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As formulated in the course description, a score of 12 is given if the student’s perform-

ance demonstrates (a) accurate and thorough understanding of the concepts, methods,

and models in the course, (b) knowledge of the major empirical regularities for aggreg-

ate economic variables, and (c) ability to use these theoretical tools and this empirical

knowledge to answer macroeconomic questions.

1. Solution to Problem 1

The given equations from the Blanchard OLG model are:

·
̃ = (̃)− + 


̃ − ( +  + −)̃ ̃0  0 given, (1.1)

·
̃ =

h
 0(̃)−  − + − 

i
̃ − (+)̃ (1.2)

together with the condition that for any fixed pair (0 0) where 0 ≥ 0 and  ≤ 0

lim
→∞


−  

0
( 0(̃())−+)

= 0 (1.3)

Notation: ̃ ≡ () and ̃ ≡ () ≡  where  and  are aggregate

capital and aggregate consumption, respectively;  is population,  is labor supply,

and  is the technology level, all at time ;  is a production function in intensive

form, satisfying (0) = 0  0  0,  00  0 and the Inada conditions. Finally,  is

financial wealth at time  of an individual born at time  The remaining symbols stand

for parameters and it is assumed all these are strictly positive. Furthermore,  ≥ − ≥ 0
and    + + .

1The solution below contains more details and more precision than can be expected at a three hours

exam.



a) Parameters:  = retirement rate,  = birth rate,  = capital depreciation rate,  =

growth rate of technology,  = mortality rate,  = pure rate of time preference (utility

discount rate, a measure of impatience). The model relies on the simplifying assumption

that for a given individual the probability of having a remaining lifetime,  longer than

some arbitrary number  is  (  ) = − the same for all (i.e., independent of age).

Individual labor supply is assumed to decline exponentially at rate  with increasing age.

Both population and labor force grow at the rate  ≡ −

The equation (1.1) is essentially just national income accounting for a closed economy.

Isolating (̃) on one side we have aggregate gross income per unit of effective labor on

this side and consumption plus gross investment per unit of effective labor on the other

side. Because the technology-corrected capital-labor ratio, ̃ has employment,  in the

denominator while the technology-corrected per-capita consumption, ̃ has population,

 in the denominator, ̃ is multiplied by the inverse of the participation rate, 

= (+ )

As to the first term on the right-hand side of (1.2), notice that instantaneous utility

in the Blanchard OLG model is logarithmic, so that the individual Keynes-Ramsey rule

at time  for a person born at time  is simply




= [ +− (+)]  = ( − ) (1.4)

In general equilibrium with perfect competition,  =  0(̃) − . The corresponding

Keynes-Ramsey rule for growth-corrected per-capita consumption is therefore

·
̃ =

h
 0(̃)−  − − 

i
̃. But due to the gradual replacement of dying elder indi-

viduals with low labor supply by younger individuals supplying more labor, the first term

on the right-hand side of (1.2) also includes +̃.

The second term on the right-hand side of (1.2) represents another aspect of generation

replacement. The arrival of newborns is  per time unit. The fact that they have more

human wealth than those who they replace has already been taken into account by the

mentioned +̃. But the newborns enter the economy with less financial wealth than the

“average citizen”. This lowers aggregate consumption by (+) per time unit, where

 is aggregate private financial wealth. In general equilibrium in the closed economy

(without government debt) we have  =  Correcting for population and technology

growth, we end up with a lowering of
·
̃ equal to ( + )̃ This explains the second

term in (1.2).

Finally, (1.3) is a transversality condition as seen from time 0 for a person born at

time  The condition says that the No-Ponzi-Game condition is not over-satisfied (a

2



necessary condition for individual optimality).

b) The equation describing the
·
̃ = 0 locus is

̃ =


+ 

h
(̃)− ( +  + −)̃

i
 (1.5)

The equation describing the
·
̃ = 0 locus is

̃ =
 (+) ̃

 0(̃)−  − + − 
 (1.6)

Let ̃ be defined by

 0(̃)−  = − +  (1.7)

That is, ̃ is defined as the value of ̃ at which the denominator of (1.6) vanishes. Such

a value exists since, in addition to the Inada conditions, the inequality

   + + 

is assumed to hold. Another benchmark value of ̃ is the golden-rule value, ̃ determ-

ined by the requirement

 0
³
̃

´
−  = +  where  = −

The phase diagram and the
·
̃ = 0 and

·
̃ = 0 loci are shown in Fig. 1.1. The

·
̃ = 0

locus is everywhere to the left of the line ̃ = ̃ and is asymptotic to this line for ̃ → ̃.

The figure also displays the steady-state point, E, where the
·
̃ = 0 locus intersects the

·
̃

= 0 locus. The corresponding capital intensity is ̃∗ to which corresponds the (growth-

corrected) per-capita consumption level ̃∗ Fig. 1.1 depicts a case where ̃ ≤ ̃ so that

̃∗  ̃, that is, the economy is dynamically efficient. Yet, since we may have  −

≤   + − so that ̃  ̃ dynamic inefficiency cannot be ruled out theoretically

(a typical feature of an OLG model).

Concerning the directions of movement in the different regions of the phase diagram:

From (1.1) follows

·
̃ R 0 for ̃ Q 

+ 

h
(̃)− ( +  + −)̃

i


respectively. From (1.2) follows

when ̃  ̃
·
̃ R 0 for ̃ R  (+) ̃

 0(̃)−  − + − 
respectively; when ̃ ≥ ̃

·
̃  0
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Figure 1.1:

The directions of movement are shown by arrows in Fig. 1.1. The arrows taken together

indicate that the steady state, E, is a saddle point. Moreover, the following holds: there

is one predetermined variable, ̃ and one jump variable, ̃ the saddle path is not parallel

to the jump-variable axis, and the diverging paths can be ruled out as equilibrium paths

(see below). Hence the steady state is saddle-point stable.

The saddle path is the only path that satisfies all the conditions of general equilibrium

(individual utility maximization for given expectations, profit maximization by firms,

continuous market clearing, and perfect foresight). The other paths in the diagram are

diverging and violate either the transversality conditions of the individuals (paths that in

the long run point South-East) or the NPG conditions of the individuals2 (paths that in

the long run point North-West).

This explains why initial consumption in equilibrium is determined as the ordinate,

̃0 to the point where the vertical line ̃ = ̃0 intersects the saddle path. Over time

the economy moves from this point, along the saddle path, towards the steady state. As

the figure is drawn, ̃0 happens to exceed both ̃∗ and ̃ We could alternatively have

0  ̃0  ̃∗

2And therefore also the transversality conditions.

4



c) In view of stability we have for →∞

 =  0(̃)−  →  0(̃∗)−  ≡ ∗ (1.8)

where ∗ is the long-run rate of return. From the definition of ̃ and the fact that ̃  ̃∗

follows

 0(̃)−  = +  −    0(̃∗)−  = ∗,

in view of  00  0 So the lower end point of the interval to which ∗ belongs is + − .

d) 1) In a representative agent model Ricardian Equivalence holds, but in the Blan-

chard OLG model it does not. By definition, Ricardian Equivalence holds in a model

if, for a given time path of future government spending, aggregate private consumption

is unaffected by a temporary (lump-sum) tax cut according to the model. Owing to

the generation turnover in OLG models, the current generations fully benefit from a tax

cut while they do not fully bear the burden of the higher future taxes as they do in a

representative agent model, for instance the Ramsey model.

2) In a representative agent model the households are alike and are described as being

infinitely lived, thereby having infinite horizon. Hence, in such a model general equilibrium

cannot have the long-run (real) interest rate, ∗ lower than the long-run GNP growth

rate,  + ; if it had, the present value of the household’s expected future labor income,

 would be infinite, which is inconsistent with general equilibrium. This means that

dynamic inefficiency cannot occur within the model.

In the Blanchard OLG model, however, ∗   +  is not inconsistent with general

equilibrium. This is because households have finite (but uncertain) lifetime and horizon.

Whether ∗ ≥  +  or ∗   +  depends on the parameter values.

3) A third difference is that in a representative agent model the long-run interest rate

is determined in a very simple way, and for instance independently of the production

function and demographic parameters, namely by the formula: ∗ =  +  This is

contrary to the Blanchard OLG model.

e) To answer how a shift in  affects ∗ we have to find out, how it affects ̃∗ An

unambiguous conclusion can be obtained in the following way. In steady state we have
·
̃ = 0 and

·
̃ = 0 at the same time, implying that the right-hand sides of (1.5) and (1.6)

must equal each other. By rearranging we getÃ
(̃)

̃
− ( +  + −)

!h
 0(̃)−  − + − 

i
= (+ ) (+)  (1.9)
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Figure 1.2:

where on the left-hand side the first factor is positive for all ̃  ̃ while the second factor

shifts from positive, when ̃  ̃, to negative, when ̃  ̃ Fig. 1.2 illustrates.

A lower  makes the left-hand side of (1.9) larger for fixed ̃ and the right-hand side

smaller. Thereby ̃∗ is raised and so ∗ =  0(̃∗)−  becomes lower (since  00(̃∗)  0).

f) Likewise, when a lower  along with the lower  makes  =  − smaller, again

the left-hand side of (1.9) becomes larger (although less so than at e)) for fixed ̃ whereas

the right-hand side as before becomes smaller (although more so than at e)). So again ̃∗

rises and ∗ falls.3

g) A lower  makes the left-hand side of (1.9) larger and does not affect the right-hand

side. This implies a further rise in ̃∗ and thus a further reduction in ∗.

h) In the new interpretation output and employment are primarily demand-determined.

A downward shift in aggregate demand may for instance be triggered by a bursting hous-

ing bubble leading to a financial crisis and defaults. A credit crunch arises in the banking

sector, thus causing a drop in spending on especially durable consumption and investment

by households and firms in need of credit. A fall in output and employment sets in, which

may prompt precautionary saving and thus, in “the second round”, cause a further decline

in aggregate demand and employment (a vicious spiral).

An upward shift in aggregate demand may for instance be triggered by a wave of

optimism due to invention of new consumer goods whereby households’ spending may be

profoundly stimulated (historical examples: automobiles, the radio, the ICT revolution).

3A fall in  however, has an ambiguous effect on ̃∗
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Similarly, news about new technology may suddenly stimulate firms’ investment spending

(think of the economic expansion leading to the dot.com bubble). For an open economy

a rise in exports of the kind of goods the economy produces may spark a virtual upward

demand spiral in the economy.

Shifts in monetary or fiscal policy are also examples of circumstances that may sud-

denly change aggregate demand.

It may be added (although the notion of demand shock is not appropriate here) that

some economists fear that a gradual reduction in trend aggregate demand may be a con-

sequence of reduced population growth leading to less demand for residential construction

and less capital investment to furnish new workers with production equipment. In turn,

this may mean less learning by investing and less new technology than otherwise.

i) Let us consider the nominal interest rate on short-term government bonds to be

the primary “instrument” used by the CB to control aggregate demand (the aim may be

to affect inflation, employment, competitiveness, and exchange rate). Let this interest

rate, the policy rate, be denoted . Let the inflation rate, ̇ be denoted  Then

the real interest rate of relevance for households’ consumption and firms’ investment is 

=  +  −  where  ≥ 0 is the spread between the “official” nominal interest rate 
and the nominal interest rate faced by the non-bank general public. For simplicity, let us

consider  as given, at least for some time. Aggregate demand depends negatively on the

expected real interest rate  =  +  −   To ease the discussion, let 

 =  so that

we do not have to distinguish between  and  We further assume that  is relatively

sticky within the time horizon considered.

The term “zero lower bound”, ZLB, refers to the fact that the nominal interest rate

even on short-term bonds can (essentially) not go below zero.4 This is because agents

would prefer holding cash at zero interest rather than bonds at negative interest. So,

 = max(0 

 )

where 

 is the level of the interest rate desired by the CB, the “policy rate”. The ZLB

becomes a binding constraint when, in a recession, the interest rate needed to obtain

the desired stimulus of aggregate demand is negative. In this situation conventional

monetary policy can thus only bring  down to zero, which is not sufficient for recovery

of the economy. The economy is in a “liquidity trap”.

4We ignore that strictly speaking the lower bound is slightly below zero because the alternative to

holding bonds is holding cash which gives zero interest but involves costs of storage, insurance, and

transport.
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So, the situation calls for additional policies. See answer to k) below.

j) To answer this, let us consider the “normal case” where 

 is given by a Taylor rule

which in the present context could have the form:



 = ̂+ 1

 −  ∗
 ∗

+ 2
 − ̂

̂
 1  0 2  1

where ̂ ≡ ∗−+ ̂  is actual output, 
∗
 is NAIRU output, and ̂ the inflation target.

For a given ̂ a reduced ∗ implies a lower  everything else equal. So the distance

to ZLB becomes smaller and therefore the likelihood that the ZLB becomes binding is

raised.

k) Conceivable alternatives or supplements to conventional monetary policy that may

lessen a possible tendency to “secular stagnation” due a binding ZLB include:

i) Raising the inflation target is a possible non-conventional monetary policy to deal

with the problem. A difficulty is that the announcement of a higher inflation target may

not be taken as credible.

ii) Quantitative easing (QE). This can take several forms. The central bank may

offer credit to financial intermediaries (banks, mutual funds, mortgage credit companies,

insurance firms, etc.) on more gentle conditions than usually. And it may try directly

to reduce the spread,  by buying long-term government bonds and other assets in the

market. This stimulates aggregate demand.

Another form of QE is “helicopter money” as Milton Friedman called it. This is fiscal

policy in the form of income transfers to the private sector directly financed by money

issue. This relaxes the intertemporal budget constraint of the government by effectively

financing a budget deficit by money instead of new government bonds. Here QE is a kind

of coordinated fiscal and monetary policy.

iii) Expansionary fiscal policy as such is also an option. Most macroeconomists agree

that when the economy is in a liquidity trap, fiscal policy multipliers tend to be consid-

erably larger than otherwise. This is so for several reasons. One is that there will be no

financial crowding out as long as the aim of the CB is to maintain  as low as possible.

Another reason is that the economic situation which has triggered the liquidity trap is

also a situation where involuntary unemployment tends to be considerable.

Moreover, times with low interest rates are the right time for public investment of

which a part is normally financed by borrowing.
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More structural policies are also conceivable: subsidize fertility by child benefits, invest

more in public health, support pharmaceutical research to improve life expectancy, and

support R&D with the aim of raising  (easier said than done).

2. Solution to Problem 2

Given the time horizon  ≥ 2, the optimization problem is:

max00 = 0[

−1X
=0

()(1 + )−] s.t. (2.1)

 ≥ 0 (2.2)

+1 = (1 + ) +  −  0 given, (2.3)

 ≥ 0 (2.4)

where 0  0 and 00  0. We think of “period ” as the time interval [ + 1) ; the last

period within the planning horizon  is thus period  − 1 There is uncertainty about
future values of  , and , but the household knows the stochastic processes that these

variables follow.

a) In (1) we see the objective function which is to maximize expected discounted

utility;  is the discount rate (a measure of impatience). 0 is the expectation operator,

conditional on the information available in period 0. (2) indicates the control region. (3)

indicates the dynamic budget identity, saying that +1 financial wealth at the beginning

of the next period, equals financial wealth at the beginning of the current period,  plus

saving in the current period, which equals income,  +  minus consumption, 

Initial financial wealth, 0 is historically given. (4) is a solvency condition, saying that

the household is not allowed to leave the terminal period,  − 1 with positive debt.

b) We consider the generic expression for expected discounted utility as seen from an

arbitrary period  ∈ {0 1 2   − 2} :

 = () + (1 + )−1[(+1) + (+2)(1 + )−1 + ] (2.5)

To solve the problem as seen from period  we will use the substitution method. From

(2.3) we have

 = (1 + ) +  − +1 and (2.6)

+1 = (1 + +1)+1 + +1+1 − +2
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Substituting this into (2.5), the problem is reduced to an essentially unconstrained

maximization problem, namely one of maximizing the function w.r.t. +1 +2  

(thereby indirectly choosing  +1  −1) Hence, we first take the partial derivative

w.r.t. +1 in (2.5) and set it equal to 0:



+1
= 0() · (−1) + (1 + )−1[

0(+1)(1 + +1)] = 0

Reordering gives the stochastic Euler equation,

0() = (1 + )−1[
0(+1)(1 + +1)]  = 0 1 2   − 2 (2.7)

This first-order condition describes the trade-off between consumption in period  and

period +1, as seen from period  The optimal plan must satisfy that the current utility

loss by decreasing consumption by one unit is equal to the discounted expected utility

gain next period by having 1 + +1 extra units available for consumption, namely the

gross return on saving one more unit. Considering + for  = 2 3   − − 2
we get similar first-order conditions, in expected value, for each 

c) In the final period, given the solvency condition  ≥ 0 the decision must be to
choose  = 0 (the transversality condition). Since 

0  0 the alternative,   0 could

always be improved upon by increasing −1 without violating the solvency condition. So,

the optimal −1 satisfies

−1 = (1 + −1)−1 + −1−1 (2.8)

d) With a CRRA utility function, () = (1− − 1)(1− ) we find

0 = − 00 = −−−1 000 = −(− − 1)−−2  0

That 000  0 means that (0)00  0 i.e., for the CRRA utility function 0() is a strictly

convex function of  The graph of 0() is shown in Fig. 2.1.

We now assume that our () in (2.1) satisfies 000  0 We let the graph in Fig. 2.1

represent the strictly convex marginal utility of this (). For reasons appearing below

we let  refer to period 2. We are told to assume there is no uncertainty about the future

value of  only about future labor income because future employment and real wage are

uncertain.
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Figure 2.1:

e) We are asked to consider the problem as seen from period 1:

max11 = (1) + (1 + )−11(2) s.t.

2 = (1 + 1)1 + 11 − 1 1 given,

3 = (1 + 2)2 + 22 − 2 ≥ 0

where the only uncertainty is about the labor income 22 In line with (2.7) and no

uncertainty regarding 2, the relevant Euler equation becomes

0 (1) =
1 + 2

1 + 
1 [

0 (2)]  (2.9)

In view of  = 3 and the transversality condition 3 = 0 (2.6) becomes

2 = (1 + 2)2 + 22

It is known that there are only two possible outcomes for period 2’s labor income,

22 namely  and   each with probability
1
2
. Hence, given 2, we have

2 =

½
 = (1 + 2)2 +  with probability = 1

2
,

 = (1 + 2)2 +  with probability = 1
2
.

(2.10)

Mean consumption will be ̄2 = (1 + 2)2 + ̄ where ̄ = 1
2
( + ).
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f) Suppose 2 is fixed. Then Fig. 2.1 shows graphically how 1
0(2) is determined,

given this 2 together with (2.10).

g) Precautionary saving is defined as the increase in saving arising as a result of

increased uncertainty.

To check whether or not precautionary saving can arise in the present setup we compare

two situations, the one described so far and one withmore uncertainty about labor income

in period 2 as seen from period 1. We let the new situation be given by a mean-preserving

spread. Variable values in the new situation are marked by *. So a mean-preserving spread

is present if the new spread, ∗ − ∗, is larger than the old,  −  while the mean, ̄

is unchanged.

So, if 2 remains unchanged, now the two possible outcomes for 2 are 
∗
 and 

∗
 , while

the average equals ̄ as before. The new situation is also illustrated in Fig. 2.1. Owing

to the strict convexity of marginal utility, the expected marginal utility of consumption

is now greater than before, as indicated by 1
0(∗2) in the figure. In order that (2.9) can

still be satisfied, a lower value than before of 1 must be chosen (since 
00  0), hence,

more saving occurs.

Yet, this lower value of 1 is not the final outcome. Indeed, as soon as 1 tends to be

lowered, saving in period 1 tends to be raised. This means a higher 2 than before so

that the expected value of 2 is in fact larger than ̄ on the figure. This dampens, but

does not eliminate, the effect of the mean-preserving spread on 1
0(2) This expected

value ends up somewhere between the old 1
0(2) and the new 1

0(∗2) in the figure.

The conclusion is still that the new 1 has to be lower than the original 1 in order for the

first-order condition (2.9) to be satisfied in the new situation.

If instead the increased uncertainty pertains to period 1, the effect is again to decrease

current consumption to provide for a buffer.

The conclusion is that precautionary saving does indeed arise. And the reason is the

strict convexity of marginal utility. The intuition is that consumption is postponed in

order to have a buffer-stock. The household wants to be prepared for meeting the bad

outcome, because it wants to avoid the risk of having to end up “starving” (“save for the

rainy day”).
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3. Solution to Problem 3

a) Since the 1970s two quite different approaches to the explanation of business cycle

fluctuations in industrialized market economies have been pursued. We may broadly

classify them as either of a new-Classical or a Keynesian orientation. Since the mid

1980s the new-Classical approach settled for what became known as the Real Business

Cycle (RBC) theory where output and employment fluctuations are seen as movements

in productivity and labor supply. The Keynesian, including new-Keynesian, approach

attempts to explain the fluctuations as movements in aggregate demand and the degree

of capacity utilization.

Let us call the two approaches RBC theory versus K-theory.

The RBC theory considers perfect competition and price flexibility in all markets

as an acceptable approximation. This implies general market clearing. So employment

fluctuations must be fluctuations in labor supply. According to this theory, the driving

force behind the fluctuations is technology shocks.

Let TFP be denoted  Suppose a positive technology shock occurs. This raises the

marginal productivity of labor, which in turn positively affects the equilibrium real wage.

According to the theory, labor supply and employment go up, with further repercussions

in the economy.

In standard notation:

 ↑ ⇒
½

 ↑


↑⇒  ↑⇒ 

 ↑⇒  ↑⇒  ↑

⇒
⎧⎨⎩

 ↑
 ↑⇒ +1 ↑⇒

½
+1 ↑
+1
+1

↑⇒ +1 ↑⇒ 
+1 ↑⇒ +1 ↑⇒ +1 ↑ ⇒ etc.

In this way persistence in the effects of temporary shocks arises, both through the capital

accumulation mechanism (the “ ↑⇒ +1 ↑⇒” part) and through the intertemporal
substitution in labor supply mechanism (the “

+1
+1

↑⇒ +1 ↑⇒ 
+1 ↑”).

A problem faced by the RBC theory is that these two mechanisms are not capable

at generating the large fluctuations in output and employment that we observe. Both

mechanisms imply little amplification of the shocks. Most critically, the intertemporal

substitution in labor supply mechanism is not able to generate much amplification. This

is because changes in real wages tend to be permanent rather than purely transitory.

Permanent wage increases tend to have little or no effect on labor supply because the

wealth effect will tend to offset the substitution and income effects. Given the very
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minor temporary movements in the real wage that occur at the empirical level, a high

intertemporal elasticity of substitution in labor supply is required to generate the large

fluctuations in employment observed in the data. But the micro-econometric evidence

suggests that this requirement is not met.

Proponents of the RBC theory have made several attempts to overcome the absence of

noteworthy internal propagation and amplification. One is the involvement of recurrent

shocks. As already Slutzky showed, if  follows a stationary AR(1) process with a

positive root, the geometrically declining sums of past shocks can endow the fluctuations

of  with considerably larger amplitudes and more duration than the shocks themselves

display.

In contrast, the K-theory rejects perfect competition and price flexibility. Hence, the

theory does not connect ups and downs in employment to ups and downs in labor supply.

And the K-theory does not depend on presence of recurrent shocks.

This latter feature is due to aggregate demand mechanisms implying strong internal

propagation and amplification. The K-theory emphasizes that the endogenous variables

enter into cumulative causation patterns. These patterns are in our syllabus referred to as

sometimes virtuous circles, generating a boom, and sometimes vicious circles, generating

a recession, which may be triggered by just one large specific event. In syllabus the

following examples of such circles are mentioned:

(1) The spending multiplier. (2) Destabilizing price flexibility. (3) The balance sheet

channel. (4) The bank lending channel. (5) Multiple equilibria, self-fulfilling expectations,

and coordination failure. (6) Hysteresis.

b) (i) Movements in the labor market. Workers’ quits are pro-cyclical. In a boom

quits go up and in a recession they go down. This is contrary to the prediction from

the RBC theory that quits increase in the downturn since variation in employment is

voluntary. But the pro-cyclicality of quits fits well with K-theory since recessions are

times where firms generally need fewer workers to satisfy the slack demand, and where

workers are hesitant to quit because they are aware that vacant jobs are scarce.

Other empirical regularities are:

(ii) Employment (aggregate labor hours) is pro-cyclical, i.e., varies in the same direc-

tion as GDP, and fluctuates almost as much as GDP. As mentioned under a), the RBC

theory has difficulties to make employment fluctuate as much as output. The K-theory

has no such difficulties.
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(iii) Real wages are weakly pro-cyclical and do not fluctuate much. The RBC theory

rather predicts real wages are strongly pro-cyclical and fluctuate almost as much as output.

In Keynes’ theory as presented in his General Theory from 1936 it is only nominal wages

that are sticky. Nominal prices are assumed flexible. The resulting prediction that real

wages should be counter-cyclical was soon empirically falsified. Keynes admitted in 1939

that he had relied too much on perfect competition and price flexibility in the output

market. Modern K-theory fits well with the observation that real wages are weakly pro-

cyclical. The relative strength of the parties in wage negotiations in the labor market

matters.

(iv) Aggregate consumption and employment are markedly positively correlated. This

fits well with K-theory. But, given the fact that real wages do not fluctuate much, the

RBC-theory rather predicts that leisure is positively correlated with aggregate consump-

tion.

–
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