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arrangements the No-Ponzi-Game condition precludes.
The terminal optimality condition, known as a transversality condition, can

be shown9 to be
lim
t→∞

(1 + ρ)−(t−1)u′(ct−1)at = 0.

9.3 Transition to continuous time analysis

In the formulation of a model we have a choice between putting the model in
period terms or in continuous time. In the former case, denoted period analysis
or discrete time analysis, the run of time is divided into successive periods of
equal length, taken as the time-unit. We may index the periods by i = 0, 1, 2, ....
Thus, in period analysis financial wealth accumulates according to

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

Multiple compounding per year

With time flowing continuously, we let a(t) refer to financial wealth at time t.
Similarly, a(t + ∆t) refers to financial wealth at time t + ∆t. To begin with, let
∆t equal one time unit. Then a(i∆t) equals a(i) and is of the same value as ai.
Consider the forward first difference in a, ∆a(t) ≡ a(t+∆t)−a(t). It makes sense
to consider this change in a in relation to the length of the time interval involved,
that is, to consider the ratio ∆a(t)/∆t.

Now, keep the time unit unchanged, but let the length of the time interval
[t, t+ ∆t) approach zero, i.e., let ∆t→ 0. When a is a differentiable function of
t, we have

lim
∆t→0

∆a(t)

∆t
= lim

∆t→0

a(t+ ∆t)− a(t)

∆t
=
da(t)

dt
,

where da(t)/dt, often written ȧ(t), is known as the time derivative of a at the
point t. Wealth accumulation in continuous time can then be written

ȧ(t) = s(t), a(0) = a0 given, (9.21)

where s(t) is the saving flow (saving intensity) at time t. For ∆t “small”we have
the approximation ∆a(t) ≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have
∆a(t) = a(t+ 1)− a(t) ≈ s(t).

9The proof is similar to that given in Chapter 8, Appendix C.
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As time unit choose one year. Going back to discrete time, if wealth grows at
a constant rate g per year, then after i periods of length one year, with annual
compounding, we have

ai = a0(1 + g)i, i = 0, 1, 2, ... . (9.22)

If instead compounding (adding saving to the principal) occurs n times a year,
then after i periods of length 1/n year and a growth rate of g/n per such period,
we have

ai = a0(1 +
g

n
)i. (9.23)

With t still denoting time measured in years passed since date 0, we have i = nt
periods. Substituting into (9.23) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

[
(1 +

1

m
)m
]gt

, where m ≡ n

g
.

We keep g and t fixed, but let n → ∞. Thus m → ∞. In the limit there is
continuous compounding and we get

a(t) = a0e
gt, (9.24)

where e is a mathematical constant called the base of the natural logarithm and
defined as e ≡ limm→∞(1 + 1/m)m ' 2.7182818285....
The formula (9.24) is the continuous-time analogue to the discrete time for-

mula (9.22) with annual compounding. A geometric growth factor, (1 + g)i, is
replaced by an exponential growth factor, egt, and this growth factor is valid for
any t in the time interval (−τ 1, τ 2) for which the growth rate of a equals the
constant g (τ 1 and τ 2 being some positive real numbers).
We can also view the formulas (9.22) and (9.24) as the solutions to a difference

equation and a differential equation, respectively. Thus, (9.22) is the solution to
the linear difference equation ai+1 = (1 + g)ai, given the initial value a0. And
(9.24) is the solution to the linear differential equation ȧ(t) = ga(t), given the
initial condition a(0) = a0. Now consider a time-dependent growth rate, g(t), a
continuous function of t. The corresponding differential equation is ȧ(t) = g(t)a(t)
and it has the solution

a(t) = a(0)e
∫ t
0 g(τ)dτ , (9.25)

where the exponent,
∫ t

0
g(τ)dτ , is the definite integral of the function g(τ) from 0

to t. The result (9.25) is called the accumulation formula in continuous time and
the factor e

∫ t
0 g(τ)dτ is called the growth factor or the accumulation factor.10

10Sometimes the accumulation factor with time-dependent growth rate is written in a different
way, see Appendix B.
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Compound interest and discounting in continuous time

Let r(t) denote the short-term real interest rate in continuous time at time t.
To clarify what is meant by this, consider a deposit of V (t) euro in a bank at
time t. If the general price level in the economy at time t is P (t) euro, the real
value of the deposit is a(t) = V (t)/P (t) at time t. By definition the real rate of
return on the deposit in continuous time (with continuous compounding) at time
t is the (proportionate) instantaneous rate at which the real value of the deposit
expands per time unit when there is no withdrawal from the account. Thus, if
the instantaneous nominal interest rate is i(t), we have V̇ (t)/V (t) = i(t) and so,
by the fraction rule in continuous time (cf. Appendix A),

r(t) =
ȧ(t)

a(t)
=
V̇ (t)

V (t)
− Ṗ (t)

P (t)
= i(t)− π(t), (9.26)

where π(t) ≡ Ṗ (t)/P (t) is the instantaneous inflation rate. In contrast to the
corresponding formula in discrete time, this formula is exact. Sometimes i(t) and
r(t) are referred to as the nominal and real force of interest.
Calculating the terminal value of the deposit at time t1 > t0, given its value at

time t0 and assuming no withdrawal in the time interval [t0, t1], the accumulation
formula (9.25) immediately yields

a(t1) = a(t0)e
∫ t1
t0
r(t)dt.

When calculating present values in continuous time, we use compound dis-
counting. We reverse the accumulation formula and go from the compounded or
terminal value to the present value, a(t0). Similarly, given a consumption plan
(c(t))t1t=t0 , the present value of this plan as seen from time t0 is

PV =

∫ t1

t0

c(t) e−rtdt, (9.27)

presupposing a constant interest rate, r. Instead of the geometric discount factor,
1/(1+r)t, from discrete time analysis, we have here an exponential discount factor,
1/(ert) = e−rt, and instead of a sum, an integral. When the interest rate varies
over time, (9.27) is replaced by

PV =

∫ t1

t0

c(t) e
−
∫ t
t0
r(τ)dτ

dt.

In (9.27) c(t) is discounted by e−rt ≈ (1 + r)−t for r “small”. This might not
seem analogue to the discrete-time discounting in (9.19) where it is ct−1 that is
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discounted by (1 + r)−t, assuming a constant interest rate. When taking into
account the timing convention that payment for ct−1 in period t − 1 occurs at
the end of the period (= time t), there is no discrepancy, however, since the
continuous-time analogue to this payment is c(t).

The range for particular parameter values

The allowed range for parameters may change when we go from discrete time to
continuous time with continuous compounding. For example, the usual equation
for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (9.28)

where K(t) is the capital stock, I(t) is the gross investment at time t and δ ≥ 0
is the (physical) capital depreciation rate. Unlike in period analysis, now δ >
1 is conceptually allowed. Indeed, suppose for simplicity that I(t) = 0 for all
t ≥ 0; then (9.28) gives K(t) = K0e

−δt. This formula is meaningful for any δ ≥ 0.
Usually, the time unit used in continuous time macro models is one year (or, in
business cycle theory, rather a quarter of a year) and then a realistic value of δ
is of course < 1 (say, between 0.05 and 0.10). However, if the time unit applied
to the model is large (think of a Diamond-style OLG model), say 30 years, then
δ > 1 may fit better, empirically, if the model is converted into continuous time
with the same time unit. Suppose, for example, that physical capital has a half-
life of 10 years. With 30 years as our time unit, inserting into the formula 1/2
= e−δ/3 gives δ = (ln 2) · 3 ' 2.
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good is
1 and thus constant. More generally, if we let the relative price of the capital
good in terms of the consumption good at time t be p(t) and allow ṗ(t) 6= 0, then
we have to distinguish between the physical depreciation of capital, δ, and the
economic depreciation, that is, the loss in economic value of a machine per time
unit. The economic depreciation will be d(t) = p(t)δ− ṗ(t), namely the economic
value of the physical wear and tear (and technological obsolescence, say) minus
the capital gain (positive or negative) on the machine.
Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates of
return and discount rates in general.

Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make
a clear distinction between stocks (say wealth) and flows (say consumption or
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saving). Recall, a stock variable is a variable measured as a quantity at a given
point in time. The variables a(t) and K(t) considered above are stock variables.
A flow variable is a variable measured as quantity per time unit at a given point
in time. The variables s(t), K̇(t), and I(t) are flow variables.

One can not add a stock and a flow, because they have different denomina-
tions. What is meant by this? The elementary measurement units in economics
are quantity units (so many machines of a certain kind or so many liters of oil
or so many units of payment, for instance) and time units (months, quarters,
years). On the basis of these elementary units we can form composite mea-
surement units. Thus, the capital stock, K, has the denomination “quantity of
machines”, whereas investment, I, has the denomination “quantity of machines
per time unit”or, shorter, “quantity/time”. A growth rate or interest rate has
the denomination “(quantity/time)/quantity”= “time−1”. If we change our time
unit, say from quarters to years, the value of a flow variable as well as a growth
rate is changed, in this case quadrupled (presupposing annual compounding).

In continuous time analysis expressions like K(t) + I(t) or K(t) + K̇(t) are
thus illegitimate. But one can write K(t + ∆t) ≈ K(t) + (I(t) − δK(t))∆t, or
K̇(t)∆t ≈ (I(t) − δK(t))∆t. In the same way, suppose a bath tub at time t
contains 50 liters of water and that the tap pours 1

2
liter per second into the

tub for some time. Then a sum like 50 ` + 1
2
(`/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount
would be 50 ` + 1

2
· 60 ((`/sec)×sec) = 80 `. In analogy, economic flow variables

in continuous time should be seen as intensities defined for every t in the time
interval considered, say the time interval [0, T ) or perhaps [0, ∞). For example,
when we say that I(t) is “investment” at time t, this is really a short-hand
for “investment intensity” at time t. The actual investment in a time interval
[t0, t0 + ∆t) , i.e., the invested amount during this time interval, is the integral,∫ t0+∆t

t0
I(t)dt ≈ I(t0)∆t. Similarly, the flow of individual saving, s(t), should be

interpreted as the saving intensity (or saving density), at time t. The actual saving
in a time interval [t0, t0 + ∆t) , i.e., the saved (or accumulated) amount during
this time interval, is the integral,

∫ t0+∆t

t0
s(t)dt. If ∆t is “small”, this integral is

approximately equal to the product s(t0) ·∆t, cf. the hatched area in Fig. 9.1.
The notation commonly used in discrete time analysis blurs the distinction

between stocks and flows. Expressions like ai+1 = ai + si, without further com-
ment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are added.
In fact, however, it is wealth at the beginning of period i and the saved amount
during period i that are added: ai+1 = ai + si · ∆t. The tacit condition is that
the period length, ∆t, is the time unit, so that ∆t = 1. But suppose that, for
example in a business cycle model, the period length is one quarter, but the time
unit is one year. Then saving in quarter i is si = (ai+1 − ai) · 4 per year.
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Figure 9.1: With ∆t small the integral of s(t) from t0 to t0 + ∆t ≈ the hatched area.

The choice between discrete and continuous time formulation

In empirical economics, data typically come in discrete time form and data for
flow variables typically refer to periods of constant length. One could argue that
this discrete form of the data speaks for period analysis rather than continuous
time modelling. And the fact that economic actors often think, decide, and plan
in period terms, may seem a good reason for putting at least microeconomic
analysis in period terms. Nonetheless real time is continuous. Moreover, as for
instance Allen (1967) argued, it can hardly be said that the mass of economic
actors think and decide with the same time distance between successive decisions
and actions. In macroeconomics we consider the sum of the actions. In this
perspective the continuous time approach has the advantage of allowing variation
within the usually artificial periods in which the data are chopped up. In addition,
centralized asset markets equilibrate very fast and respond almost immediately
to new information. For such markets a formulation in continuous time seems a
good approximation.
There is also a risk that a discrete time model may generate artificial oscil-

lations over time. Suppose the “true”model of some mechanism is given by the
differential equation

ẋ = αx, α < −1. (9.29)

The solution is x(t) = x(0)eαt which converges in a monotonic way toward 0 for
t → ∞. However, the analyst takes a discrete time approach and sets up the
seemingly “corresponding”discrete time model

xt+1 − xt = αxt.

This yields the difference equation xt+1 = (1+α)xt, where 1+α < 0. The solution
is xt = (1+α)tx0, t = 0, 1, 2, . . . . As (1+α)t is positive when t is even and negative
when t is odd, oscillations arise (together with divergence if α < −2) in spite of

c© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



9.4. Maximizing discounted utility in continuous time 373

the “true”model generating monotonous convergence towards the steady state
x∗ = 0.
This potential problem can always be avoided, however, by choosing a suffi -

ciently short period length in the discrete time model. The solution to a differen-
tial equation can always be obtained as the limit of the solution to a corresponding
difference equation for the period length approaching zero. In the case of (9.29),
the approximating difference equation is xi+1 = (1 + α∆t)xi, where ∆t is the
period length, i = t/∆t, and xi = x(i∆t). By choosing ∆t small enough, the
solution comes arbitrarily close to the solution of (9.29). It is generally more
diffi cult to go in the opposite direction and find a differential equation that ap-
proximates a given difference equation. But the problem is solved as soon as a
differential equation has been found that has the initial difference equation as an
approximating difference equation.
From the point of view of the economic contents, the choice between discrete

time and continuous time may be a matter of taste. Yet, everything else equal, the
clearer distinction between stocks and flows in continuous time than in discrete
time speaks for the former. From the point of view of mathematical convenience,
the continuous time formulation, which has worked so well in the natural sciences,
is preferable. At least this is so in the absence of uncertainty. For problems where
uncertainty is important, discrete time formulations are easier to work with unless
one is familiar with stochastic calculus.11

9.4 Maximizing discounted utility in continuous
time

9.4.1 The saving problem in continuous time

In continuous time the analogue to the intertemporal utility function, (9.3), is

U0 =
∫ T

0
u(c(t))e−ρtdt. (9.30)

In this context it is common to name the utility flow, u, the instantaneous utility
function. We still assume that u′ > 0 and u′′ < 0. The analogue in continuous
time to the intertemporal budget constraint (9.20) is

∫ T
0
c(t)e−

∫ t
0
r(τ)dτdt ≤ a0 + h0, (9.31)

11In the latter case, Nobel laureate Robert C. Merton argues in favor of a continuous time
formulation (Merton, 1975).
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where, as before, a0 is the historically given initial financial wealth, while h0 is
the given human wealth,

h0 =
∫ T

0
w(t)e−

∫ t
0
r(τ)dτdt. (9.32)

The household’s problem is then to choose a consumption plan (c(t))T
t=0
so as

to maximize discounted utility, U0, subject to the budget constraint (9.31).

Infinite time horizon Transition to infinite horizon is performed by letting
T → ∞ in (9.30), (9.31), and (9.32). In the limit the household’s, or dynasty’s,
problem becomes one of choosing a plan, (c(t))∞t=0, which maximizes

U0 =

∫ ∞
0

u(c(t))e−ρtdt s.t. (9.33)∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ a0 + h0, (IBC)

where h0 emerges by letting T in (9.32) approach ∞. With an infinite horizon
there may exist technically feasible paths along which the integrals in (9.30),
(9.31), and (9.32) go to ∞ for T → ∞. In that case maximization is not well-
defined. However, the assumptions we are going to make when working with
infinite horizon will guarantee that the integrals converge as T →∞ (or at least
that some feasible paths have −∞ < U0 < ∞, while the remainder have U0

= −∞ and are thus clearly inferior). The essence of the matter is that the rate
of time preference, ρ, must be assumed suffi ciently high.
Generally we define a person as solvent if she is able to meet her financial

obligations as they fall due. Each person is considered “small” relative to the
economy as a whole. As long as all agents in an economy with a perfect loan
market remain “small”, they will in general equilibrium remain solvent if and
only if their net debt does not exceed the present value of future primary saving.12

Denoting by d0 net debt at time 0, i.e., d0 ≡ −a0, the solvency requirement as
seen from time 0 is

d0 ≤
∫ ∞

0

(w(t)− c(t))e−
∫ t
0 r(τ)dτdt,

where the right-hand side is the present value of future primary saving. By the
definition in (9.32), we see that this requirement is identical to the intertemporal
budget constraint (IBC) which consequently expresses solvency.

12By primary saving is meant the difference between current non-interest income and current
consumption, where non-interest income means labor income and transfers after tax.
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