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1 Introduction

This paper reviews the development of innovation-based growth theory with an emphasis

on the recurrent issue of debatable linearity restrictions. This issue is important for

robustness of the conclusions and for the potential of growth policy. In the discussion I

also consider how the relationship between growth and scarce natural resources has been

addressed by innovation-based growth theory.

Economists agree that ideas are different from most economic goods in that they are

nonrival : their usage by one agent does not in itself limit their usage by other agents.

This is likely to generate increasing returns to scale when knowledge is included in the

total set of inputs. Yet, there is scope for differing assumptions about the size of the

returns to scale with respect to only producible inputs, including knowledge.

First-generation endogenous growth theory, as put forward in Romer (1996, 1987,

1990), Lucas (1988), and Aghion and Howitt (1992), suspended the neoclassical presup-

position of diminishing returns to producible inputs and replaced it with the assumption

of exactly constant returns to producible inputs. This has far-reaching implications. It

is possible for economic policy not only to lift the level of the path along which growth

occurs, but also to tilt the path. This nourished many economists’ belief that knowledge

creation is likely to overcome the limits to growth implied by limited natural resources

(Smulders 1995).

Without implicating the limits-to-growth debate, other economists (Solow 1994, Jones

1995a, 1995b) argued that the presumption of non-diminishing returns to producible in-

puts lacks empirical support as well as theoretical plausibility. This criticism did not deny

that the systematic incorporation of the creation of new “ideas” (with their distinctive

properties compared to other economic goods) into dynamic general equilibrium models

with imperfect competition opened up for valuable new insights, whatever the returns

to producible inputs presumed. But the motivation for addressing the returns to scale

question was the concern about robustness of the results and the risk of counterfactual

theoretical implications.

The robustness issue arises because an assumption of constant returns (or just asymp-

totically constant returns) to producible inputs has a knife-edge character in the sense

that a hair’s breadth deviation from the assumption implies completely different dynam-

ics, depending on the sign of the deviation. A counterfactual implication is for example
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the “strong scale effect” that arose in first-generation innovation-based growth models.

When a non-rival good − like technical knowledge − is one of the producible inputs, and
non-diminishing returns to producible inputs are present and not offset by other factors,

then a counterfactual scale effect on growth arises: the larger the economy is, ceteris

paribus, the larger the long-run per-capita growth rate tends to be.1 As a consequence,

sustained growth in population should lead to a forever rising per-capita growth rate, a

prediction not supported by the evidence for the industrialized world over the last century.

Fortunately, the whole debate about these matters gave rise to second-generation en-

dogenous growth theory (see below) and further developments helping us to climb up

the “quality ladder” of growth models. The attempts at combining robustness and em-

pirical relevance has lead to better understanding of an “increasing variety” of growth

mechanisms. Yet, the controversy over specific linearity assumptions and constant vs.

diminishing returns to producible inputs did not stop.

It is well-known that any model which is capable of rendering balanced growth must

contain at least one linear differential equation (Romer 1995, Growiec 2006). Sometimes,

criticism of knife-edge conditions in growth theory is dismissed on the basis of that ob-

servation. The counter argument has of course been that not all linearity assumptions

are equally defendable. Moreover, taking non-renewable natural resources into account

illustrates (cf. Section 6 below) that the linearity required for balanced growth may be

delivered by a differential equation which merely reflects accounting definitions and is

therefore not controversial. In fact, incorporating non-renewable resources in the discus-

sion puts several of the issues in a new light: no problematic knife-edge condition is any

longer needed for fully endogenous balanced growth; there is no scale effect on growth;

population growth can easily be integrated; the scope for various policy tools changes;

and, as expected, more narrow limits to growth arise.

The rest of the paper discusses these issues within a unified framework for the pre-

sentation of the different “generations” of innovation-based growth models. The next

section provides the necessary background: the first-generation models. In Section 3,

the “Jones critique” is presented along with the semi-endogenous growth alternative (or

“moderation”) as well as the different responses to the Jones critique. Section 4 portrays

the second-generation models which consider innovations along two dimensions. Section

1I follow the terminology in Jones (2005) and use “strong scale effect” as synonymous with “scale
effect on growth”. In contrast, “weak scale effect” refers to “scale effect on levels”, a less controversial
phenomenon arising naturally from the non-rival character of technical knowledge.
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5 introduces recent developments with an emphasis on the attempts at endogenizing both

the rate and direction of technical change. Repercussions of the presence of essential

non-renewable resources are depicted in Section 6. Finally, Section 7 concludes.2

2 First-generation models

It is common to divide the models of the endogenous growth literature − also called

new growth theory − into two broad classes: accumulation-based models and innovation-
based models. The first class of models is based on the idea that the combination of

physical capital and human capital accumulation may be enough to sustain long-run

productivity growth (Lucas 1988, Rebelo 1991). The second class of models, which will

be my focus here, attempts to explain how technological change comes about and how it

shapes economic growth.

The origin of the innovation-based growth models goes back to Romer (1986, 1987,

1990), where growth is driven by specialization and increasing division of labor.3 That

is, here the focus is on horizontal innovations: the invention of new intermediate or

final goods giving rise to new branches of trade. The invention of micro-processors is

an example. Shortly after the Romer papers came out, Aghion and Howitt (1992) and

others proposed theories in which growth is driven by vertical innovations. This strand

of endogenous growth theory concentrates on the invention of better qualities of existing

products and better production methods which make previous qualities and methods

obsolete. Improvement in the performance of microprocessors provides an example. The

two strands of models are often called “increasing variety” models and “increasing quality”

models (or “quality ladder” models), respectively. We begin with an account of the

increasing variety models.

2.1 Horizontal innovations

The following is a simplified version of Romer (1990). There are two production sec-

tors. Sector 1 is the manufacturing sector which supplies “basic goods” under perfect

2In several respects, this review is inspired by Jones (1999) and Jones (2005). However, we discuss
the non-robustness arising from arbitrary parameter values and parameter links in a broader context,
including directed technical change, non-renewable resources, and limits-to-growth considerations.

3There are forerunners though: Arrow (1962a), Phelps (1966), Nordhaus (1979) and Shell (1973) are
examples.
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competition. The representative firm in the sector produces

Y =

Ã
NX
i=1

xαi

!
L1−αY , 0 < α < 1, (1)

where xi = input of capital good variety i, N is the number of different varieties of capital

goods, and LY is labor input. The output of basic goods is used for consumption, C, and

investment in “raw capital”. The stock of raw capital, K, grows according to

K̇ = Y − C − δK, δ ≥ 0. (2)

Here δ is a constant physical capital depreciation rate. A dot over a variable denotes the

time derivative.

In Sector 2, the innovative sector, two activities take place. Firstly, there is investment

in R&D in the sense that labor, LR, is applied in research to invent technical designs for

new capital varieties, i.e., new kinds of specialized capital goods. The sum of LY and LR

makes up the total labor force (= population),

LY + LR = L, (3)

where L is assumed constant (labor supply inelastic). There is free entry to the R&D

activity. The number of new varieties invented per time unit is assumed proportional to

R&D input. Ignoring indivisibilities, we have

Ṅ = μ̃LR. (4)

The individual research lab, which is “small” relative to the economy as a whole, takes

R&D productivity, μ̃, as given. At the economy-wide level, however, this productivity is

an increasing function of the stock of technical knowledge in society, proxied by N.4 Here

Romer (1990) assumes linearity:

μ̃ = μN, μ > 0, (5)

where μ is a constant.

4Specific knowledge may be partially excludable in the sense that patents, concealment etc. can for
a while exclude other firms from the commercial use of a given innovation. Yet the general engineering
principles behind the innovation are likely to diffuse rather quickly and add to the stock of common
technical knowledge in society. On the basis of - and inspired by - this knowledge stock, further innovations
are made.
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Secondly, once the technical design (blueprint) of a new variety has been invented,

the inventor takes out (free of charge) an infinitely-lived patent and starts supplying the

services of the new capital good under conditions of monopolistic competition. Given the

invented technical design, say design no. i, the inventor can effortlessly transform any

number of raw capital goods into the same number of specialized capital goods of type i

simply by pressing a button on a computer, thereby activating a computer code. That is,

it takes xi units of raw capital to supply xi units of the specialized capital good i.

In view of the symmetric cost structure and the concavity in (1), profit maximizing firms

in the basic-goods sector choose xi = x = K/N for all i, so that the aggregate production

function becomes

Y = Kα(NLY )
1−α. (6)

We see that increasedN implies increased productivity: variety is productive. This is how

Romer formalizes the idea that specialization and division of labor increase productivity.

A further key feature of endogenous growth theory is apparent from (6) and (4) (combined

with (5)). Total knowledge, N, enters both in the production function for Y and that for

Ṅ . This is because ideas - sets of instructions - are non-rival: their usage by one agent

does not in itself limit their usage by other agents. This is in contrast to the rival goods:

capital and labor. For example, a given unit of labor or capital can be used no more than

one place at a time. Hence, only a fraction of the labor force enters the Y sector, the

remaining fraction entering the innovative sector.

At the societal level there are two allocation problems: how to divide the labor force

into LY and LR and how to divide Y into consumption and investment. Adding perfect

competition in the labor market and a specification of the household sector, including

preferences, the model can be solved.

For any positive variable x let gx ≡ ẋ/x and let y ≡ Y/L. Then, along a balanced

growth path5 we have

gy = gN = μsRL, where sR ≡
LR

L
. (7)

Here, the share of the labor force employed in R&D, sR, will depend on parameters such

as α, μ, and those describing the household sector (here left out for brevity). When

parameter values are such that 0 < sR < 1, we get:

5A balanced growth path is defined as a path along which the quantities Y, C,K, and N change at
constant proportionate rates (not necessarily positive).
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(i) There is endogenous growth in the sense that the source of positive long-run growth is

some internal mechanism in the model (in contrast to exogenous technology growth

as in the Solow model). More specifically, growth is fully endogenous in the sense

that the long-run growth rate in per-capita output is positive without the support

of growth in any exogenous factor.6 The key to this feature is the assumption

of non-diminishing returns to the producible input, N, in the “growth engine”:

Ṅ = μNLR.
7

(ii) Via influencing incentives, policy can affect sR (e.g., by a research subsidy) and

thereby the long-run growth rate.

(iii) Under laissez-faire, the market economy always does too little R&D.

It is generally recognized that at least result (iii) is not robust. This result arises

due to two positive externalities, the intertemporal spillover in knowledge creation, ap-

parent from (4) combined with (5), and the surplus appropriability problem, that is, the

inability of the innovator to capture the whole contribution to output by the innovation.

As Benassy (1998) and Groot and Nahuis (1998) argue, however, there is an arbitrary

link in the Romer model between gains to specialization (i.e., the exponent, 1− α, to N

in (6)) and the output elasticity wrt. capital, α. With a more general specification of

(1), this link is disentangled and this may open up for a negative externality to appear, a

reminiscence of “creative destruction”. If this negative externality is strong enough (gains

to specialization low enough), then “too much R&D” in the market economy is possible.

Further, Alvarez-Pelaez and Groth (2005) argue that there is yet another arbitrary pa-

rameter link, that between market power, 1/α, in the supply of specialized capital goods

and the output elasticity wrt. capital, α. When this link is removed, Romer’s original

“too little R&D” conclusion is in fact vindicated as the empirically relevant case.8 In

addition, this parameter separation is needed in order not to blur the growth enhancing
6An alternative name for the same is “strictly endogenous” growth. Within the broad class of “endoge-

nous growth” models the complementary sub-class is that of “semi-endogenous” growth models, where
sustained (exponential) growth can not be maintained without the support of growth in some exogenous
factor (usually the labor force).

7The growth engine of a model is defined as the set of sectors that produce goods used as input within
the set.

8The generalized production function in the basic-goods sector is Y = NωXαL1−αY , where ω > 0, and
X is a CES aggregate of specialized capital goods, i.e., X = N(N−1

PN
i=1 x

ε
i )
1/ε, 0 < ε < 1.With xi = x

= K/N for all i we get X = Nx = K. So at the aggregate level the difference compared to (6) is only that
gains to specialization are now represented by the independent parameter ω, and ε is the independent
parameter measuring the substitutability between the specialized capital goods. Thus 1/ε measures the
market power of the suppliers of specialized capital goods.
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effect of increased monopoly power by offsetting effects from decreased output elasticity

wrt. capital.

Even the results (i) and (ii) turn out to be non-robust, but before going into that, we

shall take a look at the “increasing quality” or “quality ladder” models.

2.2 Vertical innovations

We consider a simplified version of Aghion and Howitt (1992, 1998) comparable to the

above version of Romer (1990). Again, there are two sectors (broadly defined): Sector 1,

the basic-goods sector, and Sector 2, the innovative sector.

The representative firm in Sector 1 operates under perfect competition and produces

Y =

Ã
N̄X
i=1

Qix
α
i

!
L1−αY , 0 < α < 1, (8)

where xi = input of capital good variety i, and Qi is (essentially) the productivity (“qual-

ity”) of the latest design of capital good i.9 There is a fixed number, N̄, of different capital

good varieties. The output of basic goods is used for consumption, C, and investment in

“raw capital” in the same way as in (2).

Sector 2 consists of N̄ product lines, one for each capital good variety, i = 1, 2,. . . , N̄ .

In each product line two activities take place. The first is investment in R&D. In product

line i, LRi units of labor per time unit is applied in research to invent an improved

quality of capital good type i. There is free entry to research. Successful outcomes, i.e.,

innovations, are assumed to arrive randomly with a Poisson arrival rate, λi, proportional

to current R&D labor in the product line, i.e.,

λi = μ̃LRi, μ̃ > 0.

An innovation is an invention of a new design for capital good i, raising its productivity

by a constant factor γ > 1. The τ i’th innovation in product line i thus raises the quality

to

Qi = γτ i , γ > 1, τ i = 1, 2, . . . .

Fig. 1 illustrates these “quality ladders” in the different product lines.10

9Strictly speaking, Qi, is the productivity of the transformation, xαi , of xi units of the specialized
capital good i.
10In the quality ladder model of Grossman and Helpman (1991) each innovation consists of the invention

of a better quality of consumption good i.
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Figure 1: Quality ladders.

The second activity in each product line of the innovative sector is to supply the

services of the most recent quality of the capital good in question under conditions of

monopolistic competition. The innovator takes out (free of charge) an infinitely-lived

patent on the commercial use of the new design. Because of its superiority, the new design

outperforms previous designs; if necessary, the innovator uses limit pricing, rather than

unconstrained monopoly pricing, to eliminate the previous “leading-edge” producer. This

idea, that innovations render old products obsolete, was coined by Joseph Schumpeter

(1912) in the notion of “creative destruction”.

Leaving the sunk costs of making the innovation out, the only cost associated with

supplying one unit of capital good i in its currently best quality is that:

it takes Qi units of raw capital to supply 1 unit of capital good i in quality Qi.

So raw capital in the amount Ki can effortlessly be converted into the current quality of

capital good i according to

xi =
Ki

Qi
,

simply by pressing a button on a computer. Succeeding vintages of the specialized capital

good are thus increasingly capital intensive.

Under cost minimization, the symmetry in the setup leads to xi = Ki/Qi = x for all
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i and therefore

x =

P
iKiP
iQi

=
K

N̄Q
,

where Q is average quality across the different capital good varieties:

Q ≡
PN̄

i=1Qi

N̄
.

Hence, by (8),

Y =

Ã
N̄X
i=1

Qi

µ
K

N̄Q

¶α
!
L1−αY = Kα(N̄QLY )

1−α. (9)

Given that the Poisson arrival rate of quality improvements in product line i is λi =

μ̃LRi and given stochastic independence across product lines, the expected aggregate

number of quality improvements per time unit is μ̃
PN̄

i=1 LRi ≡ μ̃LR. Appealing to the

law of large numbers, we take this to be the actual number of quality improvements per

time unit. In view of the symmetric structure, if the number of product lines, N̄, is large,

the aggregate outcome of R&D can be approximately described by

Q̇ = (
μ̃

N̄
log γ)QLR ≡ μQLR, (10)

which is analogous to (4) combined with (5).

Along a balanced growth path, again

gy = gQ = μsRL, (11)

but now growth is driven by the increasing quality of a fixed spectrum of inputs.

Results (i) and (ii) from the previous section go through, but result (iii) is modified.

Indeed, there are now three market failures, two of which tend to generate too little R&D

in the market economy (the positive intertemporal spillover in research and the surplus

appropriability problem). But a third market distortion works in the opposite direction,

namely the “business stealing” effect, i.e., the failure of the innovator to internalize the

loss to the previous innovator caused by inventing a better quality.11 Because of this effect,

under laissez-faire the market economymay generate toomuch research. Empirically, this

does not seem to be the case, rather the contrary seems true (Jones and Williams 1998).

11On the one hand, the incorporation of business steeling is one of the strengths of the quality ladder
model. On the other hand, a weakness - from an empirical point of view - of the first-generation versions
of the model is that all R&D is done by outsiders. This is because outsiders have (by assumption)
immediate access to the knowledge contained in the incumbent technology and can therefore straight
away start their search for the next quality jump; and the net value of this next innovation is higher to
them than to the incumbent who looses the profit generated by the previous innovation. For versions
where also the incumbent does research, see, e.g., Aghion and Griffith (2005).
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3 Non-robustness and the semi-endogenous “moder-
ation”

Two features of the common conclusion gy = μsRL stand out:

(a) There is a scale effect on growth: ∂gy/∂L > 0.12

(b) By affecting incentives, policy can affect sR and thereby the long-run growth rate.

The feature (a) is discomforting, because the industrialized world has over the last

century experienced sustained growth in L but not in gy. The feature (b) makes economic

policy very powerful, because increasing a growth rate just a little but permanent bit, one

increases future productivity dramatically because of the compounding effect.

3.1 The Jones critique

In two important papers, Charles Jones (1995a, 1995b) claims:

(i) Both features are rejected by time-series evidence for the industrialized world.

(ii) Both features are theoretically non-robust (i.e., they are very sensitive to small

changes in parameter values).

The empirical point, (i), is supported by, e.g., Evans (1996), Romero-Avila (2006),

and Lau (2008), although partially challenged by McGrattan (1998), Kocherlakota and Yi

(1997) and Dajin Li (2002). As to the theoretical point, (ii), take the Romer model as an

example.13 From (4) and (5), the aggregate invention production function is Ṅ = μNLR.

A more general specification would be

Ṅ = μNϕLR, ϕ ≤ 1, (12)

where the parameter ϕ is the elasticity of research productivity with respect to the level of

technical knowledge. In the Romer model, the value of this parameter is arbitrarily made

12Indeed, ∂gy/∂L = μ(sR + L∂sR/∂L), which is probably not significantly less than μsR, since in-
creasing L is not likely to have a sizeable diminishing effect on relative research effort sR. To be definite
about this requires specification of the household sector. In the most common specifications sR is in fact
increasing in L.
13An analogue argument goes through for the vertical innovations model.
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equal to one. One could easily imagine, however, this parameter being negative (“the

easiest ideas are found first”, also called the “fishing out” case). Even when one assumes

ϕ > 0 (i.e., the case where the subsequent steps in knowledge accumulation requires less

and less research labor), there is neither theoretical nor empirical reason to expect ϕ = 1.

The standard replication argument for constant returns with respect to the complete set

of rival inputs is not usable.14 Even worse, ϕ = 1 is a knife-edge case. If ϕ is just slightly

above 1, then explosive growth arises - and does so in a very dramatic sense: infinite

output in finite time.15 This was pointed out by Solow (1994a). The numerical example

he gave corresponds to ϕ = 1.05, sR = 0.10, μL = 1 and N0 = 1. In this case, the Big

Bang - the end of scarcity - is only 200 years ahead. The fact that this occurs only a

hair’s breadth from the presumed unit value of ϕ tells us something about how strong

and optimistic that assumption is. To paraphrase Solow (1994b), it is too good to be

true. The Big Bang pertaining to ϕ > 1 is mathematically analogous to the fact that

the solution to the differential equation ẋ = 1 + x2, with initial condition x(0) = 0, is

x(t) = tan t and approaches infinity for t→ π/2.

On the other hand, with ϕ just slightly less than 1, productivity growth peters out,

unless assisted by growth in some exogenous factor, say population. Indeed, let L = L0e
nt,

where n ≥ 0 is a constant. Then, deriving from (12) an expression for ġN/gN we find that
in a steady state (i.e., when ġN = 0),

gy =
n

1− ϕ
. (13)

There are a number of observations to be made on this result. First, the unwelcome

scale effect on growth has disappeared. Second, from (12) it can easily be shown that

through temporary effects on growth, a scale effect on the level of y(t) remains (i.e.,

∂y(t)/∂L0 > 0 along a balanced growth path). From the point of view of theory, this

is exactly what we should expect. The non-rival character of knowledge implies that

output per capita depends on the total stock of ideas, not on the stock per person.

A larger population breeds more ideas, leading to higher productivity. Empirically, the

very-long run history of population and per capita income of different regions of the world

gives evidence in favour of scale effects on levels (Kremer 1993); econometric evidence is

provided by, e.g., Alcalá and Ciccone (2004). Third, scale effects on levels also explain why

14I therefore disagree with Dinopoulos and Sener (2003) who regard an assumption like ϕ = 1 as parallel
to the constant returns to scale assumption often invoked in competitive equilibrium theory. This is a
linearity w.r.t. the set of rival inputs and is endogenous, in view of the replication argument.
15This knife-edge feature pertains to not only innovation-based endogenous growth models, but also

accumulation-based models, e.g., Lucas (1988).
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the rate of productivity growth should be an increasing function of the rate of population

growth, as implied by (13). However, in view of cross-border technology diffusion, this

trait should not be seen as a prediction about individual countries in an internationalized

world, but rather as pertaining to larger regions, perhaps the global economy. Finally,

unless policy can affect ϕ or n (often ruled out by assumption16), the long-run growth rate

is independent of policy, as in the traditional neoclassical story. Yet, this statement should

not be interpreted as excluding that the general social, political, and legal environments

can be barriers to growth or that policy can affect sR (via influencing incentives by a

research subsidy, say) and thereby affect the level of the time path of y.

The case ϕ < 1 constitutes an example of semi-endogenous growth. We say there is

semi-endogenous growth when (a) per capita growth is driven by some internal mechanism

(as distinct from exogenous technology growth), but (b) sustained per capita growth

requires support from growth in some exogenous factor. In innovation-based growth

theory, this factor is normally population size. The diminishing returns to knowledge is

offset by a rising number of researchers; a constant positive growth rate of knowledge

results.17 Note that in our terminology, the distinction between fully endogenous growth

(defined in Section 2.1) and semi-endogenous growth need not coincide with the distinction

between policy-dependent and policy-invariant growth; this becomes important below.

Moreover, albeit the Jones (1995b) model modifies Romer’s increasing variety model, we

may still classify the Jones model as belonging to the first-generation models of endogenous

growth. Indeed, whether an analysis concentrates on the robust case ϕ < 1 or the non-

robust (but analytically much simpler) case ϕ = 1, is in our terminology not decisive for

to what generation the applied model framework belongs. The defining characteristic of

the first-generation models is in our terminology rather the one-sided concentration on

either horizontal innovations or vertical innovations.18

16There are exceptions though. Cozzi (1997) develops a model in which R&D can follow different
directions and where short-term gains may conflict with long-term growth prospects. With taxes and
subsidies it is possible to shift research to directions with higher growth potential.
17In Jones (1995b, (12) takes the extended form, Ṅ = μNϕLλR, 0 < λ ≤ 1. The case 1− λ represents a

likely congestion externality of simultaneous research (duplication of effort). But for our discussion here
this externality is not crucial. An early example of a semi-endogenous growth model is Arrow (1962a).
18For more elaborate variants of the semi-endogenous approach, with focus on vertical innovations

within a fixed spectrum of product lines, see Kortum (1997) and Segerstrom (1998). A somewhat different
way to aleviate or eliminate scale effects on growth is based on adoption costs (Jovanovic 1997).
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3.2 Different responses to the Jones critique

The Jones critique provoked at least four different kinds of responses.

3.2.1 The knife-edge models are handy approximations

The knife-edge models are useful as simplifying devices. The assumption ϕ = 1 should

be seen as an approximation to the generic case of ϕ less than, but perhaps close to,

one (McCallum 1996, Temple 2003). Then it depends on the circumstances whether this

yields an acceptable approximation and for how long. It should be emphasized that the

length of the period for which such an approximation is acceptable may be more limited

than usually believed. To get a flavour, consider the Cobb-Douglas version of the well-

known Learning-By-Investing model without scale effect (Barro and Sala-i-Martin 2004,

pp. 235, 237). Let σ be a subsidy to purchases of capital services. Departing from steady

state, consider an unanticipated increase in σ from 0.40 to 0.56. Let the “true” learning

parameter λ be as high as 0.8, and compare the effect of the shock to that in the simplified

(knife-edge) model where λ = 1. For standard parameter values one may end up with,

after 60-70 years, an aggregate capital intensity in the knife-edge model double to that in

the “true” model, a difference that may be important, for example, to the evaluation of

welfare effects.

3.2.2 Anyway, some linearity is needed for steady growth

As noted by Romer (1995), in order for balanced growth to be possible, a growth model

must yield at least one differential equation that is linear:

ẋ = constant · x. (14)

Growth models differ according to a) what variable takes the role of x, and b) what

determines the constant.19 The key to having policy impinging on long-run growth is to

have the constant determined such that policy can affect it. In Solow (1956), we have

Ṫ = τT, where T is the technology level and τ is exogenous; hence, the long-run growth

rate is policy-invariant. In the one-sector AK model of Rebelo (1991), Y = AK, so

that K̇ = (A − C/K − δ)K, where A is an exogenous constant and C/K is constant in

equilibrium and can be affected by tax policy. The human-capital model of Lucas (1988)

19In multi-sector models with more than one state variable, the simple proportionality in (14) generally
takes the form of a vanishing determinant.
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has ḣ = μsh, where h is per capita human capital and s is per capita educational time.

Romer (1990) and Aghion and Howitt (1992) are described above. With a proviso to

which we come back at the end of Section 4, it seems that no convincing explanation has

as yet been given for any of these candidates.

Jones (2005) proposes L̇ = (b− d)L ≡ nL, where b is the birth rate and d is the death

rate. He argues that this demographic candidate is less arbitrary than the other candi-

dates. After all, people reproduce in proportion to their number.20 Anyway, a strength

of the semi-endogenous growth approach seems to be that no other knife-edge condition

than exponential population growth is needed for explaining balanced growth. In con-

trast, the fully endogenous growth approach assumes both that n is constant (sometimes

nil to avoid growth explosion) and that an additional debatable linearity is present. In

Section 6, where the role of non-renewable resources is considered, we meet yet another

casting of the role of x in (14).

3.2.3 One can do with only asymptotic linearity

Larry Jones and Rodolfo Manuelli (1990, 1997) point out that asymptotic linearity with

respect to capital can be enough for fully endogenous growth to arise. This is because

what in this context really matters is whether the marginal productivity of capital, when

the capital intensity goes to infinity, is bounded away from zero.21 Dalgaard and Kreiner

(2003) follow up by applying the same principle to the invention production function.

Jones and Manuelli as well as Dalgaard and Kreiner suggest a CES production function

with elasticity of substitution above 1 as an example. However, in the Jones and Manuelli

case (a CES in terms of K and L) one faces the problem that it is not clear that the

theoretical or empirical basis for asymptotic linearity is essentially better than that for

exact linearity. In the Dalgaard and Kreiner case (a CES in terms of L and N), there

is the additional problem that the replication argument can no longer be used to defend

the assumed exact constant returns to scale with respect to L and N, the latter being a

non-rival input.

20Most of the Jones papers take n as given, but Jones (2003) deals with the very long run and provides
a theory of endogenous fertility. Thus population growth is endogenized and by combining these demo-
graphic elemets with economic elements as in Section 3.1, the growth process becomes fully endogeneous.
Yet, the implied predictions are very different than those from the fully endogenous growth models of
Section 2.
21If we look for fully endogenous growth to be not only technologically feasible, but also actually

induced by incentives, the lower bound has to be “sufficiently” above zero.
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An important point from these contributions is, however, that what appears as a knife-

edge condition depends on the class of functional forms allowed. In this perspective the

constant elasticity class considered by Jones and others seems reasonable. It is analytically

convenient and it spans a broad range of possibilities of empirical interest.

The fourth kind of response to the Jones critique is more elaborate and constitutes

what may be called the second-generation innovation-based models.

4 Second-generation models

Young (1998), Peretto (1998), Aghion and Howitt (1998, Ch. 12), Dinopoulos and Thomp-

son (1998) and Howitt (1999) (the Y/P/AH/DT/H models) try to establish that it is

possible to get rid of the scale effect on growth and at the same time maintain that policy

affects the long-run growth rate. The following is only a rough description that does not

do justice to all the interesting insights and differing details of these papers.

The basic idea is to combine the quality ladder approach with the increasing variety

approach by letting innovations occur along both dimensions, the vertical as well as the

horizontal. Aggregate output of basic goods is

Y = Kα(NQLY )
1−α , (15)

where now the number of varieties, N, is increasing over time. Indeed, total research effort

is, as before, LR = sRL, but a fraction, sN , of this is devoted to horizontal innovations,

Ṅ = μsNsRL, μ > 0, (16)

and the remaining part is devoted to vertical innovations within the existing N product

lines,

Q̇ = ξQ
(1− sN)sRL

N
, ξ > 0. (17)

These equations give gN = μsNsRL/N and gQ = ξ(1− sN)sRL/N, respectively. So, along

a balanced growth path, where sR, sQ, gN , and gQ are constant, both equations imply

gN = n. Taking growth rates in (15), we get

gY = αgK + (1− α)(gN + gQ + n).

In balanced growth, where gK = gY = gy + n, we thus have

gy = gN + gQ = n+ gQ. (18)
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Given the technology and demography, represented by n, the balanced growth requirement

pins down only gN , thus leaving room for gQ to depend on household preferences and

economic policy. In turn this leaves room for gy, the growth rate of productivity, to

similarly depend on household preferences and economic policy.

Indeed, in a fully articulated model, combining (15), (16), and (17), with a specified

household sector, these claims come true:

(i) Since the equilibrium values of sR and sN depend on R&D incentives and households’

saving, which in turn depend on subsidies and taxes, economic policy can affect the

long-run productivity growth rate, gy.

(ii) There is no scale effect on growth, hence, population growth does not imply accel-

erating growth.

The latter conclusion hinges on the so-called dilution effect of expanding the number of

product lines. Although this product line proliferation may imply gains by specialization,

it also thins down the quality improving research effort in each product line. This results

in less average quality improvement than otherwise. When the population increases, so

does the number of product lines in the economy (since, as we saw, gN = n in balanced

growth) and the dilution effect holds the productivity increases in check.22

Jones (1999), Chol-Won Li (2000), and others rejoin that, though interesting,

• these results rely on several arbitrary knife-edge conditions;

• a generic model with innovations along two dimensions tends to make the long-run
growth rate policy-invariant.

Indeed, the above model is special: there are no knowledge spillovers within horizontal

innovations, there are no knowledge spillovers between horizontal innovations and vertical

innovations, and the parameter for the spillovers within vertical innovations happens to

be exactly unity - a very specific value.
22Similar results are obtained if the vertical innovations take the form of cost-reducing process innova-

tions, as in Peretto (1998).
It may be noted that at a purely formal level we have gy = (1 + ξ

μ
1−sN
sN

)n in balanced growth (only
“purely formal” because both sN and gN = n are not independent). Thus, population growth is here
necessary to sustain positive per capita growth in the long run. So the setup implies semi-endogenous
growth.Yet, within the second generation models there are also contributions that generate fully endoge-
nous growth, e.g., Young (1998) and Dinopoulos and Thompson (1998).
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Amore general (and symmetric) model would be (essentially from Chol-Won Li 2000):

Ṅ = μNε1Qϕ1
(1− sQ)sRL

Q
, ε1 ≥ 0, ϕ1 ≥ 0, (19)

Q̇ = ξNε2Qϕ2
sQsRL

N
, ε2 ≥ 0, ϕ2 ≥ 0. (20)

In balanced growth (sR, sQ, gN , and gQ constant) the numerator and the denominator in

expressions for gN and gQ, derived from (19) and (20), must grow at the same rate. This

implies

(1− ε1)gN + (1− ϕ1)gQ = n, (21)

(1− ε2)gN + (1− ϕ2)gQ = n. (22)

Solving for gN and gQ, and using (18), yields

gy =
(ϕ1 − ϕ2 + ε2 − ε1)n

D
, (23)

in balanced growth, presupposing D 6= 0, where D ≡ (1− ε1)(1− ϕ2)− (1− ϕ1)(1− ε2).

We see that in the generic case (D 6= 0) long-run growth can not be affected by standard
policy tools.

On the other hand, in the Y/P/AH/DT/H models the spillover parameters happen

to be:

ε1 = ε2 = 0 (spillovers from horizontal innovations), (24)

ϕ1 = ϕ2 = 1 (spillovers from vertical innovations), (25)

so that D = 0. In this knife-edge case, (21) implies gN = n, leaving room for gQ to be

determined by policy, thus confirming the logic behind (i) above.

Chol-Won Li (2002) generalizes the model and shows that if intermediate goods have

k quality attributes, which can be improved through R&D, then policy-dependent growth

requires at least k+1 knife-edge conditions to be satisfied. Otherwise the long-run growth

rate is independent of policy. Yet, the level of the growth path can depend on policy,

which may still have sizeable welfare effects.

These observations do not preclude that a richer model might draw attention to eco-

nomic mechanisms affecting the spillover coefficients. The models proposed by Cozzi

(1997) and Peretto and Smulders (2002) are steps in this direction. In the Peretto and

Smulders paper, the vertical innovations are “in-house” (no business-stealing effect) and
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the horizontal innovations raise technological distance. This reduces the effective spillovers

originating in horizontal innovations. In this way the Peretto and Smulders paper can be

interpreted as the case: ε1 → 0, ε2 → 0 for N → ∞. This still leaves open how to argue

for the parameter restrictions (25).

5 Later developments

5.1 Integration with IO theory and empirics

In the discussion of the first-generation vertical-innovations models it was mentioned that

they share the unrealistic feature that all R&D is done by outsiders. There are newer

models taking into account that the incumbent firm is likely to have a knowledge and

cost advantage in R&D and may gain from striving towards the next innovation, thereby

avoiding being overtaken by an outsider. This amounts to an integration of growth theory

with industrial organization theory and empirics. Unlike the first-generation horizontal

and vertical innovations models that unambiguously imply a positive relationship between

monopoly power and innovations, a more nuanced understanding of the roles of competi-

tion and monopoly for growth is pursued. For overviews, see Aghion and Griffith (2005)

and Aghion and Howitt (2009).

5.2 Directed technical change

Whatever the source of a potential for sustained technical progress, a question remains:

technical progress in what “direction”? Will it tend to be purely labor-augmenting or

not? The answer to this question matters for whether approximate balanced growth can

be maintained.

Until recently, almost all growth models, whether with endogenous or exogenous tech-

nical change, just assumed either that the elasticity of substitution between capital and

labor is 1 (the Cobb-Douglas production function) or that all technical change is purely

labor-augmenting − capital-augmenting technical change being, by assumption, excluded.
With an elasticity of substitution less than 1 (as the empirical evidence suggests, see

Antras 2004), technical change must be purely labor-augmenting in order that balanced

growth paths with constant income shares of labor and capital can exist. Fortunately,

recent theory points at mechanisms that can possibly explain that technical change should
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be purely labor-augmenting, i.e., Harrod-neutral, in the long run.

In a series of papers, Acemoglu (1998, 2002, 2003) succeeds in integrating the some-

what ad-hoc theory from the 1960s about the “innovation possibility frontier”23 with the

microfounded endogenous growth theory of the late 1980s. The outcome is a theory in

which the same economic forces − profit incentives − that affect the rate of technical
change also shape the direction of technical change. Here I outline how the theory works

in the horizontal innovation framework.24

Assume output of basic goods is given by the CES function

Y =
£
α(MK)(σ−1)/σ + (1− α)(NLY )

(σ−1)/σ¤σ/(σ−1) , (26)

where σ > 0 is the constant elasticity of substitution between K and LY . There are now

two technology terms: M , which measures the range of capital-enhancing intermediate

goods, and N, which measures the range of labor-enhancing intermediate goods. The

technologies for invention of new varieties of the two kinds of intermediate goods are

Ṁ = ψ̂sMLR − ηM, and Ṅ = μ̂(1− sM)LR − ηN, (27)

where sM denotes the fraction of research effort devoted to invention of new varieties of

capital-enhancing intermediate goods, and η > 0 represents the rate of evaporation of

varieties.25 At the economy-wide level the research productivities are given as

ψ̂ = ψM(sMLR)
ε−1, and μ̂ = μN [(1− sM)LR]

ε−1 , (28)

where ε ∈ (0, 1) captures crowding effects not internalized by the individual R&D firm.26

Embedding this production structure in a standard representative-agent framework,

Acemoglu (2003) essentially shows the following. An income share of capital above its

long-run equilibrium value makes capital-augmenting innovations more favorable, i.e., sM
is increased. Thereby, the “effective” capital intensity, k ≡MK/NLY , increases, and with

σ < 1 this implies decreasing income share of capital. Similarly, a rate of interest above

its long-run equilibrium value spurs capital accumulation, thereby decreasing the rate of

interest. The system approaches a balanced growth path with constant k and constant

rate of interest. The constancy of the remuneration to capital is obtained when sM is at

23For a summary and critical assessment, see Nordhaus (1973).
24Fitting the theory to vertical innovations is also possible, but is slightly more complicated.
25The assumption η > 0 is invoked in order to avoid multiplicity of balanced growth paths.
26By having ε < 1, inconvenient discontinuities in the behaviour of sM are avoided.
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a level low enough to just maintain a constantM. On the other hand, N , and thereby the

real wage, keeps growing along with K/LY , without stimulating labor supply, which is

not a function of wages. In this way, technical change becomes purely labor-augmenting

in the long run.

Although here formulated as a fully endogenous growth model, i.e., the spillover pa-

rameters in (28) are exactly one, seemingly the theory works just as well in the semi-

endogenous growth case, where the spillover parameters are less than one (Acemoglu

2002, p. 795). The essential point is that the knife-edge condition of Harrod-neutral

technical progress is replaced by a theory of induced Harrod-neutrality in the long run.

On the other hand, when one problem is resolved, new problems appear. As recognized

by Acemoglu, his theory relies on the knife-edge condition that there are no knowledge

spillovers between the M and N promoting endeavours, cf. (28). A next task will be to

either relax this assumption or provide a microfoundation for it.

The theory of endogenous directed technical change shows its usefulness in many

applications. Different elaborations embrace topics such as skill-biased technical change

(Acemoglu 1998, Kiley 1999), the long-run constancy of the capital income share despite

large changes in fiscal policy and labor market policy (Acemoglu 2003) and cross-country

differences in pollution (Di Maria and Smulders 2004). Of particular interest in relation

to the limits-to-growth debate is the modelling of induced energy-saving technical change

in André and Smulders (2004).

A problem with the Acemoglu directed-technical-change framework is its quite ab-

stract nature. As noted by Stokey (2003), it is not easy to identify what N, M, and

SM correspond to empirically. Jones (2005) offers an alternative approach to the prob-

lem of the shape of the aggregate production function, implying that the question about

Harrod-neutrality loses its importance. Indeed, Jones provides a microfoundation for the

production function being Cobb-Douglas in the long term, though the short-term elastic-

ity of substitution is likely to be less than one.

6 Non-renewable resources and growth

This section considers how the presence of scarce natural resources (“resources” for short)

has been incorporated in new growth theory. In particular we will keep an eye on what

light natural resources throw on knife-edge problems in new growth theory. As alluded to
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