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02.02.2010. Christian Groth

Introduction to the Economic Growth course

1 Economic growth theory

Economic growth theory is the study of what factors and mechanisms determine the time

path of productivity. Thus

• productivity levels and

• productivity growth in the longer run

are in focus.

Economic growth theory endogenizes productivity growth via considering human capi-

tal accumulation (formal education as well as learning-by-doing) and endogenous research

and development.

Related issues are:

• How is the world income distribution evolving?

• Why income levels and growth rates differ across countries and regions.

• The roles of human capital and technology innovation: getting the questions right.

• Technology diffusion, catching-up.

• Economic growth and inequality.

• Economic growth, natural resources and the environment: limits to growth?

• Policies to promote productivity and sustain growth.
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The focus in this course is primarily on mechanisms behind the evolution of pro-

ductivity in the industrialized world. The emphasis is on micro-based formal models

(understanding them, being able to evaluate them, from both a theoretical and empir-

ical perspective, and to use them to analyze specific questions). The course is calculus

intensive.

2 Some long-run data

Figure 1 shows the time path of real GDP (per year) and real GDP per capita 1870-2001

(a log scale is used on the vertical axis). Let Y denote real GDP (per year) and let N be

population size. Then Y/N is GDP per capita. Further, let gY denote the average growth

rate of Y per year since 1870 and let gY/N denote the average growth rate of Y/N per

year since 1870. Table 1 gives these growth rates for four countries using the continuous

time method with continuous compounding we will encounter in the next section.

gY gY/N
Denmark 2,66 1,87
UK 1,90 1,41
USA 3,35 1,86
Japan 3,54 2,55

Table 1: Average annual growth rate of GDP and GDP per capita in percent, 1870—2001.
Source: Maddison, A: The World Economy: Historical Statistics, 2006, Table 1b, 1c and
5c.

Figure 1 displays the Danish time path of GDP and GDP per capita 1870-2001 along

with exponential regression lines estimated by OLS. The slope of these lines implies

slightly higher growth rates of GDP and GDP per capita of 2,79 and 1,94 percent than

in Table 1 (this is because of the estimated initial trend level being lower than the actual

initial level). Figure 2 displays the development in UK, USA, and Japan 1870-2001.
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Figure 1: GDP and GDP per capita (1990 Geary-Khamis dollars), Denmark 1870-2001.
Source: Maddison, A: The World Economy: Historical Statistics, 2006, Table 1b and 1c.
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Figure 2: GDP per capita (1990 Geary-Khamis dollars) in UK, USA and Japan, 1870-
2001. Source: Maddison, A: The World Economy: Historical Statistics, 2006, Table 1c
and 5c
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3 Rough calculation of the average growth rate

3.1 The discrete time method

Let y ≡ Y/N. The average annual (compound) growth rate, G, satisfies

yt = y0(1 +G)t, t = 0, 1, 2, .... , or (1)

1 +G = (
yt
y0
)1/t, i.e.,

G = (
yt
y0
)1/t − 1. (2)

Note that t in the formula equals the number of periods minus 1.

3.2 The continuous time method with continuous compounding

The average annual growth rate with continuous compounding, g, satisfies

y(t) = y(0)egt, (3)

where e denotes the Euler number, i.e., the base of the natural logarithm.1 Solving for g

gives

g =
ln y(t)

y(0)

t
=
ln y(t)− ln y(0)

t
. (4)

Here, the first formula is convenient for calculation with a pocket calculator, whereas

the second formula is perhaps closer to intuition. Again, the t in the formula equals the

number of periods minus 1.

If we take logs on both sides of (1), we get

ln
yt
y0

= t ln(1 +G) ⇒

ln(1 +G) =
ln yt

y0

t
.

Thus, g = ln(1 + G) < G for G > 0. Yet, by a first-order Taylor approximation around

G = 0 we have

ln(1 +G) ≈ G for G “small”. (5)

Thus,

G ≈
ln yt

y0

t
= g. (6)

1See Section 4. We let lnx denote the natural logarithm of a positive variable x, whereas B & S write
it as log x.
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For a given data set the G calculated from (2) will be slightly above the g calculated from

(4). For example, to G = 0.040 corresponds g = 0.039. The reason is that G is based on

discrete compounding, whereas g is based on continuous compounding, implying that a

given growth force becomes more powerful.

On the transition from discrete time analysis to continuous time analysis, see Section

5.

3.3 Doubling time

How long time does it take for y to double if the growth rate is g? The answer is based

on rewriting the formula (4):

t2 =
ln y(t)

y(0)

g
=
ln 2

g
≈ 0.6931

g
.

With g = 0.0186, cf. Table 1, we find

t2 ≈
0.6931

0.0186
= 37.3 years.

4 A note on continuous time analysis

Let us start from a discrete time framework: the run of time is divided into successive

periods of constant length, taken as the time-unit. Let financial wealth at the beginning

of period i be denoted ai, i = 0, 1, 2, .... Then wealth accumulation in discrete time can

be written

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

4.1 Transition to continuous time analysis

With time flowing continuously, we let a(t) refer to financial wealth at time t. Similarly,

a(t+∆t) refers to financial wealth at time t+∆t. To begin with, let∆t be equal to one time

unit. Then a(i∆t) = ai. Consider the forward first difference in a,∆a(t) ≡ a(t+∆t)−a(t).
It makes sense to consider this change in a in relation to the length of the time interval

involved, that is, to consider the ratio ∆a(t)/∆t. As long as ∆t = 1, with t = i∆t we

have ∆a(t)/∆t = (ai+1 − ai)/1 = ai+1 − ai. Now, keep the time unit unchanged, but let
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the length of the time interval [t, t+∆t) approach zero, i.e., let ∆t → 0. Assuming a(·)
is a continuous and differentiable function, then lim∆t→0∆a(t)/∆t exists and is denoted

the derivative of a(·) at t, usually written da(t)/dt or just ȧ(t). That is,

ȧ(t) =
da(t)

dt
= lim

∆t→0

a(t+∆t)− a(t)

∆t
= lim

∆t→0

∆a(t)

∆t
.

By implication, wealth accumulation in continuous time is written

ȧ(t) = s(t), a(0) = a0 given, (7)

where s(t) is the saving at time t. For ∆t “small” we have the approximation ∆a(t)

≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have ∆a(t) = a(t+ 1)− a(t) ≈ s(t).

As time unit let us choose one year. Going back to discrete time, if wealth grows at

the constant rate g > 0 per year, then after i periods of length one year (with annual

compounding)

ai = a0(1 + g)i, i = 0, 1, 2, ... . (8)

When compounding is n times a year, corresponding to a period length of 1/n year, then

after i such periods:

ai = a0(1 +
g

n
)i. (9)

With t still denoting time (measured in years) that has passed since the initial date (here

date 0), we have i = nt periods. Substituting into (9) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

∙
(1 +

1

m
)m
¸gt

, where m ≡ n

g
.

We keep g and t fixed, but let n (and so m)→∞. Then, in the limit there is continuous

compounding and

a(t) = a0e
gt, (10)

where e is the “exponential” defined as e ≡ limm→∞(1 + 1/m)
m ' 2.718281828....

The formula (10) is the analogue in continuous time (with continuous compounding)

to the discrete time formula (8) with annual compounding. Thus, a geometric growth

factor is replaced by an exponential growth factor.

We can also view the formulas (8) and (10) as the solutions to a difference equation

and a differential equation, respectively. Thus, (8) is the solution to the simple linear

difference equation ai+1 = (1 + g)ai, given the initial value a0. And (10) is the solution

to the simple linear differential equation ȧ(t) = ga(t), given the initial condition a(0)
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= a0.With a time-dependent growth rate, g(t), the corresponding differential equation is

ȧ(t) = g(t)a(t) with solution

a(t) = a0e
t
0 g(τ)dτ , (11)

where the exponent,
R t
0
g(τ)dτ , is the definite integral of the function g(τ) from 0 to t. The

result (11) is called the basic growth formula in continuous time and the factor e
t
0 g(τ)dτ

is called the growth factor or the accumulation factor.

Notice that the allowed range for parameters may change when we go from discrete

time to continuous time with continuous compounding. For example, the usual equation

for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (12)

where K(t) is the capital stock, I(t) is the gross investment at time t and δ ≥ 0 is the
(physical) capital depreciation rate. Unlike in discrete time, in (12) δ > 1 is conceptually

allowed. Indeed, suppose for simplicity that I(t) = 0 for all t ≥ 0; then (12) gives K(t) =
K0e

−δt (exponential decay). This formula is meaningful for any δ ≥ 0. Usually, the time
unit used in continuous time macro models is one year (or, in business cycle theory, a

quarter of a year) and then a realistic value of δ is of course < 1 (say, between 0.05 and

0.10). However, if the time unit applied to the model is large (think of a Diamond-style

overlapping generations model), say 30 years, then δ > 1 may fit better, empirically, if the

model is converted into continuous time with the same time unit. Suppose, for example,

that physical capital has a half-life of 10 years. Then with 30 years as our time unit,

inserting into the formula 1/2 = e−δ/3 gives δ = (ln 2) · 3 ' 2.

4.2 Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make a clear

distinction between stocks (say wealth) and flows (say consumption and saving). A stock

variable is a variable measured as just a quantity at a given point in time. The variables

a(t) andK(t) considered above are stock variables. A flow variable is a variable measured

as quantity per time unit at a given point in time. The variables s(t), K̇(t) and I(t) above

are flow variables.

One cannot add a stock and a flow, because they have different denomination. What

exactly is meant by this? The elementary measurement units in economics are quantity

units (so and so many machines of a certain kind or so and so many liters of oil or so
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Figure 3: With ∆t “small” the integral of s(t) from t0 to t0 +∆t is ≈ the hatched area.

and so many units of payment) and time units (months, quarters, years). On the basis

of these we can form composite measurement units. Thus, the capital stock K has the

denomination “quantity of machines”. In contrast, investment I has the denomination

“quantity of machines per time unit” or, shorter, “quantity/time”. If we change our

time unit, say from quarters to years, the value of a flow variable is quadrupled (pre-

supposing annual compounding). A growth rate or interest rate has the denomination

“(quantity/time)/quantity” = “time−1”.

Thus, in continuous time analysis expressions like K(t) + I(t) or K(t) + K̇(t) are

illegitimate. But one can write K(t + ∆t) ≈ K(t) + (I(t) − δK(t))∆t, or K̇(t)∆t ≈
(I(t) − δK(t))∆t. In the same way, suppose a bath tub contains 50 liters of water and

the tap pours 1
2
liter per second into the tub. Then a sum like 50 c + 1

2
(c/sec.) does not

make sense. But the amount of water in the tub after one minute is meaningful. This

amount would be 50 c + 1
2
· 60 ((c/sec.)×sec.) = 90 c. In analogy, economic flow variables

in continuous time should be seen as intensities defined for every t in the time interval

considered, say the time interval [0, T ) or perhaps [0,∞). For example, when we say that
I(t) is “investment” at time t, this is really a short-hand for “investment intensity” at time

t. The actual investment in a time interval [t0, t0 +∆t) , i.e., the invested amount during

this time interval, is the integral,
R t0+∆t

t0
I(t)dt ≈ I(t)∆t. Similarly, s(t), that is, the flow

of individual saving, should be interpreted as the saving intensity at time t. The actual

saving in a time interval [t0, t0 +∆t) , i.e., the saved (or accumulated) amount during this

time interval, is the integral,
R t0+∆t

t0
s(t)dt. If ∆t is “small”, this integral is approximately

equal to the product s(t0) ·∆t, cf. the hatched area in Fig. 3.
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The notation commonly used in discrete time analysis blurs the distinction between

stocks and flows. Expressions like ai+1 = ai + si, without further comment, are usual.

Seemingly, here a stock, wealth, and a flow, saving, are added. But, it is really wealth

at the beginning of period i and the saved amount during period i that are added: ai+1
= ai + si · ∆t. The tacit condition is that the period length, ∆t, is the time unit. But

suppose that, for example in a business cycle model, the period length is one quarter, but

the time unit is one year. Then saving in quarter i is si = (ai+1 − ai) · 4 per year.

In empirical economics data typically come in discrete time form and data for flow

variables typically refer to periods of constant length. One could argue that this discrete

form of the data speaks for discrete time rather than continuous time modelling. And the

fact that economic actors often think and plan in period terms, may be a good reason

for putting at least microeconomic analysis in period terms. Yet, it can hardly be said

that the mass of economic actors think and plan with one and the same period. In

macroeconomics we consider the sum of the actions and then a formulation in continuous

time may be preferable. This also allows variation within the usually artificial periods

in which the data are chopped up.2 For example, stock markets (markets for bonds and

shares) are more naturally modelled in continuous time because such markets equilibrate

almost instantaneously; they respond immediately to new information.

In his discussion of this modelling issue, Allen (1967) concluded that from the point of

view of the economic contents, the choice between discrete time or continuous time analysis

may be a matter of taste. But from the point of view of mathematical convenience,

the continuous time formulation, which has worked so well in the natural sciences, is

preferable.3
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2Allowing for such variations may be necessary to avoid the artificial oscillations which sometimes
arise in a discrete time model due to a too large period length.
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time formulations are easier if one is not familiar with stochastic calculus.
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