
Chapter 4

Continuous time and dynamic
optimization

Among the themes of the previous chapter was the effect of including a

bequest motive due to parental altruism in the two-period OLG model.

Through this extension we came close to the basic representative agent model,

the Ramsey model (in a discrete time version). The next chapter presents

a pure Ramsey model in its standard, continuous time form. In the present

chapter some of the building blocks and analytical tools involved are intro-

duced.

Especially two tools are needed before we can cope with the Ramsey

model in continuous time, namely the basic concepts of continuous time

analysis in general and dynamic optimization in continuous time in particu-

lar. There are many problems where continuous time is preferable to discrete

time analysis (period analysis). One reason is that continuous time opens up

for application of the general mathematical apparatus of differential equa-

tions, which is more powerful than the corresponding apparatus in discrete

time analysis, difference equations. Another reason is that the mathematical

discipline optimal control theory is more developed and potent in its con-

tinuous time version. In addition, continuous time analysis is often more

straightforward because many formulas in continuous time are simpler than

the corresponding ones in discrete time (cf. the growth formulas in Appendix

A). So the aim of this chapter is to equip the reader with the basic concepts
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164CHAPTER 4. CONTINUOUS TIME AND DYNAMIC OPTIMIZATION

and methods of continuous time analysis − with an emphasis on dynamic
optimization.

As a vehicle for illustrating the principles we consider a household’s con-

sumption/saving decision. How does the household assess the choice between

consumption today and consumption in the future? We start from a discrete

time framework along the lines of the previous chapters and then carry out

the transition to continuous time. In contrast to the previous chapters, we

shall allow lifetime to consist of an arbitrary number of periods. Thus, the

period length considered may be much shorter. This opens up for capturing

additional aspects of economic behaviour.

First, we shall specify the market environment in which the optimizing

household operates.

4.1 Market conditions

In the Diamond OLG model the loan market was not active and wealth

effects through changes in the interest rate were absent. It is otherwise in

a setup where agents live for many periods. This motivates a closer look at

the asset markets and notions related to intertemporal choices.

We assume perfect competition on all markets, so the household takes all

prices as given. Ignoring uncertainty, the various assets (real capital, stocks,

loans etc.) that the household invest in gives the same rate of return in

equilibrium. Suppose the household can at any date take a loan or issue loans

to others at the going interest rate, rt. That is, one faces the same interest

rate whether borrowing or lending (there are no transaction costs). And

there are no borrowing restrictions other than the requirement on the part of

borrowers to maintain their intertemporal budget constraint. A loan market

satisfying these conditions is called a perfect loan market. The implications

of such a market are:

1. various payment streams can be subject to comparison; if they have

the same present value (PV for short), they are equivalent;

2. any payment stream can be converted into another if it has the same

present value;
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3. payment streams can be compared with the value of stocks.

Consider a payment stream {xt}T−1t=0 over T periods, where xt is the pay-

ment at the end of period t. As in the previous chapters period t runs from

date t to date t+1 for t = 0, 1, ..., T −1; and rt is defined as the interest rate
on a loan from date t to date t+1, i.e., from the beginning of period t to the

end of period t. Then the present value, PV0, as seen from the beginning of

period 0, of the payment stream is defined as1

PV0 =
x0

1 + r0
+

x1
(1 + r0)(1 + r1)

+ · · ·+ xT−1
(1 + r0)(1 + r1) · · · (1 + rT−1)

. (4.1)

If Ms. Jones is entitled to the income stream {xt}T−1t=0 , but wishes to buy to-

day a durable consumption good of value PV0, she can borrow this amount

and use the income stream {xt}T−1t=0 to repay it over the periods t = 1, 2, ..., T .

In general, when Jones wishes to have a different time profile on the income

stream than the original one, she can obtain this through appropriate trans-

actions in the loan market leaving her with any stream of income with the

same present value.

The good which is traded on the loan market will here be referred to as

bonds. The borrower issues bonds and the lender buys them. Until further

notice, we will consider all loans as short-term, i.e., as one-period bonds. For

every unit of account you lend in the form of a one-period bond at the end

of period t − 1, you will get 1 + rt units of account in return at the end of

period t. If you are a borrower of one unit of account at the end of period

t− 1, you pay 1+ rt units of account back to the lender at the end of period

t. If a borrower wishes to maintain debt through several periods, new bonds

are issued and the revenue is spent rolling over the older loans at the going

market interest rate. For the lender, who lends in several periods, this is

equivalent to a variable-rate demand deposit in a bank.

1We use “present value” as synonymous with “present discounted value”. Note that our

timing convention is that PV0 denotes the date 0 value of the payment stream, including
the discounted value of the payment (or dividend) in period 0.
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4.2 The consumption/saving problem

Let the household’s labour supply per time unit be inelastic and constant over

time. We normalize this labour supply to one unit of labour per time unit.

There is only one consumption good so the composition of consumption poses

no problems. What remains is the question how to distribute the income

between consumption and saving.

4.2.1 Discrete time

A plan for consumption in the periods 0, 1, ..., T−1 is denoted {ct}T−1t=0 , where

ct is the consumption in period t. We say the plan has time horizon T. We

assume the preferences of the household can be represented by an additive

utility function U(c0, c1, c2, · · · , cT−1) = u0(c0) + u1(c1) + ...uT−1(cT−1). In

fact we shall specialize U(·) further and assume a constant utility discount
rate, ρ:

U(c0, c1, · · · , cT−1) = u(c0) +
u(c1)

1 + ρ
+ · · ·+ u(cT−1)

(1 + ρ)T−1
=

T−1X
t=0

u(ct)

(1 + ρ)t
. (4.2)

The function U(·) is called the intertemporal utility function whereas the
function u(·) is known as the period utility function or elementary utility
function.2 We assume that for all c > 0, we have u0(c) > 0 and u00(c) < 0. A

ρ > 0 reflects that if the level of consumption is the same in two periods, then

the individual always appreciates a marginal unit of consumption higher if

it arrives in the earlier period. The literature refers to ρ as the rate of time

preference or the rate of impatience. The number 1 + ρ tells how many

additional units of utility in the next period that the household insists on to

compensate for a decrease of one unit of utility in the current period. The

utility discount factor, 1/(1 + ρ)t, indicates how many units of utility the

household is at most willing to give up in period 0 to get one additional unit

of utility in period t (see Box 1).3 The rate of discount of utility, ρ must not
2Some authors refer to u(·) as the subutility function. In continuous time analysis the

corresponding function is known as the instantaneous utility function, the felicity function
or the utility flow function.

3Multiplying through in (4.2) by (1+ρ)−1 would leave the ranking of all possible alter-
native consumption paths unchanged, and at the same time make the objective function
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be mistaken with the rate of discount of income, namely the interest rate, rt,

as in (4.1).

Box 1. Admissible transformations of the period utility function

When preferences, as assumed here, can be represented by discounted utility, the

concept of utility appears at two levels. The function U(·) is defined on the set
of alternative feasible consumption paths and corresponds to an ordinary utility

function in general microeconomic theory. That is, U(·) will express the same
ranking between alternative consumption paths as any increasing transformation

of U(·). The period utility function, u(·), defined on the consumption in a
single period, is a less general concept, requiring that reference to “utility units”

is legitimate. That is, the size of the difference in terms of period utility between

two outcomes has significance for choices. Indeed, the essence of the discounted

utility hypothesis is that we have, for example,

u(c0)− u(c00) > 0.95
£
u(c01)− u(c1)

¤
⇐⇒ (c0, c1) Â (c00, c01),

meaning that the household, having a utility discount factor 1/(1 + ρ) = 0.95,

strictly prefers consuming (c0, c1) to (c
0
0, c

0
1) in the first two periods, if and only if

the utility differences satisfy the indicated inequality.

Only a linear positive transformation of the utility function u(·), that is,
v(c) = au(c) + b, where a > 0, leaves the ranking of all possible alternative

consumption paths, {ct}T−1t=0 , unchanged.
4

Already the additivity of the intertemporal utility function is a strong

assumption. It implies that the trade-off between consumption this period

and consumption two periods from now is independent of consumption in

the interim. The constant time discount implies further that the marginal

rate of substitution between consumption this period and consumption next

period is independent of the level of consumption as long as this level is the

appear in a way similar to (4.1) in the sense that also the first term in the sum becomes
discounted. However, for ease of notation the form (4.2) is commonly used.

4The point is that a linear positive transformation does not affect the ratios of marginal
period utilities (the marginal rates of substitution across time).
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same in the two periods.5

It is generally believed that human beings are impatient in the sense that

ρ should be positive; indeed, it seems intuitively reasonable that the distant

future does not matter much for current private decisions.6 There is, however,

a growing body of evidence suggesting that the discount rate is not constant,

but declining with the time distance from now to the event in question (see,

e.g., Loewenstein and Thaler, 1989). Since this last point complicates the

models considerably, macroeconomics often, as a first approach, ignores it

and assume a constant ρ to keep things simple. Here we follow this practice.

More specifically, we assume ρ > 0, although this will not be important to

begin with, where the time horizon is finite.

Suppose the household considered has income from two sources: work

and financial wealth (possibly negative). As numeraire (unit of account) for

the wage rate and the rate of return etc. in period t we apply units of the

consumption good delivered at the end of period t. With its choice of con-

sumption plan the household must act in conformity with its intertemporal

budget constraint. The present value of the consumption plan {ct}T−1t=0 is,

PV (c1, ..., cT−1) ≡
c0

1 + r0
+

c1
(1 + r0)(1 + r1)

+ · · · cT−1
(1 + r0)(1 + r1) · · · (1 + rT−1)

=
T−1X
t=0

ct
Πt
τ=0(1 + rτ)

.

This value can not exceed the household’s total wealth, including the present

value of expected future labour income, which is

h0 =
w0
1 + r0

+
w1

(1 + r0)(1 + r1)
+ · · ·+ wT−1

(1 + r0)(1 + r1) · · · (1 + rT−1)
. (4.3)

In accordance with the assumption of perfect competition, the household

does not face any problems selling its labour supply in the market at the

5The (strong) assumptions regarding the underlying intertemporal preferences which
allow them to be represented by the present value of period utilities discounted at a
constant rate are dealt with by Koopmans (1960) and Fishburn and Rubinstein (1982)
and − in summary form − by Heal (1998).

6If uncertainty were included in the model, (1 + ρ)−1 might be seen as reflecting the
probability of surviving to the next period.
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going real wage, wt. Thus, the household’s intertemporal budget constraint

is
T−1X
t=0

ct
Πt
τ=0(1 + rτ )

≤ a0 + h0, (4.4)

where a0 is the household’s financial wealth at the beginning of period 0

(the value of the initial stock of bonds). This can be positive as well as

negative (in which case the household is in debt). The household’s problem

is to choose a consumption plan {ct}T−1t=0 so as to achieve a maximum of U0
subject to this budget constraint.

However, for the study of dynamic problems it is in many cases more

convenient to use continuous-time analysis.

4.2.2 Continuous time

Our point of departure is the discrete time framework above: the run of time

is divided into successive periods of constant length, taken as the time-unit.

Let financial wealth at the beginning of period i be denoted ai, i = 0, 1, 2, ....

Then wealth accumulation in discrete time can be written

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

Transition to continuous time analysis

With time flowing continuously, we let a(t) refer to financial wealth at time

t. Similarly, a(t+∆t) refers to financial wealth at time t+∆t. To begin with,

let ∆t be equal to one time unit. Then a(i∆t) = ai. Consider the forward

first difference in a, ∆a(t) ≡ a(t+∆t)− a(t). It makes sense to consider this

change in a in relation to the length of the time interval involved, that is, the

ratio ∆a(t)/∆t. As long as ∆t = 1, with t = i∆t we have∆a(t)/∆t = (ai+1−
ai)/1 = ai+1 − ai. Now, keep the time unit unchanged, but let the length of

the time interval [t, t+∆t) approach zero, i.e., let ∆t→ 0. Assuming a(·) is
a continuous and differentiable function, then lim∆t→0∆a(t)/∆t exists and

is denoted the derivative of a(·) at t, usually written da(t)/dt or just ȧ(t).
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That is,

ȧ(t) =
da(t)

dt
= lim

∆t→0

a(t+∆t)− a(t)

∆t
= lim

∆t→0

∆a(t)

∆t
.

By implication, wealth accumulation in continuous time is written

ȧ(t) = s(t), a(0) = a0 given, (4.5)

where s(t) is the saving at time t. For ∆t “small” we have the approximation

∆a(t) ≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have ∆a(t) = a(t +

1)− a(t) ≈ s(t).

As time unit let us choose one year. Going back to discrete time, if wealth

grows at the constant rate g > 0 per year, then after i periods of length one

year (with annual compounding)

ai = a0(1 + g)i, i = 0, 1, 2, ... . (4.6)

When compounding is n times a year, corresponding to a period length of

1/n year, then after i such periods:

ai = a0(1 +
g

n
)i. (4.7)

With t still denoting time (measured in years) passed since the initial date

(here date 0), we have i = nt periods. Substituting into (4.7) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

∙
(1 +

1

m
)m
¸gt

, where m ≡ n

g
.

We keep g and t fixed, but let n (and so m) →∞. Then, in the limit there

is continuous compounding and

a(t) = a0e
gt, (4.8)

where e is the “exponential” defined as e ≡ limm→∞(1+1/m)
m ' 2.718281828....

The formula (4.8) is the analogue in continuous time (with continuous com-

pounding) to the discrete time formula (4.6) with annual compounding.

Thus, a geometric growth factor is replaced by an exponential growth factor.

We can also view these two formulas as the solutions to a difference

equation and a differential equation, respectively. Thus, (4.6) is the solution
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to the simple linear difference equation ai+1 = (1 + g)ai, given the initial

value a0. And (4.8) is the solution to the simple linear differential equation

ȧ(t) = ga(t), given the initial condition a(0) = a0. With a time dependent

growth rate, g(t), the corresponding differential equation is ȧ(t) = g(t)a(t)

with solution

a(t) = a0e
t
0 g(τ)dτ , (4.9)

where the exponent,
R t
0
g(τ)dτ , is the definite integral of the function g(τ)

from 0 to t. The result (4.9) is called the basic growth formula in continu-

ous time analysis and the factor e
t
0 g(τ)dτ is called the growth factor or the

accumulation factor.

Notice that the allowed range for parameters may change when we go from

discrete time to continuous time with continuous compounding. For example,

the usual equation for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (4.10)

where K(t) is the capital stock, I(t) is the gross investment at time t and

δ ≥ 0 is the (physical) capital depreciation rate. Unlike in discrete time, here
δ > 1 is conceptually allowed. Indeed, suppose for simplicity that I(t) = 0 for

all t ≥ 0; then (4.10) gives K(t) = K0e
−δt (exponential decay). This formula

is meaningful for any δ ≥ 0. Usually, the time unit used in continuous time
macro models is one year (or a quarter of a year) and then a realistic value

of δ is of course < 1 (say, between 0.05 and 0.10). However, if the time unit

applied to the model is large (think of a Diamond-style OLGmodel converted

into continuous time), say 30 years, then δ > 1 may fit better, empirically.

Suppose, for example, that physical capital has a half-life of 10 years. Then

with 30 years as our time unit, inserting into the formula 1/2 = e−δ/3 gives

δ = (ln 2) · 3 ' 2.

Stocks and flows An advantage of continuous time analysis is that it

forces one to make a clear distinction between stocks (say wealth) and flows

(say consumption and saving). A stock variable is a variable measured as just

a quantity at a given point in time. The variables a(t) and K(t) considered

above are stock variables. A flow variable is a variable measured as quantity
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per time unit at a given point in time. The variables s(t), K̇(t) and I(t)

above are flow variables.

One can not add a stock and a flow, because they have different denomi-

nation. What exactly is meant by this? The elementary measurement units

in economics are quantity units (so and so many machines of a certain kind

or so and so many litres of oil or so and so many units of payment) and time

units (months, quarters, years). On the basis of these we can form composite

measurement units. Thus, the capital stock K has the denomination “quan-

tity of machines”. In contrast, investment I has the denomination “quantity

of machines per time unit” or, shorter, “quantity/time”. If we change our

time unit, say from quarters to years, the value of a flow variable is quadru-

pled (presupposing annual compounding). A growth rate or interest rate has

the denomination “(quantity/time)/quantity” = “time−1”.

Thus, in continuous time analysis expressions like K(t) + I(t) or K(t) +

K̇(t) are illegitimate. But one can write K(t+∆t) ≈ K(t)+I(t)∆t and K̇(t)

= I(t) (if δ = 0). In the same way, if a bath tub contains 50 litres of water

and the tap pours 1
2
litre per second into the tub, a sum like 50 + 1

2
( /sec)

does not make sense. But the amount of water in the tub after one minute

is meaningful. This amount would be 50 + 1
2
· 60 (( /sec)×sec) = 90 . In

analogy, economic flow variables in continuous time should be seen as inten-

sities defined for every t in the time interval considered, say the time interval

[0, T ) or perhaps [0,∞). For example, when we say that I(t) is “investment”
at time t, this is really a short-hand for “investment intensity” at time t. The

actual investment in a time interval [t0, t0 +∆t) , i.e., the invested amount

during this time interval, is the integral,
R t0+∆t

t0
I(t)dt ≈ I(t)∆t. Similarly,

s(t) (the flow of individual saving) should be interpreted as the saving in-

tensity at time t. The actual saving in a time interval [t0, t0 +∆t) , i.e., the

saved (or accumulated) amount during this time interval, is the integral,R t0+∆t

t0
s(t)dt. If ∆t is “small”, this integral is approximately equal to the

product s(t0) ·∆t, cf. the hatched area in Fig. 4.1.

The notation commonly used in discrete time analysis blurs the distinc-

tion between stocks and flows. Expressions like ai+1 = ai+si, without further

comment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are

added. But, it is really wealth at the beginning of period i and the saved
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Figure 4.1: With ∆t “small” the integral of s(t) from t0 to t0 + ∆t is ≈ the

hatched area.

amount during period i that are added: ai+1 = ai + si ·∆t. The tacit con-

dition is that the period length, ∆t, is the time unit. But suppose that, for

example in a business cycle model, the period length is one quarter, but the

time unit is one year. Then saving in quarter i is si = (ai+1−ai) ·4 per year.
In empirical economics, data typically come in discrete time form and

data for flow variables typically refer to periods of constant length. One could

argue that this discrete form of the data speaks for discrete time rather

than continuous time modelling. And the fact that economic actors often

think and plan in period terms, may be a good reason for putting at least

microeconomic analysis in period terms. Yet, it can hardly be said that the

mass of economic actors think and plan with one and the same period. In

macroeconomics we consider the sum of the actions and then a formulation

in continuous time may be preferable. This also allows variation within the

usually artificial periods in which the data are chopped up.7 For example

stock markets are more naturally modelled in continuous time because such

markets equilibrate almost instantaneously; they respond immediately to new

information.

7Allowing for such variations may be necessary to avoid the artificial oscillations which

sometimes arise in a discrete time model due to a “too” large period length (see Math
Tools).
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In his discussion of this modelling issue, Allen (1967) concluded that from

the point of view of the economic contents, the choice between discrete time

or continuous time analysis may be a matter of taste. But from the point of

view of mathematical convenience, the continuous time formulation, which

has worked so well in the natural sciences, is preferable.8

Discounting in continuous time When calculating present values in con-

tinuous time, as a rule we use continuous compounding. Let r(t) denote the

(short-term) real interest rate with continuous compounding (in this context

some authors call r(t) the interest intensity). First, assume r(t) is a con-

stant, r. Then the present value of a given consumption plan, (c(t))Tt=0, as

seen from time 0, is

PV0 =

Z T

0

c(t) e−rtdt. (4.11)

Instead of the geometric discount factor from discrete time analysis, 1/(1+r)t,

we have now an exponential discount factor, 1/(ert). This is because when

discounting, we reverse an accumulation formula like (4.8) and go from the

compounded or terminal value, a(t), to the present value, a0 (in (4.8) replace

g by r).

If the interest rate varies over time, then (4.11) is replaced by

PV0 =

Z T

0

c(t) e−
t

0
r(τ)dτdt.

The discount factor is now e−
t

0
r(τ)dτ , the inverse of the accumulation factor

in (4.9).9

The household’s intertemporal budget constraint

As regards the intertemporal budget constraint, (4.4), we are now ready to

state its analogue in continuous time. The intertemporal budget constraint

8At least this is so in the absence of uncertainty. For problems where uncertainty
is important, discrete time formulations are easier if one is not familiar with stochastic
calculus.

9Sometimes the discount factor with time-dependent interest rate is written in a dif-
ferent way, see Appendix B.
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of the household is R T
0
c(t)e−

R t
0
r(τ)dτdt ≤ a0 + h0, (4.12)

where a0 is the historically given value of the stock of bonds at time 0 as

above, while h0 is human wealth, i.e.,

h0 =
R T
0
w(t)e−

R t
0
r(τ)dτdt. (4.13)

The analogue in continuous time to the intertemporal utility function,

(4.2), is

U0 =
R T
0
u(c(t))e−ρtdt. (4.14)

In this context, we shall call the utility flow function, u(·), the instantaneous
utility function. The household’s problem is now to choose a consumption

plan (c(t))T
t=0
so as to maximize discounted utility, U0, subject to the budget

constraint (4.12).

Infinite time horizon

In for example the Ramsey model of the next chapter the idea is used that

household’s may have an infinite time horizon. The interpretation of this

is that parents care about their children’s future welfare and leave bequests

accordingly. This gives rise to a series of intergenerational links and the

household may be considered a family dynasty with a time horizon far be-

yond the life time of the current members of the family. As a mathematical

idealization one can then use an infinite planning horizon. Introducing a

positive discount rate, less weight is attached to circumstances further away

in the future and it may be ensured that achievable discounted utility is

bounded. Yet, an infinite time horizon is of course fiction. If for no other

reason, then because the sun, as we all know, will eventually (in some bil-

lion years) burn out and, consequently, life on earth will become extinct.

Nonetheless, an infinite time horizon can be a useful mathematical approxi-

mation. The solution for “T large” will in many cases most of the time be

close to the solution for “T = ∞” (cf. the turnpike proposition in Chapter
3). An infinite time horizon can also be a natural notion when in any given

period there is a positive probability that there will also be a next period. If

this probability is low, it can be reflected in a high discount rate.
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With an infinite time horizon and ρ > 0, the household’s or dynasty’s

problem becomes one of choosing a plan (c(t))∞t=0, which maximizes

U0 =

Z ∞

0

u(c(t))e−ρtdt s.t. (4.15)Z ∞

0

c(t)e−
t
0 r(τ)dτdt ≤ a0 + h0, (IBC)

where h0 emerges by replacing T in (4.13) with ∞. Working with infinite
horizons the analyst should be aware that there may exist technically fea-

sible paths along which the integrals in (4.13), (4.15) and (IBC) go to ∞
for T → ∞, in which case maximization does not make sense. However,

the assumptions that we are going to make when working with the Ramsey

market economy, will turn out to guarantee that the integrals converge as

T →∞ (or at least that some feasible paths have −∞ < U0 <∞, while the

remainder have U0 = −∞ and are thus clearly inferior). The essence of the

matter is that the rate of time preference, ρ, must be assumed sufficiently

high to ensure that the long-run growth rate of the economy becomes less

than the long-run interest rate.

The budget constraint in flow terms

The mathematical method which is particularly apt for solving intertemporal

decision problems in continuous time is optimal control theory. To apply

the method, we have to convert the household’s budget constraint into flow

terms. By mere accounting, in every short period (t, t+∆t) the household’s

consumption plus saving equals the household’s total income, that is,

(c(t) + ȧ(t))∆t = (r(t)a(t) + w(t))∆t.

Here, ȧ(t) ≡ da(t)/dt is saving and thus the same as the increase per time

unit in financial wealth. If we divide through by ∆t and isolate saving on

the left of the equation, we get for all t ≥ 0

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given. (4.16)

This book-keeping equation just tells us by how much and in which direction

the stock of bonds is changing due to the difference between current income
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and current consumption. The equation per se does not impose any restric-

tion on consumption over time. If this equation were the only constraint, one

could increase consumption indefinitely by incurring an increasing debt with-

out limits. It is not until the requirement of solvency is added to (4.16) that

we get a budget constraint. When T <∞, the relevant solvency requirement
is a(T ) ≥ 0 (that is, no debt left over at the terminal date). This is equivalent
to satisfying the intertemporal budget constraint (4.12). When T =∞, the

relevant solvency requirement is a so-called No-Ponzi-Game condition:

lim
t→∞

a(t)e−
t
0 r(τ)dτ ≥ 0, (NPG)

i.e., the present value of debts (≡ −a(t)) infinitely far out in the future, is
not permitted to be positive.10 This is because of the following equivalency:

PROPOSITION 1 (equivalence of flow budget constraint and intertemporal

budget constraint) Let T =∞ and assume the integral (4.13), which defines

h0, remains finite for T →∞. Given the accounting relation (4.16), then:

(i) the solvency requirement, (NPG), is satisfied if and only if the intertem-

poral budget constraint, (IBC), is satisfied; and

(ii) there is strict equality in (NPG) if and only if there is strict equality in

(IBC).

Proof. See Appendix C.

The condition (NPG) does not preclude that the household (or family

dynasty) can remain in debt. This would also be an unnatural requirement

as the time horizon is infinite. The condition does imply, however, that there

is an upper bound for the speed whereby debts can increase in the long term.

In the long term, debts cannot grow at a rate greater than (or just equal to)

the interest rate.

To understand the implication of this, let us look at the case where the

interest rate is a constant, r > 0. Assume that the household at time t has

net debt d(t) > 0, i.e., a(t) ≡ −d(t) < 0. If d(t) were persistently growing at
a rate equal to or greater than the interest rate, (NPG) would be violated.11

10About Ponzi, see below.
11Starting from a given initial positive debt, d0, when ḋ(t)/d(t) ≥ r > 0, we have
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Equivalently, one can interpret (NPG) as an assertion that lenders will only

issue loans if the borrowers in the long run are able to cover at least part

of their interest payments by other means than by taking up new loans. In

this way, it is avoided that ḋ(t) ≥ rd(t) in the long run, that is, debts do not

explode.

The designation of NPG is short-hand for “No-Ponzi-Game condition”.

The name refers to a guy from Boston, Charles Ponzi, who in the 1920s made

a fortune out of an investment scam based on the chain letter principle. The

principle behind Ponzi’s transactions is to pay off old investors with money

from the new investors. The fact that debts grow without bounds is irrelevant

for the borrower if new lenders can always be found. Then the last period

where all remaining debts have to be repaid never occurs. In the real world

endeavours to establish this sort of financial eternity machine tend sooner

or later to break down, because the flow of lenders dries up. It is exactly

such a financial eternity machine the constraint (NPG) precludes. Ponzi was

sentenced many years in prison for his transactions; he died poor − and

without friends.12 The so-called pyramid companies are nowadays-examples

of attempts to evade the NPG condition.

Generally, a person is defined solvent if she is able to meet her financial

obligations as they fall due. In the present context we define solvency as being

present if gross debt does not exceed gross assets. Here, “assets” should be

understood in the broadest possible sense, that is, including the present value

of the expected future wage income. Considering net debt, d0, the solvency

requirement becomes

d0 ≤
Z ∞

0

(w(t)− c(t))e−
t
0 r(τ)dτdt,

where the right-hand side of the inequality is the present value of the expected

future primary savings.13 By use of the definition in (4.13), it can be seen

d(t) ≥ d0e
rt so that d(t)e−rt ≥ d0 > 0 for all t ≥ 0. Consequently, a(t)e−rt = −d(t)e−rt

≤ −d0 < 0 for all t ≥ 0, that is, lim t→∞a(t)e
−rt < 0, which violates (NPG).

12A Danish example, though on a smaller scale, could be read in the Danish newpaper
Politiken on the 21st of August 1992. “A twenty-year-old female student from Tylstrup
in Nothern Jutland is charged with fraud. In an ad, she offered 200 Dkr to tell you how to
make easy money. Some hundred people responded and received the reply: Do like me.”
13By primary savings is meant the difference between current earned income and current
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that this requirement is identical to the stock budget constraint (IBC) which

consequently expresses solvency. The NPG condition is simply this solvency

condition converted into flow terms.

4.3 Solving the household’s problem

Our household shall weigh more consumption today vis-a-vis more consump-

tion in the future in order to obtain the largest possible discounted utility.

Being formulated in continuous time, the problem is one of choosing a path for

the control variable c(t) so as to maximize an integral subject to constraints,

partly in the form of a first-order differential equation which determines the

time path of a state variable, a(t), and partly in the form of a condition

telling us where to begin and possibly a condition telling us where we are al-

lowed to end. Optimal control theory, which was applied to a related discrete

time problem in the previous chapter, is a well-suited apparatus for solving

this kind of optimization problems. We shall make use of a special case of

the continuous time Maximum Principle (the basic tool of optimal control

theory) in solving the household’s optimization problem. We shall consider

the case with a finite time horizon as well as the case with an infinite time

horizon.14

4.3.1 First-order conditions

The household’s decision problem is as follows: choose a consumption plan

(c(t))Tt=0 such that a maximum of the criterion function U0 (where ρ > 0) is

obtained subject to the constraints given by a dynamic accounting relation

consumption, where earned income means income before interest income (payment) is
added (subtracted).
14A broader exposition of the Maximum Principle in continuous time is contained in

Math Tools, where also the analogy with the discrete time Maximum Principle is briefly

exposed. General treatments are available in, e.g., Seierstad and Sydsaeter (1987) and
Sydsaeter et al. (2005).
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and a solvency requirement. For T <∞ the problem is:

max
(c(t))Tt=0

U0 =

Z T

0

u(c(t))e−ρtdt s.t. (4.17)

c(t) ≥ 0, (control region) (4.18)

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given, (4.19)

a(T ) ≥ 0. (4.20)

With infinite time horizon, T is replaced by ∞ and the solvency condition

(4.20) is replaced by

lim
t→∞

a(t)e−
t
0 r(τ)dτ ≥ 0. (NPG)

Let I denote the time interval [0, T ] if T <∞ and the time interval [0,∞) if
T =∞. If c(t) and the corresponding evolution of a(t) fulfil (4.18) and (4.19)

for all t ∈ I as well as the relevant solvency condition, we call (a(t), c(t))Tt=0 an

admissible path. If a given admissible path (a(t), c(t))Tt=0 solves the problem,

it is referred to as an optimal path. We assume that w(t) and r(t) are positive

for all t and, as a minimum requirement for easing finiteness of U0, the

impatience parameter ρ is assumed positive. The solution procedure is as

follows:

1. Set up the (current-value) Hamiltonian:15

H(a, c, λ, t) ≡ u(c) + λ(ra+ w − c),

where λ is an adjoint variable (also called a co-state variable) associated

with the dynamic constraint (4.19), that is, λ is an auxiliary variable

which is a function of t (it is analogous to the Lagrange multiplier in

static optimization).16

2. At every point in time, maximize the Hamiltonian w.r.t. the control

variable, in the present case c. If one is looking for an interior solution,17

15The explicit dating of the time-dependent variables a, c and λ is omitted where it is
not needed for clarity.
16We apply here the current-value Hamiltonian. One may alternatively consider the

present-value Hamiltonian, that is, H̃ ≡ He−ρt with the discounted shadow price, μ,
substituted for λe−ρt. Then step 3 below is replaced by ∂H̃/∂a = −μ̇.
17A solution (at, ct)Tt=0 is an interior solution if ct > 0 for all t ≥ 0.
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differentiate H partially with respect to c and set the result equal to

zero:
∂H

∂c
= u0(c)− λ = 0,

that is, at every t ∈ I,

u0(c) = λ. (4.21)

3. Differentiate H partially w.r.t. the state variable, in the present case

a, and set the result equal to the discount rate (in the integrand of

the criterion function) multiplied by λ minus the time derivative of the

adjoint variable, λ :
∂H

∂a
= λr = ρλ− λ̇.

That is, at any point in time, the adjoint variable λ should fulfil the

differential equation

λ̇ = (ρ− r)λ. (4.22)

4. Now, use the Maximum Principle which (in this case) says: an interior

optimal path (a(t), c(t))Tt=0 will satisfy that there exits a continuous

function λ(t) such that for all t ∈ I, (4.21) and (4.22) hold along the

path, and the transversality condition,

e−ρTλ(T )aT = 0, if T <∞, or

lim
t→∞

e−ρtλ(t)a(t) = 0, if T =∞, (TVC)

is satisfied.

Thus, in continuous time an optimal path is characterized as a path that

maximizes the Hamiltonian associated with the problem. This is because

the Hamiltonian weighs the direct contribution of the marginal unit of the

control variable to the criterion function in the “right” way relative to the

indirect contribution, through the implied change in the state variable (here

financial wealth); “right” here means in accordance with the opportunities

offered by the return on saving vis-a-vis the time preference rate, ρ. The

optimality condition (4.21) can be seen as a MC = MB condition: on the

margin one unit of account (here the consumption good) must be equally

valuable in its two uses: consumption and wealth accumulation. Together
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with the optimality condition (4.22) this signifies that the adjoint variable λ

can be interpreted as the shadow price (measured in units of current utility)

of financial wealth along the optimal path.18 One of the reasons that for

continuous time problems we generally prefer the current-value Hamiltonian

is that it makes both the calculations and the interpretation slightly simpler.

The shadow price, λ(t), becomes a current price, along with the other prices

in the problem, w(t) and r(t), instead of a discounted price.

Reordering (4.22) gives

∂H
∂a
+ λ̇

λ
= r +

λ̇

λ
= ρ.

This can be interpreted as a no-arbitrage condition. Along an optimal path

the rate of return, measured in utility units, on the marginal unit of saving

is equal to the required rate of return, ρ. The household is willing to save the

marginal unit of income only if the actual rate of return on saving equals the

required rate. The compared rates of return are here in terms of utility. We

may also rewrite (4.22) as r = ρ− λ̇/λ. Then we have on the left-hand-side,

the actual real rate of return on saving. And the right-hand-side can be

interpreted as the required real rate of return. Indeed, the right-hand-side

is the difference between the required rate of return in utility units, ρ, and

the growth rate of the shadow price (measured in utility units) of financial

wealth, λ̇/λ. Thus, ρ acts as a nominal interest rate and λ̇/λ as an inflation

rate, so that the difference is a (required) real interest rate.

Substituting (4.21) into the transversality condition for the case T <∞,

gives

e−ρTu0(c(T ))a(T ) = 0. (4.23)

This can be read as a standard complementary slackness condition, because

we can replace the factor a(T ) by (a(T )− 0), since our solvency constraint,
a(T ) ≥ 0, can be seen as a general inequality constraint, a(T ) ≥ aT , where

here aT happens to equal 0. Since u0(c(T )) is always positive (saturation is

impossible by assumption), an optimal plan must satisfy a(T ) = 0 . The al-

18Remember, a shadow price (measured in some unit of account) of a good is the number

of units of account that the optimizing agent is just willing to offer for one extra unit of
the good.
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ternative, a(T ) > 0, would imply that consumption, and thereby U0, could be

increased by a decrease in a(T ) without violating the solvency requirement.

As for the infinite horizon case, let T →∞. Then (NPG) is the solvency

requirement and (4.23) is replaced by

lim
T→∞

e−ρTu0(c(T ))a(T ) = 0. (4.24)

This is the same as (TVC) (replace T by t). Intuitively, a plan that violates

this condition indicates scope for improvement and thus can not be optimal.

Generally, however, care must be taken when trying to extend a necessary

transversality condition from a finite horizon to an infinite horizon, as we

just did. But for the present problem, this simple extension is valid. Indeed,

(TVC) is just a requirement that the NPG condition is not “over-satisfied”:

PROPOSITION 2 (the transversality condition with infinite time horizon)

Let T = ∞ and assume the integral (4.13), which defines h0, remains finite

for T → ∞. Provided the adjoint variable, λ(t), satisfies the optimality
conditions (4.21) and (4.22), we have:

(i) (TVC) holds if and only if (NPG) holds with strict equality; and

(ii) this is the case if and only if (IBC) holds with strict equality.

Proof. See Appendix D.

In view of (i) of this proposition, we can write the transversality condition

for T =∞ on the more distinct form

lim
t→∞

e−
t
0 r(τ)dτa(t) = 0. (TVC’)

4.4 The Keynes-Ramsey rule

The first-order conditions have interesting implications. Differentiate both

sides of (4.21) w.r.t. t to get u00(c)ċ = λ̇which can be written as u00(c)ċ/u0(c) =

λ̇/λ by applying (4.21) again. Use of (4.22) now gives

ċ(t)

c(t)
=

1

θ(c(t))
(r(t)− ρ), (4.25)

where

θ(c) ≡ − c

u0(c)
u00(c) > 0, (4.26)
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Figure 4.2: Optimal consumption paths for a low and a high constant θ, given a

constant r > ρ.

that is, θ(c) is the (absolute) elasticity of marginal utility w.r.t. consumption

c. This elasticity is also referred to as the marginal utility flexibility. It

indicates the strength of the consumer’s desire to smooth consumption. The

inverse of θ(c) is referred to as the intertemporal elasticity of substitution in

consumption. It measures the willingness to accept variation in consumption

over time when the interest rate makes it attractive, see Appendix D.

The result (4.25) says that an optimal consumption plan is characterized

in the following way. The household will completely smooth consumption

over time if the rate of time preference equals the real interest rate. The

household will choose an upward-sloping time path for consumption if and

only if the rate of time preference is less than the real interest rate. Indeed,

in this case the household would allow for a relatively low level of current

consumption with the purpose of enjoying more consumption in the future.

This result makes economic sense: the lower the rate of time preference

relative to the real interest rate, the more favorable it becomes to defer

consumption. Moreover, by (4.25) we see that the greater the elasticity of

marginal utility (that is, the greater the curvature of the utility function),

the greater the incentive to smooth consumption, ceteris paribus. The reason

for this is that a large curvature means that the marginal utility will drop

sharply if consumption rises, and will increase sharply if consumption falls.

Fig. 4.2 illustrates this in a case where θ(c) = θ, a positive constant. For a

given constant r > ρ, the consumption path chosen when θ is high, has lower

slope, but starts from a higher level than when θ is low.
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The condition (4.25) which holds for a finite as well as an infinite time

horizon is referred to as the Keynes-Ramsey rule.19 The name springs from

the English mathematician Frank Ramsey who derived the rule in as early

as 1928, while John Maynard Keynes suggested a simple and intuitive way of

presenting it. The rule reflects the general microeconomic principle that the

consumer equates the marginal rate of substitution between any two goods

with the corresponding price ratio. In the present context, the principle is

applied to a situation where the “two goods” refer to the same consumption

good delivered at two different points in time. Let us first consider this in

discrete time with discrete compounding.

Local optimality in discrete time

Period t is the time interval [t, t+ 1), t = 0, 1, ... . The household’s utility

function is

U0 =
T−1X
t=0

u(ct)

(1 + ρ)t
,

where T ≤ ∞. Let a given consumption plan (c0, c1, ..., ct, ...) be our “ref-
erence path”. Imagine an alternative path which equals the reference path

except for the periods t and t+ 1. If it is possible to obtain a higher level of

total utility compared to the reference path by varying ct and ct+1 subject to

an unchanged budget constraint, the reference path cannot be optimal (that

is, local optimality is a necessary condition for global optimality). Assume

the reference path is optimal. Thus, if the household gives up a marginal

unit of consumption in period t and saves this amount, then the increase

in consumption next period resulting from the extra interest yield, must be

exactly so large as to leave the household indifferent to such a reallocation

of consumption over time.

More precisely: the loan market makes it possible to transform one unit

of consumption in period t, to 1 + rt+1 units of consumption in period t+ 1.

Thus, the marginal rate of transformation, MRT, to period t+1 from period

19More generally, such a condition, derived from the first-order conditions of a dynamic
optimisation problem, is called an Euler equation. The Swiss mathematician L. Euler

developed as early as in the 18th century a forerunner of optimal control theory called
calculus of variation.
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t, is

MRTt+1,t≡ −
dct+1
dct

¯̄̄
unchanged
budget

= 1 + rt+1.

The marginal rate of substitution, MRSt+1,t, of consumption in period t+ 1

for consumption in period t is found by imposing that the total contribution

to U0 from the two periods’ consumption must be unchanged for a small

reallocation of consumption between the two periods. Hence, the requirement

is that dU0 = 0, i.e.,

d

µ
u(ct)

(1 + ρ)t
+

u(ct+1)

(1 + ρ)t+1

¶
= 0,

where dx denotes the differential of x. From this we get

u0(ct)dct + (1 + ρ)−1u0(ct+1)dct+1 = 0,

that is,

MRSt+1,t≡ −
dct+1
dct

|dU0=0 =
u0(ct)

(1 + ρ)−1u0(ct+1)
.

The reference path can only be optimal if MRSt+1,t=MRTt+1,t, i.e., if

u0(ct)

(1 + ρ)−1u0(ct+1)
= 1 + rt+1. (4.27)

Alternatively, this can be expressed in the same way as we did in the

previous chapters:

u0(ct) = (1 + ρ)
−1
u0(ct+1)(1 + rt+1).

That is, at the margin the cost (in terms of current utility) by lowering

consumption in period t by one unit must equal the benefit of having 1+rt+1

additional units of consumption in the next period. To be comparable with

the cost, the extra utility obtained in period t+1 must be discounted by the

utility discount rate ρ.

Local optimality in continuous time

In continuous time one can, by saving more in the short time interval (t,

t + ∆t), transform −dc(t)∆t units of consumption in this time interval to

approximately

dc(t+∆t)∆t = −dc(t)∆t e
t+∆t
t r(τ)dτ (4.28)
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units of consumption in the time interval (t +∆t, t + 2∆t). Thus, we have

approximately

MRTt+∆t,t ≡ −
dc(t+∆t)

dc(t)

¯̄̄
unchanged
budget

= e
t+∆t
t r(τ)dτ .

Similarly, the marginal rate of substitution,MRSt+∆t,t, between the two time

intervals becomes20

MRSt+∆t,t ≡ −
dc(t+∆t)

dc(t)
|dU0=0 =

u0(c(t))

e−ρ∆tu0(c(t+∆t))
, (4.29)

approximately. The requirement MRSt+∆t,t =MRTt+∆t,t gives

u0(c(t))

e−ρ∆tu0(c(t+∆t))
= e

t+∆t
t r(τ)dτ . (4.30)

When ∆t = 1 and ρ and r(t) are small, this relation can be approximated by

(4.27) from discrete time (generally, by a first-order Taylor approximation,

ex ≈ 1 + x, when x is close to 0).

Taking logs on both sides of (4.30), dividing though by ∆t, inserting

(4.28) and letting ∆t→ 0, we get (see Appendix E)

ρ− u00(c(t))

u0(c(t))
ċ(t) = r(t). (4.31)

With the definition of θ(c) in (4.26), this is exactly the same as the Keynes-

Ramsey rule (4.25) which, therefore, is merely an expression of the general

optimality condition MRS = MRT. The household is willing to sacrifice

some consumption today for more consumption tomorrow, that is, to go for

ċ > 0, only if it is compensated by an interest rate sufficiently above ρ.

Naturally, the required compensation is higher, the faster marginal utility

declines (−u00/u0 large) with increasing consumption.

4.5 The consumption function

The Keynes-Ramsey rule is only a rule which gives the optimal rate of change

of consumption. It says nothing about the level of consumption. In order to

20The underlying steps can be found in Appendix E.
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determine the level, that is, c(0), we implicate the solvency condition which

limits the amount the household can borrow in the long term. Among the

infinitely many paths satisfying the Keynes-Ramsey rule, the household will

choose the highest one that fulfils the solvency requirement (NPG). Thus,

the households acts so that strict equality in (NPG) obtains. As we saw, this

is equivalent to satisfying the transversality condition.

Before considering examples, a remark on sufficient conditions for opti-

mality is appropriate. The first-order and transversality conditions, (4.21),

(4.22) and (TVC), are only necessary conditions for a path to be optimal.

Hence, up to this point, we have only claimed that if the consumption-saving

problem has an interior solution, then it satisfies the Keynes-Ramsey rule

and the transversality condition (TVC’). Are these conditions also sufficient?

The answer is yes in the present case. This follows from Mangasarian’s suffi-

ciency theorem (see Math Tools) which applied to the present problem tells

us that if the Hamiltonian is concave in (a, c) for every t, then the listed nec-

essary conditions, including the transversality condition, are also sufficient.

Because the instantaneous utility function − the first term in our Hamil-

tonian function − is concave and the second term is linear in (a, c), then the
Hamiltonian is concave in (a, c). Thus our candidate solution is a solution.

EXAMPLE 1 (constant elasticity of marginal utility, infinite time horizon).

We here impose that the elasticity of marginal utility θ(c), as defined in

(4.26), is a constant θ > 0.21 From Chapter 2 we know that this requirement

implies that the utility function can be written:

u(c) =

(
c1−θ−1
1−θ , when θ > 0, θ 6= 1,
ln c, when θ = 1.

(4.32)

This “family” of utility functions, the CRRA family, was illustrated in Fig.

2.8 in Chapter 2. The Keynes-Ramsey rule now implies ċ(t) = θ−1(r(t) −
ρ)c(t). Solving this linear differential equation yields

c(t) = c(0)e
1
θ

t
0 (r(τ)−ρ)dτ , (4.33)

cf. (4.9). We know from Proposition 2 that the transversality condition is

equivalent to (IBC) being satisfied with strict equality. This result can be
21If θ ≥ 0, the control region is c > 0, since u(c) will in that case not be defined for

c = 0.
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used to determine c(0). Multiply both sides of (4.33) by the discount factor,

integrate both sides and finally substitute (IBC) with strict equality.22 We

get

c(0)

Z ∞

0

e
1
θ

t
0 [(1−θ)r(τ)−ρ]dτdt = a0 + h0.

This can be written

c(0) = β0(a0 + h0), where

β0 ≡
1R∞

0
e
1
θ

t
0 [(1−θ)r(τ)−ρ]dτdt

(4.34)

is the marginal propensity to consume out of wealth, and

h0 =

Z ∞

0

w(t)e−
R t
0
r(τ)dτdt. (4.35)

Generally, an increase in the interest rate level, for given total wealth,

a0 + h0, can effect c(0) both positively and negatively.23 On the one hand,

such an increase makes future consumption cheaper in present value terms.

This entails a negative substitution effect, which makes it attractive to defer

consumption. On the other hand, the increase in the interest rates decreases

the present value of a given consumption plan, allowing for higher consump-

tion both today and in the future, for given total wealth. This entails a

positive income effect on consumption today. If θ < 1 (small curvature of

the utility function), the substitution effect will dominate the income effect,

and if θ > 1 (large curvature), the reverse will hold in that a large θ reflects

a strong propensity to smooth consumption over time. In the intermediate

case θ = 1 (the logarithmic case) we get from (4.34) that β0 = ρ, hence

c(0) = ρ(a0 + h0). (4.36)

That is, the marginal propensity to consume is time independent and equal

to the rate of time preference. Thus, for a given total wealth, a0+h0, current

consumption is independent of the expected path of the interest rate. That

22This method also applies if instead of T =∞ we have T <∞.
23By an increase in the interest rate level we mean an upward shift in the entire time-

profile of the interest rate.
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is, in the logarithmic case the substitution and income effects on current con-

sumption exactly offset each other. Yet, on top of this comes the negative

wealth effect on current consumption of an increase in the interest rate level.

The present value of future wage incomes becomes lower (similarly with ex-

pected future dividends on shares and future rents at the housing market in

a more general setup). Because of this, h0 (and so a0 + h0) becomes lower,

which adds to the negative substitution effect.24 Thus, even in the logarith-

mic case − and a fortiori when θ < 1 − the total effect of an increase in the
interest rate level is unambiguously negative on c(0).

If, for example, r(t) = r and w(t) = w (positive constants), we get β0
= [(θ − 1)r + ρ]/θ and a0 + h0 = a0 + w/r. When θ = 1, the negative effect

of a higher r on h0 is decisive. When θ < 1, a higher r reduces both β0 and

h0, hence the total effect on c(0) is even “more negative”. When θ > 1, a

higher r gives a higher β0 and this more or less offsets the lower h0, so that

the total effect on c(0) becomes ambiguous. As referred to in Chapter 2,

available empirical studies suggest a value of θ somewhat above 1. ¤

To avoid any misunderstanding, Example 1 should not be interpreted such

that for any evolution of wages and interest rates there exists a solution to the

household’s maximization problem with infinite horizon. There is generally

no guarantee that integrals converge for T →∞. But the evolution of wages
and interest rates which prevails in general equilibrium is not arbitrary. It is

determined by the requirement of equilibrium. We shall return to this issue

in the next chapter.

EXAMPLE 2 (constant absolute sensitivity of marginal utility, infinite time

horizon). The requirement is that the sensitivity of marginal utility,−u00(c)/u0(c)
≈ −(∆u0/u0)/∆c, is a positive constant, α.25 The utility function can then

be written

u(c) = −α−1e−αc, α > 0. (4.37)

24If a0 < 0, and this debt (−a0) is not a variable-rate loan (as hitherto assumed),
but a fixed-rate mortgage loan for example, then a rise in the interest rate lowers the
present value of the debt and thereby counteracts the negative substitution effect on
current consumption.
25By the sensitivity, sometimes called semi-elasticity, of a function f(x) we mean the

absolute value of f 0(x)/f(x).
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The Keynes-Ramsey rule becomes ċ(t) = α−1(r(t) − ρ). When the interest

rate is a constant r > 0, we find c(0) = r(a0+h0)−(r−ρ)/(αr), presupposing
r ≥ ρ and a0 + h0 > (r − ρ)/(ar2).

Here there is “constant absolute variability aversion”, whereas the degree

of relative variability aversion is θ(c) = αc which is thus greater, the larger

is c. In the theory of behavior under uncertainty, (4.37) is referred to as

the CARA function (“Constant Absolute Risk Aversion”). One of the the-

orems of expected utility theory is that the degree of absolute risk aversion,

−u00(c)/u0(c), is proportional to the risk premium which the economic agent
will require to be willing to exchange a specified amount of consumption re-

ceived with certainty for an uncertain amount having the same mean value.

Empirically this risk premium seems to be a decreasing function of the level

of consumption. Therefore the CARA function is generally considered less

realistic than the CRRA function of the previous example. ¤
EXAMPLE 3 (finite time horizon, logarithmic utility). We consider a life-

cycle saving problem. A worker enters the labour market at time 0 with a

financial wealth of 0, has finite lifetime T (assumed known) and does not

wish to pass on bequests. For simplicity, we assume that rt = r > 0 for all

t ∈ [0, T ] and w(t) = w > 0 for t ≤ t1 ≤ T , while w(t) = 0 for t > t1 (no

wage income after retirement, which takes place at time t1). The decision

problem is

max
(c(t))T

t=0

U0 =

Z T

0

(ln c(t))e−ρtdt s.t.

c(t) > 0,

ȧ(t) = ra(t) + w(t)− c(t), a(0) = 0,

aT ≥ 0.

The Keynes-Ramsey rule becomes ċt/ct = r − ρ. A solution to the problem

will thus fulfil

c(t) = c(0)e(r−ρ)t. (4.38)

Inserting this into the differential equation for a, we get a first-order linear

differential equation whose solution (for a(0) = 0) can be reduced to

a(t) = ert
∙
w

r
(1− e−rz)− c0

ρ
(1− e−ρt)

¸
, (4.39)
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where z = t if t ≤ t1, and z = t1 if t > t1. We need to determine c(0).

The transversality condition implies a(T ) = 0. Having t = T , z = t1 and

aT = 0 in (4.39), we get

c(0) = (ρw/r)(1− e−rt1)/(1− e−ρT ). (4.40)

Substituting this into (4.38) gives the optimal consumption plan.26

If r = ρ, consumption is constant over time at the level given by (4.40).

If, in addition, t1 < T , this consumption level is less than the wage income

per year up to t1 (in order to save for retirement); in the last years the level

of consumption is maintained although there is no wage income; the retired

person uses up both the return on financial wealth and this wealth itself

(dissaving). ¤

The examples illustrate the importance of forwardlooking expectations,

here the expected evolution of interest rates and wages. The expectations

affect c(0) both through their impact on the marginal propensity to consume

(cf. β0 in Example 1) and through their impact on the present value, h0, of

expected future labour income (or of expected future dividends on shares in

a more general setup). Yet the examples − and the consumption theory in
this chapter in general − should only be seen as a first, rough approximation
to consumption/saving behaviour. Real world factors such as uncertainty

and credit constraints (absence of perfect credit markets) also affect the be-

haviour. Including these factors in the analysis tend to make current income

an additional and independent determinant of consumption.

4.6 Appendix

A. Growth formulas in continuous time

Let the variables z, x and y be continuous and differentiable functions of time

t. Suppose z(t), x(t) and y(t) are positive for all t. Then:

PRODUCT RULE z(t) = x(t)y(t)⇒ ż(t)
z(t)

= ẋ(t)
x(t)

+ ẏ(t)
y(t)

.

26For t1 = T and T → ∞ we get in the limit c(0) = ρw/r ≡ ρh0, which is also what
(4.34) gives when a(0) = 0 and θ = 1.
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Proof. Taking logs on both sides of the equation z(t) = x(t)y(t) gives

ln z(t) = lnx(t) + ln y(t). Differentiation w.r.t. t, using the chain rule, gives

the conclusion. ¤

The procedure applied in this proof is called logarithmic differentiation

w.r.t. t.

FRACTION RULE z(t) = x(t)
y(t)
⇒ ż(t)

z(t)
= ẋ(t)

x(t)
− ẏ(t)

y(t)
.

The proof is similar.

POWER FUNCTION RULE z(t) = x(t)α ⇒ ż(t)
z(t)

= α ẋ(t)
x(t)

.

The proof is similar.

In continuous time these simple formulas are exactly true. In discrete

time, the analogue formulas are only approximately true and the approxima-

tion can be quite bad unless ẋ(t)/x(t) and ẏ(t)/y(t) are “small”.

B. The cumulative mean of interest rates

Sometimes in the literature the discount factor in continuous time analysis is

written otherwise than we did in Section 4.2. Let r̄0,t denote the cumulative

mean of the (short-term) interest rates from time 0 to time t, i.e.,

r̄0,t ≡
R t
0
r(τ)dτ

t
. (4.41)

Then we can write the present value of the consumption stream (c(t))Tt=0 as

PV =
R T
0
c(t)e−r̄0,ttdt. The discount factor is e−r̄0,tt and this PV formula has

a form similar to that obtained with a constant discount rate r, namely PV

=
R T
0
c(t)e−rtdt.

In discrete time the analogue average interest rate is defined by the

requirement (1 + r̄0,t)
t = (1 + r0)(1 + r1) · · · (1 + rt−1), which gives r̄0,t

= t
p
(1 + r0)(1 + r1) · · · (1 + rt−1) − 1. Hence, 1 + r̄0,t is here a geometric

average of the gross interest rates for the periods involved. If the period

length is short, say a quarter of a year, the interest rates r1, r2, ..., will gen-

erally be not far from zero so that the approximation ln(1 + rn) ≈ rn is

acceptable. Then r̄0,t ≈ 1
t
(r0+ r1+ ...+ rt−1), a simple arithmetic average as

in (4.41).
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C. Notes on Proposition 1 (equivalence between the budget con-
straint in flow terms and the intertemporal budget constraint)

We consider the book-keeping relation

ȧ(t) = r(t)a(t) + w(t)− c(t), (4.42)

where a(0) = a0 (given), and impose the solvency requirement

lim
t→∞

a(t)e−
t
0 r(τ)dτ ≥ 0. (NPG)

Before proceeding, a clarifying remark is apt. The expression in (NPG) is

understood to include the possibility that a(t)e−
t
0 r(τ)dτ → ∞ for t → ∞.

Moreover, if full generality were aimed at, we should allow for infinitely fluc-

tuating paths and therefore replace “limt→∞” in (NPG) by “lim inft→∞”,

i.e., the limit inferior. The limit inferior for t → ∞ of a function f(t) on

[0,∞) is defined as limt→∞ inf {f(s)| s ≥ t}.27 However, due to strict concav-
ity, infinitely fluctuating paths never turn up in the optimization problems

considered in this book. Hence, nothing is lost by using the more narrow de-

finition of solvency in (NPG) and apply the simpler notation “lim” instead

of “lim inf”, as we also argued (in a slightly different context) in Appendix

H of Chapter 3.

On the background of (4.42) Proposition 1 claimed that (NPG) is equiv-

alent to the intertemporal budget constraint,Z ∞

0

c(t)e−
t
0 r(τ)dτdt ≤ h0 + a0, (IBC)

being satisfied, where h0 is defined as in (4.35) and is assumed to be a finite

number. In addition, Proposition 1 claimed that there is strict equality in

(IBC) if and only there is strict equality in (NPG).

Proof. By isolating c(t) in (4.42) and multiplying through by e−
R t
0
r(τ)dτ , we

get

c(t)e−
R t
0
r(τ)dτ = w(t)e−

R t
0
r(τ)dτ − (ȧ(t)− r(t)a(t))e−

R t
0
r(τ)dτ .

27By “inf” is meant infinum of the set, that is, the largest number less than or equal to
all numbers in the set.



4.6. Appendix 195

We now integrate from 0 to T > 0, which gives
R T
0
c(t)e−

R t
0
r(τ)dτdt

=

Z T

0

w(t)e−
R t
0
r(τ)dτdt−

Z T

0

ȧ(t)e−
R t
0
r(τ)dτdt+

Z T

0

r(t)a(t)e−
R t
0
r(τ)dτdt

=

Z T

0

w(t)e−
R t
0
r(τ)dτdt−

Ã∙
a(t)e−

R t
0
r(τ)dτ

¸T
0

−
Z T

0

a(t)e−
R t
0
r(τ)dτ(−r(t))dt

!

+

Z T

0

r(t)a(t)e−
R t
0
r(τ)dτdt

=

Z T

0

w(t)e−
R t
0
r(τ)dτdt− (a(T )e−

T
0 r(τ)dτ − a(0)),

where the second last equality follows by integration by parts. If we let

T → ∞ and use the definition of h0 and the initial condition a(0) = a0, we

get (IBC) if and only if (NPG) holds. It follows that when (NPG) is satisfied

with strict equality, so is (IBC), and vice versa. ¤

An alternative proof is obtained by using the general solution to a linear

inhomogeneous first-order differential equation (in that (4.42) is a special

case of this) and then let T → ∞. Since this is a more general approach,
we will show how it works and use it for an extended version of Proposition

1 and for the proof of Proposition 2. The extended version of Proposition 1

will for example prove useful in Problem 4.1 and in the next chapter.

CLAIM 1 Let f(t) and g(t) be given continuous functions of time, t. Consider

the differential equation

ẋ(t) = g(t)x(t) + f(t), (4.43)

with x(t0) = xt0, a given initial value. Then the inequality

lim
t→∞

x(t)e−
t
t0
g(s)ds ≥ 0 (4.44)

is equivalent to

−
Z ∞

t0

f(τ)e−
τ
t0
g(s)dsdτ ≤ xt0 . (4.45)

Moreover, if and only if (4.44) is satisfied with strict equality, then (4.45) is

also satisfied with strict equality.
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Proof. The linear differential equation, (4.43), has the solution

x(t) = x(t0)e
t
t0
g(s)ds +

Z t

t0

f(τ)e
t
τ g(s)dsdτ . (4.46)

Multiplying through by e−
t
t0
g(s)ds yields

x(t)e
− t

t0
g(s)ds

= x(t0) +

Z t

t0

f(τ)e
− τ

t0
g(s)ds

dτ.

By letting t→∞, it can be seen that if and only if (4.44) is true, we have

x(t0) +

Z ∞

t0

f(τ)e−
τ
t0
g(s)dsdτ ≥ 0.

Since x(t0) = xt0 , this is the same as (4.45). We also see that if and only if

(4.44) holds with strict equality, then (4.45) also holds with strict equality.

¤

COROLLARY Let n be a given constant and let

ht0 ≡
Z ∞

t0

w(τ)e−
τ
t0
(r(s)−n)dsdτ, (4.47)

assumed to be a finite number. Then, given

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t), where a(t0) = at0, (4.48)

it holds that

lim
t→∞

a(t)e−
t
t0
(r(s)−n)ds ≥ 0⇔

Z ∞

t0

c(τ)e−
τ
t0
(r(s)−n)dsdτ ≤ at0 + ht0 , (4.49)

where a strict equality on the left of “⇔” implies a strict equality on the
right, and vice versa.

Proof. Let x(t) = a(t), g(t) = r(t)−n and f(t) = w(t)−c(t) in (4.43), (4.44)
and (4.45). Then the conclusion follows from Claim 1. ¤

By setting t0 = 0 in the corollary and replacing τ by t and n by 0, we

have hereby provided an alternative proof of Proposition 1.
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D. Proof of Proposition 2 (the transversality condition with an
infinite time horizon)

In the differential equation (4.43) we let x(t) = λ(t), g(t) = −(r(t)− ρ) and

f(t) = 0. This gives the linear differential equation λ̇(t) = (ρ − r(t))λ(t),

which is identical to the first-order condition (4.22) in Section 4.3. The

solution is

λ(t) = λ(t0)e
− t

t0
(r(s)−ρ)ds.

Substituting this into (TVC) in Section 4.3 yields

λ(t0) lim
t→∞

a(t)e−
t
t0
(r(s)−n)ds = 0. (4.50)

From the first-order condition (4.21) in Section 4.3 we have λ(t0) = u0(c(t0)) >

0 so that λ(t0) in (4.50) can be ignored. Thus, (TVC) in Section 4.3 is equiva-

lent to the condition (NPG) in that section being satisfied with strict equality

(let t0 = 0 = n). The fact that the latter is equivalent to the (IBC) being sat-

isfied with strict equality is known from the last part of the corollary above.

Hence, we have shown Proposition 2. ¤

E. Intertemporal substitution of consumption in continuous time

We claimed in Section 4.4 that equation (4.29) gives approximately the mar-

ginal rate of substitution of consumption in the time interval (t+∆t, t+2∆t)

for consumption in (t, t + ∆t). This can be seen in the following way. To

save notation we shall write our time-dependent variables as ct, rt etc., even

though they are still considered as continuous functions of time. The contri-

bution from the two time intervals to the criterion function isZ t+2∆t

t

u(cτ)e
−ρτdτ ≈ e−ρt

µZ t+∆t

t

u(ct)e
−ρ(τ−t)dτ +

Z t+2∆t

t+∆t

u(ct+∆t)e
−ρ(τ−t)dτ

¶
= e−ρt

Ã
u(ct)

∙
e−ρ(τ−t)

−ρ

¸t+∆t

t

+ u(ct+∆t)

∙
e−ρ(τ−t)

−ρ

¸t+2∆t

t+∆t

!

=
e−ρt(1− e−ρ∆t)

ρ

£
u(ct) + u(ct+∆t)e

−ρ∆t
¤
.

Requiring dU0 = 0 is thus approximately the same as requiring d[u(ct) +

u(ct+∆t)e
−ρ∆t] = 0, which by carrying through the differentiation and rear-

ranging gives (4.29).
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The exact local optimality condition, equation (4.31), can be derived from

(4.30) in the following way: take logs on both sides of (4.30) to get

lnu0(ct) + ρ∆t− lnu0(ct+∆t) =

Z t+∆t

t

rτdτ.

Dividing by ∆t, substituting (4.28) and letting ∆t→ 0 we get

ρ− lim
∆t→0

lnu0(ct+∆t)− lnu0(ct)
∆t

= lim
∆t→0

Rt+∆t −Rt

∆t
, (4.51)

where Rt is the antiderivative of rt. By the definition of a time derivative,

(4.51) can be written

ρ− d lnu0(ct)

dt
=

dRt

dt
.

Carrying out the differentiation, we get

ρ− 1

u0(ct)
u00(ct)ċt = rt,

which was to be shown.

The relationship between the elasticity of marginal utility and the concept

of elasticity of intertemporal substitution in consumption in continuous time

can be made clear in the following way: consider the indifference curve for

consumption in the non-overlapping time intervals (t, t+∆t) and (s, s+∆t).

The curve is depicted in Fig. 4.3. The consumption path outside the two

time intervals is the same. At a given point (ct∆t, cs∆t) on the curve, the

marginal rate of substitution of s-consumption for t-consumption, MRSs,t,

is given by the absolute value of the slope of the tangent to the indifference

curve at that point. In view of u00(c) < 0, MRSs,t is growing along the curve

when ct decreases (and thereby cs increases). Conversely, we can consider

MRSs,t as the independent variable and consider the corresponding point on

the indifference curve (and thereby the ratio cs/ct) as a function of MRSs,t.

If we let MRSs,t grow, the corresponding value of the ratio cs/ct will also

grow (see Fig. 4.3).

The elasticity of substitution between consumption in the time interval

(t, t+∆t) and consumption in the time interval (s, s+∆t) is then defined as

the elasticity of the consumption ratio, cs/ct, with respect to MRSs,t, when
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indifferenskurve

hældning=
-MRSt,s

cs
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∇

ct

cs
ct
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Figure 4.3: Substitutability of s-consumption for t-consumption as MRSs,t

changes.

we move along the indifference curve. Let this elasticity be denoted σ(ct, cs).

Thus,

σ(ct, cs) =
MRSs,t
cs/ct

d(cs/ct)

dMRSs,t
=

d(cs/ct)
cs/ct

dMRSs,t
MRSs,t

.

At an optimum point, MRSs,t equals the ratio of the discounted prices of

good t and good s. Thus, the elasticity of substitution can be interpreted

as the percentage increase in the ratio of the chosen goods, cs/ct, by a one

percentage increase in the inverse price ratio, holding utility unchanged ; if

s = t + ∆t and the interest rate from date t to date s is r, then (with

continuous compounding) this price ratio is er∆t, cf. (4.27).28 Inserting

MRSs,t from (4.29) we get

σ(ct, cs) =
u0(ct)/[e

−ρ(s−t)u0(cs)]

cs/ct

d(cs/ct)

d{u0(ct)/[e−ρ(s−t)u0(cs)]}

=
u0(ct)/u

0(cs)

cs/ct

d(cs/ct)

d(u0(ct)/u0(cs))
, (4.52)

28This characterization is equivalent to saying that the elasticity of substitution measures
the percentage decrease in the ratio of the chosen quantities of goods (when moving along

a given indifference curve) induced by a one-percentage increase in the corresponding price
ratio.
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by eliminating the factor e−ρ(t−s). Calculating the differentials this gives

σ(ct, cs) =
u0(ct)/u

0(cs)

cs/ct

(ctdcs − csdct)/c
2
t

[u0(cs)u00(ct)dct − u0(ct)u00(cs)dcs]/u0(cs)2
.

Hence, for s→ t we get cs → ct, hence,

σ(ct, cs)→
ct(dcs − dct)/c

2
t

u0(ct)u00(ct)(dct − dcs)/u0(ct)2
= − u0(ct)

ctu00(ct)
≡ σ̃(ct).

This limiting value is known as the instantaneous elasticity of intertemporal

substitution of consumption and is our measure of the willingness to shift

consumption over time when the interest rate changes. Thus it reflects the

opposite of the desire for consumption smoothing. Indeed, we have σ(ct)

= 1/θ(ct), where θ(ct) is the elasticity of marginal utility.

4.7 Problems

Problem 4.1 We look at a household with infinite time horizon and a

constant rate of time preference, ρ. Assume the household’s labour supply

is inelastic but grows at the constant rate n > 0. There is always full em-

ployment so labour supply and employment are the same. The household’s

“effective” utility discount rate is ρ − n > 0 and the instantaneous utility

function is u(c) = (c1−θ− 1)/(1− θ), where θ is a positive constant. There is

no uncertainty. Show that the household’s consumption plan (using standard

notation) satisfies

c(0) = β0(a0 + h0), where

β0 =
1R ∞

0
e

t

0
(
(1−θ)r(τ)−ρ

θ
+n)dτdt

, and

h0 =

Z ∞

0

w(t)e−
t
0 (r(τ)−n)dτdt.

Hint: use the corollary to Claim 1 in Appendix C and the method of Example

1.




