional, however, because outside equilibrium the

Walrasian supplies and demands, which supposedly drive the adjustment, are
artificial constructs. Being functions only of initial resources and price signals,
theWalrasian supplies and demands are mutually inconsistent outside equilibrium
and can therefore not tell what quantities will be traded during an adjustment
process. The story needs a considerable refinement unless one is willing to let
the mythical “Walrasian auctioneer”enter the scene and bring about adjustment
toward the equilibrium prices without allowing trade until these prices are found.
Anyway, assuming that Walrasian equilibrium has been attained, by compar-

ative statics based on (19.11) and (19.12) we see that in the classical regime:
(a) P and W are proportional to M ; and (b) output is at the unchanged full-
employment level whatever the level of M . This is the neutrality of money result
of classical macroeconomics.
The neutrality result also holds in a quasi-dynamic context where we consider

an actual change in the money stock occurring in historical time. Suppose the
government/central bank at the beginning of the period brings about lump-sum
transfers to the households in the total amount ∆M > 0. As there is no taxation,
this implies a budget deficit which is thus fully financed by money issue.5 So
(19.1319.4) is replaced by

PCd + M̂ = M + ∆M +WN̄ + Πc. (19.15)

If we replace M in the previous formulas by M ′ ≡M + ∆M, we see that money
neutrality still holds. As saving is income minus consumption, there is now
positive nominal private saving of size Sp = ∆M +WN̄ + Πc − PCd = M ′ −M
= ∆M. On the other hand the government dissaves, in that its saving is Sg

= −∆M, where ∆M is the government budget deficit. So national saving is and
remains S ≡ Sp+Sg = 0 (it must be nil as there are no durable produced goods).

19.2.3 The case of W and P fixed in the short run

In standard Keynesian macroeconomics nominal wages are considered predeter-
mined in the short run, fixed in advance by wage bargaining between workers
(or workers’unions) and employers (or employers’unions). Those who end up

5Within the model this is in fact the only way to increase the money stock. As money is
the only asset in the economy, a change in the money stock can not be brought about through
open market operations where the central bank buys or sells another financial asset.
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unemployed in the period do not try to − or are not able to − undercut those
employed, at least not in the current period.
Likewise, nominal prices are set in advance by firms facing downward-sloping

demand curves. It is understood that there is a large spectrum of differentiated
products, and Y and C are composites of these. This heterogeneity ought of
course be visible in the model − and it will become so in Section 19.3. But at
this point the model takes an easy way out and ignores the involved aggregation
issue.
Let W in the current period be given at the level W̄ . Because firms have

market power, the profit-maximizing price involves a mark-up on marginal cost,
W̄N/Y = W̄/A (which is also the average cost). We assume that the price setting
occurs under circumstances where the chosen mark-up becomes a constant µ > 0,
so that

P = (1 + µ)
W̄

A
≡ P̄ . (19.16)

While W̄ is considered exogenous (not determined within the model), P̄ is en-
dogenously determined by the given W̄ , A, and µ. There are barriers to entry in
the short run.
Because of the fixed wage and price, the distinction between ex ante (also

called planned or intended) demands and supplies and the ex post carried out
purchases and sales are now even more important than before. This is because
the different markets may now also ex post feature excess demand or excess supply
(to be defined more precisely below). According to the principle that no agent
can be forced to trade more than desired, the actual amount traded in a market
must equal the minimum of demand and supply. So in the output market and
the labor market the actual quantities traded will be

Y = min(Y d, Y s) and (19.17)

N = min(Nd, N s), (19.18)

respectively, where the superscripts “d”and “s”are now used for demand and
supply in a new meaning to be defined below. This principle, that the short side
of the market determines the traded quantity, is known as the short-side rule.
The other side of the market is said to be quantity rationed or just rationed if
there is discrepancy between Y d and Y s. In view of the produced good being
non-storable, intended inventory investment is ruled out. Hence, the firms try to
avoid producing more than can be sold. In (19.17) we have thus identified the
traded quantity with the produced quantity, Y.
But what exactly do we mean by “demand” and “supply” in this context

where market clearing is not guaranteed? We mean what is appropriately called
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the effective demand and the effective supply (“effective”in the meaning of “op-
erative”in the market, though possibly frustrated in view of the short-side rule).
To make these concepts clear, we need first to define an agent’s effective budget
constraint:

DEFINITION 1 An agent’s (typically a household’s) effective budget constraint
is the budget constraint conditional on the perceived price and quantity signals
from the markets.

It is the last part, “and quantity signals from the markets”, which is not included
in the concept of a Walrasian budget constraint. The perceived quantity sig-
nals are in the present context a) the actual employment constraint faced by the
household and b) the profit expected to be received from the firms and deter-
mined by their actual production and sales. So the household’s effective budget
constraint is given by (19.4). In contrast, the Walrasian budget constraint is not
conditional on quantity signals from the markets but only on the “endowment”
(M, N̄) and the perceived price signals and profit.

DEFINITION 2 An agent’s effective demand in a given market is the amount
the agent bids for in the market, conditional on the perceived price and quantity
signals that constrains its bidding. By “bids for”is meant that the agent is both
able to buy that amount and wishes to buy that amount, given the effective bud-
get constraint. Summing over all potential buyers, we get the aggregate effective
demand in the market.

DEFINITION 3 An agent’s effective supply in a given market is the amount the
agent offers for sale in the market, conditional on perceived price and quantity
signals that constrains its offering. By “offers for sale” is meant that the agent
is both able to bring that amount to the market and wishes to sell that amount,
given the set of opportunities available. Summing over all potential sellers, we
get the aggregate effective supply in the market.

When P = P̄ , the aggregate effective output demand, Y d, is the same as
households’consumption demand given by (19.6) with P = P̄ , i.e.,

Y d = Cd =
M
P̄

+ Y

1 + β
. (19.19)

In view of the inelastic labor supply, households’aggregate effective labor supply
is simply

N s = N̄ .

Firms’aggregate effective output supply is

Y s = Y f ≡ AN̄. (19.20)
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Indeed, in the aggregate the firms are not able to bring more to the market than
full-employment output , Y f . And every individual firm is not able to bring to
the market than what can be produced by “its share”of the labor force. On the
other hand, because of the constant marginal costs, every unit sold at the preset
price adds to profit. The firms are therefore happy to satisfy any output demand
forthcoming − which is in practice testified by a lot of sales promotion.
Firms’aggregate effective demand for labor is constrained by the perceived

output demand, Y d, because the firm would loose by employing more labor. Thus,

Nd =
Y d

A
. (19.21)

By the short-side rule (19.17), combined with (19.20), follows that actual
aggregate output (equal to the quantity traded) is

Y = min(Y d, Y f ) 5 Y f .

So the following three mutually exclusive cases exhaust the possibilities regarding
aggregate output:

Y = Y d < Y f (the Keynesian regime),

Y = Y f < Y d (the repressed inflation regime),

Y = Y d = Y f (the border case).

The Keynesian regime: Y = Y d < Y f .

In this regime we can substitute Y = Y d into (19.19) and solve for Y :

Y = Y d =
M

βP̄
≡ Y k < Y f ≡ M

βP c
= Y s. (19.22)

where we have denoted the resulting output Y k (the superscript “k”for “Keyne-
sian”). The inequality in (19.22) is required by the definition of the Keynesian
regime, and the identity comes from (19.11). Necessary and suffi cient for the
inequality is that P̄ > P c ≡ W c/A. In view of (19.16), the economy is thus in the
Keynesian regime if and only if

W̄ > W c/(1 + µ). (19.23)

Since Y < Y s in this regime, we may say there is “excess supply”in the output
market or, with a perhaps better term, there is a “buyers’market”situation (sale
less than desired). The reservation regarding the term “excess supply”is due to
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the fact that we should not forget that Y − Y s < 0 is a completely voluntary
state of affairs on the part of the price-setting firms.
From (19.1) and the short-side rule now follows that actual employment will

be

N = Nd =
Y

A
=

M

AβP̄
< N̄ = N s. (19.24)

Also the labor market is thus characterized by “excess supply” or a “buyers’
market”situation. Profits are Π = P̄ Y − W̄N = (1− W̄/(P̄A))P̄ Y = (1− (1 +
µ)−1)β−1M > 0, where we have used, first, Y = AN , then the price setting rule
(19.16), and finally (19.22).
This solution for (Y,N) is known as a Keynesian equilibrium for the current

period. It is named an equilibrium because the system is “at rest”in the following
sense: (a) agents do the best they can given the constraints (which include the
preset prices and the quantities offered by the other side of the market); and (b)
the chosen actions aremutually compatible (purchases and sales match). The term
equilibrium is here not used in the Walrasian sense of market clearing through
instantaneous price adjustment but in the sense of a Nash equilibrium conditional
on perceived price and quantity signals. To underline its temporary character, the
equilibriummay be called a Keynesian short-run (or temporary) equilibrium. The
flavor of the equilibrium isKeynesian in the sense that there is unemployment and
at the same time it is aggregate demand in the output market, not the real wage,
which is the binding constraint on the employment level. A higher propensity to
consume (lower discount factor β) results in higher aggregate demand, Y d, and
thereby a higher equilibrium output, Y k. In contrast, a lower real wage due to
either a higher mark-up, µ, or a lower marginal (= average) labor productivity, A,
does not result in a higher Y k. On the contrary, Y k becomes lower, and the causal
chain behind this goes via a higher P̄ , cf. (19.16) and (19.22). In fact, the given
real wage, W̄/P̄ = A/(1 + µ), is consistent with unemployment as well as full
employment, see below. It is the sticky nominal price at an excessive level, caused
by a sticky nominal wage at an “excessive” level, that makes unemployment
prevail through a too low aggregate demand, Y d. A lower nominal wage would
imply a lower P̄ and thereby, for a given M, stimulate Y d and thus raise Y k.

In brief, the Keynesian regime leads to an equilibrium where output as well
as employment are demand-determined.

The “Keynesian cross”and effective demand The situation is illustrated
by the “Keynesian cross” in the (Y, Y d) plane shown in Fig. 19.1, where Y d

= Cd = (1 +β)−1(Y +M/P̄ ).We see the vicious circle: Output is below the full-
employment level because of low consumption demand; and consumption demand
is low because of the low employment. The economy is in a unemployment trap.
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Figure 19.1: The Keynesian regime (P̄ = (1 + µ)W̄/A, W̄ < W c/(1 + µ), M, and Y f

given).

Even though at Y k we have Π > 0 and there are constant returns to scale, the
individual firm has no incentive to increase production because the firm already
produces as much as it rightly perceives it can sell at its preferred price. We also
see that here money is not neutral. For a given W = W̄ , and thereby a given
P = P̄ , a higher M results in higher output and higher employment.

Although the microeconomic background we have alluded to is a specific “mar-
ket power story”(one with differentiated goods and downward sloping demand
curves), the Keynesian cross in Fig. 19.1 may turn up also for other microeco-
nomic settings. The key point is the fixed P̄ > P c and fixed W̄ < AP̄ .

The fundamental difference between the Walrasian and the present framework
is that the latter allows trade outside Walrasian equilibrium. In that situation the
households’consumption demand depends not on how much labor the households
would prefer to sell at the going wage, but on how much they are able to sell,
that is, on a quantity signal received from the labor market. Indeed, it is the
actual employment, N, that enters the operative budget constraint, (19.4), not
the desired employment as in classical or Walrasian theory.
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The repressed-inflation regime: Y = Y f < Y d.

This regime represents the “opposite”case of the Keynesian regime and arises if
and only if the opposite of (19.23) holds, namely

W̄ < W c/(1 + µ).

In view of (19.16), this inequality is equivalent to P̄ < W c/A ≡ P c. Hence
M/(βP̄ ) > M/(βP c) = Y f = AN̄. In spite of the high output demand, the
shortage of labor hinders the firms to produce more than Y f . With Y = Y f ,
output demand, which in this model is always the same as consumption demand,
Cd, is, from (19.6),

Y d =
M
P̄

+ Y f

1 + β
> Y = Y s = Y f . (19.25)

As before, effective output supply, Y s, equals full-employment output, Y f .
The new element here in that firms perceive a demand level in excess of Y f . As

the real-wage level does not deter profitable production, firms would thus prefer
to employ people up to the point where output demand is satisfied. But in view
of the short side rule for the labor market, actual employment will be

N = N s = N̄ < Nd =
Y d

A
.

So there is excess demand in both the output market and the labor market.
Presumably, these excess demands generate pressure for wage and price increases.
By assumption, these potential wage and price increases do not materialize until
possibly the next period. So we have a repressed-inflation equilibrium (Y,N)
= (Y f , N̄), although possibly short-lived.
Fig. 19.2 illustrates the repressed-inflation regime. In the language of the

microeconomic theory of quantity rationing, consumers are quantity rationed in
the goods market, as realized consumption = Y = Y f < Y d = consumption
demand. Firms are quantity rationed in the labor market, as N < Nd. This is
the background for the parlance that in the repressed inflation regime, output and
employment are not demand-determined but supply-determined. Both the output
market and the labor market are sellers’markets (purchase less than desired).
Presumably, the repressed inflation regime will not last long unless there are wage
and price controls imposed by the government, as for instance may be the case
for an economy in a war situation.6

6As another example of repressed inflation (simultaneous excess demand for consumption
goods and labor) we may refer to Eastern Europe before the dissolution of the Soviet Union
in 1991. In response to severe and long-lasting rationing in the consumption goods markets,
households tended to decrease their labor supply (Kornai, 1979). This example illustrates that
if labor supply is elastic, the effective labor supply may be less than the Walrasian labor supply
due to spillovers from the output market.
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Figure 19.2: The repressed-inflation regime (P̄ = (1 + µ)W̄/A, W̄ > W c/(1 + µ), M,
and Y f given).
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The border case between the two regimes: Y = Y d = Y f .

This case arises if and only if W̄ = W c/(1 + µ), which is in turn equivalent to P̄
= (1 + µ)W̄/A = W c/A ≡ P c ≡ M/(βY f ). No market has quantity rationing
and we may speak of both the output market and the labor market as balanced
markets.

There are two differences compared with the classical equilibrium, however.
The first is that due to market power, there is a wedge between the real wage and
the marginal productivity of labor. In the present context, though, where labor
supply is inelastic, this does not imply ineffi ciency but only a higher profit/wage-
income ratio than under perfect competition (where the profit/wage-income ratio
is zero). The second difference compared with the classical equilibrium is that due
to price stickiness, the impact of shifts in exogenous variables will be different.
For instance a lower M will here result in unemployment, while in the classical
model it will just lower P and W and not affect employment.

In terms of effective demands and supplies Walras’law does not hold

As we saw above, with Walrasian budget constraints, the aggregate value of
excess demands in the given period is zero for any given price vector, (W,P, 1),
with W > 0 and P > 0. In contrast, with effective budget constraints, effective
demands and supplies, and the short-side rule, this is no longer so. To see this,
consider a pair (W,P ) whereW < PA and P 6= P c ≡M/(βY f ). Such a pair leads
to either the Keynesian regime or the repressed-inflation regime. The pair may,
but need not, equal one of the pairs (W̄ , P̄ ) considered above in Fig. 19.1 or 19.2
(we say “need not”, because the particular µ-markup relationship betweenW and
P is not needed). We have, first, that in both the Keynesian and the repressed-
inflation regime, effective output supply equals full-employment output,

Y s = Y f . (19.26)

The intuition is that in view ofW < PA, the representative firm wishes to satisfy
any output demand forthcoming but it is only able to do so up to the point of
where the availability of workers becomes a binding constraint.

Second, the aggregate value of excess effective demands is, for the considered
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price vector (W,P, 1), equal to

W (Nd −N s) + P (Cd − Y s) + M̂ −M
= W (Nd − N̄) + PCd + M̂ −M − PY f

= W (Nd − N̄) +WN + Π− PY f (by (19.4))

= W (Nd − N̄) + PY − PY f (by (19.2))

= W (Nd − N̄) + P (Y − Y f )

{
< 0 if P > M/(βY f ), and

> 0 if P < M/(βY f ) and W < PA.
(19.27)

The aggregate value of excess effective demands is thus not identically zero. As
expected, it is negative in a Keynesian equilibrium and positive in a repressed-
inflation equilibrium.7 The reason that Walras’law does not apply to effective
demands and supplies is that outside Walrasian equilibrium some of these de-
mands and supplies are not realized in the final transactions.
This takes us to Keynes’refutation of Say’s law and thereby what Keynes and

others have regarded as the core of his theory.

Say’s law and its refutation

The classical principle “supply creates its own demand”(or “income is automat-
ically spent on products”) is named Say’s law after the French economist and
business man Jean-Baptiste Say (1767-1832). In line with other classical econo-
mists like David Ricardo and John Stuart Mill, Say maintained that although
mismatch between demand and production can occur, it can only occur in the
form of excess production in some industries at the same time as there is excess
demand in other industries.8 General overproduction is impossible. Or, by a
classical catchphrase:

Every offer to sell a good implies a demand for some other good.

By “good”is here meant a produced good rather than just any traded arti-
cle, including for instance money. Otherwise Say’s law would be a platitude (a
simple implication of the definition of trade). So, interpreting “good” to mean
a produced good, let us evaluate Say’s law from the point of view of the result
(19.27). We first subtract W (Nd −N s) = W (Nd − N̄) on both sides of (19.27),
then insert (19.26) and rearrange to get

P (Cd − Y ) + M̂ −M = 0, (19.28)

7At the same time, (19.27) together with the general equations Nd = N̄ and Y s = Y f ,
shows that we have M̂ = M in a Keynesian equilibrium (where Y = Cd) and M̂ < M in a
repressed-inflation equilibrium (where Y = Y f ).

8There were two dissidents at this point, Thomas Malthus (1766—1834) and Karl Marx
(1818—1883), two classical economists that were otherwise not much aggreeing.
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for any P > 0. Consider the case W < AP. In this situation every unit produced
and sold is profitable. So any Y in the interval 0 < Y ≤ Y f is profitable from the
supply side angle. Assume further that P = P̄ > P c ≡M/(βY f ). This is the case
shown in Fig. 19.1. The figure illustrates that aggregate demand is rising with
aggregate production. So far so well for Say’s law. We also see that if aggregate
production is in the interval 0 < Y < Y k, then Cd (= Y d) > Y. This amounts
to excess demand for goods and in effect, by (19.28), excess supply of money.
Still, Say’s law is not contradicted. But if instead aggregate production is in the
interval Y k < Y ≤ Y f , then Cd (= Y d) < Y ; now there is general overproduction.
Supply no longer creates its own demand. There is a general shortfall of demand.
By (19.28), the other side of the coin is that when Cd < Y, then M̂ > M, which
means excess demand for money. People try to hoard money rather than spend
on goods. Both the Great Depression in the 1930s and the Great Recession 2008-
can be seen in this light.9

The refutation of Say’s law does not depend on the market power and constant
markup aspects we have adhered to above. All that is needed for the argument is
that the agents are price takers within the period. Moreover, the refutation does
not hinge on money being the asset available for transferring purchasing power
from one period to the next. We may imagine an economy where M represents
land available in limited supply. As land is also a non-produced store of value,
the above analysis goes through − with one exception, though. The exception is
that ∆M in (19.15) can no longer be interpreted as a policy choice. Instead, a
positive ∆M could be due to discovery of new land.
We conclude that general overproduction is possible and Say’s law thereby re-

futed. It might be objected that our “aggregate reply”to Say’s law is not to the
point since Say had a disaggregate structure with many industries in mind. Con-
sidering an explicit disaggregate production sector makes no essential difference,
however, as a simple example will now show.

Many industries* Suppose there is still one labor market, but m industries
with production function yi = Ani, where yi and ni are output and employment in
industry i, respectively, i = 1, 2, . . . ,m. Let the preferences of the representative
household be given by

U =
∑
i

γi ln ci + β ln
M̂

P e
, γi > 0, i = 1, 2, . . . ,m, 0 < β < 1.

9Paul Krugman stated it this way: “When everyone is trying to accumulate cash at the same
time, which is what happened worldwide after the collapse of Lehman Brothers, the result is
an end to demand [for output], which produces a severe recession”(Krugman, 2009).
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In analogy with (19.4), the budget constraint is∑
i

Pici + M̂ = B ≡M +W
∑
i

ni +
∑
i

Πi = M +
∑
i

Piyi,

where the last equality comes from

Πi = Piyi −Wni.

Utility maximization gives Pici = γiB/(1 + β).
As a special case, consider γi = 1/m and Pi = P , i = 1, 2, . . . ,m. Then

ci =
B/m

(1 + β)P
, (19.29)

and
B = M + P

∑
i

yi ≡M + PY.

Substituting into (19.29), we thus find demand for consumption good i as

ci =
M/m
P

+ Y/m

1 + β
≡ yd, for all i.

Let P > min
[
W/A,M/(βY f )

]
, where Y f ≡ AN̄. It follows that every unit

produced and sold is profitable and that

myd =
M
P

+ Y

1 + β
≤

M
P

+ Y f

1 + β
< Y f ,

where the weak inequality comes from Y ≤ Y f (always) and the strict inequality
from P > M/(βY f ).
Now, suppose good 1 is brought to the market in the amount y1, where yd < y1

< Y f/m. Industry 1 thus experiences a shortfall of demand. Will there in turn
necessarily be another industry experiencing excess demand? No. To see this,
consider the case yd < yi < Y f/m for all i. All these supplies are profitable from a
supply side point of view, and enough labor is available. Indeed, by construction
the resource allocation is such that

myd <
∑

yi ≡ Y ≤ mȳ < Y f , (19.30)

where ȳ = max [y1, . . . , ym] < Y f/m. This is a situation where people try to save
(hoard money) rather than spend all income on produced goods. It is an example
of general overproduction, thus falsifying Say’s law.
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In the special case where all yi = Y/m, the situation for each single industry
can be illustrated by a diagram as that in Fig. 19.1. Just replace Y d, Y, Y k,
Y f , and M in Fig. 19.1 by yd, Y/m, Y k/m ≡ M/(mβP ), Y f/m, and M/m,
respectively.
Could the evaluation of Say’s law be more favorable if we allow for the ex-

istence of interest-bearing assets? The answer is no, as we shall see in Chapter
21.

19.2.4 Short-run adjustment dynamics

We now return to the aggregate setup. Apart from the border case of balanced
markets, we have considered two kinds of “fix-price equilibria”, repressed infla-
tion and Keynesian equilibrium. Most macroeconomists consider nominal wages
and prices to be less sticky upwards than downwards. So a repressed inflation
regime is typically regarded as having little durability (unless there are wage and
price controls imposed by a government). It is otherwise with the Keynesian
equilibrium. A way of thinking about this is the following.
Suppose that up to the current period full-employment equilibrium has ap-

plied: Y = Y d = M/(βP̄ ) = Y f and P̄ = (1+µ)W̄/A = W c/A ≡ P c ≡M/(βY f ).
Then, for some external reason, at the start of the current period a rise in the
patience parameter occurs, from β to β′, so that the new propensity to save is
β
′
/(1 + β′) > β/(1 + β). We may interpret this as “precautionary saving” in

response to a sudden fall in the general “state of confidence”.
Let our “period”be divided into n sub-periods, indexed i = 0, 1, 2, . . . , n− 1,

of length 1/n, where n is “large”. At least within the first of these sub-periods,
the preset W̄ and P̄ are maintained and firms produce without having yet realized
that aggregate demand will be lower than in the previous period. After a while
firms realize that sales do not keep track with production.
There are basically two kinds of reaction to this situation. One is that wages

and prices are maintained throughout all the sub-periods, while production is
scaled down to the Keynesian equilibrium Y k = M/(β′P̄ ). Another is that wages
and prices adjust downward so as to soon reestablish full-employment equilibrium.
Let us take each case at a time.

Wage and price stay fixed: Sheer quantity adjustment For simplicity we
have assumed that the produced goods are perishable. So unsold goods represent
a complete loss. If firms fully understand the functioning of the economy and
have model-consistent expectations, they will adjust production per time unit
down to the level Y k as fast as possible. Suppose instead that firms have naive
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adaptive expectations of the form

Ce
i−1,i = Ci−1, i = 0, 1, 2, ..., n.

This means that the “subjective” expectation, formed in sub-period i − 1, of
demand next sub-period is that it will equal the demand in sub-period i− 1. Let
the time-lag between the decision to produce and the observation of the demand
correspond to the length of the subperiods. It is profitable to satisfy demand,
hence actual output in sub-period i will be

Yi = Ce
i−1,i = Cd

i−1 =
M/P̄

1 + β′
+

Yi−1

1 + β′
,

in analogy with (19.19). This is a linear first-order difference equation in Yi, with
constant coeffi cients. The solution is (see Math Tools)

Yi = (Y0 − Y ∗′)
(

1

1 + β′

)i
+ Y ∗′, Y ∗′ =

M

β′P̄
= Y k < Y f . (19.31)

Suppose β′ = 0.9, say. Then actual production, Yi, converges fast towards the
steady-state value Y k. When Y = Y k, the system is at rest. Fig. 19.x illustrates.
Although there is excess supply in the labor market and therefore some downward
pressure on wages, the Keynesian presumption is that the workers’s side in the
labor market generally withstand the pressure.10

Fig. 19.x about here (not yet available).

The process (19.31) also applies “in the opposite direction”. Suppose, starting
from the Keynesian equilibrium Y = M/(β′P̄ ), a reduction in the patience para-
meter β′ occurs, such that M/(β′P̄ ) increases, but still satisfies M/(β′P̄ ) < Y f .
Then the initial condition in (19.31) is Y0 < Y ∗′, and the greater propensity to
consume leads to an upward quantity adjustment.

Downward wage and price adjustment* Several of Keynes’ contempo-
raries, among them A. C. Pigou, maintained that the Keynesian state of affairs
with Y = Y k < Y f could only be very temporary. Pigou’s argument was that a
fall in the price level would take place and lead to higher purchasing power of M.
The implied stimulation of aggregate demand would bring the economy back to

10Possible explanations of downward wage stickiness are discussed in Chapter 24.
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full employment. This hypothetically equilibrating mechanism is known as the
“real balance effect”or the “Pigou effect”(after Pigou, 1943).
Does the argument go through? To answer this, we imagine that the time

interval between different rounds of wage and price setting is as short as our
sub-periods. We imagine the time interval between households’decision making
to be equally short. Given the fixed markup µ, an initial fall in the preset W̄ is
needed to trigger a fall in the preset P̄ . The new classical equilibrium price and
wage levels will be

P c′ =
M

β′Y f
and W c′ = AP c′.

Both will thus be lower than the original ones− by the same factor as the patience
parameter has risen, i.e., the factor β′/β. In line with “classical”thinking, assume
that soon after the rise in the propensity to save, the incipient unemployment
prompts wage setters to reduce W̄ and thereby price setters to reduce P̄ . Let
both W̄ and P̄ after a few rounds be reduced by the factor β′/β. Denoting the
resulting wage and price W̄ ′ and P̄ ′, respectively, we then have

W̄ ′ =
W c′

1 + µ
, P̄ ′ = (1 + µ)

W̄ ′

A
=
W c′

A
≡ P c′ ≡ M

β′Y f
.

Seemingly, this restores aggregate demand at the full-employment level Y d =
M/(β′P̄ ′) = Y f .
While this “classical”adjustment is conceivable in the abstract, Keynesians

question its practical relevance for several reasons:

1. Empirically, it seems to be particularly in the downward direction that
nominal wages are sticky. And without an initial fall in the nominal wage,
the downward wage-price spiral does not get started.

2. A downward wage-price spiral, i.e., deflation, increases the implicit real
interest rate, (Pt − Pt+1)/Pt+1, thus tending to dampen aggregate demand
rather than the opposite.

3. If we go outside our simple model, there are additional objections:

(a) the monetary base is in reality only a small fraction of financial wealth,
and so the real balance effect can not be powerful unless the fall in the
price level is drastic;

(b) many firms and households have nominal debt, the real value of which
would rise dramatically, thereby leading to bankruptcies and a wors-
ening of the confidence crisis, thus counteracting a return to full em-
ployment.
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One should be aware that there are two distinct kinds of “price flexibility”.
It can be “imperfect”or “perfect”(also called “full”). The first kind relates to
a gradual price process, for instance generated by a wage-price spiral as at item
2 above. The latter kind relates to instantaneous and complete price adjustment
as with a Walrasian auctioneer, cf. Section 19.2. It is the first kind that may be
destabilizing rather than the opposite.

Digging deeper

As it stands the above theoretical framework has many limitations. The remain-
der of this chapter gives an introduction to how the following three problems have
been dealt with in the literature:

(i) Price setting should be explicitly modeled, and in this connection there
should be an explanation of price stickiness.
(ii) It should be made clear how to come from the existence of many differ-

entiated goods and markets with imperfect competition to aggregate output and
income which in turn constitute the environment conditioning individual agents’
actions.
(iii) The analysis has ignored that capital equipment is in practice an addi-

tional factor constraining production.

In subsequent chapters we consider additional problems:

(iv) Also wage setting should be explicitly modeled, and in this connection
there should be an explanation of wage stickiness.
(v) A richer picture of the asset markets should be incorporated. At least one

additional financial asset, an interest-bearing asset, should enter. The primary
function of money as a medium of exchange rather than a store of value should
be integrated.
(vi) The model should be truly dynamic with forward-looking endogenous

expectations, capital investment, and gradual wage and price changes depending
on the market conditions. This should lead to an explanation why wages and
prices do not tend to find their market clearing levels relatively fast.

The next section deals with point (i) and (ii), and Section 19.4 with point
(iii).

19.3 Price setting and menu costs

The classical theory of perfectly flexible wages and prices and neutrality of money
treats wages and prices as if they were prices on assets traded in centralized
auction markets. In contrast, the Keynesian conception is that the general price
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level is a weighted average of millions of individual prices set − and sooner or
later reset − in an asynchronous way by price setters in a multitude of markets
and localities.
What we need to understand the determination of prices and their sometimes

slow response to changed circumstances, is a theory of how agents set prices and
decide when to change them and by how much. This brings the objectives and
constraints of agents with market power into the picture. So imperfect competition
becomes a key ingredient of the theory.

19.3.1 Imperfect competition with price setters

Suppose the market structure is one with monopolistic competition:

1. There is a given “large”number,m, of firms and equally many (horizontally)
differentiated products.

2. Each firm supplies its own differentiated product on which it has a monopoly
and which is an imperfect substitute for the other products.

3. A price change by one firm has only a negligible effect on the demand faced
by any other firm.

Another way of stating property 3 is to say that firms are “small”so that each
good constitutes only a small fraction of the sales in the overall market system.
Each firm faces a perceived downward-sloping demand curve and chooses a price
which maximizes the firm’s expected profit, thus implying a mark-up on marginal
costs. There is no perceivable reaction from the firm’s (imperfect) competitors. So
the monopolistic competition setup abstracts from strategic interaction between
the firms and is thereby different from oligopoly.
With respect to assets, so far our framework corresponds to the World’s Small-

est Macroeconomic Model of Section 19.2 in the sense that there are no commer-
cial banks and no other non-human assets than fiat money.

Price setting firms

In the short run there is a given large number, m, of firms and equally many
(horizontally) differentiated products. Firm i has the production function yi
= Anαi , where ni is labor input (raw materials and physical capital ignored).

11

11The following can be seen as an application of the more general framework with price-setting
firms outlined at the end of Chapter 2.
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For notational convenience we imagine measurement units are such that A = 1.
Thereby,

ni = y
1/α
i , 0 < α ≤ 1, i = 1, 2, . . . ,m, m “large”. (19.32)

To extend the perspective compared with Section 19.2, the possibility of rising
marginal costs (α < 1) is now included.
The demand constraint faced by the firm ex ante is perceived by the firm to

be

yi =

(
Pi
P

)−η
Y e

m
≡ D(

Pi
P
,
Y e

m
), η > 1, (19.33)

where Pi is the price set by the firm and fixed for some time, P is the “general
price level” (taken as given by firm i because it is “small” enough for its price
to have any noticeable effect on P ), Y e/m is the expectation (for simplicity the
same for all firms) of the position of the demand curve, and η is the (absolute)
price elasticity of demand (assumed greater than one since otherwise there is no
finite profit maximizing price).12 The firms’expectation of the position of the
demand curve reflects their expectation, Y e, of the general level of demand in the
economy.
Let firm i choose Pi at the end of the previous period with a view to maxi-

mization of expected nominal profit in the current period:

max
Pi

Πi = Piyi −Wni s.t. (19.33),

whereW is the going nominal wage, taken as given by the firm. Wemay substitute
(19.32) and the constraint (19.33) into the profit function to get an unconstrained
maximization problem which is then solved for Pi. The more intuitive approach,
however, is to apply the rule that the profit maximizing quantity of a monopolist
(in the standard case with non-decreasing marginal cost) is the quantity at which
marginal revenue equals marginal cost,

MRi = MCi =
W

α
y

1
α
−1

i . (19.34)

Total revenue is TRi = Pi(yi)yi, where Pi(yi) is the price at which expected sales
is yi units. So

MRi =
dTR

dyi
= Pi(yi) + yiP

′
i (yi) = Pi(yi)(1 +

yiP
′
i (yi)

Pi(yi)
) (19.35)

= Pi(yi)(1−
1

η
) =

(
yi

Y e/m

)−1/η

P
η − 1

η
,

12Chapter 20 gives an account of the class of consumer preferences that underlie the constancy
of this price elasticity. That chapter also presents a precise definition of the “general price level“.
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where we have inserted Pi(yi) = (yi/(Y
e/m))−1/η P, which follows from (19.33).

Inserting this into (19.34), the unique solution for yi is the profit maximizing
quantity, given Y e and P. We denote this planned individual output level yei .
The associated price is

P̄i = Pi(y
e
i ) =

η

η − 1

W

α
(yei )

1
α
−1 ≡ (1 + µ)

W

α
(yei )

1
α
−1, (19.36)

where the second equality comes from (19.35) inserted into (19.34), and µ is
the mark-up on marginal cost at output level yei , that is, 1 + µ = η(η − 1)−1

= 1 + (η − 1)−1.
This outcome is illustrated in Fig. 19.3 for the case α < 1 (decreasing returns

to scale). For fixed Y e and P, the perceived demand curve faced by firm i is
shown as the solid downward-sloping curve D(Pi/P, Y

e/m) to which corresponds
the marginal revenue curve, MR. For fixed W, the marginal costs faced by the
firm are shown as the upward-sloping marginal cost curve, MC. It is assumed
that firm i knows W in advance. The price P̄i is set in accordance with the rule
MR = MC.
Because of the symmetric setup, all firms end up choosing the same price,

which therefore becomes the general price level, i.e., P̄i = P, i = 1, 2,. . . ,m. So
all firms’planned level of sales equals the expected average real spending per
consumption good, i.e., yei = Y e/m ≡ ye, i = 1, 2,. . . ,m.
In case actual aggregate demand, Y d, turns out as expected, firm i’s actual

output, yi, equals the planned level, ye. As this holds for all i, we have in this
case

Y ≡
∑

i P̄iyi
P

=
∑
i

yi =
∑
i

ye = Y e = Y d. (19.37)

In some new-Keynesian models the labor market is described in an analogue
way with heterogeneous labor organized in craft unions and monopolistic com-
petition between these. To avoid complicating the exposition, however, we here
treat labor as homogeneous. And until further notice we will simply assume that
at the going wage there is enough labor available to carry out the desired produc-
tion. We shall consider the question: If aggregate demand in the current period
turns out different from expected, what will the firms do: change the price or
output or both? To fix ideas we will concentrate on the case where the wage
level, W, is unchanged. In that case the answer will be that “only output will be
adjusted”if one of the following conditions is present:

(a) The marginal cost curve is horizontal and the price elasticity of demand is
constant.

(b) The perceived cost of price adjustment exceeds the potential benefit.
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Figure 19.3: Firm i’s price choice under the expectation that the general demand level
will be Y ε (the case α < 1). The demand curve for a higher general demand level, Y d,
is also shown.
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That point (a) is suffi cient for “only output will be adjusted”(as long asW is
unchanged) follows from (19.36) with α = 1. With rising marginal costs (α < 1),
however, the presence of suffi cient price adjustment costs becomes decisive.

19.3.2 Price adjustment costs

The literature has modelled price adjustment costs in two different ways. Menu
costs refer to the case where there are fixed costs of changing price. Another case
considered in the literature is the case of strictly convex adjustment costs, where
the marginal price adjustment cost is increasing in the size of the price change.
As to menu costs, the most obvious examples are costs associated with:

1. remarking commodities with new price labels,

2. reprinting price lists (“menu cards”) and catalogues.

But “menu costs”should be interpreted in a broader sense, including pecuniary
as well as non-pecuniary costs associated with:

3. information-gathering and recomputing optimal prices,

4. conveying rapidly the new directives to the sales force,

5. the risk of offending customers by frequent price changes (in particular when
they are upward),

6. search for new customers willing to pay a higher price,

7. renegotiation of contracts.

Menu costs induce firms to change prices less often than if no such costs were
present. And some of the points mentioned in the list above, in particular point
6 and 7, may be relevant also in the different labor markets.
The menu cost theory provides the more popular explanation of nominal price

stickiness. Another explanation rests on the presumption of strictly convex price
adjustment costs. In this theory the cost for firm i of changing price is assumed to
be kit = ξi(Pit−Pit−1)2, ξi > 0. Under this assumption the firm is induced to avoid
large price changes, which means that it tends to make frequent, but small price
adjustments. This theory is related to the customer market theory. Customers
search less frequently than they purchase. A large upward price change may be
provocative to customers and lead them to do search in the market, thereby per-
haps becoming aware of attractive offers from other stores. The implied “kinked

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



756 CHAPTER 19. THE THEORY OF EFFECTIVE DEMAND

demand curve” can explain that firms are reluctant to suddenly increase their
price.13

Below we describe the role of the first kind of price adjustment costs, menu
costs, in more detail.

The menu cost theory

The menu cost theory originated almost simultaneously in Akerlof and Yellen
(1985a, 1985b) and Mankiw (1985). It makes up the predominant microfoun-
dation for the presumption that nominal prices and wages tend to be sticky in
the short run vis-a-vis demand changes. For simplicity, we will concentrate on
product prices and downplay the intertemporal aspects of price-setting.
The key theoretical insight of the menu cost theory is that even small menu

costs can be enough to prevent firms from changing their price vis-a-vis demand
changes. This is because the opportunity cost of not changing price is only
of second order, that is, “small”, which is a reflection of the envelope theorem;
hence the potential benefit of changing price can easily be smaller than the cost
of changing price. Yet, owing to imperfect competition (price > MC ), the effect
on aggregate output, employment, and welfare of not changing prices is of first
order, i.e., “large”. Let us spell this out in detail.
As in the World’s Smallest Macroeconomic Model, suppose the aggregate

demand is proportional to the real money stock:

Y d =
M

βP
, (19.38)

where β ∈ (0, 1) is a parameter reflecting consumers’patience. Consider now
firm i, i = 1, 2, . . . ,m, contemplating its pricing policy. With actual aggregate
demand as given by (19.38) inserted into (19.33), the nominal profit as a function
of the chosen price, Pi, becomes

Πi = Piyi −Wy
1/α
i = Pi

(
Pi
P

)−η
M

mβP
−W

((
Pi
P

)−η
M

mβP

)1/α

(19.39)

≡ Π(Pi, P,W,M).

Suppose that, initially, Pi = P̄i, where P̄i is the unique price that maximizes Πi,
given P,W, and M. By (19.36) with yei = M/(mβP ), we have

P̄i = (1 + µ)
W

α

(
M

mβP

) 1
α
−1

. (19.40)

13For details in a macro context, see McDonald (1990).
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Figure 19.4: The profit curve is flat at the top (α < 1, P and W are fixed, M ′ > M).

In our simplifying setup there is complete symmetry across the firms so that
the profit maximizing price is in fact the same for all firms. Nevertheless we
maintain the subscript i on the profit-maximizing price since the logic of the
menu cost theory is valid independently of this symmetry. We let Π̄i denote firm
i’s maximized profit, i.e.,

Π̄i = Π(P̄i, P,W,M),

as illustrated in Fig. 19.4.
In view of the constant price elasticity, η, of demand and hence constant

markup, µ, if marginal costs are constant, i.e., α = 1, aggregate demand does not
matter for the profit-maximizing price, cf. (19.40). So the case of interest in a
Keynesian context is the case with rising marginal costs. So we here assume that
α < 1. In this case, by (19.40), a higher M, for unchanged P and W, will imply
higher P̄i as also illustrated in Fig. 19.4.
Given the price Pi = P̄i, set in advance, suppose that, at the beginning of

the period, an unanticipated, fully money-financed lump-sum transfer payment
to the households takes place so thatM in (19.38) is replaced byM ′ = M +∆M,
where ∆M > 0. Suppose further that both W and P remain unchanged, that
is, no other price setter responds by changing price. Let P̄ ′i denote the new price
which under these conditions would be profit maximizing for firm i in the absence
of menu costs. Fig. 19.4 illustrates. Will firm i have an incentive to change its
price to P̄ ′i? Not necessarily. The menu cost may exceed the opportunity cost
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associated with not changing price. This opportunity cost to firm i tends to be
small. Indeed, considering the marginal effect on Π of the higher M, we have

dΠ

dM
(P̄i, P,W,M) =

∂Π

∂Pi
(P̄i, P,W,M)

∂Pi
∂M

+
∂Π

∂M
(P̄i, P,W,M) (19.41)

= 0 +
∂Π

∂M
(P̄i, P,W,M).

The first term on the right-hand side of (20.36) vanishes at the profit maximum
because ∂Π/∂Pi = 0 at the point (P̄i, P,W,M), i.e., the profit curve is flat at the
profit-maximizing price P̄i. Moreover, since our thought experiment is one where
P and W remain unchanged, there is no indirect effect of the rise in M via P or
W . Thus, only the direct effect through the fourth argument of the profit function
is left. And this effect is independent of a marginal change in the price. This
result reflects the envelope theorem: in an interior optimum, the total derivative
of a maximized function w.r.t. a parameter equals the partial derivative w.r.t.
that parameter.14

The relevant parameter here is the aggregate money stock, M . As Fig. 19.4
visualizes, the effect of a small change in M on the profit is approximately the
same (to a first order) whether or not the firm adjusts its price. In fact, owing
to the envelope theorem, for an infinitesimal change in M , the profit of firm i is
not affected at all by a marginal change in its price.
For a finite change in M this is so only approximately. First, (19.39) shows

that the entire profit curve is shifted up, cf. Fig. 19.4. Second, from (19.40)
follows that there will be a discernible rise in the profit-maximizing price, in Fig.
19.4 from P̄i to P̄ ′i . So the new top of the profit curve is north-east of the old.
It follows that by not changing price a potential profit gain is left unexploited.
Still, if the rise in M in not “too large”, the slope of the profit curve at the old
price P̄i may still be small enough to be dominated by the menu cost.
Given a change in M of size ∆M > 0, the opportunity cost of not changing

price can be shown to be of “second order”, i.e., proportional to (∆M/M)2.15

This is a “very small”number, when |∆M/M | is just “small”. Therefore, in view
of the menu cost, say c, it may be advantageous not to change price. Indeed, the
net gain (= c − opportunity cost) by not changing price may easily be positive.
Suppose this is so for firm i, given that the other firms do not change price. Since
each individual firm is in the same situation as long as the other firms have not
changed price, the outcome that no firm changes its price is an equilibrium. As
in this equilibrium there is no change in the general price level, there will be a
higher output level than without the rise in M .
14For a general statement, see Math Tools.
15Appendix A shows this by taking a second-order Taylor approximation of the opportunity

cost.
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The reference to changes in the money stock, M, in this discussion should
not be misunderstood. It is not as a medium of exchange or similar that M
has a role in the model, but as the sole constituent of non-human wealth. The
increase in M does not reflect an open market purchase of bonds by the central
bank, but a money-financed government budget deficit created by transfers to
the households without any taxes in the opposite direction. This amounts to a
combined monetary-fiscal stimulus to the economy, an example of “quantitative
easing”in monetary economists’jargon.

Doesn’t W respond?

The considerations above presuppose that workers or workers’ unions do not
immediately increase their wage demands in response to the increased demand
for labor. This assumption can be rationalized in two different ways. One way is
to assume that also the labor market is characterized by monopolistic competition
between craft unions, each of which supplies its specific type of labor. If there
are menu costs associated with changing the wage claim and they are not too
small, the same envelope theorem logic as above applies and so, theoretically, an
increase in labor demand need not in the short run have any effect on the wage
claims.
There is an alternative way of rationalizing absence of an immediate upward

wage pressure. This alternative way is more apt in the present context since we
have treated labor as homogeneous, implying that there is no basis for existence
of many different craft unions.16 Instead, let us here assume that involuntary
unemployment is present. This means that there are people around without a
job although they are as qualified as the employed workers and are ready and
willing to take a job at the going wage or even a lower wage.17 Such a state
of affairs is in fact what several labor market theories tell us we should expect
to see often. In both effi ciency wage theory, social norms and fairness theory,
insider-outsider theory, and bargaining theory, there is scope for a wage level
above the individual reservation wage (see Chapter 24). Presence of involuntary
unemployment implies that employment can change with negligible effect on the
wage level in the short run. In combination with little price sensitivity to output
and employment changes, this observation also offers a rationalization of stylized
fact no. 2 in the list of Section 19.1 saying that relative prices, including the real

16Even with heterogenous labor, the craft union explanation runs into an empirical problem
in the form of a “too low”wage elasticity of labor supply according to the microeconometric
evidence. We come back to this issue in later chapters, including the next.
17Although the term “involuntary”may provoke moral sentiment, this definition of involun-

tary unemployment should be understood as purely technical, referring to something that can
in principle be measured by observation.
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wage, exhibit little sensitivity to changes in the corresponding quantities, here
employment.

19.3.3 Menu costs in action

Under these conditions even small menu costs can be enough to prevent firms
from changing their price in response to a change in demand. At the same time
even small menu costs can have sizeable effects on aggregate output, employment,
and social welfare. To understand this latter point, note that under monopolis-
tic competition neither output, employment, or social welfare are maximized in
the initial equilibrium. Therefore the envelope theorem does not apply to these
variables.
This line of reasoning is illustrated in Fig. 19.5. There are two differences

compared with Fig. 19.3. First, aggregate demand is now specified as in (19.38).
Second, along the vertical axis we have set off the relative price, Pi/P, so that
marginal revenue,MR, as well as marginal costs,MC, are indicated in real terms,
i.e.,MR = MR/P andMC = MC/P. For fixed M/P, the demand curve faced
by firm i is shown as the solid downward-sloping curve D(Pi/P,M/(mβP )) to
which corresponds the real marginal revenue curve,MR. For fixedW/P, the real
marginal costs faced by the firm are shown as the upward-sloping real marginal
cost curve,MC (recall that we consider the case α < 1).

If firms have rational (model consistent) expectations and know M and W in
advance, we have Y e = M/(βP ). The price chosen by firm i in advance, given this
expectation, is then the price P̄i shown in Fig. 19.3. As the chosen price will be the
same for all firms, the relative price, Pi/P, equals 1 for all i. Equilibrium output
for every firm will then be M/(mβP ), as indicated in the figure. If the actual
money stock turned out to be higher than expected, say M ′ = λM, λ > 1, and
there were no price and wage adjustment costs and if wages were also multiplied
by the factor λ, prices would be multiplied by the same factor and the real money
stock, production, and employment be unchanged.
With menu costs, however, it is possible that prices and wages do not change.

The menu cost may make it advantageous for each single firm not to change price.
Then, the higher nominal money stock translates into a higher real money stock
and the demand curve is shifted to the right, as indicated by the stippled demand
curve in Fig. 19.5. As long as P̄i/P > MC still holds, each firm is willing to
deliver the extra output corresponding to the higher demand. The extra profit
obtainable this way is marked as the hatched area in Fig. 19.5. Firms in the other
production lines are in the same situation and also willing to raise output. As a
result, aggregate employment is on the point of increasing. The only thing that
could hold back a higher employment is a concomitant rise in W in response to
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Figure 19.5: The impact in general equilibrium of a shift to M ′ > M when menu costs
are binding (the case α < 1).

the higher demand for labor. Assuming presence of involuntary unemployment in
the labor market hinders this, the tendency to higher employment is realized, and
firm i’s production ends up at y′i in Fig. 19.5, while the price P̄i is maintained. The
other firms act similarly and the final outcome is higher aggregate consumption
and higher welfare.
Thus, the effects on aggregate output, employment, and social welfare of not

changing price can be substantial; they are of “first order”, namely proportional
to |∆M/M | , as implied by the aggregate demand formula (19.38).
In the real world, nominal aggregate demand (here proportional to the money

stock) fluctuates up and down around some expected level. Sometimes the welfare
effects of menu costs will be positive, sometimes negative. Hence, on average
the welfare effects tend to cancel out to a first order. This does not affect the
basic point of the menu cost theory, however, which is that changes in aggregate
nominal demand can have first-order real effects (in the same direction) because
the opportunity cost by not changing price is only of second order.18

18Sustained increases in aggregate demand are likely to lead to capacity investment by the
existing firms or entry of new firms supplying substitutes.
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A reservation As presented here, the menu-cost story is not entirely convinc-
ing. The rather static nature of the setup is a drawback. An elementary weakness
is that the setup does not give a clear answer to the question: To what extent is
it a change from a given past price, P̄i,t−1, to the preset price, P̄i,t, for the current
period that is costly and to what extent is it a change from the preset price, P̄i,t,
for the current period to another ex-post price for this period that is costly?
More importantly, considering a sequence of periods, there would in any period

be some prices that are not at their ex ante “ideal”level. The firms in question
are then not at the flat part of their profit curve. The menu cost necessary
to prevent price adjustment will then be higher for these firms, thus making it
more demanding for menu costs to be decisive. Moreover, in an intertemporal
perspective it is the present value of the expected stream of future gains and costs
that matter rather than instantaneous gains and costs. An aspect of a complete
dynamic modeling is also that ongoing inflation would have to be taken into
account. In modern times where money is paper money (or electronic money),
there is usually an underlying upward trend in the general input price level.
To maintain profitability, the individual producers will therefore surely have to
adjust their prices from time to time. The decision about when and how much
to change price will be made with a view to maximizing the present value of the
expected future cash flow taking the expected menu costs into account.19

The key point from static menu-cost theory, based on the envelope theorem,
is not necessarily destroyed by the dynamics of price-setting. It becomes less
cogent, however.

The rule of the minimum

For a preset price, P̄i, it is beneficial for the firm to satisfy demand as long
as the corresponding output level is within the area where nominal marginal
cost is below the price. Returning to Fig. 19.3, actual aggregate demand is
given as Y d. Let actual demand faced by firm i be denoted ydi , so that y

d
i =

D(P̄i/P, Y
d/m). Compare this demand to yci , defined as the production level at

which MC = P̄i (assuming α < 1). This is the production level known as the
Walrasian or classical or competitive supply by firm i (the superscript “c”stands
for “classical”or “competitive”). It indicates the output that would prevail under
perfect competition, givenW, Pi = P̄i, and the assumption of rising marginal costs
(α < 1). As this desired output level is a function of only W and P̄i, we write it
yci = yc(W, P̄i). In the case of constant MC, i.e., α = 1, we interpret yc(W, P̄i) as
+∞.
As long as ydi < yci , and enough labor is available, actual output will be

19As to contributions within this dynamic perspective, see Literature notes.
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yi = ydi . If y
d
i > yci , however, the firm will prefer to produce only yci . Producing

beyond this level would entail a loss since marginal cost would be above the
price. Presupposing enough labor is available, the rule is therefore that given the
demand D and the classical supply yci , actual production is the minimum of the
two, that is,

yi = min

[
D(

P̄i
P
,
Y d

m
), yc(W, P̄i)

]
.

Given the production function yi = nαi , i = 1, 2, . . . ,m, the corresponding
effective labor demand by firm i is

ndi = y
1/α
i .

The aggregate effective labor demand is Nd =
∑m

i=1 n
d
i . Let the aggregate effective

supply of labor be a given constant, N̄ , and assume that in the short run n̄ ≡
N̄/m workers are available to each firm. Then the effective supply of firm i is
min

[
yc(W, P̄i), n̄

α
]
. Actual output of firm i will be

yi = min

[
D(

P̄i
P
,
Y d

m
), yc(W, P̄i), n̄

α

]
, (19.42)

that is, the minimum of effective demand, classical supply, and output at full
employment in “product line i”. This rule is known as the rule of the minimum.20

If at the given wage and price level, labor supply is the binding constraint in
most of the product lines, repressed inflation, as defined in Section 19.2, prevails
with excess demand for labor and goods.

Keynesian versus classical unemployment In the opposite case, where la-
bor is abundant in the economy, two different kinds of unemployment are possible.
If the demand, D, is the binding constraint in most of the product lines, the re-
sulting unemployment is known as Keynesian unemployment. This is a situation
where both the typical output market and the labor market are in a state of
“buyers’market”(sale less than preferred).
The alternative possibility is that the classical supply, yc, is the binding con-

straint in most of the product lines. In this case the resulting unemployment is
known as classical unemployment. This is a situation with downward pressure on
the wage level and upward pressure on the price level. The huge unemployment
during the Great Depression in the interwar period was by most economists of the

20Note that this rule determines production of the single firm. It is related to, but not
identical to the short-side rule, which we encountered in Section 19.2. This is the “voluntary
trade”principle saying that the actual quantity traded in a market is the minimum of effective
demand and effective supply in the market.
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time diagnosed as a momentary phenomenon caused by a “too high real wage”.
Keynes and a few like-minded disagreed. It is in this context that the quote by
the outstanding French economist Edmond Malinvaud (1923-) at the front page
of this chapter should be seen.
In the World’s Smallest Macroeconomic Model of Section 19.2 classical un-

employment can not occur because of constant marginal costs combined with a
positive mark-up µ. The limiting case α = 1 in our present disaggregate model
also leads to MC = W, a constant. Thus (19.42) gives yi = D(P̄i/P, Y

d/m)
< yc(W, P̄i) = +∞ for all i. All the goods markets are demand-constrained and
any unemployment is thereby Keynesian. Note also that because of constantMC
combined with the constant mark-up, no menu costs are needed to maintain that
the output level rather than prices respond to changes in aggregate demand, Y d.
Although constant MC within certain limits may be an acceptable assump-

tion, an additional factor potentially constraining production in the short run is
the capital equipment of the firm. Hitherto this factor has not been visible. Or
we might say that the case of rising MC (α < 1) can be interpreted as reflecting
that in practice labor is not the only production factor. This motivates the next
section.

19.4 Abundant capacity

One of the stylized facts listed in Section 19.1 is that under “normal circum-
stances”a majority of firms in an industrialized economy respond to short-run
shifts in aggregate demand by adjusting production rather than price. Key el-
ements in the explanation of this phenomenon have been sketched: (a) the dis-
tinction between Walrasian and effective demand and supply; (b) price setting
agents in markets with imperfect competition; (c) the “envelope argument”that
the potential benefit of adjusting the price can easily be smaller than the cost of
adjusting; and (d) because prices are generally above marginal costs, firms are
willing to adjust production when aggregate demand shocks occur.
This leads us to the problem whether quantity adjustment is in the main

realizable in the short run. Under the assumption that involuntary unemployment
is present, lack of workers will not be an impediment. But the production capacity
of firms depends also on their command of capital equipment. To throw light on
this aspect we now let the production function have two inputs, capital and labor.

19.4.1 Putty-clay technology

Suppose firm i has the production function

yi = f(ki, ni), (19.43)
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where ki is the installed capital stock and ni the labor input, i = 1, 2, . . . ,m. (At
the disaggregate level we use small letters for the variables. So, contrary to earlier
chapters, ki is here not the capital-labor ratio, but simply the capital stock in
firm i.) Because of strictly convex installation costs, ki is given in the short run.
Raw materials and energy are ignored. So in the short run the capital costs are
fixed but labor costs variable since ni can be varied.
Realistic short-run analysis makes a distinction between the “ex ante” and

the “ex post”production function. By ex ante is here meant the point in time
where the decision about investment, whether in plant or equipment, is to be
made. We imagine that in making this decision, a wide range of production
techniques (input-output combinations) is available as represented by the function
f in (19.43), hence called the ex ante production function. The decision will be
made with a forward-looking perspective. Construction and installation are time
consuming and to some extent irreversible.
By ex post is meant “when construction and installation are finished and the

capital is ready for use”. In this situation, the substitutability between capital
and labor tends to be limited. Our long-run models in previous chapters implicitly
ignored this aspect by assuming that substitutability between capital and labor
is the same ex ante and ex post. In reality, however, when a machine has been
designed and installed, its functioning will often require a more or less fixed
number of machine operators. What can be varied is just the degree of utilization
of the machine per time unit. In the terminology of Section 2.5 of Chapter
2, technologies tend in a short-run perspective to be “putty-clay” rather than
“putty-putty”.
An example: suppose the production function f in (19.43) is a neoclassical

production function. This is our ex ante production function. Ex post, this
function no longer describes the choice opportunities for firm i. These are instead
given by a Leontief production function with CRS:

yi = min(Auik̄i, Bni), A > 0, B > 0, (19.44)

where A and B are given technical coeffi cients, k̄i is the size of the installed cap-
ital (now a fixed factor) and ui its utilization rate (0 ≤ ui ≤ 1), i = 1, . . . ,m.21

Presumably the firms would have acquired their capital equipment under different
circumstances at different points in time in the past so that, generally, the equip-
ment would be somewhat heterogeneous and A and B would be index numbers
and differ across the firms. To make aggregation simple, however, the analyst
may be tempted in a first approach to ignore this complication and assume A
and B are the same across the firms.
21The link between the ex ante production function f and the technical coeffi cients A and B

was described in Chapter 2.
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Figure 19.6: Firm i in a Keynesian equilibrium (Ak̄i is production capacity; MC curve
first horizontal and then vertical at yi = Ak̄i).

19.4.2 Capacity utilization and monopolistic-competitive
equilibrium

Capacity utilization in a Keynesian equilibrium

Under “full capacity utilization”we have ui = 1 (each machine operating “full
time”seven days a week, allowing for surplus time for repairs and maintenance);
“capacity”is given asAk̄i per week. Producing effi ciently at capacity requiresni =
Ak̄i/B. But if demand, ydi , is less than capacity, satisfying this demand effi ciently
requires ni = ydi /B and ui = Bni/(Ak̄i) < 1. As long as ui < 1, there is unused
capacity, and marginal productivity of labor in firm i is a constant, B.
The (pure) profit of firm i is Πi = Piyi−C(yi,W, Fi), where C(yi) = Wyi/B+Fi

is the cost function with Fi denoting the fixed costs deriving from the fixed
production factor, k̄i. Average cost is AC = C(yi)/yi = W/B+Fi/yi and marginal
cost is a constant MC = W/B for yi < Ak̄i.
Fig. 19.6 depicts these cost curves together with a downward-sloping de-

mand curve. A monopolistic-competition market structure as described in Sec-
tion 19.3.1 is assumed but now only a subset of them firms produce differentiated
consumption goods. The other firms produce differentiated capital goods, also
under conditions of monopolistic competition and with the same price elasticity
of demand.
Firm i presets the price of good i at Pi = P̄i in the expectation that the level

of demand will be as indicated by the downward sloping D curve in Fig. 19.6.
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The point ESR in the figure represents a standard short-run equilibrium under
monopolistic competition with output level such that MC = MR. Assuming full
symmetry across the different firms, the point ESR would also reflect a Keynesian
equilibrium if the actual demand level (position of the demand curve) had turned
out to be as expected by the firms when fixing their price. But in the figure
it is assumed that the demand level turned out lower. The produced quantity
is reduced while the price remains unchanged (because of either menu costs or
simply the constant marginal costs combined with constant price elasticity of
demand). Firm i ends up with actual production equal to y′i in Fig. 19.6. The
obtained (pure) profit is indicated by the hatched rectangle constructed by the
help of the average cost curve AC.
By interpreting y′i in Fig. 19.6 as actual production we have implicitly as-

sumed that enough labor is available. We let this “labor abundance”be under-
stood throughout this discussion. If the picture in Fig. 19.6 is representative
for the economy as a whole, the unemployment in the economy is predominantly
Keynesian.
If the actual demand level had turned up higher than expected, firm i would

be induced to raise production. There is scope for this because price is above
marginal costs the whole way up to full capacity utilization. Profits will by this
expansion of production become substantially higher than expected because the
profit on the marginal unit sold is higher than average profit per unit as a result
of the AC curve being downward-sloping up to the production level Ak̄i.
Anyway, all the way up toAk̄i we have a situation where the quantity produced

is less than the quantity at which average costs are at the minimum. Such a
situation is sometimes said to reflect “excess capacity”. But “excess”sounds as
if the situation reveals a kind of ineffi ciency, which need not be the case. So we
prefer the term “abundant capacity”.

A monopolistic-competitive long-run equilibrium

The picture is essentially the same in a “free-entry-and-exit equilibrium”where
all pure profit is eliminated; in the theory of industrial organization this is known
as a “long-run equilibrium”. Suppose that initially some of the firms get positive
pure profits as illustrated in Fig. 19.6. This state of affairs invites entry of new
firms. Over time these set up new plants and begin to supply new differentiated
goods from a large set of as yet unutilized possible imperfect substitutes for the
existing goods. The entry process continues until equilibrium with zero pure
profits applies to all product lines. When this state is reached, prices equal both
short- and long-run average costs, and each firm operates where the downward-
sloping demand curve is tangent to both AC curves. By “short-run”we mean a
time horizon within which only a subset of the production factors are variable,
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Figure 19.7: Firm i in a monopolistic-competition long-run equilibrium (y∗i is long-run
equilibrium output and A∗k∗i is long-run production capacity).

while “long-run”refers to a time horizon long enough for all production factors
to be variable.

From a macroeconomic perspective the important conclusion is that the “tran-
sition” from short-run equilibrium to long-run equilibrium in no way tends to
lessen the presence of abundant capacity in the firms.

To portray a long-run equilibrium, we only need to let the AC curve for firm
i’s chosen plant and equipment be tangent to the demand curve at the point
ELR. This is what we have done in Fig. 19.7 where also the long-run marginal
and average cost curves are visible, denoted LMC and LAC, respectively. The
LMC curve is assumed U-shaped. This implies a U-shaped LAC curve. The
downward-sloping part of the LMC curve may be due to indivisibilities of plant
and equipment. And the upward-sloping part may reflect coordination problems
or an implicit production factor which is tacitly held fixed (a special managerial
expertise, say).

Independently of the long-run versus short-run perspective, we have in Fig.
19.7 introduced the case where the short-run marginal cost curve, MC, is hori-
zontal only up to certain rate of capacity utilization ū < 1. It then rises gradually
and ends up as vertical at full capacity utilization. This is to open up for the
possibility that a decision to produce more here and now may imply bringing less
effi cient standby equipment to use. Also the wear and tear on the machinery may
be raised. This amounts to a “rounding off”of the possibly too “sharp”Leontief
production function (19.44). Instead, effi cient production could here be described
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by

ni =

{
yi/B if yi < ȳi ≡ ūAk̄i,

ȳi/B + (yi − ȳi)1/α/B if ȳi ≤ yi ≤ Ak̄i, 0 < α < 1.

An alternative or additional reason for the MC curve to be upward-sloping at
high capacity utilization is wage bonuses for working on the night shift or in the
weekend.
Also in this more realistic setup is abundant capacity revealed as a sustainable

equilibrium phenomenon. In long-run equilibrium each firm produces at a point
where:

• price is above marginal costs so as to exactly cover fixed costs;

• the quantity produced is less than the quantity at which average costs are
at the minimum (i.e., where the MC curve crosses the AC curve in Fig.
19.7), given the firm’s preferred plant and equipment.

The conclusion is that as long as the AC curve does not shift (this would
happen if the general wage level changed), firms are more than willing to ac-
commodate an increased demand (outward shift of the demand curve) at an
unchanged price or even at a lower price by an increase in production. Similarly,
an inward shift of the demand curve will not lead to a temptation to reduce the
price, rather the opposite if the menu cost is immaterial. These observations fit
well with the huge amount of sales promotion we see. They also fit with the
empirical evidence that measured total factor productivity and gross operating
profits rise in an economic upturn and fall in a downturn, an issue to which we
return in Part VII of this book.

Finer shades*

Oligopoly In the real world some markets are better characterized by strategic
interaction between a few big firms than by monopolistic competition. This is a
situation where abundant capacity may result not only from falling average costs
but also from a strategic incentive. Maintaining abundant capacity will make
credible a threat to cut price in response to unwelcome entry by a competitor.

Contestable markets A contestable market is a market for a homogeneous
good where, because of large economies of scale, the quantity at which average
costs are at the minimum exceeds the size of the market so that there is only
room for one firm if production costs should be minimized.22 The mere “threat

22Cf. Tirole (1988).
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of entry”induces average cost-pricing by the incumbent. So, with the point ELR
interpreted as the long-run equilibrium under these conditions, Fig. 19.7 also
portrays this situation. Again “abundant capacity”is displayed.

The role of indivisibilities The downward-sloping part of the LAC curve,
reflecting indivisibilities in plant and equipment, is important also from another
perspective. Without indivisibilities it may be diffi cult to see why involuntarily
unemployed workers could not just employ and support themselves in the back-
yard, financing the needed tiny bits of capital by tiny bank loans. This point is
developed further in, e.g., Weitzman (1982).

19.4.3 Aggregation over different regimes*

Returning to Figure 19.6, let us assume that the position of the demand curve
faced by firm i is shifted to the right so that the production capacity Ak̄i becomes
a binding constraint on y′i. Suppose further that most of the industries are in this
situation. If unemployment is still massive, it is no longer mainly Keynesian,
but a particular form of classical unemployment. Neither aggregate demand nor
production costs as such like in Section 19.3.1, but simply the lack of suffi cient
capital is the binding constraint on employment. This state of affairs amounts
to a form of classical unemployment known as Marxian unemployment because
it was emphasized in the economic writings of Karl Marx.
Even though the phenomenon of insuffi cient capital is generally regarded as

more common in developing countries (and in the pre-industrial period of Western
Europe), it also appears from time to time in specific product lines of industri-
alized countries under structural change. Similarly, the constraint from labor
supply may from time to time be binding in other product lines. Macroeconomic
analysis should therefore allow for different regimes in the different product lines
of the economy.
Let us imagine that firm i (or industry i) not only produces its own differ-

entiated good i but is also distinguished by using a particular type of labor, say
“local labor”, effectively supplied in the amount nsi . According to the rule of the
minimum, actual production will then be

yi = min(ydi , y
c
i , y

f
i ), i = 1, . . . ,m,

where yci ≡ Ak̄i and y
f
i ≡ Bnsi . Depending on which is the binding constraint,

ydi , y
c
i , or y

f
i , firm i is either in the Keynesian regime, the classical regime, or the

repressed-inflation regime.
Because of technological change and changes in demand patterns we expect

some regime heterogeneity, known as mismatch, to evolve in the economy as
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a whole. For the aggregate level, we define Y D ≡
∑

i y
d
i , Y C ≡

∑
i y

c
i , and

Y F ≡
∑

i y
f
i . Then, in general, Y ≡

∑
i yi < min(Y D, Y C, Y N).

As an alternative to an aggregate min condition as in Section 19.2, a large
multicountry study of Western European unemployment since the 1960s, entitled
Europe’s Employment Problem,23 introduced a statistical distribution of demands
and supplies on micro-markets for goods and labor in each country at a given
point in time. The approach can briefly be described as follows. Suppose the
micro-market values yd and yc are jointly log-normally distributed:[

log yd

log yc

]
∼ N

[(
ξd
ξc

)
,

(
σ2
d cov
cov σ2

c

)]
.

Then log(yd/yc) ∼ N (ξd− ξc, σ2), where σ2 = σ2
d + σ2

c − 2cov. Letting Y ∗ denote
firms’aggregate desired output (aggregate output in case labor supply nowhere is
the binding constraint), it can be shown24 that

Y ∗ ≈ (Y D−ρ + Y C−ρ)−1/ρ, ρ > 0, (19.45)

that is, Y ∗ is approximately a constant-returns-to-scale CES function of Y D and
Y C. The inverse of ρ is then an increasing function of the variance of log(yd/yc)
and is therefore a measure of the “degree of mismatch” between the demand
constraint and the capacity constraint. Indeed, it can be shown that (Y D−ρ +
Y C−ρ)−1/ρ < min(Y D, Y C) for ρ ∈ (0,∞) and that limρ→∞(Y D−ρ + Y C−ρ)−1/ρ

= min(Y D, Y C), saying that as 1/ρ→ 0, mismatch on the firms’side disappears.
As to mismatch in the labor markets, consider firm i’s actual employment ni

= min(ndi , n
s
i ), where n

d
i = min(ydi , y

c
i ) is effective demand for labor, and n

s
i is

the effective supply of labor. Given the Leontief production function (19.44), the
aggregate effective demand for labor is

N(Y ∗) =
Y ∗

B
=

(
(
Y D

B
)−ρ + (

Y C

B
)−ρ
)−1/ρ

≡ (NY −ρ +NC−ρ)−1/ρ. (19.46)

In analogy with (19.45) we assume that actual aggregate employment satisfies

N ≈ (N(Y ∗)−ρ
′
+NS−ρ

′
)−1/ρ′ , ρ′ > 0,

whereNS ≡
∑
nsi and ρ

′ measures the “degree of mismatch”between the demand
and supply in the labor markets. Substituting (19.46) into this gives

N ≈
(

(NY −ρ +NC−ρ)−ρ
′/ρ +NS−ρ

′
)−1/ρ′

=
(
NY −ρ +NC−ρ +NS−ρ

)−1/ρ
,

23See Drèze and Bean (1990).
24For the math behind this and other claims in this section, see Lambert (1988).
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where the last equality holds if ρ′ = ρ. In that case we also have

Y = BN = (Y D−ρ + Y C−ρ + Y S−ρ)−1/ρ, (19.47)

approximately, where Y S ≡ B ·NS and where, for convenience, we have replaced
“≈”by “=”, appealing to the law of large numbers.
The parameters ρ and ρ′ can be estimated on the basis of business and house-

hold survey data (firms’answers to regular survey questions about demand, ca-
pacity and labor constraints and households’answers about desired employment).
The mentioned Europe’s Employment Problem study estimated for most of the
countries (Denmark included) a falling ρ since middle of the 1960s towards the
late 1980s, that is, a rising mismatch. This tends to raise the unemployment rate.
To illustrate, imagine the “favorable”case where NY = NC = NS so that with-
out mismatch full-employment equilibrium would prevail. Actual employment
will be

N = (3NS−ρ)−1/ρ = 3−1/ρNS.

The unemployment rate then is

u ≡ NS −N
NS

= 1− N

NS
= 1− 3−1/ρ > 0,

when ρ <∞, i.e., 1/ρ > 0. An increased mismatch, 1/ρ, thus means a higher u.
Another consequence of mismatch is that it reduces the Keynesian spending

multiplier. Consider aggregate demand as given by the standard textbook income-
expenditure equation

Y D = C(Y )+ Ī+Ḡ+X̄−IM(Y ), C ′ > 0, IM ′ > 0, 0 < C ′−IM ′ < 1,
(19.48)

where C(Y ) and IM(Y ) are private consumption and imports, respectively, while
Ī , Ḡ, and X̄ are private investment, government purchases, and exports, respec-
tively, all exogenous. To find the multiplier with respect to Ḡ, we substitute
(19.48) into (19.47) and differentiate with respect to Ḡ, using the chain rule:

∂Y

∂Ḡ
= −1

ρ
(Y D−ρ + Y C−ρ + Y S−ρ)−

1
ρ
−1 · (−ρ)Y D−ρ−1 ((C ′ − IM ′)

∂Y

∂Ḡ
+ 1).

By ordering,
∂Y

∂Ḡ
=

1(
Y D
Y

)ρ+1 − C ′ +M ′
<

1

1− C ′ +M ′ , (19.49)

where the inequality is due to Y < Y D. In turn, this latter inequality reflects
that not all micro-markets are in a Keynesian regime.25

25Warning: As Y D/Y > 1, from (19.49) it may appear that a rise in mismatch, i.e., decrease
in ρ, raises the Keynesian multiplier ∂Y/∂Ḡ. This counter-intuitive impression is false, however.
Indeed, a decrease in ρ means an increased Y D/Y through a reduced Y , cf. (19.47).
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The mentioned multicountry study thus concluded that increased mismatch in
the preceding years was part of the explanation of the high level of unemployment
inWestern Europe in the 1980s. Moreover, the increased mismatch was attributed
to the collapse of capital investment in the aftermath of the first and second oil
price crises 1973 and 1979. As a consequence a higher fraction of industries, yci−
ydi became negative.
Additional conclusions for the period considered, from the middle of the 1960s

to the late 1980s, were:

1. Keynesian unemployment has been the dominant regime.

2. The influence of demand pressure on prices has been negligible; instead
demand pressures spill over into increased imports.

3. The degree of capacity utilization has been a significant determinant of
investment.

4. The elasticity of prices with respect to wage costs is substantial, ranging
from 0.5 in the short run to 1.0 in the long run.

5. Increases in real wages induce capital-labor substitution.

6. The main determinant of output growth in the eighties in Western Europe
has been effective demand.

19.5 Concluding remarks

(incomplete)
Let us summarize. This chapter has outlined a theoretical framework based on

the idea that for short-run analysis of effects of demand shocks in an industrialized
economy it makes sense, as a first approximation, to treat the nominal price level
as a predetermined variable. This approach may build on the assumption that
the wage level is predetermined and that the marginal cost curve is horizontal.
When this is combined with constant markups due to a more or less constant
price elasticity of demand at firm level, a price level which is independent of
output in the short run follows.
An alternative - or supplementary - approach to the explanation of the pre-

sumed price insensitivity builds on the menu cost theory: the idea that there are
fixed costs (pecuniary or non-pecuniary) associated with changing prices. The
main theoretical insight of the menu cost theory is that even small menu costs
can be enough to prevent firms from changing their price. This is because the
opportunity cost of not changing price is only of second order, i.e., “small”; this
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is a reflection of the envelope theorem. So, nominal prices may be sticky in the
short run even if marginal costs, MC, are rising. But owing to imperfect compe-
tition (price > MC ), the effect on aggregate output, employment, and welfare of
not changing prices is of first order, i.e., “large”.

The described framework allows us to think in terms of general equilibrium,
in the sense of a state of rest, in spite of the presence of some non-clearing
markets. First and foremost the labor market belongs to the latter category.
A key distinction is the one between effective supplies and demands and actual
transactions. Other names sometimes used for this distinction is ex-ante (or
desired) supplies and demands and ex-post (or realized) transactions.

Apart from the border case where all markets clear, three different types of
short-run equilibria arise: repressed inflation, classical unemployment, and Key-
nesian unemployment. The Keynesian view is that the latter type of short-run
equilibrium is prevalent in industrialized economies. Repressed inflation seems
rare. We may put it this way: wages and prices appear less sticky in situations
with upward pressure than in situations with downward pressure. As to clas-
sical unemployment, as long as there is a positive mark-up, it is ruled out, at
the theoretical level, if constant short-run marginal costs are assumed. Not all
macroeconomists regard such an assumption empirically tenable, especially with
a view on peak periods in the business cycle.

Abundant capacity. Micro-markets. Mismatch.

A rigorous general equilibrium model with monopolistic competition, the
Blanchard-Kiyotaki model,26 is set up and analyzed in the next chapter. That
model includes a complete description of the households with respect to prefer-
ences regarding differentiated consumption goods and supply of different types
of labor. Still only a single financial asset is available, base money. Readers
eager to attribute to asset markets a more important role may jump directly to
Chapter 21. That chapter presents and analyzes the IS-LM model, based on John
R. Hicks’summary of the analytical content of Keynes’main opus, The General
Theory of Employment, Interest and Money from 1936.27 This summary became
a cornerstone of mainstream short-run macroeconomics after the Second World
War.

Throughout this chapter the functioning of labour markets has received scant
attention. As alluded to, the Blanchard-Kiyotaki model of the next chapter
represents one approach to the integration of labor markets. In Chapter 24 other
approaches are discussed.

26Blanchard and Kiyotaki (1987).
27Hicks,1937.
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19.6 Literature notes

(incomplete)
The basic model in Keynes’General Theory (1936) relied less on imperfect

competition than became normal in later Keynesian thinking, as articulated for
instance by the World’s Smallest Macroeconomic Model and the different new-
Keynesian contributions to be considered later. In Keynes (1936) only the labor
market has imperfect competition, resulting in a predetermined wage level. In
the output market, perfect competition, including full price flexibility, rules. This
feature, including Keynes’associated conjecture that real wages would be coun-
tercyclical [CHECK!], was criticized on empirical grounds by Dunlop (1938) and
Tarshis (1939). In his answer, Keynes (1939) acknowledged ...
In the vocabulary of Walrasian economics, the term equilibrium is reserved

to states where all markets clear unless the price in question has fallen to zero.
On this background it may be a surprise that one may talk about Keynesian
equilibrium with unemployment. But equilibrium is an abstract concept that need
not require equality of Walrasian demand . Walrasian equilibrium is just one kind
of equilibrium, one type of state of rest for an economic system. In this chapter we
have introduced another type of state of rest, relevant under other circumstances.
The unifying term for this concept is equilibrium with quantity rationing. By
adhering to this terminology we follow the strand within macroeconomics called
“macroeconomics with quantity rationing”, to which the French scholar Edmund
Malinvaud, cited in the introduction to this chapter, belongs. The first to show
existence of general equilibrium in an Arrow-Debreu-style disaggregate setup but
with fixed prices and quantity rationing was another French economist, Jean-
Pascal Benassy (1975).
There is an alternative terminology where a state of affairs with markets that

are non-clearing (in the Walrasian sense) is termed a disequilibrium. The title,
“A general disequilibrium model of income and employment”, of the seminal pa-
per by the American economists Robert Barro and Herchel Grossman (1971) is
a case in point as is the vocabulary in the book On Keynesian Economics and
the Economics of Keynes by Axel Leijonhufvud (1968).28 Although terminologies
may differ, contributors to these strands of macroeconomics, including Patinkin
(1956), Clower (1965), and Herings (1996), seem to agree that the important as-
pects of the matter are the dynamic processes triggered by non-clearing markets.
A thorough account of macroeconomics with quantity rationing is given in Mal-
invaud (1998b). The theory has been applied to analytical studies of mass unem-

28A few years after the publication of this paper, Robert Barro seemingly lost interest in the
Keynesian stuff and became one of the leading new-Classical macroeconomists. His reasons are
given in Barro (1979).
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ployment as in, e.g., Malinvaud (1984, 1994) and empirical studies like the large
econometric multicountry study entitled Europe’s Employment Problem (1990),
based on the theoretical framework in Sneessens and Drèze (1986) and Lambert
(1988).
Already Marx (1867) rejected Say’s law by emphasizing the option of hoard-

ing money instead of buying produced goods. A modern examination of the
role Walras’law and refutation of Say’s law in macroeconomics is contained in
Patinkin (2008). Controversies with a link to Say’s “Law”or Say’s “fallacy”tend
to turn up in situations of severe recession or depression. During the Great De-
pression Keynes charged the UK Treasury and contemporary economists for being
“‘deeply steeped in the notion that if people do not spend their money in one way
they will spend it in another”(Keynes, 1936, p. 20). A similar characterization
seems pertinent for one side in “the stimulus controversy”in the aftermath of the
financial crisis 2007-08 in the US. DeLong (2009) offers a sample of citations.
To be added?:
Keynes 1937?.
Comparison between Keynes (1936) and Keynes (1939). Keynes and Hicks.

Kalecki.
In Section 19.2 we assumed that he perceived quantity signals, like the price

signals, are deterministic. In Svensson.( ) the theory is extended to include
stochastic quantity signals.
Market forms: For estimations of the markup in various U.S. industries, see,

e.g., Hall (1988).
The case with investment goods industries with monopolistic competition:

Kiyotaki, QJE 1987.
Even a dynamic general equilibrium with perfect competition is not a com-

pletely lucid thing. In perfect competition all firms are price takers. So who is
left to change prices? This is a sign of a logical diffi culty within standard com-
petitive theory (as pointed out by Arrow, 1959). Merely assigning price setting
to abstract “market forces”is not theoretically satisfactory, and reference to the
mythical “Walrasian auctioneer”not convincing.
Reference to inventory dynamics?
The convex price adjustment cost approach, Rotemberg, JME, 52 (4), 1982,

829-852.
Approaches to menu costs in a dynamic context :
Caplin and Spulper (1987), briefly summarized in Benassy (2011, p. 317-18).
The inclusion of ongoing inflation, see Blanchard 1990 and Jeanne 1998.
One might conjecture Ginsburg et al., EL, 1991.
Danziger (AER, 1999, SJE 2008).
Bursteain and Hellwig (2008).
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Caballero and Engel (2007).
What about costs of changing the production level?

19.7 Appendix

A. The envelope theorem

ENVELOPE THEOREM FOR AN UNCONSTRAINED MAXIMUM Let y =
f(a, x) be a continuously differentiable function of two variables, of which one, a,
is conceived as a parameter and the other, x, as a control variable. Let g(a) be
a value of x at which ∂f

∂x
(a, x) = 0, i.e., ∂f

∂x
(a, g(a)) = 0. Let F (a) ≡ f(a, g(a)).

Provided F (a) is differentiable,

F ′(a) =
∂f

∂a
(a, g(a)),

where ∂f/∂a denotes the partial derivative of f(a, x) w.r.t. the first argument.

Proof F ′(a) = ∂f
∂a

(a, g(a)) + ∂f
∂x

(a, g(a))g′(a) = ∂f
∂a

(a, g(a)), since ∂f
∂x

(a, g(a))
= 0 by definition of g(a). �
That is, when calculating the total derivative of a function w.r.t. a parameter

and evaluating this derivative at an interior maximum w.r.t. a control variable,
the envelope theorem allows us to ignore the terms that arise from the chain rule.
This is also the case if we calculate the total derivative at an interior minimum.29

B. The opportunity cost of not changing price is of second order

(no text yet available)

19.8 Exercises

29For extensions and more rigorous framing of the envelope theorem, see for example Syd-
saeter et al. (2006).
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Chapter 21

The IS-LM model

After more basic reflections in the previous two chapters about short-run analysis,
this chapter revisits what became known as the IS-LM model. This model is based
on John R. Hicks’ summary of the analytical core of Keynes’General Theory
of Employment, Interest and Money (Hicks, 1937). The distinguishing element
of the IS-LM model compared with both the World’s Smallest Macroeconomic
Model of Chapter 19 and the Blanchard-Kiyotaki model of Chapter 20 is that an
interest-bearing asset is added so that money holding is motivated primarily by
its liquidity services rather than its role as a store of value.
The version of the IS-LM model presented here is in one respect different

from the presentation in many introductory and intermediate textbooks. The
tradition is to see the IS-LM model as just one building block of a more involved
aggregate supply-aggregate demand (AD-AS) framework where only the wage
level is predetermined while the output price is flexible and adjusts in response
to shifts in aggregate demand, triggered by changes in the exogenous variables.
We interpret the IS-LM model differently, namely as an independent short-run
model in its own right, based on the approximation that both wages and prices
are set in advance by agents operating in imperfectly competitive markets and
being hesitant regarding frequent or large price changes.
The model is quasi-static and deals with mechanisms supposed to be operative

within a “short period”. We may think of the period length to be a month, a
year, or something in between. The focus is on the interaction between the output
market and the asset markets. The model conveys the central message of Keynes’
theory: the equilibrating role in the output and money markets is taken by output
and nominal interest rate changes. We survey the Keynesian tenets known as
spending multipliers, the balanced budget multiplier, the paradox of thrift, and the
liquidity trap. This will serve as an introduction to dynamic versions of the IS-LM
model with endogenous forward-looking expectations, presented in subsequent
chapters.

811
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We shall in this chapter also take advantage of the suitability of the IS-LM
model for a demonstration of the applicability of Cramer’s rule in comparative
statics, given a system of non-linear equations with two endogenous and many
exogenous variables.

21.1 The building blocks

We consider a closed economy with a private sector, a government, and a central
bank. The produce of the economy consists mainly of manufacturing goods and
services, supplied under conditions of imperfect competition, imperfect credit
markets, and price stickiness of some sort. The “money supply”in the model is
usually interpreted as money in the broad sense and thus includes money created
by a commercial bank sector in addition to currency in circulation.
The model starts out directly from presumed aggregate behavioral relation-

ships. These are supposed to characterize the economy-wide behavior of heteroge-
neous populations of firms and households, respectively, with imperfect informa-
tion. The aim is to analyze how the economy reacts to changes in the environment
and to deliver qualitative answers to questions about the mechanisms and mutual
dependencies in the system as a whole in the short run.

21.1.1 The output market

Demand Aggregate output demand is given as

Y d = C(Y p, Y e
+1, qK, r

e) + I(Y e
+1, K, r

e) +G+ εD, (21.1)

CY p > 0, CY e+1
> 0, IY e+1

> 0, CY p + CY e+1
+ IY e+1

< 1, (21.2)

C(qK) > 0, Cre ≤ 0, IK < 0, Ire < 0,

where the function C(·) represents private consumption, the function I(·) repre-
sents private fixed capital investment, G is public spending on goods and services,
and εD is a shift parameter summarizing the role of unspecified exogenous vari-
ables that suddenly may affect the level of consumption or investment. A rise in
the general “state of confidence”may thus be result in a higher level of investment
than otherwise and a higher preference for the present relative to the future may
result in a higher level of consumption than otherwise. Arguments appearing in
the consumption and investment functions include Y p which is current private
disposable income, Y e

+1 which is expected output the next period (or periods),
q and K which are commented on below, and finally re which is the expected
short-term real interest rate. In this first version of the model we assume there
are only two assets in the economy, money and a one-period bond with a real
interest rate r.
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The signs of the partial derivatives of the consumption and investment func-
tions in (21.1) are explained as follows. A general tenet from earlier chapters
is that consumption depends positively on household wealth. One component
of household wealth is financial wealth, here represented by the market value,
q · K, of the capital stock K (including the housing stock). Another compo-
nent is perceived human wealth (the present value of the expected labor earnings
stream), which tends to be positively related to both Y p and Y e

+1. The separate
role of disposable income, Y p, reflects the hypothesis that a substantial fraction
of households are credit constrained. The role of the interest rate, r, reflects the
hypothesis that the negative substitution and wealth effects on current consump-
tion of a rise in the real interest rate dominate the positive income effect. These
hypotheses find support in the empirical literature.
Firms’investment depends positively on Y e

+1. This is because the productive
capacity needed next period depends on the expected level of demand next pe-
riod. In addition, investment in new technologies is more paying when expected
sales are high. On the other hand, the more capital firms already have, the less
they need to invest, hence IK < 0. Finally, the cost of investing is higher the
higher is the real interest rate. These features are consistent with the q-theory
of investment when considering an economy where firms’production is demand
constrained (cf. Chapter 14).
Disposable income is given by

Y p ≡ Y − T, (21.3)

where Y is aggregate factor income (= GNP) and T is real net tax revenue in
a broad sense, that is, T equals gross tax revenue minus transfers and minus
interest service on government debt. We assume a quasi-linear net tax revenue
function

T = τ + T (Y ), 0 ≤ T ′(Y ) < 1,

where τ is a constant parameter reflecting “tightness”of discretionary fiscal pol-
icy. Fiscal policy is thus described by two variables, G representing government
spending on goods and services and τ representing the discretionary element in
taxation. A balanced primary budget is the special case τ + T (Y ) = G. The
endogenous part, T (Y ), of the tax revenue is determined by given taxation rules;
when T ′ > 0, these rules act as “automatic stabilizers”by softening the effects
on disposable income, and thereby on consumption, of changes in output and
employment.
With regard to expected output next period, Y e

+1, the model takes a shortcut
and assumes Y e

+1 is simply an increasing function of current output and nothing
else:

Y e
+1 = ϕ(Y ), 0 < ϕ′(Y ) ≤ 1. (21.4)
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We make a couple of simplifications in the specification of aggregate private
output demand. First, since we only consider a single period, we treat the amount
of installed capital as a given constant, K̄, and suppress the explicit reference to
K̄ in the consumption and investment functions. Second, we ignore the possible
influence of q (which may be more problematic). As an implication, we can
express aggregate private demand (the sum of C and I) as a function D(Y, re, τ),
whereby (21.1) becomes

Y d = D(Y, re, τ) +G+ εD, where (21.5)

0 < DY = CY p(1− T ′(Y )) + (CY e+1
+ IY e+1

)ϕ′(Y ) < 1, (21.6)

Dre = Cre + Ire < 0, and Dτ = −CY p ∈ (−1, 0). (21.7)

Behind the scene: production and employment Prices on goods and ser-
vices have been set in advance by firms operating in markets with monopolistic
competition. Owing to either constant marginal costs or the presence of menu
costs, when firms face shifts in demand, they change production rather than price.
There is scope for maintaining profitability this way because wages are sticky (due
to long-term contracts, say) and the preset prices are normally above marginal
costs.
Behind the scene there is an aggregate production function, Y = F (K̄,N),

where N is employment. The conception is that under “normal circumstances”
there is abundant capacity. That is, the given capital stock, K̄, is large enough
so that output demand can be satisfied, i.e.,

F (K̄,N) = Y d, (21.8)

without violating the rule of the minimum as defined in Chapter 19. Assuming
FN > 0, we can solve the equation (21.8) for firms’desired employment, Nd, and
write Nd = N (Y d, K̄), where NY d > 0 and NK < 0 under the assumption that
FK > 0.
Let N̄ denote the size of the labor force, i.e., those people holding a job or

registered as being available for work. The actual employment, N , must satisfy
N ≤ N̄ − Ũ , where Ũ is frictional unemployment. We use this term in a broad
sense comprising people inevitably unemployed in connection with change of job
and location in a vibrant economy, people unemployed because of mismatch of
skills and job opportunities, and people unemployed because their reservation
wage is above the market wage. The remainder of the labor force that are unem-
ployed are said to be involuntarily unemployed in the sense of being ready and
willing to work at the going wage or even a bit lower wage. The IS-LM model
deals with the case where firms’desired employment, N (Y d, K), can be realized,
that is, the case where N (Y d, K̄) ≤ N̄ − Ũ .
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With Û denoting those involuntarily unemployed, total unemployment, U, can
be written

U = N̄ −N = Ũ + Û .

In an alternative decomposition of unemployment one writes

U = Un + U c,

where Un is the NAIRU unemployment level and U c the remainder unemploy-
ment, often called cyclical unemployment (a positive number in a recession, a
negative number in a boom). So Un is defined as the level of unemployment pre-
vailing when the unemployment rate, U/N̄, equals what is known as the NAIRU,
namely that rate of unemployment which generates neither upward nor down-
ward pressure on the inflation rate. The term “NAIRU” (an abbreviation of
non-accelerating-inflation-rate-of-unemployment) is in fact a misnomer because
the point is not absence of acceleration but merely absence of pressure on the
inflation rate in one or the other direction. Nevertheless, we shall stick to this
term, because the alternative terms offered in the literature are not better. One
is the “natural rate of unemployment”; but there is nothing natural about that
unemployment rate − it depends on legal institutions, economic policy, and struc-
tural characteristics of the economy. Another − somewhat elusive − name is the
“structural rate of unemployment”.1

In Keynesian theory the NAIRU unemployment rate, Un/N̄, is perceived as
generally being below Ũ/N̄ . And business cycle fluctuations in unemployment are
perceived as primarily reflecting fluctuations in N (Y d, K̄) rather than in N̄ − Ũ .
While the size and composition of unemployment generally matter for wage and
price changes, the IS-LM model considers such effects as not materializing until
at the earliest the next period. Being concerned about only a single short period,
the model is therefore often tacit about production and employment aspects and
leave them “behind the scene”.

21.1.2 Asset markets

In this first version of the IS-LM model we assume that only two financial assets
exist, money and an interest-bearing short-term bond. The latter may be issued
by the government as well as private agents/firms. Although not directly visible
in the model, it is usually understood that there are commercial banks that accept
deposits and provide bank loans to households and firms. Bank deposits are then

1Our formulations here implitly presuppose that absence of pressure on the inflation rate
can be traced to a single rate of unemployment. However, there exist empirics as well as theory
implying that under certain conditions there is a range of unemployment rates within which no
pressure on the inflation rate is generated, neither upward nor downward (see Chapter 24).
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considered as earning no interest at all.2 Up to a certain amount bank deposits are
nevertheless attractive because for many transactions liquidity is needed. Bank
deposits are also a fairly secure store of liquidity, being better protected against
theft than cash and being, in modern times, also protected against bank default
by government-guaranteed deposit insurance. The interest rate on bank loans
allows the banks a revenue over and above the costs associated with banking.
Let M denote the money stock (in the implied broad sense), held by the non-

bank public at a given date. That is, in addition to currency in circulation, the
bank-created money in the form of liquid deposits in commercial banks is included
inM.Wemay thereby think ofM as representing what is in the statistics denoted
either M1 or M2, cf. Chapter 16. The bank lending rate is assumed equal to the
short-term nominal interest rate, i, on government bonds. All interest-bearing
assets are considered perfect substitutes from the point of view of the investor
and will from now just be called “bonds”.
The demand for money is assumed given by

Md = P · (L(Y, i) + εL), LY > 0, Li < 0, (21.9)

where P is the output price level (think of the GDP deflator) and εL is a shift
parameter summarizing the role of unspecified exogenous variables that may af-
fect money demand for any given pair (Y, i). Apart from the shift term, εL, real
money demand is given by the function L(Y, i), known as the liquidity prefer-
ence function. The first partial derivative of this function is positive reflecting
the transaction motive for holding money. The output level is an approximate
statistic (a “proxy”) for the flow of transactions for which money is needed. The
negative sign of the second partial derivative reflects that the interest rate, i, is
the opportunity cost of holding money instead of interest-bearing assets.
The part of non-human wealth not held in the form of money is held in the

form of an interest-bearing asset, a one-period bond. We imagine that also firms’
capital investment is financed by issuing such bonds. The bond offers a payoff
equal to 1 unit of money at the end of the period. Let the market price of the
bond at the beginning of the period be v units of money. The implicit nominal
interest rate, i, is then determined by the equation v(1 + i) = 1,3 i.e.,

i = (1− v)/v. (21.10)

There is a definitional link between the nominal interest rate and the expected
short-term real interest rate, re. In continuous time we would have re = i−πe with

2In practice even checkable deposits in banks may earn a small nominal interest, but this is
ignored by the model.

3In continuous time with compound interest, vei = 1 so that i = − ln v.
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i as the instantaneous nominal interest rate (with continuous compounding) and
π (≡ Ṗ /P ) as the (forward-looking) instantaneous inflation rate, the superscript e
indicating expected value. But in discrete time, as we have here, the appropriate
way of defining re is more involved. The holding of money is motivated by the
need, or at least convenience, of ready liquidity to carry out expected as well
as unexpected spending in the near future. To perform this role, money must
be held in advance, that is, at the beginning of the (short) period in which the
purchases are to be made (“cash in advance”). If the price of a good is P euro to
be paid at the end of the period and you have to hold this money already from
the beginning of the period, you effectively pay P + iP for the good, namely the
purchase price, P, plus the opportunity cost, iP. Postponing the purchase one
period thus gives savings equal to P + iP . The price of the good next period
is P+1 which, with cash in advance, must be held already from the beginning of
that period. So the real gross rate of return obtained by postponing the purchase
one period is

1 + r = (1 + i)P
1

P+1

=
1 + i

1 + π+1

,

where π+1 ≡ (P+1 − P )/P is the inflation rate from the current to the next
period. As seen from the current period, P+1 and π+1 are generally not known.
So decisions are based on the expected real interest rate,

re =
1 + i

1 + πe+1

− 1 ≈ i− πe+1, (21.11)

where the approximation is valid for “small”i and πe+1.

21.2 Keynesian equilibrium

The model assumes that both the output and the money market clear by adjust-
ment of output and nominal interest rate so that supply equals demand:

Y = D(Y, i− πe+1, τ) +G+ εD, 0 < DY < 1, Dre < 0, − 1 < Dτ < 0,(IS)
M

P
= L(Y, i) + εL, LY > 0, Li < 0, (LM)

where, for simplicity, we have used the approximation in (21.11), and where
M is the available money stock at the beginning of the period. In reality the
central bank has direct control only over the monetary base. Yet the traditional
understanding of the model is that through this, the central bank has under
“normal circumstances”control also over M. With M given by monetary policy,
the interpretation of the equations (IS) and (LM) is therefore that output and the
nominal interest rate quickly adjust so as to clear the output and money markets.
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The equation (IS), known as the IS equation, asserts clearing in a flow market:
so much output per time unit matches the effective demand per time unit for this
output. The name comes from an alternative way of writing it, namely as I = S
(investment = saving, where saving S = Y − C −G− εD).
In contrast, the equation (LM), known as the LM equation, asserts clearing

in a stock market: so much liquidity demand matches the available money stock,
M, at a given point in time. In our discrete time setting we think of asset market
openings occurring in a diminutive time interval at the beginning of each period.
And we think of changes in the money stock as taking place abruptly from mar-
ket opening to market opening. Agents’decisions about portfolio composition,
consumption, and investment are also thought of as being made at the beginning
of each period. Production takes place during the period and at the end of the
period receipts for work and lending and payment for consumption occur. This
interpretation calls for a quite short period length.
At the empirical level we have data for M and i on a daily basis, whereas

the period length of data for aggregate output, consumption, and investment, is
usually a year or at best a quarter of a year. So, in connection with econometric
analyses, instead of linking M and i to a single point in time, one may think of
M and i as averages over a year (or a quarter of a year). A possible interpre-
tation would then be that the year still consists of many subperiods with their
own asset supplies and demands as well as production and consumption flows.
The environment of the system remains unchanged throughout the year, and the
system remains in equilibrium with constant stocks and flows.
Having specified the LM equation, should we not also specify a condition for

clearing in the market for bonds? Well, we do not have to. The balance sheet
constraint of the non-bank private sector guarantees that clearing in the money
market implies clearing also in the bond market − and vice versa. To see this,
let W denote the nominal financial wealth of the non-bank private sector and let
x denote the number of one-period bonds held on net by the non-bank private
sector. Each bond offers a payoffof 1 unit of money at the end of the period and is
by the market priced v = 1/(1 + i) at the beginning of the period. Then M + vx
≡ W. With xd denoting the on net by the non-bank private sector demanded
quantity of bonds, we have Md + vxd = W. This is an example of a balance sheet
constraint and implies a “Walras’law for stocks”. Subtracting the first from the
second of these two equations yields

Md −M + v(xd − x) = 0. (21.12)

Given v > 0, it follows that if and only ifMd = M, then xd = x. That is, clearing
in one of the asset markets implies clearing in the other. Hence it suffi ces to
consider just one of these two markets explicitly. Usually the money market is
considered.
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The IS and LM equations amount to the traditional IS-LM model in compact
form. The exogenous variables are P, πe+1, τ , G, εD, εL, and, in the traditional
interpretation, M . Given the values of these variables, a solution, (Y, i), to the
equation system consisting of (IS) and (LM) is an example of a Keynesian equilib-
rium. It is an equilibrium in the sense that, given the prevailing expectations and
preset goods prices, asset markets clear by price adjustment (here adjustment of
i) and the traded quantity in the goods market complies with the short-side rule
(the rule saying that the short side of the market determines the traded quan-
tity). It is a Keynesian equilibrium because it is aggregate demand in the output
market which is the binding constraint on output (and implicitly thereby also on
employment).

The current price level, P, is seen as predetermined and maintained through
the period. But the price level P+1 set for the next period will presumably not be
independent of current events. So expected inflation, πe+1, ought to be endoge-
nous. It is therefore a deficiency of the model that πe+1 is treated as exogenous.
Yet this may give an acceptable approximation as long as the sensitivity of ex-
pected inflation to current events is small.

21.3 Alternative monetary policy regimes

We shall analyze the functioning of the described economy in three alternative
simplistic monetary policy regimes. In the first policy regime the central bank is
assumed to maintain the money stock at a certain target level. This is the case of
a money stock rule. In the second policy regime, trough open market operations
the central bank maintains the interest rate at a certain target level for some time.
This is the case of a fixed interest rate rule (where “fixed”should be interpreted
as “fixed but adjustable”). The third policy regime to be considered is a counter-
cyclical interest rate rule where both the interest rate and the money stock are
endogenous. The static IS-LM model is not suitable for a study of a Taylor-rule
regime since that involves dynamics and policy reactions to the rate of inflation.

21.3.1 Money stock rule

Here the central bank maintains the money stock at a certain target levelM > 0.
We assume that given thisM, circumstances are such that the generally nonlinear
equation system (IS) - (LM) has a solution (Y, i) and, until further notice, that
both Y and i are strictly positive.
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The IS-LM diagram

For convenience, we repeat our equation system:

Y = D(Y, i− πe+1, τ) +G+ εD, 0 < DY < 1, Dre < 0, − 1 < Dτ < 0,(IS)
M

P
= L(Y, i) + εL, LY > 0, Li < 0, (LM)

The determination of Y and i is conveniently illustrated by an IS-LM diagram,
cf. Fig. 21.1. First, consider the equation (IS). We guess that this equation
defines (determines) i as an implicit function of the other variables in the equation,
Y, πe+1, τ , G, and εD:

i = iIS(Y, πe+1, τ , G, εD).

The partial derivative of this function w.r.t. Y can be found by taking the
differential w.r.t. Y and i on both sides of (IS),4

dY = DY dY +Dredi,

and rearranging:

∂i/∂Y|IS =
di

dY
=

1−DY

Dre
< 0, (21.13)

where the first equality is valid by construction, and where the negative sign
follows from the information given (IS). The observation that the denominator,
Dre , in (21.13) is not zero confirms our guess that the equation (IS) defines i as
an implicit function of the other variables in the equation.
The solution for the derivative in (21.13) tells that higher aggregate demand in

equilibrium requires that the interest rate is lower. In Fig. 21.1, this relationship
is illustrated by the downward-sloping IS curve, which is the locus of combinations
of Y and i that are consistent with clearing in the output market. The slope of
this locus is given by (21.13).
Next consider the equation (LM). We guess that this equation defines i as an

implicit function of the other variables in the equation, Y, M/P, and εL :

i = iLM(Y,
M

P
, εL).

The partial derivative of this function w.r.t. Y can be found by taking the
differential w.r.t. Y and i on both sides of (LM),

0 = LY dY + Lidi,

4On the concepts of implicit function and differentials, see Math Tools.
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Figure 21.1: The IS-LM cross when M is exogenous; a case with equilibrium output
below the NAIRU level, Y n (πe+1,τ ,G,εD,M/P , and εL given).

and rearranging:

∂i/∂Y|LM =
di

dY
=
−LY
Li

> 0, (21.14)

where the first equality is valid by construction, and the positive sign follows from
the information given in (LM). The observation that the denominator in (21.14)
is not zero confirms our guess that the equation (LM) defines i as an implicit
function of the other variables in the equation.
The solution for the derivative in (21.14) tells that for the money market to

clear, a higher volume of transactions must go hand in hand with a higher interest
rate. In Fig. 21.1, this relationship is illustrated by the upward-sloping LM curve,
which is the locus of combinations of Y and i that are consistent with clearing in
the money market.
A solution (Y, i) to the model is unique (the point of intersection in Fig.

21.1). Hence we can write Y and i as (unspecified) functions of all the exogenous
variables:

Y = f(
M

P
, πe+1, τ , G, εD, εL), (21.15)

i = g(
M

P
, πe+1, τ , G, εD, εL). (21.16)

Comparative statics

How do Y and i depend on the exogenous variables? A qualitative answer can
easily be derived by considering in what direction the IS curve and the LM curve
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shift in response to a change in an exogenous variable. With minimal training,
the directions of these shifts can be directly read off the information given in (IS)
and (LM) equations. Alternatively one can use the total differentials (21.17) and
(21.18) below also for this purpose.
A quantitative answer is based on the standard comparative statics method.

Starting afresh with the (IS) - (LM) equation system, we guess that the system
defines (determines) Y and i as implicit functions, f and g, of the other variables,
as in (21.15) and (21.16). The aim is to find formulas for the partial derivatives of
these implicit functions, evaluated at an equilibrium point (Y, i), a point satisfying
(IS) and (LM). We first calculate the total differential on both sides of (IS):

dY = DY dY +Dre(di− dπe+1) +Dτdτ + dG+ dεD. (21.17)

Next we calculate the total differential on both sides of (LM):

d(
M

P
) = LY dY + Lidi+ dεL. (21.18)

We interpret these two equations as a new equation system with two new en-
dogenous variables, the differentials dY and di. The changes, dπe+1, dG, dτ , dεD,
d(M/P ), and dεL, in the exogenous variables are our new exogenous variables.
The coeffi cients, DY , Dre , etc., to these endogenous and exogenous variables in
the two equations are derivatives evaluated at the equilibrium point (Y, i). Like
the original equation system (IS) - (LM), the new system is simultaneous (not
recursive).
The key point is that the new system is linear. The further procedure is the

following. First rearrange (21.17) and (21.18) so that dY and di appear on the
left-hand side and the differentials of the exogenous variables on the right-hand
side of each equation:

(1−DY )dY −Dredi = −Dredπ
e
+1 +Dτdτ + dG+ dεD, (21.19)

LY dY + Lidi = d
M

P
− dεL. (21.20)

Next, calculate the determinant, ∆, of the coeffi cient matrix on the left-hand side
of the system:

∆ =

∣∣∣∣ 1−DY −Dre

LY Li

∣∣∣∣ = (1−DY )Li +DreLY < 0, (21.21)

where the negative sign follows from qualitative information about the functions
D and L given in (IS) and (LM), respectively. The observation that the determi-
nant is not zero confirms our guess that the (IS) - (LM) system defines Y and i
as implicit functions of the other variables.
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Now apply Cramer’s rule5 to the linear system (21.19) - (21.20) to determine
dY and di:

dY =

∣∣∣∣ −Dredπ
e
+1 +Dτdτ + dG+ dεD −Dre

dM
P
− dεL Li

∣∣∣∣
∆

=
Li(−Dredπ

e
+1 +Dτdτ + dG+ dεD) +Dre(d

M
P
− dεL)

∆
, (21.22)

and

di =

∣∣∣∣ 1−DY −Dredπ
e
+1 +Dτdτ + dG+ dεD

LY dM
P
− dεL

∣∣∣∣
∆

=
(1−DY )(dM

P
− dεL)− LY (−Dredπ

e
+1 +Dτdτ + dG+ dεD)

∆
.(21.23)

The partial derivatives of f and g, respectively, w.r.t. the exogenous variables
can be directly read off these two formulas.
Suppose we are interested in the effect on Y and i of a change in the real

money supply, M/P. By setting dπe+1 = dτ = dG = dεD = dεL = 0 in (21.22)
and (21.23) and rearranging, we get

∂Y

∂(M
P

)
= fM/P =

dY

d(M
P

)
=

Dr

(1−DY )Li +DreLY
> 0,

∂i

∂(M
P

)
= gM/P =

di

d(M
P

)
=

1−DY

(1−DY )Li +DreLY
< 0,

where the signs are due to (21.6), 21.7, and (21.21). Such partial derivatives of the
endogenous variables w.r.t. an exogenous variable, evaluated at the equilibrium
point, are known as multipliers. The approximative short-run effect on Y of a
given small increase dM in M is calculated as dY = (∂Y/∂(M

P
))dM/P, where we

see the role of the partial derivative w.r.t. M/P as a multiplier on the increase
in the exogenous variable, M/P .6

5See Math Tools.
6Instead of using Cramer’s rule, in the present case we could just substitute di, as determined

from (21.18), into (21.17) and then find dY from this equation. In the next step, this solution
for dY can be inserted into (21.18), which then gives the solution for di. However, if Li were
a function that could take the value nil, this procedure might invite a temptation to rule this
out by assumption. That would imply an unnecessary reduction of the domain of f(·) and g(·).
The only truly necessary assumption is that ∆ 6= 0 and that is automatically satisfied in the
present problem.
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The intuitive interpretation of the signs of these multipliers is the following.
The central bank increases the money supply through an open market purchase of
bonds held by the private sector. In practice it is usually short-term government
bonds (“treasury bills”) that the central bank buys when it wants to increase
the money supply (decrease the short-term interest rate). Immediately after the
purchase, the supply of money is higher than before and the supply of bonds
available to the public is lower. At the initial interest rate there is now excess
supply of money and excess demand for bonds. But the attempt of agents to
get rid of their excess cash in exchange for more bonds can not succeed in the
aggregate because the supplies of bonds and money are given. Instead, what
happens is that the price of bonds goes up, that is, the interest rate goes down,
cf. (21.10), until the available supplies of money and bonds are willingly held by
the agents. Money is therefore not neutral.
To find the output multiplier w.r.t. government spending on goods and ser-

vices, or what is known as the spending multiplier, in (21.22) we set d(M/P )
= dπe+1 = dτ = dεD = dεL = 0 and rearrange to get

∂Y

∂G
= fG =

dY

dG
=

Li
(1−DY )Li +DreLY

=
1

1−DY +DreLY /Li
. (21.24)

Under the assumed monetary policy we thus have 0 < ∂Y/∂G < 1/(1 − DY ).
The difference, 1/(1−DY ) −∂Y/∂G, is due to the financial crowding-out effect,
represented by the term DreLY /Li > 0 in (21.24). Owing to the fixed money
stock, the expansionary effect of a rise in G is partly offset by a rise in the
interest rate induced by the increased money demand resulting from the “initial
rise”in economic activity. If money demand is not sensitive to the interest rate7

(as the monetarists claimed), the financial crowding-out is large and the spending
multiplier low in this policy regime.
Another “moderator”comes from the marginal net tax rate, T ′(Y ) ∈ (0, 1),

which by reducing the private sector’s marginal propensity to spend, DY in (21.6),
acts as an automatic stabilizer. When aggregate output (economic activity) rises,
disposable income rises less, partly because of higher taxation, partly because of
lower aggregate transfers, for example unemployment compensation.8

Shifts in the values of the exogenous variables, εD and εL, may be interpreted
as shocks (disturbances) coming from a variety of unspecified events. A positive
demand shock, dεD > 0, may be due to an upward shift in households’and firms’

7This is the case when |Li| is low, i.e., the LM curve steep.
8Outside our static IS-LM model an additional issue is how current consumers repond to the

increased public debt in the wake of a not fully tax-financed temporary increase in G. Although
this takes us outside the static IS-LM model, we shall briefly comment on it towards the end
of this chapter.
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“confidence”. A negative demand shock may come from a “credit crunch”due to
a financial crisis. A positive liquidity preference shock may reflect a sudden rise
in the perceived risk of default of bond liabilities.
To see how demand shocks and liquidity preference shocks, respectively, affect

output under the given monetary policy, in the equation (21.22) we set dπe+1 = dτ
= dG = dM

P
= 0. When in addition we set, first, dεL = 0, and next dεD = 0, we

find the partial derivatives of Y w.r.t. εD and εL, respectively:

∂Y

∂εD
= fεD =

dY

dεD
=

Li
(1−DY )Li +DreLY

=
1

1−DY +DreLY /Li
∂Y

∂εL
= fεL =

dY

dεL
=

−Dre

(1−DY )Li +DreLY
< 0.

As expected, a positive demand shock is expansionary, while a positive liquidity
preference shock is contractionary because it raises the interest rate. Note that
∂Y/∂εD = ∂Y/∂G (from (21.24)) in view of the way εD enters the IS equation.
As now the method should be clear, we present the further results without

detailing. From (21.22) and (21.23), respectively, we calculate the output and
interest multipliers w.r.t. fiscal tightness to be

∂Y

∂τ
=

LiDτ

(1−DY )Li +DreLY
< 0,

∂i

∂τ
=

−LYDτ

(1−DY )Li +DreLY
< 0.

What do (21.22) and (21.23) imply regarding the effect of higher expected infla-
tion on Y, i, and re, respectively? We find

∂Y

∂πe+1

= fπe+1
=

−LiDre

(1−DY )Li +DreLY
> 0,

∂i

∂πe+1

= gπe+1
=

LYDre

(1−DY )Li +DreLY
∈ (0, 1), (21.25)

∂re

∂πe+1

=
∂(i− πe+1)

∂πe+1

= gπe+1
− 1 =

−(1−DY )Li
(1−DY )Li +DreLY

∈ (−1, 0).

A higher expected inflation rate thus leads to a less-than-one-to-one increase in
the nominal interest rate and thereby a smaller expected real interest rate. Only
if money demand were independent of the nominal interest rate (Li = 0), as in
the quantity theory of money, would the nominal interest rate rise one—to-one
with πe+1 and the expected real interest rate thereby remain unaffected.
Before proceeding, note that there is a reason that we have set up the IS

and LM equations in a general nonlinear form. We want the model to allow
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826 CHAPTER 21. THE IS-LM MODEL

Figure 21.2: A fixed interest rate implying equilibrium output close to the NAIRU level
(i,πe+1, τ , G, and εD given).

for the empirical feature that the different multipliers generally depend on the
“state of the business cycle”. The spending multiplier, for instance, tends to
be considerably larger in a slump − with plenty of idle resources − than in a
boom. In dynamic extensions of the IS-LM model the length of the time interval
associated with the higher G becomes important as does the time profile of the
effect on Y . In the present static version of the model it fits intuition best to
interpret the rise in G as referring to the “current”period only.

21.3.2 Fixed interest rate rule

Instead of targeting a certain level of the money stock, the central bank now
keeps the nominal interest rate at a certain target level i > 0. The aim may be
to have output unaffected by liquidity preference shocks. This monetary policy
seems closer to what most central banks nowadays typically do. They announce
a target for the nominal interest rate and then, through open-market operations,
adjust the monetary base so that the target rate is realized.
In this regime, i is an exogenous constant > 0, whileM and Y are endogenous.

Instead of the upward-sloping LM curve we get a horizontal line, the IR line in
Fig. 21.2 (“IR” for interest rate). The model is now recursive. Since M does
not enter the equation (IS), Y is given by this equation independently of the
equation (LM). Indeed, in view of DY 6= 0, the equation (IS) defines Y as an
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implicit function, h, of the other variables in the equation, i.e.,

Y = h(re, τ , G, εD) = h(i− πe+1, τ , G, εD). (21.26)

Comparative statics

The partial derivatives of the function h can be directly read off equation (21.17).
We find

∂Y

∂i
= hre =

Dre

1−DY

< 0,

∂Y

∂πe+1

= −hre = − Dre

1−DY

> 0,

∂Y

∂τ
= hτ =

Dτ

1−DY

< Dτ < 0, (21.27)

∂Y

∂G
=

∂Y

∂εD
=

1

1−DY

> 1,

∂Y

∂εL
= 0.

The observation that the denominator, 1 − DY , is not zero confirms our guess
that the equation (IS) defines Y as an implicit function of the other variables in
the equation.
The derivative w.r.t. a liquidity preference shock, εL, in the last line of (21.27)

reflects the principle that a multiplier w.r.t. an exogenous variable not entering
the equation(s) determining the endogenous variable directly or indirectly (see
below) is nil. In the present case this means that, with a fixed interest rule,
a liquidity preference shock has no effect on equilibrium output. The shock is
immediately counteracted by a change in the money stock in the same direction
so that the interest rate remains unchanged. Thus, the liquidity preference shock
is “cushioned”by this monetary policy.
On the other hand, a shock to output demand has a larger effect on output

than in the case where the money stock is kept constant (compare (21.27) to
(21.24)). This is because keeping the money stock constant allows a dampening
rise in the interest rate to take place. But with a constant interest rate this
financial crowding-out effect does not occur.
One is tempted to draw the conclusion (from Poole, 1970):

• a money stock rule is preferable (in the sense of implying less volatility) if
most shocks are output demand shocks, while

• a fixed interest rate rule is preferable if most shocks are liquidity preference
shocks.
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Figure 21.3: Given a fixed interest rate, a “Keynesian cross” diagram is suffi cient to
display the equilibrium output level (i, πe+1, τ , G, and εD given).

This should be accepted with caution, however, since a static model is not a
secure guide for policy rules.
If we are interested also in the required changes in the money stock, we rewrite

(LM) as

M = P · (L(Y, i) + εL). (LM’)

Here, i is exogenous and Y should be seen as already determined from (IS) in-
dependently of (LM’), that is, as given by (21.26). In this context we consider
(LM’) as an equation determiningM as an implicit function of the other variables
in the equation. To find the partial derivatives of this function, we take the total
differential on both sides of (LM’):

dM = P (LY dY + Lidi+ dεL) + (L(Y, i) + εL)dP, (21.28)

where dY can be seen as already determined from (21.17) through (21.27), inde-
pendently of (21.18). For instance, the approximate change in the money stock
required for a rise in i of size di > 0 to materialize can, by (21.28), be written

∆M ≈ dM = PLY dY + PLidi = PLY hredi+ PLidi = PLY
Dre

1−DY

+ PLidi,

where the first term after the second equality sign is based on using the chain
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rule in (LM’). The multiplier of the money stock w.r.t. i is

∂M

∂i |(LM ′)
=

∂M

∂Y |(LM ′)
· ∂Y
∂i |(21.26)

+
∂M

∂i |(LM ′)
=
dM

dY |21.28
hre +

dM

di |21.28

= PLY
Dre

1−DY

+ PLi < 0,

where the first term after the last equality sign represents a negative indirect
effect on the money stock of the rise in the target and the second term a negative
direct effect. The direct effect indicates the fall in money stock needed to induce
a rise in the interest rate of size di for a fixed output level. But also the output
level will be affected by the rise in the interest rate since this rise reduces output
demand. Through this indirect channel the transactions-motivated demand for
money is reduced, and to match this a further fall in the money stock is required.
This is the indirect effect.
The multipliers for the money stock w.r.t. the other exogenous variables are

found in a similar way from (21.28) and (21.27), again using the chain rule where
appropriate. Let us first consider the multiplier w.r.t. the exogenous variables
entering (IS) and thereby (21.26). We get :

∂M

∂πe+1

= PLY
∂Y

∂πe+1 |(21.26)

= PLy · (−hre) = −PLY
Dre

1−DY

> 0,

∂M

∂τ
= PLY

∂Y

∂τ |(21.26)
= PLy · hτ = PLY

Dτ

1−DY

< 0,

∂M

∂G
=

∂M

∂εD
= PLY

∂Y

∂G |(21.26)
= PLy · hG = PLY

1

1−DY

> 0,

where the inserted partial derives of h come from (21.27).
We see that higher expected inflation implies that the money stock required to

maintain a given interest rate is higher. The reason is that for given i, a higher πe+1

means lower expected real interest rate, hence higher output demand and higher
output. Hereby the transactions-motivated demand for money is increased. A
higher money stock is thus needed to hinder a rise in the nominal interest rate
above target.
Finally, as εL and P do not enter (IS) and thereby not (21.26), the multipliers

of M w.r.t. these two variables are determined directly by (LM’), keeping Y and
i constant. We get

∂M

∂εL
= P > 0,

∂M

∂P
= L(Y, i) + εL =

M

P
> 0.

The “Keynesian cross” Since for a fixed interest rate there is no financial
crowding-out, the production outcome can also be illustrated by a standard 45◦

“Keynesian cross”diagram as in Fig. 21.3.
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The spending multiplier under full tax financing

The spending multiplier in the last line of (21.27) is conditional on the fixed
interest rate policy and constancy of the “fiscal tightness”, τ . Although there
will be an automatic rise in net tax revenue via T ′(Y ) > 0, unless increased
government spending is fully self-financing (which it will be only if T ′(Y ) ≥
1 −DY , as we will see in a moment), the result is dT < dG. This amounts to a
larger budget deficit than otherwise and thereby increased public debt and higher
taxes in the future. In Section 21.4 below we assess the possible feedback effects
of this on the spending multiplier (effects that are ignored by the static IS-LM
model).
In the present section we will consider the alternative case, a useful bench-

mark, where the increase in G is accompanied by an adjustment of the fiscal
tightness parameter, τ , so as to ensure dT = dG, thereby leaving the budget
balance unchanged, it be negative, positive, or nil. The net tax revenue is

T = τ + T (Y ), 0 ≤ T ′ < 1, (21.29)

cf. Section 21.1. We impose the requirement that the primary budget deficit,
G − T, remains equal to some constant k in spite of the change in G.This gives
the equation

G− τ − T (Y ) = k, (*)

where both τ and Y are endogenous. We have a second equation where these two
variables enter, namely the (IS) equation with i exogenous:

Y = D(Y, i− πe+1, τ) +G, (**)

ignoring the shift term εD. The equation system (*) - (**) thus determines the
pair τ and Y as implicit functions of the remaining variables, all of which are
exogenous.
Taking differentials w.r.t. Y, τ , and G on both sides of (*) and (**) gives,

after ordering, the linear equation system in dτ and dY :

dτ + T ′(Y )dY = dG

−Dτdτ + (1−DY )dY = dG.

The determinant of the coeffi cient matrix on the left-hand side of this system is

∆̄ = 1−DY +DτT
′(Y ) = 1−DY − CY pT ′(Y )

= 1−
[
CY p(1− T ′(Y )) + (CY e+1

+ IY e+1
)ϕ′(Y )

]
− CY pT ′(Y )

= 1− CY p − (CY e+1
+ IY e+1

)ϕ′(Y ) ∈ (0, 1), (21.30)
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where the second equality sign comes from (21.7) and the third from (21.6). The
stated inclusion follows from (21.2) and (21.4). By Cramer’s rule

dτ =
(1−DY )dG− T ′(Y )dG

∆̄
,

dY =
dG+DτdG

∆̄
=

(1− CY p)dG
∆̄

,

where the last equality sign follows from (21.7). Substituting ∆̄ from (21.30), the
first line gives

∂τ

∂G |(∗),(∗∗)
=

1−DY − T ′(Y )

1− CY p − (CY e+1
+ IY e+1

)ϕ′(Y )
R for T ′(Y ) Q 1−DY , (21.31)

The second line gives the derivative of Y w.r.t. G, conditional on full tax financ-
ing:

∂Y

∂G |(∗),(∗∗)
=

1− CY p
1− CY p − (CY e+1

+ IY e+1
)ϕ′(Y )

≥ 1. (21.32)

Although valid (within the fixed interest rate regime) for any unchanged bud-
get balance, this result is known as the balanced budget multiplier in the sense
of spending multiplier under a balanced budget. In case CY e+1

+ IY e+1
= 0, the

multiplier is exactly 1, which is the original Haavelmo result (Haavelmo, 1945).
Let us underline two important results within the IS-LM model:
Result 1: Even fully tax-financed government spending is expansionary. Given

a constant interest rate, under the unchanged-budget-balance policy (*), dY ≥
dG = dT > 0, in view of the spending multiplier being at least 1. Thereby, the
change in disposable income is dY − dT ≥0. Thereby private consumption, C,
tends to rise, if anything. The rise in G therefore does not crowd out private
consumption. It rather crowds it in. As Y is raised and monetary policy keeps
the interest rate unchanged, according to the model also private investment is
“crowded in”rather than “crowded out”(this follows from the assumptions (21.2)
and (21.4)).
Result 2: The timing of (lump-sum) taxes generally matter. To disentangle

the role of timing, we compare the unchanged-budget-balance policy (*) with the
case where the rise in G is not accompanied by a change in the fiscal tightness
parameter, τ . Only the automatic stabilizer, T ′(Y )dY, is operative. This will
generally result in dG−T ′(Y )dY 6= 0. If T ′(Y ) < 1−DY (by many considered the
“normal case”9), from (21.31) follows that dG−T ′(Y )dY > 0, that is, the budget
balance is allowed to worsen. With fixed interest rate the spending multiplier will

9But in a large downturn it may be otherwise, cf. e.g. DeLong and Summers (2012).
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832 CHAPTER 21. THE IS-LM MODEL

be 1/(1−DY ), cf. (21.27), and exceed that under an unchanged budget balance,
given in (21.32).10 So in the considered case, postponing the taxation needed to
provide the ultimate financing of the rise in G makes this rise more expansionary.
The timing of taxes matter.
In Section 21.4 we briefly discuss what happens to these two results if we

imagine that the household sector consists of a fixed number of utility-maximizing
infinitely-lived households.

The paradox of thrift

Another proposition of Keynesian theory is known as the paradox of thrift. Con-
sider the following special case of the IS equation:

Y = C + I +G = c0 + c1(Y − T) + C̃(i− πe+1) + c2Y + Ĩ(i− πe+1) +G, (21.33)

where c0, c1, and c2 are given constants satisfying

c0 > 0, 0 < c1 ≤ c1 + c2 < 1, (21.34)

and C̃ (·) and Ĩ (·) are decreasing functions of the expected real interest rate,
i − πe+1. We have excluded the demand shift parameter εD and linearized the
income-dependent parts of the consumption and investment functions. We take
G, πe+1, and i as exogenous (fixed interest rate rule).
The paradox of thrift comes out most clear-cut if we ignore the public sector.

No public sector: G = T = 0. In this case equilibrium output is

Y =
c0 + C̃(i− πe+1) + Ĩ(i− πe+1)

1− c1 − c2

.

Suppose that all households for some reason decide to save more at any level
of income so that c0 is decreased. What happens to aggregate private saving Sp?
We have

Sp = Y − C = I = c2Y + Ĩ(i− πe+1), (21.35)

by (21.33) with G = T = 0. Hence,

∂Sp

∂c0

= c2
∂Y

∂c0

=
c2

1− c1 − c2

≥ 0,

from (21.27). Considering a reduction of c0, i.e., ∆c0 < 0, the resulting change
in Sp is thus

∆Sp =
∂Sp

∂c0

∆c0 =
c2

1− c1 − c2

∆c0 ≤ 0.

10Indeed, 1/(1−DY ) R (1− CY P )/(1−DY − CY P T ′(Y )) if T ′(Y ) < 1−DY , respectively.
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The attempt to save more thus defeats itself. What happens is that income
decreases by an amount such that saving is either unchanged or even reduced.
More precisely, if the income coeffi cient in the investment function, c2, is nil, we
get ∆Sp = 0 because aggregate investment remains unchanged and income is
reduced exactly as much as consumption, leaving saving unchanged. If c2 > 0,
we get ∆Sp < 0 because income is reduced more than consumption since also
investment is reduced when income is reduced. In this case the attempt to save
more is directly counterproductive and leads to less aggregate saving.
The background to these results is that when aggregate output and income

is demand-determined, the decreased propensity to consume lowers aggregate
demand, thereby reducing production and income. The resulting lower income
brings aggregate consumption further down through the Kahn-Keynes multiplier
process (see below). While consumption is reduced, there is nothing in the sit-
uation to stimulate aggregate investment (at least not as long as the central
bank maintains an unchanged interest rate). Thereby aggregate saving can not
rise, since in a closed economy aggregate saving and aggregate investment are
in equilibrium just two sides of the same thing as testified by national income
accounting, cf. (21.35).
This story is known as the paradox of thrift. It is an example of a fallacy

of composition, a term used by philosophers to denote the error of concluding
from what is locally valid to what is globally valid. Such inference overlooks the
possibility that when many agents act at the same time, the conditions framing
each agent’s actions are affected. As Keynes put it:

. . . although the amount of his own saving is unlikely to have any
significant influence on his own income, the reactions of the amount
of his consumption on the incomes of others makes it impossible for
all individuals simultaneously to save any given sums. Every such
attempt to save more by reducing consumption will so affect incomes
that the attempt necessarily defeats itself (Keynes 1936, p. 84).

With public sector We return to (21.33) with G > 0 and T > 0. The essence
of the paradox of thrift remains but it may be partly blurred by the tendency of
the government budget deficit to rise when private consumption, and therefore
aggregate income, is reduced.
Consider first the case where public dissaving does not emerge. This is the

case where the government budget is always balanced. Then, net tax revenue is
T = G, and private saving is

Sp ≡ Y − T−C = Y −G− C = I = c2Y + Ĩ(i− πe+1),
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by (21.33). So in this case the paradox of thrift comes out in the same strong
form as above.
Consider instead the more realistic case where alternating budget deficits and

surpluses are allowed to arise as a result of the net tax revenue following the rule

T = τ + τ 1Y, 0 < τ 1 < 1. (21.36)

Equilibrium output now is

Y =
c0 − c1τ + C̃(i− πe+1) + Ĩ(i− πe+1) +G

1− c1(1− τ 1)− c2

, (21.37)

so that
∂Y

∂c0

=
1

1− c1(1− τ 1)− c2

> 1, (21.38)

the inequality being due to (21.34) and (21.36). Private saving is

Sp = Y − T− C = I − (T−G) = I − Sg = I +G− (τ + τ 1Y )

= c2Y + Ĩ(i− πe+1) +G− (τ + τ 1Y ),

where the second equality comes from (21.33) and the fourth from the taxation
rule (21.36). We see that.....(continuation not yet available)

Adjustment: the Kahn-Keynes multiplier process (no text available)

21.3.3 Counter-cyclical interest rate rule

Assuming a fixed interest rate rule may fit the very short run well. If we think of a
time interval of a year’s length or more, we may imagine a counter-cyclical interest
rate rule aiming at dampening fluctuations in aggregate economic activity. Such
a policy may take the form

i = i0 + i1Y, i1 > 0, (21.39)

where i0 and i1 are policy parameters. The present version of the IS-LM model
does not rule out that the parameter i0 can be negative. But in case i0 < 0, at
least i0 is not so small that even under “normal circumstances”, the zero lower
bound for i can become operative. The term “counter-cyclical” refers to the
attempt to stabilize output by raising i when output goes up and reducing i
when output goes down.11

11The label “counter-cyclical” should not be confused with what is in the terminology of
business cycle econometrics named “counter-cyclical”behavior. In this terminology a variable
is characterized as “pro-”or “counter-cyclical”depending on whether its correlation with ag-
gregate output is positive or negative, respectively. So (21.39) would in this language exemplify
“pro-cyclical”behavior.
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If the LM curve in Fig. 21.1 is made linear and its label changed into IRR
(for Interest Rate Rule), that figure covers the counter-cyclical interest rate rule
(21.39). Instead of a LM curve (which requires a fixed M), we have an upward
sloping IRR curve. Both i and M are here endogenous. The fixed interest rate
rule from the previous section is a limiting case of this rule, namely the case
i1 = 0. By having i1 > 0, the counter-cyclical interest rate rule yields qualitative
effects more in line with those of a money stock rule. If i1 > ∂i/∂Y|LM from
(21.14), the stabilizing response of i to a decrease in Y is stronger than under
the money stock rule.

Comparative statics

Inserting (21.39) into (IS) gives

Y = D(Y, i0 + i1Y − πe+1, τ) +G+ εD.

By taking the total differential on both sides we find

∂Y

∂G
=

∂Y

∂εD
=

1

1−DY −Drei1
∈ (0,

1

1−DY

),

∂Y

∂i1
=

DreY

1−DY −Drei1
< 0,

∂Y

∂πe+1

= − Dre

1−DY −Drei1
> 0,

∂Y

∂εL
= 0.

We see that all multipliers become become close to 0, if the reaction coeffi cient i1
is large enough. In particular, undesired fluctuations due to demand shocks are
damped this way.
The corresponding changes in i are given as ∂i/∂x = i1∂Y/∂x for x= G, εD, i1, π

e
+1,

and εL, respectively. From (21.28) we find the corresponding changes in M as
∂M/∂x = P (LY + i1Li)∂Y/∂x for x = G, εD, i1, and πe+1; finally, from (21.28) we
have again ∂M/∂εL = P > 0.

21.3.4 Further aspects

The loanable funds theory of the interest rate

As we have seen, two Keynesian tenets are that involuntary unemployment can
be a state of rest and that an increased propensity to save makes things worse.
Several of Keynes’contemporaries (for instance NAME, YEAR) objected that
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the interest rate would adjust so as to bring the demand for new loans by users
(primarily home and business investors).in line with an increased supply of new
loans by financial savers. This is known as the “loanable funds theory of the
interest rate”according to which the interest rate is determined by “the supply
and demand for saving”. The pre-Keynesian version of this theory does not take
into account that aggregate saving depends not only on the interest rate, but also
on aggregate income (the same could be said about investment but this is of no
help for the pre-Keynesian version).
To clarify the issue, we consider the simple case where C = C(Y, re) and I

= I(re), 0 < CY < 1, Cre < 0, Ire < 0, re = i − πe+1 and where government
spending and taxation are ignored. Let S denote aggregate saving. Then in our
closed economy, S = Y − C = Y − C(Y, re) ≡ S(Y, re), SY = 1 − CY > 0,
Sre = −Cre > 0. Equilibrium in the output market requires Y = C(Y, re) + I(re).
By subtracting C(Y, re) on both sides and inserting re = i− πe+1, we get

S(Y, i− πe+1) = I(i− πe+1), (21.40)

which may be interpreted as supply of saving being equilibrated with demand for
saving. Conditional on a given income level, Y , we could draw an upward-sloping
supply curve and a downward-sloping demand curve in the (S, i) plane for given
πe+1. But this would not determine i since the position of the supply curve will
depend on the endogenous variable, Y. An extra equation is needed. This is what
the money market equilibrium condition, M/P = L(Y, i) delivers, combined with
exogeneity ofM, P and πe. In the Keynesian version of the loanable funds theory
of the interest rate there are thus two endogenous variables, i and Y, and two
equations, (21.40) and M/P = L(Y, i).
If we want to illustrate the solution graphically, we can use the standard IS-

LM diagram from Fig. 21.1. This is because the equation (21.40) in the (Y, i)
plane is nothing but the standard IS curve. Indeed, by adding consumption on
both sides of the equation, we get Y = C(Y, i−πe+1) +I(i−πe+1), the standard IS
equation. And whether we combine the LM equation with this or with (21.40),
the solution for the pair (Y, i) will be the same.

A liquidity trap

We return to the general IS-LM model,

Y = D(Y, i− πe+1, τ) +G+ εD, (IS)
M

P
= L(Y, i) + εL, (LM)

where M is again exogenous and Y and i endogenous. Suppose a large adverse
demand shock εD < 0 takes place. This shock could be due to a bursting housing
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Figure 21.4: A situation where the given IS curve is such that no non-negative nominal
interest rate can generate full employment (πe+1, τ , G, εD, M/P , and εL given). The
value of Y where the IS curve crosses the abscissas axis is dented Y0.

price bubble making creditors worried and demanding that debtors deleverage.
This amounts to decreased consumption and investment and as a consequence,
the IS curve may be moved so much leftward in the IS-LM diagram that whatever
the money stock, output will end up smaller than the full-employment level, Y n.
Then the economy is in a liquidity trap: “conventional”monetary policy is not
able to move output back to full employment. By “conventional”monetary policy
is meant a policy where the central bank buys bonds in the open market with
the aim of reducing the short-term nominal interest rate and thereby stimulate
aggregate demand . The situation resembles a “trap”in the sense that when the
central bank strives to stimulate aggregate demand by lowering the interest rate
through open market operations, it is like attempting to fill a leaking bucket with
water. The phenomenon is illustrated in Fig. 21.4.

The crux of the matter is that the nominal interest rate has the lower bound,
0, known as the zero lower bound. An increase in M can not bring i below 0.
Agents would prefer holding cash at zero interest rather than short-term bonds
at negative interest. That is, equilibrium in the asset markets is then consistent
with the “=”in the LM equation being replaced by “≥”.
Suppose that expected inflation is very low, say nil. Then the (expected) real

interest rate can not be brought below zero. The real interest rate required for
full employment is negative, however, given the IS curve in Fig. 21.4. For the
given πe, to solve the demand problem expansionary fiscal policy moving the IS
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curve rightward is called for. Coordinated fiscal and monetary policy with the
aim of raising πe may also be a way out.

When an economy is at the zero lower bound, the government spending mul-
tiplier tends to be relatively large for two reasons. The first reason is the more
trivial one that being in a liquidity trap is a symptom of a serious deficient aggre-
gate demand problem and low capacity utilization so that there is no hindrance
for fast expansion of production. The second reason is that there will be no fi-
nancial crowding-out effect of a fiscal stimulus as long as the central bank aims
at an interest rate as low as possible. (REFER to lit.)

Note that the economy can be in a liquidity trap, as we have defined it,
before the zero lower bound on the nominal interest rate has been reached. Fig.
21.4 illustrates such a case. In spite of the current nominal interest rate being
above zero, conventional monetary policy is not able to move output back to full
employment. Conventional monetary policy can move the LM curve to the right,
but the point of intersection with the IS curve can not be moved to the right
of Y0. An alternative − and more common − definition is simply to identify a
liquidity trap with a situation in which the short-term nominal interest rate is
zero.

Keynes (1936, p. 207) was the first to consider the possibility of a liquidity
trap. After the second world war the issue appeared in textbooks, but not in
practice, and so it gradually was given less and less attention. Almost at the
same time as the textbooks had stopped mentioning it, it turned up in reality,
first in Japan from the middle of the 1990, then in several countries, including
USA, in the wake of the Great Recession. It became a problem of urgent practical
importance and lead to suggestions for non-conventional monetary policies as well
as more emphasis on expansionary fiscal policy, aspects to which we return later
in this book.

A proviso concerning the exact character of the zero lower bound on the inter-
est rate should be added. The zero bound should only be interpreted as exactly
0.0 if storage, administration, and safety cost are negligible, and − in an open
economy − if there is no chance of a sudden appreciation of the currency in which
the government debt is denominated. In the wake of the European debt crisis
2010-14, government bonds of some European countries (e.g., Germany, Finland,
Switzerland, Denmark, and the Netherlands) were sold at slightly negative yields.

–

Unfinished:

Some empirics about spending multipliers and their dependence on the state
of the economy.
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21.4 Some robustness checks

21.4.1 Presence of an interest rate spread (banks’lending
rate = i+ ω > i).

(currently no text)

21.4.2 What if households are infinitely-lived?

Here we shall reconsider Result 1 and Result 2 from Section 21.3.2. They were:
Result 1: Even fully tax-financed government spending is expansionary.
Result 2: The timing of (lump-sum) taxes generally matter.
We ask whether these two results are likely to still hold in some form if we

imagine that the household sector consists of a fixed number of utility-maximizing
infinitely-lived households. The assumption that involuntary unemployment and
abundant capacity are present is maintained.
Concerning Result 1 the answer is yes in the sense that the spending multiplier

under a balanced budget will remain positive, albeit not necessarily ≥ 1. The
reason is that although under a balanced budget the households face a temporary
rise in taxes, dT, equal to the temporary rise in spending, dG, they will reduce
their current consumption by less than dT, if at all. This is because they want
to smooth consumption. If they at all have to reduce their total consumption,
they will spread this reduction out over all future periods so that the present
value of the total reduction is suffi cient to cover the rise in taxes. Thereby,
−dC < dG so that there is necessarily an “initial”stimulus to aggregate demand
equal to dG−dC > 0.Owing to unemployment and abundant production capacity,
there need not be any crowding out of investment and so aggregate demand,
output, and employment will be higher in this “first round”than without the rise
in G. This means that current before-tax incomes increase and this stimulates
private consumption and, therefore, production in the “second round”. And
so on through the “multiplier process”. In the end private consumption in the
current period need not at all fall and may even rise. So even with infinitely-lived
households, the rise in G is expansionary under the stated circumstances.
Concerning Result 2 the answer depends on whether the credit market is

perfect or not. With a perfect credit market current consumption of the infinitely-
lived households will not depend on the timing of the extra taxes that are needed
to finance dG. Whether the tax rise occurs now or later is irrelevant, as long as
the present value of the tax rise is the same for the individual household. So
the spending multiplier will be the same in the two situations. In this case, in
spite of the rise in G being expansionary, there is Ricardian equivalence in the
sense that for a given time path of government expenditures, the time path of
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(lump-sum) taxes does not matter for aggregate private consumption (whether
the taxes are lump-sum or distortionary is in fact not so important in the present
context where production and employment are demand-determined rather than
supply-determined).
If the credit market is imperfect, however, in a heterogeneous population some

of the infinitely-lived households, the less patient, say, may be currently credit
constrained. The timing of the extra taxes then does matter and Ricardian equiv-
alence is absent. Indeed, the lower current taxes associated with a budget deficit
loosens the limit to current consumption of the credit-constrained households.
Their consumption demand is thereby stimulated. Aggregate demand and there-
fore output and employment are thus raised. Through the automatic stabilizers
the budget deficit hereby becomes smaller than otherwise. This means that the
future extra tax burden becomes lower for everybody, including the households
that are not currently credit-constrained. So also their current consumption is
stimulated, and aggregate demand is raised further. We conclude that in spite of
households being infinitely-lived, when credit markets are imperfect, for a given
rise in government spending, the spending multiplier is likely to be larger under
deficit financing than under balanced budget financing. So even Result 2 seems
relatively robust.

21.5 Concluding remarks

The distinguishing feature of the IS-LM model compared with classical and new-
classical theory is the treatment of the general price level for goods and services
as given in the short run, that is, as a state variable of the system, hence very
different from an asset price. The IS-LM model is not about why it is so (the
two previous chapters suggested some answers to that question), but about the
consequences for how the interaction between goods and asset markets works out.
There are two different assets, money and an interest-bearing asset in the form
of bonds, where money is held because of its liquidity services while as a store of
value money is generally dominated by bonds.
Traditionally, the IS-LM model has been seen as only one building block of a

more involved aggregate supply-aggregate demand (AS-AD) framework of many
macroeconomic textbooks. In that framework the IS-LM model describes just
the demand side of a model where the level of nominal wages is an exogenous
constant in the short run, but the price level adjusts in response to shifts in
aggregate demand for fixed money stock.
In this chapter we have interpreted the IS-LM model another way, namely

as an independent short-run model in its own right, based on the approximation
that both nominal wages and prices are set “in advance”by agents operating in
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imperfectly competitive markets and being hesitant regarding frequent or large
price changes. The traditional AS-AD version of the Keynesian framework blurs
the distinction between short-run equilibrium and a sequence of such equilibria.
In a sequence of short-run equilibria some kind of Phillips curve, a dynamic
relation, is operative rather than an upward-sloping AS curve in the (Y, P ) plane
(a static relation).12

Given the pre-set wages and prices, in every short period output is demand-
determined. Likewise, but behind the scene, also employment is demand-determined.
Not prices on goods and services, but quantities are the equilibrating factors.
This is the polar opposite of Walrasian microeconomics and neoclassical long-run
theory, cf. Part II-IV of this book, where output and employment are treated
as supply-determined − with absolute and relative prices as the equilibrating
factors.
A striking implication of this role switch is the paradox of thrift which is

Keynes’favorite example of a fallacy of composition. As Keynes put it:

. . . although the amount of his own saving is unlikely to have any
significant influence on his own income, the reactions of the amount
of his consumption on the incomes of others makes it impossible for
all individuals simultaneously to save any given sums. Every such
attempt to save more by reducing consumption will so affect incomes
that the attempt necessarily defeats itself (Keynes 1936, p. 84).

Empirically the IS-LM model, in the interpretation given here but extended
with an expectation-augmented Phillips curve, does a quite good job (see Gali,
1992, and Rudebusch and Svensson, 1998). And for instance the surveys in
the Handbook of Macroeconomics (1999) and Handbook of Monetary Economics
(201?) support the view that under “normal circumstances”, the empirics say
that the level of production and employment is significantly sensitive to fiscal
and monetary policy.

21.6 Literature notes

The IS-LM model as presented here is essentially based on the attempt by Hicks
(1937) to summarize the analytical content of Keynes’General Theory of Em-

12If one insists on something related to AS-AD, one could interpret this chapter’s model as
imposing a horizontal AS curve in the output-price plane. But that’s it. No AD curve in this
plane appears in the model. The only place an AD curve appears is in the output-interest plane
in the form of an IS curve. When it comes to the study of sequences of short-run equilibria
(Chapter 22), a medium-term AD curve in the output-inflation plane will arise.
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ployment, Interest and Money. Keynes (WHERE?) mainly approved the inter-
pretation. Of course Keynes’book contained many additional ideas and there
has subsequently been controversies about “what Keynes really meant”(see, e.g.,
Leijonhufvud 1968). Yet the IS-LM framework has remained a cornerstone of
mainstream short-run macroeconomics. The demand side of the large macro-
econometric models which governments, financial institutions, and trade unions
apply to forecast macroeconomic evolution in the near future is essentially built
on the IS-LM model. At the theoretical level the IS-LM model has been criticized
for being ad hoc, i.e., not derived from “primitives”(optimizing firms and house-
holds, given specified technology, preferences, budget constraints, and market
structures combined with an intertemporal perspective with forward-looking ex-
pectations) and not ensuring mutual compatibility of agents budget constraints.
In recent years, however, more elaborate micro-founded versions of the IS-LM
model have been suggested (Goodfriend and King 1997, McCallum and Nelson
1999, Sims 2000, Dubey and Geanakoplos 2003, Walsh 2003, Woodford 2003,
Casares and McCallum, 2006). Some of these “modernizations”and consistency
checks are considered in Part VII.
To be added:
Barro’s and others’ critique of the traditional AS-AD interpretation of the

IS-LM model.
The case with investment goods industries with monopolistic competition:

Kiyotaki, QJE 1987.
Keynes 1937. Comparison between Keynes (1936) and Keynes (1939).
Balanced budget multiplier: Haavelmo (1945).
The natural range of unemployment: McDonald. See also Dixon and Rankin,

eds., p. 56.
Keynes and DeLong: Say’s law vs. the treasury view.

21.7 Appendix

21.8 Exercises

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



Chapter 22

IS-LM dynamics with
forward-looking expectations

A main weakness of the standard IS-LM model as described in the previous
chapter is the absence of dynamics and endogenous forward-looking expectations.
This motivated Blanchard (1981) to develop a dynamic extension of the IS-LM
model. The key elements are:

• The focus is manifestly on adjustment mechanisms in the “very short run”.
The model allows for a deviation of aggregate output from aggregate de-
mand − the adjustment of output to demand takes time. In this way the
model highlights the interaction between fast-moving asset markets and
less-fast-moving goods markets.

• There are three financial assets, money, a short-term bond, and a long-term
bond. Accordingly there is a distinction between the short-term interest
rate and the long-term interest rate. Thereby changes in the term structure
of interest rates, known as the yield curve, can be studied.

• Agents have forward-looking expectations. The expectations are assumed
to be rational (model consistent) and thereby endogenous. Since there are
no stochastic elements in the model, perfect foresight is effectively assumed.

This richer IS-LM model conveys the central message of Keynesian theory.
The equilibrating role in the output market is taken by output changes generated
by discrepancies between aggregate demand and production. The distinction
between short- and long-term interest rates allows an account of what monetary
policy can directly accomplish and what is at least more diffi cult to accomplish.
While the central bank controls the short-term interest rate (as long as it exceeds
the zero lower bound), consumption and in particular investment depend on the
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CHAPTER 22. IS-LM DYNAMICS WITH FORWARD-

LOOKING EXPECTATIONS

long-term rate. Finally, at the empirical level the incorporation of the yield curve
opens up for a succinct indicator of expectations.

22.1 A dynamic IS-LM model

As in the previous chapter we consider a closed industrialized economy where
manufacturing goods and services are supplied in markets with imperfect compe-
tition and prices set in advance by firms operating under conditions of abundant
capacity. Time is continuous.
LetRt denote the long-term real interest rate at time t (to be explained below).

By replacing the short-term real interest rate in the aggregate demand function
from the simple IS-LM model of the previous chapter by the long-term rate, we
obtain a better description of aggregate demand:

Y d
t = C(Yt − (τ + T (Yt)), Rt) + I(Yt, Rt) +G ≡ D(Yt, Rt, τ) +G, where

0 < DY < 1, DR < 0,−1 < Dτ = −CY p < 0,

Generally notation is as in the previous chapter although we shift from discrete
to continuous time. We should thus interpret the flow variables as intensities.
Disposable private income per time unit is Y − T where T = τ + T (Y )), 0 ≤
T ′(Y ) < 1, and τ is a constant parameter reflecting “tightness”of discretionary
fiscal policy; G represents government purchases per time unit (spending on goods
and services). To avoid too many balls in the air at the same time, we ignore
stochastic elements both here and in the money market equation below.
The positive dependency of aggregate output demand on current aggregate

income, Y, reflects primarily that private consumption depends positively on dis-
posable income. That current disposable income has this role, reflects the em-
pirically supported hypothesis that a substantial fraction of the households are
credit-constrained. Perceived human wealth (the present value of the expected
stream of after-tax labor income), which in standard consumer theory is a ma-
jor determinant of consumption, is itself likely to depend positively on current
earnings. Similarly, capital investment by demand-constrained firms will depend
positively on current economic activity, Y, to the extent that this activity pro-
vides internal finance from corporate profits and signals the level of demand in
the near future.
The negative dependency of aggregate demand on R reflects first and foremost

that capital investment depends negatively on the expected long-term interest
rate. Firm’s investment in production equipment and structures is normally an
endeavour with a lengthy time horizon. Similarly, the households’ investment
in durable consumption goods (including housing) is based on medium- or long-
term considerations. A rise in R induces a negative substitution effect on current
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consumption and probably also, on average, a negative wealth effect. Increases
in household’s wealth, whether in the form of human wealth, equity shares and
bonds, or housing estate, are triggered by reduction in the long-term interest
rate.1

Because of the short-run perspective of the model, explicit reference to the
available capital stock in the investment function, I, is suppressed.
The continuous-time framework is convenient because we avoid the oddity in

period analysis of allowing asset markets to open only at the beginning or end of
each period. The continuous-time framework is also convenient by making it easy
to operate with different speeds of adjustment for different variables. Regarding
the speed of adjustment to changes in demand, we shall operate with a tripartition
as envisaged in Table 20.1. Output is understood to consist primarily of goods and
services with elastic supply with respect to demand, in contrast to agricultural
and mineral products and construction.

Table 20.1. Speed of adjustment of
different variables to demand shifts
Variable Adjustment speed

asset prices high
output medium
prices on output low, here assumed nil

The model lets asset prices adjust immediately so that asset markets clear
at any instant. The adjustment of output to demand takes some time. This is
modeled like an error-correction:

Ẏt ≡
dYt
dt

= λ(Y d
t − Yt), (22.1)

= λ(D(Yt, Rt, τ) +G− Yt), Y0 > 0 given,

where λ > 0 is a constant adjustment speed. At any point in time the out-
put intensity Yt is predetermined. During the adjustment process also demand
changes (since the output level and fast-moving asset prices are among the deter-
minants of demand). The difference between demand and output is made up of
changes in order books and inventories behind the scene. Indeed, the counterpart
of Yt − Y d

t in national income accounting is unintended inventory investment. In
a more elaborate version of the model unintended positive or negative inventory
investment should result in a feedback on subsequent demand and supply.2

1See, e.g., Case, Quigley, and Shiller (2005, 2011).
2In the post-war period changes in inventory stocks (inventory investment) account for less

than 1% of GDP in the U.S. (Allesandria et al., 2010, Wen, 2011).
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The rest of the model consists of the following equations:

Mt = PtL(Yt, it), LY > 0, Li < 0. (22.2)

Rt =
1

qt
, (22.3)

ret ≡ it − πet , (22.4)
1 + q̇et
qt

= ret , (22.5)

πt ≡
Ṗt
Pt

= π. (22.6)

Equation (22.2) is the same equilibrium condition for the money market as in the
static IS-LM model. The variable,Mt, is the money stock which we may interpret
either as the monetary base or money in the broader sense where private-bank-
created money is included. To fix ideas, we choose the latter interpretation.
Nevertheless, a private banking sector is not visible in the model.
As financial markets in practice adjust very fast, the model assumes clearing

in the asset markets at any instant. The real money demand function, L(·),
depends positively on Y (viewed as a proxy for the number of transactions per
time unit for which money is needed) and negatively on the short-term nominal
interest rate, the opportunity cost of holding money. Like Yt, the general price
level, Pt, is treated as a state variable, thereby being historically determined and
changing only gradually over time. For a given Mt, money market equilibrium is
brought about by immediate adjustment of the short-term nominal interest rate,
it, so that the available stock of money is willingly held.
In equation (22.3) appears the important “new” variable qt, which is the

real price of a long-term bond, here identified as an inflation-indexed consol (a
perpetual bond) paying to the owner a stream of payments worth one unit of
output per time unit in the indefinite future (no maturity date). The equation
tells us that the long-term real interest rate at time t is the reciprocal of the real
market price of a consol at time t. This is just another way of saying that the
long-term rate, Rt, is defined as the internal rate of return on the consol. Indeed,
the internal rate of return is that number, Rt, which satisfies the equation

qt =

∫ ∞

t

1 · e−Rt(s−t)ds =

[
e−Rt(s−t)

−Rt

]∞
t

=
1

Rt

. (22.7)

Thus the long-term interest rate is that discount rate, Rt, which transforms the
payment stream on the consol into a present value equal to the real market price
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of the consol at time t.3 Inverting (22.7) gives (22.3). An alternative way of
presenting the inflation-indexed consol is shown in Appendix A.
Equation (22.4) defines the ex ante short-term real interest rate as the short-

term nominal interest rate minus the expected inflation rate. Next, equation
(22.5) can be interpreted as a no-arbitrage condition saying that the expected
real rate of return on the consol (including a possible expected capital gain or
capital loss, depending on the sign of q̇et ) must in equilibrium equal the expected
real rate of return, ret , on the short-term bond. For given expectations (q̇et and
ret ), the real price of the consol instantaneously adjusts so as to make the available
stock of consols willingly held. In general, in view of the higher risk associated
with long-term claims, presumably a positive risk premium should be added on
the right-hand side of (22.5). We shall ignore uncertainty, however, so that there
is no risk premium.4 Finally, equation (22.6) says that within the relatively short
time perspective of the model, the inflation rate is constant at an exogenous level,
π. The interpretation is that price changes mainly reflect changes in units costs
and that these changes are relatively smooth.
We assume expectations are rational (model consistent). As there is no un-

certainty in the model (i.e., no stochastic elements), this assumption amounts to
perfect foresight. We thus have q̇et = q̇t and πet = πt = π. Therefore, equation
(22.4) reduces to ret = it − π = rt for all t.
Whichever monetary policy regime to be considered below, the model can be

reduced to two coupled first-order differential equations in Yt and Rt. The first
differential equation is (22.1) above. As to the second, note that from (22.3) we
have Ṙt/Rt = −q̇t/qt. Substituting into (22.5), where q̇et = q̇t, and using again
(22.3), gives

1

qt
+
q̇t
qt

= Rt −
Ṙt

Rt

= ret = rt = it − π, (22.8)

in view of (22.4) with ret = rt = it − π. By reordering,

Ṙt = (Rt − (it − π))Rt, (22.9)

3Similarly, in discrete time, with coupon payments at the end of each period, we would have

qt =

∞∑
s=t+1

1

(1 +Rt)s−t
=

1
1+Rt

1− 1
1+Rt

=
1

Rt
.

Consols (though nominal) have been issued by UK governments occationally since 1751 and
constitute only a small part of UK government debt. Their form, without a maturity date,
make them convenient for dynamic analysis.

4If a constant risk premium were added, the dynamics of the model will only be slightly
modified.
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where the determination of it depends on the monetary regime.
Before considering alternative policy regimes, we shall emphasize an equation

which is very useful for the economic interpretation of the ensuing dynamics. As-
suming absence speculative bubbles (see below), the no-arbitrage formula (22.5)
is equivalent to a statement saying that the market value of the consol equals the
fundamental value of the consol. By fundamental value is meant the present value
of the future dividends from the consol, using the (expected) future short-term
interest rates as discount rates:

qt =

∫ ∞
t

1 · e−
∫ s
t rτdτds, so that (22.10)

Rt =
1

qt
=

1∫∞
t
e−

∫ s
t rτdτds

=

∫ ∞
t

wt,srsds,

where wt,s ≡
e−

∫ s
t rτdτ∫∞

t
e−

∫ s
t rτdτds

and
∫ ∞
t

wt,sds = 1. (22.11)

The fundamental value is the same as the solution to the differential equation for q
given in (22.8), presupposing that there are no speculative bubbles (see Appendix
B). The formula (22.11) follows by integration (see Appendix C). This formula
shows that the long-term rate, Rt, is a weighted average of the expected future
short-term rates, rs, with weights proportional to the discount factor e−

∫ s
t rτdτ .

The higher are the expected future short-term rates the lower is qt and the higher
is Rt.
If rτ is expected to be a constant, r, then (22.10) simplifies to

Rt =
1∫∞

t
e−r(s−t)ds

=
1

1/r
= r.

And if for example rτ is expected to be increasing, we get

Rt =
1∫∞

t
e−

∫ s
t rτdτds

>
1

1/rt
= rt.

22.2 Monetary policy regimes

As in the static IS-LM model of Chapter 21, we shall focus on three alternative
monetary policy regimes. The two first are regime m (money stock rule), where
the real money supply is the policy instrument, and regime i (fixed interest rate
rule), where the short-term nominal interest rate is the policy instrument. This
second regime is by far the simplest one and is in some sense closer to what
present-day monetary policy is about. Nevertheless regime m is also of interest,
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both because of its historical appeal and because it yields impressive dynamics.
In addition, regime m has partial affi nity with what happens under a counter-
cyclical interest rate rule. Our third monetary policy regime is in fact an example
of such a rule, which we name regime i′.
The assumption of perfect foresight means that the agents’expectations co-

incide with the prediction of our deterministic model. Once-for-all shocks may
occur, but only so seldom that agents ignore the possibility that a new sur-
prise may occur later. When a shock occurs, it fits intuition best to inter-
pret the time derivative of a variable as a right-hand derivative, e.g., Ẏt ≡
lim∆t→0+(Y (t + ∆t) − Y (t))/∆t. This is also the way q̇t and Ṗt should be in-
terpreted if a shock at time t results in a kink on the otherwise smooth time
path of q and P, respectively. In this interpretation Ṗt/Pt and q̇t/qt stand for
forward-looking growth rates of the nominal price of goods and the real price of
the consol, respectively.
Throughout the analysis the following variables are exogenous: the inflation

rate, π, and the fiscal policy variables, τ and G. Depending on the monetary
policy regime, an additional variable relating to the money market may be exoge-
nous. The initial values, P0 and Y0, are historically given since in this short-run
model it takes time not only for the price level but also the output level to change.

22.2.1 Policy regime m: Money stock rule

Here we assume that the central bank is capable of controlling the money stock.
More specifically, the central bank finds the going inflation rate tolerable and
pursues a policy of maintaining the real money stock, Mt/Pt, at a constant level
m > 0, by letting the nominal money supply follow the path:

Mt = P0e
πtm = M0e

πt.

Equation (22.2) then reads L(Yt, it) = m. This equation defines it as an im-
plicit function of Yt and m, i.e.,

it = i(Yt,m), with iY = −LY /Li > 0, im = 1/Li < 0. (22.12)

Inserting this function into (22.9), we have

Ṙt = [Rt − i(Yt,m) + π]Rt. (22.13)

This differential equation together with (22.1) constitutes a dynamic system in
the two endogenous variables, Yt and Rt. For convenience, we repeat (22.1) here:

Ẏt = λ(D(Yt, Rt, τ)+G−Yt), λ > 0, 0 < DY < 1, DR < 0, Dτ ∈ (−1, 0) (22.14)
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Figure 22.1: Phase diagram when m is the policy instrument.

Phase diagram

As long as R > 0, (22.13) implies

Ṙ T 0 for R T i(Y,m)− π, respectively. (22.15)

We have ∂R
∂Y
|Ṙ=0 = iY = −LY /Li > 0, that is, for real money demand to equal

a given real money stock, a higher volume of transactions must go hand in hand
with a higher nominal short-term interest rate which in turn, for given inflation,
requires a higher real interest rate. The Ṙ = 0 locus is illustrated as the upward
sloping curve, LM, in Fig. 22.1.
From (22.14) we have

Ẏ T 0 for D (Y,R, τ) +G T Y, respectively. (22.16)

We have ∂R
∂Y
|Ẏ=0 = (1 − DY )/DR < 0, that is, higher aggregate demand in

equilibrium requires a lower interest rate. The Ẏ = 0 locus is illustrated as
the downward sloping curve, IS, in Fig. 22.1. In addition, the figure shows the
direction of movement in the different regions, as described by (22.15) and (22.16).
The Ṙ = 0 and Ẏ = 0 loci intersect at the point E with coordinates (Ȳ , R̄). For

this point to be a steady state obtainable by the economic system, it is required
that R̄ > 0, since R = 1/q, and q is the real price of an inflation-indexed consol.
Now, R̄ = i(Ȳ ,m)− π. So, we assume that, given Ȳ and π, m is small enough to
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make i(Ȳ ,m) − π > 0, i.e., π < i(Ȳ ,m). If i(Ȳ ,m) is close to the lower bound,
nil,5 this requires that inflation is essentially negative, which amounts to deflation.
To maintain m constant with π < 0 requires Ṁt/Mt < 0 in this quasi- or short-
run steady state. We use the the qualifier “short run”because presumably the
economy will be subject to further dynamic feedbacks in the system (through
a Phillips curve, changed capital stock due to investment, technological change
etc.). Owing to the short time horizon, such feedbacks are ignored by the model.
The short-run equilibrium may also be called a “short-run equilibrium”.
In order to distinguish the short-run steady states from a “genuine”long-run

steady state of an economy, we mark the steady-state values by a bar rather than
an asterisk. We see that the steady state point, E, with coordinates (Ȳ , R̄), is a
saddle point.6 So exactly two solution paths − one from each side − converge
towards E. These two saddle paths, which together make up the stable arm, are
shown in the figure (the slope of the stable arm must be positive, according to the
arrows). Also the unstable arm is displayed in the figure (the negatively sloped
stippled line which attracts the diverging paths).
The initial value of output, Y0, is in this model predetermined, i.e., determined

by Y ’s previous history; relative to the short time horizon of the model, output
adjustment takes time. Hence, at time t = 0, the economy must be somewhere on
the vertical line Y = Y0. The question is then whether there can be rational asset
price bubbles. An asset price bubble, also called a speculative bubble, is present
if the market value of an asset for some notable stretch of time differs from its
fundamental value (the present value of the expected future dividends from the
asset, as defined in (22.10)). A rational asset price bubble is an asset price
bubble that is consistent with the no-arbitrage condition (22.5) under rational
expectations.
Because consols have no terminal date and might be of a unique historical kind

available in limited amount, a rational asset price bubble, driven by self-fulfilling
expectations, not be ruled out within the model as it stands. In Fig. 22.1 any
of the diverging paths with R ultimately falling, and therefore the asset price q
ultimately rising, could in principle reflect such a bubble. A negative rational
bubble can be ruled out, however. Essentially, this is because negative bubbles
presuppose that the market price of the consol initially drops below the present
value of future dividends (the right-hand side of (22.10)). But in such a situation

5The nominal interest rate can not go below 0 because agents prefer holding cash at zero
interest (or slightly below to cover trivial safe-keeping costs associated with cash holding) rather
than short-term bonds at negative interest.

6The determinant of the Jacobian matrix for the right-hand sides of the two differential
equations, evaluated at the steady-state point, is λ

[
R̄(DY − 1) + R̄iYDR

]
< 0. Hence, the two

associated eigenvalues are of opposite sign. This is the precise general mathematical criterion
for the steady state to be a saddle point.
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everyone with rational expectations would want to buy the consol and enjoy the
dividends. The resulting excess demand would immediately drive the asset price
back to the fundamental value.
In view of its simplistic nature, the model does not provide an appropriate

framework for bubble analysis. Here we will simply assume that the market par-
ticipants never have bubbly expectations. An easy way to justify that assumption
is to interpret the consols as just a convenient approximation to bonds with long
but finite time to maturity (as most bonds in the real world). Now, when market
participants never expect a bubbly asset price evolution, bubbles will not arise,
hence the implosive paths of R in Fig. 22.1 can not materialize. The explosive
paths of R in Fig. 22.1 have already been ruled out, as they would reflect negative
bubbles.
We are left with the saddle path, the path AE in the figure, as the unique

solution to the model. As the figure is drawn, Y0 < Ȳ . The long-term interest
rate will then be relatively low so that demand exceeds production and gradually
pulls production upward. Hereby demand is stimulated, but less than one-to-one
so, both because the marginal propensity to spend is less than one and because
also the interest rate rises. Ultimately, say within a year, the economy settles
down at the short-run steady state of the model − the short-run equilibrium.

Impulse-response dynamics

Let us consider the effects of level shifts in G and m, respectively. Suppose that
the economy has been in its steady state until time t0. In the steady state we
have r = i = R̄. Then either fiscal or monetary policy changes. The question is
what the effects on r, R, and Y are. The answer depends very much on whether
we consider an unanticipated change in the policy variable in question (G or m)
at time t0 or an anticipated change. As to an anticipated change, we can imagine
that the government or the central bank at time t0 credibly announces a shift to
take place at time t1 > t0. From this derives the term “announcement effect”,
synonymous with “anticipation effect”.
To prepare the ground, consider first the question: how are the IS and LM

curves affected by shifts inG andm, respectively? We have, from (22.16), ∂R
∂G
|Ẏ=0

= −1/DR > 0, that is, a shift to a higher G moves the Ẏ = 0 locus (the IS curve)
upwards. But the Ṙ = 0 locus is not affected by a shift in G. On the other
hand, the Ẏ = 0 locus is not affected by a shift in m. But the Ṙ = 0 locus (the
LM curve) depends on m and moves downwards, if m is increased, since ∂R

∂m
|Ṙ=0

= im < 0, from (22.15).
We now consider a series of policy changes, some of which are unanticipated,

whereas others are anticipated.
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Figure 22.2: Unanticipated upward shift in G (regime m).

Figure 22.3: Phase portrait of an unanticipated upward shift in G.
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Figure 22.4: Time profiles of interest rates and output to an unanticipated shift in G
(regime m).

(a) The effect of an unanticipated upward shift in G Suppose the govern-
ment is unsatisfied with the level of economic activity and at time t0 > 0 decides
(unexpectedly) an increase in G. And suppose people rightly expect this higher
G to be maintained for a long time.
The upward shift in G is shown in Fig. 22.2.7 When G shifts, the long-term

interest rate jumps up to RA, cf. Fig. 22.3, reflecting that the market value of
the consol jumps down. The explanation is as follows. The higher G implies
higher output demand, by (21.1). So an expectation of increasing Y arises (see
(22.14)) and therefore also an expectation of increasing i and r, in view of (22.12).
The implication is, by (22.10), a lower qt0 and a higher Rt0 , as illustrated in Fig.
22.4. After t0, output Y and the short-term rate r gradually increase toward
their new steady state values, Ȳ ′ and r̄′, respectively, as shown by Fig. 22.4. As
time proceeds and the economy gets closer to the expected high future values of
r, these higher values gradually become dominating in the determination of R in
(22.10). Hence, after t0 also R gradually increases toward its new steady state
value, the same as that for r.
By dampening output demand, the higher R implies a financial crowding-out

effect on production.8 After t0, during the transition to the new steady state, we

7Since m and τ are kept unchanged, the higher G may have to be partly debt financed and
thus be associated with a higher amount of outstanding government bonds. Whether this is
problematic is not our concern here.

8The crowding out is only partial, because Y still increases.
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have R > r because R “anticipates”all the future increases in r and incorporates
them, cf. (22.10). Note also that (22.8) implies

R = r + Ṙ/R T r for Ṙ T 0, respectively.

For example, Ṙ > 0 reflects that q̇ < 0, that is, a capital loss is expected. To
compensate for this, the level of R (which always equals 1/q) must be higher than
r such that the no-arbitrage condition (22.5) is still satisfied.
Formulas for the steady-state effects of the change in G can be found by using

the comparative statics method of Chapter 21 on the two steady-state equations

Ȳ = D(Ȳ , R̄, τ) +G and m = L(Ȳ , R̄)

with the two endogenous variables Ȳ and R̄ (Cramer’s rule). Given the prepara-
tory work already done, a more simple method is to substitute R̄ = i(Ȳ ,m)− π
into the first-mentioned steady-state equation to get Ȳ = D(Ȳ , i(Ȳ ,m), τ) + G.
Taking the differential on both sides gives dȲ = DY dȲ + DRiY dȲ + dG, from
which follows, by (22.12),

∂Ȳ

∂G
=

1

1−DY +DRLY /Li
> 0.

From L(Ȳ , R̄) = m we get 0 = LY dȲ + LidR̄ = LY (∂Ȳ /∂G)dG + LidR̄ = 0 so
that

∂R̄

∂G
= − LY /Li

1−DY +DRLY /Li
> 0.

Since our steady-state equations corresponds exactly to the IS and LM equations
for the static IS-LM model of Chapter 21, the output and interest rate multipliers
w.r.t. G are the same.
As alluded to earlier, one should think about the steady state as only a quasi-

steady state. That is, the role of the point (Ȳ , R̄) is to act as an “attractor”in the
short-run dynamics after a policy shift although the point itself would in a larger
model be moving slowly due to medium-term dynamics coming from a Phillips
curve and/or an increased capital stock. With appropriate parameter values in
the model, its adjustment time will be “short”. As a rough guess about the order
of magnitude, eliminating 95% of the initial distance to the steady state point
might take about a year, say.
Our treatment of the shift in G as permanent should not be interpreted lit-

erally. It is only meant to indicate that the fiscal stimulus is durable enough to
really matter. A really permanent increase inG in this economy without economic
growth might endanger fiscal sustainability, if the automatic budget reaction is
not suffi cient to, after a while, fully finance the increase in G.
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Figure 22.5: Phase portrait of an anticipated upward shift in G (regime m).

(b) The effect of an anticipated upward shift in G We assume that the
private sector at time t0 becomes aware that G will shift to a higher level at time
t1, cf. the upper panel of Fig. 22.4. The implied expectation that the short-term
interest rate will in the future rise towards a higher level, r̄′, immediately triggers
an upward jump in the long-term rate, R. To what level? In order to find out,
note that the market participants understand that from time t1, the economy will
move along the new saddle path corresponding to the new steady state, E’, in Fig.
22.5. The market price, q, of the consol cannot have an expected discontinuity
at time t1, since such a jump would imply an infinite expected capital loss (or
capital gain) per time unit immediately before t = t1 by holding long-term bonds.
Anticipating for example a capital loss, the market participants would want to
sell long-term bonds in advance. The implied excess supply would generate an
adjustment of q downwards until no longer a jump is expected to occur at time
t1. If instead a capital gain is anticipated, an excess demand would arise. This
would generate in advance an upward adjustment of q, thus defeating the expected
capital gain. This is the general principle that arbitrage prevents an expected
jump in an asset price.
In the time interval (t0, t1) the dynamics are determined by the “old”phase

diagram, based on the no-arbitrage condition which rules up to time t1. In this
time interval the economy must follow that path (AB in Fig. 22.5) for which,
starting from a point on the vertical line Y = Ȳ , it takes precisely t1 − t0 units
of time to reach the new saddle path. At time t0, therefore, R jumps to exactly
the level RA in Fig. 22.5.9 This upward jump has a contractionary effect on

9Note that RA is unique. Indeed, imagine that the jump, RA − R̄, was smaller than in
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Figure 22.6: An anticipated upward shift in G and time profiles of interest rates and
output (regime m).
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output demand. So output starts falling as shown by figures 20.5 and 20.6. This
is because the potentially counteracting force, the increase in G, has not yet taken
place. Not until time t1, when G shifts to G′, does output begin to rise. In the
“long run”both Y , R, and r are higher than in the old steady state.
There are two interesting features. First, in regimem a credible announcement

of future expansive fiscal policy can have a temporary contractionary effect when
the announcement occurs. This is due to financial crowding out. There is a
way of dampening the problem, namely by letting the central bank announce
prolonged open market operations to maintain i low for several years after time
t1, cf. policy regime i below. The second feature relates to the term structure of
interest rates, also called the yield curve. The relationship between the internal
rate of return on financial assets and their time to maturity is called the term
structure of interest rates. Fig. 22.6 shows that the term structure “twists”in the
time interval (t0, t1). The long-term rate R rises, because the time where a higher
Y (and thereby a higher r) is expected to show up, is getting nearer. But at the
same time the short-term rate r is falling because of the falling transaction need
for money implied by the initially falling Y, triggered by the rise in the long-term
interest rate.10

The theory of the term structure

What we have just seen is the expectations theory of the term structure in action.
Empirically, the term structure of interest rates tends to be upward-sloping, but
certainly not always and it may suddenly shift. The theory of the term structure
of interest rates generally focuses on two explanatory factors. One is uncertainty
and this factor tends to imply a positive slope because the greater uncertainty
generally associated with long-term bonds generates a risk premium, known as
the term premium, on these. The present model has nothing to say about this
factor since the model ignores uncertainty.
Our model has something to say about the other factor, namely expectations.

Indeed, the model quite well exemplifies what is called the expectations theory of
the term structure. In its simplest form this theory ignores uncertainty and treats

Fig. 20.5. Then, not only would there be a longer way along the road to the new saddle path,
but the system would also start from a position closer to the “old”steady-state point, E. This
implies an initially lower adjustment speed.
10A conceivable objection to the model in this context is that it does not fully take into account

that consumption and investment are likely to depend positively on expected future aggregate
income, so that the hypothetical temporary decrease in demand and output never materializes.
On the other hand, the model has in fact been seen as an explanation that president Ronald
Reagan’s announced tax cut in the USA 1981-83 (combined with the strict monetary policy
aiming at disinflation) were followed by several years in recession. The concomitant tight
monetary policy is an alternative or supplementary explanation of these events.
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Figure 22.7: Phase portrait of an unanticipated downward shift in m (regime m).

various maturities as perfect substitutes. The theory says that if the short-term
interest rate is expected to rise in the future, the long-term rate today will tend
to be higher than the short-term rate today. This is because, absent uncertainty,
the long-term rate is a weighted average of the expected future short-term rates,
as seen from (22.11). Similarly, if the short-term interest rate is expected to
fall in the future, the long-term rate today will, everything else equal, tend to be
lower than the short-term rate today. Thus, rather than explaining the statistical
tendency for the slope of the term structure to be positive, changes in expectations
are important in explaining changes in the term structure. In practice, most
bonds are denominated in money. Central to the theory is therefore the link
between expected future inflation and the expected future short-term nominal
interest rate. This aspect is not captured by the present short-run model, which
ignores changes in the inflation rate.

(c) The effect of an unanticipated downward shift in m The shift in m is
shown in the upper panel of Fig. 22.8. The shift triggers, at time t0, an upward
jump in the long-term rate R to the level of the new saddle path (point A in
Fig. 22.7). The explanation is that the fall in money supply implies an upward
jump in the short-term rate i, hence also r, at time t0, cf. (22.10). As indicated
by Fig. 22.8, the short-term rate will be expected to remain higher than before
the decline in m. The rise in R triggers a fall in output demand and so output
gradually adjusts downward as depicted in Fig. 22.8. The resulting decline in
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Figure 22.8: An unanticipated downward shift in m and time profiles of interest rates
and output (regime m).
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the transactions-motivated demand for money leads to the gradual fall in the
short-term rate towards the new steady state level. This fall is anticipated by the
long-term rate, which is, therefore, at every point in time after t1 lower than the
short-term rate.
It is interesting that when the new policy is introduced, both R and r “over-

shoot”in their adjustment to the new steady-state levels. This happens, because,
after t0, both R and r have to be decreasing, parallel with the decreasing Y which
implies lower money demand. Another noteworthy feature is that the yield curve
is negatively sloped after t0 for some time.
Not surprisingly, there is not money neutrality. This is due, of course, to the

price level being rigid in this model.
To find expressions for the steady-state effects of the change inm, we first take

the differential on both sides ofD(Ȳ , i(Ȳ ,m), τ)+G= Ȳ to get (1−DY−DRiY )dȲ
= DRimdm. By (22.12), this gives

∂Ȳ

∂m
=

DR/Li
1−DY +DRLY /Li

> 0.

Hence, dȲ = (∂Ȳ /∂m)dm < 0 for dm < 0. From m = L(Ȳ , R̄) we get dm
= LY dȲ + LidR̄ = LY (∂Ȳ /∂m)dm+ LidR̄ so that

∂R̄

∂m
=

(1−DY )/Li
1−DY +DRLY /Li

< 0.

Hence, dR̄ = (∂R̄/∂m)dm > 0 for dm < 0. These multipliers are the same as
those for the static IS-LM model.

(d) The effect of an anticipated downward shift in m The shift in m
is announced at time t0 to take place at time t1, cf. Fig. 22.9. At the time t0
of “announcement”R jumps to RA and then gradually increases until time t1.
This is due to the expectation that the short-term rate will in the longer run be
higher than in the old steady state. The higher R implies a lower output demand
and so output gradually adjusts downward. Then also the short-term rate moves
downward until time t1. In the time interval (t0, t1) the dynamics are determined
by the old phase diagram and the economy follows that path (AB in Fig. 22.9) for
which, starting from a point on the vertical line Y = Ȳ , it takes precisely t1 − t0
units of time to reach the new saddle path. Since in the time interval (t0, t1) R
increases, while r decreases, we again witness a “twist”in the term structure of
interest rates, cf. Fig. 22.10.
Owing to the principle that arbitrage prevents an expected jump in an asset

price, exactly at the time t1 of implementation of the tight monetary policy, the
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Figure 22.9: Phase portrait of an anticipated downward shift in m (regime m).

economy reaches the new saddle path generated by the lower money supply (cf.
the point B in Fig. 22.9). The fall in m triggers a jump upward in the short-term
rate r. This is foreseen by everybody, but it implies no capital loss because the
bond is short-term. Output Y continues falling towards its new low steady state
level, cf. Fig. 22.10. The transactions-motivated demand for money decreases
and therefore r gradually decreases towards the new steady-state level which is
above the old because m is smaller than before. The long-term rate discounts
this gradual fall in r in advance and is therefore, after t1, always lower than r,
implying a negatively sloped yield curve. Nevertheless, over time the long-term
rate approaches the short-term rate in this model where there is no risk premium.

22.2.2 Policy regime i: Fixed short-term interest rate

Here we shall analyze a monetary policy regime where the short-term interest
rate is the instrument. The model now takes i as an exogenous but adjustable
constant in that i is a policy instrument, together with the fiscal instruments,
G and τ . Then the real money stock, m, has to be endogenous, which reflects
that the central bank through open market operations adjusts the monetary base
so that the actual short-term rate equals the one desired (and usually explicitly
announced) by the central bank. Common names for this rate are the “target
rate”, the “policy rate”, or “the offi cial interest rate”. The short-term rate which
the central bank tries to control this way is known as the money market rate,
where “money market” is synonymous with “interbank market”, cf. Chapter
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Figure 22.10: An anticipated downward shift in m and time profiles of interest rates
and output (regime m).
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16. The more technical term for the targeted money market rate is in the Euro
area the EONIA (euro overnight index average) and in the US the Federal Funds
Rate Target. The latter name is somewhat misleading since it is not a rate
charged by the US Central Bank, the Fed. It is the interest rate charged on short-
term (typically day-to-day) loans from one bank to another. Fig. 22.11 shows
the evolution of the Federal Funds Rate 1978-2013, stating dates of important
economic and political events over the period.

1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013
0%

5%

10%

15%

11th August 1987
Alan Greenspan took
office as chairman
of the Fed, replac-
ing the ”‘inflation
hawk”’ Paul Volker.

19th October 1987
Black Monday on
the stock exchange in
Wall Street. The
Dow Jones stock in-
dex falls by 22.6%.

1991
The US economy
is in recession.

March 1994
Greenspan observes, as
one of the first, that the
United States is entering
a period of extraordinary
high productivity growth.

September 1998
The large hedge fund Long
Term Capital Management is on
the brink of failure and threat-
ens to pull down with it twelve
of the largest investment banks.

Spring 2000
The IT bubble has
driven stock prices
to a very high level.

1st February 2006
Ben Bernanke took office
as chairman of the Fed.

18th September 2008
Lehman Brothers Holdings Inc.
filed for Chapter 11 bankruptcy
protection.

Figure 22.11: The evolution of the US federal funds rate 1978-2013. Source: Federal
Reserve Bank of St. Louis.

The dynamic system

With i > 0 exogenous and mt endogenous, the dynamic system consists of (22.9)
and (22.1), which we repeat here for convenience:

Ṙt = (Rt − i+ π)Rt, (22.17)

Ẏt = λ(D(Yt, Rt, τ) +G− Yt), where (22.18)

0 < DY < 1, DR < 0,−1 < Dτ < 0.

Because Yt does not appear in (22.17), the system (22.17) - (22.18) is simpler.
The system determines the movement of Rt and Yt. In the next step the required
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Figure 22.12: Phase diagram when i is the policy instrument.

movement of Mt is determined by Mt = PtL(Yt, i) = P0e
πtL(Yt, i), from (22.2).

In practice, an unchanged i will not be maintained forever but is likely to be
adjusted according to the circumstances. Using a similar method as before we
construct the phase diagram, cf. Fig. 22.12. The Ṙ = 0 locus is now horizontal.
The steady state is again a saddle point and is saddle-point stable. Notice, that
here the saddle path coincides with the Ṙ = 0 locus.

Dynamic responses to policy changes when the short-term interest rate
is the instrument

Let us again consider effects of permanent level shifts in exogenous variables, here
G and i. Suppose that the economy has been in its steady state until time t0. In
the steady state we have R = r = i − π. Then either fiscal policy or monetary
policy shifts. We consider the following three shifts in exogenous variables:

(a) An unanticipated decrease of G. See figures 22.13 and 22.14.

(b) An unanticipated decrease of i. See figures 22.15 and 22.16 in Appendix D.

(c) An anticipated decrease of i. See figures 22.17 and 22.18 in Appendix D.

As to the anticipated shift in i, we imagine that the central bank at time t0
credibly announces the shift in i to take place at time t1 > t0.
The figures illustrate the responses. The diagrams should, by now, be self-

explanatory. The only thing to add is that the reader is free to introduce another
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Figure 22.13: Phase portrait of an unanticipated downward shift in G (regime i).

interpretation of, say, the exogenous variable G. For example, G could be inter-
preted as measuring consumers’and investors’“degree of optimism”. The shift
(a) could then be seen as reflecting the change in the “state of confidence”asso-
ciated with the worldwide recession in 2001 or in 2008. The shift (b) could be
interpreted as the immediate reaction of the Fed in the USA. As the public be-
comes aware of the general recessionary situation, further decreases of the federal
funds rate, i, are expected and tends also to be executed. This is what point (c)
is about.

22.2.3 Policy regime i′: A counter-cyclical interest rate
rule

Suppose the central bank conducts stabilization policy by using the interest rate
rule

it = α0 + α1(Yt − Y n) + α2(πt − π̂) = α0 + α1Yt − α1Y
n + α2(πe − π̂)

≡ α′0 + α1Yt, (22.19)

where Y n is that level of output at which unemployment is at the NAIRU level,
π̂ is the desired inflation rate, and the α’s are (in this model) constant policy
parameters, α1 > 0. In a context where also the inflation rate is endogenous, such
a policy is known as a Taylor rule. The American economist John Taylor found
the rule (with α1 = 0.5 and α2 = 1.5) to be a good description of actual U.S.
monetary policy over a decade and at the same time a recommendable policy
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Figure 22.14: An unanticipated downward shift in G and time profiles of interest rates,
output, and money supply (regime i; π = 0).
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(Taylor, 1993).11 Bernanke and Gertler (1959) present similar empirical evidence
for Japan.
Given the policy rule (22.19), let us consider the dynamic system

Ẏt = λ(D(Yt, Rt, τ) +G− Yt), 0 < DY < 1, DR < 0,−1 < Dτ < 0,

Ṙt = [Rt − (α′0 + α1Yt) + π]Rt.

These two differential equations determine the time path of (Yt, Rt) by a phase
diagram similar to that in Fig. 22.1. Responses to unanticipated and anticipated
changes in G are qualitatively the same as in regime m, where the money stock
was the instrument. Qualitatively, the only difference is that the money stock is
no longer an exogenous constant, but has to adjust according to

Mt = P0e
πtL(Yt, α

′
0 + α1Yt),

in order to let the counter-cyclical interest rule work. In Exercise 20.x the reader
is asked to show that if α1 > −LY /Li and inflation is exogenous, this monetary
policy regime is more stabilizing w.r.t. output than regime m.

22.3 Discussion

The previous chapter revisited the conventional static IS-LM model and some of
its microfoundations. In this chapter we have presented a dynamic version of the
IS-LM model with endogenous forward-looking expectations. The model deals
with the benchmark case of perfect foresight.
The framework captures the empirical tenet that output and employment in

the short run tend to be demand-determined − with produced quantities and
asset prices as the equilibrating factors, while the path of goods prices respond
only little to changes in aggregate demand (within the time horizon of this path
does not respond at all).
A general weakness of simple IS-LM models, whether static or dynamic, is

that the compatibility of agents’accounting relationships is not ensured. In addi-
tion, aggregate behavior of the agents is postulated and not based on a weighted
summation over the actions of different agent types. Yet the consumption and
investment functions can to some extent be defended on a microeconomic basis.12

The forward-looking expectations in the model capture wealth effects through
changes in the long-term interest rate, R. It would be an improvement if also the

11When inflation, πt, and expected inflation, πet , are endogenous, and one of the aims of
monetary policy is to have a hold over the inflation rate, it is important to let α2 > 1 so that
rt ≡ it − πt goes up when πt goes up.
12See Literature notes to Chapter 21.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



22.4. Literature notes 869

role of expected future output demand for current consumption and investment
were modeled.
The simple process assumed for the adjustment of output to changes in de-

mand is of course ad hoc. But perhaps it can be seen as a rough approximation
to the theory of intended and unintended inventory investment (Wang and Wen,
2009).
It is a simplification that changes in production and employment have no

wage and price effects at all. At least in a medium-run perspective there should
be wage and price responses within the model, i.e., some version of a Phillips
curve. Then the issue arises under what conditions the dynamic interactions in
the system after a disturbance tend to pull Y back to its NAIRU level or further
away from it.
The next chapter extends the framework to an open economy.

22.4 Literature notes

A remark on the relationship between our presentation of the model and the
original version in Blanchard (1981) seems appropriate. Our presentation builds
on the version in Blanchard and Fischer (1989). In the original Blanchard (1981)
paper, however, the key forward-looking variable is Tobin’s q rather than the
long-term interest rate, R. But since the (real) long-term interest rate can, in
this context, be considered as inversely related to Tobin’s q, there is essentially no
difference. Wealth effects come true whether the source is interpreted as changes
in Tobin’s q or the long-term interest rate.
Extending the dynamic IS-LM model by some kind of a Phillips curve makes

the model substantially more complicated. Blanchard (1981, last section) did in
fact take a first step towards such an extension, ending up with a system of three
coupled differential equations.

22.5 Appendix

A. An inflation-indexed consol

An alternative way of presenting the inflation-indexed consol is the following.
The coupon per time unit at time s in the future amounts to Ps units of account,
i.e., the price level at time s. This price level is related to the current price level,
Pt, via the evolution of inflation in the time interval (t, s),

Ps = Pte
∫ s
t πτdτ .
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Starting from a given nominal market value, Qt, of the consol at time t, we thus
have

Qt ≡ Ptqt =

∫ ∞

t

Pse
−
∫ s
t iτdτds = Pt

∫ ∞

t

e
∫ s
t πτdτe−

∫ s
t iτdτds

= Pt

∫ ∞

t

e−
∫ s
t (iτ−πs)dτds = Pt

∫ ∞

t

e−
∫ s
t rτdτds,

by rτ ≡ iτ − πs. Dividing through by Pt gives (22.10).

B. Solving the no-arbitrage equation for qt in the absence of asset price
bubbles

In Section 22.1 we claimed that in the absence of speculative bubbles, the differ-
ential equation implied by the no-arbitrage equation (22.8) has the solution

qt =

∫ ∞
t

1 · e−
∫ s
t rτdτds. (22.20)

To prove this, we write the no-arbitrage equation on the standard form for a
linear differential equation

q̇t − rtqt = −1.

The general solution to this is

qt = qt0e
∫ t
t0
rτdτ − e

∫ t
t0
rτdτ

∫ t

t0

e
−
∫ s
t0
rτdτds.

Multiplying through by e−
∫ t
t0
rτdτ gives

qte
−
∫ t
t0
rτdτ = qt0 −

∫ t

t0

e
−
∫ s
t0
rτdτds.

Rearranging and letting t→∞, we get

qt0 =

∫ ∞
t0

e
−
∫ s
t0
rτdτds+ lim

t→∞
qte
−
∫ t
t0
rτdτ . (22.21)

The first term on the right-hand side is the fundamental value of the consol, i.e.,
the present value of the future dividends on the asset. The second term on the
right-hand side thus amounts to the difference between the market price, qt0 , of
the consol and its fundamental value. By definition, this difference represents a
bubble. In the absence of a bubble, the difference is nil, and the market price,
qt0 , coincides with the fundamental value. So (22.20) holds (in (22.21) replace t
by T and t0 by t), as was to be shown.
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C. Proof of (22.11)

CLAIM Let qt = limT→∞
∫ T
t
e−

∫ s
t rτdτds <∞. Then:

(i)
∫ ∞
t

e−
∫ s
t rτdτrsds = 1; and

(ii)
1

qt
=

∫ ∞
t

wt,srsds, where wt,s ≡
e−

∫ s
t rτdτ∫∞

t
e−

∫ s
t rτdτds

.

Proof. The function F (s) = e−
∫ s
t rτdτ has the derivative

F ′(s) = −e−
∫ s
t rτdτrs.

Hence∫ ∞
t

e−
∫ s
t rτdτrsds = −

∫ ∞
t

F ′(s)ds = − F (s)|∞t = − e−
∫ s
t rτdτ

∣∣∣∞
t

= −(0− 1) = 1.

This proves (i). We have

1

qt
=

1∫∞
t
e−

∫ s
t rτdτds

=

∫∞
t
e−

∫ s
t rτdτrsds∫∞

t
e−

∫ s
t rτdτds

=

∫ ∞
t

wt,srsds,

where the first equality follows from the definition of qt, the second from (i), and
the third by moving the constant 1/(

∫∞
t
e−

∫ s
t rτdτds) inside the integral and then

apply the definition of wt,s. This proves (ii). �

D. More examples of dynamics in policy regime i

The figures 22.15 and 22.16 illustrate responses to an unanticipated lowering of
the short-term interest rate, and figures 22.17 and 22.18 illustrate the responses
to an anticipated lowering. Throughout it is assumed that π = 0.
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Figure 22.15: Phase portrait of an unanticipated downward shift in i (regime i, π = 0).

Figure 22.16: An unanticipated downward shift in i and time profiles of the long-term
rate, output, and money supply (regime i, π = 0).
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Figure 22.17: Phase portrait of an anticipated downward shift in i (regime i, π = 0).

Figure 22.18: An unanticipated downward shift in i and time profiles of the long-term
rate, output, and money supply (regime i, , π = 0).
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Chapter 23

The open economy and
alternative exchange rate regimes

In this chapter we consider simple open-economy members of the IS-LM family.
Section 23.1 revisits the standard static version, the Mundell-Fleming model,
in its fixed-exchange-rate as well as floating-exchange-rate adaptations. The
Mundell-Fleming model is well-known from elementary macroeconomics and our
presentation of the model is merely a prelude to the next sections which address
dynamic extensions. In Section 23.2 we show how the dynamic closed-economy
IS-LM model with rational expectations from the previous chapter can be easily
modified to cover the case of a small open economy with fixed exchange rates.
In Section 23.3 we go into detail about the more challenging topic of floating
exchange rates. In particular we address the issue of exchange rate overshooting,
first studied by Dornbusch (1976).
Both the original Mundell-Fleming model and the dynamic extensions consid-

ered here are ad hoc in the sense that the microeconomic setting is not articulated
in any precise way. Yet the models are useful and have been influential as a means
of structuring thinking about an open economy in the short run.
The models focus on short-run mechanisms in a small open economy. There is

a “domestic currency”and a “foreign currency”and these currencies are traded
in the foreign exchange market. In this market, nowadays, the volume of trade is
gigantic.
The following assumptions are shared by the models in this chapter:

1. Free mobility across borders of financial capital (i.e., no barriers or restric-
tions on currency trade).

2. Domestic and foreign bonds are perfect substitutes and hence command the
same expected rate of return.
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3. Free mobility across borders of goods and services (i.e., no barriers or re-
strictions on trade in goods and services )

4. No mobility across borders of labor.

5. Domestic and foreign goods are imperfect substitutes.

6. Nominal prices are sluggish and follow an exogenous constant inflation path.

The two first assumptions together make the case of perfect mobility of finan-
cial capital. As the two last assumptions indicate, we consider an economy with
imperfectly competitive firms. In an asynchronous way, the firms adjust their
prices when their unit costs change. The aggregate inflation rate is considered
sticky.
We use the same notation as in the previous chapter, with the following clari-

fications and additions: Y is domestic output (GDP), P the domestic price level,
P ∗ the foreign price level, i the domestic short-term nominal interest rate, i∗

the foreign short-term nominal interest rate, and X the nominal exchange rate.
Suppose UK is the “home country”. Then the exchange rate X indicates the
price in terms of British£ (GBP) for one US$ (USD), say. Be aware that the
currency trading convention is to announce an exchange rate as, for example, “X
USD/GBP”, meaning by this “USD through GBP is X”in the sense of X GBP
per USD. In ordinary language (as well as in mathematics) a slash, however,
means “per”; thus, writing “X USD/GBP” ought to mean X USD per GBP,
which is exactly the opposite. Whenever in this text we use a slash, it has this
standard mathematical meaning. To counter any risk of confusion, when indicat-
ing an exchange rate, we therefore avoid using a slash altogether. Instead we use
the unmistakable “per”.1

When reporting that “the exchange rate is X”, our point of view is that
of an importer in the home country. That is, if UK is the “home country”,
saying that “the exchange rate is X”shall mean that X GBP must be paid per
$ worth of imports. And saying that “the real exchange rate is x”shall mean
that x domestic goods must be paid per imported good. This convention is
customary in continental Europe. Note however, that it is the opposite of the
British convention which reports the home country’s nominal and real “exchange
rate”as 1/X and 1/x, respectively.
When considering terms of trade, 1/x, our point of view is that of an exporter

in the home country. The terms of trade tell us how many foreign goods we get
per exported good. In accordance with this, Table 21.1 gives a list of key open
economy variables.

1Yet another convention is to report an exchange rate this way: “euro against yen is X”.
This means X euro per yen but is often written “X yen/euro”.
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Table 21.1 Open economy glossary

Term Symbol Meaning

Nominal exchange rate X The price of foreign currency in terms
of domestic currency.

Real exchange rate x ≡XP ∗

P
The price of foreign goods in terms of
domestic goods (can be interpreted as
an indicator of competitiveness).

Terms of trade 1/x In this simple model terms of trade is
just the inverse of the real exchange
rate (generally, it refers to the price of
export goods in terms of import goods).

Purchasing power parity The nominal exchange rate which makes
the cost of a basket of goods and services
equal in two countries, i.e., makes x = 1.

Uncovered interest parity The hypothesis that domestic and
foreign bonds have the same
expected rate of return, expressed
in terms of the same currency.

Exports E
Imports IM
Net exports (in domestic
output units) N = E − xIM.
Net foreign assets Af

Net factor income from abroad
(in domestic output units) rAf+wfLf The present model has Lf= 0.

Current account surplus CAS = N + rAf + wfLf . In this model Lf= 0.
Offi cial reserve assets ORA

Private net foreign assets Afp = Af−ORA.
Increase per time unit
in some variable z ∆z

Financial account surplus FAS = −∆Afp−∆ORA = −CAS = current
account deficit.

Net inflow of foreign exchange = CAS = −FAS = − (net outflow of
foreign exchange)

We simplify by talking of an exchange rate as if the “foreign country”consti-
tutes the rest of the world and the exchange rate is thereby just a bilateral entity.
A more precise treatment would center on the effective exchange rate, which is
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a trade-weighted index of the exchange rate vis-a-vis a collection of major trade
partners.

23.1 The Mundell-Fleming model

Whether the Mundell-Fleming model is adapted to a fixed or floating exchange
rate regime, there is a common set of elements.

23.1.1 The basic elements

Compared with the static closed-economy IS-LM model, the Mundell-Fleming
model contains two new elements:

• An extra output demand component, namely a net export function N(Y, x),
where x ≡ XP ∗/P is the real exchange rate. As a higher income implies
more imports, we assume that NY < 0. And as a higher real exchange rate
implies better competitiveness, we assume that Nx > 0.2

• The uncovered interest parity condition (for short UIP). This says that
domestic and foreign financial assets pay the same expected rate of return
(measured in the same currency).

Apart from the addition of these open-economy elements, notation is as in the
previous chapter. Output demand is given as

Y d = C(Y p, re) + I(Y, re) +N(Y, x) +G+ εD, where (23.1)

0 < CY p +NY < CY p ≤ CY p + IY < 1, Cre + Ire ≤ Ire < 0, Nx > 0,

and εD is a demand shift parameter. Disposable income, Y p, is

Y p ≡ Y − T, (23.2)

where T is real net tax revenue (gross tax revenue minus transfers). We assume
a quasi-linear tax revenue function

T = τ + T (Y ), 0 ≤ T ′ < 1, (23.3)

2By assuming Nx > 0, it is presupposed that the Marshall-Lerner condition is satisfied, see
Appendix A. Throughout the chapter we ignore that it may take one or two years for a rise in
x to materialize as a rise in net exports. This is because the price of imports is immediately
increased while the quantity of imports and exports only adjust with a time lag (the pattern
known as the J-curve effect).
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where τ is a constant representing the “tightness”of fiscal policy. This parameter,
together with the level of public spending, G, describes fiscal policy.
Inserting (23.2) and (23.3) into (23.1), we can write aggregate demand as

Y d = D(Y, re, x, τ) +G+ εD, where (23.4)

0 < DY = CY p(1− T ′) + IY +NY < 1, Dre = Cre + Ire < 0,

Dx > 0, Dτ = CY p · (−1) ∈ (−1, 0).

The demand for money (domestic currency and checkable deposits in com-
mercial banks) in the home country is, as in the closed economy model,

Md = P · (L(Y, i) + εL), LY > 0, Li < 0, (23.5)

where i is the short-term nominal interest rate on the domestic bond which is de-
nominated in the domestic currency. The symbol εL represents a shift parameter
which may reflect a shock to liquidity preferences or the payment technology and
thereby the money multiplier.
There is a link between re and i, namely re = i − πe, where πe denotes

the expected value of π which is the domestic forward-looking inflation rate.
Recall that with continuous interest compounding, the equation re = i−πe is an
identity. In a discrete time framework the equation is a convenient approximation.
Assuming clearing in the output market as well as the money market, we now
have:

Y = D(Y, i− πe, X P ∗

P
, τ) +G+ εD, (IS)

M

P
= L(Y, i) + εL. (LM)

In addition to the domestic short-term bond there is a short-term bond de-
nominated in foreign currency, henceforth the foreign bond. The nominal interest
rate on the foreign bond is denoted i∗ and is exogenous, i∗ > 0. The term “bonds”
may be interpreted in a broad sense, including large firms’interest-bearing bank
deposits.
The no-arbitrage condition between the domestic and the foreign bond is

assumed given by the uncovered interest parity condition,

i = i∗ +
Ẋe

X
, (UIP)

where Ẋe denotes the expected increase per time unit in the exchange rate in the
immediate future.3 Imposing (UIP) amounts to assuming that arbirage quickly

3As a preparation for the dynamic extensions to be considered below, we have presented the
UIP condition in its continuous time version with continuous interest compounding. In discrete

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



880
CHAPTER 23. THE OPEN ECONOMY AND DIFFERENT

EXCHANGE RATE REGIMES

bring the interest rate on the domestic bond in line with the expected rate of
return on investing in the foreign bond, expressed in the domestic currency. This
expected rate of return equals the foreign interest rate plus the expected rate of
depreciation of the domestic currency.
By invoking the UIP condition the model assumes that asymmetric risk and

liquidity aspects can be ignored in a first approximation. So domestic and foreign
bonds are considered perfect substitutes. Hence only the expected rate of return
matters. If we imagine that in the very short run there is, for example, a “>”in
(UIP) instead of “=”, then arbitrage sets in. A massive inflow of financial capital
will occur (investors dispose of foreign assets and purchase domestic assets), until
“=”in (UIP) is re-established. The adjustment will take the form of a lowering of
i in case of a fixed exchange rate system. In case of a floating exchange rate sys-
tem the adjustment will take the form of an adjustment in X (generally both its
level and subsequent rate of change). Only when (UIP) is satisfied, are investors
indifferent between holding domestic or foreign bonds. The primary actors in the
foreign exchange market are commercial banks, mutual funds, asset-management
companies, insurance companies, exporting and importing corporations, and cen-
tral banks.
The model assumes that (UIP) holds continuously (arbitrage in international

asset markets is very fast). Thus, if for example the domestic interest rate is
below the foreign interest rate, it must be that the domestic currency is expected
to appreciate vis-à-vis the foreign currency, that is, Ẋe < 0. The adjective
“uncovered” refers to the fact that the return on the right-hand side of (UIP)
is not guaranteed, but only an expectation. On the covered interest parity, see
Appendix B.
The original Mundell-Fleming model is a static model describing just one short

period with the price levels P and P ∗ set in advance. The model consists of the
equations (IS), (LM), and (UIP) with the following partitioning of the variables:

• Exogenous: P, P ∗, G, τ , πe, i∗, Ẋe, εD, εL, and either X or M.

• Endogenous: Y, i, and either M or X, depending on the exchange rate
regime.

We now consider the polar cases of fixed and floating exchange rates, respec-
tively.

time with Xt denoting the exchange rate at the beginning of period t, the UIP condition
reads: 1 + it = 1

Xt
(1 + i∗t )X

e
t+1, which can be written 1 + it = (1 + i∗t )(1+ (Xe

t+1 − Xt)/Xt)
≈ 1 + i∗t + (Xe

t+1 −Xt)/Xt, when i∗t and (Xe
t+1 −Xt)/Xt are “small”.
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23.1.2 Fixed exchange rate

A fixed exchange rate regime amounts to a promise by the central bank to sell
and buy unlimited amounts of foreign currency at an announced exchange rate.
So X becomes an exogenous constant in the model.4 The system requires that
the central bank keeps foreign exchange reserves to be able to buy the domestic
currency on foreign exchange markets when needed to maintain its value.
We assume that the announced exchange rate is at a sustainable level vis-a-

vis the foreign currency so that credibility problems can be ignored. So we let
Ẋe = 0. Then (UIP) reduces to i = i∗, and output is determined by (IS), given
i = i∗. Finally, through movements of financial capital the nominal money supply
(hence also the real money supply) adjusts endogenously to the level required by
(LM), given i = i∗ and the value of Y already determined in (IS). The system
thus has a recursive structure.
There is no possibility of an independent monetary policy as long as there are

no restrictions on movements of financial capital. The intuition is the following.
Suppose the central bank naively attempts to stimulate output by buying domes-
tic bonds, thereby raising the money supply. There will be an incipient fall in i.
This induces portfolio holders to convert domestic currency into foreign currency
to buy foreign bonds and enjoy their higher interest rate. This tends to raise
Xt, however. Assuming the central bank abides by its commitment to a fixed
exchange rate, the bank will have to immediately counteract this tendency to de-
preciation by buying domestic assets (domestic currency and bonds) for foreign
currency in an amount suffi cient to bring the domestic money supply down to its
original level needed to restore both the exchange rate and the interest rate at
their original values. That is, as soon as the central bank attempts expansionary
monetary policy, it has to reverse it.
The model is qualitatively the same as the static IS-LM model for the closed

economy with the nominal interest rate fixed by the central bank. The output
and money multipliers w.r.t. government spending are, from (IS) and (LM)
respectively,

∂Y

∂G
=

1

1−DY

=
1

1− CY p(1− T ′)− IY −NY

> 1,

∂M

∂G
= PLY

∂Y

∂G
= PLY

1

1− CY p(1− T ′)− IY −NY

> 0.

The output multiplier can be seen as a measure of how much a unit increase in G
raises aggregate demand and thereby stimulates production and income; indeed,

4In practice there will be a small margin of allowed fluctuation around the par value. The
Danish krone (DKK) is fixed at 746.036 DKK per 100 euro +/- 2.25 percent.
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∆Y ≈ ∂Y/∂G · ∆G = ∂Y/∂G for ∆G = 1. Thereby the transaction-motivated
demand for money is increased. This generates an incipient tendency for both the
short-term interest rate to rise and the exchange rate to appreciate as portfolio
holders worldwide buy the currency of the SOE to invest in its bonds and enjoy
their high rate of return. The central bank is committed to a fixed exchange rate,
however, and has to prevent the pressure for a higher interest rate and currency
appreciation by buying foreign assets (foreign currency and bonds) for domestic
currency. When the money supply has increased enough to nullify the incipient
tendency for a higher domestic interest rate, the equilibrium with unchanged
exchange rate is restored. The needed increase in the money supply for a unit
increase in G is given by ∆M ≈ ∂M/∂G ·∆G = ∂M/∂G for ∆G = 1. One may
say that it is the accommodating money supply that allows the full unfolding
of the output multiplier w.r.t. government spending. Nevertheless, owing to
the import leakage (NY < 0), both the output and money multiplier are lower
than the corresponding multipliers in the closed economy where the central bank
maintains the interest rate at a certain target level. The system ends up with
higher Y , the same i and X, and lower net exports because of higher imports.
The output multipliers w.r.t. a demand shock, an interest rate shock, and a

liquidity preference shock, respectively, are

∂Y

∂εD
=

∂Y

∂G
=

1

1− CY p(1− T ′)− IY −NY

> 1,

∂Y

∂i∗
=

Dre

1−DY

=
Cre + Ire

1− CY p(1− T ′)− IY −NY

< 0,

∂Y

∂εL
= 0.

This last result reflects that after the liquidity preference shock, the money market
equilibrium is restored by full adjustment of the money supply (dM = PdεL) at
unchanged interest rate.

23.1.3 Floating exchange rate

In a floating exchange rate regime, also called a flexible exchange rate regime, the
exchange rate is allowed to respond endogenously to the market forces, supply
and demand, in the foreign exchange market. The model treats the money stock,
M, as exogenous. More precisely, the money supply is targeted by the central
bank and the model assumes this is done successfully. The exchange rate adjusts
so that the available supplies of money and domestic bonds are willingly held.
In the present static portrait of the floating exchange rate regime, Ẋe is treated

as exogenous. Following Mundell (1963), we imagine that the system has settled

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



23.1. The Mundell-Fleming model 883

down in a steady state with Ẋe = 0. The model is again recursive. First (UIP)
yields i = i∗. Then output is determined by (LM), given i = i∗. And finally
the required exchange rate is determined by (IS) for a given level of P ∗/P . So
the story behind the equilibrium described by the model is that the exchange
rate has adjusted to a level such that aggregate demand and output is at the
point where, given the real money supply, the transactions-motivated demand for
money establishes clearing in asset markets for a nominal interest rate equal to
the foreign nominal interest rate.

There is no possibility of fiscal policy affecting output as long as there are no
restrictions on movements of financial capital. The interpretation is the follow-
ing. Consider an expansive fiscal policy, dG > 0 or dτ < 0. The incipient output
stimulation increases the transaction demand for money and thereby the interest
rate. The rise in the interest rate is immediately counteracted, however, by inflow
of foreign exchange induced by the high interest rate. This inflow means higher
demand for the domestic currency, which thereby appreciates, thus lowering com-
petitiveness and net exports. The appreciation continues until competitiveness
has decreased enough5 to bring the interest rate back to its initial level. This
state of affairs is obtained when the exchange rate has reached a level at which
the fall in net exports matches the rise in G or fall in τ , thereby bringing aggre-
gate demand and output back to their initial levels. In effect, the system ends
up with unchanged output and interest rate, a lower exchange rate, X, and lower
net exports.6

On the other hand, monetary policy is effective. An increase in the money
supply generates an incipient fall in the interest rate. This triggers a counteract-
ing outflow of financial capital, whereby the domestic currency depreciates, i.e.,
X rises. The depreciation continues until the real exchange rate has increased
enough to induce a rise in net exports and output large enough for the transaction
demand for money to match the larger money supply and leave the interest rate
at its original level. The system ends up with higher Y , the same i, higher X,
and higher net exports.7

From (LM) and (IS), respectively, we find the output and exchange rate mul-

5Recall that, as we have defined the exchange rate, “up is down and down is up”or, perhaps
with a little more transparency, “currency up is exchange rate down”.

6This canonical result relies heavily on the idealized assumption that foreign and domestic
bonds are perfect substitutes and move without restraint of any kind.

7The implicit assumption that a higher X does not affect the price level P is of course
problematic. If intermediate goods are an important part of imports, then a higher exchange
rate would imply higher unit costs of production. And since prices tend to move with costs,
this would imply a higher price level. If imports consist primarily of final goods, however, it is
easier to accept the logic of the model.
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tipliers w.r.t. the money supply:

∂Y

∂M
=

1

PLY
> 0, (23.6)

∂X

∂M
=

1− CY p(1− T ′)− IY −NY

DxP ∗LY
> 0. (23.7)

Finally, the output multipliers w.r.t. a demand shock and a liquidity preference
shock, respectively, are

∂Y

∂εD
=

∂Y

∂G
= 0,

∂Y

∂εL
= − 1

LY
< 0.

Like increased public spending, a positive output demand shock does not affect
output. It is neutralized by appreciation of the domestic currency. A positive
liquidity preference shock reduces output. The mechanism is that the increase
in money demand triggers an incipient rise in the domestic interest rate. The
concomitant appreciation of the currency, resulting from the induced inflow of
financial capital, reduces net exports.

23.1.4 Perspectives

Ignoring the limitations of this simple static model, its message is that for a
small open economy, a fixed exchange rate regime is better at stabilizing out-
put if money demand shocks dominate, and a floating exchange rate system is
better if most shocks are output demand shocks. In any case, there is an asym-
metry. Under a fixed exchange rate system, two macroeconomic short-run policy
instruments are given up: exchange rate policy and monetary policy. Under a
floating exchange rate system and perfect capital mobility, only one macroeco-
nomic short-run policy instrument is given up: fiscal policy. Yet, the historical
experience seems to be that an international system of floating exchange rates
ends up with higher volatility in both real and nominal exchange rates than one
with fixed exchange rates (Mussa, 1990; Obstfeld and Rogoff, 1996; Basu and
Taylor, 1999).
The result that fiscal policy is impotent in the floating exchange rate regime

does not necessarily go through in more general settings. For example, in prac-
tice, domestic and foreign financial claims may often not be perfect substitutes.
Indeed, the UIP hypothesis tends to be empirically rejected at short forecast
horizons, while it does somewhat better at horizons longer than a year (see the
literature notes at the end of the chapter). And as already hinted at, treating the
price level as exogenous when import prices change is not satisfactory.
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Anyway, even the static Mundell-Fleming model provides a basic insight: the
impossible trinity. A society might want a system with the following three char-
acteristics:

• free mobility of financial capital (to improve resource allocation);

• independent monetary policy (to allow a stabilizing role for the central
bank);

• fixed exchange rate (to avoid exchange rate volatility).

But it can have only two of them. A fixed exchange rate system is incompatible
with the second characteristic. And a flexible exchange rate system contradicts
the third.
In the next sections we extend the model with dynamics and rational expecta-

tions. We first consider the fixed exchange rate regime, next the flexible exchange
rate regime.

23.2 Dynamics under a fixed exchange rate

We ignore the shift parameters εD and εL. On the other hand we introduce an
additional asset, a long-term bond that is indexed w.r.t. domestic inflation. In
the fixed exchange rate regime this extension is easy to manage. In addition we
assume rational expectations. The formal structure of the model then becomes
exactly the same as that of the dynamic IS-LM model for a closed economy with
short- and long-term bonds, studied in the previous chapter.
With Rt denoting the real long-term interest rate at time t (defined as the

internal real rate of return on an inflation indexed consol), aggregate demand is

Y d
t = C(Y p

t , Rt) + I(Yt, Rt) +N(Yt, x) +G ≡ D(Yt, Rt, x, τ) +G,

where

0 < DY = CY p(1− T ′) + IY +NY < 1, DR = CR + IR < 0, Dx > 0,

−1 < Dτ = −CY p < 0,

where x is the real exchange rate, XP ∗t /Pt, with X representing the given and
constant nominal exchange rate and the price ratio P ∗t /Pt assumed constant.
The latter assumption is equivalent to assuming the domestic inflation rate to
equal the foreign inflation rate for all t. Moreover, this common inflation rate is
assumed equal to a constant, π.
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To highlight the dynamics between fast-moving asset markets and slower-
moving goods markets, the model replaces (IS) by the error-correction specifica-
tion

Ẏt ≡
dYt
dt

= λ(Y d
t − Yt) = λ(D(Yt, Rt, x, τ) +G− Yt), Y0 > 0 given, (23.8)

where λ > 0 is the constant adjustment speed. Because changing the level of
production is time consuming, Y0 is historically given.
We assume the fixed exchange rate policy is sustainable. That is, the level of

X is such that no threatening cumulative current account deficits in the future
are glimpsed. In view of rational expectations we then have Ẋe

t = 0 for all t ≥ 0.
In effect the uncovered interest parity condition reduces to

it = i∗, (23.9)

where the exogenous foreign interest rate, i∗, is for simplicity assumed constant.
The remaining elements of the model are well-known from Chapter 22:

Mt

Pt
= L(Yt, i

∗), LY > 0, Li < 0. (23.10)

Rt =
1

qt
, (23.11)

1 + q̇et
qt

= ret , (23.12)

ret ≡ i∗ − πet , πt ≡
Ṗt
Pt
, (23.13)

Pt = P0e
πt, (23.14)

where q is the real price of the long-term bond (the consol), the superscript e
denotes expected value. If a shock occurs, it fits intuition best to interpret the
time derivatives in (23.8), (23.12), and (23.13) as right-hand derivatives, e.g.,
Ẏt ≡ lim∆t→0+(Y (t + ∆t) − Y (t))/∆t. The variables τ ,G, i∗, x, P0, and π are
exogenous constants. The first five of these are positive, and we assume π < i∗.
As there is no uncertainty in this model (no stochastic elements), the assump-

tion of rational expectations amounts to perfect foresight. We thus have q̇et = q̇t
and πet = π for all t. Therefore, the equations (23.13) and (23.9) imply ret = rt
= i∗ − π > 0 for all t. Combining this with (23.11) and (23.12), we end up with

Ṙt = (Rt − i∗ + π)Rt. (23.15)
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Assuming no speculative bubbles, the no-arbitrage condition (23.12) is equiv-
alent to a saying that the consol has market value equal to its fundamental value:

qt =

∫ ∞
t

1 · e−
∫ s
t rτdτds, so that (23.16)

Rt =
1

qt
=

1∫∞
t
e−

∫ s
t rτdτds

=

∫ ∞
t

e−
∫ s
t rτdτ∫∞

t
e−

∫ s
t rτdτds

rsds.

In other words: the long-term rate, Rt, is an average of the (expected) future
short-term rates, rτ , with weights proportional to the discount factor e−

∫ s
t rτdτ ,

cf. the appendix of Chapter 22..
The evolution of the economy over time is described by the two differential

equations, (23.8) and (23.15), in the endogenous variables, Yt and Rt. Since
the exchange rate X is an exogenous constant, the UIP condition is upheld by
movements of financial capital providing the needed continuous adjustment of the
endogenous money supply so as to satisfy Mt = PtL(Yt, i

∗) = P0e
πtL(Yt, i

∗), in
view of (23.10) and (23.14). It is presupposed that the central bank keeps foreign
exchange reserves to be able to buy the domestic currency on foreign exchange
markets when needed to maintain its value.
The dynamics is essentially the same as that of a closed economy with a

target short-term interest rate fixed by the central bank. In a phase diagram the
Ṙ = 0 locus is horizontal and coincides with the saddle path. In the absence
of speculative bubbles and expected future changes in i∗, we thus get Rt = rt
= i∗−π > 0 for all t ≥ 0. The only difference compared with the closed economy
is that the short-term interest rate is not a policy variable any more, but an
exogenous variable given from the world financial market.
As an example of an adjustment process, consider a fiscal tightening (increase

in τ or decrease in G). This will immediately decrease output demand. Thereby
output gradually falls to a new lower equilibrium level. The fall in output im-
plies lower money demand because the amount of money-mediated transactions
becomes lower. The lower money demand generates an incipient tendency for
the short-term interest rate to fall and the domestic currency to depreciate. This
tendency is immediately counteracted, however. To take advantage of a higher
foreign interest rate, portfolio holders worldwide convert home currency into for-
eign currency at the given exchange rate in order to buy foreign bonds. Owing
to its commitment to a fixed exchange rate, the central bank now intervenes by
selling foreign currency and domestic bonds. As soon as i is restored at its orig-
inal value, i∗, the downward pressure on the value of the domestic currency is
nullified. By assumption, the price level stays on the time path (23.14), whereby
r and R remain essentially unaffected and equal to the constant i∗−π during the
output contraction. The figures 20.12 and 20.13 of the previous chapter illustrate
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.

23.3 Dynamics under a floating exchange rate:
overshooting

The exogeneity − and in fact absence − of expected exchange rate changes in the
static Mundell-Fleming model of a floating exchange rate regime is unsatisfactory.
By a dynamic approach we can open up for an endogenous and time-varying Ẋe.
The floating exchange rate regime requires one more differential equation com-

pared to the fixed exchange rate system. To avoid the complexities of a three-
dimensional dynamic system, we therefore simplify along another dimension by
dropping the distinction between short-term and long-term bonds. Hence, output
demand is again described as in (23.1) and depends negatively on the expected
short-term real interest rate, re. We ignore the disturbance term εD.
Apart from the exchange rate now being endogenous, money supply exoge-

nous, and long-term bonds absent, the model is similar to that of the previous
section. At the same time the model is close to a famous contribution by the
German-American economist Rudiger Dornbusch (1942-2002), who introduced
forward-looking rational expectations into a floating exchange rate model (Dorn-
busch, 1976). Dornbusch thereby showed that exchange rate “overshooting”could
arise. This was seen as a possible explanation of the rise in both nominal and real
exchange rate volatility during the 1970s after the demise of the Bretton-Woods
system. In his original article, Dornbusch wanted to focus on the dynamics be-
tween fast moving asset prices and sluggishly changing goods prices. He assumed
output to be essentially unchanged in the process. In the influential Blanchard
and Fischer (1989) textbook this was modified by letting output adjust gradually
to spending, while goods prices follow an exogenous path. This seems a more
apt approximation, since the empirics tell us that in response to demand shifts,
output moves faster than goods prices. We follow this approach and name it the
Blanchard-Fischer version of Dornbusch’s overshooting model.

23.3.1 The model

This modified Dornbusch model has three building blocks. The first building
block is the output error-correction process,

Ẏt = λ(Y d
t − Yt), where (23.17)

Y d
t = D(Yt, r

e
t , xt, τ) +G,
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where ret ≡ iet − πet , and xt ≡ XtP
∗
t /Pt is the real exchange rate. As in (23.4),

the partial derivatives of the demand function D satisfy 0 < DY < 1, Dre < 0,
Dx > 0, and −1 < Dτ < 0.
The second building block comes from the money market equilibrium condi-

tion, combined with a monetary policy maintaining a constant real money supply,
m > 0. This requires that the money supply follows the path

Mt = mPt = mP0e
πt = M0e

πt,

where π is the actual inflation rate, assumed constant. The money market equi-
librium condition now reduces to m = L(Yt, it), which defines it as an implicit
function,

it = i(Yt,m), with iY = −LY /Li > 0, im = 1/Li < 0. (23.18)

We assume that m is small enough so that under “normal circumstances”, the
interest rate, it, takes a value above its lower bound, nil.
The third building block is the foreign exchange market. This market is

in equilibrium when the uncovered interest parity condition holds. This is the
condition

it = i∗ +
Ẋe
t

Xt

. (23.19)

Assuming perfect foresight, this takes the form it = i∗ + Ẋt/Xt, which implies

Ẋt = (it − i∗)Xt. (23.20)

Admittedly, this relationship may be questioned. As mentioned, the empirical
support for the combined hypothesis of UIP and rational expectations is, at least
for short forecast horizons, weak. Yet, to avoid a complicated model, we shall
proceed as if (23.20) holds for all t.
In a steady state of the system, the nominal exchange rate will be a constant,

X. For a steady state to be possible, we need that also the real exchange rate,
XP ∗t /Pt, is constant, x.We therefore assume that the foreign inflation rate equals
the domestic inflation rate, π. As an implication we have P ∗t /Pt = P ∗0 /P0 for all
t ≥ 0.
Because of perfect foresight, πet = π and ret = rt = it− π for all t ≥ 0. In view

of these conditions, together with (23.18), output demand can be written

Y d
t = D(Yt, i(Yt,m)− π,Xt

P ∗0
P0

, τ) +G. (23.21)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



890
CHAPTER 23. THE OPEN ECONOMY AND DIFFERENT

EXCHANGE RATE REGIMES

Figure 23.1: Phase diagram in case of a a floating exchange rate.

Inserting this into (23.17) and then (23.18) into (23.20), we end up with the
dynamic system

Ẏt = λ

[
D(Yt, i(Yt,m)− π,Xt

P ∗0
P0

, τ) +G− Yt
]
, Y0 > 0 given, (23.22)

Ẋt = [i(Yt,m)− i∗]Xt. (23.23)

This system has Yt and Xt as endogenous variables, whereas the remaining vari-
ables are exogenous and constant: m,P ∗0 /P0, G, τ and i∗, all positive.
The phase diagram is shown in Fig. 23.1. By (23.22), the Ẏ = 0 locus is given

by the equation Y = D(Y, i(Y,m) − π,XP ∗0 /P0, τ) + G. Taking the differential
on both sides w.r.t. Y, X, and m (for later use) gives

dY = (DY +DreiY )dY +Dreimdm+Dx
P ∗0
P0

dX ⇒

(1−DY −DreiY )dY = Dreimdm+Dx
P ∗0
P0

dX. (23.24)

Setting dm = 0, we find

dX

dY
|Ẏ=0 =

1−DY −DreiY
DxP ∗0 /P0

> 0. (23.25)

It follows that the Ẏ = 0 locus (the “IS curve”) is upward-sloping as shown in
Fig. 23.1.
Equation (23.23) implies that Ẋ = 0 for i(Y,m) = i∗. The value of Y satisfying

this equation is unique (because iY 6= 0) and is called Ȳ . That is, Ẋ = 0 for
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Y = Ȳ , which says that the Ẋ = 0 locus (the “LM curve”) is vertical. Fig. 23.1
also indicates the direction of movement in the different regions, as determined
by (23.22) and (23.23). The arrows show that the steady state is a saddle point.
This implies that exactly two solution paths − one from each side − converge
towards E.
Since the adjustment of output takes time, Y is a predetermined variable.

Thus, at time t = 0, the economy must be somewhere on the vertical line Y = Y0.
If speculative exchange rate bubbles are assumed away, the explosive or implosive
paths of X in Fig. 23.1 cannot arise. Hence, we are left with the segment AE
of the saddle path in the figure as the unique solution to the model for t ≥ 0.
Following this path the economy gradually approaches the steady state E. If
Y0 > Ȳ (as in Fig. 23.1), output is decreasing and the exchange rate increasing
during the adjustment process. If instead Y0 < Ȳ , the opposite movements occur.
The steady state can be seen as a “short-run equilibrium”of the economy.

Further dynamic interactions will tend to arise in the “medium run”, for instance
through a Phillips curve and through investment resulting in build up of fixed
capital. These ramifications are ignored by the model.

How the steady state and the Ẋ = 0 and Ẏ = 0 loci depend on m

In steady state we have

Ȳ = D(Ȳ , i∗ − π, X̄ P ∗0
P0

, τ) +G, (23.26)

and
m = L(Ȳ , i∗). (23.27)

First, (23.27) determines Ȳ as an implicit function of m and i∗ independently of
(23.26). To see how Ȳ is affected by a change in m, we take the differential on
both sides of (23.27) to get dm = LY dȲ + Lidi

∗. With di∗ = 0, this gives

∂Ȳ

∂m
=

1

LY
> 0. (23.28)

Given Ȳ , we have X̄ determined by (23.26). Then, to see how X is affected
by a change in m, we take the differential on both sides of (23.26) to get dȲ
= DY dȲ +DxP

∗
0 /P0dX̄. Combining this with (23.28), we end up with

∂X̄

∂m
=
∂X̄

∂Ȳ

∂Ȳ

∂m
=

1−DY

DxP ∗0 /P0

1

LY
> 0. (23.29)

The intuitive explanation of this sign is linked to that of (23.28). For the higher
money supply to be demanded with unchanged interest rate, equilibrium in the
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money market requires a higher level of transactions, that is, a higher level of
economic activity. In steady state this must be balanced by a suffi ciently higher
output demand. And since the marginal propensity to spend is less than one
(DY < 1), higher net exports are needed; otherwise the rise in output demand
is smaller than the rise in output. Thus, higher competitiveness and therefore
depreciation of the domestic currency is required which means a higher X.
Taking into account that dm = dM/P, we see that the steady state multipliers

of Y and X w.r.t. m are the same as the corresponding multipliers in the static
model, given in (23.6) and (23.7).
It follows from (23.28) that an increase in m will shift the Ẋ = 0 line to the

right, cf. Fig. 23.2. Again, for a higher money supply to be matched by higher
money demand at an unchanged interest rate, a higher level of economic activity
is needed.
As to the effect of higher m on the Ẏ = 0 locus, consider Y as fixed at Y0,

i.e., dY = 0. Then (23.24) gives

∂X

∂m |Ẏ=0,Y=Y0

= − Dreim
DxP ∗0 /P0

= − Dre/Li
DxP ∗0 /P0

< 0.

Hence, an increase in m shifts the Ẏ = 0 locus downward. The intuition is that
a rise in m induces a fall in the interest rate; then for output demand to remain
unchanged, we need an appreciation, i.e., a fall in X.
Another way of understanding the shift of the Ẏ = 0 locus is to consider X

as fixed at X0, i.e., dX = 0. Then (23.24) yields

∂Y

∂m |Ẏ=0,X=X0

=
Dreim

1−DY −DreiY
=

Dre/Li
1−DY +DreLY /Li

> 0. (23.30)

Hence, we can also say that an increase in m shifts the Ẏ = 0 locus rightward,
cf. Fig. 23.2. The intuition is that, given X, the fall in i induced by higher m
increases output demand and therefore also the output level that matches output
demand.
The conclusion is that a higher m shifts both the Ẋ = 0 locus and the Ẏ = 0

locus rightward. Then it might seem ambiguous in what direction X̄ moves.
But we already know from (23.29) that X̄ will unambiguously increase. The
explanation is that, first, a higher output level is needed for money market equi-
librium to obtain. Second, for the higher output level to be demanded, we need
a depreciation of the domestic currency, i.e., a higher X. Fig. 23.2 illustrates.

23.3.2 Unanticipated rise in the real money supply

Now, we are ready to study the dynamic effects of an unanticipated upward
shift in the real money supply, m. Suppose the economy has been in its steady
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Figure 23.2: Phase portrait of an unanticipated rise in m.

state until time t0. Then unexpectedly a discrete open market purchase by the
central bank of domestic bonds takes place. This instantly increases the monetary
base which through the money multiplier leads to a larger money stock and a
smaller stock of bonds held by the private sector. At the same time the nominal
interest rate jumps down because output, and thereby the transactions volume, is
predetermined in this “very short run”(it takes time to change output). The lower
interest rate prompts arbitrage. With the aim of aquiring foreign interest-bearing
assets, domestic currency will buy foreign currency until the exchange rate has
jumped up to a level from which it is expected to appreciate at a rate such that
interest parity is reestablished. Very fast, a new “very-short-run”equilibrium is
formed where the given supplies of money and domestic bonds are again willingly
held by the agents. The essence of the matter is that for a while we have it < i∗t
due to the increase in the money supply. To make domestic bonds as attractive
as foreign bonds, an expectation appreciation is needed. In turn this requires an
initial depreciation in excess of the ultimate depreciation implied by the transition
from the old to the new steady state.
Fig. 23.2 illustrates this exchange rate overshooting. We say that a variable

overshoots if its initial reaction to a shock is greater than its longer-run response.
Fig. 23.3 shows the time profiles of the exchange rate and the other key variables
(D is output demand).
To really understand what is going on, let us examine the mechanics of over-

shooting more closely:

1. What will be the new steady state expected by the market participants?
As we have just seen, when m increases, both the Ẋ = 0 locus and the Ẏ = 0
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Figure 23.3: Time profiles of r, X, Y , and output demand D in response to an unan-
ticipated rise in m (shown in the upper panel).
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locus move to the right. The Ẋ = 0 locus moves to the right, because the higher
m tends to decrease i so that an offsetting increase in Y is needed for i to still
match i∗, cf. (23.28). And the Ẏ = 0 locus moves to the right, because output
demand depends negatively on the interest rate so that, through this channel, it
depends positively on money supply, cf. (23.30). Nevertheless, we can be sure
that the new steady-state point is associated with a higher exchange rate, as was
explained in connection with (23.29) above.
2. Why must the initial depreciation be larger than that required in the new

steady state? Two things are important here. First, both the outflow of financial
capital, prompted by the fall in the interest rate, and the contemporaneous depre-
ciation occur instantly. Imagine for a moment they occurred gradually over time.
Then there would be expected depreciation of the domestic currency, implying
that foreign bonds became even more attractive relative to domestic bonds. This
would reinforce the outflow of financial capital and speed up the rise in X, that is,
enlarge the drop in the value of the domestic currency. Thus, the financial capital
outflow and the depreciation occur very fast, which mathematically corresponds
to an upward jump in X.
The second issue is: how large will the jump be? The answer is: large enough

for the concomitant expected gradual appreciation rate to be at the level needed to
make domestic bonds not less attractive than foreign bonds at the same time as
convergence to the new steady state is ensured. This happens where the vertical
line Y = Ȳ crosses the new saddle path, i.e., at the point A in Fig. 23.2. Ruling
out bubbles, agents realize that any incipient jump to a point above or below A
offers arbitrage opportunities. Exploiting these, the system is almost instantly
brought back to A.
3. Why will output gradually rise and the domestic currency gradually ap-

preciate after the initial depreciation jump? For t > t0 the economy moves along
the new saddle path: Y gradually responds to the high output demand generated
by the low interest rate rt = it and the high competitiveness, Xt. As output
rises, money demand increases and it gradually returns to “normal”, see Fig.
23.3. Moreover, Xt gradually adjusts downwards and converges towards X̄ ′ as
the interest differential, it − i∗, declines. (Remember that the analysis presup-
poses that after time t0 the market participants rightly expect no further changes
in the money supply.)

The exchange rate as a forward-looking variable

It helps the interpretation of the dynamics if we recognize that the exchange rate
is an asset price, hence forward-looking. Under perfect foresight the uncovered
interest parity implies that the exchange rate satisfies the differential equation
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(23.23), except at points of discontinuity of Xt. For convenience we repeat the
differential equation here:

Ẋt = (it − i∗)Xt. (23.31)

For fixed t > t0 we can write the solution of this linear differential equation as

Xτ = Xte
∫ τ
t (is−i∗)ds ≡ Xte

(
_
i t,τ−i∗)(τ−t), for τ > t,

where
_
i t,τ is the mean of the interest rates between time t and time τ , i.e.,

_
i t,τ

≡
∫ τ
t
isds/(τ − t). Being a forward-looking variable, Xt is not predetermined. It

is therefore more natural to write the solution on the forward-looking form

Xt = Xτe
−
∫ τ
t (is−i∗)ds ≡ Xτe

−(
_
i t,τ−i∗)(τ−t), for τ > t, (23.32)

where Xτ and is should be interpreted as the expected future values as seen from
time t. Thus, under the UIP hypothesis the exchange rate today equals the ex-
pected future exchange rate discounted by the mean interest differential

_
i t,τ − i∗

expected to be in force in the meantime.8 As a consequence, new information
implying anticipation of, for instance, a higher X in the future (compared with
the reference path) will, for given expectations concerning the mean interest dif-
ferential, show up immediately as depreciation of the domestic currency today.
From our explanation of the mechanics of overshooting, the reader might

think that financial capital movements that prompt an exchange rate adjustment
require a lot of exchange transactions to occur. However, what is needed for
expected asset returns to be equalized is in principle just that the traders, in pos-
session of the needed currency, in response to new information adjust their bid
and ask prices to the new level at which supply and demand are equilibrated. In
this way, what we see need not be much more than an international re-evaluation
of domestic and foreign bonds. In highly integrated asset markets a new equilib-
rium may be found very fast. These circumstances notwithstanding, the volume
of foreign exchange trading per day has in recent years grown to enormous mag-
nitudes.
Returning to our specific case of a monetary expansion, in (23.32) let τ →∞

to get
Xt = lim

τ→∞
Xτe

−
∫ τ
t (is−i∗)ds = X̄ ′e−

∫∞
t (is−i∗)ds > X̄ ′, (23.33)

where the new steady-state value of the exchange rate after the rise in m is
denoted X̄ ′ as in Fig. 23.3. The inequality in (23.33) is due to is < i∗ during
the adjustment process. As time proceeds, the shortfall of the domestic vis-à-vis

8The solution formula (23.32) presupposes absence of any jump in X between time t and
time τ . Or more to the point: arbitrage prevents any such expected jump. Ex post, the formula
(23.32) is valid only if no jumps in X actually occurred in the time interval considered.
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the foreign interest rate is reduced and the exchange rate converges to its steady-
state value from above. When for instance 90% of the initial distance from the
steady state has been recovered, we say that the system has essentially reached
its steady state. The adjustment process so far may not involve more time than
a couple of years, say. Several factors that may matter for further adjustments
are ignored by this model. Hence, we avoid to call X̄ ′ a “long-run”value.
In (23.32) and (23.33) we consider the value of the foreign currency in terms

of the domestic currency. Similar expressions of course hold for the value of the
domestic currency in terms of the foreign currency. Thus, inverting (23.32) gives

X−1
t = X−1

τ e−
∫ τ
t (i∗−is)ds ≡ X−1

τ e−(i∗−
_
i t,τ )(τ−t).

That is, the value of the domestic currency today equals its expected future value
discounted by the mean interest differential i∗ −

_
i t,τ expected to be in force in

the meantime. Inverting (23.33) yields

X−1
t = X̄ ′−1e−

∫∞
t (i∗−is)ds < X̄ ′−1.

As time proceeds, the excess of the foreign over the domestic interest rate de-
creases and the value of the domestic currency converges to its steady-state value
from below.

23.3.3 Anticipated rise in the money supply

As an alternative scenario suppose that the economy has been in steady state
until time t0 when agents suddenly become aware that an increase in the money
supply is going to take place at some future time. To be specific let us imagine
that the central bank at time t0 credibly announces that there will be discrete
upward shift in M at time t1 > t0, while M for a long time after t1 will grow at
the same rate, π, as before. According to the model this credible announcement
immediately causes a jump in the exchange rate X in the same direction as the
longer-run change, that is, a jump to some level like XB in Fig. 23.4. This is due
to the agents’anticipation that after time t1, the economy will be on the new
saddle path. Or, in more economic terms, the agents know that (a) from time t1,
the expansionary monetary policy will cause the interest rate to be lower than
i∗, and (b) the exchange rate must therefore at time t1 have reached a level from
which it can have an expected and actual rate of appreciation such that interest
parity is maintained in spite of i < i∗ after time t1.
Under these circumstances, at the old exchange rate, X̄, there would be excess

supply of domestic bonds and excess demand for foreign bonds immediately after
time t0 and this is what instantly triggers the jump to XB. After this initial
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Figure 23.4: Phase portrait of an anticipated rise in m.

jump the exchange rate, X, will adjust continuously. Currency is an asset, hence
anticipated discrete jumps in the exchange rate are ruled out by arbitrage. In
particular, at time t1 there can be no jump, because no new information has
arrived.
In the time interval (t0, t1) the movement of (Y,X) is governed by the “old”

dynamics. That is, for t0 < t < t1 the economy must follow a trajectory consistent
with the “old”dynamics, reflecting the operation of the no-arbitrage condition,

i(Yt,m) = i∗ +
Ẋe
t

Xt

.

which rules as long as the announced policy change is not yet implemented.
Under perfect foresight, the market mechanism “selects”that trajectory (BC in
Fig. 23.4) along which it takes exactly t1− t0 time units to reach the new saddle
path. It is in fact this requirement that determines the size of the jump in X
immediately after time t0.9

The higher competitiveness caused by the instantaneous depreciation implies
higher output demand, so that output begins a gradual upward adjustment al-
ready before monetary policy has been eased. Along with the rising Y , transaction
demand for money rises gradually and so do the interest rate (recall m has not
changed yet) and the exchange rate. That is, in the time interval (t0, t1) we have

9The level XB can be shown to be unique and this is also what intuition tells us. Imagine
that the jump, XB − X̄, was smaller than in Fig. 21.4. Then, not only would there be a longer
way along the road to the new saddle path, but the system would also start from a position
closer to the steady state point E, which implies an initially lower adjustment speed.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



23.3. Dynamics under a floating exchange rate: overshooting 899

Figure 23.5: Time profiles of r, X, Y , and output demand D in response to an antici-
pated rise in m (shown in the upper panel).
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Figure 23.6: Phase portrait of an unanticipated fall in m.

both it > i∗ and Ẋt > 0 so as to maintain interest parity. The process continues
until the new monetary policy is implemented at time t1. Exactly at this time the
economy’s trajectory, governed by the old dynamic regime, crosses the new saddle
path, cf. the point C in Fig. 23.4. The actual rise in m = M/P at time t1 then
triggers the anticipated discrete fall in the interest rate to a level it1 < i∗.10 For
t > t1 the economy features gradual appreciation (Ẋ < 0) during the adjustment
along the new saddle path. Although output demand is therefore now falling,
it is still high enough to pull output further up until the new steady state E’is
reached.
The time profiles of Y, X, and r (= i) are shown in Fig. 23.5. The tangent

to the Xt curve at t = t0 is horizontal. Hence, infinitely close to t0 the size
of Ẋ is vanishing. This is dictated by the “old dynamics” ruling in the time
interval (t0, t1), which entail that the trajectory through the point B in Fig.21.4
is horizontal at B. And this is in accordance with interest parity since it takes
time for Y to rise above Ȳ , hence for i to rise above i∗. Note also that if the length
of the time interval (t0, t1) were small enough, then X might already immediately
after time t0 be above its new steady-state level, X̄ ′. However, Fig. 23.4 and Fig.
23.5 depict the opposite case, where the time interval (t0, t1) is somewhat larger.

10Since right before t1 we have i > i∗, one might wonder whether the fall in the interest
rate is necessarily large enough to ensure i < i∗ right after t1. The fall is, indeed, large enough
because the dynamics in the time interval (t0, t1) ensures Yt1 < Ȳ ′, from which follows i(Yt1 ,m

′)
< i(Ȳ ′,m′) = i∗, where the inequality is due to iY > 0.
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Figure 23.7: Time profiles of X, r, and Y in response to an unanticipated fall in m
(shown in the upper panel).
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Figure 23.8: Phase portrait of an anticipated fall in m.

23.3.4 Monetary policy tightening

Considering a downward shifts in the money supply path, the above processes
are reversed.

Unanticipated monetary policy tightening

Suppose the system is in steady state until time t0. Then, unexpectedly, a discrete
open market sale by the central bank of domestic bonds takes place. The new
steady state will have a lower exchange rate. Indeed, given the lower money
supply and unchanged interest rate, equilibrium in the money market requires a
lower level of transactions, that is, a lower level of economic activity. In steady
state this must be balanced by a suffi ciently lower output demand. And since the
marginal propensity to spend is less than one (DY < 1), lower net exports are
needed; otherwise the fall in output demand is smaller than the fall in output.
Thus, lower competitiveness and therefore appreciation of the domestic currency
is required which means a lower X.
In the short run, the nominal interest rate jumps up, prompting an inflow

of financial capital, which in turn prompts a jump down in the exchange rate,
as shown in Fig. 23.6. This appreciation must be large enough to generate
the expected rate of depreciation required for domestic bonds to be no more
attractive than foreign bonds in spite of it > i∗. Very fast a new “very-short-
run”equilibrium is formed where the supplies of money and bonds are willingly
held by the agents. The fact that there must be expected depreciation is the
reason that an initial appreciation in excess of that implied by the new steady-
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Figure 23.9: Time profiles of X, Y , and r in response to an anticipated fall in m (shown
in the upper panel).
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state equilibrium is required. Again the exchange rate “overshoots”, this time
by taking a greater downward jump than corresponding to the new steady-state
level.
For t > t0 the economy moves along the new saddle path: X gradually rises

and Y gradually falls in response to the low output demand generated by the
high interest rate rt = it − π and the low competitiveness, Xt. In the process,
money demand decreases and it gradually returns to “normal”, see Fig. 23.7.
Moreover, Xt gradually adjusts upwards and converges towards X̄ ′ as the interest
differential, it − i∗, gradually vanishes.

Anticipated monetary policy tightening

It may happen that the public in advance have a feeling that a monetary policy
shift is on the way, due to foreseeable overheating problems, say. To be more
specific, suppose that at time t0 a tightening of monetary policy is credibly an-
nounced by the central bank to be implemented at time t1 > t0 in the form of a
reduction in real money supply to the level m′ < m.
Fig. 23.8 illustrates what happens from time t0. As soon as the future tight

monetary policy becomes anticipated, there is an immediate effect on X in the
same direction as the “longer-run” effect, i.e., X drops to some point B as in
Fig. 23.8. Indeed, agents anticipate that from time t1 the tight monetary policy
will cause the interest rate to be higher than i∗, thereby engendering gradual
depreciation (rise in X) along the new saddle path. Arbitrage prevents any
anticipated discrete jump in the exchange rate after time t0.
In the time interval (t0, t1) the economy must follow a trajectory consistent

with the “old”dynamics. The market mechanism “selects”that trajectory (BC
in Fig. 23.8) along which it takes exactly t1−t0 time units to reach the new saddle
path. The lower competitiveness caused by the instantaneous appreciation implies
lower output demand, so that output begins a gradual downward adjustment
already before monetary policy has been tightened.
The time profiles of Y, X, and r = i− π are shown in Fig. 23.9. If the length

of the time interval (t0, t1) is small enough, X may already immediately after
time t0 be below its new steady-state level. However, Fig. 23.8 and Fig. 23.9
depict the opposite case, where the time interval (t0, t1) is somewhat larger.

23.4 Concluding remarks

The dynamic model of a floating exchange rate regime shows that with fast mov-
ing asset markets and nominal rigidities, large volatility in exchange rates can
occur. And large volatility of both nominal and real exchange rates under a
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floating exchange rate regime is in fact what the data show. Nevertheless, there
are empirical problems with the model. One of them is that it exaggerates the
exchange rate fluctuations (see Obstfeld and Rogoff, 1996, p. 621 ff.). More-
over, several empirical studies reject the UIP condition or at least they reject the
combined hypothesis of UIP and rational expectations (Lewis 1995).
In the model versions considered here the price level moves along a fixed

path. An extended model should incorporate that the domestic price level de-
pends on import prices and that persistent changes in aggregate production and
employment are likely to activate an expectations-augmented Phillips curve. As
they stand, the models imply that monetary shocks have permanent real effects,
contrary to what the data in general indicates.
Incorporating a medium-run equilibrium level of the real exchange rate, an-

chored by some kind of expected purchasing power parity, opens up for inter-
esting issues. With x∗ denoting a medium-run equilibrium real exchange rate,
X̄ ′ in (23.33) would equal x∗(P/P ∗)e where (P/P ∗)e is the expected medium-run
value of the relative price level P/P ∗. Then, suppose the interest rate differential
suddenly rises because the foreign country (the U.S., say) is hit by an economic
recession. According to (23.33), this immediately triggers an appreciation of the
home currency (China, say). Alternatively, imagine that the expected long-run
value of P/P ∗ goes down due to a strong productivity development in the domes-
tic economy. According to (23.33), also this triggers an appreciation of the home
currency (China, say).

23.5 Literature notes

(incomplete)
The origin of the Mundell-Fleming model goes back to Robert Mundell (1963,

1964) and Marcus Fleming (1962). The over-shooting hypothesis: Dornbusch
(1976). What we named the Blanchard-Fischer version of Dornbusch’s over-
shooting model was presented in the Blanchard and Fischer (1989) textbook. At
one point our adaptation departs from Blanchard and Fischer, who ignore the
negative dependence of output demand on the interest rate. Though recognizing
this dependency makes the analysis slightly more cumbersome, it is worth the
trouble as it strengthens the robustness of the results.
An extensive treatment of open economy macroeconomics is contained in the

textbook Obstfeld, M., and K. Rogoff, 1996, Foundations of International Macro-
economics, The MIT Press, London. In their Chapter 8 the authors discuss the
empirical diffi culty that the UIP condition is rejected at short prediction hori-
zons although it does somewhat better at horizons longer than one year. Other
textbook treatments of this empirical issue include:

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



906
CHAPTER 23. THE OPEN ECONOMY AND DIFFERENT

EXCHANGE RATE REGIMES

Feenstra and Taylor (2012).
Krugman, Obstfeld, and Melitz (2012).
Wickens, M., 2008, Macroeconomic Theory. A Dynamic General Equilibrium

Approach, Princeton University Press, Oxford, Ch. 11.4.
Advanced approaches:
Isard, P., 2008, “Uncovered interest parity”. In: The new Palgrave Dictio-

nary of Economics. Second edition. Online: http://www.econ.ku.dk/English/
libraries/links/
Lewis, K. K., 1995, Puzzles in international financial markets. In: Handbook

of International Economics, vol. III, Elsevier, Amsterdam.
The volume of foreign exchange trading per day has in recent years increased

to enormous magnitudes. This fact indicates that differences in information and
expectations are prevalent. Recent contributions in macroeconomic theory and
empirics are considering how to incorporate heterogeneity, imperfect knowledge,
and agent’s uncertainty about what is the right model of the economy. See e.g.
Ellison ( ).

23.6 Appendix

A. The Marshall-Lerner condition

By assuming that net exports depends positively on the real exchange rate (Nx >
0), the Mundell-Fleming model presupposes that the Marshall-Lerner condition is
satisfied. This is the condition that the weighted sum of the absolute elasticities
of exports and imports w.r.t. the real exchange rate is large enough to offset the
decrease in the terms of trade implied by a higher real exchange rate. If in the
initial situation, net exports are zero, then the sum of the two absolute elasticities
should be above 1. The econometric evidence is that the condition is satisfied for
industrialized countries if we allow for an adjustment period of one to two years
(Artus and Knight, 1984, Table 4, cf. Krugman, Obstfeld, and Melitz, 2012,
p. 492). It may be argued that there should be a countervailing effect of the
real exchange rate, x, in the consumption function since the purchasing power
of domestic income is eroded by an increase in x. The Mundell-Fleming model
assumes that the effect of this on aggregate demand is dominated by the role of
Nx > 0.

B. The covered interest parity

When buying foreign bonds one can avoid the uncertainty concerning the future
exchange rate by entering a reverse forward exchange deal with someone else.
Today an investor in foreign bonds thus contracts with her bank to sell in thirty
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days’time a certain amount of foreign currency for domestic currency at a pre-
specified rate. This rate is called the thirty-day forward exchange rate. It is
generally different from the spot exchange rate, X. But empirically the two move
closely together.
The covered interest parity condition, CIP, is the associated no-arbitrage con-

dition. In discrete time it reads:

1 + it =
1

Xt

(1 + i∗t )X
F
t+1, (CIP)

whereXF
t+1 is the one-period forward exchange rate. If there is no default risk and

no fear that meanwhile regulations will be imposed which restrain the movement
of foreign funds, arbitrage will immediately make CIP hold. Indeed, an agent can
borrow one unit of the domestic currency, buy 1/Xt units of the foreign currency,
then for this amount buy foreign one-period bonds paying a return of 1 + i∗t
per bond after one period, and finally lock in the future payout in the domestic
currency by selling the return forward at the rate XF

t+1. As the whole undertaking
can be conducted at time t, there is no risk.
Let us compare with the (UIP) in discrete time:

1 + it =
1

Xt

(1 + i∗t )X
e
t+1, (UIP)

We see that the UIP will hold if and only if XF
t+1 = Xe

t+1. But to the extent
an asymmetric foreign exchange risk plays a role, a positive risk term should be
added to one of the sides in (UIP). Anyway, while XF

t+1 is observable via (CIP),
Xe
t+1 is not immediately observable.

23.7 Exercises
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Chapter 29

Business fluctuations

This chapter presents stylized facts and basic concepts relating to business fluc-
tuations. The next chapters go more into depth with specific business cycle
theories.
The term business cycles refers to the empirical phenomenon of economy-wide

fluctuations in output and employment around the trend, observed in industri-
alized market economies. By “trend”is meant a persistent long-term movement
over time. That the fluctuations around trend are often called business “cycles”
should not be taken too literally. The sequence of expansions and contractions
is not periodic like sinus waves. But the sequence shows many statistical regu-
larities. It is the job of business cycle analysts to characterize and explain these
regularities.

29.1 Some business cycle facts

Compared with “white noise fluctuations”, business cycle fluctuations are char-
acterized by composite stochastic regularities. In a short list we emphasize the
following regularities displayed by time series data:

1. GDP and employment exhibit considerable fluctuations around the trend.
(Whether the trend is best described as stochastic or deterministic is a
recurrent theme in econometric time series analysis.)

2. The ups and downs (expansions and contractions, respectively) exhibit per-
sistence (duration) in that positive deviations from trend tend to be main-
tained over several periods and negative deviations from trend similarly
(positive auto-correlation).

3. The ups and downs tend to be hump-shaped rather than saw-tooth shaped
(amplification).
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Figure 29.1: The rate of unemployment in Denmark, Western Europe, the Eurozone,
and the United States, 1970-2005. Note: Unemployment is measured as the number
of unemployed relative to labor force. Western Europe comprises the EU-15 as well
as Norway, Switzerland and Iceland. Germany is only included after the reunification
1991. Source: OECD, Economic Outlook.

4. The fluctuations are recurrent, but neither periodic nor easily predictable.
The distance from peak to peak may be, say, 4-12 years.

5. The fluctuations exhibit systematic co-movement across production sectors,
GDP components, and countries. Some facts that have played a central role
for the theoretical debate are:

(a) Employment (aggregate labor hours) is procyclical, i.e., varies in the
same direction as GDP, and fluctuates almost as much as GDP.

(b) Aggregate consumption and employment are markedly positively cor-
related.

(c) Real wages are weakly procyclical and do not fluctuate much.

(d) Firms’inventory holdings are procyclical, while the inventory-to-sales
ratio is countercyclical.

Some of the regularities identified may only be valid for a subset of countries,
depending on the structural characteristics of these. For example Fig. 28.1 shows
that unemployment in Europe as well as the US fluctuates considerably. Only in
the US, however, has unemployment appeared stationary since the early 1970s.
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The next section gives a list of definitions of terms often used by business
cycle analysts.

29.2 Key terms from the business cycle vocab-
ulary

Impulse versus response. The “impulse”is a disturbance to the economic system
coming “from the outside”. Is synonymous with a “shock” to an exogenous
variable (an unanticipated sudden shift in its value). The “response” refers to
the reaction of the economic system, i.e., the effect on endogenous variables.
Propagation and propagation mechanism. “Propagation”refers to the spread-

ing of effects of the impulse through the economic system (synonymous with “dis-
semination”, “transmission”or “proliferation”). And “propagation mechanism”
is the economic mechanism involved in this spreading.
The propagation mechanism can lead to amplification, persistence and co-

movement :
Amplification is present when an α per cent deviation (from normal) of an

exogenous variable results in a more than α per cent deviation (from normal)
of an endogenous variable. Is more or less synonymous with “magnification”,
“multiplier effect”or “blow up effect”.

Table 1 Glossary concerning shocks and their effects

Shock type
Effect on dependent variable Temporary Persistent Permanent

Temporary
Persistent
Permanent

Persistence refers to effects on endogenous variables along another dimension,
namely the time dimension. A shock has “persistent”effects to the extent that the
effects last long. Is synonymous with durability of the effect. Is often measured by
the auto correlation coeffi cient calculated from the time series of the endogenous
variable. Sometimes the shock itself is said to be persistent, usually meaning that
there is a relatively durable change in an exogenous variable. It is thus important
to be aware that the distinction between “temporary”and “persistent”may refer
to either the effect of the shock or the shock itself. Table 1 gives a reminder,
where also the possibility of permanence is included.
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Co-movement refers to the presence of significant correlation between two or
more de-trended variables (usually in logs).

Finally, volatility usually refers to the standard deviation (sometimes variance)
of the deviations of a variable from its trend value. Fixed capital investment is
much more volatile than GDP whereas consumption is considerable less volatile.

29.3 A quick glance at the Great Recession and
its aftermath

Some data on labor market flows in the USA published by the Bureau of Labor
Statistics is shown in the figures 28.2 - 28.4. The terminology used is the fol-
lowing: total separations equal the sum of quits and layoffs and discharges, quits
being separations on the initiative of the worker and layoffs and discharges being
separations initiated by the firm. Large fluctuations in employment are envis-
aged. The shaded areas in the figures indicate periods of recession as diagnosed
by the NBER (National Bureau of Economic Research). The NBER defines an
economic recession as: “a significant decline in economic activity spread across
the economy, lasting more than a few months, normally visible in real GDP,
real income, employment, industrial production, and wholesale-retail sales”.1 It
is noteworthy that after the 2008-2009 outbreak of the “Great Recession” the
trough level of employment is lower than it was after the dot.com-bubble 2001
recession.
At least two different stories could in principle explain this sharp fall in em-

ployment.2 One is a “Schumpeterian story”about reallocation of labor from old
to new industries due to technological change. The other is a “Keynesian story”
about an overall fall in aggregate demand triggered by a financial crisis. A be-
liever of the Schumpeterian story would expect total separations, hiring, and quits
to rise during the recession, as workers move from obsolete industries to blossom-
ing industries. The figures 28.2 and 28.3 indicate the opposite: total separations,
hiring, and quits behave procyclically not countercyclically.
A believer of the Keynesian story would expect layoffs and discharges to rise

and hiring to fall during the recession, as firms generally need fewer workers to
satisfy the slack demand. In addition, this story predicts that quits should fall,
as there is a perception that vacant jobs are scarce. These three predictions are
confirmed by the figures. The combination of a rise in layoffs and discharges and

1A simpler definition, popular in the press, is that a recession is present if in two consecutive
quarters real GDP falls.

2Krugman, New York Times, Dec. 11, 2010.
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Figure 29.2: Total separations, hires, and employment (seasonally adjusted). USA
December 2000 - October 2013. Recessions according to NBER in gray. Source: Bureau
of Labor Statistics.

a fall in quits implies that the direction in which total separations move is ambigu-
ous according to the Keynesian story. Fig. 28.2 indicates that total separations
fell during both the dot.com-bubble recession in 2001 and the Great recession
2008-2009; so we can conclude that the fall in quits dominated. Moreover, for the
whole decade Fig. 28.3 suggests a negative correlation between quits and layoffs
and discharges.

In Fig. 28.4 we see a Beveridge curve for the U.S. based on observations
over a decade. The variable drawn along the horizontal axis in Fig. 28.4 is the
unemployment rate in different months since year 2000 (number of unemployed
people as a percentage of the labor force). The variable drawn along the vertical
axis in the figure is the “job openings rate” in the same months; an alternative
name for this variable is the vacancy rate (number of vacant jobs as a percentage
of the labor force). As expected, the Beveridge curve (so named after the British
economist William Henry Beveridge, 1879-1963) is negatively sloped. In a boom,
unemployment is low and vacancies plenty because recruitment is diffi cult, as
few workers are searching for a job. In a slump unemployment is high and the
vacancy rate low because recruitment is easy, as many workers are searching for
a job. In this way, the economy’s position on the downward sloping Beveridge
curve can be interpreted as reflecting the state of the business cycle. Indeed, Fig.
28.4 shows that from the start of the recent recession in December 2007 until
October 2009, the economy moved down the curve as the vacancy rate fell and
“layoffs and discharges”rose.
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Figure 29.3: Quits and layoffs and discharges (seasonally adjusted). USA December
2000 - October 2013. Recessions according to NBER in gray. Source: Bureau of Labor
Statistics.
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Figure 29.4: The Beveridge curve (seasonally adjusted). USA December 2000 - October
2013. By “job openings rate”is meant vacancy rate. Source: Bureau of Labor Statistics.
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An outward shift of the Beveridge curve is a sign of reduced matching ef-
ficiency in the labor market. Such a mismatch phenomenon can be due to fast
technological and structural change. Firms in the new industries have vacant jobs
but it is hard to find appropriate workers. Since October 2009, the economy has
moved somewhat up and to the left. This is a sign of increased mismatch. On
the other hand, as Barlevy (2011) concludes and the figure suggests, increased
mismatch can account for only 2 of the 5 percentage point increase in the un-
employment rate since December 2007. So in his Nobel laureate lecture, Dale
Mortensen (2011) concluded: “The real problem is that demand for goods and
services has not recovered because real interest rates have remained too high”.

29.4 Conclusion

In the next chapters we consider different theoretical approaches to the explana-
tion of business cycle regularities.

29.5 Literature notes

Articles in Handbook of Macroeconomics (1999) and for example the macroeco-
nomics textbook by Abel and Bernanke (2001) describe in more detail the empir-
ical regularities that characterize business cycle fluctuations, including both the
direction and the timing of the cyclical behavior of economic variables.

29.6 Exercises
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Chapter 30

The real business cycle theory

Since the middle of the 1970s two quite different approaches to the explanation
of business cycle fluctuations have been pursued. We may broadly classify them
as either of a new-classical or a Keynesian orientation. The new-classical school
attempts to explain output and employment fluctuations as movements in pro-
ductivity and labor supply. The Keynesian approach attempts to explain them
as movements in aggregate demand and the degree of capacity utilization.
Within the new-classical school the monetary mis-perception theory of Lucas

(1972, 1975) was the dominating approach in the 1970s. We described this ap-
proach in Chapter 27. The theory came under serious empirical attack in the
late 1970s.1 From the early 1980s an alternative approach within new-classical
thinking, the Real Business Cycle theory, gradually took over. This theory (RBC
theory for short) was initiated by Finn E. Kydland and Edward C. Prescott (1982)
and is the topic of this chapter.2

The shared conception of new-classical approaches to business cycle analysis
is that economic fluctuations can be explained by adding stochastic disturbances
to the neoclassical framework with optimizing agents, rational expectations, and
market clearing under perfect competition. Output and employment are seen as
supply determined, the only difference compared with the standard neoclassical
growth model being that there are fluctuations around the growth trend. These
fluctuations are not viewed as deviations from a Walrasian equilibrium, but as a
constituent part of a moving stochastic Walrasian equilibrium. In Lucas’mone-
tary mis-perception theory from the 1970s shocks to the money supply were the
driving force. When the RBC theory took over, the emphasis shifted to recurrent
technology shocks and other supply shocks as a driving force behind economic

1For a survey, see Blanchard (1990).
2In 2004 Kydland and Prescott were awarded the Nobel prize, primarily for their contri-

butions in two areas: policy implications of time inconsistency and quantitative business cycle
research.
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fluctuations. In fact, money is typically absent from the RBC models. The em-
pirical positive correlation between money supply and output is attributed to
reverse causation. The fluctuations in employment reflect fluctuations in labor
supply triggered by real wage movements reflecting shocks to marginal productiv-
ity of labor. Government intervention with the purpose of stabilization is seen as
likely to be counterproductive. Given the uncertainty due to shocks, the market
forces establish a Pareto-optimal moving equilibrium. “Economic fluctuations are
optimal responses to uncertainty in the rate of technological change”, as Edward
Prescott puts it (Prescott 1986).
Below we present a prototype RBC model.

30.1 A simple RBC model

The RBC theory is an extension of the non-monetary Ramsey growth model,
usually in discrete time. The key point is that endogenous labor supply and
exogenous stochastic recurrent productivity shocks are added. The presentation
here is close to King and Rebelo (1999), available inHandbook of Macroeconomics,
vol. 1B, 1999. As a rule, our notation is the same as that of King and Rebelo, but
there will be a few exceptions in order not to diverge too much from our general
notational principles. The notation appears in Table 29.1. The most precarious
differences vis-a-vis King and Rebelo are that we use ρ in our customary meaning
as a utility discount rate and θ for elasticity of marginal utility of consumption.

The firm

There are two categories of economic agents in the model: firms and households;
the government sector is ignored. First we describe the firm.

Technology

The representative firm has the production function

Yt = AtF (Kt, XtNt), (30.1)

where Kt and Nt are input of capital and labor in period t, while Xt is an ex-
ogenous deterministic labor-augmenting technology level, and At represents an
exogenous random productivity factor. The production function F has constant
returns to scale and is neoclassical (i.e., marginal productivity of each factor is
positive, but decreasing in the same factor).
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Table 29.1. Notation
Variable King & Rebelo Here
Aggregate consumption Ct same
Deterministic technology level Xt same
Growth corrected consumption ct ≡ Ct/Xt same
Growth corrected investment it ≡ It/Xt same
Growth corrected output yt ≡ Yt/Xt same
Growth corrected capital kt ≡ Kt/Xt same
Aggregate employment (hours) Nt same
Aggregate leisure (hours) Lt ≡ 1−Nt same
Effective capital intensity kt

Nt
k̃t ≡ Kt

XtNt

Real wage wtXt wt
Technology-corrected real wage wt w̃t ≡ wt/Xt

Real interest rate from end
period t to end period t+ 1 rt rt+1

Auto-correlation coeffi cient in
technology process ρ ξ

Discount factor w.r.t. utility b 1
1+ρ

Rate of time preference w.r.t. utility 1
b
− 1 ρ

Elasticity of marginal utility of cons. σ θ
Elasticity of marginal utility of leisure η same
Elasticity of output w.r.t. labor α same
Steady state value of ct c c∗

The natural logarithm log same
Log deviation of ct from steady state value ĉt ≡ log ct

c
ĉt ≡ log ct

c∗

Log deviation of Nt from steady state value L̂t ≡ log Lt
L

N̂t ≡ log Nt
N∗

It is assumed that Xt grows deterministically at a constant rate, γ − 1, i.e.,

Xt+1 = γXt, γ > 1; (30.2)

so γ is a deterministic technology growth factor. The productivity variable At is
stochastic and assumed to follow the process

At = A∗1−ξ(At−1)ξeεt .

This means that logAt is an AR(1) process:

logAt = (1− ξ) logA∗ + ξ logAt−1 + εt, 0 ≤ ξ < 1. (30.3)

The last term, εt, represents a productivity shock which is assumed to be white
noise with variance σ2

ε. The auto-correlation coeffi cient ξ measures the degree of
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persistence over time of the effect on log A of a shock. If ξ = 0, the effect is only
temporary; if ξ > 0, there is some persistence. The unconditional expectation
of logAt is equal to logA∗ (which is thus the expected value “in the long run”).
The shocks, εt, may represent accidental events affecting productivity, perhaps
technological changes that are not sustainable, including technological mistakes
(think of the introduction and later abandonment of asbestos in the construction
industry). Negative realizations of the noise term εt may represent technological
regress. But it need not, since moderate negative values of εt are consistent with
overall technological progress, though temporarily below the trend represented
by the deterministic growth of Xt.
The reason we said “not sustainable” is that sustainability would require

ξ = 1, which conflicts with (30.3). Yet ξ = 1, which turns (30.3) into a random
walk with drift, would correspond better to our general conception of technolog-
ical change as a cumulative process. Technical knowledge is cumulative in the
sense that a technical invention continues to be known and usable. But in the
present version of the RBC model this cumulative part of technological change
is represented by the deterministic trend γ in (30.2). What the stochastic At re-
ally embodies remains somewhat vague. A broad interpretation includes abrupt
structural changes, closures of industries, shifts in legal and political systems,
harvest failures, wartime destruction, natural disasters, and strikes. For an open
economy, shifts in terms of trade might be a possible interpretation for example
due to temporary oil price shocks.

Factor demand

The representative firm is assumed to maximize its value under perfect competi-
tion. Since there are no convex capital installation costs, the problem reduces to
that of static maximization of profits each period. And since period t’s technolog-
ical conditions (F, Xt, and the realization of At) are assumed known to the firm
in period t, the firm does not face any uncertainty. Profit maximization simply
implies a standard factor demand (Kt, Nt), satisfying

AtF1(Kt, XtNt) = rt + δ, 0 ≤ δ ≤ 1, (30.4)

AtF2(Kt, XtNt)Xt = wt, (30.5)

where rt+ δ is the real cost per unit of the capital service and wt is the real wage.

The household

There is a given number of households, or rather dynastic families, all alike and
with infinite horizon. For simplicity we ignore population growth. Thus we
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consider a representative household of constant size. The household’s saving in
period t amounts to buying investment goods that in the next period are rented
out to the firms at the rental rate rt+1 + δ. Thus the household obtains a net rate
of return on financial wealth equal to the interest rate rt+1.

A decision problem under uncertainty

The preferences of the household are described by the expected discounted util-
ity hypothesis. Both consumption, Ct, and leisure, Lt, enter the period utility
function. The total time endowment of the household is 1 in all periods:

Nt + Lt = 1, t = 0, 1, 2, . . . ., (30.6)

where Nt is labor supply in period t. The fact that N has now been used in two
different meanings, in (30.1) as employment and in (30.6) as labor supply, should
not cause problems since in the competitive equilibrium of the model the two are
quantitatively the same.
The household has rational expectations. The decision problem, as seen from

the beginning of period t, is to choose initial consumption, C0, and labor supply,
N0, as well as a series of contingent plans, C(t,Kt) and N(t,Kt), for t = 1, 2, ...,
so that expected discounted utility is maximized:

maxE0U0 = E0[
∞∑
t=0

u(Ct, 1−Nt)(1 + ρ)−t] s.t. (30.7)

Ct ≥ 0, 0 ≤ Nt ≤ 1, (control region) (30.8)

Kt+1 = (1 + rt)Kt + wtNt − Ct, K0 ≥ 0 given, (30.9)

Kt+1 ≥ 0 for t = 0, 1, 2, , ... . (30.10)

The period utility function u satisfies u1 > 0, u2 > 0, u11 < 0, u22 < 0 and is
concave, which is equivalent to adding the assumption u11u22 − (u12)2 ≥ 0. The
decreasing marginal utility assumption reflects, first, a desire of smoothing over
time both consumption and leisure; or we could say that there is aversion towards
variation over time in these entities. Second, decreasing marginal utility reflects
aversion towards variation in consumption and leisure over different “states of
nature”, i.e., risk aversion. The parameter ρ is the rate of time preference and is
assumed positive (a further restriction on ρ will be introduced later).
The symbol E0 signifies the expected value, conditional on information avail-

able in period 0. More generally, Et is a shorthand for E(· |It) , where It denotes
information revealed up to and including period t. The only source of uncertainty
derives from the stochastic productivity variable At. We assume the ex ante un-
certainty about At is resolved at time t, by which we mean the beginning of period

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



1062 CHAPTER 30. THE REAL BUSINESS CYCLE THEORY

t, the latter being identified with the time interval [t, t+ 1) . Knowledge of the
market clearing values of rt and wt is included in the conditioning information It.
There is uncertainty about future values of r and w, however. Nonetheless, the
household is assumed to know the stochastic processes which these variables fol-
low (or, what amounts to the same, the household knows the “true”model of the
economy as well as the stochastic process followed by the productivity variable
At).

Characterizing the solution to the household’s problem

For each t there are three endogenous variables in the household’s problem, the
control variables Ct andNt and the state variableKt+1. The decision, as seen from
period 0, is to choose a concrete action (C0, N0) and a series of contingent plans
(C(t,Kt), N(t,Kt)) saying what to do in each of the future periods t = 1, 2, . . . , as
a function of the as yet unknown circumstances, including the financial wealth,
Kt, at that time. The decision is made so that expected discounted utility is
maximized. The pair of functions (C(t,Kt), N(t,Kt)) is named a contingent plan
because it refers to what level of consumption and labor supply, respectively, will
be chosen optimally in the future period t, contingent on the financial wealth
at the beginning of period t. In turn this wealth, Kt, depends on the realized
path, up to period t − 1, of the ex ante unknown productivity factor A and the
optimally chosen values of C and N. In order to choose the action (C0, N0) in a
rational way, the household must take into account the whole future, including
what the optimal contingent actions in the future will be.
Letting period t be an arbitrary period, i.e., t ∈ {0, 1, 2, ...} , we rewrite U0 in

the following way

U0 =

t−1∑
s=0

u(Cs, 1−Ns)(1 + ρ)−s +

∞∑
s=t

u(Cs, 1−Ns)(1 + ρ)−s

=
t−1∑
s=0

u(Cs, 1−Ns)(1 + ρ)−s + (1 + ρ)−t
∞∑
s=t

u(Cs, 1−Ns)(1 + ρ)−(s−t),

where we let the latter term,
∑∞

s=t u(Cs, 1−Ns)(1 + ρ)−(s−t), be denoted Ut.
When deciding the “action”(C0, N0), the household knows that in every new

period, it has to solve the remainder of the problem in a similar way, given the
information revealed up to and including that period. As seen from period t, the
objective function is

EtUt = u(Ct, 1−Nt)+(1+ρ)−1Et[u(Ct+1, 1−Nt+1)+u(Ct+2, 1−Nt+2)(1+ρ)−1+...]
(30.11)
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Since there is no uncertainty concerning the current period, we may rewrite the
objective function as

EtUt = u(Ct, 1−Nt) + (1 + ρ)−1Et [u(Ct+1, 1−Nt+1) (30.12)

+u(Ct+2, 1−Nt+2)(1 + ρ)−1 + ...
]
.

To find first-order conditions we will use the substitution method. First, from
(30.9) we have

Ct = (1 + rt)Kt + wtNt −Kt+1, and (30.13)

Ct+1 = (1 + rt+1)Kt+1 + wt+1Nt+1 −Kt+2. (30.14)

Substituting this into (30.12), the decision problem is reduced to an essentially
unconstrained maximization problem, namely one of maximizing the function
EtUt w.r.t. (Nt, Kt+1), (Nt+1, Kt+2), ... .We first take the partial derivative w.r.t.
Nt in (30.12), given (30.13), and set it equal to 0 (thus focusing on interior
solutions):

∂EtUt
∂Nt

= u1(Ct, 1−Nt)wt + u2(Ct, 1−Nt)(−1) = 0,

which can be written

u2(Ct, 1−Nt) = u1(Ct, 1−Nt)wt. (30.15)

This first-order condition describes the trade-off between leisure in period t and
consumption in the same period. The condition says that in the optimal plan, the
opportunity cost (in terms of foregone current utility) associated with decreasing
leisure by one unit equals the utility benefit of obtaining an increased labor income
and using this increase for extra consumption. In brief, marginal cost = marginal
benefit, both measured in current utility.
Secondly, in (30.12) we take the partial derivative w.r.t. Kt+1, given (30.13)

and (30.14).3 This gives the first-order condition

∂EtUt
∂Kt+1

= u1(Ct, 1−Nt)(−1) + (1 + ρ)−1Et[u1(Ct+1, 1−Nt+1)(1 + rt+1)] = 0,

3Generally speaking, for a given differentiable function f(X,α1, . . . , αn), where X is a sto-
chastic variable and α1, . . . , αn are parameters, we have

∂E(f(X,α1, . . . , αn))

∂αi
= E

∂f(X,α1, . . . , αn)

∂αi
, i = 1, . . . , n.
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which can be written

u1(Ct, 1−Nt) = (1 + ρ)−1Et[u1(Ct+1, 1−Nt+1)(1 + rt+1)], (30.16)

where rt+1 is unknown in period t. This first-order condition describes the trade-
off between consumption in period t and the uncertain consumption in period
t+1, as seen from period t. The optimal plan must satisfy that the current utility
loss associated with decreasing consumption by one unit equals the discounted
expected utility gain next period by having 1 + rt+1 extra units available for
consumption, namely the gross return on saving one more unit. In brief, again
marginal cost = marginal benefit in utility terms.
The condition (30.16) is an example of a stochastic Euler equation. If there is

no uncertainty, the expectation operator Et can be deleted. Then, ignoring the
utility of leisure, (30.16) is the standard discrete-time analogue to the Keynes-
Ramsey rule in continuous time.
For completeness, let us also derive the first-order conditions w.r.t. the future

pairs (Nt+i, Kt+i+1), i = 1, 2, ... . We get

∂EtUt
∂Nt+i

= (1 + ρ)−1Et [u1(Ct+i, 1−Nt+i)wt+i + u2(Ct+i, 1−Nt+i)(−1)] = 0,

so that
Et [u2(Ct+i, 1−Nt+i)] = Et [u1(Ct+i, 1−Nt+i)wt+i] .

Similarly,

∂EtUt
∂Kt+i+1

= Et
[
u1(Ct+i, 1−Nt+i)(−1) + (1 + ρ)−1u1(Ct+i+1, 1−Nt+i+1)

·(1 + rt+i+1) = 0,

so that

Et [u1(Ct+i, 1−Nt+i)] = (1 + ρ)−1Et [u1(Ct+i+1, 1−Nt+i+1)(1 + rt+i+1)]

We see that for t replaced by t + 1, t + 2, ... , (30.15) and (30.16) must hold in
expected values as seen from period t.
Normally, it suffi ces to write down (30.15) and (30.16) and then add that these

two conditions only refer to the first period, while similar first-order conditions
hold in expected values for the future periods.
As usual in dynamic optimization problems the first-order conditions say

something about optimal relative levels of consumption and leisure over time,
not about the absolute initial levels of consumption and leisure. The absolute
initial levels are determined as the highest possible levels consistent with the re-
quirement that first-order conditions of form (30.15) and (30.16), together with
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the non-negativity in (30.10), hold for period t and, in terms of expected values
as seen from period t, for all future periods. This requirement can be shown to
be equivalent to requiring the transversality condition,

lim
t→∞

E0

[
Ktu1(Ct−1, 1−Nt−1)(1 + ρ)−(t−1)

]
= 0,

satisfied in addition to the first-order conditions.4 Finding the resulting con-
sumption function requires specification of the period utility function. But to
characterize the equilibrium path, the consumption function is in fact not needed.

The remaining elements in the model

It only remains to check market clearing conditions and determine equilibrium
factor prices. Implicitly we have already assumed clearing in the factor markets,
since we have used the same symbols for capital and employment, respectively, in
the firm’s problem (the demand side) as in the household’s problem (the supply
side). The equilibrium factor prices are given by (30.4) and (30.5). We will rewrite
these two equations in a more convenient way. In view of constant returns to scale,
we have

Yt = AtF (Kt, XtNt) = AtXtNtF (k̃t, 1) ≡ AtXtNtf(k̃t), (30.17)

where k̃t ≡ Kt/(XtNt) is the effective capital-labor ratio. In terms of the intensive
production function f, (30.4) and (30.5) yield

rt + δ = AtF1(Kt, XtNt) = Atf
′(k̃t), (30.18)

wt = AtF2(Kt, XtNt)Xt = At

[
f(k̃t)− k̃tf ′(k̃t)

]
Xt. (30.19)

Finally, equilibrium in the output market requires that aggregate output
equals aggregate demand, i.e., the sum of aggregate consumption and investment:

Yt = Ct + It. (30.20)

We now show that this equilibrium condition is automatically implied by previous
equations. Indeed, adding δKt on both sides of the budget constraint (30.9) of
the representative household and rearranging, we get

Kt+1 −Kt + δKt = (rt + δ)Kt + wtNt − Ct = Atf
′(k̃t)Kt(30.21)

+At

[
f(k̃t)− k̃tf ′(k̃t)

]
XtNt − Ct = AtXtNtf(k̃t)− Ct = Yt − Ct ≡ St,

4In fact, in the budget constraint of the household’s optimization problem, we could replace
Kt by financial wealth and allow borrowing, so that financial wealth could be negative. Then,
instead of the non-negativity constraint (30.10), a No-Ponzi-Game condition in expected value
would be relevant. In a representative agent model with infinite horizon, however, this does not
change anything, since the non-negativity constraint (30.10) will never be binding.
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where the second equality comes from (30.18) and (30.19) and the fourth from
(30.17). Now, in this model aggregate gross saving, St, is directly an act of
investment so that It = St. From this follows (30.20).

Specification of technology and preferences

To quantify the model we have to specify the production function and the utility
function. We abide by the standard assumption in the RBC literature and specify
the production function to be Cobb-Douglas:

Yt = AtK
1−α
t (XtNt)

α, 0 < α < 1. (30.22)

We then get

f(k̃t) = Atk̃
1−α
t , (30.23)

rt + δ = (1− α)Atk̃
−α
t , (30.24)

wt = αAtk̃
1−α
t Xt. (30.25)

As to the utility function we follow King and Rebelo (1999) and base the analysis
on the additively separable CRRA case,

u(Ct, 1−Nt) =
C1−θ
t

1− θ + ω
(1−Nt)

1−η

1− η , θ > 0, η > 0, ω > 0. (30.26)

Here, θ is the (absolute) elasticity of marginal utility of consumption, equivalently
the desire for consumption smoothing, η is the (absolute) elasticity of marginal
utility of leisure, equivalently, the desire for leisure smoothing, and ω is the rela-
tive weight given to leisure. In case θ or η take on the value 1, the corresponding
term in (30.26) should be replaced by logCt or ω log(1 − Nt), respectively. In
fact, most of the time King and Rebelo (1999) take both θ and η to be 1.
With (30.26) applied to (30.15) and (30.16), we get

θ(1−Nt)
−η = C−θt wt, and (30.27)

C−θt =
1

1 + ρ
Et
[
C−θt+1(1 + rt+1)

]
, (30.28)

respectively.

30.2 A deterministic steady state*

For a while, let us ignore shocks. That is, assume At = A∗ for all t.
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The steady state solution

By a steady state we mean a path along which the growth-corrected variables
like k̃ and w̃ ≡ w/Xt stay constant. With At = A∗ for all t, (30.24) and (30.25)
return the steady-state relations between k̃, r, and w̃ :

k̃∗ =

[
(1− α)A∗

r∗ + δ

]1/α

, (30.29)

w̃∗ = αA∗k̃∗1−α. (30.30)

We may write (30.28) as

1 + ρ = Et

[
(
Ct+1

Ct
)−θ(1 + rt+1)

]
. (30.31)

In the non-stochastic steady state the expectation operator Et can be deleted,
and r and C/X are independent of t. Hence, Ct+1/Ct = γ, by (30.2), and (30.31)
takes the form

1 + r∗ = (1 + ρ)γθ. (30.32)

In this expression we recognize the modified golden rule discussed in chapters 7
and 10.5 Existence of general equilibrium in our Ramsey framework requires that
the long-run real interest rate is larger than the long-run output growth rate, i.e.,
we need r∗ > γ − 1. This condition is satisfied if and only if

1 + ρ > γ1−θ, (30.33)

which we assume.6 If we guess that θ = 1 and ρ = 0.01, then with γ = 1.004
(taken from US national income accounting data 1947-96, using a quarter of a
year as our time unit), we find the steady-state rate of return to be r∗ = 0.014
or 0.056 per annum. Or, the other way round, observing the average return on
the Standard & Poor 500 Index over the same period to be 6.5 per annum, given
θ = 1 and γ = 1.004, we estimate ρ to be 0.012.
Using that in steady state Nt is a constant, N∗, we can write (30.21) as

γk̃t+1 − (1− δ)k̃t = A∗k̃1−α
t − c̃t, (30.34)

where c̃t ≡ Ct/(XtN
∗). Given r∗, (30.29) yields the steady-state capital intensity

k̃∗. Then, (30.34) returns

c̃∗ ≡ c∗

Xt

= A∗k̃∗1−α − (γ + δ − 1)k̃∗.

5King and Rebelo, 1999, p. 947, express this in terms of the growth-adjusted discount factor
β ≡ (1 + ρ)−1γ1−θ, so that 1 + r∗ = (1 + ρ)γθ = γ/β.

6Since γ > 1, only if θ < 1 (which does not seem realistic, cf. Chapter 3), is ρ > 0 not
suffi cient for (30.33) to hold.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



1068 CHAPTER 30. THE REAL BUSINESS CYCLE THEORY

Consumption dynamics around the steady state in case of no uncer-
tainty

The adjustment process for consumption, absent uncertainty, is given by (30.31)
as

(
Ct+1

Ct
)−θ(1 + rt+1) = 1 + ρ,

or, taking logs,

log
Ct+1

Ct
=

1

θ
[log(1 + rt+1)− log(1 + ρ)] . (30.35)

This is the deterministic Keynes-Ramsey rule in discrete time under separable
CRRA utility. For any “small” x we have log(1 + x) ≈ x (from a first-order
Taylor approximation of log(1 + x) around 0). Hence, with x = Ct+1/Ct − 1, we
have log(Ct+1/Ct) ≈ Ct+1/Ct−1, so that (30.35) implies the approximate relation

Ct+1 − Ct
Ct

≈ 1

θ
(rt+1 − ρ). (30.36)

There is a supplementary way of writing the Keynes-Ramsey rule. Note that
(30.32) implies log(1 + r∗) = log(1 + ρ) + θ log γ. Using first-order Taylor approx-
imations, this gives r∗ ≈ ρ+ θ log γ ≈ ρ+ θg, where g ≡ γ− 1 is the trend rate of
technological progress. Thus ρ ≈ r∗ − θg, and inserting this into (30.36) we get

Ct+1 − Ct
Ct

≈ 1

θ
(rt+1 − r∗) + g.

Then the technology-corrected consumption level, ct ≡ Ct/Xt, moves according
to

ct+1 − ct
ct

≈ 1

θ
(rt+1 − r∗),

since g is the growth rate of Xt.

30.3 On the approximate solution and numeri-
cal simulation*

In the special case θ = 1 (the log utility case), still maintaining the Cobb-Douglas
specification of the production function, the model can be solved analytically
provided capital is non-durable (i.e., δ = 1). It turns out that in this case the
solution has consumption as a constant fraction of output. Further, in this special
case labor supply equals a constant and is thus independent of the productivity
shocks. Since in actual business cycles, employment fluctuates a lot, this might
not seem to be good news for a business cycle model.
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But assuming δ = 1 for a period length of one quarter or one year is unrea-
sonable. Given a period length of one year, δ is generally estimated to be less
than 0.1. With δ < 1, labor supply is affected by the technology shocks, and an
exact analytical solution can no longer be found.
One can find an approximate solution based on a log-linearization of the model

around the steady state. Without dwelling on the more technical details we will
make a few observations.

30.3.1 Log-linearization

If x∗ is the steady-state value of the variable xt in the non-stochastic case, then
one defines the new variable, the log-deviation of x from x∗ :

x̂t ≡ log(
xt
x∗

) = log xt − log x∗. (30.37)

That is, x̂t is the logarithmic deviation of xt from its steady-state value. But this
is approximately the same as x’s proportionate deviation from its steady-state
value. This is because, when xt is in a neighborhood of its steady-state value, a
first-order Taylor approximation of log xt around x∗ yields

log xt ≈ log x∗ +
1

x∗
(xt − x∗),

so that

x̂t ≈
xt − x∗
x∗

. (30.38)

Working with the transformation x̂t instead of xt implies the convenience that

x̂t+1 − x̂t = log(
xt+1

x∗
)− log(

xt
x∗

) = log xt+1 − log xt

≈ xt+1 − xt
xt

.

That is, relative changes in x have been replaced by absolute changes in x̂.
Some of the equations of interest are exactly log-linear from start. This is true

for the production conditions (30.23), (30.24), and (30.25) as well as for the first-
order condition (30.27) for the household. For other equations log-linearization
requires approximation. Consider for example the time constraint Nt + Lt = 1.
This constraint implies

N∗
Nt −N∗
N∗

+ L∗
Lt − L∗
L∗

= 0

or
N∗N̂t + L∗L̂t ≈ 0, (30.39)
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by the principle in (30.38). From (30.27), taking into account that 1−Nt = Lt,
we have

θLt
−η = C−θt wt ≡ (ctXt)

−θw̃tXt

= ct
−θw̃tX

1−θ
t . (30.40)

In steady state this takes the form

θL∗−η = c∗−θw̃∗X1−θ
t . (30.41)

We see that when there is sustained technological progress, γ > 1, we need θ = 1
for a steady state to exist (which explains why in their calibration King and Re-
belo assume θ = 1). This quite “narrow”theoretical requirement is an unwelcome
feature and is due to the additively separable utility function.
Combining (30.41) with (30.40) gives(

Lt
L∗

)−η
=
( ct
c∗

)−θ w̃t
w̃∗
.

Taking logs on both sides we get

−η log
Lt
L∗

= log
w̃t
w̃∗
− θ log

ct
c∗

or
−ηL̂t = ŵt − θĉt.

In view of (30.39), this implies

N̂t = − L
∗

N∗
L̂t =

1−N∗
N∗η

ŵt −
1−N∗
N∗η

θĉt. (30.42)

This result tells us that the elasticity of labor supply w.r.t. a temporary
change in the real wage depends negatively on η; this is not surprising, since η
reflects the desire for leisure smoothing across time. Indeed, calling this elasticity
ε, we have

ε =
1−N∗
N∗η

. (30.43)

Departing from the steady state, a one per cent increase in the wage (ŵt = 0.01)
leads to an ε per cent increase in the labor supply, by (30.42) and (30.43). The
number ε measures a kind of compensated wage elasticity of labor supply (in
an intertemporal setting), relevant for evaluating the pure substitution effect of a
temporary rise in the wage. King and Rebelo (1999) reckonN∗ in the US to be 0.2,
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that is, out of available time one fifth is working time. With η = 1, we then get
ε = 4. This elasticity is much higher than what the micro-econometric evidence
suggests, at least for men, namely typically an elasticity below 1 (Pencavel 1986).
But with labor supply elasticity as low as 1, the RBC model is far from capable
of generating a volatility in employment comparable to what the data show.
For some purposes it is convenient to have the endogenous time-dependent

variables appearing separately in the stationary dynamic system. Then, to de-
scribe the supply of output in log-linear form, let yt ≡ Yt/Xt ≡ Atf(k̃t)Nt and
kt ≡ Kt/Xt ≡ k̃tNt. From (30.22),

yt = Atk
1−α
t Nα

t ,

and dividing through by the corresponding expression in steady state, we get

yt
y∗

=
At
A∗

(
kt
k∗

)1−α(
Nt

N∗
)α.

Taking logs on both sides, we end up with

ŷt = Ât + (1− α)k̂t + αL̂t. (30.44)

For the demand side we can obtain at least an approximate log-linear relation.
Indeed, dividing trough by Xt in (30.20) we get

ct + it = yt,

where it ≡ It/Xt. Dividing through by y∗ and reordering, this can also be written

c∗

y∗
ct − c∗
c∗

+
i∗

y∗
it − i∗
i∗

=
yt − y∗
y∗

,

which, using the hat notation from (30.38), can be written

c∗

y∗
ĉt +

i∗

y∗
ı̂t ≈ ŷt. (30.45)

to be equated with the right hand side of (30.44).

30.3.2 Numerical simulation

After log-linearization, the model can be reduced to two coupled linear stochastic
first-order difference equations in kt and ct, where kt is predetermined, and ct
is a jump variable. There are different methods available for solving such an
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approximate dynamic system analytically.7 Alternatively, based on a specified
set of parameter values one can solve the system by numerical simulation on a
computer.
In any case, when it comes to checking the quantitative performance of the

model, RBC theorists generally stick to calibration, that is, the method based on
a choice of parameter values such that the model matches a list of data charac-
teristics. In the present context this means that:

(a) the structural parameters (α, δ, ρ, θ, η, ω, γ,N∗) are given values that are
taken or constructed partly from national income accounting and similar
data, partly from micro-econometric studies of households’and firms’be-
havior;

(b) the values of the parameters, ξ and σε, in the stochastic process for the
productivity variable A are chosen either on the basis of data for the Solow
residual8 over a long time period, or one or both values are chosen to yield,
as closely as possible, a correspondence between the statistical moments
(standard deviation, auto-correlation etc.) predicted by the model and
those in the data.

The first approach to ξ and σε is followed by, e.g., Prescott (1986). It has been
severely criticized by, among others, Mankiw (1989). In the short and medium
term, the Solow residual is very sensitive to labor hoarding and variations in the
degree of utilization of capital equipment. It can therefore be argued that it is
the business cycle fluctuations that explain the fluctuations in the Solow residual,
rather than the other way round.9 The second approach, used by, e.g., Hansen
(1985) and Plosser (1989), has the disadvantage that it provides no independent
information on the stochastic process for productivity shocks. Yet such informa-
tion is necessary to assess whether the shocks can be the driving force behind
business cycles.

7For details one may consult Campbell (1994, p. 468 ff.), Obstfeld and Rogoff (1996, p. 503
ff.), or Uhlig (1999).

8Given (30.22), take logs on both sides and rearrange to get

log Yt − (1− α) logKt − α logLt = logAt + α logXt.

Based on time series for Y, K , and L, and estimating α by data on the labor income share, the
left-hand side can be computed and used to uncover the productivity process logAt +α logXt.
In growth accounting the left-hand side makes up the “raw material”for calculating the Solow
residual,

SRt ≡ ∆ log Yt − ((1− α)∆ logKt + α∆ logLt).

9King and Rebelo (1999, p. 982-993) believe that the problem can be overcome by refinement
of the RBC model.
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As hitherto we abide to the approach of King and Rebelo (1999) which like
Prescott’s is based on the Solow residual. The parameters chosen are shown in
Table 19.2. Remember that the time unit is a quarter of a year.

Table 29.2. Parameter values

α δ ρ θ η ω γ N∗ ξ σε
0.667 0.025 0.0163 1 1 3.48 1.004 0.2 0.979 0.0072

Given these parameter values and initial values of k and A in conformity
with the steady state, the simulation is ready to be started. The shock process
is activated and the resulting evolution of the endogenous variables generated
through the propagation mechanism of the model calculated by the computer.
From this evolution the analyst next calculates the different relevant statistics:
standard deviation (as a measure of volatility), auto-correlation (as a measure of
persistence), and cross correlations with different leads and lags (reflecting the
co-movements and dynamic interaction of the different variables). These model-
generated statistics can then be compared to those calculated on the basis of the
empirical observations.
In order to visualize the economic mechanisms involved, impulse-response

functions are calculated. Shocks before period 0 are ignored and the economy
is assumed to be in steady state until this period. Then, a positive once-for-
all shock to A occurs so that productivity is increased by, say, 1 % (i.e., given
A−1 = A∗ = 1, we put ε0 = 0.01 in (30.3) with t = 0). The resulting path
for the endogenous variables is calculated under the assumption that no further
shocks occur (i.e., εt = 0 for t = 1, 2, . . . ). An inpulse-response diagram shows
the implied time profiles for the different variables.
Remark. The text should here show some graphs of impulse-response func-

tions. These graphs are not yet available. Instead the reader is referred to the
graphs in King and Rebelo (1999), p. 966-970. As expected, the time profiles
for output, consumption, employment, real wages, and other variables differ, de-
pending on the size of ξ in (30.3). If we consider a purely temporary productivity
shock, the case ξ = 0, we get the graphs in King and Rebelo (1999), p. 966.
A highly persistent productivity shock, the case ξ = 0.979, gives rise to the re-
sponses on p. 968. We see that these responses are more drawn out over time.
This persistence in the endogenous variables is, however, just inherited from the
assumed persistence in the shock. And amplification is limited. In case of a per-
manent productivity shock, ξ = 1, wealth effects on labor supply are strong and
tend to offset the substitution effect.
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30.4 The two basic propagation mechanisms

We have added technology shocks to a standard neoclassical growth model. The
conclusion is that correlated fluctuations in output, consumption, investment,
work hours, output per man-hour, real wages, and the real interest rate are gen-
erated. So far so good. Two basic propagation mechanisms drive the fluctuations:

1. The capital accumulation mechanism. To understand this mechanism in its
pure form, let us abstract from the endogenous labor supply and assume
an inelastic labor supply. A positive productivity shock increases marginal
productivity of capital and labor. If the shock is not purely temporary,
the household feels more wealthy. Both output, consumption and saving go
up, the latter due to the desire for consumption smoothing. The increased
capital stock implies higher output also in the next periods. Hence output
shows positive persistence. And output, consumption, and investment move
together, i.e., there is co-movement.

2. Intertemporal substitution in labor supply. An immediate implication of
increased marginal productivity of labor is a higher real wage. To the
extent that this increased real wage is only temporary, the household is
motivated to supply more labor in the current period and less later. This is
the phenomenon of intertemporal substitution in leisure. By the adherents
of the RBC theory the observed fluctuations in work hours are seen as
reflecting this.

30.5 Limitations

During the last couple of decades there has been an increasing scepticism towards
the RBC theory. The main limitation of the theory may be seen as deriving
from its insistence upon interpreting fluctuations in employment as reflecting
fluctuations in labor supply. The critics maintain that, starting from market
clearing based on flexible prices, it is not surprising that diffi culties matching the
business cycle facts arise.
We may summarize the objections to the theory in the following four points:

a. Where are the productivity shocks? As some critics ask: “If productivity
shocks are so important, why don’t we read about them in the Wall Street
Journal or in The Economist?”Indeed, technology shocks occur within par-
ticular lines of a multitude of businesses and sum up, at the aggregate level,
to an upward trend in productivity, relevant for growth theory. It is not
easy to see they should be able to drive the business cycle component of
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the data. Moreover, it seems hard to interpret the absolute economic con-
tractions (decreases in GDP) that sometimes occur in the real world as
due to productivity shocks. If the elasticity of output w.r.t. productivity
shocks does not exceed one (as it does not seem to, empirically, according
to Campbell (1994)), then a backward step in technology at the aggregate
level is needed. Although genuine technological knowledge as such is inher-
ently increasing, mistakes could be made in choosing technologies. At the
disaggregate level, one can sometimes identify technological mistakes, cf.
the use of DDT and its subsequent ban in the 1960’s due to its damaging
effects on health. But it is hard to think of technological drawbacks at
the aggregate level, capable of explaining the observed economic recessions.
Think of the large and long-lasting contraction of GDP in the US during
the Great Depression (27 % reduction between 1929 and 1933 according to
Romer (2001), p. 171). Sometimes the adherents of the RBC theory have
referred also to other kinds of supply shocks: changes in taxation, changes
in environmental legislation etc. (Hansen and Prescott (1993)). But sig-
nificant changes in taxation and regulation occur rather infrequently. Can
they be a convincing candidate for a stochastic process like (30.3)?

b. Lack of internal propagation. Given the available micro-econometric evi-
dence, the two mechanisms above seem far from capable at generating the
large fluctuations in output and employment that we observe. Both mecha-
nisms imply little amplification of the shocks. This means that to replicate
the stylized business cycle facts, standard RBC models must rely heavily
on exogenous shocks dynamics. Indeed, the intertemporal substitution in
labor supply as described above is not able to generate much amplification.
This is related to the fact that changes in real wages tend to be permanent
rather than purely transitory. Permanent wage increases tend to have little
or no effect on labor supply (the wealth effect tends to offset the substitu-
tion and income effects). Given the very minor temporary movements in the
real wage that occur at the empirical level, a high intertemporal elasticity
of substitution in labor supply is required to generate large fluctuations in
employment as observed in the data. But the empirical evidence suggests
that this requirement is not met. Micro-econometric studies of labor supply
indicate that this elasticity, at least for men, is quite small (in the range 0
to 1.5, typically below 1).10 Yet, Prescott (1986) and Plosser (1989) assume
it is around 4.

c. Correlation puzzles. Sometimes the sign, sometimes the size of correlation

10Handbook of Labor Economics, vol. 1, 1986, Table 1.22, last column. See also Hall (1999,
p. 1148 ff.).
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coeffi cients seem persevering wrong (see King and Rebelo, p. 957, 961).
As Akerlof (2003, p. 414) points out, there is a conflict between the em-
pirically observed pro-cyclical behavior of workers’quits11 and the theory’s
prediction that quits should increase in cyclical downturns (since variation
in employment is voluntary according to the theory). Considering a dozen
of OECD countries, Danthine and Donaldson (1993) find that the required
positive correlation between labor productivity and output is visible only
in data for the U.S. (and not strong), whereas the correlation is markedly
negative for the majority of the other countries.

d. Disregard of non-neutrality of money. According to many critics, the RBC
theory conflicts with the empirical evidence of the real effects of monetary
policy.

Numerous, and more and more imaginative, attempts at overcoming the crit-
icisms have been made. King and Rebelo (1999, p. 974-993) present some of
these. In particular, adherents of the RBC theory have looked for mechanisms
that may raise the size of labor supply elasticities at the aggregate level over and
above that at the individual level found in microeconometric studies.

30.6 Technological change as a randomwalk with
drift

Above we have considered technical change as a mean-reverting process with a
deterministic trend. This is the approach followed by Prescott (1986) and King
and Rebelo (1999). In contrast, Plosser (1989) assumes that technological change
is a random walk with drift. The representative firm has the production function

Yt = ZtF (Kt, Nt),

where Zt is a measure of the level of technology, and the production function F
has constant returns to scale. In the numerical simulation Plosser used a Cobb-
Douglas specification.
The total factor productivity, Zt, is an exogenous stochastic variable. In

contrast to the process for the logarithm of At in the Prescott version above,
where we had ξ < 1, we now assume that ξ = 1 so that the process assumed for
zt ≡ logZt is

zt = β + zt−1 + εt, (30.46)

11See Chapter 29.
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which is a random walk. This corresponds to our general conception of technical
knowledge as cumulative. If the deterministic term β 6= 0, the process is called
a random walk with drift. In the present setting we can interpret β as some
underlying deterministic component in the productivity trend, suggesting β >
0.12 A stochastic trend component, which can go both ways, is generated by the
noise term εt. Negative occurrences of this term need not represent technological
regress, but just a technology development below trend (which will occur when
−β ≤ εt < 0). In an open economy, adverse shocks to terms of trade is a candidate
interpretation.
Embedded in a Walrasian equilibrium framework the specification (30.46)

tends to generate too little fluctuation in employment and output. This is be-
cause, when shocks are permanent, large wealth effects offset the intertemporal
substitution in labor supply. On top of this comes limitations similar to points
a, c, and d in the previous section.

30.7 Concluding remarks

It is advisory to make a distinction between on the one hand RBC theory (based
on fully flexible prices and market clearing in an environment where productivity
shocks are the driving force behind the fluctuations) and on the other hand the
broader quantitative modeling framework known as DSGE models. A significant
amount of research on business cycle fluctuations has left the RBC theory, but
applies similar quantitative methods. This approach consists of an attempt at
building quantitative Dynamic Stochastic General Equilibrium (DSGE) models.
The economic contents of such a model can be new-classical (as with Lucas and
Prescott). Alternatively it can be more or less new-Keynesian, based on a com-
bination of imperfect competition and other market imperfections with nominal
and real price rigidities (see, e.g., Jeanne, 1998, Smets and Wouters, 2003 and
2007, and Danthine and Kurmann, 2004, Gali, 2008). There are many varieties
of these new-Keynesian models, some small and analytically oriented, some large
and simulation- and forecasting-oriented. We consider an example of the “small”
type in Chapter 32.
The aim of medium-run theory is to throw light on business cycle fluctuations

and to clarify what kinds of counter-cyclical economic policy, if any, may be
functional. This is probably the area within macroeconomics where there is most
disagreement − and has been so for a long time. Some illustrating quotations
12The growth rate in total factor productivity is (Zt − Zt−1) /Zt−1. From (30.46) we have

Et−1 (zt − zt−1) = β, and zt−zt−1 = logZt− logZt−1 ≈ (Zt − Zt−1) /Zt−1 by a 1. order Taylor
approximation of logZt about Zt−1. Hence, Et−1 (Zt − Zt−1) /Zt−1 ≈ β. In Plosser’s model all
technological change is represented by changes in Zt, i.e., in (30.2) Plosser has γ≡1.
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(TO BE UPDATED):

Indeed, if the economy did not display the business cycle phenomena,
there would be a puzzle. ... costly efforts at stabilization are likely to
be counterproductive. Economic fluctuations are optimal responses
to uncertainty in the rate of technological change (Prescott 1986).

My view is that real business cycle models of the type urged on us
by Prescott have nothing to do with the business cycle phenomena
observed in the United States or other capitalist economies. ... The
image of a big loose tent flapping in the wind comes to mind (Summers
1986).

30.8 Literature notes

The RBC theory was initiated by Finn E. Kydland and Edward C. Prescott
(1982), where a complicated time-to-build aspect was part of the model. A sim-
pler version of the RBC theory was given in Prescott (1986) where also the “eco-
nomic philosophy” behind the theory was proclaimed. The King and Rebelo
(1999) exposition followed here builds on Prescott’s 1986 version which has be-
come the prototype RBC model. Plosser’s version (Plosser 1989), briefly sketched
in Section 30.6, makes up an alternative regarding the modeling of the technology
shocks.
In dealing with the intertemporal decision problem of the household we ap-

plied the substitution method. More advanced approaches include the discrete
time Maximum Principle (see Chapter 8), the Lagrange method (see, e.g., King
and Rebelo, 1999), or Dynamic Programming (see, e.g., Ljungqvist and Sargent,
2004).
The empirical approach, calibration, is different from econometric estimation

and testing in the formal sense. Criteria for what constitutes a good fit are not
clear. The calibration method can be seen as a first check whether the model is
logically capable of matching main features of the data (say the first and second
moments of key variables). Calibration delivers a quantitative example of the
working of the model. It does not deliver an econometric test of the validity of
the model or of hypotheses based on the model. Whether it provides a useful
guide as to what aspects of the model should be revised is debated, see Hoover,
1995, pp. 24-44, Quah, 1995.

30.9 Exercises
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Chapter 31

Keynesian perspectives on
business cycles

Applying a Vector-Autoregression time series approach with two kinds of shocks
interpreted as demand and supply shocks, respectively, Blanchard and Quah
(1989) found on the basis of quarterly US data 1950-87 that demand shocks
explain more that two thirds of the fluctuations in output and even more of
the fluctuations in unemployment. Working with a somewhat larger system and
quarterly US data for 1965-1986, Blanchard (1989) summarized the results this
way:

(a) Demand shocks explain most of the short-run fluctuations in output.

(b) Positive demand shocks are associated with gradual increases in nominal
prices and wages.

(c) Supply shocks dominate the medium and the long run, and positive supply
shocks are associated with decreases in nominal prices and wages (relative
to trend).

Demand shocks may arise from shifts in the state of confidence, shifts in
exports, shifts in government spending, shifts in liquidity preference, a sudden
tightening of credit, and similar. Points (a), (b), and (c) lead to a Keynesian
interpretation of macroeconomic fluctuations. A prevalent interpretation of point
(a) is that nominal and relative price rigidities are present. Then, point (b)
supports the view that even though prices in the major sectors of the economy
respond only sluggishly, they do respond to cost push from changes in the level of
economic activity. Finally, point (c) says that durable influences on output come
from supply factors, such as the labor force, capital, and technological change.
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Characteristic of the Keynesian understanding of economic fluctuations is that
they emanate from “large”specific events, often connected to the financial sector.
Some of these events trigger virtuous circles is the economic system as a whole
while others trigger vicious circles. In continuation of the emphasis on nominal
price stickiness, a crucial element in this understanding is the refutation of Say’s
law. This is the “law”claiming that “supply creates its own demand”, cf. Chapter
19. At the microeconomic level, refutation of this doctrine leads to replacement
of the Walrasian budget constraint with the effective budget constraint, when
trade occurs outside Walrasian equilibrium.

This chapter is only a collection of notes.

31.1 Aminimalist Keynesian medium-run model
in discrete time

Notation:

y ≡ lnY,

m ≡ lnM,

p ≡ lnP,

πt ≡ pt − pt−1,

it = policy rate,

µ = state of confidence,

ω(µ) = interest spread,

xt and zt are exogenous stochastic variables.

Output market equilibrium in reduced form:

yt = αyet+1 − β(it + ω(µ)− πet+1) + xt, ω(µ) ≥ 0, ω′(µ) < 0, α > 0, β > 0,
(IS)

Phillips curve with both forward- and backward-looking elements + zt (Ph)

not clear how it should look. “Natural rate”or “natural range”?
Taylor rule (inflation targeting):

it = max
[
0, ı̂+ α1(yt − y∗) + α2(πet+1 − π̂)

]
, ı̂ > 0, α1 ≥ 0, α2 > 1.

(Taylor rule)

Expectation formation,
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not clear how it should look; “natural expectations”as in Fuster, Laibson, and

Mendel (JEP, 2010)?
Both centripetal and centrifugal mechanisms are in play.
The new element compared with Short Note 4 is that not only does expected

inflation play a role in the model. So does also expected future output. Thereby
a self-fulfilling expectations element may be present. As Wren-Lewis (Blog, 18/2-
2015) puts it:

“The largest component of aggregate demand is consumption, and
consumption depends on expected income, which can depend itself
on actual output, and therefore on aggregate demand. The macro-
economy is therefore set up to allow self-fulfilling multiple equilibria”.

Under monetarist monetary policy, the Taylor rule is replaced by money sup-
ply targeting:

mt − pt
{

= yt − ηit if it > 0,
≥ yt if it = 0.

η > 0, (LM)

31.2 Vicious and virtuous circles

As mentioned, a characteristic feature of the Keynesian approach to business
cycle fluctuations is the emphasis on the sometimes vicious, sometimes virtuous
circles that arise, due to production being in the short term demand-determined
rather than supply-determined. A vicious circle may for example come about in
the following way.
Suppose that during an economic boom a housing price bubble evolves. Sooner

or later the bubble bursts, collateral for bank loans loose value (the balance sheet
channel), defaults occur, confidence is shaken, credit is squeezed, and further
defaults occur.1 The financial crisis spills over to the goods market in the form
of an adverse demand disturbance leading to a contraction of production and
employment. The fired workers with less income buy fewer consumption goods
(in particular fewer durable consumption goods). The process tends to be self-
reinforcing in that the fear of being fired increases precautionary saving.
Thus seeing their demand curves continue the inward movement, firms cut

production further. The utilization rate of capital equipment falls and so does
average and marginal q. The fall in consumption is thus not offset by firms’invest-
ment being stimulated, rather the opposite. Firms’access to credit is cut down

1Below we elaborate on the terms in italics.
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further as the balance sheets deteriorate. An economic recession or depression
may develop if not offset by countercyclical monetary and/or fiscal policy.
There are several self-reinforcement mechanisms that bring these “circles”

forth, whether they are negative, as above, or positive. Below we list six examples
of such mechanisms. We describe them in their negative mode, that is, when they
lead to vicious circles. They could just as well, however, be described in their
positive mode as when they lead to virtuous circles and thereby a boom.

1. The spending multiplier (Kahn 1931, Keynes 1936). Recall that amultiplier
is the ratio of a change in an endogenous variable, here output or employ-
ment, to a change in an exogenous variable, for example an autonomous
part of private investment or government spending. A decrease in an au-
tonomous demand component leads to a decrease in production and income,
and this further reduces demand. The government spending multiplier is
larger in a depression, especially in a liquidity trap because there is no
financial crowding out. Households’and firms’precautionary saving (see
Section 30.4) aggravates the downturn.2

2. Destabilizing price flexibility (Keynes, Mundell, Tobin). Given there is some
nominal price and wage rigidity, more flexibility may be destabilizing. Sup-
pose there is an adverse shock to investor’s and firms’general long-term
confidence and that this leads to a downturn of investment and aggregate
demand, production, and employment. Inflation and expected inflation also
go down. In this scenario, is high price flexibility a good or a bad thing?
In fact under a passive (monetarist) monetary policy (the k percent rule),
high price elasticity (though less than 100%) may turn the incipient reces-
sion into a downward wage-price spiral rather than a transitory dip. This is
because opposing effects on aggregate demand are in play. On the one hand,
the fall in inflation increases real money supply and lowers the nominal rate
of interest, thereby stimulating aggregate demand. In an open economy net
exports are stimulated. On the other hand, the fall in expected inflation
raises the real rate of interest,

r = i+ ω − πe,

for a given short-term nominal rate of interest i (the policy rate) and a
given interest differential, ω ≥ 0, thereby reducing demand. Depending
on the circumstances this effect may be the strongest and lead to a self-
sustaining economic contraction. In particular this may happen, when the

2Formally, a multiplier is the ratio of a change in an endogenous variable, here output
or employment, to a change in an exogenous variable, for example autonomous government
spending.
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nominal rate of interest is already low and therefore near its floor, the zero
lower bound. Then the economy has got into a liquidity trap in the sense
that conventional expansionary monetary policy is no longer effective (see
Svensson 2003).3

Also under a countercyclical monetary policy, the economy may end up in
a liquidity trap. Even though a Taylor rule like (??) is generally considered
more stabilizing than a monetarist rule maintaining a constant growth rate
of the money supply, a Taylor rule does not preclude ending up in a liquidity
trap when a large adverse demand shock occurs. Thus the zero lower bound
on the nominal interest rate also implies a limit to the effectiveness of a
Taylor rule.

3. The balance sheet channel (Kiyotaki andMoore, 1997, Bernanke et al., 1999,
Eggertsson and Krugman, 2012). An adverse shock reduces the net worth of
credit-constrained borrowers (entrepreneurs and households), whose assets
serve as collateral for loans. If expected to persist, the reduced net worth
leads to a credit contraction. In need of liquidity some agents are forced
to sell illiquid assets at “fire sale”prices, thereby further reducing the net
worth of debtors. The reduced credit worthiness leads to less borrowing
and less capital investment and consumption next period. Thus aggregate
demand falls. The expectation of this worsening of future market conditions
reduces net worth today further.

4. The bank lending channel (Bernanke and Blinder, 1988, 1992). If an eco-
nomic downturn is on the way, banks may perceive that the riskiness of
loans has increased. A credit squeeze vis-a-vis other banks and the non-
bank public may result whereby the spread between the interest rate in the
money market and the interest rate that the ultimate borrowers must pay
is increased, cf. Chapter 24. This limits capital investment and spending
on durable consumption goods, thus reinforcing the economic downturn.

5. Coordination failures andmultiple equilibria. There are circumstances (e.g.,
“spillover complementarity”) where more than one general equilibrium is
possible. Universally held pessimistic expectations lead to prudent actions
that sum to a low-level outcome, thus confirming the pessimistic expecta-
tions. Had all agents held optimistic expectations they would have made

3Nominal interest rates cannot fall below zero, since potential lenders would then prefer
holding cash rather than assets paying a negative interest rate.
The scenario described may take the even more pregnant form of a deflationary spiral leading

to ever-widening financial crisis. The Great Depression in the US in the 1930’s is a conspicuous
example and the problems in Japan since 1991 also have affi nity with this.
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confident upbeat decisions, aggregate demand would boom and confirm the
expectations that brought it about in the first place (see Heller 1986, Kiy-
otaki 1988, Xiao, 2004).

6. Hysteresis. The described demand-side dynamics may interact with the sup-
ply side. This occurs when the initial creation of unemployment, through
the de-qualification effect on the unemployed or through insider-outsider
wage-setting behavior, turns a spell of unemployment into long-term unem-
ployment. Such a phenomenon is called hysteresis. The technical definition
is that hysteresis in unemployment occurs, if unemployment in the medium
run depends positively on unemployment in the short run.4 This has im-
plications for the trade-off between short-run benefits of a deficit-financed
expansionary fiscal policy in a liquidity trap and long-run costs in the form
of fiscal sustainability problems arising from a higher government debt.

One factor contributing to the vicious circles under the headings 1 and 5 is
the phenomenon of precautionary saving to which we now turn.

31.3 Precautionary saving

In the first years after the crash at the New York stock exchange in 1929 a sharp
fall in private consumption and investment occurred. Many economists argue that
this should be seen in the light of the fact that the consumption/saving decision
is sensitive to increased uncertainty.5 Similarly, the international financial crisis,
triggered by the subprime mortgage crisis in the US in 2007, created a massive
worldwide economic recession 2008- (the “Great Recession”). In this downturn
precautionary saving is again likely to have played an important role. If people
feel more uncertain about what is going to happen, they tend to be more prudent
and increase their saving in order to have a “buffer-stock”. But this may aggravate
the negative spiral of falling aggregate demand and production.
To clarify the issue, we first consider a simple model of a household’s con-

sumption/saving decision under uncertainty. Second, we discuss the possible
macroeconomic implications and relate the discussion to the different business
cycle “schools”. Indeed, whether one includes precautionary saving among the
factors that can reinforce a business-cycle downturn depends very much on the
basic theory of business cycles (new-classical or Keynesian, supply-side economics
or demand-side economics).

4See Blanchard (1990). A corresponding virtuous hysteresis can arise through the qualifi-
cation or learning-by-doing effect of being employed. More generally on hysteresis, see Fiorillo
(1999).

5Romer (1990) provides an analysis.
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31.3.1 Consumption/saving under different forms of un-
certainty

Consider a given household facing uncertainty about future labor income and
capital income. For simplicity, assume the household supplies one unit of labor
inelastically each period. The household never knows for sure whether it will be
able to sell that amount of labor in the next period. As seen from period 0, the
decision problem is:

maxE0U0 = E0[

T−1∑
t=0

u(ct)(1 + ρ)−t] s.t. (31.1)

ct ≥ 0, (31.2)

at+1 = (1 + rt)at + wtnt − ct, a0 given, (31.3)

aT ≥ 0. (31.4)

where u′ > 0 and u′′ < 0 (so there is risk aversion). The rate of time preference
w.r.t. utility is ρ > −1 (usually ρ > 0 seems realistic, but here the sign of ρ is
not important). We think of “period t”as the time interval [t, t+ 1) . Hence, the
last period within the planning horizon T is period T −1. Real financial wealth is
denoted at and wt (> 0) is the real wage, whereas nt is the exogenous amount of
employment offered to the household by the labor market in period t, 0 ≤ nt ≤ 1.6

The (net) real rate of return on financial wealth is called rt (> −1). The symbol
E0 stands for the expectation operator, conditional on the information available
in period 0. This information includes knowledge of all relevant variables up to
and including period 0. There is uncertainty about future values of r, w, and
n, but the household knows the stochastic processes that these variables follow.7

The risk associated with the uncertainty is assumed to be not insurable.
There are two endogenous variables, the control variable ct and the state

variable at. The constraint (31.2) defines the “control region”, whereas (31.3)
is the dynamic budget identity, and (31.4) is the solvency condition, given the
finite planning horizon T . The decision as seen from period 0 is to choose a
concrete action c0 and a set of contingent plans c(t, at) about what to do in the
future periods. This decision is made so that expected discounted utility, E0U0,
is maximized. We call the function c(t, at) a contingent plan because it tells
what consumption will be in period t, depending on the realization of the as yet
unknown variables up to period t, including the state variable at. To choose c0 in

6More generally,wtnt could be replaced by yt, interpreted as any kind of exogenous income,
say an uncertain pension.

7Or at least the household has beliefs about these processes and calculates subjective con-
ditional probability distributions on this basis.
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a rational way, the household must take into account the whole future, including
what the optimal conditional actions in the future will be.
Letting period t be an arbitrary period, i.e., t ∈ {0, 1, 2, ..., T − 1} , we rewrite

U0 in the following way

U0 =
t−1∑
s=0

u(cs)(1 + ρ)−s +
T−1∑
s=t

u(cs)(1 + ρ)−s

=
t−1∑
s=0

u(cs)(1 + ρ)−s + (1 + ρ)−t
T−1∑
s=t

u(cs)(1 + ρ)−(s−t)

≡
t−1∑
s=0

u(cs)(1 + ρ)−s + (1 + ρ)−tUt.

When deciding the “action”c0, the household knows that in every new period,
it has to solve the remainder of the problem in a similar way, given the information
revealed up to and including that period. As seen from period t, the objective
function is

EtUt = u(ct) + (1 + ρ)−1Et[u(ct+1) + u(ct+2)(1 + ρ)−1 + ...] (31.5)

To solve the problem as seen from period t we will use the substitution method.
First, from (31.3) we have

ct = (1 + rt)at + wtnt − at+1, and (31.6)

ct+1 = (1 + rt+1)at+1 + wt+1nt+1 − at+2.

Substituting this into (31.5), the problem is reduced to an essentially uncon-
strained maximization problem, namely one of maximizing the function EtUt
w.r.t. at+1, at+2, ..., aT (thereby indirectly choosing ct, ct+1, .., cT−1). Hence, we
first take the partial derivative w.r.t. at+1 in (31.5) and set it equal to 0:

∂EtUt
∂at+1

= u′(ct) · (−1) + (1 + ρ)−1Et[u
′(ct+1)(1 + rt+1)] = 0.

Reordering gives the stochastic Euler equation,

u′(ct) = (1 + ρ)−1Et[u
′(ct+1)(1 + rt+1)], t = 0, 1, 2, ..., T − 2. (31.7)

This first-order condition describe the trade-off between consumption in pe-
riod t and period t+ 1, as seen from period t. The optimal plan must satisfy that
the current utility loss by decreasing consumption by one unit is equal to the dis-
counted expected utility gain next period by having 1 + rt+1 extra units available
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Figure 31.1: Graph of u(c) (upper panel) and graph of u′(c) (lower panel). The case
u′′′(c) > 0.

for consumption, namely the gross return on saving one more unit. Considering
∂EtUt/∂at+i for i = 2, 3, ..., T − t − 2, we get similar first-order conditions, in
expected value, for each i.

In the final period, given the solvency condition aT ≥ 0, the decision must
be to choose aT = 0 (the transversality condition). The alternative, aT > 0,
could always be improved upon by increasing cT−1 without violating the solvency
condition. So, the optimal cT−1 satisfies

cT−1 = (1 + rT−1)aT−1 + wT−1nT−1. (31.8)

First-order conditions only tell us about relative levels of consumption over
time, however. The absolute level of consumption is determined by the condition
that the current level of consumption, ct, must be the highest possible consistent
with: a) (31.7) for the given t; b) for t replaced by t+i, i = 1, 2, ..., T−t−2, (31.7)
in expected value as seen from period t, i.e., Etu′(ct+i) = (1+ρ)−1Et[u

′(ct+i+1)(1+
rt+i+1)]; and c) (31.8) in expected value as seen from period t.

We will first consider the case where there is no uncertainty about the future
real interest rates, only about future labor income.
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Figure 31.2: Graph of u′(c) when u(c) = ln c (case 1) and when u(c) = ηc− 1
2c

2 (case
2).

Risk-free rate of return

Ruling out uncertainty about the future real interest rates, (31.7) reduces to

u′ (ct) =
1 + rt+1

1 + ρ
Et [u′ (ct+1)] , t = 0, 1, 2, ......., T − 2. (31.9)

It is natural to assume that higher wealth is associated with lower absolute
risk aversion, −u′′/u′. In that case, it can be shown that marginal utility u′
is a strictly convex function of c, that is, (u′)′′ > 0.8 But this implies that
increased uncertainty in the form of a mean-preserving spread will lead to lower
consumption “today” (more saving) than would otherwise be the case. This is
what precautionary saving is about.
Fig. 30.1 gives an illustration. We can choose any utility function with (u′)′′ >

0. The often used logarithmic utility function is an example since u(c) = ln c gives
u′(c) = c−1, u′′(c) = −c−2 and u′′′(c) = 2c−3 > 0. In the figure it is understood
that T = 3 (so that the last period is period 2) and that we consider the decision
problem as seen from period 1. There is uncertainty about labor income in period
2. It can be because the real wage is unknown or because employment is unknown

8See Section 31.4 below.
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or both. Suppose, for simplicity, that there are only two possible outcomes for
labor income yt (≡ wtnt), say ya and yb, each with probability 1

2
. That is, given

a2, there are, in view of (31.8), two possible outcomes for c2:

c2 =

{
ca = (1 + r2)a2 + ya, with probability = 1

2

cb = (1 + r2)a2 + yb with probability = 1
2
.

(31.10)

Mean consumption will be c̄ = (1 + r2)a2 + ȳ, where ȳ = 1
2
(ya + yb).

Suppose c1 is chosen optimally. Then, with t = 1 (31.9) is satisfied, and a2 is
given, by (31.3) with t = 1. The lower panel of Fig. 30.1 shows graphically, how
E1u

′(c2) is determined, given this a2. In case of higher uncertainty in the form of
a mean-preserving spread, i.e., a higher spread, |yb − ya|, but the same mean ȳ,
the two possible outcomes for c2 are c∗a and c

∗
b , if a2 is unchanged and, hence, c̄

unchanged. Then, the expected marginal utility of consumption becomes greater
than before, as indicated by E1u

′(c∗2) in the figure. In order that (31.9) can still
be satisfied, a lower value than before of c1 must be chosen (since u′′ < 0), hence,
more saving.
True enough, this increases a2 so that the expected value of c2 is in fact larger

than c̄ on the figure. Hereby the new E1u
′(c2) ends up somewhere between the

old E1u
′(c2) and E1u

′(c∗2) in the figure. The conclusion is still that the new c1

has to be lower than the original c1 in order that the first-order condition (31.9)
can be satisfied in the new situation.
If instead the increased uncertainty pertains to period 0, the effect is again to

decrease current consumption to provide for a buffer.
This phenomenon is called precautionary saving. To be more precise, we de-

fine precautionary saving as the increase in saving resulting from increased uncer-
tainty. In the above example, increased uncertainty (a mean-preserving spread)
implied lower consumption “today”, that is, precautionary saving. Consumption
is postponed in order to have a buffer-stock. The intuition is that the household
wants to be prepared for meeting bad luck, because it wants to avoid the risk of
having to end up starving (“save for the rainy day”).
Note that the mathematical background for the phenomenon is the strict

convexity of marginal utility, i.e., the assumption that (u′)′′ > 0. This implies
E(u′(c)) > u′(Ec), in view of Jensen’s inequality (see Appendix). Case 1 in Fig.
30.2 shows the example u(c) = ln c, i.e., u′(c) = c−1.
If instead, (u′)′′ = 0, as with a quadratic utility function, then the graph for

u′(c2) is a straight line (cf. case 2 in Fig. 30.2), and then precautionary saving
can not occur. Indeed, a quadratic utility function can be written

u(c) =

{
ηc− 1

2
c2 if 0 ≤ c ≤ η, η > 0

1
2
η2 if c > η.

. (31.11)
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We have u′(c) = η − c (a negatively sloped line), if c < η. At c = η, satiation
occurs, and u′(c) = 0 for c > η. If we want the point of satiation to never be
realized in practice, we may assume that η is “large”.
The case of quadratic utility is an example of what is known as certainty

equivalence. We say that certainty equivalence is present, if the decision under
uncertainty follows the same rule as under certainty, only with actual values of the
determining variables replaced by the expected values. Compare a situation where
the relevant exogenous variables take on their expected values with probability
one (certainty) with a situation where they do that with a probability less than
one (uncertainty). If the decision is the same in the two situations, certainty
equivalence is present. So, when there is certainty equivalence, the decision under
uncertainty is independent of the degree of uncertainty, measured, say, by the
variance of the relevant conditioning variable(s) for a fixed mean. Quadratic
utility implies certainty equivalence. Yet, since (31.11) gives u′′ = −1 < 0, a
household with quadratic utility is risk averse. Hence, for precautionary saving
to arise, more than risk aversion is needed.
What is needed for precautionary saving to occur is u′′′ > 0, i.e., “prudence”.

Just as the degree of (absolute) risk aversion is measured by −u′′/u′ (i.e., the
degree of concavity of the utility function), the degree of (absolute) prudence
is measured by −u′′′/u′′ (i.e., the degree of convexity of marginal utility). The
degree of risk aversion is important for the size of the required compensation for
uncertainty, whereas the degree of prudence is important for how the household’s
saving behavior is affected by uncertainty.

Uncertain rate of return

We have just argued that strictly convex marginal utility is a necessary condition
for precautionary saving. But it is not a suffi cient condition. This is so because
there may be uncertainty not only about future labor income, but also about the
rate of return on saving.
Consider the case where, as seen from period t, rt+1 is unknown. Then the

relevant first-order condition is (31.7), not (31.9). Now, at least at the theoretical
level, the tendency for precautionary saving to arise may be dampened or even
turned into its opposite by an offsetting factor. For simplicity, assume first that
there is no uncertainty associated with future labor income so that the only
uncertainty is about the rate of return, rt+1. In this case it can be shown that
there is positive precautionary saving if the relative risk aversion, −cu′′/u′, is
larger than 1 (“it is good to have a buffer in case of bad luck”) and negative
precautionary saving (a mean-preserving spread of the ex ante rate of return
reduces saving) if the relative risk aversion is less than 1 (“get while the getting
is good”).
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It is generally believed that the empirically relevant assumption from a macro-
economic point of view is that −cu′′/u′ > 1. Thus, increased uncertainty about
the rate of return should lead to more saving. The resulting precautionary saving
then adds to that arising from increased uncertainty about future labor income.

31.3.2 Precautionary saving in a macroeconomic perspec-
tive

Simple calculations as well as empirical investigations (for references, see Romer
2001, p. 357) indicate that precautionary saving is not only a theoretical pos-
sibility, but can be quantitatively important. A sudden increase in perceived
uncertainty seems capable of creating a sizeable fall in consumption expenditure
(in particular expenditure on durable consumption goods) and thereby in ag-
gregate demand. According to a study by Christina Romer (1990) this played
a major role for the economic downturn in the US after the crash at the stock
market in 1929 (see also Blanchard, 2003, p. 471 ff.).

Note that the conception of precautionary saving as an important business
cycle force does not fit equally well in all business cycle theories. In standard new-
classical theories (since the 1980s the RBC theory) a lower propensity to consume
is immediately and automatically compensated by higher investment demand and
perhaps a larger labor supply and employment in the economy. According to
the RBC model from the previous chapter, aggregate demand continues to be
suffi cient to absorb output at full capacity utilization. Higher uncertainty just
leads to a change in the composition of demand, a manifestation of Say’s law.

According to many empiricists, this story is contradicted by the data. Less
consumption spending seems far form being automatically offset by higher in-
vestment spending. Instead, vicious and virtuous circles are emphasized, these
phenomena arising from production being in the short run demand-determined
rather than supply-determined. An adverse demand shock, triggered by a burst-
ing housing market bubble say, will, through precautionary saving, lead to a
contraction of demand and therefore a downturn of production.

Also firms’behavior may in an economic crisis have aspects of precautionary
financial saving. A deep crisis generates a lot of uncertainty: firms are unsure
about what has happened and no one knows what actions to choose. The natural
thing to do is to pause and wait until the situation becomes clearer. This entails
a cutback in the plans for further purchase of investment goods. So on top of
households’precautionary saving we have prudent investment behavior by the
firms.
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31.4 On the distinction between risk aversion
and prudence*

We end this chapter with a more general account of basic concepts from the
theory of decisions under uncertainty, including the concept of prudence. The
aim is to clarify the distinction between the degree of risk aversion and the degree
of prudence. We relate this distinction to commonly used utility functions such
as the CARA, CRRA, and quadratic utility functions.

31.4.1 Risk aversion and risk premium

Let c be consumption and let E be the expectational operator. Consider a von
Neumann-Morgenstern utility index U = E[u(c)] where u is a twice continuously
differentiable (sub-) utility function. Assume u′ > 0. If u′′ < 0, then the individ-
ual in question is said to be risk averse. Let ARA(c) be the degree of Absolute
Risk Aversion at consumption level c, i.e.,

ARA(c) ≡ −u
′′ (c)

u′ (c)
.

For a risk-averse individual, this measure is a positive number.9 As an example,
suppose the utility function is

CARA: u(c) = −α−1e−αc,

where α is a positive constant. For this function, ARA(c) = α > 0, a constant
(CARA stands for Constant Absolute Risk Aversion).
The economic significance of the ARA measure is that it is approximately

proportional to the (required) risk premium (to be defined below). Let ` denote
the “lottery” that the individual confronts, “lottery” in the sense of a random
draw from the given probability distribution for c. For a risk-averse individual
u′′ < 0 (i.e., u(c) is a strictly concave function) and therefore

E[u(c)] < u(Ec)

by Jensen’s inequality. The certainty equivalent for the lottery ` is the number
c∗ satisfying

E[u(c)] = u(c∗). (31.12)

In words, the certainty equivalent c∗ is that certain consumption level which the
individual is just willing to exchange for the lottery `.

9The measure ARA(c) is unaffected by an increasing linear transformation of u.
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The risk premium for the lottery ` is defined as the number π satisfying

E(c)− π = c∗. (31.13)

In words, the risk premium is the decrease in expected consumption that the
individual is just willing to accept to get rid of the uncertainty and obtain a
safe consumption level. Or, since π = E(c) − c∗, we may look at the matter
from the opposite angle and define the risk premium as the increase in expected
consumption that the individual requires to just accept an exchange of a safe
consumption level c∗ for the lottery `.
Let c̄ ≡ Ec, i.e., c = c̄ + ε, where ε is white noise. Now, (31.12) and (31.13)

imply
E[u(c)] = u[E(c)− π] = u(c̄− π). (31.14)

From this relation we can find an approximate value of π. As to the left-hand-side
of (31.14), a second-order Taylor approximation of u(c) gives

u(c) ≈ u(c̄) + u′(c̄)ε+
1

2
u′′(c̄)ε2 ⇒

E[u(c)] ≈ u(c̄) + 0 +
1

2
u′′(c̄)σ2

ε, (31.15)

where σ2
ε = V ar(c) = V ar(ε). As to the RHS of (31.14), a first-order Taylor

approximation gives

u(c̄− π) ≈ u(c̄) + u′(c̄)(−π) = u(c̄)− πu′(c̄).

Inserting this and (31.15) into (31.14) gives

u(c̄) +
1

2
u′′(c̄)σ2

ε ≈ u(c̄)− πu′(c̄) ⇒

π ≈ −1

2
σ2
ε

u′′ (c̄)

u′(c̄)
=

1

2
σ2
εARA(c̄) =

1

2
σ2
εARA(Ec).

Hence, ARA evaluated at the consumption level E(c) is approximately propor-
tional to the risk premium.
It seems natural to suppose that as a individual becomes richer - higher E(c) -

she cares less and less about the risks she takes. This would say that π′(E(c)) < 0,
i.e., π decreases - hence ARA decreases - as E(c) increases. Therefore, the CARA
utility function, defined above, does not seem very realistic. But CARA is just one
member of a large family of convenient and more or less realistic utility functions
that is called the HARA family.
The HARA family of utility functions is important for at least two reasons.10

First, if labor income is “diversifiable” (so that the individual can sell shares

10The name HARA stands for Hyperbolic Absolute Risk Aversion.
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against future labor income - which is not very realistic, it must be admitted),
then it is possible to derive an explicit solution to standard optimum consump-
tion and portfolio problems (as formulated in, e.g., Blanchard and Fischer, 1989,
p. 280), if the utility function belongs to the HARA family. Second, the HARA
family is the only class of concave utility functions which imply that the con-
sumption function and the portfolio selection function become linear in financial
wealth. The HARA family as a whole is described mathematically in Appendix
B.
Here we shall just meet some prominent members of the family:

Quadratic: u(c) = ηc− 1

2
c2, 0 ≤ c < η, η “large”. (31.16)

CARA (or the exponential utility function): u(c) = −α−1e−αc, α > 0. (31.17)

CRRA with parameter θ > 0: u(c) =

{
c1−θ−1

1−θ , if θ 6= 1,

ln c if θ = 1,
(31.18)

where CRRA is an abbreviation for

31.4.2 The degree of prudence

The degree of absolute prudence is defined as the ratio

−u′′′/u′′.
As we saw, quadratic utility implies that marginal utility is linear in c (i.e.,
u′′′ = 0). Hence, in this case the degree of prudence is zero, and the phenomenon
of precautionary saving does not arise. But still the quadratic function has u′′ =
−1 < 0, and therefore indicates risk aversion.
The CARA function features the desirable properties of risk aversion (u′′ < 0)

and prudence −u′′′/u′′ > 0. On the other hand, the CARA function implies that
the required risk premium is constant (independent of wealth), which is probably
not a realistic property. The CRRA function, however, has all three desirable
properties (so there is no conflict between them).

CLAIM 1. Given u′ > 0, u′′ < 0, and assuming u to be three times continuously
differentiable, non-increasing ARA implies u′′′ > 0.

Proof. From the definition of ARA, we have

dARA

dc
= −u

′u′′′ − (u′′)2

(u′)2 = (
u′′

u′
)2 − u′′′

u′
(31.19)

=
u′′

u′

(
u′′

u′
− u′′′

u′′

)
= ARA(ARA+

u′′′

u′′
) ≤ 0

⇒ u′′′ > 0
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since ARA > 0, and u′′ < 0. �
We saw above that when the individual faces a larger future income risk, then,

if u′′′ > 0, she has a tendency to consume less in the current period. In other
words, precautionary saving tends to occur. The degree of absolute prudence,
the ratio (−u′′′/u′′), can be seen as a measure of the “degree of convexity” of
marginal utility u′(c).
The CRRA class of utility functions is characterized by the fact that the

measure of relative risk aversion

RRA ≡ −cu
′′

u′
≡ c · ARA = θ

is constant (which explains the name CRRA for Constant Relative Risk Aversion).
Obviously, this function has the property that ARA (= θ/c) is decreasing in c (as
is desirable). Further, u′′′ = (θ + 1)θc−θ−1 > 0 (as expected from Claim 1).
The members of the CRRA class have the (sometimes inconvenient) property

that when entering an additively time separable intertemporal utility index, the
intertemporal elasticity of substitution becomes equal to 1/θ and hence cannot
vary without implying variation in the relative risk aversion measure RRA in the
opposite way and in the same proportion. Unsatisfied with this property, ....TO
BE CONTINUED
The HARA family is a much richer class, including the four standard cases

shown in (31.16) - (31.18) above. By suitable adjustment of the parameters one
can get a utility function with decreasing, increasing, or constant absolute or
relative risk aversion. As an example, the general log utility function

u(c) = ln(η + c) (31.20)

has decreasing, constant, or increasing RRA as η is negative, zero, or positive,
respectively. Indeed, (31.20) has RRA = c/(η + c). The case η < 0 may be
interpreted in terms of a subsistence minimum, the subsistence minimum being
|η|.11

31.5 Literature notes

(incomplete)
Paul Krugman’s The Return to Depression Economics (Krugman 2000) re-

flects on the need for macroeconomic theory to include depression economics as
one of its concerns.
11We have limc→−η ln(η + c) = −∞.
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The self-fulfilling prophesy investment theory by Kiyotaki (1988) and the in-
ventory investment theory by Blinder ( ) are examples of business cycle theory
emphasizing firms’investment.
Merton (1975).

31.6 Appendix

Jensen’s inequality

Jensen’s inequality is the proposition that when X is a stochastic variable, and
the function f is convex, then

Ef(X) ≥ f(EX)

with strict inequality, if f is strictly convex (unless X with probability 1 is equal
to a constant). It follows that if f is concave (i.e., −f is convex), then

Ef(X) ≤ f(EX)

with strict inequality, if f is strictly concave (unless X with probability 1 is equal
to a constant).

The HARA family of utility functions

Let c ≥ 0 be consumption, and u(c), u′ > 0, u′′ < 0, be a utility function
entering a von Neumann-Morgenstern utility index. The measure of absolute risk
tolerance, ART, is defined as the inverse of the measure of absolute risk aversion,
ARA, that is

ART (c) ≡ 1

ARA (c)
≡ − u

′ (c)

u′′ (c)
> 0.

A HARA utility function is defined as a utility function u(c) with linear absolute
risk tolerance, i.e., the requirement is that

ART (c) = η + βc, (31.21)

where η and β are constant parameters12. Hence, we get the HARA family of
utility functions by solving the second order differential equation

u′′

u′
= − 1

η + βc
(31.22)

12The HARA definition can be generalized to include cases where η and β are functions of
time.
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defined on the domain
η + βc > 0. (31.23)

Depending on β, the solution is

u (c) =


(η+βc)1−1/β

β−1
+ k, if β 6= 0, β 6= 1

ln (η + c) , if β = 1,
−ηe−c/η, if β = 0,

(31.24)

where k is an arbitrary constant (which can be chosen according to what is
convenient).
(31.24) is the HARA family of utility functions. This family includes widely

used functional forms as special cases: quadratic utility, the CRRA function,
the log function, and the CARA function. Each of these, however, are often
written in a slightly more convenient way. It is always allowed to add a constant
to the function u(c) and multiply by a positive constant (any increasing linear
transformation of u(c) will always represent the same von Neumann-Morgenstern
preferences).
For example, when β = −1, η > 0, and k = −η2/2, (31.24) gives

the quadratic case: u(c) = ηc− 1

2
c2, 0 ≤ c < η.

When β = 0, hence η > 0 by (31.23), (31.24) gives

the CARA or the exponential case: u(c) = −α−1e−αc, α ≡ 1/η > 0.

Letting θ ≡ 1/β, where β > 0, β 6= 1, η = 0, and k = −β−θ/(1− θ), (31.24) gives
(multiply through by βθ)

the CRRA case: u(c) =
c1−θ − 1

1− θ , θ > 0, θ 6= 1.

When β = 1 and η = 0, (31.24) gives

the (standard) logarithmic case: u(c) = ln c.

As seen by (31.21), the sign of β determines whether risk tolerance is increasing
(β > 0), constant (β = 0), or decreasing (β < 0). Increasing risk tolerance -
decreasing absolute risk aversion - is considered as the most realistic case. Hence,
the CARA utility function (which has β = 0) should be interpreted as only a
theoretical benchmark case which is sometimes mathematically convenient, but
probably not realistic. The quadratic utility function is even less plausible (since
it has β negative and, in contrast to the other standard functions, it has u′′′ ≡ 0).
Further unfinished notes: HARA ⇒ Engel curves are linear ⇒ Gorman’s

aggregation criteria are satisfied (see Basetto and Benhabib, RED 9, 211-23,
2006, and Pollak, Additive utility functions and linear Engel curves, RES, 38 (4),
401-14.
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mean-preserving spread
degree of risk aversion
risk premium
degree of prudence
precautionary saving
certainty equivalence
vicious circles
virtuous circles

31.7 Exercises
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06.10.2015. Christian Groth

A glimpse of theory of
the “level of interest rates”

This short note provides a brief sketch of what macroeconomics says about the general

level around which rates of return fluctuate. We also give a “broad”summary of different

circumstances that give rise to differences in rates of return on different assets.

In non-monetary models without uncertainty there is in equilibrium only one rate of

return, r. If in addition there is a) perfect competition in all markets, b) the consumption

good is physically indistinguishable from the capital good, and c) there are no capital

adjustment costs, as in simple neoclassical models (like the Diamond OLG model and

the Ramsey model), then the equilibrium real interest rate is at any time equal to the

current net marginal productivity of capital evaluated at full employment (r = ∂Y/∂K−δ
in standard notation). Moreover, under conditions ensuring “well-behavedness”of these

models, they predict that in the absence of disturbances, the technology-corrected capital-

labor ratio, and thereby the marginal productivity of capital, adjusts over time to some

long-run level (on which more below).

Different rates of return In simple neoclassical models with perfect competition and

no uncertainty, the equilibrium short-term real interest rate is at any time equal to the

net marginal productivity of capital (r = ∂Y/∂K − δ). In turn the marginal productivity
of capital adjusts over time, via changes in the capital intensity, to some long-run level

(on this more below). As we saw in Chapter 14, existence of convex capital installation

costs loosens the link between r and ∂Y/∂K. The convex adjustment costs create a

wedge between the price of investment goods and the market value of the marginal unit

of installed capital. Besides the marginal productivity of capital, the possible capital gain

in the market value of installed capital as well as the effect of the marginal unit of installed

capital on future installation costs enter as co-determinants of the current rate of return

on capital.

1



Arithmetic
average

Standard
deviation

Geometric
average

Small Company Stocks 17,3 33,2 12,5
Large Company Stocks 12,7 20,2 10,7
LongTerm Corporate Bonds 6,1 8,6 5,8
LongTerm Government Bonds 5,7 9,4 5,3
IntermediateTerm Government Bonds 5,5 5,7 5,3
U.S. Treasury Bills 3,9 3,2 3,8
Cash 0,0 0,0 0,0
Inflation rate 3,1 4,4 3,1

Small Company Stocks 13,8 32,6 9,2
Large Company Stocks 9,4 20,4 7,4
LongTerm Corporate Bonds 3,1 9,9 2,6
LongTerm Government Bonds 2,7 10,6 2,2
IntermediateTerm Government Bonds 2,5 7,0 2,2
U.S. Treasury Bills 0,8 4,1 0,7
Cash 2,9 4,2 3,0

 Percent 

Real values

Nominal values

Table 1: Average annual rates of return on a range of U.S. asset portfolios, 1926-2001.
Source: Stocks, Bonds, Bills, and Inflation: Yearbook 2002, Valuation Edition. Ibbotson
Associates, Inc.

When imperfect competition in the output markets rules, prices are typically set as a

mark-up on marginal cost. This implies a wedge between the net marginal productivity

of capital and capital costs. And when uncertainty and limited opportunities for risk

diversification are added to the model, a wide spectrum of expected rates of return on

different financial assets and expected marginal productivities of capital in different pro-

duction sectors arise, depending on the risk profiles of the different assets and production

sectors. On top of this comes the presence of taxation which may complicate the picture

because of different tax rates on different asset returns.

Nominal and real average annual rates of return on a range of U.S. asset portfolios for

the period 1926—2001 are reported in Table 1. By a portfolio of n assets, i = 1, 2, . . . , n

is meant a “basket”, (v1, v2, . . . , vn), of the n assets in value terms, that is, vi = pixi is

the value of the investment in asset i, the price of which is denoted pi and the quantity

of which is denoted xi. The total investment in the basket is V =
∑n

i=1 vi. If Ri denotes

the gross rate of return on asset i, the overall gross rate of return on the portfolio is

R =

∑n
i viRi

V
=

n∑
i=1

wiRi,

2



where wi ≡ vi/V is the weight or fraction of asset i in the portfolio. Defining Ri ≡ 1+ ri,
where ri is the net rate of return on asset i, the net rate of return on the portfolio can be

written

r = R− 1 =
n∑
i=1

wi(1 + ri)− 1 =
n∑
i=1

wi +

n∑
i=1

wiri − 1 =
n∑
i=1

wiri.

The net rate of return is often just called “the rate of return”.

In Table 1 we see that the portfolio consisting of small company stocks throughout the

period 1926-2001 had an average annual real rate of return of 13.8 per cent (the arithmetic

average) or 9.2 per cent (the geometric average). This is more than the annual rate of

return of any of the other considered portfolios. Small company stocks are also seen to

be the most volatile. The standard deviation of the annual real rate of return of the

portfolio of small company stocks is almost eight times higher than that of the portfolio

of U.S. Treasury bills (government zero coupon bonds with 30 days to maturity), with

an average annual real return of only 0.8 per cent (arithmetic average) or 0.7 per cent

(geometric average) throughout the period. The displayed positive relation between high

returns and high volatility is not without exceptions, however. The portfolio of long-term

corporate bonds has performed better than the portfolio of long-term government bonds,

although they have been slightly less volatile as here measured. The data is historical and

expectations are not always met. Moreover, risk depends significantly on the covariance

of asset returns within the total set of assets and specifically on the correlation of asset

returns with the business cycle, a feature that can not be read off from Table 1. Share

prices, for instance, are very sensitive to business cycle fluctuations.

The need for means of payment − money − is a further complicating factor. That is,
besides dissimilarities in risk and expected return across different assets, also dissimilar-

ities in their degree of liquidity are important, not least in times of financial crisis. The

expected real rate of return on cash holding is minus the expected rate of inflation and

is therefore negative in an economy with inflation, cf. the last row in Table 1. When

agents nevertheless hold cash in their portfolios, it is because the low rate of return is

compensated by the liquidity services of money. In the Sidrauski model of Chapter 17 this

is modeled in a simple way, albeit ad hoc, by including real money holdings directly as an

argument in the utility function. Another dimension along which the presence of money

interferes with returns is through inflation. Real assets, like physical capital, land, houses,

etc. are better protected against fluctuating inflation than are nominally denominated

bonds (and money of course).
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Without claiming too much we can say that investors facing such a spectrum of rates

of return choose a composition of assets so as to balance the need for liquidity, the wish

for a high expected return, and the wish for low risk. Finance theory teaches us that

adjusted for differences in risk and liquidity, asset returns tend to be the same. This

raises the question: at what level? This is where macroeconomics − as an empirically
oriented theory about the economy as a whole − comes in.

Macroeconomic theory of the “average rate of return” The point of departure

is that market forces by and large may be thought of as anchoring the rate of return of

an average portfolio of interest-bearing assets to the net marginal productivity of capital

in an aggregate production function, assuming a closed economy. Some popular phrases

are:

• the net marginal productivity of capital acts as a centre of gravitation for the spec-
trum of asset returns; and

• movements of the rates of return are in the long run held in check by the net marginal
productivity of capital.

Though such phrases seem to convey the right flavour, in themselves they are not

very informative. The net marginal productivity of capital is not a given, but an endoge-

nous variable which, via changes in the capital intensity, adjusts through time to more

fundamental factors in the economy.

The different macroeconomic models we have encountered in previous chapters bring

to mind different presumptions about what these fundamental factors are.

1. Solow’s growth model The Solow growth model leads to the fundamental differ-

ential equation (standard notation)

·
k̃t = sf(k̃t)− (δ + g + n)k̃t,

where s is an exogenous and constant aggregate saving-income ratio, 0 < s < 1. In steady

state

r∗ = f ′(k̃∗)− δ, (1)
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where k̃∗ is the unique steady state value of the (effective) capital intensity, k̃, satisfying

sf(k̃∗) = (δ + g + n)k̃∗. (2)

In society there is a debate and a concern that changed demography and less growth

in the source of new technical ideas, i.e., the stock of educated human beings, will in the

future result in lower n and lower g, respectively, making financing social security more

diffi cult. On the basis of the Solow model we find by implicit differentiation in (2) ∂k̃∗/∂n

= ∂k̃∗/∂g = −k̃∗
[
δ + g + n− sf ′(k̃∗)

]−1
, which is negative since sf ′(k̃∗) < sf(k̃∗)/k̃∗

= δ + g + n. Hence, by (1),

∂r∗

∂n
=
∂r∗

∂g
=
∂r∗

∂k̃∗
∂k̃∗

∂n
= f ′′(k̃∗)

−k̃∗

δ + g + n− sf ′(k̃∗)
> 0,

since f ′′(k̃∗) < 0. It follows that

n ↓ or g ↓⇒ r∗ ↓ . (3)

A limitation of this theory is of course the exogeneity of the saving-income ratio, which

is a key co-determinant of k̃∗, hence of r∗. The next models are examples of different ways

of integrating a theory of saving into the story about the long-run rate of return.

2. The Diamond OLG model In the Diamond OLG model, based on a life-cycle

theory of saving, we again arrive at the formula r∗ = f ′(k̃∗)− δ. Like in the Solow model,
the long-run rate of return thus depends on the aggregate production function and on k̃∗.

But now there is a logically complete theory about how k̃∗ is determined. In the Diamond

model k̃∗ depends in a complicated way on the lifetime utility function and the aggregate

production function. The steady state of a well-behaved Diamond model will nevertheless

have the same qualitative property as indicated in (3).

3. The Ramsey model Like the Solow and Diamond models, the Ramsey model

implies that rt = f ′(k̃t)−δ for all t. But unlike in the Solow and Diamond models, the net
marginal productivity of capital now converges in the long run to a specific value given

by the modified golden rule formula. In a continuous time framework this formula says:

r∗ = ρ+ θg, (4)

where the new parameter, θ, is the (absolute) elasticity of marginal utility of consumption.

Because the Ramsey model is a representative agent model, the Keynes-Ramsey rule holds
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not only at the individual level, but also at the aggregate level. This is what gives rise to

this simple formula for r∗.

Here there is no role for n, only for g. On the other hand, there is an alternative

specification of the Ramsey model, namely the “average utilitarianism”specification. In

this version of the model, we get r∗ = f ′(k̃∗) − δ = ρ + n + θg, so that not only a lower

g, but also a lower n implies lower r∗.

Also the Sidrauski model, i.e., the monetary Ramsey model of Chapter 17, results in

the modified golden rule formula.1

4. Blanchard’s OLG model A continuous time OLG model with emphasis on life-

cycle aspects is Blanchard’s model, Blanchard (1985). In that model the net marginal

productivity of capital adjusts to a value where, in addition to the production function,

technology growth, and preference parameters, also demographic parameters, like birth

rate, death rate, and retirement rate, play a role. One of the results is that when θ = 1,

ρ+ g − λ < r∗ < ρ+ g + b,

where λ is the retirement rate (reflecting how early in life the “average” person retire

from the labor market) and b is the (crude) birth rate. The population growth rate is the

difference between the birth rate, b, and the (crude) mortality rate, m, so that n = b−m.
The qualitative property indicated in (3) becomes conditional. It still holds if the fall in

n reflects a lower b, but not necessarily if it reflects a higher m.

5. What if technological change is embodied? The models in the list above assume

a neoclassical aggregate production function with CRS and disembodied Harrod-neutral

technological progress, that is,

Yt = F (Kt, TtLt) ≡ TtLtf(k̃t), f ′ > 0, f ′′ < 0. (5)

This amounts to assuming that new technical knowledge advances the combined pro-

ductivity of capital and labor independently of whether the workers operate old or new

machines.

In contrast, we say that technological change is embodied if taking advantage of new

technical knowledge requires construction of new investment goods. The newest technol-

ogy is incorporated in the design of newly produced equipment; and this equipment will
1See Chapter 10, Section 10.5.
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not participate in subsequent technological progress. Both intuition and empirics suggest

that most technological progress is of this form. Indeed, Greenwood et al. (1997) estimate

for the U.S. 1950-1990 that embodied technological change explains 60% of the growth in

output per man hour.

So a theory of the rate of return should take this into account. Fortunately, this can

be done with only minor modifications. We assume that the link between investment and

capital accumulation takes the form

K̇t = QtIt − δKt, (6)

where It is gross investment (I = Y − C) and Qt measures the “quality”(effi ciency) of

newly produced investment goods. Suppose for instance that

Qt = Q0e
γt, γ > 0.

Then, even if no technological change directly appears in the production function, that

is, even if (5) is replaced by

Yt = F (Kt, Lt) = Kα
t L

1−α
t , 0 < α < 1,

the economy will still experience a rising standard of living.2 A given level of gross

investment will give rise to greater and greater additions to the capital stock K, measured

in effi ciency units. Since at time t, Qt capital goods can be produced at the same cost as

one consumption good, the price, pt, of capital goods in terms of the consumption good

must in competitive equilibrium equal the inverse of Qt, that is, pt = 1/Qt. In this way

embodied technological progress results in a steady decline in the relative price of capital

equipment.

This prediction is confirmed by the data. Greenwood et al. (1997) find for the U.S.

that the relative price of capital equipment has been declining at an average rate of 0.03

per year in the period 1950-1990, a trend that has seemingly been fortified in the wake of

the computer revolution.

Along a balanced growth path the constant growth rate of K will now exceed that

of Y, and Y/K thus be falling. The output-capital ratio in value terms, Y/(pK), will be

constant, however. Embedding these features in a Ramsey-style framework, we find the

2We specify F to be Cobb-Douglas, because otherwise a model with embodied technical progress in
the form (6) will not be able to generate balanced growth and comply with Kaldor’s stylized facts.
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long-run rate of return to be3

r∗ = ρ+ θ
αγ

1− α.

This is of the same form as (4) since growth in output per unit of labor in steady state is

exactly g = αγ/(1− α).

Adding uncertainty and risk of bankruptcy Although absent from many simple

macroeconomic models, uncertainty and risk of bankruptcy are significant features of

reality. Bankruptcy risk may lead to a conflict of interest between share owners and

managers. Managers may want less debt and more equity than the share owners because

bankruptcy can be very costly to managers who loose a well-paid job and a promising

carrier. So managers are unwilling to finance all new capital investment by new debt in

spite of the associated lower capital cost (there is generally a lower rate of return on debt

than on equity). In this way the excess of the rate of return on equity over that on debt,

the equity premium, is sustained.

A rough behavioral theory of the equity premium goes as follows.4 Firm managers

prefer a payout structure with a fraction, sf , going to equity and the remaining fraction,

1− sf , to debt (corporate bonds). That is, out of each unit of expected operating profit,
managers are unwilling to commit more than 1−sf to bond owners. This is to reduce the
risk of a failing payment ability in case of a bad market outcome. And those who finance

firms by loans definitely also want debtor firms to have some equity at stake.

We let households’ preferred portfolio consist of a fraction sh in equities and the

remainder, 1−sh, in bonds. In view of households’risk aversion and memory of historical
stock market crashes, it is plausible to assume that sh < sf .

As a crude adaptation of for instance the Blanchard OLG model to these features, we

interpret the model’s r∗ as an average rate of return across firms. Let time be discrete

and let aggregate financial wealth be A = pK, where p is the price of capital equipment

in terms of consumption goods. In the frameworks 1 to 4 above we have p ≡ 1, but in
framework 5 the relative price p equals 1/Q and is falling over time. Anyway, given A

at time t, the aggregate gross return or payout is (1 + r∗)A. Out of this, (1 + r∗)Asf

constitutes the gross return to the equity owners and (1 + r∗)A(1 − sf ) the gross return
3See Exercise 18.??
4The following is inspired by Baker, DeLong, and Krugman (2005). These authors discuss the implied

predictions for U.S. rates of return in the future and draw implications of relevance for the debate on
social security reform.
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to the bond owners. Let re denote the rate of return on equity and rb the rate of return

on bonds.

To find re and rb we have

(1 + re)Ash = (1 + r∗)Asf ,

(1 + rb)A(1− sh) = (1 + r∗)A(1− sf ).

Thus,

1 + re = (1 + r∗)
sf
sh

> 1 + r∗,

1 + rb = (1 + r∗)
1− sf
1− sh

< 1 + r∗.

We may define the equity premium, π, by 1 + π ≡ (1 + re)/(1 + rb). Then

π =
sf (1− sh)
sh(1− sf )

− 1 > 0.

Of course these formulas have their limitations. The key variables sf and sh will

depend on a lot of economic circumstances and should be endogenous in an elaborate

model. Yet, the formulas may be helpful as a way of organizing one’s thoughts about

rates of return in a world with asymmetric information and risk of bankruptcy.

There is evidence that in the last decades of the twentieth century the equity premium

had become lower than in the long aftermath of the Great Depression in the 1930s.5 A

likely explanation is that sh had gone up, along with rising confidence. The computer

and the World Wide Web have made it much easier for individuals to invests in stocks of

shares. On the other hand, the recent financial and economic crisis, known as the Great

Recession 2007- , and the associated rise in mistrust seems to have halted and possibly

reversed this tendency for some time (source ??).

–

5Blanchard (2003, p. 333).
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Advanced Macroeconomics. Note 2.

26.10.2015 Christian Groth

Uncertainty, expectations,
and asset price bubbles

This lecture note provides a framework for addressing themes where expectations

in uncertain situations are important elements. Our previous models have not taken

seriously the problem of uncertainty. Where agent’s expectations about future variables

were involved and these expectations were assumed to be model-consistent (“rational”),

we only considered a special case: perfect foresight. Shocks were treated in a peculiar

(almost self-contradictory) way: they might occur, but only as a complete surprise, a

one-off event. Agents’ expectations and actions never incorporated that new shocks could

arrive.

We will now allow recurrent shocks to take place. The environment in which the

economic agents act will be considered inherently uncertain. How can this be modeled

and how can we solve the resultant models? Since it is easier to model uncertainty

in discrete rather than continuous time, we examine uncertainty and expectations in a

discrete time framework.

Our emphasis will be on the hypothesis that when facing uncertainty a dominating

fraction of the economic agents form “rational expectations” in the sense of making prob-

abilistic forecasts which coincide with the forecast calculated on the basis of the “relevant

economic model”. But we begin with simple mechanistic expectation formation hypothe-

ses that have been used to describe day-to-day expectations of people who do not at all

think about the probabilistic properties of the economic environment.

1 Simple expectation formation hypotheses

One simple supposition is that expectations change gradually to correct past expectation

errors. Let  denote the general price level in period  and  ≡ ( − −1)−1

the corresponding inflation rate. Further, let −1 denote the “subjective expectation”,

formed in period − 1 of  i.e., the inflation rate from period − 1 to period We may
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think of the “subjective expectation” as the expected value in a vaguely defined subjective

conditional probability distribution.

The hypothesis of adaptive expectations (the AE hypothesis) says that the expectation

is revised in proportion to the past expectation error,

−1 = −2−1 + (−1 − −2−1) 0   ≤ 1 (1)

where the parameter  is called the adjustment speed. If  = 1 the formula reduces to

−1 = −1 (2)

This limiting case is known as static expectations or myopic expectations; the subjective

expectation is that the inflation rate will remain the same. As we shall see, if inflation

follows a random walk, this subjective expectation is in fact the “rational expectation”.

We may write (1) on the alternative form

−1 = −1 + (1− )−2−1 (3)

This says that the expected value concerning this period (period ) is a weighted average

of the actual value for the last period and the expected value for the last period. By

backward substitution we find

−1 = −1 + (1− )[−2 + (1− )−3−2]

= −1 + (1− )−2 + (1− )2[−3 + (1− )−4−3]

= 

X
=1

(1− )−1− + (1− )−−1−

Since (1− ) → 0 for →∞, we have (for −−1− bounded as →∞)

−1 = 

∞X
=1

(1− )−1− (4)

Thus, according to the AE hypothesis with 0    1 the expected inflation rate is a

weighted average of the historical inflation rates back in time. The weights are geomet-

rically declining with increasing time distance from the current period. The weights sum

to one (in that
P∞

=1 (1− )−1 = (1− (1− ))−1 = 1)

The formula (4) can be generalized to the general backward-looking expectations for-

mula,

−1 =
∞X
=1

−1− where

∞X
=1

 = 1 (5)
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If the weights  in (5) satisfy  = (1− )−1  = 1 2. . .  we get the AE formula (4).

If the weights are

1 = 1 +  2 = −  = 0 for  = 3 4 . . . ,

we get

−1 = (1 + )−1 − −2 = −1 + (−1 − −2) (6)

This is called the hypothesis of extrapolative expectations and says:

if   0 then the recent direction of change in  is expected to continue;

if   0 then the recent direction of change in  is expected to be reversed;

if  = 0 then expectations are static as in (2).

As hinted, there are cases where for instance myopic expectations are “rational” (in

a sense to be defined below). Exercise 1 provides an example. But in many cases purely

backward-looking formulas are too rigid, too mechanistic. They will often lead to system-

atic expectation errors to one side or the other. It seems implausible that people should

not then respond to their experience and revise their expectations formula. And when

expectations are about things that really matter for people, they are likely to listen to

professional forecasters who build their forecasting on statistical or econometric models.

Such models are based on a formal probabilistic framework, take the interaction between

different variables into account, and incorporate new information about future possible

events.

2 The rational expectations hypothesis

2.1 Preliminaries

We first recapitulate a few concepts from statistics. A sequence {} of random variables
indexed by time is called a stochastic process. A stochastic process {} is called white
noise if for all   has zero expected value, constant variance, and zero covariance across

time.1 A stochastic process {} is called a first-order autoregressive process, abbreviated
AR(1), if  = 0 + 1−1 +  where 0 and 1 are constants, and {} is white noise.

1The expression white noise derives from electrotechnics. In electrotechnical systems signals will often

be subject to noise. If this noise is arbitrary and has no dominating frequence, it looks like white light.

The various colours correspond to a certain wave length, but white light is light which has all frequences

(no dominating frequence).
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If |1|  1 then {} is called a stationary AR(1) process. A stochastic process {} is
called a random walk if  = −1 +  where {} is white noise.
Before defining the term rational expectation, it is useful to clarify a distinction be-

tween two ways in which expectations, whatever their nature, may enter a macroeconomic

model.

2.1.1 Two model types

Type A: models with past expectations of current endogenous variables Sup-

pose a given macroeconomic model can be reduced to two equations, the first being

 =   
−1 +    = 0 1 2  (7)

where  is some endogenous variable (not necessarily  )  and  are given constant

coefficients, and  is an exogenous random variable which follows some specified stochas-

tic process. In line with the notation from Section 1,  
−1 is the subjective expectation

formed in period −1 of the value of the variable  in period  The economic agents are in
simple models assumed to have the same expectations. Or, at least there is a dominating

expectation,  
−1 in the society. What the equation (7) claims is that the endogenous

variable, , depends, in the specified linear way, on the “generally held” expectation of

, formed in the previous period. It is natural to think of the outcome  as being the

aggregate result of agents’ decisions and market mechanisms, the decisions being made at

discrete points in time     −2 −1      immediately after the uncertainty concerning
the period in question is resolved.

The second equation specifies how the subjective expectation is formed. To fix ideas,

let us assume myopic expectations,

 
−1 = −1 (8)

as in (2) above. A solution to the model is a stochastic process for  such that (7) holds,

given the expectation formation (8) and the stochastic process which  follows.

EXAMPLE 1 (imported raw materials and the domestic price level) Let the endogenous

variable in (7) represent the domestic price level (the consumer price index)  and let

 be the price level of imported raw materials. Suppose the price level is determined

through a markup on unit costs,

 = ( + )(1 + ) 0   
1

1 + 
 (*)
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where is the nominal wage level in period  = 0 1 2    , and  and  are positive tech-

nical coefficients representing the assumed constant labor and raw materials requirements,

respectively, per unit of output;  is a constant markup. Assume further that workers in

period − 1 negotiate next period’s wage level,  so as to achieve, in expected value, a

certain target real wage which we normalize to 1, i.e.,



 
−1

= 1

Inserting into (*), we have

 =   
−1 +   0   = (1 + )  1 0   = (1 + ) (9)

Suppose  = ̄ +  where ̄ is a positive constant and {} is white noise. Assuming
myopic expectations,

 
−1 = −1 (10)

the solution for the evolution of the price level is

 =  −1 + (̄+ )  = 0 1 2    

Without shocks, and starting from an arbitrary −1  0 the time path of the price

level would be  = (−1 −  ∗)+1 +  ∗ where  ∗ = ̄(1− ) Shocks to the price of

imported raw materials result in transitory deviations from  ∗ But as the shocks are only

temporary and ||  1 the domestic price level gradually returns towards the constant

level  ∗ The intervening changes in wage demands in response to the changes in the price

level changes prolong the time it takes to return to  ∗ in the absence of new shocks. ¤

Equation (7) can also be interpreted as a vector equation (such that  and  
−1 are

-vectors,  is an  ×  matrix,  an  × matrix, and  an -vector). The crucial

feature is that the endogenous variables dated  only depend on previous expectations of

date- values of these variables and on the exogenous variables.

Models with past expectations of current endogenous variables will serve as our point

of reference when introducing the concept of rational expectations below.

Type B: models with forward-looking expectations Another way in which agents’

expectations may enter is exemplified by

 =   
+1 +    = 0 1 2  (11)
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Here  
+1 is the subjective expectation, formed in period  of the value of  in period

+1. Example: the equity price today depends on what the equity price is expected to be

tomorrow. Or more generally: the current expectation of a future value of an endogenous

variable influences the current value of this variable. We name this the case of forward-

looking expectations. (In “everyday language” also  
−1 in model type 1 can be said to

be a forward-looking variable as seen from period  − 1. But the dividing line between
the two model types, (7) and (11), is whether current expectations of future values of the

endogenous variables do or do not influence the current values of these.)

The complete model with forward-looking expectations will include an additional equa-

tion, specifying how the subjective expectation,  
+1 is formed. We might again impose

myopic expectations,  
+1 =  A solution to the model is a stochastic process for

 satisfying (11), given the stochastic process followed by  and given the specified

expectation formation and perhaps some additional restrictions in the form of boundary

conditions or similar. The case of forward-looking expectations is important in connection

with many topics in macroeconomics, including the evolution of asset prices and issues of

asset price bubbles. This case will be dealt with in sections 3 and 4 below.

In passing we note that in both model type 1 and model type 2, it is the mean (in the

subjective probability distribution) of the random variable(s) that enters. This is typical

of simple macroeconomic models which often ignore other measures such as the median,

mode, or higher-order moments. The latter, say the variance of , may be included in

more advanced models where for instance behavior towards risk is important.

2.1.2 The concept of a model-consistent expectation

The concepts of a rational expectation andmodel-consistent expectation are closely related,

but not the same. We start with the latter.

Let there be given a stochastic model represented by (7) combined with some given

expectation formation (8), say. We put ourselves in the position of the investigator or

model builder and ask what the model-consistent expectation of the endogenous variable

 is as seen from period  − 1. It is the mathematical conditional expectation that can
be calculated on the basis of the model and available relevant data revealed up to and

including period − 1. Let us denote this expectation

(|−1) (12)

where  is the expectation operator and −1 denotes the information available at time
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− 1. We think of period − 1 as the half-open time interval [− 1 ) and imagine that
the uncertainty concerning the exogenous random variable −1 is resolved at time − 1
So −1 includes knowledge of −1 and thereby, via the model, also of −1

The information −1 may comprise knowledge of the realized values of  and  up

until and including period − 1 Instead of (12) we could, for instance, write

(|−1 = −1     − = −;−1 = −1    − = −)

Here information (some of which may be redundant) goes back to a given initial period,

say period 0, in which case  equals  Alternatively, perhaps information goes back to

“ancient times”, possibly represented by  = ∞ Anyway, as time proceeds, in general

more and more realizations of the exogenous and endogenous variables become known

and in this sense the information −1 expands with rising . The information −1 may

also be interpreted as “partial lack of uncertainty”, so that an “increasing amount of

information” and “reduced uncertainty” are seen as two sides of the same thing. The

“reduced uncertainty” lies in the fact that the space of possible time paths {( )}+−
as of time  shrinks as time proceeds ( denotes the time horizon as seen from time ).2

Indeed, this space shrinks precisely because more and more realizations of the variables

take place (more information appears) and thereby rule out an increasing subset of paths

that were earlier possible.3

In Example 1, as long as the subjective expectation is the myopic expectation (10),

the model-consistent expectation is

(|−1) =  −1 + ̄

Inserting the investigator’s estimated values of the coefficients  and  the investigator’s

forecast of  is obtained.

2.2 The rational expectations hypothesis

Unsatisfied with mechanistic formulas like those of Section 1, the American economist

John F. Muth (1961) introduced a radically different approach, the hypothesis of rational

expectations. Muth stated the hypothesis the following way:

2By “possible” is meant “ex ante feasible according to a given model”.
3We refer to −1 as the “available information” rather than the “information set” which is an al-

ternative term used in the literature. The latter term is tricky because, as we have just exemplified, it

is ambiguous what is meant by a “larger information set”. Moreover, the term “information set” has

different meanings in different branches of economics, hence we are hesitant to use it.

More about subtleties relating to “information” in Appendix B, dealing with mathematical conditional

expectations in general.
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I should like to suggest that expectations, since they are informed predictions

of future events, are essentially the same as the predictions of the relevant

economic theory. At the risk of confusing this purely descriptive hypothesis

with a pronouncement as to what firms ought to do, we call such expectations

’rational’ (Muth 1961).

Muth applied this hypothesis to simple microeconomic problems. The hypothesis was

subsequently extended and applied to general equilibrium theory and macroeconomics by

what since the early 1970s became known as the New Classical Macroeconomics school.

Nobel laureate Robert E. Lucas from the University of Chicago lead the way by a series of

papers starting with Lucas (1972) and Lucas (1973). Assuming rational expectations in a

model instead of, for instance, adaptive expectations may radically change the dynamics

as well as the impact of economic policy.

2.2.1 The concept

Assuming the economic agents have rational expectations (RE) is to assume that their

subjective expectation equals the model-consistent expectation, that is, the mathematical

conditional expectation that can be calculated on the basis of the model and available

relevant information about the exogenous stochastic variables. In connection with the

model ingredient (7), assuming the agents have rational expectations thus means that

 
−1 = (|−1) (13)

i.e., agents’ subjective conditional expectation coincides with the “objective” or “true”

conditional expectation, given the model (7).

Together, the equations (7) and (13) constitute a simple rational expectations model

(henceforth an RE model). We may write the model in compact form as

 = (|−1) +    = 0 1 2  (14)

The assumption of rational expectations thus relies on idealized conditions.

2.2.2 Solving a simple RE model

To solve the model means to find the stochastic process followed by  given the sto-

chastic process followed by the exogenous variable  For a linear RE model with past

expectations of current endogenous variables, the solution procedure is the following.
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1. By substitution, reduce the RE model (or the relevant part of the model) into a

form like (14) expressing the endogenous variable in period  in terms of its past

expectation and the exogenous variable(s). (The case with multiple endogenous

variables is treated similarly.)

2. Take the conditional expectation on both sides of the equation and solve for the

conditional expectation of the endogenous variable.

3. Insert into the “reduced form” attained at 1.

In practice there is often a fourth step, namely to express other endogenous variables

in the model in terms of those found in step 3. Let us see how the procedure works by

way of the following example.

EXAMPLE 2 We modify Example 1 by replacing myopic expectations by rational expec-

tations, i.e., (10) is replaced by  
−1 = (|−1) Now “available information” includes

that the subjective expectations are rational expectations. Step 1:

 = (|−1) +   0    1   0 (15)

Step 2: (|−1) = (|−1) + ̄ implying

( |−1) = 
̄

1− 


Step 3: Insert into (15) to get

 = 
̄

1− 
+ (̄+ )

This is the solution of the model in the sense of a specification of the stochastic process

followed by .

To compare with myopic expectations, suppose the event  6= 0 is relatively seldom
and that at  = 0 1  0 − 1 it so happens that  = 0 hence  = ̄(1 − ) ≡  ∗

Then, at  = 0 0  0 so that 0 =  ∗+ 0   ∗ But for  = 0+1 0+2  0+

there is again a sequence of periods with  = 0 Then, under RE, domestic price level

returns to  ∗ already in period 0 + 1.

With myopic expectations, combined with −1 =  ∗ say, the positive shock to import

prices at  = 0 will imply 0 =  ∗ + (̄ + 0) =  ∗ + 0  0+1 = ( ∗ + ) + ̄

=  ∗ +  0+ =  ∗ +  for  = 1 2   After 0 there is a systematic positive

9



forecast error. This is because the mechanical expectation does not consider how the

economy really functions. ¤

Returning to the general form (14), without specifying the process {}  the second
step gives

( |−1) = 
( |−1)
1− 

 (16)

when  6= 14 Then, in the third step we get

 = 
( |−1) + (1− )

1− 
= 

 − ( −( |−1))
1− 

 (17)

EXAMPLE 3 Let  follow the process  = ̄ + −1 +  where 0    1 and 

has zero expected value, given all observed past values of  and  Then (17) yields the

solution

 = 
 − 

1− 
= 

̄+ −1 + (1− )

1− 
  = 0 1 2 .

In Exercise 2 you are asked to solve a simple Keynesian model of this form and compare

the solution under rational expectations with the solution under static expectations. ¤

Rational expectations should be viewed as a simplifying assumption that at best offers

an approximation. First, the assumption entails essentially that the economic agents

share one and the same understanding about how the economic system functions (and in

this chapter they also share one and the same information, −1). This is already a big

mouthful. Second, this perception is assumed to comply with the model of the informed

economic specialist. Third, this model is supposed to be the true model of the economic

process, including the true parameter values as well as the true stochastic process which

 follows. Indeed, by equalizing 

−1 with the true conditional expectation, (|−1)

and not at most some econometric estimate of this, it is presumed that agents know the

true values of the parameters  and  in the data-generating process which the model is

supposed to mimic. In practice it is not possible to attain such precise knowledge, at least

not unless the considered economic system has reached some kind of steady state and no

structural changes occur (a condition which is hardly ever satisfied in macroeconomics).

Nevertheless, a model based on the rational expectations hypothesis can in many

contexts be seen as a useful cultivation of a theoretical research question. The results

that emerge cannot be due to systematic expectation errors from the economic agents’

4If  = 1, the model (14) is inconsistent unless ( |−1)) = 0 in which case there are multiple

solutions. Indeed, for any number  ∈ (−∞, +∞), the process  =  +  solves the model when

( |−1) = 0

10



side. In this sense the assumption of rational expectations makes up a theoretically

interesting benchmark case.

We shall stick to the term “rational expectation” because it is standard. The term

can easily be misunderstood, however. Usually, in economists’ terminology “rational”

refers to behavior based on optimization subject to the constraints faced by the agent.

So one might think that the RE hypothesis stipulates that economic agents try to get the

most out of a situation with limited information, contemplating the benefits and costs

of gathering more information and using adequate statistical estimation methods. But

this is a misunderstanding. The RE hypothesis presumes that the true model is already

known to the agents. The “rationality” refers to taking this assumed knowledge fully into

account.

2.2.3 The forecast error*

Let the forecast of some variable  one period ahead be denoted  
−1. Suppose the

forecast is determined by some given function,  , of realizations of  and  up to and

including period − 1 that is,  
−1 = (−1 −2  −1 −2 ) Such a function is

known as a forecast function. It might for instance be one of the mechanistic forecasting

principles in Section 1. At the other extreme the forecast function might, at least theo-

retically, coincide with the a model-consistent conditional expectation. In the latter case

it is a model-consistent forecast function and we can write

(−1 −2  −1 −2 ) = ( |−1) (18)

= ( |−1 = −1 −2 = −2  −1 = −1 −2 = −2 ) 

The forecast error is the difference between the actually occurring future value,  of

a variable and the forecasted value. So, for a given forecast,  
−1 the forecast error is

 ≡  −  
−1 and is itself a stochastic variable.

If the forecast function in (18) complies with the true data-generating process (a big

“if”), then the implied forecasts would have several ideal properties:

(a) the forecast error would have zero mean;

(b) the forecast error would be uncorrelated with any of the variable in the information

−1 and therefore also with its own past values; and

(c) the expected squared forecast error would be minimized.

11



To see these properties, note that the model-consistent forecast error is  =  −
( |−1)  From this follows that ( |−1) = 0 cf. (a). Also the unconditional expec-
tation is nil, i.e., () = 0; this is because (( |−1)) = (0) = 0 at the same time as

(( |−1)) = () by the law of iterated expectations from statistics saying that the

unconditional expectation of the conditional expectation of a stochastic variable  is given

by the unconditional expectation of , cf. Appendix B. Considering the specific model

(7), the model-consistent-forecast error is  =  −( |−1) = ( −( |−1)) by
(16) and (17). An ex post error ( 6= 0) thus emerges if and only if the realization of the
exogenous variable deviates from its conditional expectation as seen from the previous

period.

As to property (b), for  = 1 2  let − be some variable value belonging to the

information −. Then, property (b) is the claim that the (unconditional) covariance

between  and − is zero, i.e., Cov(−) = 0 for  = 1 2 . This follows from the

orthogonality property of model-consistent expectations (see Appendix C). In particular,

with − = − we get Cov(−) = 0 i.e., the forecast errors exhibit lack of serial

correlation. If the covariance were not zero, it would be possible to improve the forecast

by incorporating the correlation into the forecast. In other words, under the assumption of

rational expectations economic agents have no more to learn from past forecast errors. As

remarked above, the RE hypothesis precisely refers to a fictional situation where learning

has been completed and underlying mechanisms do not change.

Finally, a desirable property of a forecast function (·) is that it maximizes “accuracy”,
i.e., minimizes an appropriate loss function. A popular loss function,  in this context is

the expected squared forecast error conditional on the information −1,

 = (( − (−1 −2  −1 −2 ))
2 |−1) 

Assuming  −1 −1−2  are jointly normally distributed, then the solution to

the problem of minimizing  is to set (·) equal to the conditional expectation ( |−1)
based on the data-generating model as in (18).5 This is what property (c) refers to.

EXAMPLE 4 Let  = ( |−1) +  with  = ̄ +  where ̄ is a constant and

 is white noise with variance 
2. Then (17) applies, so that

 =
̄

1− 
+   = 0 1 

5For proof, see Pesaran (1987). Under the restriction of only linear forecast functions, property (c)

holds even without the joint normality assumption, see Sargent (1979).
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with variance 22 The model-consistent forecast error is  = −( |−1) =  with

conditional expectation equal to ( |−1) = 0 This forecast error itself is white noise
and is therefore uncorrelated with the information on which the forecast is based. ¤

It is worth emphasizing that the “true” conditional expectation can not usually be

known − neither to the economic agents nor to the investigator. At best there can be a
reasonable estimate, probably somewhat different across the agents because of differences

in information and conceptions of how the economic system functions. A deeper model of

expectations would give an account of the mechanisms through which agents learn about

the economic environment. An important ingredient here would be how agents contem-

plate the costs and potential gains associated with further information search needed

to reduce systematic expectation errors where possible. This contemplation is intricate

because information search often means entering unknown territory. Moreover, for a sig-

nificant subset of the agents the costs may be prohibitive. A further complicating factor

involved in learning is that when the agents have obtained some knowledge about the

statistical properties of the economic variables, the resulting behavior of the agents may

change these statistical properties. The rational expectations hypothesis sets these prob-

lems aside. It is simply assumed that the structure of the economy remains unchanged

and that the learning process has been completed.

2.3 Perfect foresight as a special case

The notion of perfect foresight corresponds to the limiting case where the variance of the

exogenous variable(s) is zero so that with probability one,  = ( |−1) for all . Then
we have a non-stochastic model where rational expectations imply that agents’ ex post

forecast error with respect to  is zero.
6 To put it differently: rational expectations in a

non-stochastic model is equivalent to perfect foresight. Note, however, that perfect fore-

sight necessitates the exogenous variable to be known in advance. Real-world situations

are usually not like that. If we want our model to take this into account, the model ought

to be formulated in an explicit stochastic framework. And assumptions should be stated

about how the economic agents respond to the uncertainty. The rational expectations as-

sumption is one approach to the problem and has been much applied in macroeconomics

in recent decades, perhaps due to lack of compelling tractable alternatives.

6Here we disregard zero probability events.
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3 Models with rational forward-looking expectations

We here turn to models where current expectations of a future value of an endogenous

variable have an influence on the current value of this variable, that is, the case exemplified

by equation (11). At the same time we introduce two simplifications in the notation. First,

instead of using capital letters to denote the stochastic variables (as we did above and

is common in mathematical statistics), we follow the tradition in macroeconomics and

use lower case letters. So a lower case letter may from now on represent a stochastic

variable or a specific value of this variable, depending on the context. So an equation

like (11) will now read  =  +1 +   Under rational expectations it takes the form

 = (+1 |) +    = 0 1 2    . Second, from now on we write this equation as

 = +1 +       = 0 1 2      6= 0 (19)

That is, the expected value of a stochastic variable, + conditional on the information

, will be denoted +

A stochastic difference equation of the form (19) is called a linear expectation difference

equation of first order with constant coefficient .7 A solution is a specified stochastic

process {} which satisfies (19), given the stochastic process followed by . In the

economic applications usually no initial value, 0, is given. On the contrary, the interpre-

tation is that  depends, for all  on expectations about the future.
8 So  is considered

a jump variable that can immediately shift its value in response to the emergence of new

information about the future ’s. For example, a share price may immediately jump to a

new value when the accounts of the firm become publicly known (often even before, due

to sudden rumors).

Due to the lack of an initial condition for  there can easily be infinitely many

processes for  satisfying our expectation difference equation. We have an infinite forward-

looking “regress”, where a variable’s value today depends on its expected value tomorrow,

this value depending on the expected value the day after tomorrow and so on. Then usu-

ally there are infinitely many expected sequences which can be self-fulfilling in the sense

that if only the agents expect a particular sequence, then the aggregate outcome of their

behavior will be that the sequence is realized. It “bites its own tail” so to speak. Yet, when

7To keep things simple, we let the coefficients  and  be constants, but a generalization to time-

dependent coefficients is straightforward.
8The reason we say “depends on” is that it would be inaccurate to say that  is determined (in a

one-way-sense) by expectations about the future. Rather there is mutual dependence. In view of  being

an element in the information  the expectation of +1 in (19) may depend on  just as much as 
depends on the expectation of +1.
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an equation like (19) is part of a larger model, there will often (but not always) be con-

ditions that allow us to select one of the many solutions to (19) as the only economically

relevant one. For example, an economy-wide transversality condition or another general

equilibrium condition may rule out divergent solutions and leave a unique convergent

solution as the final solution.

We assume  6= 0 since otherwise (19) itself is already the unique solution. It turns
out that the set of solutions to (19) takes a different form depending on whether ||  1
or ||  1:

The case ||  1 In general, there is a unique fundamental solution and infinitely many
explosive solutions (“bubble solutions”).

The case ||  1 In general, there is no fundamental solution but infinitely many non-
explosive solutions. (The case || = 1 resembles this.)

In the case ||  1 the expected future has modest influence on the present. Here we
will concentrate on this case, since it is the case most frequently appearing in macroeco-

nomic models with rational expectations.

4 Solutions when ||  1
Various solution methods are available. Repeated forward substitution is the most easily

understood method.

4.1 Repeated forward substitution

Repeated forward substitution consists of the following steps. We first shift (19) one

period ahead:

+1 =  +1+2 +  +1

Then we take the conditional expectation on both sides to get

+1 =  (+1+2) +  +1 =  +2 +  +1 (20)

where the second equality sign is due to the law of iterated expectations, which says that

(+1+2) = +2 (21)
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see Box 1. Inserting (20) into (19) then gives

 = 2+2 +  +1 +   (22)

The procedure is repeated by forwarding (19) two periods ahead; then taking the condi-

tional expectation and inserting into (22), we get

 = 3+3 + 2 +2 +  +1 +  

We continue in this way and the general form (for  = 0 1 2 ) becomes

+ =  +(++1) +  +

+ =  ++1 +  +

 = +1++1 +  + 

X
=1

+ (23)

Box 1. The law of iterated expectations

The method of repeated forward substitution is based on the law of iterated expecta-

tions which says that (+1+2) = +2 as in (21). The logic is the fol-

lowing. Events in period + 1 are stochastic as seen from period  and so +1+2
(the expectation conditional on these events) is a stochastic variable. Then the law

of iterated expectations says that the conditional expectation of this stochastic variable

as seen from period  is the same as the conditional expectation of +2 itself as seen

from period  So, given that expectations are rational, then an earlier expectation of

a later expectation of  is just the earlier expectation of . Put differently: my best

forecast today of how I am going to forecast tomorrow a share price the day after

tomorrow, will be the same as my best forecast today of the share price the day after

tomorrow. If beforehand we have good reasons to expect that we will revise our

expectations upward, say, when next period’s additional information arrives, the

original expectation would be biased, hence not rational.9

4.2 The fundamental solution

PROPOSITION 1 Consider the expectation difference equation (19), where  6= 0 If

lim
→∞

X
=1

+ exists, (24)

9A formal account of conditional expectations and the law of iterated expectations is given in Appendix

B.
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then

 = 

∞X
=0

+ =  + 

∞X
=1

+ ≡ ∗   = 0 1 2  (25)

is a solution to the equation.

Proof Assume (24). Then the formula (25) is meaningful. In view of (23), it satisfies

(19) if and only if lim→∞ +1++1 = 0 Hence, it is enough to show that the process

(25) satisfies this latter condition.

In (25), replace  by + + 1 to get ++1 = 
P∞

=0 
++1++1+ Using the law

of iterated expectations, this yields

++1 = 

∞X
=0

++1+ so that

+1++1 =  +1
∞X
=0

++1+ = 

∞X
=+1

+

It remains to show that lim→∞
P∞

=+1 
+ = 0 From the identity

∞X
=1

+ =

X
=1

+ +

∞X
=+1

+

follows ∞X
=+1

+ =

∞X
=1

+ −
X

=1

+

Letting →∞ this gives

lim
→∞

∞X
=+1

+ =

∞X
=1

+ −
∞X
=1

+ = 0

which was to be proved. ¤

The solution (25) is called the fundamental solution of (19), often marked by an

asterisk ∗. The fundamental solution is (for  6= 0) defined only when the condition (24)
holds. In general this condition requires that ||  1 In addition, (24) requires that the
absolute value of the expectation of the exogenous variable does not increase “too fast”.

More precisely, the requirement is that |+|, when  → ∞, has a growth factor less
than ||−1  As an example, let 0    1 and   0, and suppose that +  0 for 

= 0 1 2  and that 1 +  is an upper bound for the growth factor of + Then

+ ≤ (1 + )+−1 ≤ (1 + ) = (1 + )
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Multiplying by , we get + ≤ (1 + ) By summing from  = 1 to 

X
=1

+ ≤ 

X
=1

[(1 + )]



Letting →∞ we get

lim
→∞

X
=1

+ ≤  lim
→∞

X
=1

[(1 + )]

= 

(1 + )

1− (1 + )
∞

if 1 +   −1 using the sum rule for an infinite geometric series.

As noted in the proof of Proposition 1, the fundamental solution, (25), has the property

that

lim
→∞

+ = 0 (26)

That is, the expected value of  is not “explosive”: its absolute value has a growth factor

less than ||−1. Given ||  1 the fundamental solution is the only solution of (19) with
this property. Indeed, it is seen from (23) that whenever (26) holds, (25) must also hold.

In Example 1 below,  is interpreted as the market price of a share and  as dividends.

Then the fundamental solution gives the share price as the present value of the expected

future flow of dividends.

EXAMPLE 1 (the fundamental value of an equity share) Consider arbitrage between

shares of stock and a riskless asset paying the constant rate of return   0. Let period

 be the current period. Let + be the market price of the share at the beginning of

period +  and + the dividend paid out at the end of that period, +   = 0 1 2 .

As seen from period  there is uncertainty about + and + for  = 1 2 . An investor

who buys  shares at time  (the beginning of period ) thus invests  ≡  units

of account at time  At the end of the period the gross return comes out as the known

dividend  and the potential sales value of the shares at the beginning of next period.

This is unlike standard accounting and finance notation in discrete time, where  would

be the end-of-period- market value of the stock of shares that begins to yield dividends

in period + 1.10

10Our use of  for the price of a share bought at the beginning of period  is not inconsistent with

our use, in earlier chapters, of  to denote the price, possibly in the same unit of account, per unit

of consumption in period  but paid for at the end of the period. At the beginning of period  after

the uncertainty pertaining to period  has been resolved (thus updating the available information), a

consumer-investor will decide both the investment and the consumption flow for the period. But only

the investment expence,  is disbursed immediately.

It is convenient to think of the course of actions such that receipt of the previous period’s dividend,

−1 and payment for that period’s consumption, at the price −1 occur right before period  begins

and the new information arrives. Indeed, the resolution of uncertainty at discrete points in time motivates

a distinction between “end of” period − 1 and “beginning of” period , where the new information has

just arrived.
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Suppose investors have rational expectations and care only about expected return.

Then the no-arbitrage condition reads

 ++1 − 


=   0 (27)

This can be written

 =
1

1 + 
+1 +

1

1 + 
 (28)

which is of the same form as (19) with  =  = 1(1+ ) ∈ (0 1). Assuming dividends do
not grow “too fast”, we find the fundamental solution, denoted ∗  as

∗ =
1

1 + 
 +

1

1 + 

∞X
=1

1

(1 + )
+ =

∞X
=0

1

(1 + )+1
+ (29)

The fundamental solution is simply the present value of expected future dividends.

If the dividend process is +1 = ++1 where +1 is white noise, then the dividend

process is known as a random walk and + =  for  = 1 2   Thus 
∗
 = , by

the sum rule for an infinite geometric series. In this case the fundamental value is thus

itself a random walk. More generally, the dividend process could be a martingale, that is,

a sequence of stochastic variables with the property that the expected value next period

exists and equals the current actual value, i.e., +1 = ; but in a martingale, +1

≡ +1 −  need not be white noise; it is enough that +1 = 0
11 Given the constant

required return  we still have ∗ =  So the fundamental value itself is in this case a

martingale. ¤

In finance theory the present value of the expected future flow of dividends on an

equity share is referred to as the fundamental value of the share. It is by analogy with

this that the general designation fundamental solution has been introduced for solutions

of form (25). We could also think of  as the market price of a house rented out and

 as the rent. Or  could be the market price of an oil well and  the revenue (net of

extraction costs) from the extracted oil in period 

4.3 Bubble solutions

Other than the fundamental solution, the expectation difference equation (19) has infi-

nitely many bubble solutions. In view of ||  1, these are characterized by violating the
condition (26). That is, they are solutions whose expected value explodes over time.

11A random walk is thus a special case of a martingale.
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It is convenient to first consider the homogenous expectation equation associated with

(19). This is defined as the equation emerging when setting  = 0 in (19):

 = +1 (30)

Every stochastic process {} of the form

+1 = −1 + +1, where +1 = 0 (31)

has the property that

 = +1 (32)

and is thus a solution to (30). The “disturbance” +1 represents “new information” which

may be related to movements in “fundamentals”, +1 But it does not have to. In fact,

+1 may be related to conditions that per se have no economic relevance whatsoever.

For ease of notation, from now on we just write  even if we think of the whole process

{} rather than the value taken by  in the specific period  The meaning should be clear
from the context. A solution to (30) is referred to as a homogenous solution associated

with (19). Let  be a given homogenous solution and let  be an arbitrary constant.

Then  =  is also a homogenous solution (try it out for yourself). Conversely, any

homogenous solution  associated with (19) can be written in the form (31). To see this,

let  be a given homogenous solution, that is,  = +1. Let +1 = +1 − +1.

Then

+1 = +1 + +1 = −1 + +1

where +1 = +1 −+1 = 0. Thus,  is of the form (31).

For convenience we here repeat our original expectation difference equation (19):

 = +1 +       = 0 1 2      6= 0 (*)

PROPOSITION 2 Consider the expectation difference equation (*), where  6= 0 Let ̃
be a particular solution to the equation. Then:

(i) every stochastic process of the form

 = ̃ +  (33)

where  satisfies (31), is a solution to (*);

(ii) every solution to (*) can be written in the form (33) with  being an appropriately

chosen homogenous solution associated with (*).
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Proof. Let some particular solution ̃ be given. (i) Consider  = ̃+ where  satisfies

(31). Since ̃ satisfies (*), we have  =  ̃+1 +   + . Consequently, by (30),

 =  ̃+1 +   +  +1 =  (̃+1 + +1) +   =  +1 +  

saying that (33) satisfies (*). (ii) Let  be an arbitrary solution to (*). Define  = −̃.
Then we have

 =  − ̃ = +1 +  − (̃+1 + )

= (+1 − ̃+1) = +1

where the second equality follows from the fact that both  and ̃ are solutions to (*).

This shows that  is a solution to the homogenous equation (30) associated with (*).

Since  = ̃ + , the proposition is hereby proved. ¤

Proposition 2 holds for any  6= 0 In case the fundamental solution (25) exists and
||  1, it is convenient to choose this solution as the particular solution in (33). Thus,

referring to the right-hand side of (25) as ∗ , we can use the particular form,

 = ∗ +  (34)

When the component  is different from zero, the solution (34) is called a bubble

solution and  is called the bubble component. In the typical economic interpretation the

bubble component shows up only because it is expected to show up next period, cf. (32).

The name bubble springs from the fact that the expected value of  conditional on the

information available in period  explodes over time when ||  1. To see this, as an

example, let 0    1 Then, from (30), by repeated forward substitution we get

 =  (+1+2) = 2+2 =  = +  = 1 2 

It follows that + = −, and from this follows that the bubble, for  going to infinity,

is unbounded in expected value:

lim
→∞

+ =

½ ∞, if   0
−∞ if   0

 (35)

Indeed, the absolute value of + will for rising  grow geometrically towards infinity

with a growth factor equal to 1  1

Let us consider a special case of (*) that allows a simple graphical illustration of both

the fundamental solution and some bubble solutions.
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Figure 1: Deterministic bubbles (the case 0    1   0 and  = ̄)

4.3.1 When  has constant mean

Suppose the stochastic process  (the “fundamentals”) takes the form  = ̄+  where

̄ is a constant and  is white noise. Then

 =  +1 + (̄+ ) 0  ||  1 (36)

The fundamental solution is

∗ =   + 

∞X
=1

̄ = ̄+  + 
̄

1− 
=

̄

1− 
+ 

Referring to (i) of Proposition 2,

 =
̄

1− 
+  +  (37)

is thus also a solution of (36) if  is of the form (31).

It may be instructive to consider the case where all stochastic features are eliminated.

So we assume  ≡  ≡ 0. Then we have a model with perfect foresight; the solution (37)
simplifies to

 =
̄

1− 
+ 0

− (38)

where we have used repeated backward substitution in (31). By setting  = 0 we see that

0 − ̄
1− = 0 Inserting this into (38) gives

 =
̄

1− 
+ (0 − ̄

1− 
)− (39)

In Fig. 1 we have drawn three trajectories for the case 0    1,   0. Trajectory

I has 0 = ̄(1 − ) and represents the fundamental solution. Trajectory II, with 0
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 ̄(1−) and trajectory III, with 0  ̄(1−) are bubble solutions. Since we have
imposed no boundary condition apriori, one 0 is as good as any other. The interpretation

is that there are infinitely many trajectories with the property that if only the economic

agents expect the economy will follow that particular trajectory, the aggregate outcome of

their behavior will be that this trajectory is realized. This is the potential indeterminacy

arising when  is not a predetermined variable. However, as alluded to above, in a

complete economic model there will often be restrictions on the endogenous variable(s)

not visible in the basic expectation difference equation(s), here (36). It may be that

the economic meaning of  precludes negative values (a share certificate would be an

example). In that case no-one can rationally expect a path such as III in Fig. 1. Or

perhaps, for some reason, there is an upper bound on  (think of the full-employment

ceiling for output in a situation where the “natural” growth factor for output is smaller

than −1). Then no one can rationally expect a trajectory like II in the figure.

To sum up: in order for a solution of a first-order linear expectation difference equation

with constant coefficient , where ||  1 to differ from the fundamental solution, the

solution must have the form (34) where  has the form described in (31). This provides

a clue as to what asset price bubbles might look like.

4.3.2 Asset price bubbles

A stylized fact of stock markets is that stock price indices are quite volatile on a month-to-

month, year-to-year, and especially decade-to-decade scale, cf. Fig. 2. There are different

views about how these swings should be understood. According to the Efficient Market

Hypothesis the swings just reflect unpredictable changes in the “fundamentals”, that is,

changes in the present value of rationally expected future dividends. This is for instance

the view of Nobel laureate Eugene Fama (1970, 2003) from University of Chicago.

In contrast, Nobel laureate Robert Shiller (1981, 2003, 2005) from Yale University,

and others, have pointed to the phenomenon of “excess volatility”. The view is that asset

prices tend to fluctuate more than can be rationalized by shifts in information about

fundamentals (present values of dividends). Although in no way a verification, graphs

like those in Fig. 2 and Fig. 3 are suggestive. Fig. 2 shows the monthly real Standard

and Poors (S&P) composite stock prices and real S&P composite earnings for the period

1871-2008. The unusually large increase in real stock prices since the mid-90’s, which

ended with the collapse in 2000, is known as the “dot-com bubble”. Fig. 3 shows, on a

monthly basis, the ratio of real S&P stock prices to an average of the previous ten years’
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Figure 2: Monthly real S&P composite stock prices from January 1871 to January 2008 (left)

and monthly real S&P composite earnings from January 1871 to September 2007 (right). Source:

http://www.econ.yale.edu/~shiller/data.htm.

real S&P earnings along with the long-term real interest rate. It is seen that this ratio

reached an all-time high in 2000, by many observers considered as “the year the dot-com

bubble burst”.

Shiller’s interpretation of the large stock market swings is that they are due to fads,

herding, and shifts in fashions and “animal spirits” (the latter being a notion from

Keynes).

A third possible source of large stock market swings was pointed out by Blanchard

(1979) and Blanchard and Watson (1982). They argued that bubble phenomena need

not be due to irrational behavior and absence of rational expectations. This lead to the

theory of rational bubbles − the idea that excess volatility can be explained as speculative
bubbles arising from self-fulfilling rational expectations.

Consider an asset which yields either dividends or services in production or consump-

tion in every period in the future. The fundamental value of the asset is, at the theoretical

level, defined as the present value of the expected future flow of dividends or services.12

An asset price bubble (or a speculative bubble) is then defined as a positive deviation of

12In practice there are many ambiguities involved in this definition of the fundamental value because

it relates to an unknown future.
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Figure 3: S&P price-earnings ratio and long-term real interest rates from January 1881

to January 2008. The earnings are calculated as a moving average over the preceding

ten years. The long-term real interest rate is the 10-year Treasury rate from 1953 and

government bond yields from Sidney Homer, “A History of Interest Rates” from before

1953. Source: http://www.econ.yale.edu/~shiller/data.htm.
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the market price,  of the asset from its fundamental value, ∗ :

 = ∗ +  (40)

An asset price bubble, − ∗  that emerges in a setting where the no-arbitrage condition

(27) holds under rational expectations, is called a rational bubble. It emerges only because

there is an economy-wide self-fulfilling expectation that it will appreciate at a rate high

enough to warrant the overcharge involved. In the definition in (40) and in the discussion

below we ignore that at a less abstract level it is a systematic deviation, rather than just

a temporary noise deviation, of  from ∗ which qualifies for an asset price bubble.

EXAMPLE 2 (an ever-expanding rational bubble) Consider again an equity share for

which the no-arbitrage condition is

 ++1 − 


=   0 (41)

As in Example 1, the implied expectation difference equation is  = +1+ with 

=  = 1(1+) ∈ (0 1) Let the price of the share at time  be  = ∗ + where 
∗
 is the

fundamental value and   0 a bubble component following the deterministic process,

+1 = (1+) 0  0 so that  = 0(1+)
 This is called a deterministic rational bubble.

Agents may be ready to pay a price over and above the fundamental value (whether or

not they know the “true” fundamental value) if they expect they can sell at a sufficiently

higher price later; trading with such motivation is called speculative behavior. If generally

held and lasting for some time, this expectation may be self-fulfilling. Note that (41)

implies that the asset price ultimately grows at the rate . Indeed, let  = 0(1 + )

   (if  ≤  the asset price would be infinite). By the rule of the sum of an infinite

geometric series, we then have ∗ = (−) showing that the fundamental value grows
at the rate  Consequently,  = (

∗
 + ) = ∗+1→ 1 as    It follows that

the asset price in the long run grows at the same rate as the bubble, the rate 

We are not acquainted with ever-expanding incidents of that caliber in real world

situations, however. A deterministic rational bubble is implausible. ¤

In some contexts it may not matter whether or not we think of the “rational” market

participants as knowing the probability distribution of the “fundamentals”, hence knowing

∗ (by “fundamentals” is meant any information relating to the future dividend or service

capacity of an asset: a firm’s technology, resources, market conditions etc.). All the same,

it seems common to imply such a high level of information in the term “rational bubbles”.

Unless otherwise indicated, we shall let this implication be understood.
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While a deterministic rational bubble was found implausible, let us now consider an

example of a stochastic rational bubble which sooner or later bursts.

EXAMPLE 3 (a bursting bubble) Once again we consider the no-arbitrage condition is

(41) where for simplicity we still assume the required rate of return is constant, though

possibly including a risk premium. Following Blanchard (1979), we assume that the

market price,  of the share contains a stochastic bubble of the following form:

+1 =

½
1+

 with probability 

0 with probability 1− 
(42)

where  = 0 1 2  and 0  0. In addition we may assume that  = (∗  ) ∗ ≥ 0
 ≤ 0 If ∗  0 the probability that the bubble persists at least one period ahead is

higher the greater the fundamental value has become. If   0 the probability that

the bubble persists at least one period ahead is less, the greater the bubble has already

become. In this way the probability of a crash becomes greater and greater as the share

price comes further and further away from fundamentals. As a compensation, the longer

time the bubble has lasted, the higher is the expected growth rate of the bubble in the

absence of a collapse.

This bubble satisfies the criterion for a rational bubble. Indeed, (42) implies

 +1 = (
1 + 

+1
)+1 + 0 · (1− +1) = (1 + )

This is of the form (31) with −1 = 1 +  and the bubble is therefore a stochastic

rational bubble. The stochastic component is +1 = +1 − +1 = +1 − (1 + )

and has conditional expectation equal to zero. Although +1 must have zero conditional

expectation, it need not be white noise (it can for instance have varying variance). ¤

As this example illustrates, a stochastic rational bubble does not have the implausible

ever-expanding form of a deterministic rational bubble. Yet, under certain conditions

even stochastic rational bubbles can be ruled out or at least be judged implausible. The

next section reviews some arguments.

4.4 When rational bubbles in asset prices can or can not be

ruled out

We concentrate on assets whose services are valued independently of the price.13 Let 

be the market price and ∗ the fundamental value of the asset as of time . Even if the

13This is in contrast to assets that serve as means of payment.

27



asset yields services rather than dividends, we think of ∗ as in principle the same for all

agents. This is because a user who, in a given period, values the service flow of the asset

relatively low can hire it out to the one who values it highest (the one with the highest

willingness to pay). Until further notice we assume ∗ known to the market participants.

4.4.1 Partial equilibrium arguments

The principle of reasoning to be used is called backward induction: If we know something

about an asset price in the future, we can conclude something about the asset price today.

(a) Assets which can be freely disposed of (“free disposal”) Can a rational asset

price bubble be negative? The answer is no. The logic can be illustrated on the basis

of Example 2 above. For simplicity, let the dividend be the same constant   0 for all

 = 0 1 2 . Then, from the formula (39) we have

 − ∗ = (0 − ∗)(1 + )

where   0 and ∗ =  Suppose there is a negative bubble in period 0, i.e., 0−∗  0
In period 1, since 1 +   1 the bubble is greater in absolute value. The downward

movement of  continues and sooner or later  is negative. The intuition is that the

low 0 in period 0 implies a high dividend-price ratio. Hence a negative capital gain

(+1 −   0) is needed for the no-arbitrage condition (41) to hold. Thereby 1  0

and so on.

But in a market with self-interested rational agents, an object which can be freely

disposed of can never have a negative price. A negative price means that the “seller”

has to pay to dispose of the object. Nobody will do that if the object can just be

thrown away. An asset which can be freely disposed of (share certificates for instance)

can therefore never have a negative price. We conclude that a negative rational bubble

can not be consistent with rational expectations. Similarly, with a stochastic dividend,

a negative rational bubble would imply that in expected value the share price becomes

negative at some point in time, cf. (35). Again, rational expectations rule this out.

Hence, if we imagine that for a short moment   ∗ , then everyone will want to buy

the asset and hold it forever, which by own use or by hiring out will imply a discounted

value equal to ∗  There is thus excess demand until  has risen to 
∗
 

When a negative rational bubble can be ruled out, then, if at the first date of trading

of the asset there were no positive bubble, neither can a positive bubble arise later. Let
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us make this precise:

PROPOSITION 3 Assume free disposal of a given asset. Then, if a rational bubble in the

asset price is present today, it must be positive and must have been present also yesterday

and so on back to the first date of trading the asset. And if a rational bubble bursts, it

will not restart later.

Proof As argued above, in view of free disposal, a negative rational bubble in the asset

price can be ruled out. It follows that  =  − ∗ ≥ 0 for  = 0 1 2  where  = 0 is
the first date of trading the asset. That is, any rational bubble in the asset price must be

a positive bubble. We now show by contradiction that if, for an arbitrary  = 1 2  it

holds that   0 then −1  0. Let   0 Then, if −1 = 0 we have −1 = −1

= 0 (from (31) with  replaced by −1), implying, since   0 is not possible, that  = 0
with probability one as seen from period −1 Ignoring zero probability events, this rules
out   0 and we have arrived at a contradiction. Thus −1  0 Replacing  by  − 1
and so on backward in time, we end up with 0  0. This reasoning also implies that if

a bubble bursts in period , it can not restart in period  + 1 nor, by extension, in any

subsequent period. ¤

This proposition (due to Diba and Grossman, 1988) claims that a rational bubble in

an asset price must have been there since trading of the asset began. Yet such a conclusion

is not without ambiguities. If new information about radically new technology comes up

at some point in time, is a share in the firm then the same asset as before? In a legal

sense the firm is the same, but is the asset also the same? Even if an earlier bubble has

crashed, cannot a new rational bubble arise later in case of an utterly new situation?

These ambiguities reflect the difficulty involved in the concepts of rational expectations

and rational bubbles when we are dealing with uncertainties about future developments of

the economy. The market’s evaluation of many assets of macroeconomic importance, not

the least shares in firms, depends on vague beliefs about future preferences, technologies,

and societal circumstances. The fundamental value can not be determined in any objective

way. There is no well-defined probability distribution over the potential future outcomes.

Fundamental uncertainty, also called Knightian uncertainty,14 is present.

(b) Bonds with finite maturity The finite maturity ensures that the value of the bond

is given at some finite future date. Therefore, if there were a positive bubble in the market

14After the Chicago of University economist Frank Knight who in his book, Risk, Uncertainty, and

Profit (1921), coined the important distinction between measurable risk and unmeasurable uncertainty.
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price of the bond, no rational investor would buy just before that date. Anticipating this,

no one would buy the date before, and so on. Consequently, nobody will buy in the first

place. By this backward-induction argument follows that a positive bubble cannot get

started. And since there also is “free disposal”, all rational bubbles can be precluded.

From now on we take as given that negative rational bubbles are ruled out. So, the

discussion is about whether positive rational asset price bubbles may exist or not.

(c) Assets whose supply is elastic Real capital goods (including buildings) can be

reproduced and have clearly defined costs of reproduction. This precludes rational bubbles

on this kind of assets, since a potential buyer can avoid the overcharge by producing

instead. Notice, however, that building sites with a specific amenity value and apartments

in attractive quarters of a city are not easily reproducible. Therefore, rational bubbles on

such assets are more difficult to rule out.

Here are a few intuitive remarks about bubbles on shares of stock in an established

firm. An argument against a rational bubble might be that if there were a bubble, the

firm would tend to exploit it by issuing more shares. But thereby market participants

mistrust is raised and may pull market evaluation back to the fundamental value. On

the other hand, the firm might anticipate this adverse response from the market. So the

firm chooses instead to “fool” the market by steady financing behavior, calmly enjoying

its solid equity and continuing as if no bubble were present. It is therefore not obvious

that this kind of argument can rule out rational bubbles on shares of stock.

(d) Assets for which there exists a “backstop-technology” For some articles of

trade there exists substitutes in elastic supply which will be demanded if the price of

the article becomes sufficiently high. Such a substitute is called a “backstop-technology”.

For example oil and other fossil fuels will, when their prices become sufficiently high,

be subject to intense competition from substitutes (renewable energy sources). This

precludes an unbounded bubble process in the price of oil.

On account of the arguments (c) and (d), it seems more difficult to rule out rational

bubbles when it comes to assets which are not reproducible or substitutable, let alone

assets whose fundamentals are difficult to ascertain. For some assets the fundamentals

are not easily ascertained. Examples are paintings of past great artists, rare stamps,

diamonds, gold etc. Also new firms that introduce completely novel products and tech-

nologies are potential candidates. Think of the proliferation of radio broadcasting in the
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1920s before the wall Street crash in 1929 and the internet in the 1990s before the dotcom

bubble burst in 2000.

What these situations allow for may not be termed rational bubbles, if by definition

this concept requires a well-defined fundamental. Then we may think of a broader class

of real-world bubbly phenomena driven by self-reinforcing expectations.

4.4.2 Adding general equilibrium arguments

The above considerations are of a partial equilibrium nature. On top of this, general

equilibrium arguments can be put forward to limit the possibility of rational bubbles. We

may briefly give a flavour of two such general equilibrium arguments. We still consider

assets whose services are valued independently of the price and which, as in (a) above,

can be freely disposed of. A house, a machine, or a share in a firm yields a service in

consumption or production or in the form of a dividend stream. Since such an asset has

an intrinsic value, ∗  equal to the present value of the flow of services, one might believe

that positive rational bubbles on such assets can be ruled out in general equilibrium.

As we shall see, this is indeed true for an economy with a finite number of “neoclassical”

households (to be defined below), but not necessarily in an overlapping generations model.

Yet even there, rational bubbles can under certain conditions be ruled out.

(e) An economy with a finite number of infinitely-lived households Assume

that the economy consists of a finite number of infinitely-lived agents − here called house-
holds − indexed  = 1 2   . The households are “neoclassical” in the sense that they

save only with a view to future consumption.

Under free disposal in point (a) we saw that   ∗ can not be an equilibrium. We

now consider the case of a positive bubble, i.e.,   ∗  All owners of the bubble asset

who are users will in this case prefer to sell and then rent; this would imply excess supply

and could thus not be an equilibrium. Hence, we turn to households that are not users,

but speculators. Assuming “short selling” is legal, speculators may pursue “short selling”,

that is, they first rent the asset (for a contracted interval of time) and immediately sell

it at . This results in excess supply and so the asset price falls towards 
∗
 . Within the

contracted interval of time the speculators buy the asset back and return it to the original

owners in accordance with the loan accord. So   ∗ can not be an equilibrium.

Even ruling out “short selling” (which is sometimes outright forbidden), we can ex-

clude positive bubbles in the present setup with a finite number of households. To assume
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that owners who are not users would want to hold the bubble asset forever as a permanent

investment will contradict that these owners are “neoclassical”. Indeed, their transver-

sality condition would be violated because the value of their wealth would grow at a rate

asymptotically equal to the rate of interest. This would allow them to increase their

consumption now without decreasing it later and without violating their No-Ponzi-Game

condition.

We have to instead imagine that the “neoclassical” households who own the bubble

asset, hold it against future sale. This could on the face of it seem rational enough

if there were some probability that not only would the bubble continue to exist, but

it would also grow so that the return would be at least as high as that yielded on an

alternative investment. Owners holding the asset in the expectation of a capital gain, will

thus plan to sell at some later point in time. Let  be the point in time where household

 wishes to sell and let

 = max{1 2  }
Then nobody will plan to hold the asset after  The household speculator,  having

 =  will thus not have anyone to sell to (other than people who will only pay ∗ )

Anticipating this, no-one would buy or hold the asset the period before, and so on. So

no-one will want to buy or hold the asset in the first place.

The conclusion is that   ∗ cannot be a rational expectations equilibrium in a setup

with a finite number of “neoclassical” households.

The same line of reasoning does not, however, go through in an overlapping generations

model where new households − that is, new traders − enter the economy every period.

(f) An economy with interest rate above the output growth rate In an overlap-

ping generations (OLG) model with an infinite sequence of new decision makers, rational

bubbles are under certain conditions theoretically possible. The argument is that with

 →∞  as defined above is not bounded. Although this unboundedness is a necessary

condition for rational bubbles, it is not sufficient, however.

To see why, let us return to the arbitrage examples 1, 2, and 3 where we have −1 =

1 +  so that a hypothetical rational bubble has the form +1 = (1 + ) ++1 where

+1 = 0 So in expected value the hypothetical bubble is growing at a rate equal to

the interest rate,  If at the same time  is higher than the long-run output growth rate,

the value of the expanding bubble asset would sooner or later be larger than GDP and

aggregate saving would not suffice to back its continued growth. Agents with rational
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expectations anticipate this and so the bubble never gets started.

This point is valid when the interest rate in the OLG economy is higher than the

growth rate of the economy − which is normally considered the realistic case. Yet, the
opposite case is possible and in that situation it is less easy to rule out rational asset

price bubbles. This is also the case in situations with imperfect credit markets. It turns

out that the presence of segmented financial markets or externalities that create a wedge

between private and social returns on productive investment may increase the scope for

rational bubbles (Blanchard, 2008).

4.5 Conclusion

The empirical evidence concerning asset price bubbles in general and rational asset price

bubbles in particular seems inconclusive. It is very difficult to statistically distinguish

between bubbles and mis-specified fundamentals. Rational bubbles can also have more

complicated forms than the bursting bubble in Example 3 above. For example Evans

(1991) and Hall et al. (1999) study “regime-switching” rational bubbles.

Whatever the possible limits to the plausibility of rational bubbles in asset prices, it is

useful to be aware of their logical structure and the variety of forms they can take as logical

possibilities. Rational bubbles may serve as a benchmark for a variety of “behavioral asset

price bubbles”, i.e., bubbles arising through particular psychological mechanisms. This

would take us to behavioral finance theory. The reader is referred to, e.g., Shiller (2003).

For surveys on the theory of rational bubbles and econometric bubble tests, see Salge

(1997) and Gürkaynak (2008). For discussions of famous historical bubble episodes, see

the symposium in Journal of Economic Perspectives 4, No. 2, 1990, and Shiller (2005).

5 Appendix

A. The log-linear specification

In many macroeconomic models with rational expectations the equations are specified as

log-linear, that is, as being linear in the logarithms of the variables. If   and  are

the original positive stochastic variables, defining  = ln ,  = ln and  = ln, a

log-linear relationship between   and  is a relation of the form

 = + +  (43)
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where   and  are constants. The motivation for assuming log-linearity can be:

(a) Linearity is convenient because of the simple rule for the expected value of a sum:

(++) = +()+(), where  is the expectation operator. Indeed,

for a non-linear function, ( ) we generally have (( )) 6= (() ()).

(b) Linearity in logs may often seem a more realistic assumption than linearity in any-

thing else.

(c) In time series models a logarithmic transformation of the variables followed by

formation of first differences can be the road to eliminating a trend in the mean

and variance.

As to point (b) we state the following:

CLAIM To assume linearity in logs is equivalent to assuming constant elasticities.

Proof Let the positive variables  ,  and  be related by  =  (, ), where  is a

continuous function with continuous partial derivatives. Taking the differential on both

sides of ln  = ln () we get

 ln =
1

 ()




 +

1

 ()




 (44)

=











+












=  




+  




=   ln +   ln

where   and   are the partial elasticities of  w.r.t.  and , respectively. Thus,

defining  = ln ,  = ln and  = ln, gives

 =  +   (45)

Assuming constant elasticities amounts to putting   =  and   = , where  and

 are constants. Then we can write (45) as  = + . By integration, we get (43)

where  is now an arbitrary integration constant. Hereby we have shown that constant

elasticities imply a log-linear relationship between the variables.

Now, let us instead start by assuming the log-linear relationship (43). Then,




= 




=  (46)

But (43), together with the definitions of ,  and  implies that

 = ++ = + ln+ ln 
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from which follows that




=  

1


so that   ≡








= 

and



=  

1


so that   ≡








= 

That is, the partial elasticities are constant. ¤

So, when the variables are in logs, then the coefficients in the linear expressions are

the elasticities. Note, however, that the interest rate is normally an exception. It is often

regarded as more realistic to let the interest rate itself and not its logarithm enter linearly.

Then the associated coefficient indicates the semi-elasticity with respect to the interest

rate.

B. Conditional expectations and the law of iterated expectations

The mathematical conditional expectation is a weighted sum of the possible values of the

stochastic variable with weights equal to the corresponding conditional probabilities.

Let  and be two discrete stochastic variables with joint probability function ( )

and marginal probability functions () and () respectively. If the conditional probabil-

ity function for  given  = 0 is denoted ( |0)  we have ( |0) = ( 0)(0) as-

suming (0)  0 The conditional expectation of  given = 0 denoted ( | = 0)

is then

( | = 0) =
X



( 0)

(0)
 (47)

where the summation is over all the possible values of 

This conditional expectation is a function of 0 Since 0 is just one possible value of

the stochastic variable  we interpret the conditional expectation itself as a stochastic

variable and write it as( |)Generally, for a function of the discrete stochastic variable
 say () the expected value is

(()) =
X


()()

When we here let the conditional expectation ( |) play the role of () and sum over
all  for which ()  0 we get

(( |)) =
X


( |)() =
X


ÃX



( )

()

!
() (by (47))

=
X




ÃX


( )

!
=
X


() = ( )
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This result is a manifestation of the law of iterated expectations: the unconditional

expectation of the conditional expectation of  is given by the unconditional expectation

of 

Now consider the case where  and  are continuous stochastic variables with joint

probability density function ( ) and marginal density functions () and () respec-

tively. If the conditional density function for  given  = 0 is denoted ( |0)  we have
( |0) = ( 0)(0) assuming (0)  0 The conditional expectation of  given

 = 0 is

( | = 0) =

Z ∞

−∞

( 0)

(0)
 (48)

where we have assumed that the range of  is (−∞∞) Again, we may view the condi-
tional expectation itself as a stochastic variable and write it as ( |) Generally, for a
function of the continuous stochastic variable  say () the expected value is

(()) =

Z


()()

where  stands for the range of When we let the conditional expectation ( |) play
the role of () we get

(( |)) =

Z


( |)() =
Z


µZ ∞

−∞

( )

()


¶
() (by (48))

=

Z ∞

−∞


µZ


( )

¶
 =

Z ∞

−∞
() = ( ) (49)

This shows us the law of iterated expectations in action for continuous stochastic

variables: the unconditional expectation of the conditional expectation of  is given by

the unconditional expectation of 

EXAMPLE Let the two stochastic variables,  and  follow a two-dimensional normal

distribution. Then, frommathematical statistics we know that the conditional expectation

of  given  satisfies

( |) = ( ) +
Cov()

Var()
( −())

Taking expectations on both sides gives

(( |)) = ( ) +
Cov()

Var()
(()−()) = ( ) ¤

We may also express the law of iterated expectations in terms of subsets of the original

outcome space for a stochastic variable. Let the event A be a subset of the outcome space
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for  and let B be a subset of A. Then the law of iterated expectations takes the form

(( |B)|A) = ( |A) (50)

That is, when B ⊆ A the expectation, conditional on A of the expectation of  , condi-
tional on B, is the same as the expectation, conditional on A, of 
In the text of this and the subsequent chapters we consider a dynamic context where

expectations are conditional on dated information − ( = 1 2 ). By a, so far, “informal

analogy” with (49) we then write the law of iterated expectations this way:

((|−)) = () for  = 1 2  (51)

In words: the unconditional expectation of the conditional expectation of  given the

information up to time −  equals the unconditional expectation of  Similarly, by a,

so far, “informal analogy” with (50) we may write

((+2|+1)|) = (+2|) (52)

That is, the expectation today of the expectation tomorrow, when more may be known,

of a variable the day after tomorrow is the same as the expectation today of the variable

the day after tomorrow. Intuitively: you ask a stockbroker in which direction she expects

to revise her expectations upon the arrival of more information. If the broker answers

“upward”, say, then another broker is recommended.

The notation used in the transition from (50) to (52) might seem problematic, though.

That is why we talk of “informal analogy”. The sets A and B are subsets of the outcome
space and B ⊆ A In contrast, the “information” or “information content” represented by
our symbol  will, for the uninitiated, inevitably be understood in a meaning not fitting

the inclusion +1 ⊆ . Intuitively “information” dictates the opposite inclusion, namely

as a set which expands over time − more and more “information” (like “knowledge” or
“available data”) is revealed as time proceeds.

It is possible, however, to interpret the information  from another angle so as to

make the notation in (52) fully comply with that in (50). Let the outcome space Ω denote

the set of ex ante possible15 sequences {()}=0  where  and  are vectors of

date- endogenous and exogenous stochastic variables, respectively, and where  is the

time horizon, possibly  = ∞. For  ∈ {0 0 + 1 . . .  0 + }  let the subset Ω ⊆ Ω

be defined as the of time  still possible sequences {()}0+=0
 Now, as time proceeds,

15By “possible” is meant “ex ante feasible according to a given model”.
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more and more realizations occur, that is, more and more of the ex ante random states

( ) become historical data, ( ) Hence, as time proceeds, the subset Ω shrinks

in the sense that Ω+1 ⊆ Ω. The increasing amount of information and the “reduced

uncertainty” can thus be seen as two sides of the same thing. Interpreting  this way,

i.e., as “partial lack of uncertainty”, the expression (52) means the same thing as

((+2|Ω+1)|Ω) = (+2|Ω)

This is in complete harmony with (50).

C. Properties of the model-consistent forecast

As in the text of Section 24.2.2, let  denote the model-consistent forecast error  −
(|−1) Then, if −1 represents information contained in −1,

( |−1) = ( −( |−1) |−1) = ( |−1)−(( |−1) |−1)
= ( |−1)−( |−1) = 0 (53)

where we have used that (( |−1) |−1) = ( |−1)  by the law of iterated expec-
tations. With −1 = −1 we have, as a special case,

( |−1) = 0 as well as (54)

() = ( −( |−1)) = ()−(( |−1)) = 0

in view of (51) with  = 1. This proves property (a) in Section 24.2.3.

As to property (b) in Section 24.2.2, for  = 1 2  let − be an arbitrary variable

value belonging to the information −. Then, (− |−) = −( |−) = 0 by

(53) with −1 = − (since − is contained in −1). Thus, by the principle (51),

(−) =  ((− |−)) = (0) = 0 for  = 1 2  (55)

This result is known as the orthogonality property of model-consistent expectations (two

stochastic variables  and  are said to be orthogonal if ( ) = 0) From the general

formula for the (unconditional) covariance follows

Cov(−) = (−)−()(−) = 0− 0 = 0 for  = 1 2 

by (54) and (55). In particular, with − = − we get Cov(−) = 0 This proves that

model-consistent forecast errors exhibit lack of serial correlation.
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6 Exercises

1. Let {} be a stochastic process in discrete time. Suppose  =  +  and

 = −1 + , where  and  are white noise.

a) Is {} a random walk? Why or why not?

b) Is {} a random walk? Why or why not?

c) Calculate the rational expectation of  conditional on all relevant information up

to and including period − 1.

d) What is the rational expectation of  conditional on all relevant information up to

and including period − 1?

e) Compare with the subjective expectation of  based om the adaptive expectations

formula with adjustment speed equal to one.

2. Consider a simple Keynesian model of a closed economy with constant wages and

prices (behind the scene), abundant capacity, and output determined by demand:

 =  =  + ̄ + (1)

 = +  
−1   0 0    1 (2)

 = (1− )̄+ −1 +  ̄  0 0    1 (3)

where the endogenous variables are  = output (= income),  = aggregate demand,

 = consumption, and 

−1 = expected output (income) in period  as seen from period

−1 while , which stands for government spending on goods and services, is considered

exogenous as is , which is white noise. Finally, investment, ̄, and the parameters  

 and ̄ are given positive constants.

Suppose expectations are “static” in the sense that expected income in period  equals

actual income in the previous period.

a) Solve for .

b) Find the income multiplier (partial derivative of ) with respect to a change in

−1 and  respectively
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Suppose instead that expectations are rational.

c) Explain what this means.

d) Solve for 

e) Find the income multiplier with respect to a change in −1 and  respectively.

f) Compare the result under e) with that under b). Comment.

3. Consider arbitrage between equity shares and a riskless asset paying the constant

rate of return   0. Let  denote the price at the beginning of period  of a share that

at the end of period  yields the dividend . As seen from period  there is uncertainty

about + and + for  = 1 2. . . . Suppose agents have rational expectations and care

only about expected return (risk neutrality).

a) Write down the no-arbitrage condition.

Suppose dividends follow the process  = ̄ +  where ̄ is a positive constant and

 is white noise, observable in period  but not known in advance.

b) Find the fundamental solution for  and let it be denoted ∗ . Hint: given 

= +1 +   the fundamental solution is  =  + 
P∞

=1 
+

Suppose someone claims that the share price follows the process

 = ∗ + 

with a given 0  0 and, for  = 0 1 2. . . ,

+1 =

½
1+

 with probability 

0 with probability 1− 

where  = () 
0  0

c) What is an asset price bubble and what is a rational asset price bubble?

d) Can the described  process be a rational asset price bubble? Hint: a bubble

component associated with the inhomogenous equation  = +1 +   is a

solution, different from zero, to the homogeneous equation,  = +1.

–
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Advanced macroeconomics Short Note 3.

27.11.2015 Christian Groth

The bank-lending channel: The IS-BL model

In this short note we consider the IS-BL model by Bernanke and Blinder (1988),

“BL” being an abbreviation of “bank loans”. The model aims at clarifying the monetary

transmission mechanism in an economy where commercial banks offer checkable deposits

to households and grant long-term bank loans to ultimate borrowers (households and

non-bank firms). It is shown that the transmission of monetary policy takes two routes,

the well-known interest rate channel and the bank lending channel.

Small and medium-sized firms are typically unable to issue bonds and equity shares

for the centralized financial capital markets. Hence they are dependent on local banks

for loans.1 Indeed, in many countries bank loans are a main source of external finance, at

least for small firms.

Fig. 1 portrays a stylized financial system. Households’ financial saving (income

minus spending on goods and services) is partly channeled directly through centralized

bond and stock markets to the ultimate users (government and other households and

firms), partly channeled indirectly to the ultimate users through financial intermediaries,

the commercial banks of different kinds.

1 The IS-BL model

A closed economy is considered. There is a public sector with a government in charge of

fiscal policy and a partly independent central bank, the latter controlling the monetary

base.

The private sector consists of the commercial banks and the “non-bank general pub-

lic” (households and non-bank firms). One-period bonds are issued by the government

and traded in a centralized auction market. The commercial banks act as competitive

1For empirical evidence see, e.g., Kashyap and Stein (1994).
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Figure 1: A stylized financial system.

financial intermediaries which pool households’ financial savings, placed in demand de-

posits. These are used to invest in government bonds and to offer long-term loans to

borrowing households and production firms (which is synonymous with non-bank firms)

in a personalized customer credit market with limited contract enforcement. Bank loans

should be thought of as long-term variable-rate loans. The deposits earn no interest (as

an approximation for a “low” deposit interest rate). The equity market is not considered.

Firms finance their investment by bank loans.

As sources of the credit market imperfections lying behind the existence of a finan-

cial intermediaries, we may think of asymmetric information problems and moral hazard

between lender and borrower. But no details about this is given by the model.

Contrary to the standard IS-LMmodel, the IS-BL model thus has two interest-bearing

assets vis-a-vis money, bank loans and government bonds. In the limiting case where these

assets are perfect substitutes, we get the simple IS-LM model.

The IS-BL model is static in the sense that only one period is considered. Notation is

indicated in Table 1.
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Table 1. List of main variable symbols.

 = nominal bond interest rate,

 = nominal bank lending interest rate (the “lending rate”),

 = deposits of the non-bank private sector (a stock, earns no interest),

 = required reserve-deposit ratio,  ∈ [0 1)  exogenous,
0 = monetary base,

 = the money multiplier,

1 ≡  ·0 = money supply in the sense of demand deposits in commercial

banks (a stock, earns no interest),

 ≡0 −  = excess reserves (a stock, like required reserves earning no interest),

 = supply of bank loans (“credit supply”, a stock),

 = a shift parameter measuring perceived riskiness of offering bank loans,

 = nominal value of the stock of government bonds held by the private sector,

 = nominal value of government bonds held by the banks,

 = nominal value of government bonds held by the non-bank public,

 ≡0 + = aggregate nominal financial wealth of the private sector,

 = price level, exogenous,  = 1

 = real aggregate output,

 = real government spending on goods and services, a policy parameter,

 = “fiscal tightness” (shift parameter).

Contrary to the standard IS-LM model,  here refers to bank loans, not liquidity

demand. The subscript  stands for commercial banks, the subscript  for the non-bank

private sector, also called the “non-bank public”. All deposits are fully liquid in the sense

of being demand deposits (i.e., checkable deposits). The superscripts  and  signify supply

and demand, respectively. We ignore currency, and so the monetary base is identical to

the stock of bank reserves.

In studies like the present where there is a distinction between directly granted credit

and intermediated credit, it is common to speak of the latter as just “credit” and the

“bank lending channel” as just the “credit channel”.

The balance sheet2 of the central bank (CB) is given in Table 2.

2A balance sheet account shows the status (stock of assets and liabilities at a given point in time).

An operations account shows the deliveries and uses per period (flows).
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Table 2. Balance sheet of the central bank (CB).

Assets Liabilities

Currency (for simplicity here = 0)

̄ − = value of gov. bonds held by CB Deposits held by commercial banks

(here =0 =  +)

Gold Net worth

Total = Total

The aggregate balance sheet of the commercial banks is shown in Table 3.

Table 3. Merged balance sheet of the commercial banks.

Assets Liabilities

0 =  + = reserves (deposited in CB)  = liquid deposits held by the

non-bank public

 = loans to the non-bank public Long-term debt (for simplicity here = 0)

 = value of gov. bonds held by Net worth (for simplicity here = 0)

commercial banks

Total = Total

The fact that the major part of the assets of the commercial banks are long-term,

hence comparatively illiquid, while the major part of the liabilities are short-term, gives

rise to recurrent historical episodes of bank runs. The term bank run refers to situations

where many depositors, fearing that their bank will be unable to repay their deposits in

full and on time, simultaneously try to withdraw their deposits. This is the reason that

since the Great Depression of the 1930s, in developed countries deposits in ordinary banks

are typically protected by government deposit insurance up to a certain limit.

Throughout the analysis, the variables   ̄  and  are exogenous, given the

short time horizon of the model. For simplicity,  = 1 The expected inflation rate is

considered exogenous and, for simplicity, equal to zero. Financial wealth of the private

sector,  ≡ 0 + is exogenous as well. Until further notice, also the monetary base,

0 is exogenous in the sense of the CB using 0 as its policy instrument. The CB can

change 0 through an open market operation whereby ∆0 = −∆.

1.1 The supply of bank loans and broad money

From the balance sheet of the commercial banking sector in Table 3 follows the identity

0 +  + ≡  (1)
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We subtract required reserves,  on both sides of (1) to get

0 −  +  + ≡  +  + ≡ (1− ) 0 ≤   1

where  is excess reserves. So far this is just accounting, saying that disposable deposits,

(1 − ) on the liability side make up excess reserves,  loans,  and government

bonds,  on the asset side.

Given (1−) how are the components of the triple ( ) determined? Regard-

ing  we assume that to dispose of sufficient “cash” (be sufficiently liquid), the banks

generally have to hold some excess reserves. The desired amount of excess reserves de-

pends negatively on the opportunity cost, the bond interest rate,  forgone. Because of

their comparatively high degree of liquidity, government bonds make up a close substitute

for reserves. Denoting the desired fraction of disposable deposits held as excess reserves

() ∈ [0 1], we have
 = ()(1− ) (2)

where

()

⎧⎨⎩ = 0 for  ≥ ̄

∈ (0 1) and 0()  0 for 0    ̄

is set-valued (i.e., indeterminate) for  = 0

(3)

The upper bound, ̄ above which no excess reserves are held, will for our purposes be

treated as exogenous and “large” so as to not be binding. There is a zero-lower bound

for  because agents prefer holding money at zero interest rather than bonds at negative

interest. As indicated by (3), at the zero-lower-bound banks are indifferent between

holding excess reserves or government bonds.

How is the supply of bank loans determined? The fraction, (  ) ∈ [0 1]  of
disposable deposits used as bank loans is assumed to depend positively on the interest

rate obtainable on these and negatively on the opportunity cost, the interest rate on

bonds. That is,3

 = (  )(1− ) 0  0 0  0 0  0 as long as (  ) ∈ (0 1)

Indeed, offering bank loans is less attractive the higher is . And it is more attractive the

higher is  A precise no-arbitrage condition from the banks’ perspective between what

3In the present model, variable symbols may have many subscripts indicating the specific economic

interpretation of the variable. To avoid confusion, we shall therefore add a prime, 0 when consider-
ing partial derivatives. The partial derivatives of a function  = ( ) are thus denoted  0 and  0
respectively.
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is held as bank loans and what is held as government bonds is absent. This is due to

heterogeneity and unknown risk of default within the stock of bank loans. The negative

dependency of the supply of loans on the shift parameter  reflects that given the lending

rate,  less loans will be offered the higher the perceived riskiness.

The remaining part of disposable deposits, (1−)−(+) is placed in government

bonds.

We will concentrate on “normal circumstances” where both () and (  ) be-

long to the interior of [0 1]  That is, we assume “non-crisis circumstances” where   0

and  is not “too high”.

Since the model ignores currency, the monetary base,0 equals bank reserves held in

the CB. The money supply,
1  available for the non-bank private sector, equals deposits,

. The inverse of the money multiplier,  thus equals the reserve-deposit ratio:

1


=

0


1

=
0


=

 +


= + ()(1− ) ≡ 1

()
 (4)

where the fourth equality follows from (2). The money multiplier is thereby seen to be a

function, () of the interest rate on government bonds. From (4), and the fact that

0()  0 in (3), follows that 0()  0. In words, a higher bond interest rate implies

a higher money multiplier because a higher bond interest rate motivates the bank to hold

less excess reserves. Moreover, in view of   1 and as long as 0  ()  1 (which is

the case under “normal circumstances”), we have ()  1. To summarize, the money

supply can be written


1 =  = ()0  0 0()  0 (5)

1.2 The demand for M1-money and bank loans

The balance sheet of the non-bank private sector (households and production firms) is

given in Table 4. Aggregate nominal financial wealth of the non-bank private sector is

 .

Table 4. The balance sheet of the non-bank private sector.

Assets Liabilities

 = bank deposits  = bank loans

 = value of gov. bonds held by non-bank public  = net worth

Total = Total
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The demand function for bank loans (a stock) is assumed given by

 = (  ) 0  0 0  0 0  0

The demand derives from households’ and firms’ need for finance to purchase consump-

tion and investment goods, respectively. The positive dependency on  captures that

higher current income and employment stimulates consumption, directly as well as in-

directly through raising expected future income and thereby the state of confidence. To

smooth consumption, some households may need credit. Similarly, from the perspective

of production firms, a higher current level of economic activity,  may signal higher ag-

gregate demand in the near future (“good times are underway”), thus making investment

in increased capacity profitable.

The negative dependency of the demand for bank loans on the lending rate,  reflects

that bank loans are less attractive the higher the interest cost. Finally, a liability in the

form of a bank loan is likely to be more tolerable the higher is  because the borrower

may place temporary excess liquidity in government bonds.

The demand for deposits in the banks derives from liquidity being needed for transac-

tions. In addition, deposits offer a convenient book-keeping arrangement and a measure

against theft. The stock of checkable deposits willingly held by the non-bank private

sector is given by the money demand function


1 =( )  0

  0 0


 0

Money demand thus depends partly on aggregate economic activity (due to the transac-

tions motive) and partly on the opportunity cost of holding money, the interest rate on

government bonds. As the exogenous price level,  is set to 1,  is not visible.

In view of the balance sheet constraint


1 + =  + (6)

the demand for government bonds coming from the non-bank private sector is given as

the residual:  =  + −
1 

Since the banks are ultimately owned by households,  equals the aggregate nominal

financial wealth of the private sector as a whole and consists of the monetary base and

the value of outstanding government bonds, :

 ≡0 + (7)
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2 General equilibrium

There are three asset markets and an output market. There is abundant capacity in the

output market and the nominal price level is rigid in the short run so that output is

demand determined. Behind the scene employment adjusts to the demand for labor.

2.1 Equilibrium in the asset markets

The three asset markets to consider are the money market, the market for bank loans,

and the bonds market. Interest rates adjust so as to generate equilibrium in all three

asset markets. Since assets are stocks (quantities at a given point in time), we should

think of the asset markets as being open at a given moment of time, that is, either at the

beginning or the end of the current period. To fix ideas, we choose the beginning of the

period.

Considering the two first-mentioned asset markets, we have 
1 =

1  that is,

()0 =( ) (MM)

and  = , that is,

(  )(1− )()0 = (  ) (BL)

Regarding the third market, the bond market, let  denote the number of one-period

bonds issued by the government at the beginning of the period (recall that the government

debt has to be refinanced each period). Let each bond offer a payoff of 1 unit of money

at the end of the period. If   0 denotes the market price of a bond at the beginning of

the period, the effective interest rate  is given by the equation

 = 1(1 + )

The market value of the whole government debt at the beginning of the period is  ≡ 

Considering the demand side, the banks’ demand a quantity of bonds equal to  =

 and the non-bank private sector demands  =  Market clearing in the bond

market requires

 =  + 

This is equivalent to

 ≡  =  +  ≡  +
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So equilibrium in the bonds market is present if and only if

 =  + (8)

This equilibrium condition holds automatically, when the two other asset markets are

in equilibrium. This is the principle known as “Walras’ law for stocks” and is an implica-

tion of the balance sheet constraint of the private sector. This balance sheet constraint is

given by (7) combined with (6):


1 −  + = ≡0 + (9)

Indeed,

 ≡  −0 =  +
1 −  −0 (by (9))

=  −  +
1 −0 =  −  + −0 (by (MM), (BL), and (5))

=  −  + +  =  + (by (1)),

thus confirming that the bond market clears, i.e., (8) holds, if the money market and the

market for bank loans clear.

2.2 The output market

The asset market equilibrium conditions should be combined with equilibrium in the

market for output.

The expected inflation rate is by assumption nil. So the nominal interest rates,  and

 on bonds and bank loans, respectively, are at the same time real interest rates. We

assume that the sum, D of private consumption and investment can be written

D = (    ) + (  ) 0    ≤   +   1

where the partial derivatives of both the consumption and the investment function w.r.t.

the two interest rates are negative (see (YY) below). Here   =  − ( +  ( )) is

disposable private income,  being a shift parameter (“fiscal tightness”) and  ( ) being

the “automatic” net tax revenue, 0 ≤  0( )  1.

Interpreting D as a function, equilibrium in the output market can be expressed on

the compact form

 = D(   )+ 0  D
0
  1D0

  0D0


 0D0

 0−1  D0

 = −   0

(YY)
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We now have three equations, (MM), (BL), and (YY), and three endogenous variables,

  and 

3 Analysis

Let us derive a graphical representation of the economy in the ( ) plane in analogy of

the standard illustration of IS-LM equilibrium.

3.1 Derivation of the MP curve

For given 0 equilibrium in the money market immediately provides a monetary policy

curve, MP. Indeed, the equation (MM) defines  as an implicit function of  and 0 :

 =  (0) (MP)

The partial derivatives of this function can be found by taking the differential on both

sides of (MM):

()0 +00() = 0

 + 0

  (MM’)

By setting 0 = 0 and reordering, we fund



 |
=

 0


00()− 0


 0 (10)

cf. Fig. 2. The MP curve depicts the combinations of  and  that for a given 0 are

consistent with money market equilibrium. The MP curve is positively sloped. This is

because, for a given0 the higher transactions-motivated demand for money, induced by

a higher level of economic activity, results in initial excess supply of bonds, thereby low-

ering their price and so raising the interest rate,  As  is raised, the money multiplier

goes up because banks become more eager to turn excess reserves into interest bearing

assets.

In passing we note that by setting  = 0 in (MM’), while allowing an increase in the

monetary base of size 0 and reordering, we find



0 |

=
−()

00()− 0


 0 (11)

As long as the bond interest rate has not yet changed, the effect of an expansion of the

monetary base is an excess supply of money and excess demand for bonds. But thereby the
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price of bonds goes up which amounts to a fall in the bond interest rate,  thus driving

the money multiplier up and money demand down until equilibrium in the money market

is obtained, given the hypothetical unchanged level of output. In Fig. 2 below this tells

us that a higher 0 shifts the MP curve downwards and thereby, everything else equal,

stimulates output demand. This “channel” for the influence of money supply changes

on the economy is called the bond interest rate channel and represents a mechanism also

known from the simple IS-LM model.

We shall now see there is an additional channel, the bank lending channel.

3.2 Derivation of the IS curve

The description of equilibrium in the bank loans and output markets is a little more

cumbersome. First, consider the bank loan market. The equilibrium condition, (BL),

gives the lending rate as an implicit function of    and 0 :

 = (  0) (12)

The partial derivatives can be found by taking the total differential on both sides of (BL):

(1− ) [(  ) (()0 +00())

+ ()0(
0

 + 0 + 0)

¤
(13)

= 0 + 0 + 0 

We find the partial derivative of  w.r.t.  by setting  =  = 0 = 0 and

reordering:

 0 =



=

0
(1− )()0

0

− 0

 0 (14)

So, given   and 0 a higher  induces a tendency for the lending rate to rise. The

reason is that the induced higher transaction demand for money raises the demand for

bank loans. On the other hand this higher demand for bank loans is held at bay by this

very increase in the lending rate.

We find the partial derivative of  w.r.t.  by setting  =  = 0 = 0 in (13)

and reordering:

 0 =



=

0 − (1− )
£
(  )00() +()0

0


¤
(1− )()0

0

− 0

 0 (15)
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The positivity is imposed by assuming, as Bernanke and Blinder (1988) do, that 0()

is not “too large”. The intuitive explanation that this assumption is needed to get a

positive derivative  is as follows. On the one hand, given   and 0 a higher

bond interest rate raises the value of the option to place temporary excess liquidity in

bonds, thus making a high bank lending rate more tolerable. Moreover, from the banks’

perspective a higher bond interest rate makes it attractive to invest more in bonds and

offer less bank loans (0  0). This means upward pressure on the lending rate also from

the supply side. On the other hand there is a partly offsetting influence coming from the

induced rise in the money multiplier along with the rise in the bond interest rate. The

imposed assumption is that this influence is only partly offsetting.

The partial derivative of  w.r.t.  is found by setting  =  = 0 = 0 in (13)

and reordering:

 0 =



=

−(1− )()0
0


(1− )()0
0

− 0

 0 (16)

This derivative is positive because a higher perceived riskiness associated with offering

bank loans reduces the supply of bank loans. Given the demand for bank loans, the

lending interest rate thereby becomes higher.

Finally, the partial derivative of  w.r.t. 0 is found by setting  =  =  = 0

in (13) and reordering:

 00
=



0

=
−(1− )(  )()

(1− )()0
0

− 0

 0 (17)

An increase in the monetary base through an open-market purchase of bonds thus lowers

the bank lending rate. The mechanism is that the inflow of central bank money allows

the banks to increase profitable lending and at the same time maintain reserves at the

desired level. In turn, the raised supply of bank loans lowers the lending rate − and

thereby stimulates aggregate demand and output. This mechanism is called the bank

lending channel.

Now consider the equilibrium condition (YY) for the output market. Substituting (12)

into (YY) gives

 = D(  (  0) ) + (IS)

where the partial derivatives of D are reported in (YY). Instead of the standard IS equa-

tion we thus arrive at an IS equation the position of which depends both on the supply

of base money, 0 and the perceived riskiness of offering bank loans. The IS equation
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defines  as an implicit function of   0   and  :

 = ( 0  ) (IS’)

We find the partial derivatives of this function by taking the total differential on both

sides of (IS):

 = D0
  +D0


 +D

0

( 0  +  0 +  0 +  00

0) +D
0
 +  (18)

By setting  = 0 =  =  = 0 and reordering, we get



 |
=
1−D0

 −D0

 0

D0

+D0


 0

 0

where  0 from (14) can be inserted. For given  0   and  the IS equation thus

defines a negative relationship between  and  , cf. Fig. 2. This relationship is depicted

as the downward-sloping IS curve in the figure.

The interpretation of the IS curve is that it depicts the combinations of  and  that,

for given  0,   and  are consistent with equilibrium in both the market for bank

loans and the output market. The IS curve is negatively sloped because a rise in the bond

interest rate,  both directly and indirectly, via the associated increase in the lending

rate, cf. (15), reduces aggregate demand (via reducing consumption and investment). In

contrast to a standard IS curve, the position of this IS curve depends not only on the fiscal

policy parameters  and  but also on the supply of base money, 0, and the perceived

riskiness,  of offering bank loans. By setting  =  =  =  = 0 in (18), we find

that a higher 0 shifts the IS curve upwards. By setting  = 0 =  =  = 0, we

find that a higher  shifts it downwards.

3.3 General equilibrium

In general equilibrium both the output market, the money market, and the bank loan

market (and thereby also the bond market) clear. The equilibrium is given as the point

where the MP and IS curves in Fig. 2 cross. Since an upward-sloping MP curve and a

downward-sloping IS curve can only cross once, a solution to the model, ( ), is unique.

Assuming existence of a solution, we can thus write  and  as implicit functions of the

exogenous variables we are interested in:

 = (0  ) (19)

 = (0   ) (20)
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Figure 2: The IS-MP cross (for fixed 0  and ) A higher  shifts the IS curve to the

stippled position.

By construction, the equilibrium is a Keynesian equilibrium. The partial derivatives

of the solutions for  and  respectively, w.r.t.  0   and , can be found by using

Cramer’s rule on the system consisting of (MM) and (IS). If we are only interested in the

sign of the effects, “curve shifting” in Fig. 2 is in many cases sufficient.

Suppose an economic crisis is under way and that an increased riskiness of supplying

bank loans is perceived. The MP curve in Fig. 2 is unaffected, cf. the equation (MP).

The IS curve is shifted downwards because a higher , for fixed  and , induces a higher

 cf. (16). At a given output level,  equilibrium in the output market then requires

a lower  to compensate for the higher  cf. equation (YY). The conclusion is that

the IS curve will now intersect the MP curve South-West from the old equilibrium. So

both  and  will be lower in the new equilibrium. These responses of  and  imply a

dampening feedback on the “initial” rise in . But they do not eliminate the latter rise.

This is because the dampening feedback only exists to the extent that the net effect on

 of the higher  is positive. The final outcome is thus an increased spread:.higher bank

lending rate and lower interest rate on government bonds. A concomitant phenomenon

is a reduced money mulplier.

These traits describe well what happened in the U.S. both in the first years of the Great

Depression in the 1930s and when the full-scale financial and economic crisis we call the

Great Recession broke out in 2008-2009. The comparatively risk-free interest rates, like

14



those on government bonds fell while risky interest rates, like those on consumer loans

(car loans etc.) and corporate bonds, rose.

4 Policy

Monetary policy: Suppose 0 is increased through an open market operation, implying

∆0 = −∆  0 Then the IS curve shifts to the right because the lending rate decreases,

cf. (17), and this raises output demand and thereby  for given  as indicated by the

(IS) equation where D0

 0 The MP curve shifts down as we see from (11). The effect

of the monetary expansion is thus a lower lending rate and higher output, while the effect

on the bond interest rate is ambiguous.

Fiscal policy: Although a rise in  (not accompanied by a change in 0) will auto-

matically raise tax revenue, this may not be enough to avoid a budget deficit. There will

thereby be a larger supply of government bonds next period. Feedback effects from this

are ignored in this simple model. The case of a fully financed fiscal expansion can be

analyzed by the method used for the simple IS-LM model in Chapter 21.3.

An alternative version of the model would consider  as the monetary policy instru-

ment (as long as the zero-lower-bound is not binding) and then let0 adjust endogenously.

Allowing corner solutions − desired excess reserves  = 0 for instance − the model
should be extended to include credit rationing. See Blinder (1987). Stiglitz and Weiss

(1981) study the microeconomics of credit rationing from an incomplete-information per-

spective.

In Exercise Problem X.2 the reader is asked to apply this model for a series of economic

questions.

Banks runs Bank runs as a self-fulfilling prophesy (see Diamond and Dybvig (1983),

Diamond (2007), Gertler and Kiyotaki, 2015). In view of government regulation and

the institution of deposit insurance since the 1930s, bank runs on ordinary banks are no

longer common, but phenomena similar to bank runs, driven by self-fulfilling expectations,

may occur vis-a-vis financial intermediaries in a broader sense, like investment banks and

mutual funds (think of Lehman Brothers, ).
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Advanced Macroeconomics Short Note 4.

28.12.2015 Christian Groth

A model of “short-to-medium run” dynamics:

Phillips curve, Taylor rule, and liquidity trap

This note presents and analyzes a simple Keynesian model of “short-to-medium run”

dynamics under the assumption that monetary policy pursues a Taylor rule, also known

as inflation targeting. This is a counter-cyclical monetary policy which uses the short-

term nominal interest rate actively to counteract deviations of output and inflation from

their structural and desired levels, respectively. To put it differently, through open market

operations the central bank let the money supply respond to business cycle fluctuations

in inflation and output.

A Taylor rule contrasts with monetarist policy. The latter may be defined as a

monatary policy where the central bank tries to maintain a constant but low growth

rate in the money supply, possibly a zero or even a negative growth rate. In this way,

according to monetarists (Milton Friedman and followers), monetary policy would not

only restrain inflation but also promote stability.

1 A dynamic IS-MP model with a Phillips curve

We consider a closed economy. Time is continuous. We ignore the time lag between

output and aggregate demand.

1.1 The private sector

As we do not want our dynamic system to be too complicated, we let the aggregate demand

function have only two endogenous variables as arguments, namely current aggregate

income and the expected real interest rate faced by borrowing households and firms. At

a given point in time we have

 = (  ) 0    1   0  0 (1)
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Here  is aggregate output, and  is the expected real interest rate faced by the ulti-

mate private borrowers, while  is a shift parameter on which aggregate demand depends

positively.

For convenience we will base the analysis on a log-linear approximation to the equation

(1). On both sides of (1) we take the total differential, to get  =   +
+

Isolating the  terms, we have

(1− ) = 
 +

Dividing through by (1− ) gives




=  ln =



(1− )
 +



(1− )
 (2)

We assume the coefficients to  and  are constants and name them −  0 and 

respectively. Then we can write  ≡ ln = − +  +  where  is an arbitrary

constant. Redefining our shift parameter to be  ≡  +  and letting time be explicit,

we end up with

 = −     0   0 (3)

The shift parameter  is an index of “autonomous demand”. It varies positively with any

exogenous variable with the property that the higher its value, the higher is aggregate de-

mand, everything else equal. In the present context we interpret the size of  as reflecting

the “state of confidence” and therefore call  the confidence parameter. Alternatively,

 could reflect expansionary fiscal policy, an interpretation which we postpone to the

concluding section.

Given the “short-to-medium-run” perspective of the model, it should embrace a Phillips

curve of some sort. We assume the following relationship:

̇ = ( − ∗)   0 ∗  0 0 given, (4)

where  measures the reaction speed. This says that inflation speeds up or slows dow-

naccording to whether output is above or below a certain level, ∗ ≡ ln ∗ respectively.
We may interpret this as reflecting a “wage-price spiral”. In a boom (  ∗) unem-

ployment is low and workers’ bargaining position strong. This results in fast nominal

wage increases. Via firms’ markup pricing fast inflation is induced. As long as the boom

continues, faster and faster nominal wage and price increases ensue. In a slump (  ∗)

workers’ bargaining position is weak and the spiral goes the opposite way. 1

1By considering the reaction speed  constant, rather than an increasing function of inflation, we

simplify somewhat. The empirics tell that when the inflation rate has become low, it tends to be more

and more sticky downwards (see Hendry and ??, 2013).
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When  = ∗ there is no internal pressure on inflation. Thus, ∗ is the NAIRU level

of output, also known as the “natural” or the “neutral” level of output (we use the term

“output” whether we think of  or  ≡ ln ). For simplicity, ∗ is assumed to be time
independent, that is, the model abstracts from growth in labor force and technology. More

important is that (4) indicates that the inflation rate is predetermined. So the inflation

rate is sticky and can not jump. Inflation changes gradually over time in response to the

output gap, − ∗2 The message of the Phillips curve is that the output gap determines

the change in inflation rather than the level of inflation.

Let ̄ ( ∗) be the value of the confidence parameter under “normal circumstances”.

By plugging this value and NAIRU output, ∗, into (3), we find the required value of 

to be
̄− ∗


≡ ̂ (5)

This interest rate level is known as the natural real rate of interest. It is the real interest

rate required for “full employment” (zero output gap) under “normal circumstances” and

fullfilled expectations.

The link between the expected real interest rate and the nominal interest rate,  on

short-term government bonds is

 ≡  +  −   (6)

Here,  ≥ 0 is the spread (also known as the interest differential), that is, the difference
between  and the nominal interest rate faced by the non-bank public (the bank lending

rate and the rate on corporate bonds, for instance). Finally,  is the inflation rate

(= ̇) while the superscript  indicates expected value.

As the nominal interest rate  is controlled by the central bank through open market

operations, we will call it the policy rate. The spread  will be a positive number. This

reflects that government bonds are practically risk-free (usually), while loans to the ulti-

mate borrowers in the private sector are generally risky. We take the easy way and treat

the spread,  as exogenous in the short run. But if the state of confidence changes, so

does the spread in the following way:

 = () 0()  0

In the IS-BL model of Short Note 3, the spread is measured by − and is endogenously
determined.

2This seems to be in accordance with the empirics for industrialized economies without hyperinflation,

cf. for instance Mankiw (2001).
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Until further notice, we do not want to be specific about how expectations are formed,

that is, how  is determined. We just assume that in their expectations both households

and firms agree with the central bank. So there is only one  in the economy.

1.2 The central bank

The central bank pursues a certain inflation target, ̂ In addition, we assume that the

central bank, owing to its accumulated experience, knows ∗. Through open market

operations the central bank then establishes its policy rate,

 = max [0 ̂+ 1( − ∗) + 2(

 − ̂)]  (7)

where ̂ ≡ ̂ − (̄) + ̂ ̂  0 0  (̄)  ̂ + ̂ 1 ≥ 0 2  1

This is an example of a Taylor rule. As long as the zero lower bound on the nominal

interest rate is not binding, the central bank adjusts the policy rate,  depending on

the current output gap,  − ∗ and expected excess inflation,  − ̂. Thereby the

expected real interest rate,   in the economy is raised or lowered depending on whether

a dampening or stimulation of aggregate demand is called for. The limiting case 1 = 0

such that the policy rate does not at all respond directly to the output gap is included as

a special case of the Taylor rule. The imperative 2  1 is known as the Taylor principle.

It ensures that an increase in  results in a larger increase in  so as to raise 

 and

thereby dampen output demand.

The parameter ̂ may be called the natural nominal interest rate. It is that nominal

interest rate which, when expected inflation equals target inflation, and circumstances are

“normal”, makes the expected real interest rate equal to the natural rate:

 ≡ +  −  = ̂+ (̄)− ̂ ≡ ̂

A downward shift in  may bring the economy into recession, however. If the recession

is deep enough, the targeted nominal short-term rate implied by the Taylor rule will be

negative. Then the zero lower bound (ZLB) indicated by (7) becomes binding, and the

actual nominal short-term rate,  stays at nil for some time. Further increases in the

money supply can not bring  below 0 because agents prefer holding cash at zero interest

rather than short-term bonds at negative interest.

We shall consider the described economy under two alternative scenarios, one where

the lower bound on the interest rate is not binding and one where it is binding. The
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exogenous variables are 1 2 
∗ ̂ and  The quasi-fixed interest spread  is deter-

mined by the confidence parameter  through the function  = (). There are five

endogenous variables in the system:  

   


  and  but so far only four equations.

The lacking element is a specification of how expectations are formed. Below, we shall

consider different approaches to this problem.

Before proceeding, let us write the Taylor rule on a more compact form:

 = max [0 0 + 1 + 2

 ]  (8)

where

0 ≡ ̂− 1
∗ − 2̂ ≡ ̂ + ̂ − (̄)− 1

∗ − 2̂ (9)

a constant.

Empirically there are signs that central banks prefer to “smooth” the time path of

the interest rate, letting the policy rate be a weighted average of the rate in the pre-

vious period and the current “pure” Taylor-rule value,  , given from (7). Thereby 

= max
£
0 −1 + (1− )

¤
 In the present exposition we do not integrate this.

2 Short-run equilibrium when the ZLB is not binding

Combining (3) and (6), equilibrium in the output market can be written

 = − ( + ()− ) (IS)

From this we can isolate the nominal interest rate:

 =



− ()− 


+   (IS’)

Assuming the zero lower bound on the interest rate is not binding, the Taylor rule (8)

gives

 = 0 + 1 + 2

  (MP)

where MP stands for monetary policy.

2.1 The IS-MP cross

At any given point in time,  there are historically given expected and actual inflation

rates,  and  respectively. So for fixed  the combinations of  and  that are
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Figure 1: Short-run equilibrium at the IS-MP cross at time  for given   ̂ and  (1 0).

consistent with equilibrium in the output market are given by the equation (IS). In Fig. 1

these combinations are depicted as the downward-sloping IS curve. Although this curve,

as well as the MP curve, is here a straight line (due to log-linearization), we shall stick to

the standard terminology and speak of both as “curves”.

The upward-sloping MP curve in Fig. 1 represents the combinations of  and  that

are consistent with the Taylor rule (MP). The point of intersection between the IS and

MP curves represents the short-run equilibrium, ( ) at time 

Fig. 1 also indicates that for greater expected inflation, both the IS curve and the MP

curve moves upwards. For a given ∆ the MP curve features the largest upward shift in

view of 2  1 (compare (MP) and (IS’)). Hence the new equilibrium value of  will be

smaller than the old. This is a first indication of the counter-cyclical role of the Taylor

rule and anticipates what the dynamic analysis below will unfold.

In view of the linearity of the model, we easily get an explicit solution for the short-run

equilibrium value of . Inserting (MP) into (IS) gives

 = − (0 + 1 + 2

 + ()− )

Rearranging,

(1 + 1) = − (0 + ())− (2 − 1) 
implying

 = 0()− 1

  (AD)
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where

0() =
−  (0 + ())

1 + 1


1 =
(2 − 1)
1 + 1

 0 (10)

The relationship (AD) tells us that, given the confidence parameter  and thereby

given the spread, () aggregate demand and thereby output is − through monetary
policy − determined by expected inflation. We may denote this relationship a medium-
term aggregate demand curve of this economy.

2.2 The AD curve under “normal circumstances”

Fig. 2 depicts in the ( ) plane the AD curve under “normal circumstances”, i.e., when

confidence takes its “normal” value ̄ Then the AD curve reads

 = 0(̄)− 1

  (AD)

As long as  = ̄ the AD curve is fixed and the economy must be at some point on this

curve (line), depending on the current expected rate of inflation.

What ensures the negative slope of the AD curve is the Taylor rule, which is clearly

a counter-cyclical monetary policy. As appears from (10), the negative slope is due to

the fact that the coefficient, 2 in the Taylor rule is greater than one. A more “passive”

monetary policy, keeping  constant or allowing only a modest response to a rise in

expected inflation, would make the AD curve positively sloped. This would make stability

of the economy much more precarious.

The situation depicted in Fig. 2 is one where at time 0,  = 0  ̂ cf. the point

A in the figure. The corresponding equilibrium output, 0 is higher than NAIRU output

as indicated on the horizontal axis. So initially the economy is in a boom. This might

seem paradoxical since the initial expected inflation is relatively low. But a high level of

output requires a high level of aggregate demand which in turn requires a low expected

real interest rate. By (MP) we have

 =  + (̄)−  = 0 + 1 + 2

 + (̄)−   (11)

where 

 = 2 − 1  0 So, in spite of the conceptual relationship,  ≡ +  − 

the real interest rate depends, everything else equal, positively on the expected inflation
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Figure 2: AD is the AD curve under “normal circumstances”, i.e., when  = ̄

as a result of the Taylor rule. The low expected real interest rate needed to get high

aggregate demand will be concomitant with a diminished expected inflation rate and an

even more diminished.policy rate, 

The arrows in Fig. 2 are explained below.

3 Dynamics when the ZLB is not binding

We shall here characterize the time path of  under the assumption that the zero lower

bound, ZLB, never becomes binding. We start with the easiest case, the benchmark case

of rational expectations which here means perfect foresight with respect to the inflation

rate.

3.1 Dynamics under perfect foresight

Assuming perfect foresight, we have

 =  and  =  + (̄)−  ≡  for all 
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Then the equation (AD) simplifies to

 = 0(̄)− 1 (12)

or, by inverting,

 =
0

1
− 1

1


Because  =  we interpret the ( 
) plane in Fig. 2 as an ( ) plane. The shown

AD curve in Fig. 2 is still a valid representation of the economy as long as the state of

confidence is unchanged so that  = ̄ Depending on the predetermined initial inflation

rate, 0 the economy must at time 0 be at the corresponding point, (0 0) on this curve.

The figure depicts a situation where for some historic reasonal 0  ̂ The corre-

sponding 0 is therefore above NAIRU output. The economy is in a boom, a state of

affairs which in view of the Taylor rule requires low (expected and actual) inflation but

via the Phillips curve induces rising inflation over time, triggered by the high 0. Indeed,

the Phillips curve tells us that the output gap determines the change in inflation rather

than the level of inflation. And the Taylor rule requires that the inflation coefficient, 2

is above 1 so that rises in the inflation rate prompt even greater rises in the nominal in-

terest rate. Thereby the real interest rate is raised and this gradually dampens aggregate

demand and output. Monetary policy is thus in its “tightening mode”. The adjustment

takes place along the AD curve from the initial point A in Fig. 2 towards the steady-state

point E in the figure.

Let us instead imagine that the historically inherited inflation rate is relatively high,

i.e., 0  ̂ The corresponding equilibrium output, 0 is then below NAIRU output.

Again, this may seem a paradoxical situation since the initial inflation is relatively high.

Once more the explanation is that the policy parameter 2 exceeds 1. So a low level of

output requires a low level of aggregate demand which in turn requires a high expected

real interest rate. This is exactly what the monetary policy in this situation brings about.

When the inflation rate is above its steady state level, ̂ monetary policy chooses a

nominal interest rate even more above its steady state level. This implies a high real

interest rate and thereby low aggregate demand and output. So initially the economy is

in a recession. The situation is characterized by high but falling inflation, triggered by

the low 0 via the Phillips curve. And as the inflation rate is lowered over time, an even

larger lowering of the nominal interest rate is attained by monetary policy. In this sense

monetary policy is here in its “relaxing mode”. A decreasing real interest rate results.

So aggregate demand and output are gradually stimulated in the process down the AD

curve.
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As a conclusion, if no new shocks occur, over time the economy settles down in steady

state at the point E in Fig. 2. A convenient feature of this dynamic IS-MP model is that,

contrary to an AD curve in the (  ) plane, as in the static AS-AD model, it gives rise to

an AD curve in the ( ) plane along which the dynamic adjustment of the economy takes

place (at least if actual and expected inflation coincide) in the absence of new shocks.

The corresponding dynamics in the ( ̇) plane is depicted in Fig. 6 in the appendix.

3.2 Dynamics in the absence of perfect foresight

Our specification of the Taylor rule assumes that monetary policy is forward-looking and

responds to anticipated inflation rather than actual inflation. Under perfect foresight this

of course makes no difference. What can we say in the absence of perfect foresight?

First, our Taylor rule still ensures that equilibrium output at a given point in time

is determined uniquely for a given expected inflation rate as in the equation (AD). The

aggregate demand curve, AD, remains valid for the case  = ̄ and Fig. 2 is still useful.3

Second, the ensuing dynamics can be described as follows. At time 0, there is a

historically given expected inflation rate, 0 Suppose 

0  ̂ Then the corresponding

initial aggregate demand is high and 0 therefore above NAIRU output. Whether or not

the actual inflation rate initially differs from the expected, the situation triggers, through

the Phillips curve (4), a rising actual inflation rate along with a falling, but still high,

output level. Even without setting up a specific formula for expectations formation, we

can at least say that if expected inflation also gradually rises, the economy represented

by the point ( 

) will again move up the AD curve in Fig. 2. As long as   ∗ actual

inflation will also rise although the speed may deviate from that of expected inflation. If

no new shocks occur, over time the economy may again settle down in steady state at E

in Fig. 2, where both  and  will equal ̂.

This stability property definitely holds if we specify expectations to be formed accord-

ing to the adaptive expectations formula,

̇ = ( − )   0 (13)

Inserting (AD) into the Phillips curve (4), we get

̇ = (
̄− (0 + (̄)− (2 − 1)

1 + 1
− ∗) (14)

3With actual inflation entering the Taylor rule instead of expected inflation, aggregate demand would

become a function of both expected inflation, via (IS), and actual inflation, via the Taylor rule. We would

then need a three-dimensional diagram.
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Hereby we have a system of two linear differential equations in two endogenous variables,

 and  both of which are predetermined. The steady state is (̂, ̂) and is globally

asymptotically stable. That is, for arbitrary initial values, 0 and 0 the solution, (

  )

converges to the steady state for →∞4

4 An adverse demand shock

We return to the assumption of rational expectations (perfect foresight).

Suppose that up until time 1 the economy is in steady state with  = ̂ and the

confidence parameter  has its “normal” value, ̄ so that 0 = 0(̄) Then, unexpectedly,

a fall in the general state of confidence to the level 0  ̄ occurs. This amounts to an

adverse demand shock. The background could be a financial crisis in the aftermath of a

sharp fall in house prices. The interest spread now rises to 0 = (0)  ̄ which prompts

a reduced 0, at least for a while.

We first consider the case where the adverse demand shock is “minor” so that the ZLB

does not become binding.

4.1 Restoration when the shock is “minor”

Suppose the demand shock is “minor”. It shifts the AD curve down to the new position,

indicated by AD’ in Fig. 4. Immediately after the shock the economy shifts its position

from the point E to the point P in the figure. The implied recession activates the Taylor

rule, both via the output gap (if 1  0) and, possibly with a delay, via low expected and

actual inflation generated by the Phillips curve in response to   ∗ That is, over time

the economy travels down the new AD curve, AD’, towards a new (quasi-)steady state,

E’. So the recession is not lasting. This new steady state is conditional on no repair of

confidence taking place.

Alternatively we may imagine that during the adjustment process, after a while, the

experience of a gradual upturn restores confidence. As a crude representation of this,

we imagine that a complete restoration of confidence takes place in a discrete jump at

time 2  1 So, for  ≥ 2, equation (AD) with the old 0 = 0(̄ ̄) is again valid. In

4This follows by calculating the Jacobian matrix of the right-hand sides of (13) and (14). We get that

the trace equals − and the determinant equals [(2 − 1)] (1 + 1) Thereby the trace is negative

and the determinant positive which is necessary and sufficient for a two-dimensional linear dynamic

system, where both variables are predetermined, to be globally asymptotically stable, cf. Sydsæter et al.

(2008, p. 244).
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Figure 3: Adjustments after an adverse demand shock has shifted the AD curve leftward so

that initially the economy is at P rather than E. The case where  =  for all  ≥ 0

Fig. 3 the restoration of confidence shifts the aggregate demand curve back to its original

position, AD, and the position of the economy to the point A. Instead of settling down

at ∗ the economy thus experiences a boom with   ∗. Then inflation begins to rise

through the Phillips curve and monetary policy gradually dampens demand and output

through the Taylor rule. Over time the economy moves up the AD curve and approaches

the old steady-state point E.

The corresponding dynamics in the ( ̇) plane for  ≥ 2 is depicted in Fig. 7 of the

appendix.

4.2 Deep recession when the ZLB becomes binding

We now assume that the adverse demand shock occurring at time 1 is a “large” shock, so

that the target interest rate in (7) becomes negative. Then the ZLB becomes binding and

instead of the target interest rate being realized we get  = 0 This is what happened in

the US and several other countries when the full-blown financial crisis late in 2008 took

place.

In the present model this means that immediately after the shock, aggregate output
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is

1 = 0 − (0 + (0)− ̂)  ∗

Due to the binding ZLB the nominal interest rate remains at nil for some time. So conven-

tional monetary policy does not work − the economy is in a liquidity trap. We maintain
the assumption that expected and actual inflation coincides. Through the Phillips curve

the recession triggers a falling inflation rate. The expected as well as the actual real inter-

est rate rises, whereby aggregate demand and output are further reduced, thus sustaining

the tendency for the inflation rate to fall. So the real interest rate is further increased. A

vicious spiral is unfolding.

In algebra, for  ≥ 1 we have

 = 0 −  = 0 − (0 + (0)− ) = 0 − (0) +  (15)

̇ = ( − ∗) = (0 − (0) +  − ∗) = (0 − (0)− ∗) +   0(16)

So, for  ≥ 1 both output and inflation will be falling and  rising. The recession

becomes a depression and there will be no recovery until other monetary or fiscal policies

are introduced. Alternatively, the crisis may last until the capital stock has been worn

down enough − and new innovation possibilities have mounted up enough − to generate
a new upturn with rising capital investment and construction activities.

The condition that the lower bound is binding can be represented by a particular area,

the liquidity trap region, in the ( ) plane of Fig. 4. In view of (7), the boundary of the

liquidity trap region is given by the equation

̂+ 1( − ∗) + 2( − ̂) = 0 (17)

Rearranging, this gives

 =
1

∗ + 2̂ − ̂

2
− 1

2
 (18)

Comparing the absolute slope of the boundary of the trap region, 12 with the slope of

the AD and AD’ curves, we see that the former is smaller than the latter, as also indicated

in Fig. 4.

There are two cases to consider: 1  0 and 1 = 0.

4.2.1 The case 1  0 : Monetary policy responds directly to both gaps

The shaded area in Fig. 4 represents the liquidity trap region for the case 1  0 where

the boundary of the liquidity trap region is downward sloping. The point P indicates the
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Figure 4: A large demand shock causes the liquidity trap to be operative when the economy

hits the point P’ (the case 1 0).

position of the economy immediately after the adverse demand shock. In the text above

we implicitly assumed that P were at P” or to the left of P”, say at P”’. In this case the

lower bound is immediately operative and forces the economy to move South-West in the

diagram as indicated at the point P”’.

As Fig. 4 is drawn, however, P is to the right of the point P”, implying that the lower

bound is not immediately operative. Nevertheless, in the process of lowering the nominal

interest rate more than inflation falls, monetary policy hits the zero lower bound, at time

2  1, cf. the point P’ in Fig. 4. From then on the economy is governed by (15) and

(16). The movement is South-West along the positively sloped aggregate demand curve

AD” in the diagram. The vicious spiral unfolds with output falling owing to a rising real

interest rate caused by a continuing fall in the inflation rate due the low level of output

while there is no longer a falling nominal interest rate.

There is empirical evidence that when the price inflation has become low, it tends

to be more and more sticky downwards; similarly with wage inflation (see Hendry and

??, 2013). This may end the vicious spiral but does not reverse it. Inflation,  may go
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negative, which amounts to deflation, as we saw under the Great Depression in the 1930s.5

Also  may go negative. This might seem absurd, but is not, since  is the logarithm of

output.

In Fig. 8 of the appendix is depicted what the vicious spiral looks like in the ( ̇)

plane.

Let us consider the question: How large is the minimum adverse demand shock needed

to bring the economy immediately into the liquidity trap region? At the point P” on the

boundary of the liquidity trap region, we have  =  = ̂ The associated output level

is, by (18),

 = ∗ − ̂

1


If 1 equals this value and we define 
0
0 ≡ 0(

0) we have by (AD)

 = 00 − 1̂ = ∗ − ̂

1
= 0(̄)− 1̂ − ̂

1


because ∗ satisfies the equation (AD) with  = ̂ So the minimum adverse demand

shock (drop in 0) needed to immediately bring the economy into the liquidity trap region

is

∆0 = 0(̄)− 0
0 =

̂

1
(19)

If the adverse demand shock is greater than this value, the lower bound becomes binding

immediately at time 1.

An alternative benchmark case arises when we ask: How large is the maximum adverse

demand shock allowing the economy to reach the conditional steady state, E’, without

ever entering the liquidity trap region? According to (17), the inflation rate where the

boundary of the liquidity trap region intersects the vertical line  = ∗ in Fig. 4 is ̂−̂2
Given the slope, −11 of the AD0 curve, the maximum adverse demand shock (drop in

0) allowing the economy to reach the conditional steady state, E’, without ever entering

the liquidity trap region is

∆0 = 0(̄)− 0
00 = 1

̂

2
=

(2 − 1)̂
(1 + 1)2

 (20)

5At the time of writing, the European central Bank (ECB), currently facing an inflation rate in the

Eurozone down at 0.3 percent on an annual basis, conducts quantitative easing (see Section 5 below) in

its attempt to stop the vivious spiral and avoid the Eurozone ending up in deflation.

15



  

'AD  

''AD  

2t
y  

1t
y  

 

2

1

( 1) 



 

  

, e   

y

AD  

y*  

̂  

0 0   

E  

2

ˆ
ˆ

i


  

P  
  

1


 

'P  

'E  

0    0   

Figure 5: A large demand shock causes the liquidity trap to be operative when the economy

hits the point P’ (the case 1 = 0).

4.2.2 The case 1 = 0 : Monetary policy only responds directly to expected

inflation

When 1 = 0 the boundary of the liquidity trap region is horizontal. The shaded area

in Fig. 5 represents the region in this case. Again the point P indicates the position of

the economy immediately after the adverse demand shock at time 1 By inspection of

the figure, since by assumption ̂  0 P is necessarily situated above the liquidity trap

region. Anyway, falling inflation sets in. In the process of lowering the nominal interest

rate even more than inflation falls, monetary policy may hit the lower bound during the

adjustment. As the figure is drawn, this happens at time 2 cf. the point P’ in Fig. 5.

From then on the vicious spiral unfolds and the economy moves South-West along the

positively sloped aggregate demand curve AD” in the diagram.

If, however, the adverse demand shock is not greater than the right-hand side in (20)

with 1 = 0 the economy moves down the AD’ curve towards NAIRU output without

interference with the lower bound.
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5 Policy options

We have studied the dynamic interaction of an “accelerationist” Phillips curve and mon-

etary policy in accordance with the Taylor rule.

A situation where the economy ends up in the liquidity trap region calls for other

types of policy than conventional monetary policy. One possibility is to raise the inflation

target and thereby inflation expectations.

A second possibility is expansionary fiscal policy. When the economy is in a liquidity

trap, fiscal policy multipliers tend to be high. This is so for several reasons. One is

that there will be no financial crowding out as long as the aim of the central bank is to

maintain the policy rate as low as possible. Another is that the economic situation which

has triggered the liquidity trap is also a situation where involuntary unemployment tends

to be high.

A third possibility is quantitative easing (QE). It can take several forms. The central

bank may offer credit to financial intermediaries (banks, mutual funds, mortgage credit

companies, insurance firms, etc.) on more gentle conditions than usually. Or it may itself

directly try to reduce the spread,  and the maturity premium on long-term government

bonds by buying other financial assets than short-term government bonds in the financial

sector.

Yet another form of QE is “helicopter money” as Milton Fridman called it. This is

actually fiscal policy in the form of income transfers to the private sector directly financed

by money issue.

6 Appendix: Illustrations in the ( ̇) plane

In this appendix we illustrate the dynamics in an alternative way, namely in the ( ̇)

plane rather than the ( ) plane. We stick to the case of perfect foresight:  =  for

all 

Dynamics when the lower bound is not binding. After substitution of (AD) into

the Phillips curve, we have

̇ = (0(̄)− 1 − ∗) (21)
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The graph of this relationship is shown in Fig. 6 as the downward-sloping solid line in the

figure. As long as  = ̄, the economy must be at some point on this line, and if   ̂

will be growing towards ̂ while if   ̂ will be falling towards ̂. Over time the

economy moves along the line (21) until steady state at the point E is “reached”.

Also a recession resulting from an adverse demand shock is illustrated in Fig. 7. The

shock shifts the line (21) to a new lower level in the figure. The position of the economy

shifts from the point E to the point P. Hereafter, due to the recession there is a gradual

fall in inflation which, by the monetary policy, is accommodated by a faster fall in the

nominal interest rate so as to lower the real interest rate.

The restoration of confidence at time 2 with resulting dynamics is illustrated in Fig.
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Figure 8:

7. The favorable restoration of confidence shifts the line (21) back to its original level.

The resulting boom triggers a gradual rise in inflation. Through the monetary policy the

nominal interest rate rises even faster, thereby gradually raising the real interest rate.

The boom is thus dampened and the economy is gradually brought back to the original

steady state, E.

Dynamics when the lower bound is binding. As we saw in Fig. 4, if the adverse

demand shock at time 1 is large enough, the economy may immediately after the shock

be at point P in that figure and then, after some time enter the liquidity trap region at

point P’ where the vicious spiral takes over. Fig. 8 shows the corresponding evolution in

the ( ̇) plane.
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