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tween ρ and r, as long as the stability condition (15.44) is satisfied. Or, to be
more precise: the Blanchard model works well in the case ρ < r; in the oppo-
site case, where ρ > r, the model works at least better than the Ramsey model,
because it never implies that Ct → 0 in the long run.
It should be admitted, however, that in the case of a very impatient coun-

try (ρ > r), even the OLG model implies a counterfactual prediction. What
(15.47) tells us is that the impatient small open economy in a sense asymptot-
ically mortgages all of its physical capital and part of its human capital. The
OLG model predicts this will happen, if financial markets are perfect, and if the
political sphere does not intervene. It certainly seems unlikely that an economic
development, ending up with negative national wealth, is going to be observed in
practice. There are two - complementary - explanations of this.
First, the international credit market is far from perfect. Because a full-scale

supranational legal authority comparable with domestic courts is lacking, credit
default risk in international lending is generally a more serious problem than in
domestic lending. Physical capital can to some extent be used as a collateral
on foreign loans, while human wealth is not suitable. Human wealth cannot be
repossessed. This implies a constraint on the ability to borrow.10 And lenders’
risk perceptions depend on the level of debt.
Second, long before all the physical capital of an impatient country is mort-

gaged or have directly become owned by foreigners, the government presumably
would intervene. In fear of losing national independence, it would use its political
power to end the pawning of economic resources to foreigners.
This is a reminder, that we should not forget that the economic sphere of a

society is just one side of the society. Politics as well as culture and religion are
other sides. The economic outcome may be conditioned on these social factors,
and the interaction of all these spheres determines the final outcome.

15.2 The housing market and residential con-
struction

The housing market is from a macroeconomic point of view important for several
reasons: a) housing makes up a substantial proportion of the consumption budget;
b) housing wealth makes up a substantial part of private wealth of a major fraction

10We have been speaking as if domestic residents own the physical capital stock in the country,
but have obtained part or all the financing of the stock by issuing bonds to foreigners. The
results would not change if we allowed for foreign direct investment. Then foreigners would
themselves own part of the physical capital rather than bonds. In such a context a similar
constraint on foreign investment is likely to arise, since a foreigner can buy a factory or the
shares issued by a firm, but it is diffi cult to buy someone else’s stream of future labour income.
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of the population; c) fluctuations in house prices and in construction activity are
large and seem important for business cycles; and d) residential investment, whish
typically is of magnitude 5 percent of GDP, and aggregate output are strongly
positively correlated. The analysis will be based on a simple dynamic partial
equilibrium model with rising marginal construction costs.
Let time be continuous. Let Ht denote the aggregate housing stock at time

t and St the aggregate flow of housing services at time t. Ignoring heterogeneity,
the housing stock can be measured in terms of m2 floor area at a given point in
time. For convenience we will talk about the stock as a certain number of houses
of a standardized size. The supply of housing services at time t constitute a
flow, thereby being measured per time unit, say per year: so and so many square
meter-months are at the disposal for accommodation during the year. The two
concepts are related through

St = αHt, α > 0, (15.49)

where we will treat α as a constant which depends only on the measurement unit
for housing services. If these are measured in square meter-months, α equals the
number of square meters of a “normal-sized”house times 12.
We ignore population growth and economy-wide technological progress.

15.2.1 The housing service market and the house market

There are two goods, houses and housing services, and therefore also two markets
and two prices:

pt = the (real) price of a “normal-sized‘”house at time t,

Rt = the rental rate ≡ the (real) price of housing services at time t.

The price Rt of housing services is known as the rental rate at the housing market.
Buying a housing service means renting the apartment or the house for a certain
period. Or, if we consider an owner-occupied house (or apartment), Rt is the
imputed rental rate, that is, the owner’s opportunity cost of occupying the house.
The prices Rt and pt are measured in real terms, or more precisely, they are
deflated by the consumer price index. We assume perfect competition in both
markets.

The market for housing services

In the short run the housing stock is historically given. Construction is time-
consuming and houses cannot be imported. Owing to the long life of houses,
investment in new houses per year tends to be a small proportion of the available
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housing stock (in advanced economies about 3 percent, say). So also the supply,
St, of housing services is given in the short run.
Suppose the aggregate demand for housing services at time t is

Sdt = D(Rt, A, PV (wL)), D1 < 0, D2 > 0, D3 > 0, (15.50)

where A is aggregate financial wealth and PV (wL) is human wealth, i.e., the
present discounted value of expected future labor income after tax for those alive.
That demand depends negatively on the rental rate reflects that both the sub-
stitution effect and the income effect of a higher rental rate are negative. The
wealth effect on housing demand of a higher rental rate is likely to be positive for
owners and negative for tenants.11

The market for housing services is depicted in Fig. 15.6. We get a characteri-
zation of the equilibrium rental rate in the following way. In equilibrium at time
t, Sdt = St, that is,

D(Rt, A, PV (wL)) = αHt. (15.51)

This equation determines Rt as an implicit function, Rt = R̃(Ht, A, PV (wL)),
of Ht, A, and PV (wL). By implicit differentiation in (15.51) we find the partial
derivatives of this function, R̃H = α/DR < 0, R̃A = −DA/DS > 0, and R̃PW

= −DPV /DR > 0.

The supply of housing services is inelastic in the short run and the market
clearing rental rate immediately moves up and down as the demand curve shifts
rightward or leftward. But in our partial equilibrium framework, we will consider
A and PV (wL) as exogenous and constant. Hence we suppress these two variables
as arguments in the functions and define R(Ht) ≡ R̃(Ht, A, PV (wL)), whereby

Rt = R(Ht), R′ = α/DR < 0. (15.52)

From now on our time unit will be one year and we define one unit of housing
service per year to mean disposal of a house of standard size one year. By this,
α in (15.49) equals 1.

11A simple microeconomic “rationale”behind the aggregate demand function (15.50) is ob-
tained by assuming an instantaneous utility function u(ht, ct) = ln(hγt c

1−γ
t ), where 0 < γ < 1,

and ht is consumption of housing services at time t, whereas ct is non-housing consumption.
Then the share of housing expenditures in the total instantaneous consumption budget is a
constant, γ. This is broadly in line with empirical evidence for the US (Davis and Heathcote,
2005). In turn, according to standard neoclassical theory, the total consumption budget will be
an increasing function of total wealth of the household, cf. Chapter 9. Separation between the
two components of wealth, A and PV (wl), is relevant when credit markets are imperfect.
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Figure 15.6: Supply and demand in the market for housing services at time t.

The market for existing houses

Because a house is a durable good with market value, it is an asset. This asset
typically constitutes a substantial share of the wealth of a large fraction of the
population, the house-owners. At the same time the supply of the asset can
change only slowly.
Assume there is an exogenous and constant risk-free real interest rate r > 0.

This is a standard assumption in partial equilibrium analysis. If the economy is
a small open economy with perfect capital mobility, the exogeneity of r (if not
constancy) is warranted even in general equilibrium analysis.
Considering the asset motive associated with housing, a series of aspects are

central. We let houses depreciate physically at a constant rate δ > 0. Suppose
there is a constant tax rate τR ∈ [0, 1) applied to rental income (possibly imputed)
after allowance for depreciation. In case of an owner-occupied house the owner
must pay the tax τR(Rt − δpt) out of the imputed income (Rt − δpt) per house
per year. Assume further there is a constant property tax (real estate tax) τ p ≥ 0
applied to the market value of houses. Finally, suppose that a constant tax rate
τ r ∈ [0, 1) applies to interest income. There is symmetry in the sense that if you
are a debtor and have negative interest income, then the tax acts as a rebate. We
assume capital gains are not taxed and we ignore all complications arising from
the fact that most countries have tax systems based on nominal income rather
than real income. In a low-inflation world this limitation may not be serious.12

Suppose there are no credit market imperfections, no transaction costs, and no
uncertainty. Assume further that the user of housing services value these services

12Note, however, that if all capital income should be taxed at the same rate, capital gains
should also be taxed at the rate τ r, and τR should equal τ r. In Denmark, in the early 2000s,
the government replaced the rental value tax, τR, on owner-occupied houses by a lift in the
property tax, τp. Since then, due to a nominal “tax freeze”, τp has been gradually decreasing
in real terms.
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independently of whether he/she owns or rent. Under these circumstances the
price of houses, pt, will adjust so that the expected after-tax rate of return on
owning a house equals the after-tax rate of return on a safe bond. We thus have
the no-arbitrage condition

(1− τR)(R(Ht)− δpt)− τ ppt + ṗet
pt

= (1− τ r)r, (15.53)

where ṗet denotes the expected capital gain per time unit (so far ṗ
e
t is just a

commonly held subjective expectation).
For given ṗet we find the equilibrium price

pt =
(1− τR)R(Ht) + ṗet

(1− τ r)r + (1− τR)δ + τ p
.

Thus pt depends on Ht, ṗ
e
t , r, and tax rates in the following way:

∂pt
∂Ht

=
(1− τR)R′(Ht)

(1− τ r)r + (1− τR)δ + τ p
< 0,

∂pt
∂ṗet

=
1

(1− τ r)r + (1− τR)δ + τ p
> 0,

∂pt
∂τR

=
− [(1− τ r)r + τ p]R(Ht) + δṗet
[(1− τ r)r + (1− τR)δ + τ p]

2 S 0 for ṗet S
[(1− τ r)r + τ p]R(Ht)

δ
,

∂pt
∂τ p

= − (1− τR)R(Ht) + ṗet
[(1− τ r)r + (1− τR)δ + τ p]

2 < 0,

∂pt
∂τ r

=
[(1− τR)R(Ht) + ṗet ] r

[(1− τ r)r + (1− τR)δ + τ p]
2 > 0,

∂pt
∂r

= − [(1− τR)R(Ht) + ṗet ] (1− τ r)
[(1− τ r)r + (1− τR)δ + τ p]

2 < 0,

where the sign of the last three derivatives are conditional on ṗet being nonnegative
or at least not “too negative”.
Note that a higher expected increase in pt, ṗet , implies a higher house price

pt. Over time this feeds back and may confirm and sustain the expectation, thus
generating a further rise in pt. Like other assets, a house is thus a good with the
property that the expectation of price increases make buying more attractive and
may become self-fulfilling if the expectation is generally held.

15.2.2 Residential construction

It takes time for the stock Ht to change. While manufacturing typically involves
mass production of similar items, construction is generally done on location for
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a known client and within intricate legal requirements. It is time-consuming to
design, contract, and execute the sequential steps involved in residential construc-
tion. Careful guidance and monitoring is needed. These features give rise to fixed
costs (to management, architects etc.) and thereby rising marginal costs in the
short run. Congestion and bottlenecks may easily arise.

The construction process

Assume the construction industry is competitive. At time t the representative
construction firm produces Bt units of housing per time unit (B for “building”),
thereby increasing the aggregate housing stock according to

Ḣt = Bt − δHt, δ > 0. (15.54)

The construction technology is described by a production function F̃ :

Bt = F̃ (Kt, Lt, M̄ ;Et) ≡ F̄ (F (Kt, Lt), M̄ ;Et) = F̄ (It, M̄ ;Et) ≡ T (It;Et).

The last argument of F̃ , Et, is not a production factor but stands for construction
experience acquired through accumulated learning in the construction industry.
It determines the effi ciency of the current technology. The three other arguments
of F̃ represent input of capital, Kt, blue-collar labor, Lt, and “management la-
bor”, M̄, which includes working hours of specialists like architects and lawyers.
There are constant returns to scale with respect to these three production fac-
tors. We treat M̄ as a fixed production factor even in the medium run. Hence
the associated fixed cost (salaries) is, in real terms, constant for quite some time.
We denote this fixed cost f̄ .
The remaining two production inputs, capital and blue-collar labor, produces

components for residential construction − intermediate goods − in the amount It
= F (Kt, Lt) per time unit. The production function, F, is “nested”in the “global”
production function, F̄ . Thus construction is modeled as if it makes up a two-
stage process. First, capital and blue-collar labor produce intermediate goods for
construction. Next, management accomplishes quality checks and “assembling”
of these intermediate goods into new houses or at least final new components
built into existing houses. The final output is measured in units corresponding
to a standard house. This does not rule out that a large part of the output is
really in the form of renovations, additions of a room etc.
We treat both blue-collar labor and capital as variable production factors in

the short run and assume F has constant returns to scale. The intermediate goods
are produced on a routine basis at minimum costs (convex capital adjustment
costs, as in Chapter 14, are for simplicity ignored). Let the real cost per unit of
It be denoted c. In our short-to-medium run perspective we treat c as a constant.
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Figure 15.7: The number of new houses as a function of residential investment (for
given E = H̄).

The marginal productivity of It is decreasing in It. That is, keeping M̄ fixed,
the final output, Bt, has diminishing returns with respect to the level of construc-
tion activity per time unit as measured by the flow variable It. In the short run
thus rising marginal costs obtains, “haste is waste”.
To save notation, from now on, with the purpose of suppressing the constant

argument M̄, we introduce the production function T. Moreover, we suppress
the explicit dating of the variables unless needed for clarity. To help intuition,
we shall speak of the function T as a transformation function. This function is
assumed to be strictly concave in I : the larger is I, the smaller is the rate at
which a unit increase in I is transformed into new houses.
To summarize: the amount of new houses built per time unit is

B = T (I, E), where

T (0, E) = 0, TI(0, E) = 1, TI > 0, TII < 0, TE ≥ 0. (15.55)

A higher level of construction activity per time unit means that a larger fraction
of I is “wasted”because of control, coordination, and communication diffi culties.
Hence TII(I, E) < 0, i.e.,.T is strictly concave in I
The second argument in the transformation function is the construction expe-

rience, E. More experience means that the intermediate goods can be designed in
a better way thus implying higher productivity of a given I than otherwise, hence
TE ≥ 0.13 As an indicator of cumulative experience it would be natural to use

13In a long-run perspective, the increasing scarcity of available land may hamper the pro-
ductivity of the intermediate goods, for given I and E. This is ignored in our medium-run
perspective. All the same, in the real world construction technology improves over time and
the limited availability of land can to some extent be dealt with by building taller structures.
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cumulative gross residential investment,
∫ t
−∞Bsds, reflecting cumulative learning

by doing. It is simpler, however, to use cumulative net residential investment, Ht.
We thus assume that Et is (approximately) proportional to Ht.

14 Normalizing the
factor of proportionality to one, we have

Et = Ht.

For fixed E = H̄, Fig. 15.7 shows the graph of T (I, H̄) in the (I, B) plane.
The assumptions TI(0, H̄) = 1 and TII < 0 imply TI(I, H̄) < 1 for I > 0, as
visualized in the figure. An example satisfying all the conditions in (15.55) is a
CES function,15

T (I,H) = A(aIβ + (1− a)Hβ)1/β, with 0 < A < 1, 0 < a < 1, and β < 0.

From the perspective of Tobin’s q-theory of investment, we may let the “waste”
be represented by a kind of adjustment cost function G(I,H) akin to that con-
sidered in Chapter 14. Then T (I,H) ≡ I − G(I,H). In Chapter 14 convex
adjustment costs were associated with the installation of firms’fixed capital and
acted as a reduction in the firms’output available for sale. In construction we
may speak of analogue costs acting as a reduction in the productivity of the in-
termediate goods in the construction process. It is easily seen that, on the one
hand, all the properties of G required in Chapter 14 when I ≥ 0 are maintained.
On the other hand, not all properties required of T in (15.55) need be satisfied
in Tobin’s q-theory (see Appendix B).

Profit maximization

The representative construction firm takes the current economy-wide experience
E = H as given. The gross revenue of the firm is pB and costs are cI. Given the
market price p, the firm maximizes profit:

max
I

Π = pB − cI s.t. B = T (I,H) and

I ≥ 0.

Inserting B = T (I,H), we find that an interior solution satisfies

dΠ

dI
= pTI(I,H)− c = 0, i.e.,

p

c
TI(I,H) = 1. (15.56)

14At least in an economic growth context, where H would almost never be decreasing, this
approximation of the learning effect would not seem too coarse.
15As shown in the appendix to Chapter 4, by defining T (I,H) = 0 when I = 0 or H = 0, the

domain of the CES function can be extended to include all (I,H) ∈ R2+ also when β < 0, while
maintaining continuity.
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In view of TI(I,H) < 1 for I > 0, the latter equation has a solution I > 0
only if p > c. For p ≤ c, we get the corner solution I = 0. Naturally, when the
current market price of houses is below marginal construction cost (which equals
c/(TI(I,H) ≥ c), no new houses will be built. This is a desired property of the
model. On the other hand, when p > c, the construction firm will supply new
houses up to the point where the rising marginal cost equals the current house
price, p.16

A precise determination of optimal I is obtained the following way. For p > c,
the first-order condition (15.56) defines construction activity, I, as an implicit
function of p/c and H :

I = M
(p
c
,H
)
, where M(1, H) = 0. (15.57)

By implicit differentiation with respect to p/c in (15.56), we find

Mp/c =
∂I

∂(p/c)
=

−1

(p/c)2TII(I,H)
> 0,

where the argument I can be written as in (15.57).

Special case

From now on we assume the transformation function T is homogeneous of degree
one. Thus, B = T (I/H, 1)H. Then, by Euler’s theorem, TI(I,H) is homogeneous
of degree 0. So, with explicit timing of the time-dependent variables, (15.56) can
be written

p

c
TI

(
I

H
, 1

)
= 1.

This first-order condition defines It/Ht as an implicit function of pt/c :

I

H
= m

(p
c

)
, where m(1) = 0. (15.58)

By implicit differentiation with respect to p/c in the first-order condition we find

m′ =
−1

(p/c)2TII (I/H, 1)
> 0,

where I/H = m(p/c) can be inserted. A construction activity function m with
this property is shown in Fig. 15.8, where c = 1.

16How to come from the transformation function T (I,H) to the marginal cost schedule is
detailed in Appendix C.
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Figure 15.8: Construction activity (relative to the housing stock) as a function of the
market price of houses (c = 1).

With explicit timing of the time-dependent variables, and letting bt denote
the flow of new houses relative to the stock of houses, we now have

bt ≡
Bt

Ht

=
T (It, Ht)

Ht

= T

(
It
Ht

, 1

)
= T

(
m
(pt
c

)
, 1
)
≡ b

(pt
c

)
, (15.59)

where b(1) = T (m (1) , 1) = T (0, 1) = 0, b′ = TIm
′ > 0.

Remark. Like Tobin’s q, the house price p is the market value of a produced asset
whose supply changes only slowly. As is the case for firms’fixed capital there are
strictly convex stock adjustment costs, represented by the rising marginal con-
struction costs. As a result the stock of houses does not change instantaneously if
for instance p changes. But as shown by the above analysis, the flow variable, res-
idential construction, responds to p in a way similar to the way firm’s fixed-capital
investment responds to Tobin’s q according to the q theory. Recall that Tobin’s
q is defined as the economy-wide ratio V/(pIK), where V is the market value of
the firms, pI is a price index for investment goods, and K is the stock of physical
capital. The analogue ratio in the housing sector is V (H)/(pI ·H) ≡ p ·H/(pI ·H)
= p/c, in view of pI = c. A higher p/c results in more construction activity. �

15.2.3 Equilibrium dynamics under perfect foresight

To determine the evolution over time in H and p, we derive two coupled differ-
ential equations in these two variables. When the transformation function T is
homogeneous of degree one, we can in view of 15.59) write (15.54) as

Ḣt =
(
b
(pt
c

)
− δ
)
Ht, (15.60)

where b(1) = 0 and b′ = TIm
′ > 0.
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Figure 15.9: Phase diagram of aggregate construction activity (c = 1).

Assuming perfect foresight, we have ṗet = ṗt for all t. Then we can write (15.53)
on the standard form for a first-order differential equation:

ṗt = [(1− τ r)r + (1− τR)δ + τ p] pt − (1− τR)R(Ht), (15.61)

where R′ < 0.We have hereby obtained a dynamic system inH and p, the coupled
differential equations (15.60) and (15.61). The corresponding phase diagram is
shown in Fig. 15.9.
We have Ḣ = 0 for b(p/c) = δ > 0. The unique p satisfying this equation is

the steady state value p∗. The Ḣ = 0 locus is thus represented by the horizontal
line segment p = p∗. The direction of movement for H is positive if p > p∗ and
negative if p < p∗. Since b(1) = 0 and b′ > 0, we have p∗ > c.
We have ṗ = 0 for p = (1 − τR)R(H)/ [(1− τ r)r + (1− τR)δ + τ p] . Since

R′(H) < 0, the ṗ = 0 locus has negative slope. The unique steady state value of
H is denoted H∗. To the right of the ṗ = 0 locus, p is rising, and to the left p
is falling. The directions of movement of H and p in the different regions of the
phase plane are shown in Fig. 15.9.
The unique steady state is seen to be a saddle point with housing stock H∗

and housing price p∗. The initial housing stock, H0, is predetermined. Hence,
at time t = 0, the economic system must be somewhere on the vertical line
H = H0. The question is whether there can be asset price bubbles in the system.
An asset price bubble is present if the market value of the asset for some time
systematically exceeds its fundamental value (the present value of the expected
future services or dividends from the asset). Agents might be willing to buy at a
price above the fundamental value if they expect the price will rise further in the
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future. The divergent paths ultimately moving North-East in the phase diagram
are actually, by construction, consistent with the no-arbitrage condition and are
thus candidates for asset price bubbles generated by self-fulfilling expectations.
The fact that houses have clearly defined reproduction costs, however, implies a
ceiling on the ultimate level of p since potential buyers of already existing houses
have the alternative of initiating construction at “normal pace”of a new house
at the cost p∗. Then, by backward induction, these explosive price paths will
not, under rational expectations, get started in the first place. Given rational
expectations, these paths - and therefore “rational bubbles”- can thus be ruled
out.17 This leaves us with the converging path as the unique solution to the
model. At time 0 the residential construction sector will be at the point A in
the diagram and then it will move along the saddle path and after some time the
housing stock and the house price settle down at the steady state, E.
In this model (without economic growth) the steady-state price level, p∗, of

houses equal the marginal building costs when building activity exactly matches
the physical wearing down of houses so that the stock of houses is constant. Owing
to the specific form of the positive relationship between building productivity and
H, implied by the transformation function T being homogeneous of degree one
in I and H, the marginal building costs are unchanged in the medium run even if
r or one of the taxes change. The steady-state level of H is at the level required
for the rental rate R(H) to yield an after-tax rate of return on owning a house
equal to (1 − τ r)r. This level of H is H∗. The corresponding level of R is R∗

= R(H∗), which is that level at which the demand for housing services equals the
steady-state supply, i.e., D(R∗, A, PV (wl)) = S∗ = H∗.

Effect of a fall in the property tax

Suppose the residential construction sector has been in the steady state E in Fig.
15.10 until time t1. Then there is an unanticipated downward shift in the property
tax τ p to a new constant level τ ′p rightly expected to last forever in the future.
The resulting evolution of the system is shown in the figure. The new steady state
is called E’. The new medium-run level of H is H∗′ > H∗, because R′(H) < 0.
On impact, p jumps up to the point where the vertical line H = H

∗
crosses the

new (downward-sloping) saddle path. The intuition is that the after-tax return
on owning a house has been increased. Hence, by arbitrage the market price
p rises to a level such that the after-tax rate of return on houses is as before,
namely equal to (1− τ r)r. After t1, owing to the high p relative to the unchanged
building cost schedule, H increases gradually and p falls gradually (due to R

17In the last section we briefly return to the issue whether other kinds of housing price bubbles
might arise.
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Figure 15.10: Response to a fall in the property tax (c = 1).

falling with the rising H). This continues until the new steady state is reached
with unchanged p∗, but higher H.

The dichotomy between the short and medium run

There is a dichotomy between the price and quantity adjustment in the short and
medium run:

1. In the short run, H, hence also the supply of housing services, is given. The
rental rate R as well as the house price p immediately shifts up (down) if
the demand for housing services shifts up (down).

2. In the medium run (i.e., without new disturbances), it isH that adjusts and
does so gradually. The adjustment of H is in a direction indicated by the
sign of the initial price difference, p − p∗, which in turn reflects the initial
position of the demand curve in Fig. 15.6. On the other hand, the house
price, p, converges towards the cost-determined level, p∗. This price level
is constant as long as technical progress in the production of intermediate
goods for construction follows the general trend in the economy.

15.2.4 Discussion

In many countries a part of the housing market is under some kind of rent control.
Then there is, of course, rationing on the demand side of the housing market. It
may still be possible to use the model in a modified version since the part of
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the housing market, which is not under regulation and therefore has a market
determined price, p, usually includes the new building activity.
We have carried out partial equilibrium analysis in a simplified framework.

Possible refinements of the analysis include considering household optimization
with an explicit distinction between durable consumption (housing demand) and
non-durable consumption and allowing uncertainty and credit market imperfec-
tions. Moreover, a general equilibrium approach would take into account the
possible feedbacks on the financial wealth, A, from changes in H and possibly
also p.18 Allowing economic growth with rising wages in the model would also be
preferable, so that a steady state with a growing housing stock can be considered
(a growing housing stock at least in terms of quality-adjusted housing units). A
more complete analysis would also include land prices and ground rent.

The issue of housing bubbles After a decade of sharply rising house prices,
the US experienced between 2006 and 2009 a fall in house prices of about 30%
(Shiller, ), in Denmark about 20% (Economic Council, Fall 2011). We argued
briefly that in the present model with rational expectations, housing bubbles can
be ruled out. Let us here go a little more into detail about the concepts involved.
The question is whether the large volatility in house prices should be seen as

reflecting the rise and burst of housing bubbles or just volatility of fundamentals.
A house price bubble is present if the market price, pt, of houses for some time
systematically exceeds the fundamental value, that is, if pt > p̂t, where p̂t is the
fundamental value (the present value of the expected future services or dividends
from the asset). The latter can be found as the solution to the differential equation
(15.61), assuming absence of housing price bubbles (see Appendix D).
Our model assumes rational expectations which in the absence of stochastic el-

ements in the model amounts to perfect foresight. What we ruled out by referring
to the well-defined reproduction costs of houses was that a rational deterministic
asset price bubble could occur in the system. A rational asset price bubble is an
asset price bubble that is consistent with the relevant no-arbitrage condition, here
(15.53), when agents have model-consistent expectations. If stochastic elements
are added to the model, a rational housing bubble (which would in this case be

18Feedbacks from changes in p are more intricate than one might imagine at first glance.
In a representative agent model everybody is an average citizen and owns the house she lives
in. Nobody is better off by a rise in house prices. In a model with heterogeneous agents,
those who own more houses than they use themselves gain by a rise in house prices. And
those in the opposite situation lose. Whether and how aggregate consumption is affected
depends on differences in the marginal propensity to consume and on institutional circumstances
concerning collaterals in credit markets. In two papers by Case, Quigley, and Shiller (2005,
2011) empirical evidence of a positive relationship between consumption and housing wealth in
the US is furnished.
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stochastic) can still be ruled out (the argument is similar to the one given for the
deterministic case).
Including land and unique building sites with specific amenity values into the

model will, however, make the argument against rational bubbles less compelling
(see, e.g., Kocherlakota, 2011). Moreover, there are reasons to believe that in
the real world, expectations are far from always rational. The behavioral finance
literature has suggested alternative theories of speculative bubbles where market
psychology (herding, fads, etc.) plays a key role. We postpone a more detailed
discussion of asset price bubbles to Part VI.

15.3 Literature notes

(incomplete)
Poterba (1984).
Attanasio et al., 2009.
Buiter, Housing wealth isn’t wealth, WP, London School of Economics, 20-

07-2008.
The question of systematic bias in homebuyer’s expectations in four U.S.

metropolitan areas over the period 2003-2012 is studied in Case, Shiller, and
Thompson (2012), based on questionnaire surveys. See also Cheng, Raina, and
Xiong (2012).
Campbell and Cocco, 2007.
Mayer (2011) surveys theory and empirics about the cyclical movement of

house prices.
The phenomenon that fast expansion may reduce effi ciency when managerial

capability is a fixed production factor is known as a Penrose effect, so named
after a book from 1959 on management by the American economist Edith Pen-
rose (1914-1996). Uzawa (1969) explores Penrose’s ideas in different economic
contexts. The construction process is sensitive to managerial capability which is
a scarce resource in a construction boom.

15.4 Appendix

A. Complementary inputs

In Section 15.1.2 we claimed, without proof, certain properties of the oil demand
function and the marginal productivities of capital and labor, respectively, in
general equilibrium, given firms’profit maximization subject to a three-factor
production function with inputs that exhibit direct complementarity. Here, we
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use the attributes of the production function F , including (15.2), and the first-
order conditions of the representative firm, to derive the claimed signs of the
partial derivatives of the functions M(K, pM), w(K, pM), and MPK(K, pM).
First, taking the total derivative w.r.t. K and M in (15.13) gives

FMKdK + FMMdM = dpM .

Hence, ∂M/∂K = −FMK/FMM > 0, and ∂M/∂pM = 1/FMM < 0.
Second, taking the total derivative w.r.t. K and pM in (15.12) gives

dw = FLKdK + FLM(MKdK +MpMdpM).

Hence, ∂w/∂K = FLK + FLMMK > 0, and ∂w/∂pM = FLMMpM < 0.
Third, ∂MPK/∂pM = FKMMpM < 0, since FKM > 0 and MpM < 0. As to

the sign of ∂MPK/∂K, observe that

∂MPK/∂K = FKK + FKMMK = FKK + FKM(−FMK/FMM)

=
1

FMM

(FKKFMM − FKM 2) < 0,

where the inequality follows from FMM < 0, if FKKFMM − FKM 2 > 0. And the
latter inequality does indeed hold. This follows from (15.62) in the lemma below.

Lemma. Let f(x1, x2,x3) be some arbitrary concave C2-function defined on R3
+.

Assume fii < 0 for i = 1, 2, 3, and fij > 0, i 6= j. Then, concavity of f implies
that

fiifjj − fij2 > 0 for i 6= j. (15.62)

Proof. By the general theorem on concave C2-functions (see Math Tools), f
satisfies

f11 ≤ 0, f11f22 − f12
2 ≥ 0 and

f11(f22f33 − f23
2)− f12(f21f33 − f23f31) + f13(f21f32 − f22f31) ≤ 0 (15.63)

in the interior of R3
+. Combined with the stated assumptions on f , (15.63) implies

(15.62) with i = 2, j = 3. In view of symmetry, the numbering of the arguments
of f is arbitrary. So (15.62) also holds with i = 1, j = 3 as well as i = 1, j = 2. �
The lemma applies because F satisfies all the conditions imposed on f in the

lemma. First, the direct complementarity condition fij > 0, i 6= j, is directly
assumed in (15.2). Second, the condition fii < 0 for i = 1, 2, 3 is satisfied by
F since, in view of F being neoclassical, the marginal productivities of F are
diminishing. Finally, as F in addition to being neoclassical has non-increasing
returns to scale, F is concave.
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B. The transformation function and the adjustment cost function in
Tobin’s q-theory

As mentioned in Section 15.2.2 we may formulate the strictly concave transfor-
mation function T (I,H) as being equal to I − G(I,H), where the “waste" is
represented by an adjustment cost function G(I,H) familiar from Chapter 14.
Then, on the one hand, all the properties of G required in Chapter 14.1 when
I ≥ 0 are maintained. On the other hand, not all properties required of T in
(15.55) need be satisfied in Tobin’s q-theory.
As to the first claim, note that when the function T (I,H) ≡ I −G(I,H) has

all the properties stated in (15.55), then the function G must, for (I,H) ∈ R2
+,

satisfy:

G(I,H) = I − T (I,H),

G(0, H) = 0− T (0, H) = 0,

GI(I,H) = 1− TI(I,H) ≥ 0, with GI ≥ 0 for I ≥ 0, respectively,

GII(I,H) = −TII(I,H) > 0 for all I ≥ 0,

GH(I,H) = −TH(I,H) ≤ 0,

where the second line is implied by TI(0, H) = 1 and TII < 0. These conditions
on G for (I,H) ∈ R2

+ are exactly those required in Chapter 14.1.
As to second claim, a requirement on the function T in (15.55) is that TI(0, H) =

1 and TI(I,H) > 0 for all I ≥ 0 at the same time as TII < 0. This requires that
0 < TI(I,H) < 1 for all I > 0. For G(I,H) = I − T (I,H) to be consistent with
this, we need that 0 < GI < 1 for all I > 0. So the G function should not be “too
convex”in I. We would have to impose the condition that limI→∞GII = 0 holds
with “suffi cient”speed of convergence. Whereas for instance

G(I,H) = I − A(aIβ + (1− a)Hβ)1/β, with 0 < A < 1, 0 < a < 1, and β < 0,

will do, a function like G(I/H) = (α/2)I2/H, α > 0, will not do for large I.
Nevertheless, the latter function satisfies all conditions required in Tobin’s q-
theory.
If for some reason one would like to use such a quadratic function to represent

waste in construction, one could relax the in (15.55) required condition TI(I,H) >
0 to hold only for I below some upper bound.
Finally, we observe that when T (I,H) ≡ I −G(I,H), then, if the function G

is homogeneous of degree k, so is the function T, and vice versa.
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Figure 15.11: Marginal costs in house construction (housing stock given).

C. Interpreting construction behavior in a marginal cost perspective
(Section 15.2.2)

We may look at the construction activity of the representative construction firm
from the point of view of increasing marginal costs in the short run. First, let T C
denote the total costs per time unit of the representative construction firm. We
have T C = f̄ + T VC, where f̄ is the fixed cost to management and T VC is the
total variable cost associated with the construction of B (= T (I,H)) new houses
per time unit, given the economy-wide stock H. All these costs are measured
in real terms. We have T VC = cI. The input of intermediates, I, required for
building B new houses per time unit is an increasing function of B. Indeed, the
equation

B = T (I,H), (*)

where TI > 0, defines I as an implicit function of B and H, say I = ϕ(B,H). By
implicit differentiation in (*) we find

ϕB = ∂I/∂B = 1/TI(ϕ(B,H), H) > 1, when I > 0

So T VC = cI = cϕ(B,H), and short-run marginal cost is

MC(c, B,H) =
∂T VC
∂B

= cϕB =
c

TI(ϕ(B,H), H)
> c, when I > 0. (**)

CLAIM
(i) The short-run marginal cost, MC, of the representative construction firm is
increasing in B.
(ii) The construction sector produces new houses up the point whereMC = p.
(iii) The cost of building one new house per time unit is approximately c.
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Proof. (i) By (**) and (*),

∂MC
∂B

=
−cTII(ϕ(B,H), H)ϕB
TI(ϕ(B,H), H)2

=
−cTII(ϕ(B,H), H)

TI(ϕ(B,H), H)3
> 0,

since TI > 0 and TII < 0. (ii) Follows from (**) and the first-order condi-
tion (15.56) found in the text. (iii) The cost of building ∆B, when B = 0,
isMC(c,∆B,H) ≈ [c/TI(0, H)] ·∆B = c∆B = c when ∆B = 1, where we have
used (**). �

That it is profitable to produce new houses up the point where MC = p is
illustrated in Fig. 15.11.

D. Solving the no-arbitrage equation for pt in the absence of house
price bubbles (Section 15.2.4)

By definition, if there are no housing bubbles, the market price of a house equals
its fundamental value, i.e., the present value of expected (possibly imputed) after-
tax rental income from owning the house. Denoting the fundamental value p̂t, we
thus have

p̂t = (1− τR)

∫ ∞
t

R(Hs)e
−(τp+δ)(s−t)eτRδ(s−t)e−(1−τr)r(s−t)ds, (15.64)

= (1− τR)

∫ ∞
t

R(Hs)e
−[(1−τr)r+(1−τR)δ+τp](s−t)ds,

where the three discount rates appearing in the first line are, first, τ p + δ, which
reflects the rate of “leakage”from the investment in the house due to the property
tax and wear and tear, second, τRδ, which reflects the tax allowance due to wear
and tear, and, finally, (1 − τ r)r, which is the usual opportunity cost discount.
In the second row we have done an addition of the three discount rates so as to
have just one discount factor easily comparable to the discount factor appearing
below.
In Section 15.2.4 we claimed that in the absence of housing bubbles, the linear

differential equation, (15.61), implied by the no-arbitrage equation (15.53) under
perfect foresight, has a solution pt equal to the fundamental value of the house,
i.e., pt = p̂t. To prove this, we write (15.61) on the standard form for a linear
differential equation,

ṗt + apt = −(1− τR)R(Ht), (15.65)

where
a ≡ − [(1− τ r)r + (1− τR)δ + τ p] < 0. (15.66)
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The general solution to (15.65) is

pt =

(
pt0 − (1− τR)

∫ t

t0

R(Hs)e
a(s−t0)ds

)
e−a(t−t0).

Multiplying through by ea(t−t0) gives

pte
a(t−t0) = pt0 − (1− τR)

∫ t

t0

R(Hs)e
a(s−t0)ds.

Rearranging and letting t→∞, we get

pt0 = (1− τR)

∫ ∞
t0

R(Hs)e
a(s−t0)ds+ lim

t→∞
pte

a(t−t0).

Inserting (15.66), replacing t by T and t0 by t, and comparing with (15.64), we
see that

pt = p̂t + lim
T→∞

pT e
−[(1−τr)r+(1−τR)δ+τp](T−t).

The first term on the right-hand side is the fundamental value of the house at
time t. The second term on the right-hand side thus amounts to the difference
between the market price of the house and its fundamental value. By definition,
this difference represents a bubble. In the absence of the bubble, the market
price, pt, therefore coincides with the fundamental value.
On the other hand, we see that a bubble being present requires that

lim
T→∞

pT e
−[(1−τr)r+(1−τR)δ+τp](T−t) > 0.

In turn, this requires that the house price is explosive in the sense of ultimately
growing at a rate not less than (1 − τ r)r + (1 − τR)δ + τ p. The candidate for a
bubbly path ultimately moving North-East portrayed in Fig. 15.9 in fact has this
property. Indeed, by (15.61), for such a path we have

ṗt/pt = [(1− τ r)r + (1− τR)δ + τ p]−(1−τR)R(Ht)/pt → (1−τ r)r+(1−τR)δ+τ p for t→∞,

since pt →∞ and R′(Ht) < 0.

15.5 Exercises

(15.61)
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