The bank-lending channel: The IS-BL model

Christian Groth
University of Copenhagen

November 21, 2016

Figure: A stylized financial system.
$i_{B}=$ bond interest rate (one-period bonds)
$i_{L}=$ bank lending interest rate (the "lending rate"),
$D=$ deposits of the non-bank private sector (a stock, earns no interest),
$\rho=$ required reserve-deposit ratio, $\rho \in[0,1)$, exogenous,
$M_{0}=$ monetary base,
$m m=$ the money multiplier,
$M_{1} \equiv m m \cdot M_{0}=$ money supply in the sense of demand deposits in banks (a stock, earns no interest),
$E \equiv M_{0}-\rho D=$ excess reserves (a stock, like ρD earning no interest),
$L^{s}=$ supply of bank loans,
$\sigma=$ perceived riskiness of offering bank loans, a shift parameter,
$B=$ value of the stock of government bonds held by the private sector,
$B_{b}=$ value of government bonds held by the banks,
$B_{n}=$ value of government bonds held by the non-bank public,
$W \equiv M_{0}+B=$ aggregate nominal financial wealth of private sector,
$P=$ price level, exogenous, $P=1$,
$Y=$ real aggregate output,
$G=$ real government spending on goods and services, a policy parameter, $\tau=$ "fiscal tightness", a policy parameter.

Table 2. Balance sheet of the central bank (CB).

Assets	Liabilities
$\bar{B}-B=$ gov. bonds held by CB	Currency (here $=0)$ Deposits held by banks $\left(\right.$ here $\left.=M_{0}=\rho D+E\right)$ Gold
Total	Net worth
Total $(=D)$	

Table 3. Merged balance sheet of the commercial banks.

Assets	Liabilities
$M_{0}=\rho D+E=$ reserves (in CB)	$D=$ liquid deposits held by the non-bank public
$L^{s}=$ loans to the non-bank public $B_{b}=$value of gov. bonds held by commercial banks	Long-term debt (here $=0$) Net worth (here $=0)$
Total	$=$ Total

The supply of bank loans

$$
M_{0}+L^{s}+B_{b} \equiv D
$$

Subtract required reserves, ρD, to get disposable deposits:

$$
M_{0}-\rho D+L^{s}+B_{b} \equiv E+L^{s}+B_{b} \equiv(1-\rho) D, \quad 0 \leq \rho<1
$$

$e\left(i_{B}\right)=$ desired fraction of disposable deposits held as excess reserves. Assume:

$$
E=e\left(i_{B}\right)(1-\rho) D, \quad e^{\prime}\left(i_{B}\right)<0 .
$$

Supply of bank loans:

$$
L^{s}=\ell\left(i_{B}, i_{L}, \sigma\right)(1-\rho) D, \quad \ell_{i_{B}}^{\prime}<0, \ell_{i_{L}}^{\prime}>0, \ell_{\sigma}^{\prime}<0
$$

The remainder placed in government bonds:

$$
B_{b}=(1-\rho) D-\left(E+L^{s}\right)
$$

The supply of broad money

Currency is ignored.
The monetary base is $M_{0}=$ banks' reserves held in the CB $=\rho D+E$. The inverse of money multiplier $=$ reserve-deposit ratio:

$$
\frac{1}{m m}=\frac{M_{0}}{M_{1}^{s}}=\frac{M_{0}}{D}=\frac{\rho D+E}{D}=\rho+e\left(i_{B}\right)(1-\rho) \equiv \frac{1}{m m\left(i_{B}\right)}
$$

The money supply then is

$$
M_{1}^{s}=D=m m\left(i_{B}\right) M_{0}>M_{0}, \quad m m^{\prime}\left(i_{B}\right)>0
$$

Demand for broad money

Table 4. The balance sheet of the non-bank private sector.

Assets	Liabilities
$D=$ bank deposits	$L^{d}=$ bank loans
$B_{n}=$ gov. bonds held by non-bank public	$W=$ net worth
Total	$=$ Total

$$
\begin{aligned}
L^{d} & =L\left(Y, i_{B}, i_{L}\right), \quad L_{Y}^{\prime}>0, L_{i_{B}}^{\prime}>0, L_{i_{L}}^{\prime}<0 \\
M_{1}^{d} & =M\left(Y, i_{B}\right), \quad M_{Y}^{\prime}>0, M_{i_{B}}^{\prime}<0 \\
B_{n} & =L^{d}+W-M_{1}^{d}, \\
W & \equiv M_{0}+B_{b}+B_{n} \equiv M_{0}+B
\end{aligned}
$$

General equilibrium

- Equilibrium in the three asset markets. Walras' law of stocks.
- Equilibrium in the output market:

$$
\mathfrak{D}=C\left(Y^{p}, i_{B}, i_{L}, W, \tau\right)+I\left(Y, i_{B}, i_{L}\right), \quad 0<C_{Y p} \leq C_{Y p}+I_{Y}<1
$$

Analysis

Let M_{0} be given (monetary policy instrument).
Derivation of MP curve.
Derivation of IS curve: combine equil. in output market and market for bank loans.

Figure: The IS-MP cross (for fixed M_{0}, σ, τ, and G). A higher σ shifts the IS curve to the stippled position.

Suppose σ (the perceived riskiness of supplying bank loans) goes up:

$$
\left.\sigma \uparrow \Rightarrow i_{L} \uparrow \Rightarrow i_{B} \downarrow \text { (for fixed } Y\right) \Rightarrow \text { IS curve } \downarrow \Rightarrow\left\{\begin{array}{l}
i_{L}-i_{B} \uparrow \\
Y \downarrow
\end{array}\right.
$$

Expansionary monetary policy: $\Delta M_{0}=-\Delta B>0$. Affects output through two channels:

The credit channel:

$$
\text { bank loans } \uparrow \Rightarrow i_{L} \downarrow \Rightarrow \mathfrak{D} \uparrow \Rightarrow \text { IS curve rightward } \Rightarrow\left\{\begin{array}{l}
Y \uparrow \\
i_{B} \uparrow
\end{array}\right.
$$

The interest rate channel:

$$
M_{1} \uparrow \Rightarrow i_{B} \downarrow(\text { for fixed } Y) \Rightarrow \text { MP curve } \downarrow \Rightarrow Y \uparrow
$$

Total effect:
$\Delta M_{0}=-\Delta B>0 \Rightarrow i_{L} \downarrow$ and $Y \uparrow$ while sign of effect on i_{B} ambiguous.

