A note on the implicit function theorem and differentials

1 The implicit function theorem ${ }^{1}$

In economics we often consider problems of the following kind: if a system of equations is intended to define some endogenous variables as functions of the remaining exogenous variables, what are the partial derivatives of these functions? This raises the mathematical questions: do these functions exist, if so, are they differentiable, and if so, can we provide useful formulas for the partial derivatives?

1.1 The implicit function theorem for two variables

Consider the equation

$$
\begin{equation*}
f(x, y)=0 \tag{1}
\end{equation*}
$$

It could represent an isoquant (level curve) $F(K, L)=\bar{Y}$ in which case $f(x, y) \equiv F(x, y)-$ $\bar{Y}=0$. If f is specified, we might be able to solve the equation for y expressed as some explicit function of x, interpreted as the exogenous variable (the "known"). Even if f is not specified, we might be able to "solve" the equation for the endogenous variable (the "unknown") y expressed as some "implicit" function of x.

Theorem 1 (implicit function theorem, special version). Suppose that f is C^{1} in an open set S in $\mathbb{R}^{2} .{ }^{2}$ Let $\left(x_{0}, y_{0}\right) \in S$ satisfy (1) and assume that $f_{2}^{\prime}\left(x_{0}, y_{0}\right) \neq 0 .{ }^{3}$ Then there exists an interval $I_{1}=\left(x_{0}-\delta, x_{0}+\delta\right)$ and an interval $I_{2}=\left(y_{0}-\varepsilon, y_{0}+\varepsilon\right)$ (with $\delta>0$ and $\varepsilon>0$) such that $I_{1} \times I_{2} \subseteq S$ and:
(i) for every x in I_{1} the equation (1) has a unique solution in I_{2} which defines y as a (generally only "implicit") function $y=\varphi(x)$ in I_{1};

[^0](ii) φ is C^{1} in I_{1} with derivative
$$
\varphi^{\prime}(x)=-\frac{f_{1}^{\prime}(x, \varphi(x))}{f_{2}^{\prime}(x, \varphi(x))} .
$$

Theorem 1 is also applicable if we start from an equation with one endogenous and several exogenous variables (cf. the saving problem of the young in Section 3.3). Consider the equation $f(x, y, z)=0$, where f is C^{1} in an open set S in \mathbb{R}^{3}, and x and y are exogenous variables while z is the endogenous variable. If $\left(x_{0}, y_{0}, z_{0}\right) \in S$ satisfies the equation and $f_{3}^{\prime}\left(x_{0}, y_{0}, z_{0}\right) \neq 0$, this equation defines z as an implicit C^{1} function $z=\psi(x, y)$ of x and y. Keeping y fixed at some constant level \bar{y}, we may apply Theorem 1 to get an expression for $\psi_{1}(x, \bar{y})$. And keeping x fixed at some constant level \bar{x}, we may apply the theorem to get an expression for $\psi_{2}(\bar{x}, y)$. Finally, \bar{y} and \bar{x} are varied within the relevant ranges.

1.2 The implicit function theorem (general version)

Consider a system of m equations with n exogenous variables and m endogenous variables

$$
\begin{aligned}
& f^{1}\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right)=0 \\
& \ldots \\
& f^{m}\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right)=0
\end{aligned}
$$

or, in vector notation,

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{0} . \tag{2}
\end{equation*}
$$

Theorem 2 (implicit function theorem, general version). Suppose f^{1}, \ldots, f^{n} are C^{1} functions of (\mathbf{x}, \mathbf{y}) in an open set S in $\mathbb{R}^{n} \times \mathbb{R}^{m}$. Let $\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right) \in S$ satisfy (2) and assume that the Jacobian determinant of \mathbf{f} with respect to \mathbf{y} is different from 0 at $\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)$, i.e.,

$$
\left|J_{y}(\mathbf{x}, \mathbf{y})\right|=\left|\begin{array}{ccc}
\frac{\partial f^{1}(\mathbf{x}, \mathbf{y})}{\partial y_{1}} \ldots \ldots & \frac{\partial f^{1}(\mathbf{x}, \mathbf{y})}{\partial y_{m}} \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\frac{\partial f^{m}(\mathbf{x}, \mathbf{y})}{\partial y_{1}} \ldots \ldots \frac{\partial f^{m}(\mathbf{x}, \mathbf{y})}{\partial y_{m}}
\end{array}\right| \neq 0 \text { at }(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{0}, \mathbf{y}^{0}\right)
$$

Then there exists neighborhoods B_{1} in \mathbb{R}^{n} around \mathbf{x}^{0} and B_{2} in \mathbb{R}^{m} around \mathbf{y}^{0}, respectively, with $B_{1} \times B_{2} \subseteq S$ such that $|J(\mathbf{x}, \mathbf{y})| \neq 0$ for all $(\mathbf{x}, \mathbf{y}) \in B_{1} \times B_{2}$, and such that:
(i) for each \mathbf{x} in B_{1} there is a unique \mathbf{y} in B_{2} satisfying (2); in this way \mathbf{y} is defined "implicitly" on B_{1} as a function $\varphi(\mathbf{x})=\left(\varphi^{1}(\mathbf{x}), \ldots, \varphi^{m}(\mathbf{x})\right)$ of \mathbf{x};
(ii) φ is C^{1} in B_{1} with partial derivatives given by
for $i=1, \ldots, m, j=1, \ldots, n$. (The matrix the determinant of which appears in the numerator is identical to the Jacobian $J_{y}(\mathbf{x}, \mathbf{y})$ but for the replacement of the i 'th column of the latter with the m-vector $\left(-\partial f^{1}(\mathbf{x}, \mathbf{y}) / \partial x_{j},-\partial f^{2}(\mathbf{x}, \mathbf{y}) / \partial x_{j}, \ldots,-\partial f^{m}(\mathbf{x}, \mathbf{y}) / \partial x_{j}\right)$.)

2 Differentials ${ }^{4}$

Differentials and Cramer's rule are convenient devices for analytical calculation of partial derivatives of functions implicitly given by a system of equations. At p. 38 in Chapter 2 of the Lecture Notes we see an example. But what is a differential?

2.1 A function of one variable

Let $y=f(x)$ be a differentiable function. Let the symbol $d x$ denote an arbitrary real number to be interpreted as a change in the value of the variable x. Then the expression $f^{\prime}(x) d x$ at x is called the differential of $y=f(x)$ and is denoted $d y$. That is,

$$
d y=f^{\prime}(x) d x
$$

With Δy denoting the actual change in the value of y when x is changed by $d x$, we have

$$
\begin{equation*}
\Delta y=f(x+d x)-f(x) \approx d y=f^{\prime}(x) d x \tag{4}
\end{equation*}
$$

where " \approx " means "approximately equal to" for $d x$ "small" in absolute value. To clarify the meaning of "approximately equal to" and "small", let ε be defined through the equation

$$
f(x+d x)-f(x)=f^{\prime}(x) d x+\varepsilon d x .
$$

[^1]Since f is differentiable, we have $\varepsilon \rightarrow 0$ for $d x \rightarrow 0$. If $d x$ is very small, then ε is very small, and $\varepsilon d x$ is "very, very small".

If f is an affine function, " \approx " in (4) can be replaced by "=". Otherwise, the differential $d y$ in (4) only provides an approximation to the actual change Δy.

2.2 A function of two variables

Let $z=f(x, y)$ be a C^{1} function of two variables. Let the symbols $d x$ and $d y$ denote arbitrary real numbers to be interpreted as changes in the value of x and y, respectively. Then the (total) differential of $z=f(x, y)$ at (x, y), denoted $d z$ or $d f$, is defined by

$$
\begin{equation*}
d z(=d f)=f_{1}^{\prime}(x, y) d x+f_{2}^{\prime}(x, y) d y \tag{5}
\end{equation*}
$$

The actual change in the value of z when x and y are changed by $d x$ and $d y$, respectively, is

$$
\Delta z=f(x+d x, y+d y)-f(x, y) \approx d z=f_{1}^{\prime}(x, y) d x+f_{2}^{\prime}(x, y) d y
$$

where the approximation "works well" when $d x$ and $d y$ are "small" in absolute value. ${ }^{5}$

3 Solving two equations in terms of differentials

Let also $u=g(x, y)$ be a C^{1} function of two variables. In analogy with (5) we can then write

$$
\begin{equation*}
d u(=d g)=g_{1}^{\prime}(x, y) d x+g_{2}^{\prime}(x, y) d y \tag{6}
\end{equation*}
$$

The immediate interpretation of the equations (5) and (6) is that they determine the (value of the) differentials $d z$ and $d u$ (i.e., the approximate changes in z and u) from knowledge of the pairs (x, y) and $(d x, d y)$. That is, the "actual" changes $d x$ and $d y$ are seen as "causing" changes in z and u approximately equal to $d z$ and $d u$.

Assume, however, that what we know, in addition to the functions f and g, is the pairs (x, y) and $(d z, d u)$, while $(d x, d y)$ is the unknown. Then one would normally rearrange the equations so that the known $(d z, d u)$ appears alone on the right-hand side:

$$
\begin{align*}
f_{1}^{\prime}(x, y) d x+f_{2}^{\prime}(x, y) d y & =d z \tag{7}\\
g_{1}^{\prime}(x, y) d x+g_{2}^{\prime}(x, y) d y & =d u . \tag{8}
\end{align*}
$$

[^2]Given (x, y) and $(d z, d u)$, we have here a system of two linear equations in the two unknowns, the variables $d x$ and $d y$. Suppose that the Jacobian determinant, D, of $f(x, y)$ with respect to x and y differs from 0 , i.e.,

$$
D=\left|\begin{array}{ll}
f_{1}^{\prime}(x, y) & f_{2}^{\prime}(x, y) \tag{9}\\
g_{1}^{\prime}(x, y) & g_{2}^{\prime}(x, y)
\end{array}\right| \neq 0 .
$$

Then, from linear algebra we know that, given the right-hand side of (7)-(8), this system has a unique solution $(d x, d y)$. Indeed, by Cramer's rule, the solution for $d x$ is

$$
d x=\frac{\left|\begin{array}{ll}
d z & f_{2}^{\prime}(x, y) \tag{10}\\
d u & g_{2}^{\prime}(x, y)
\end{array}\right|}{D} .
$$

Similarly, the solution for $d y$ is

$$
d y=\frac{\left|\begin{array}{ll}
f_{1}^{\prime}(x, y) & d z \tag{11}\\
g_{1}^{\prime}(x, y) & d u
\end{array}\right|}{D} .
$$

The solution for $d x$ and $d y$ approximate the changes in x and y "caused" by the changes in z and u, represented by $d z$ and $d u$. The functions f and g might themselves be linear. In that case the solution for $d x$ and $d y$ gives the "true" changes in x and y.

4 Application

Differentials and Cramer's rule are convenient devices for analytical calculation of partial derivatives of functions implicitly given by a system of equations. At p. 38 in Chapter 2 of the Lecture Notes we have an example. The point of departure is the system of equations

$$
\begin{align*}
F_{K}(K, L) & =w_{K}, \tag{2.29}\\
F_{L}(K, L) & =w_{L} . \tag{2.30}
\end{align*}
$$

In the text these equations are interpreted as determining the two unknowns, K and L, as implicit functions, say $K=\varphi\left(w_{K}, w_{L}\right)$ and $L=\psi\left(w_{K}, w_{L}\right)$, of the exogenous market prices, w_{K} and $w_{L} \cdot{ }^{6}$ Through a brief procedure the text then finds formulas for the partial derivatives of these two implicit functions. What is the logic behind the procedure?

[^3]Let us consider the problem in more general terms. We have two equations of the form

$$
\begin{align*}
& f(x, y)=z \tag{12}\\
& g(x, y)=u \tag{13}
\end{align*}
$$

where f and g are functions of (x, y) in an open set S in \mathbb{R}^{2} with range equal to some intervals, I and J, respectively, in \mathbb{R}^{1}. Moreover, f and g are C^{1} in S.

Suppose the point $\left(x_{0}, y_{0}, z_{0}, u_{0}\right)$ in the interior of $S \times I \times J$ satisfies the equations (12) and (13) and that the Jacobian determinant D in (9), evaluated at (x_{0}, y_{0}), is not 0 . Applied to this setup, the implicit function theorem says that there exists a neighborhood B_{1} of $\left(z_{0}, u_{0}\right)$ and a neighborhood B_{2} of $\left(x_{0}, y_{0}\right)$ such that for each (z, u) in B_{1} there is a unique (x, y) in B_{2} satisfying (12) and (13). In this way x and y are defined implicitly as C^{1} functions of z and u which we denote $\varphi(z, u)$ and $\psi(z, u)$. By the implicit function theorem, the partial derivatives of these functions can be directly read off from (10) and (11). We find $\varphi_{1}^{\prime}(z, u)$, by inserting $d u=0$ into (10) and rearrange:

$$
\varphi_{1}^{\prime}(z, u)=\frac{\partial x}{\partial z}\left(\left.\equiv \lim _{d z \rightarrow 0} \frac{d x}{d z}\right|_{\mid d u=0}\right)=\frac{g_{2}^{\prime}(x, y)}{D} .
$$

We find $\varphi_{2}^{\prime}(z, u)$, by inserting $d z=0$ into (10) and rearrange:

$$
\varphi_{2}^{\prime}(z, u)=\frac{\partial x}{\partial u}\left(\left.\equiv \lim _{d u \rightarrow 0} \frac{d x}{d u} \right\rvert\, d z=0\right)=\frac{-f_{2}^{\prime}(x, y)}{D} .
$$

In an analogue way we can read off $\psi_{1}^{\prime}(z, u)$ and $\psi_{2}^{\prime}(z, u)$ from (11):

$$
\begin{aligned}
\psi_{1}^{\prime}(z, u) & =\frac{\partial y}{\partial z}\left(\left.\equiv \lim _{d z \rightarrow 0} \frac{d y}{d z}\right|_{d u=0}\right)=\frac{-g_{1}^{\prime}(x, y)}{D} \\
\psi_{2}^{\prime}(z, u) & =\frac{\partial y}{\partial u}\left(\left.\equiv \lim _{d u \rightarrow 0} \frac{d y}{d z}\right|_{d z=0}\right)=\frac{f_{1}^{\prime}(x, y)}{D}
\end{aligned}
$$

This illustrates the convenience of using differentials.

[^0]: ${ }^{1}$ This relies primarily on K. Sydsæter, P. Hammond, A. Seierstad, and A. Strøm, Further Mathematics for Economic Analysis, Second edition, Prentice Hall, Essex 2008.
 ${ }^{2}$ A function f is of class C^{k}, or simply C^{k}, in the set $S \subset \mathbb{R}^{n}$ if all partial derivatives of f of order $\leq k$ are continuous in S.
 ${ }^{3}$ Note that when we write pure math, we use apostrophes to indicate partial derivatives. But when we set up and analyze economic models, we usually skip the apostrophes unless they are necessary to avoid confusion.

[^1]: ${ }^{4}$ The definition of a differential given here follows K. Sydsæter and P. Hammond, Essential Mathematics for Economic Analysis. Third edition, Prentice-Hall 2008.

[^2]: ${ }^{5}$ Some elementary texts about mathematics for economists define the differential $d z$ as requiring that $d x$ and $d y$ in (5) are "infinitisimals", or "infinitely small". It is then claimed that Δz becomes equal to $d z$. These imprecise ideas, originally introduced by Leibniz, have generally been abandoned in mathematics.

[^3]: ${ }^{6}$ In the text, p. 38, the two unknowns, interpreted as factor demands, are denoted K^{d} and L^{d}, while the two implicit functions are denoted K and L instead of φ and ψ, respectively.

