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CHAPTER 15. FURTHER APPLICATIONS OF

ADJUSTMENT COST THEORY

a known client and within intricate legal requirements. It is time-consuming to
design, contract, and execute the sequential steps involved in residential construc-
tion. Careful guidance and monitoring is needed. These features give rise to fixed
costs (to management, architects etc.) and thereby rising marginal costs in the
short run. Congestion and bottlenecks may easily arise.

The construction process

Assume the construction industry is competitive. At time t the representative
construction firm produces Bt units of housing per time unit (B for “building”),
thereby increasing the aggregate housing stock according to

Ḣt = Bt − δHt, δ > 0. (15.54)

The construction technology is described by a production function F̃ :

Bt = F̃ (Kt, Lt, M̄ ;Et) ≡ F̄ (F (Kt, Lt), M̄ ;Et) = F̄ (It, M̄ ;Et) ≡ T (It;Et).

The last argument of F̃ , Et, is not a production factor but stands for construction
experience acquired through accumulated learning in the construction industry.
It determines the effi ciency of the current technology. The three other arguments
of F̃ represent input of capital, Kt, blue-collar labor, Lt, and “management la-
bor”, M̄, which includes working hours of specialists like architects and lawyers.
There are constant returns to scale with respect to these three production fac-
tors. We treat M̄ as a fixed production factor even in the medium run. Hence
the associated fixed cost (salaries) is, in real terms, constant for quite some time.
We denote this fixed cost f̄ .
The remaining two production inputs, capital and blue-collar labor, produces

components for residential construction − intermediate goods − in the amount It
= F (Kt, Lt) per time unit. The production function, F, is “nested”in the “global”
production function, F̄ . Thus construction is modeled as if it makes up a two-
stage process. First, capital and blue-collar labor produce intermediate goods for
construction. Next, management accomplishes quality checks and “assembling”
of these intermediate goods into new houses or at least final new components
built into existing houses. The final output is measured in units corresponding
to a standard house. This does not rule out that a large part of the output is
really in the form of renovations, additions of a room etc.
We treat both blue-collar labor and capital as variable production factors in

the short run and assume F has constant returns to scale. The intermediate goods
are produced on a routine basis at minimum costs (convex capital adjustment
costs, as in Chapter 14, are for simplicity ignored). Let the real cost per unit of
It be denoted c. In our short-to-medium run perspective we treat c as a constant.
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Figure 15.7: The number of new houses as a function of residential investment (for
given E = H̄).

The marginal productivity of It is decreasing in It. That is, keeping M̄ fixed,
the final output, Bt, has diminishing returns with respect to the level of construc-
tion activity per time unit as measured by the flow variable It. In the short run
thus rising marginal costs obtains, “haste is waste”.
To save notation, from now on, with the purpose of suppressing the constant

argument M̄, we introduce the production function T. Moreover, we suppress
the explicit dating of the variables unless needed for clarity. To help intuition,
we shall speak of the function T as a transformation function. This function is
assumed to be strictly concave in I : the larger is I, the smaller is the rate at
which a unit increase in I is transformed into new houses.
To summarize: the amount of new houses built per time unit is

B = T (I, E), where

T (0, E) = 0, TI(0, E) = 1, TI > 0, TII < 0, TE ≥ 0. (15.55)

A higher level of construction activity per time unit means that a larger fraction
of I is “wasted”because of control, coordination, and communication diffi culties.
Hence TII(I, E) < 0, i.e.,.T is strictly concave in I
The second argument in the transformation function is the construction expe-

rience, E. More experience means that the intermediate goods can be designed in
a better way thus implying higher productivity of a given I than otherwise, hence
TE ≥ 0.13 As an indicator of cumulative experience it would be natural to use

13In a long-run perspective, the increasing scarcity of available land may hamper the pro-
ductivity of the intermediate goods, for given I and E. This is ignored in our medium-run
perspective. All the same, in the real world construction technology improves over time and
the limited availability of land can to some extent be dealt with by building taller structures.
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cumulative gross residential investment,
∫ t
−∞Bsds, reflecting cumulative learning

by doing. It is simpler, however, to use cumulative net residential investment, Ht.
We thus assume that Et is (approximately) proportional to Ht.

14 Normalizing the
factor of proportionality to one, we have

Et = Ht.

For fixed E = H̄, Fig. 15.7 shows the graph of T (I, H̄) in the (I, B) plane.
The assumptions TI(0, H̄) = 1 and TII < 0 imply TI(I, H̄) < 1 for I > 0, as
visualized in the figure. An example satisfying all the conditions in (15.55) is a
CES function,15

T (I,H) = A(aIβ + (1− a)Hβ)1/β, with 0 < A < 1, 0 < a < 1, and β < 0.

From the perspective of Tobin’s q-theory of investment, we may let the “waste”
be represented by a kind of adjustment cost function G(I,H) akin to that con-
sidered in Chapter 14. Then T (I,H) ≡ I − G(I,H). In Chapter 14 convex
adjustment costs were associated with the installation of firms’fixed capital and
acted as a reduction in the firms’output available for sale. In construction we
may speak of analogue costs acting as a reduction in the productivity of the in-
termediate goods in the construction process. It is easily seen that, on the one
hand, all the properties of G required in Chapter 14 when I ≥ 0 are maintained.
On the other hand, not all properties required of T in (15.55) need be satisfied
in Tobin’s q-theory (see Appendix B).

Profit maximization

The representative construction firm takes the current economy-wide experience
E = H as given. The gross revenue of the firm is pB and costs are cI. Given the
market price p, the firm maximizes profit:

max
I

Π = pB − cI s.t. B = T (I,H) and

I ≥ 0.

Inserting B = T (I,H), we find that an interior solution satisfies

dΠ

dI
= pTI(I,H)− c = 0, i.e.,

p

c
TI(I,H) = 1. (15.56)

14At least in an economic growth context, where H would almost never be decreasing, this
approximation of the learning effect would not seem too coarse.
15As shown in the appendix to Chapter 4, by defining T (I,H) = 0 when I = 0 or H = 0, the

domain of the CES function can be extended to include all (I,H) ∈ R2+ also when β < 0, while
maintaining continuity.
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Figure 15.11: Marginal costs in house construction (housing stock given).

C. Interpreting construction behavior in a marginal cost perspective
(Section 15.2.2)

We may look at the construction activity of the representative construction firm
from the point of view of increasing marginal costs in the short run. First, let T C
denote the total costs per time unit of the representative construction firm. We
have T C = f̄ + T VC, where f̄ is the fixed cost to management and T VC is the
total variable cost associated with the construction of B (= T (I,H)) new houses
per time unit, given the economy-wide stock H. All these costs are measured
in real terms. We have T VC = cI. The input of intermediates, I, required for
building B new houses per time unit is an increasing function of B. Indeed, the
equation

B = T (I,H), (*)

where TI > 0, defines I as an implicit function of B and H, say I = ϕ(B,H). By
implicit differentiation in (*) we find

ϕB = ∂I/∂B = 1/TI(ϕ(B,H), H) > 1, when I > 0

So T VC = cI = cϕ(B,H), and short-run marginal cost is

MC(c, B,H) =
∂T VC
∂B

= cϕB =
c

TI(ϕ(B,H), H)
> c, when I > 0. (**)

CLAIM
(i) The short-run marginal cost, MC, of the representative construction firm is
increasing in B.
(ii) The construction sector produces new houses up the point whereMC = p.
(iii) The cost of building one new house per time unit is approximately c.
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Proof. (i) By (**) and (*),

∂MC
∂B

=
−cTII(ϕ(B,H), H)ϕB
TI(ϕ(B,H), H)2

=
−cTII(ϕ(B,H), H)

TI(ϕ(B,H), H)3
> 0,

since TI > 0 and TII < 0. (ii) Follows from (**) and the first-order condi-
tion (15.56) found in the text. (iii) The cost of building ∆B, when B = 0,
isMC(c,∆B,H) ≈ [c/TI(0, H)] ·∆B = c∆B = c when ∆B = 1, where we have
used (**). �

That it is profitable to produce new houses up the point where MC = p is
illustrated in Fig. 15.11.

D. Solving the no-arbitrage equation for pt in the absence of house
price bubbles (Section 15.2.4)

By definition, if there are no housing bubbles, the market price of a house equals
its fundamental value, i.e., the present value of expected (possibly imputed) after-
tax rental income from owning the house. Denoting the fundamental value p̂t, we
thus have

p̂t = (1− τR)

∫ ∞
t

R(Hs)e
−(τp+δ)(s−t)eτRδ(s−t)e−(1−τr)r(s−t)ds, (15.64)

= (1− τR)

∫ ∞
t

R(Hs)e
−[(1−τr)r+(1−τR)δ+τp](s−t)ds,

where the three discount rates appearing in the first line are, first, τ p + δ, which
reflects the rate of “leakage”from the investment in the house due to the property
tax and wear and tear, second, τRδ, which reflects the tax allowance due to wear
and tear, and, finally, (1 − τ r)r, which is the usual opportunity cost discount.
In the second row we have done an addition of the three discount rates so as to
have just one discount factor easily comparable to the discount factor appearing
below.
In Section 15.2.4 we claimed that in the absence of housing bubbles, the linear

differential equation, (15.61), implied by the no-arbitrage equation (15.53) under
perfect foresight, has a solution pt equal to the fundamental value of the house,
i.e., pt = p̂t. To prove this, we write (15.61) on the standard form for a linear
differential equation,

ṗt + apt = −(1− τR)R(Ht), (15.65)

where
a ≡ − [(1− τ r)r + (1− τR)δ + τ p] < 0. (15.66)
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The general solution to (15.65) is

pt =

(
pt0 − (1− τR)

∫ t

t0

R(Hs)e
a(s−t0)ds

)
e−a(t−t0).

Multiplying through by ea(t−t0) gives

pte
a(t−t0) = pt0 − (1− τR)

∫ t

t0

R(Hs)e
a(s−t0)ds.

Rearranging and letting t→∞, we get

pt0 = (1− τR)

∫ ∞
t0

R(Hs)e
a(s−t0)ds+ lim

t→∞
pte

a(t−t0).

Inserting (15.66), replacing t by T and t0 by t, and comparing with (15.64), we
see that

pt = p̂t + lim
T→∞

pT e
−[(1−τr)r+(1−τR)δ+τp](T−t).

The first term on the right-hand side is the fundamental value of the house at
time t. The second term on the right-hand side thus amounts to the difference
between the market price of the house and its fundamental value. By definition,
this difference represents a bubble. In the absence of the bubble, the market
price, pt, therefore coincides with the fundamental value.
On the other hand, we see that a bubble being present requires that

lim
T→∞

pT e
−[(1−τr)r+(1−τR)δ+τp](T−t) > 0.

In turn, this requires that the house price is explosive in the sense of ultimately
growing at a rate not less than (1 − τ r)r + (1 − τR)δ + τ p. The candidate for a
bubbly path ultimately moving North-East portrayed in Fig. 15.9 in fact has this
property. Indeed, by (15.61), for such a path we have

ṗt/pt = [(1− τ r)r + (1− τR)δ + τ p]−(1−τR)R(Ht)/pt → (1−τ r)r+(1−τR)δ+τ p for t→∞,

since pt →∞ and R′(Ht) < 0.

15.5 Exercises

(15.61)
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