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Perspectives on learning-by-doing
and learning-by-investing

As a follow-up on Lecture Note 8, this lecture note contains the following sections:

1. Learning by doing.

2. Learning by investing.

3. The size of the learning parameter.

4. Disembodied vs. embodied technical change.

5. Taking stock.

6. Weak and strong scale effects.

7. Static comparative advantage vs. dynamics of learning by doing.

The growth rate of any time-dependent variable z > 0 is written gz ≡ ż/z.

1 Learning by doing

The term learning by doing refers to the hypothesis that accumulated work experience,

especially repetition of the same type of action, improves workers’ productivity and adds

to technical knowledge.

A learning-by-doing model typically combines an aggregate CRS production function,

Yt = F (Kt, TtLt), (1)

with a learning function, for example,

Ṫt = AY λ
t , A > 0, 0 < λ ≤ 1, (2)
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where λ is a learning parameter (otherwise notation is standard). In Section 7 below,

inspired by Krugman (1987) and Lucas (1988), we consider a two-sector model where

each sector’s productivity growth is governed by such a relationship (with λ = 1).

Another learning hypothesis is of the form

Ṫt = AT λ
t L

μ
t , T0 > 0 given, A > 0, λ ≤ 1, μ > 0. (3)

Here B is just a constant that depends on measuring units, whereas both λ and μ are

learning parameters, reflecting the elasticities of learning wrt. the technology level and

labor hours, respectively. The higher the number of human beings involved in produc-

tion and the more time they spend in production, the more experience is accumulated.

Sub-optimal ingredients in the production processes are identified and eliminated. The

experience and knowledge arising in one firm or one sector is speedily diffused to other

firms and other sectors in the economy (knowledge spillovers),and as a result the aggregate

productivity level is increased.

Since hours spent, Lt, is perhaps a better indicator for “experience” than output, Yt,

specification (3) may seem more appealing than specification (2). In any event, to begin

with we will concentrate on (3).

If the labor force is growing, λ should be assumed strictly less than one, because with

λ = 1 there would be a built-in tendency to forever faster growth, which does not seem

plausible. In fact, λ < 0 can not be ruled out; that would reflect that learning becomes

more and more difficult (“the easiest ideas are found first”). On the other hand, the case

of “standing on the shoulders” is also possible, that is, the case 0 < λ ≤ 1, which is the
case where learning becomes easier, the more is learnt already.

Sometimes the L in (3) is replaced simply by the size of population. Then the in-

terpretation is that “population breeds ideas”, cf. Kremer (1993). But in many models

labor force and population size are proportional, and then it does not matter whether we

use the learning-by-doing interpretation or the population-breeds-ideas interpretation.

Arrow (1962) refers to the so-called Horndal effect (reported by Lundberg, 1961):

“The Horndal-iron works in Sweden had no new investment (and therefore presumably

no significant change in its methods of production) for a period of 15 years, yet

productivity (output per man-hour) rose on the average close to 2 % per annum.

We find again steadily increasing performance which can only be imputed to learning

from experience."
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Similar patterns of on-the-job productivity improvements have been observed in ship-

building, airframe construction, and chemical industries. On the other hand, within a

single production line there seems to be a tendency for this kind of productivity increases

to gradually peter out, which suggests λ < 0 in (3). We may call this phenomenon

“diminishing returns in the learning process”: the potential for new learning gradually

evens out as more and more learning has already taken place. But new products are

continuously invented and the accumulated knowledge is transmitted to the production

of these new products that start on a “new learning curve”, along which there is initially “a

large amount to be learned”.1 This combination of qualitative innovation and continuous

productivity improvement through learning may at the aggregate level end up in a λ ≥ 0
in (3).

In any case, whatever the sign of λ at the aggregate level, with λ < 1, this model

is capable of generating sustained endogenous per capita growth if the labor force is

growing at a constant rate n > 0. Indeed, as in Lecture Note 8, there are two cases

that are consistent with a balanced growth path (BGP for short) with positive per capita

growth, namely the case λ < 1 combined with n > 0, and the case λ = 1 combined with

n = 0.

In both cases we will consider a closed economy with Lt = L0e
nt, n ≥ 0, and with

capital accumulation according to

K̇t = It − δKt = Yt − Ct − δKt, K0 > 0 given. (4)

1.1 The case: λ < 1

Let us concentrate on a BGP. What is the growth rate of y ≡ Y/L along a BGP?

There are two steps in the calculation of this growth rate.

Step 1. From the balanced growth proposition (Lecture Note 6, p. 3), we know that

not only is, by definition, gY and gK then constant, but they are also the same so that

Yt/Kt is constant over time. Owing to the CRS assumption, (1) implies that

1 = F (
Kt

Yt
,
TtLt

Yt
). (5)

1A learning curve is a graph of estimated productivity (or its inverse, cf. Fig. 1 or Fig. 2 below) as
a function of cumulative output or of time passed since production of the new product began at a given
plant.
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Since Yt/Kt is constant, TtLt/Yt ≡ Tt/yt must be constant. This implies that

gT = gy = gY − n, (6)

a constant.

Step 2. Dividing through by Tt in (3), we get

gT ≡
Ṫt
Tt
= AT λ−1

t Lμ
t .

Taking logs gives log gT = logA+ (λ− 1) logT + μ logL. And taking the time derivative

on both sides of this equation leads to

ġT
gT
= (λ− 1)gT + μn. (7)

In view of gT being constant along a BGP, we have ġT = 0, and so (7) gives

gT =
μn

1− λ
,

presupposing λ < 1. Hence, by (6),

gy =
μn

1− λ
.

Under the assumption that n > 0, this per capita growth rate is positive, whatever the

sign of λ. Given n, the growth rate is an increasing function of both learning parameters.

Since a positive per capita growth rate can in the long run be maintained only if supported

by n > 0, this is an example of semi-endogenous growth (as long as n is exogenous).

This model thus gives growth results somewhat similar to the results in Arrow’s

learning-by-investing model, cf. Lecture Note 8. In the two models the learning is an

unintended by-product of the work process and construction of investment goods, respec-

tively. And both models assume that knowledge spillovers across firms are fast. So there

are positive externalities which may motivate government intervention.

Different approaches to the calculation of long-run growth rates Even within

this semi-endogenous growth case, depending on the situation, different approaches to the

calculation of long-run growth rates are appropriate. In Lecture Note 8, in the analysis

of the Arrow case λ < 1, the point of departure in the calculation was the steady state

property of Arrow’s model that k̃ ≡ K/(TL) is a constant. But this point of departure
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presupposes that we have established a well-defined steady state in the sense of a station-

ary point of a complete dynamic system (in the Arrow model consisting of two first-order

differential equations in k̃ and c̃). In the present case we are not in this situation because

we have not specified how the saving in (4) is determined. This explains why above we

have taken another approach to the calculation of the long-run growth rate. We simply

assume balanced growth and ask what the growth rate must then be. If the technologies

in the economy are specified in such a way as to allow only exogenous productivity growth

or semi-endogenous productivity growth in the long run, this approach is usually sufficient

to determine a unique growth rate.

Note also, however, that this latter feature is in itself an interesting and useful result. It

tells us what the growth rate must be in the long run provided that the system converges

to balanced growth in the long run. The growth rate will be the same, independently

of the specification of the household sector, that is, it will be the same whether, for

example, there is a Ramsey-style household sector or an overlapping generations set-

up. And in the first case the growth rate will be the same whatever the size of the

preference parameters (the rate of time preference and the elasticity of marginal utility of

consumption). Moreover, only if economic policy affects the learning parameters (or the

population growth rate), will the long-run growth rate be affected. Still, economic policy

can temporarily affect economic growth and in this way affect the level of the long-run

growth path.

1.2 The case λ = 1, n = 0

With λ = 1, the above growth rate formulas are no longer valid. But returning to (3),

we have gT = ALμ
t . Then, unless n = 0, growth will tend to rise forever, since we have

gT = ALμ
0e

μnt → ∞ for n > 0. So we will assume n = 0. Thus, gT = ALμ
0 , a positive

constant. Since both A and L are exogenous, it is as if the rate of technical progress, gT ,

were exogenous. Yet, technical progress is generated by an internal mechanism. If the

government by economic policy could affect A or L, also gT would be affected. In any

case, under balanced growth (5) holds again and so TtLt/Yt = Tt/yt must be constant.

This implies gy = gT = ALμ > 0. Consequently, positive per capita growth can be

maintained forever without support of growth in any exogenous factor, that is, growth is

fully endogenous.

As in the semi-endogenous growth case we can here determine the growth rate along a
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BGP independently of how the household sector is described. And preference parameters

do not affect the growth rate. The fact that this is so even in the fully endogenous

growth case is due to the “law of motion” of technology making up a subsystem that is

independent of the remainder of the economic system. This is a special feature of the

“growth engine” (3). The simple alternative, (2), is very different in this respect and so

is the learning-by-investing case, to which we turn below.

Before proceeding, a brief remark on the explosive case λ > 1 seems in place. If we

imagine λ > 1, growth becomes explosive in the extreme sense that productivity, output,

and consumption will tend to infinity in finite time. This is so even if n = 0. The argument

is based on the mathematical fact that, given a differential equation ẋ = xa, where a > 1

and x0 > 0, the solution xt has the property that there exists a t1 > 0 such that xt →∞
for t→ t1. We come back to the explosion issue in Lecture note 10.

2 Learning by investing

In the above framework the work process is a source of learning whether it takes place in

the consumption or capital goods sector. This is learning by doing in a broad sense. If

the source of learning is specifically associated with the construction of capital goods, it

is still natural to say that learning by doing is present. But in this case one can add that

the learning by doing takes the form of learning by investing. Accordingly, we classify

learning by investing as a specific form of learning by doing.

There seems to be a presumption in the literature that from an empirical point of view,

learning by investing is the most important form; ship-building and airframe construction

are prominent examples. To the extent that the construction of capital equipment is based

on more complex and involved technologies than is the production of consumer goods,

we are also, intuitively, inclined to expect that the greatest potential for productivity

increases through learning is in the investment goods sector. Yet, after the information-

technology (IT) revolution, this traditional presumption is perhaps less compelling.

In any event, in the simplest version of the learning-by-investment hypothesis, (3)

above is replaced by

Tt =

µZ t

−∞
Ins ds

¶λ

= Kλ
t , 0 < λ ≤ 1, (8)

where Ins is aggregate net investment. The Arrow and Romer models, as described in
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Lecture Note 8, correspond to the cases 0 < λ < 1 and λ = 1, respectively.2

In this framework, where the “growth engine” depends on capital accumulation, it is

only in the Arrow case that we can calculate the per-capita growth rate along a BGP

without specifying anything about the household sector.

2.1 The Arrow case: λ < 1

We may apply the same two steps as above. Step 1 is then an exact replication of step

1 above. Step 2 turns out to be even simpler than above, because (8) immediately gives

log T = λ logK so that gT = λgK , which substituted into (6) yields

gT = λgK = gy = gY − n = gK − n.

From this follows, first,

gK =
n

1− λ
, (9)

and, second,

gy =
λn

1− λ
.

Alternatively, we may in this case condense the two steps into one by rewriting (5) in

the form
Yt
Kt
= F (1,

TtLt

Kt
) = F (1, Kλ−1

t Lt),

by (8). Along the BGP, since Y/K is constant, so must the second argument, Kλ−1
t Lt,

be. It follows that

(λ− 1)gK + n = 0,

thus confirming (9).

Whatever the approach to the calculation, the per capita growth rate is here tied down

by the size of the learning parameter and the growth rate of the labor force.

2.2 The Romer case: λ = 1 and n = 0

In the Romer case the growth rate along a BGP cannot be determined until the saving

behavior in the economy is modeled. Indeed, the knife-edge case λ = 1 opens up for

many different per capita growth rates under balanced growth. Which one is “selected”

2In equation (2) of Lecture Note 8 there is a misprint. The equation should read exactly the same as
(8) above.
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Figure 1:

by the economy depends on how the household sector is described. For a Ramsey setup

with n = 0 the last part of Lecture Note 8 showed how the growth rate generated by the

economy depends on the rate of time preference and the elasticity of marginal utility of

consumption of the representative household. Not only is growth here fully endogenous

in the sense that a positive per capita growth rate can be maintained forever without

the support by growth in any exogenous factor. An economic policy that subsidizes

investment can raise not only the productivity level, but also the productivity growth

rate in the long run.

3 The size of the learning parameter

What is from an empirical point of view a plausible value for the learning parameter, λ?

This question is important because the analysis of the models shows that quite different

results emerges depending on whether λ is close to 1 or considerably lower (fully en-

dogenous growth or semi-endogenous growth). At the same time the question is difficult

because λ in the models is a parameter that represents the aggregate effect of learning in

the single firms and industries and diffusion across firms and industries.

Like Lucas (1993), we will consider the empirical studies of on-the-job productivity
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Figure 2:

increases in ship-building by Searle (1945) and Rapping (1965). Both studies used data

on the production of different types of cargo vessels during the second world war. Figures

1 and 2 are taken from Lucas’ review article. For the vessel type called “Liberty Ships”

Lucas cites the observation by Searle (1945):

“the reduction in man-hours per ship with each doubling of cumulative output ranged

from 12 to 24 percent.”

Let us try to connect this observation to the learning parameter λ in Arrow’s and

Romer’s framework. We begin by considering firm i which operates in the investment

goods sector. We imagine that firm i’s equipment is unchanged during the observation

period (as is understood in the above citation as well as the citation from Arrow (1962)

in Section 1). Let firm i’s current output and employment be Yit and Lit, respectively.

The current labor productivity is then ait = Yit/Lit. Let the firm’s cumulative output

be denoted Qit. This cumulative output is a component of cumulative investment in

society. At the micro-level the learning-by-investing hypothesis is the hypothesis that

labor productivity is an increasing function of the firm’s cumulative output, Qit.

In figures 1 and 2 the dependent variable is not directly labor productivity, but its

inverse, namely the required man-hours per unit of output, mit = Lit/Yit = 1/ait. Fig. 1

9



suggests a log-linear relationship between this variable and the cumulative output:

logmit = α− β logQit. (10)

Then the required man-hours per unit of output declines over time in the following way

as cumulative output rises,

mit =
eα

Qβ
it

.

Or labor productivity rises over time in this way:

ait =
1

mit
= e−αQβ

it.

So, specifying the relationship by a power function, as in (8), makes sense.

Now, let t = t1 be a fixed point in time. Then, (10) becomes

logmit1 = α− β logQit1 .

Let t2 be the later point in time where cumulative output has been doubled. Then at

time t2 the required man-hours per unit of output has declined to

logmit2 = α− β logQit2 = α− β log(2Qit1).

Hence,

logmit1 − logmit2 = −β logQit1 + β log(2Qit1) = β log 2. (11)

Lucas’ citation above from Searle amounts to a claim that

0.12 <
mit1 −mit2

mit1

< 0.24. (12)

By a first-order Taylor approximation we have logmit2 ≈ logmit1 + (mit2 − mit1)/mit1 .

Hence, (mit1 −mit2)/mit1 ≈ logmit1 − logmit2. Substituting this into (12) gives, approxi-

mately,

0.12 < logmit1 − logmit2 < 0.24.

Combining this with (11) gives 0.12 < β log 2 < 0.24 so that

0.17 =
0.12

log 2
< β <

0.24

log 2
= 0.35.

Rapping (1965) finds by a more rigorous econometric approach β in the vicinity of

0.26. Solow (1997) refers to data on airframe building. This data suggests β = 1/3.

10



How can this be translated into a guess on the “aggregate” parameter λ in (8)? This

is not an easy question and the subsequent remarks are very tentative. First of all,

the potential for both internal and external learning seems to vary a lot across different

industries. Second, the amount of spillovers can not simply be added to the β above,

since they are already partly included in the estimate of β. Even theoretically, the role

of experience in different industries cannot simply be added up because to some extent

there is redundancy due to overlapping experience and sometimes the learning in other

industries is of limited relevance. Given that we are interested in an upper bound for λ,

a “guestimate” is that the spillovers matter for the final λ at most the same as β so that

λ ≤ 2β.3

As a conclusion, a λ higher than about 2/3 may be considered implausible and this

speaks for the Arrow case of semi-endogenous growth rather than the Romer case of

fully endogenous growth, at least as long as we think of learning as the sole source of

productivity growth. Another point is that to the extent learning is internal, we should

expect at least some firms to internalize the phenomenon in its optimizing behavior.

Although the learning is far from fully excludable, it takes time for others to discover and

imitate technical and organizational improvements. Many macro models ignore this and

treat all learning by doing as a 100 percent externality, which seems an exaggeration.

A further issue is to what extent learning by investing takes the form of disembodied

or embodied technical change.

4 Disembodied vs. embodied technical change

Arrow’s and Romer’s model build on the idea that the source of learning is primarily ex-

perience in the investment goods sector. But both models assume that the learning, via

knowledge spillovers across firms, provides an engine of productivity growth in essentially

all sectors of the economy and a firm can benefit from recent technical advances irre-

spective of whether its equipment is new or old. This takes us to the distinction between

disembodied and embodied technical change.

3For more elaborate studies of empirical aspects of learning by doing and learning by investing, see
Irwin and Klenow (1994), Thornton and Thompson (2001), and Greenwood and Jovanovic (2001). Studies
finding that the quantitative importance of spillovers is significantly smaller than required by the Romer
case include Englander and Mittelstadt (1988) and Benhabib and Jovanovic (1991).
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4.1 Disembodied technical change

Disembodied technical change occurs when new technical knowledge advances the com-

bined productivity of capital and labor independently of whether the workers operate

old or new machines. Consider again (1) and (3). When the Kt appearing in (1) refers

to the total, historically accumulated capital stock, then the interpretation is that the

higher technology level generated in (3) or (8) results in higher productivity of all labor,

independently of the vintage of the capital equipment with which this labor is combined.

Thus also firms with old capital equipment benefit from recent advances in technical

knowledge. No new investment is needed to take advantage of the recent technological

and organizational developments.

4.2 Embodied technical change

In contrast, we say that technical change is embodied, if taking advantage of new tech-

nical knowledge requires construction of new investment goods. The newest technology

is incorporated in the design of newly produced equipment; and this equipment will not

participate in subsequent technical progress. An example: only the most recent vintage of

a computer series incorporates the most recent advance in information technology. Then

investment goods produced later (investment goods of a later “vintage”) have higher pro-

ductivity than investment goods produced earlier at the same resource cost. Whatever the

source of new technical knowledge, investment becomes an important bearer of the pro-

ductivity increases which this new knowledge makes possible. Without new investment,

the potential productivity increases remain potential instead of being realized.

One way to formally represent embodied technical progress is to write capital accu-

mulation in the following way,

K̇t = TtIt − δKt, (13)

where It is gross investment in period t and Tt measures the “quality” (productivity) of

newly produced investment goods. The rising level of technology implies rising Tt so that

a given level of investment gives rise to a greater and greater addition to the capital stock,

K,measured in constant efficiency units. Even if technical change does not directly appear

in the production function, that is, even if for instance (1) is replaced by Yt = F (Kt, Lt),

the economy may in this manner still experience a rising standard of living.

Embodied technical progress is likely to result in a steady decline in the price of capital
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Figure 3: Relative price of equipment and equipment investment-to-GNP ratio. Source: Green-
wood, Hercowitz, and Krusell (1997).

equipment relative to the price of consumption goods. This is what we see in the data.

For the U.S. Greenwood et al. (1997) find that the relative price, p, of capital equipment

has been declining at an average rate of 0.03 per year in the period 1950-1990, cf. Fig.

3.4 As Fig. 3 also shows, over the same period there has been a secular rise in the ratio of

new equipment investment to GNP. Moreover, the correlation between de-trended p and

de-trended I/GDP is −0.46. Greenwood et al. interpret this as evidence that technical
advances have made equipment less expensive, triggering increases in the accumulation

of equipment both in the short and long run. The authors also estimate that embodied

technical change explains 60% of the growth in output per man hour.

4.3 Embodied technical change and learning by investing

So far nothing has been said about the source of increases in T in (13). But a popular

hypothesis is that the source is learning by investing. This learning may take the form

(8) above. An alternative hypothesis, closer to both intuition and the original article by

4The relative price index in Fig. 3 is based on the book by R. Gordon (1990), which was an attempt
to correct available price indices for equipment by better taking into account quality improvements in
new equipment.
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Arrow (Arrow 1962), is:

Tt = A

µZ t

−∞
Isds

¶λ

, A > 0, 0 < λ ≤ λ̄, (14)

where Is is gross investment at time s. When we combine (14) with a Cobb-Douglas

production function,

Yt = Kα
t L

1−α
t , (15)

the upper bound, λ̄, for the learning parameter, introduced to avoid explosive growth, is

simply λ̄ = (1− α)/α.

Contrary to the integral based on net investment in (8), the integral in the learning

hypothesis (14) does not allow an immediate translation into an expression in terms of

the accumulated capital stock. But (14) gives rise to a tractable differential equation in

T. Indeed, taking the time derivative on both sides in (14) gives

Ṫt = Aλ

µZ t

−∞
Isds

¶λ−1

It = ÃT
(λ−1)/λ
t It, Ã ≡ A1/λλ. (16)

4.3.1 The case λ < (1− α)/α

Suppose λ < (1− α)/α. Using (16) together with (13), (15), and I = Y − C , one finds,

under balanced growth with s = I/Y constant and 0 < s < 1,

gK =
(1− α)(1 + λ)n

1− α(1 + λ)
, (17)

gT =
λ

1 + λ
gK , (18)

gY =
1

1 + λ
gK , (19)

gy = gY − n =
αλn

1− α(1 + λ)
, (20)

cf. Appendix A. So, if n > 0, there is semi-endogenous growth.

Let us assume there is perfect competition in all markets. Since T capital goods can

be produced at the same minimum cost as one consumption good, the equilibrium price,

p, of one capital good in terms of the consumption good must equal the inverse of q,

that is, p = 1/T. With the consumption good be the numeraire, let the rental rate in the

market for capital services be denoted R and the real interest rate in the market for loans

be denoted r. Ignoring uncertainty, we have the no-arbitrage condition

R(t)− (δp(t)− ṗ(t))

p(t)
= r(t), (21)
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where δp(t) − ṗ(t) is the true economic depreciation of the capital good per time unit.

Since p = 1/T, (18) and (17) indicate that along a BGP the relative price of capital goods

will be declining according to

gp = −
(1− α)λn

1− α(1 + λ)
.

Note that gK > gY along the BGP. Is this a violation of Proposition 1 of Lecture Note

6? No, that proposition presupposes that capital accumulation occurs according to the

standard equation (4), not (13). And although gK differs from gY , the output-capital ratio

in value terms, Y/(pK), is constant along the BGP. In fact, the BGP complies entirely

with Kaldor’s stylized facts if we interpret “capital” as the value of capital, pK.

The formulas (17) and (20) display that α(1 + λ) < 1 is needed to avoid explosive

growth if n > 0. This inequality is equivalent with λ < (1− α)/α and confirms that the

upper bound, λ̄, in (14) equals (1 − α)/α. With α = 1/3, this upper bound is 2. The

bound is thus no longer 1 as in the simple learning-by-investing model of Section 2. The

reason is twofold, namely partly that now T is formed via cumulative gross investment

instead of net investment, partly that the role of T is to strengthen capital formation

rather than the efficiency of production factors in aggregate final goods produce.

4.3.2 The case λ = (1− α)/α and n = 0

When λ = (1 − α)/α, we have α(1 + λ) = 1 and so the growth formulas (17) and (20)

no longer hold. But the way that (18) and (19) are derived (see Appendix A) ensures

that these two equations remain valid along a BGP. Given λ = (1 − α)/α, (18) reduces

to gT = (1− α)gK , which is equivalent with

Tt = BK1−α
t

along a BGP (B is some positive constant). From (16) we then have

gT =
Ṫt
Tt
= ÃT

−1/λ
t It = ÃT

−α/(1−α)
t It = ÃB−α/(1−α)K−α

t It = ÃB−α/(1−α)K−α
t sYt,

considering a BGP with s = I/Y constant. Substituting (15) into this, we get

gT = ÃB−α/(1−α)K−α
t sKα

t L
1−α = ÃB−α/(1−α)sL1−α. (22)

We see that if n > 0, there is a tendency to a forever increasing growth rate. To avoid

this, let us, like Romer above, assume n = 0.
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The striking feature is that (22) shows that the saving rate, s, matters for the growth

rate of T, hence also of K and Y, along a BGP. As in the Romer case of the disembodied

learning-by-investing model, the growth rate along a BGP cannot be determined until the

saving behavior in the economy is modeled. The considered knife-edge case, λ = (1−α)/α
combined with n = 0, opens up for many different per capita growth rates under balanced

growth. Which one is “selected” by the economy depends on how the household sector

is described. In a Ramsey setup with n = 0 one can show that the growth rate under

balanced growth depends negatively on the rate of time preference and the elasticity of

marginal utility of consumption of the representative household. And not only is growth

in this case fully endogenous in the sense that a positive per capita growth rate can be

maintained forever without the support by growth in any exogenous factor. An economic

policy that subsidizes investment can increase not only the productivity level, but also

the productivity growth rate in the long run.

If instead α > 1/(1 + β), we get a tendency to explosive growth − infinite output in
finite time − a not plausible scenario.

5 Taking stock

Recall our notation: y ≡ Y/L and gy ≡ ẏ/y. In this course I use the general definitions:

Endogenous growth is present if there is a positive long-run per capita growth rate (i.e.,

gy > 0) and the source of this is some internal mechanism in the model (in contrast

to exogenous technology growth).

Fully endogenous growth (sometimes called strictly endogenous growth) is present if there

is a positive long-run per capita growth rate and this occurs without the support by

growth in any exogenous factor (for example exogenous growth in the labor force).

Thus for example the Romer model of learning by investing features fully endogenous

growth. The technical reason for this is the assumption that the learning parameter,

λ, is such that there are constant returns to capital at the aggregate level. We get

gy > 0, constant, and, in a Ramsey set-up, results like ∂gy/∂ρ < 0 and ∂gy/∂θ < 0,

that is, preference parameters matter for long-run growth. This suggests, at least at

the theoretical level, that taxes and subsidies, by affecting incentives, may have effects

on long-run growth (cf. Lecture Note 8 and B & S, p. 217-18). On the other hand, a
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fully-endogenous growth model need not have this implication. We saw an example of

this in Section 1, where the “law of motion” of technology makes up a subsystem that is

independent of the remainder of the economic system.

In any case, fully endogenous growth is technologically possible if and only if there are

non-diminishing returns (at least asymptotically) to the producible inputs in the growth-

generating sector(s).

Semi-endogenous growth is present if growth is endogenous but exponential growth can

not be sustained without the support by growth in some exogenous factor (for

example exogenous growth in the labor force).

For example, the Arrow model of learning by investing features semi-endogenous

growth. The technical reason for this is the assumption that the learning parameter

λ < 1, which implies diminishing returns to capital at the aggregate level. Along a BGP

we get

gy =
λn

1− λ
.

If and only if n > 0, can a positive gy be maintained forever. The key role of population

growth derives from the fact that although there are diminishing returns to capital at

the aggregate level, there are increasing returns to scale wrt. capital and labor. For the

increasing returns to be sufficiently exploited to generate exponential growth, population

growth is needed. Note that in this case ∂gy/∂ρ = 0 = ∂gy/∂θ, that is, preference

parameters do not matter for long-run growth (only for the level of the growth path).

This suggests that taxes and subsidies do not have long-run growth effects. Yet, in Arrow’s

model and similar semi-endogenous growth models economic policy can have important

long-run level effects.

Strangely enough, in their entire book B & S do not call much attention to the distinc-

tion between fully endogenous growth and semi-endogenous growth. Rather, they tend

to use the term endogenous growth as synonymous with what we (and others) call fully

endogenous growth. Although the semi-endogenous growth cases are emphasized a lot by

other authors, B & S for some reason tend to ignore them.
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6 Weak and strong scale effects

As underlined in B& S, Section 4.3.5, Romer’s learning-by-investing hypothesis (where the

learning parameter equals 1) implies a problematic (strong) scale effect. When embedded

in a Ramsey set-up the model generates a time path along which

gy = gk = gc =
1

θ
(F1(1, L)− δ − ρ).

From this follows not only standard results for fully endogenous growth models, such as

∂gy
∂ρ

< 0,
∂gy
∂θ

< 0,

but also5
∂gy
∂L

=
1

θ
F12(1, L) > 0. (23)

This is because in this model the rate of return, F1(1, L)− δ, depends (positively) on L.

Interpreting the size (“scale”) of the economy as measured by the size, L, of the labor

force, we call such an effect a scale effect. To distinguish it from another kind of scale

effect, it is useful to name it a scale effect on growth or a strong scale effect.

Scale effects can be of a less dramatic form. In this case we speak of scale effect on

levels or a weak scale effect. This form arises when the learning parameter is less than

1. Thus, in Arrow’s model of learning-by-investing (cf. Lecture Note 8) with learning

parameter λ < 1, the steady state growth rate is

gy = gk = gc =
λn

1− λ
.

This growth rate is independent of the size of the economy. Consequently, in Arrow’s

model there is no strong scale effect. There is, however, a scale effect on levels in the

sense that along a steady state growth path,

∂yt
∂L0

> 0. (24)

This says the following. Suppose we consider two closed economies characterized by the

same parameters, including the same n.6 The economies differ only wrt. initial size of the

labor force. Suppose both economies are in steady state. Then, according to (24), the

economy with the larger labor force has, for all t, larger output per unit of labor. The

5Here we use that a neoclassical production function F (K,TL) with CRS satisfies the complementarity
condition F12 > 0.

6Remember, in contrast to the Romer model, Arrow’s model allows n > 0.
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intuitive reason is that there are knowledge spillovers across firms. Indeed, the model

assumes that the labor efficiency index, Tt, depends (positively) on aggregate cumulative

(net) investment in that

Tt = Kλ
t .

Thus, through the spillovers, a given level of per capita investment increases labor pro-

ductivity more in a larger economy (where K̇t will be larger) than in a smaller economy.

More generally, the fundamental background is that technical knowledge is a non-rival

good − its use by one firm does not (in itself) limit the amount of knowledge available to
other firms.7

To prove (24) note that along a steady state path

yt ≡ ỹtTt = ỹ∗Tt = f(k̃∗)Tt = f(k̃∗)Kλ
t , (25)

where

Kt ≡ k̃tTtLt = k̃∗TtLt = k̃∗Kλ
t Lt.

Solving this equation for Kt gives

Kt = (k̃
∗Lt)

1/(1−λ) = (k̃∗L0e
nt)1/(1−λ).

Substituting this into (25), we get

yt = f(k̃∗)(k̃∗L0e
nt)λ/(1−λ), (26)

from which follows

∂yt
∂L0

=
λ

1− λ
f(k̃∗)(k̃∗ent)λ/(1−λ)L

[λ/(1−λ)]−1
0 =

λ

1− λ

yt
L0

, (27)

since k̃∗ is independent of L0. This confirms (24). The scale effect on yt also gives scope

for higher per capita consumption the higher is L0.

The scale effect on levels displayed by (27) is increasing in the learning parameter λ,

everything else equal. When λ = 1 the scale effect is so powerful that it is transformed

into a scale effect on the growth rate.

In an internationalized world with a lot of knowledge spillovers across boarders cross-

country regression analysis is not the right framework for testing for scale effects, whether

7By patent protection or secrecy some aspects of technical knowledge are sometimes excludable, but
that is another matter (cf. B & S, p. 24, footnote 1). Excludability is ignored in our simple learning-by-
doing and learning-by-investing models.
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on levels or the growth rate. The relevant scale variable is not the size of the country, but

the size of the region to which the country belongs, perhaps the whole world. Since in the

last century there has been no clear upward trend in per capita growth rates in spite of a

growing world population (and up to now also a growing population in the industrialized

part of the world separately), most economists do not believe in strong scale effects. But

on the issue of weak scale effects the opinion is divided. For a discussion, see Jones (2005).

7 Static comparative advantage vs. dynamics of learn-
ing by doing

Here we give a very short summary of a basic idea in Krugman (1987) and Lucas (1988,

Section 5).

7.1 A simple two-sector learning-by-doing model

We consider an isolated economy with two production sectors, sector 1 and sector 2, each

producing its specific consumption good. Labor is the only input and labor supply L is

constant. There are many small firms in the two sectors. Aggregate output in the sectors

are:

Y1t = T1tL1t, (28)

Y2t = T2tL2t, (29)

where

L1t + L2t = L.

There is sector-specific learning by doing in the following form:

Ṫ1t = B1Y1t, B1 ≥ 0, (30)

Ṫ2t = B2Y2t, B2 ≥ 0. (31)

Let the relative price of sector 2-goods in terms of sector-1 goods be called pt (i.e.,

we use sector-1 goods as numeraire). Let the hourly wage in terms of sector-1 goods be

wt. Assume firms maximize profits and that there is perfect competition in the goods and

labor markets. Then, in general equilibrium with production in both sectors:

T1t = ptT2t = wt,
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saying that the value of the marginal product of labor in each sector equals the wage.

Hence,

pt
T2t
T1t

= 1 or pt =
T1t
T2t

, (32)

saying that the relative price of the two goods is inversely proportional to the relative

labor productivities in the two sectors. The demand side, which is not modelled here, will

of course play a role for the final allocation of labor to the two sectors.

Log-differentiating (32) wrt. t gives

ṗt
pt
=

Ṫ1t
T1t
− Ṫ2t

T2t
=

B1Y1t
T1t

− B2Y2t
T2t

= B1L1t −B2L2t,

using (30) and (31). Thus,

ṗt = (B1L1t −B2L2t)pt.

Assume sector 2 (say some industrial activity) is more disposed to learning-by-doing than

sector 1 (say mining) so that B2 > B1. Consider for simplicity the case where at time 0

there is symmetry in the sense that L10 = L20. Then, the relative price pt of sector-2 goods

in terms of sector-1 goods will, at least initially, tend to diminish over time. The resulting

substitution effect is likely to stimulate demand for sector-2 goods. Suppose this effect

is large enough to ensure that L2 = Y2/T2 never becomes lower than B1L1/B2. Then the

scenario with ṗ ≤ 0 is sustained over time and the sector with highest growth potential
remains a substantial constituent of the economy. This implies sustained economic growth

in the aggregate economy.

Now, suppose the country considered is a rather backward, developing country, which

until time t0 has been a closed economy (very high tariffs etc.). Then the country decides

to open up for free foreign trade. Let the relative world market price of sector 2-goods

be p̄, which we for simplicity assume is constant. At time t0 there are two alternative

possibilities to consider:

Case 1: p̄ >
T1t0
T2t0

(world-market price of good 2 higher than the opportunity cost of

producing good 2). Then the country specializes fully in sector-2 goods. Since this is

the sector with a high growth potential, economic growth is stimulated. The relative

productivity level T1t/T2t decreases so that the scenario with p̄ > T1t/T2t remains. A

virtuous circle of dynamics of learning by doing is unfolded and high economic growth is

sustained.

Case 2: p̄ <
T1t0
T2t0

(world-market price of good 2 lower than the opportunity cost of

producing good 2). Then the country specializes fully in sector-1 goods. Since this is the
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sector with a low growth potential, economic growth is impeded or completely halted. The

relative productivity level T1t/T2t does not decrease. Hence, the scenario with p̄ < T1t/T2t

remains. Low or zero economic growth is sustained. The static comparative advantage in

sector-1 goods remains and the country is locked in low growth.

If instead p̄ is time-dependent, suppose
·
p̄t < 0 (by similar arguments as for the closed

economy). Then the case 2 scenario is again self-sustaining.

The point is that there may be circumstances (like in case 2), where protection for a

backward country is growth promoting (the infant industry argument).

7.2 The resource curse problem

The analysis above also suggests a mechanism that, along with others, may help explaining

the so-called resource curse problem. This problem refers to the paradox that being

abundant in natural resources may sometimes seem a drag for a country rather than a

blessing. At least quite many empirical studies have shown a negative correlation between

resource abundance and economic growth (see, e.g., Sachs and Warner 1995).

Consider a mining country with an abundance of natural resources in the ground.

Empirically growth in total factor productivity in mining activity is relatively low. Inter-

preting this as reflecting a relatively low learning potential in the sector, the mining sector

may be represented by sector 1 above. Given the abundance of natural resources, T1t0
is likely to be high relative to the productivity in the manufacturing sector, T2t0 . So the

country is likely to be in the situation described as case 2 above. As a result, economic

growth may never get started.

7.3 Discussion

The way (30) and (31) are formulated, we have

Ṫ1t
T1t

= B1L1t, (33)

Ṫ2t
T2t

= B2L2t, (34)

by (28) and (29). Thus, the model implies scale effects on growth, that is, strong scale

effects. An alternative specification introduces limits to learning-by-doing in the following
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way:

Ṫ1t = B1Y
ϕ1
1t , ϕ1 < 1,

Ṫ2t = B2Y
ϕ2
2t , ϕ2 < 1.

Then (33) and (34) are replaced by

Ṫ1t
T1t

= B1T
ϕ1−1
1t L

ϕ1
1t , (35)

Ṫ2t
T2t

= B2T
ϕ2−1
2t L

ϕ2
2t . (36)

Now the problematic strong scale effect has disappeared. At the same time, since ϕ1−1 <
0 and ϕ2 − 1 < 0, (35) and (36) show that growth peters out as long as the “diminishing
returns” to learning-by-doing are not compensated by an increasing labor force or an

element of exogenous technical progress. If n > 0, we get sustained growth of the semi-

endogenous type as in the Arrow model of learning-by-investing.

8 Appendix

A. Balanced growth in the embodied technical change model with investment-

specific learning

In this appendix the results (17), (18), (19), and (20) are derived. The model is:

Y = KαL1−α, (37)

I = Y − C, (38)

K̇ = TI − δK, (39)

Ṫ = ÃT (λ−1)/λI, (40)

L = L0e
nt. (41)

Consider a BGP. By definition, Y,K, and C then grow at constant rates, not necessarily

positive. With s = I/Y constant and 0 < s < 1, (37) gives

gI = gY = αgK + (1− α)n, (42)

a constant. By (39), gK = T I
K
− δ, showing that TI/K is constant along a BGP. Hence,

gT + gI = gK, (43)
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and so also gT must be constant. From (40) follows that gT = ÃT−1/λI. Taking logs in

this equation and differentiating wrt. t gives

ġT
gT
= −1

λ
gT + gI = 0,

in view of constancy of gT . Substituting into (43) yields (1 + λ)gI = gK , which combined

with (42) gives

gK =
(1− α)(1 + λ)n

1− α(1 + λ)
,

which is (17). In view of gT = λgI = λgY = λ(gy + n) = λgK/(1 + λ), the results (18),

(19), and (20) immediately follow.
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