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A glimpse of theory of
the “level of interest rates”

This short note provides a brief sketch of what macroeconomics says about the general

level around which rates of return fluctuate. We also give a “broad”summary of different

circumstances that give rise to differences in rates of return on different assets.

In non-monetary models without uncertainty there is in equilibrium only one rate of

return, r. If in addition there is a) perfect competition in all markets, b) the consumption

good is physically indistinguishable from the capital good, and c) there are no capital

adjustment costs, as in simple neoclassical models (like the Diamond OLG model and

the Ramsey model), then the equilibrium real interest rate is at any time equal to the

current net marginal productivity of capital evaluated at full employment (r = ∂Y/∂K−δ
in standard notation). Moreover, under conditions ensuring “well-behavedness”of these

models, they predict that in the absence of disturbances, the technology-corrected capital-

labor ratio, and thereby the marginal productivity of capital, adjusts over time to some

long-run level (on which more below).

Different rates of return In simple neoclassical models with perfect competition and

no uncertainty, the equilibrium short-term real interest rate is at any time equal to the

net marginal productivity of capital (r = ∂Y/∂K − δ). In turn the marginal productivity
of capital adjusts over time, via changes in the capital intensity, to some long-run level

(on this more below). As we saw in Chapter 14, existence of convex capital installation

costs loosens the link between r and ∂Y/∂K. The convex adjustment costs create a

wedge between the price of investment goods and the market value of the marginal unit

of installed capital. Besides the marginal productivity of capital, the possible capital gain

in the market value of installed capital as well as the effect of the marginal unit of installed

capital on future installation costs enter as co-determinants of the current rate of return

on capital.
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Arithmetic
average

Standard
deviation

Geometric
average

Small Company Stocks 17,3 33,2 12,5
Large Company Stocks 12,7 20,2 10,7
LongTerm Corporate Bonds 6,1 8,6 5,8
LongTerm Government Bonds 5,7 9,4 5,3
IntermediateTerm Government Bonds 5,5 5,7 5,3
U.S. Treasury Bills 3,9 3,2 3,8
Cash 0,0 0,0 0,0
Inflation rate 3,1 4,4 3,1

Small Company Stocks 13,8 32,6 9,2
Large Company Stocks 9,4 20,4 7,4
LongTerm Corporate Bonds 3,1 9,9 2,6
LongTerm Government Bonds 2,7 10,6 2,2
IntermediateTerm Government Bonds 2,5 7,0 2,2
U.S. Treasury Bills 0,8 4,1 0,7
Cash 2,9 4,2 3,0

 Percent 

Real values

Nominal values

Table 1: Average annual rates of return on a range of U.S. asset portfolios, 1926-2001.
Source: Stocks, Bonds, Bills, and Inflation: Yearbook 2002, Valuation Edition. Ibbotson
Associates, Inc.

When imperfect competition in the output markets rules, prices are typically set as a

mark-up on marginal cost. This implies a wedge between the net marginal productivity

of capital and capital costs. And when uncertainty and limited opportunities for risk

diversification are added to the model, a wide spectrum of expected rates of return on

different financial assets and expected marginal productivities of capital in different pro-

duction sectors arise, depending on the risk profiles of the different assets and production

sectors. On top of this comes the presence of taxation which may complicate the picture

because of different tax rates on different asset returns.

Nominal and real average annual rates of return on a range of U.S. asset portfolios for

the period 1926—2001 are reported in Table 1. By a portfolio of n assets, i = 1, 2, . . . , n

is meant a “basket”, (v1, v2, . . . , vn), of the n assets in value terms, that is, vi = pixi is

the value of the investment in asset i, the price of which is denoted pi and the quantity

of which is denoted xi. The total investment in the basket is V =
∑n

i=1 vi. If Ri denotes

the gross rate of return on asset i, the overall gross rate of return on the portfolio is

R =

∑n
i viRi

V
=

n∑
i=1

wiRi,
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where wi ≡ vi/V is the weight or fraction of asset i in the portfolio. Defining Ri ≡ 1+ ri,
where ri is the net rate of return on asset i, the net rate of return on the portfolio can be

written

r = R− 1 =
n∑
i=1

wi(1 + ri)− 1 =
n∑
i=1

wi +

n∑
i=1

wiri − 1 =
n∑
i=1

wiri.

The net rate of return is often just called “the rate of return”.

In Table 1 we see that the portfolio consisting of small company stocks throughout the

period 1926-2001 had an average annual real rate of return of 13.8 per cent (the arithmetic

average) or 9.2 per cent (the geometric average). This is more than the annual rate of

return of any of the other considered portfolios. Small company stocks are also seen to

be the most volatile. The standard deviation of the annual real rate of return of the

portfolio of small company stocks is almost eight times higher than that of the portfolio

of U.S. Treasury bills (government zero coupon bonds with 30 days to maturity), with

an average annual real return of only 0.8 per cent (arithmetic average) or 0.7 per cent

(geometric average) throughout the period. The displayed positive relation between high

returns and high volatility is not without exceptions, however. The portfolio of long-term

corporate bonds has performed better than the portfolio of long-term government bonds,

although they have been slightly less volatile as here measured. The data is historical and

expectations are not always met. Moreover, risk depends significantly on the covariance

of asset returns within the total set of assets and specifically on the correlation of asset

returns with the business cycle, a feature that can not be read off from Table 1. Share

prices, for instance, are very sensitive to business cycle fluctuations.

The need for means of payment − money − is a further complicating factor. That is,
besides dissimilarities in risk and expected return across different assets, also dissimilar-

ities in their degree of liquidity are important, not least in times of financial crisis. The

expected real rate of return on cash holding is minus the expected rate of inflation and

is therefore negative in an economy with inflation, cf. the last row in Table 1. When

agents nevertheless hold cash in their portfolios, it is because the low rate of return is

compensated by the liquidity services of money. In the Sidrauski model of Chapter 17 this

is modeled in a simple way, albeit ad hoc, by including real money holdings directly as an

argument in the utility function. Another dimension along which the presence of money

interferes with returns is through inflation. Real assets, like physical capital, land, houses,

etc. are better protected against fluctuating inflation than are nominally denominated

bonds (and money of course).
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Without claiming too much we can say that investors facing such a spectrum of rates

of return choose a composition of assets so as to balance the need for liquidity, the wish

for a high expected return, and the wish for low risk. Finance theory teaches us that

adjusted for differences in risk and liquidity, asset returns tend to be the same. This

raises the question: at what level? This is where macroeconomics − as an empirically
oriented theory about the economy as a whole − comes in.

Macroeconomic theory of the “average rate of return” The point of departure

is that market forces by and large may be thought of as anchoring the rate of return of

an average portfolio of interest-bearing assets to the net marginal productivity of capital

in an aggregate production function, assuming a closed economy. Some popular phrases

are:

• the net marginal productivity of capital acts as a centre of gravitation for the spec-
trum of asset returns; and

• movements of the rates of return are in the long run held in check by the net marginal
productivity of capital.

Though such phrases seem to convey the right flavour, in themselves they are not

very informative. The net marginal productivity of capital is not a given, but an endoge-

nous variable which, via changes in the capital intensity, adjusts through time to more

fundamental factors in the economy.

The different macroeconomic models we have encountered in previous chapters bring

to mind different presumptions about what these fundamental factors are.

1. Solow’s growth model The Solow growth model leads to the fundamental differ-

ential equation (standard notation)

·
k̃t = sf(k̃t)− (δ + g + n)k̃t,

where s is an exogenous and constant aggregate saving-income ratio, 0 < s < 1. In steady

state

r∗ = f ′(k̃∗)− δ, (1)
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where k̃∗ is the unique steady state value of the (effective) capital intensity, k̃, satisfying

sf(k̃∗) = (δ + g + n)k̃∗. (2)

In society there is a debate and a concern that changed demography and less growth

in the source of new technical ideas, i.e., the stock of educated human beings, will in the

future result in lower n and lower g, respectively, making financing social security more

diffi cult. On the basis of the Solow model we find by implicit differentiation in (2) ∂k̃∗/∂n

= ∂k̃∗/∂g = −k̃∗
[
δ + g + n− sf ′(k̃∗)

]−1
, which is negative since sf ′(k̃∗) < sf(k̃∗)/k̃∗

= δ + g + n. Hence, by (1),

∂r∗

∂n
=
∂r∗

∂g
=
∂r∗

∂k̃∗
∂k̃∗

∂n
= f ′′(k̃∗)

−k̃∗

δ + g + n− sf ′(k̃∗)
> 0,

since f ′′(k̃∗) < 0. It follows that

n ↓ or g ↓⇒ r∗ ↓ . (3)

A limitation of this theory is of course the exogeneity of the saving-income ratio, which

is a key co-determinant of k̃∗, hence of r∗. The next models are examples of different ways

of integrating a theory of saving into the story about the long-run rate of return.

2. The Diamond OLG model In the Diamond OLG model, based on a life-cycle

theory of saving, we again arrive at the formula r∗ = f ′(k̃∗)− δ. Like in the Solow model,
the long-run rate of return thus depends on the aggregate production function and on k̃∗.

But now there is a logically complete theory about how k̃∗ is determined. In the Diamond

model k̃∗ depends in a complicated way on the lifetime utility function and the aggregate

production function. The steady state of a well-behaved Diamond model will nevertheless

have the same qualitative property as indicated in (3).

3. The Ramsey model Like the Solow and Diamond models, the Ramsey model

implies that rt = f ′(k̃t)−δ for all t. But unlike in the Solow and Diamond models, the net
marginal productivity of capital now converges in the long run to a specific value given

by the modified golden rule formula. In a continuous time framework this formula says:

r∗ = ρ+ θg, (4)

where the new parameter, θ, is the (absolute) elasticity of marginal utility of consumption.

Because the Ramsey model is a representative agent model, the Keynes-Ramsey rule holds
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not only at the individual level, but also at the aggregate level. This is what gives rise to

this simple formula for r∗.

Here there is no role for n, only for g. On the other hand, there is an alternative

specification of the Ramsey model, namely the “average utilitarianism”specification. In

this version of the model, we get r∗ = f ′(k̃∗) − δ = ρ + n + θg, so that not only a lower

g, but also a lower n implies lower r∗.

Also the Sidrauski model, i.e., the monetary Ramsey model of Chapter 17, results in

the modified golden rule formula.1

4. Blanchard’s OLG model A continuous time OLG model with emphasis on life-

cycle aspects is Blanchard’s model, Blanchard (1985). In that model the net marginal

productivity of capital adjusts to a value where, in addition to the production function,

technology growth, and preference parameters, also demographic parameters, like birth

rate, death rate, and retirement rate, play a role. One of the results is that when θ = 1,

ρ+ g − λ < r∗ < ρ+ g + b,

where λ is the retirement rate (reflecting how early in life the “average” person retire

from the labor market) and b is the (crude) birth rate. The population growth rate is the

difference between the birth rate, b, and the (crude) mortality rate, m, so that n = b−m.
The qualitative property indicated in (3) becomes conditional. It still holds if the fall in

n reflects a lower b, but not necessarily if it reflects a higher m.

5. What if technological change is embodied? The models in the list above assume

a neoclassical aggregate production function with CRS and disembodied Harrod-neutral

technological progress, that is,

Yt = F (Kt, TtLt) ≡ TtLtf(k̃t), f ′ > 0, f ′′ < 0. (5)

This amounts to assuming that new technical knowledge advances the combined pro-

ductivity of capital and labor independently of whether the workers operate old or new

machines.

In contrast, we say that technological change is embodied if taking advantage of new

technical knowledge requires construction of new investment goods. The newest technol-

ogy is incorporated in the design of newly produced equipment; and this equipment will
1See Chapter 10, Section 10.5.
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not participate in subsequent technological progress. Both intuition and empirics suggest

that most technological progress is of this form. Indeed, Greenwood et al. (1997) estimate

for the U.S. 1950-1990 that embodied technological change explains 60% of the growth in

output per man hour.

So a theory of the rate of return should take this into account. Fortunately, this can

be done with only minor modifications. We assume that the link between investment and

capital accumulation takes the form

K̇t = QtIt − δKt, (6)

where It is gross investment (I = Y − C) and Qt measures the “quality”(effi ciency) of

newly produced investment goods. Suppose for instance that

Qt = Q0e
γt, γ > 0.

Then, even if no technological change directly appears in the production function, that

is, even if (5) is replaced by

Yt = F (Kt, Lt) = Kα
t L

1−α
t , 0 < α < 1,

the economy will still experience a rising standard of living.2 A given level of gross

investment will give rise to greater and greater additions to the capital stock K, measured

in effi ciency units. Since at time t, Qt capital goods can be produced at the same cost as

one consumption good, the price, pt, of capital goods in terms of the consumption good

must in competitive equilibrium equal the inverse of Qt, that is, pt = 1/Qt. In this way

embodied technological progress results in a steady decline in the relative price of capital

equipment.

This prediction is confirmed by the data. Greenwood et al. (1997) find for the U.S.

that the relative price of capital equipment has been declining at an average rate of 0.03

per year in the period 1950-1990, a trend that has seemingly been fortified in the wake of

the computer revolution.

Along a balanced growth path the constant growth rate of K will now exceed that

of Y, and Y/K thus be falling. The output-capital ratio in value terms, Y/(pK), will be

constant, however. Embedding these features in a Ramsey-style framework, we find the

2We specify F to be Cobb-Douglas, because otherwise a model with embodied technical progress in
the form (6) will not be able to generate balanced growth and comply with Kaldor’s stylized facts.
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long-run rate of return to be3

r∗ = ρ+ θ
αγ

1− α.

This is of the same form as (4) since growth in output per unit of labor in steady state is

exactly g = αγ/(1− α).

Adding uncertainty and risk of bankruptcy Although absent from many simple

macroeconomic models, uncertainty and risk of bankruptcy are significant features of

reality. Bankruptcy risk may lead to a conflict of interest between share owners and

managers. Managers may want less debt and more equity than the share owners because

bankruptcy can be very costly to managers who loose a well-paid job and a promising

carrier. So managers are unwilling to finance all new capital investment by new debt in

spite of the associated lower capital cost (there is generally a lower rate of return on debt

than on equity). In this way the excess of the rate of return on equity over that on debt,

the equity premium, is sustained.

A rough behavioral theory of the equity premium goes as follows.4 Firm managers

prefer a payout structure with a fraction, sf , going to equity and the remaining fraction,

1− sf , to debt (corporate bonds). That is, out of each unit of expected operating profit,
managers are unwilling to commit more than 1−sf to bond owners. This is to reduce the
risk of a failing payment ability in case of a bad market outcome. And those who finance

firms by loans definitely also want debtor firms to have some equity at stake.

We let households’ preferred portfolio consist of a fraction sh in equities and the

remainder, 1−sh, in bonds. In view of households’risk aversion and memory of historical
stock market crashes, it is plausible to assume that sh < sf .

As a crude adaptation of for instance the Blanchard OLG model to these features, we

interpret the model’s r∗ as an average rate of return across firms. Let time be discrete

and let aggregate financial wealth be A = pK, where p is the price of capital equipment

in terms of consumption goods. In the frameworks 1 to 4 above we have p ≡ 1, but in
framework 5 the relative price p equals 1/Q and is falling over time. Anyway, given A

at time t, the aggregate gross return or payout is (1 + r∗)A. Out of this, (1 + r∗)Asf

constitutes the gross return to the equity owners and (1 + r∗)A(1 − sf ) the gross return
3See Exercise 18.??
4The following is inspired by Baker, DeLong, and Krugman (2005). These authors discuss the implied

predictions for U.S. rates of return in the future and draw implications of relevance for the debate on
social security reform.
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to the bond owners. Let re denote the rate of return on equity and rb the rate of return

on bonds.

To find re and rb we have

(1 + re)Ash = (1 + r∗)Asf ,

(1 + rb)A(1− sh) = (1 + r∗)A(1− sf ).

Thus,

1 + re = (1 + r∗)
sf
sh

> 1 + r∗,

1 + rb = (1 + r∗)
1− sf
1− sh

< 1 + r∗.

We may define the equity premium, π, by 1 + π ≡ (1 + re)/(1 + rb). Then

π =
sf (1− sh)
sh(1− sf )

− 1 > 0.

Of course these formulas have their limitations. The key variables sf and sh will

depend on a lot of economic circumstances and should be endogenous in an elaborate

model. Yet, the formulas may be helpful as a way of organizing one’s thoughts about

rates of return in a world with asymmetric information and risk of bankruptcy.

There is evidence that in the last decades of the twentieth century the equity premium

had become lower than in the long aftermath of the Great Depression in the 1930s.5 A

likely explanation is that sh had gone up, along with rising confidence. The computer

and the World Wide Web have made it much easier for individuals to invests in stocks of

shares. On the other hand, the recent financial and economic crisis, known as the Great

Recession 2007- , and the associated rise in mistrust seems to have halted and possibly

reversed this tendency for some time (source ??).

–

5Blanchard (2003, p. 333).
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