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Some basic relationships
in growth theory

In this note we present some fundamental propositions about balanced growth. The

first and the third proposition are not presented in B & S, and the second proposition

(Uzawa’s theorem) is presented in a less general way (B & S, pp. 53, 78-80).

1 Balanced growth and constancy of key ratios

First we shall attempt to clarify the terms “balanced growth” and “steady state”, often

used in growth theory. These terms are not always defined in the same way by different

authors. In the literature you will sometimes find, for example, “steady state” defined in

a way somewhat different from how B & S define it. Moreover, what are the connections

between the terms and how do they relate to the hypothesis of Harrod-neutral technical

progress and Kaldor’s stylized facts?

1.1 The concepts of steady state and balanced growth

A basic equation from one-sector growth models for a closed economy in continuous time

is

K̇ = S − δK ≡ Y − C − δK, (1)

where K is aggregate capital, S aggregate gross saving (in a closed economy equal to

aggregate gross investment), Y aggregate output, C aggregate consumption, and δ ≥ 0
is a constant physical capital depreciation rate. We may for example take the Solow

model as our point of reference. Then gross saving equals sY, where s is a constant,

0 < s < 1. Given a neoclassical production function, F, with CRS and Harrod-neutral

technical progress, we have Y = F (K,TL) = TLF (k̃, 1) ≡ TLf(k̃), where L is the labor

force, T is the level of technology, k̃ ≡ K/(TL) is the “effective” capital intensity, and

f 0 > 0 and f 00 < 0. Solow assumes L(t) = L(0)ent and T (t) = T (0)eγt, where n ≥ 0 and
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γ ≥ 0 are the constant growth rates of the labor force and technology, respectively.1 By
log-differentiating k̃ wrt. t,2 the model can be reduced to the fundamental differential

equation (“law of movement”) of the Solow model:

·
k̃ = sf(k̃)− (δ + γ + n)k̃. (2)

Often in the theoretical literature on dynamic models, a steady state is defined in the

following way:

Definition 1 A steady state of a model is a stationary solution of the fundamental dif-

ferential equation(s) of the model.

That is, in the Solow model, given (2), a (non-trivial) steady state is a k̃∗ > 0 such

that, if k̃ = k̃∗, then
·
k̃ = 0. More generally, a steady state is a stationary state of a

dynamic process.

On pp. 33-34 B & S define a steady state in a slightly different way. They define a

steady state as a path (Y,K,C)∞t=0 along which Y,K, and C grow at constant rates (not

necessarily positive). In the Solow model as well as in many other models for a closed

economy steady state in the first meaning implies steady state in the second meaning -

and vice versa. In those cases, whether one or the other definition is used is not of great

importance.

But there are cases where this equivalence does not hold (some open economy models

and models with investment-specific learning). Therefore, it seems better to make, right

from the beginning, a terminological distinction between the two concepts. Since the first

definition of a steady state comes from a broadly used terminology in macroeconomics,

also outside growth theory, I will stick to that definition and use the term balanced growth,

for the second concept. That is, assuming Y,K, and C are positive for all t considered

(otherwise growth rates are not defined), we have:

Definition 2 A balanced growth path is a path (Y,K,C)∞t=0 along which the quantities

Y,K, and C grow at constant rates (not necessarily positive).

1Our γ corresponds to what B & S call x.
2Or by directly using the fraction rule, see Appendix.
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Note that this definition of balanced growth refers to aggregate variables. At the same

time as there is balanced growth at the aggregate level, there may be, under certain con-

ditions, structural change in the sense of a changing sectoral composition of the economy,

cf. the Kuznets facts (see Lecture Note 2).3

1.2 A general result on balanced growth

We now leave the specific Solow model. Interestingly, given (1), we have always, indepen-

dently of how saving is determined and how the labor force and technology change, that

if there is balanced growth, then the ratios Y/K and C/K are constant. And also the

other way round: constancy of the Y/K and C/K ratios is enough to ensure balanced

growth.

Since this very useful general result is not explicit in B & S, we shall here state it in a

precise way and prove it. Letting gx denote the growth rate of the (positive) variable x,

i.e., gx ≡ ẋ/x, we claim:

Proposition 1 (equivalence of balanced growth and constancy of key ratios). Let (Y,K,C)∞t=0

be a path along which Y,K, C, and S ≡ Y −C are positive for all t ≥ 0. Then, given the
accumulation equation (1), the following holds:

(i) if there is balanced growth, then the ratios Y/K, C/K, C/Y, and S/Y are constant;

(ii) if Y/K and C/K are constant, then Y,K,C, and S all grow at the same constant

rate, i.e., there is balanced growth.

Proof (i) Consider a path (Y,K,C)∞t=0 along which Y,K, C and S ≡ Y −C are positive

for all t ≥ 0. a) Assume there is balanced growth. Then, by definition, gY , gK, and gC are
constant. Hence, by (1), we have that S/K = gK + δ is constant, implying

gS = gK . (3)

Further, since Y = C + S,

gY =
Ẏ

Y
=

Ċ

Y
+

Ṡ

Y
= gC

C

Y
+ gS

S

Y
= gC

C

Y
+ gK

S

Y
(by (3))

= gC
C

Y
+ gK

Y − C

Y
=

C

Y
(gC − gK) + gK. (4)

3A nice reference on this is Kongsamut et al. (2001).
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Now, let us provisionally assume that gK 6= gC . Then (4) gives

C

Y
=

gY − gK
gC − gK

, (5)

a constant, so that gC = gY . Inserting this latter equation into (5) gives C/Y = 1. In

view of (1), however, this result contradicts the given condition that S > 0. Hence, our

provisional assumption is wrong, and we have gK = gC without the condition C/Y = 1

being implied. By (4), this implies gY = gK = gC , from which follows that Y/K and C/K

are constant. Then, also C/Y = (Y/K)/(C/K) is constant, and so is S/Y since, in view

of (1), S/Y = (Y − C)/Y = 1− C/Y.

(ii) Suppose Y/K and C/K are constant. Then gY = gK = gC, so that C/Y is a

constant. We can now show that gK is constant. Indeed, from (1) S/Y = 1 − C/Y, so

that also S/Y is constant. It follows that gS = gY = gK , so that S/K is constant. By (1),

S

K
=

K̇ + δK

K
= gK + δ,

so that also gK is constant. Consequently, also gY , gC , and gS are constant. ¤

The point is that this proposition can be used for any model for which (1) is valid. Fur-

ther, we see that a model generating balanced growth is almost immediately a candidate

for an explanation of Kaldor’s stylized facts.

2 The crucial role of Harrod-neutrality

Here we present a fairly general theorem about the necessity and sufficiency of Harrod-

neutral technical progress if balanced growth should be possible.

To the extent that one accepts Kaldor’s stylized facts as a description of the past

century’s growth experience, a natural requirement of any growth model pretending to

cover industrialized countries over the last century is that it should be able to generate

balanced growth. Already Uzawa (1961) showed that given this requirement, technical

progress must take the Harrod-neutral form (i.e., be labor-augmenting), at least along the

balanced growth path. This is so whether technical progress is exogenous or endogenous.

Let the aggregate production function be

Y (t) = F̃ (K(t), L(t); t) (6)
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where F̃ has CRS wrt. the first two arguments. As a representation of continuous technical

progress, we assume ∂F̃/∂t ≥ 0 for all t ≥ 0 (i.e., as time proceeds, unchanged inputs
result in more and more output). We also assume that the labor force grows according to

L(t) = L(0)ent, n ≥ 0, (7)

where n is constant. Further, non-consumed output is invested and (1) is the dynamic

resource constraint of the economy.

Proposition 2 (Uzawa’s balanced growth theorem) Let (Y (t),K(t), C(t))∞t=0, where 0 <

C(t) < Y (t) for all t ≥ 0, be a path satisfying the capital accumulation equation (1), given
the CRS-production function (6) and labor force (7). Then:

(i) a necessary condition for this path to be a balanced growth path is that along the

path it holds that

Y (t) = F̃ (K(t), L(t); t) = F̃ (K(t), T (t)L(t); 0), (8)

where T (t) = eγt with γ ≡ gY − n;

(ii) for any γ > 0 such that there is a q > γ+n+δ with the property that F̃ (1, k−1; 0) = q

for some k > 0 (i.e., at t = 0 the production function F̃ in (6) allows an output-

capital ratio equal to q), a sufficient condition for the existence of a balanced growth

path with output-capital ratio q, is that the technology can be written as in (8) with

T (t) = eγt.

Proof (i)4 Suppose the path (Y (t),K(t), C(t))∞t=0 is a balanced growth path. By defini-

tion, gK and gY are then constant, so that K(t) = K(0)egKt and Y (t) = Y (0)egY t. With

t = 0 in (6) we then have

Y (t)e−gY t = Y (0) = F̃ (K(0), L(0); 0) = F̃ (K(t)e−gKt, L(t)e−nt; 0). (9)

In view of the assumption of positive saving S(t) ≡ Y (t) − C(t), we know from (i) of

Proposition 1, that Y/K is constant so that gY = gK . By CRS, (9) then implies

Y (t) = F̃ (K(t), egY te−nt; 0).

4This part draws heavily on Jones and Schlicht (2006). Note that the claim to be proved is more
general than that in B & S, pp. 53 and 78-80. They start from Y = F (BK,AL) instead of the more
general (6).
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We see that (8) holds for T (t) = eγt with γ ≡ gY − n.

(ii) Suppose (8) holds with T (t) = eγt. Let γ > 0 be given such that there is a

q > γ+n+ δ with the property that F̃ (1, k−1; 0) = q for some k > 0.We claim that with

K(0) = kL(0), s ≡ (γ + n + δ)/q, and S(t) = sY (t), (1), (7), and (8) imply Y (t)/K(t)

= q for all t ≥ 0.

By construction

Y (0)

K(0)
=

F̃ (K(0), L(0); 0)

K(0)
= F̃ (1, k−1; 0) = q =

δ + γ + n

s
. (10)

Now, by (1), K̇(0)/K(0) = sY (0)/K(0)−δ = γ+n, so that K initially grows at the same

rate as effective labor input, T (t)L(t). Then, in view of F̃ being homogeneous of degree

one wrt. its first two arguments, also Y grows initially at this rate. As an implication,

the ratio Y/K does not change, but remains equal to the right-hand side of (10) for all

t ≥ 0. Consequently, K,Y and C continue to grow at the same constant rate. ¤

The form (8) indicates that along a balanced growth technical progress must be purely

“labor augmenting”, that is, Harrod-neutral. It is important to recognize that the occur-

rence of Harrod-neutrality says nothing about what the source of the technical progress

is. Harrod-neutrality should not be interpreted as indicating that the technical change

emanates specifically from the labor input. The crux of the matter is just that an inven-

tion has been made such that labor and physical capital together are more productive

and that this happens to manifest itself in the form (8).

Note the generality of Uzawa’s theorem. It does not presuppose the technology is

neoclassical, not to speak of the Inada conditions. A simple implication of the theorem

is the following. Let output per unit of labor (“labor productivity”) be denoted y(t)

≡ Y (t)/L(t). Interpreting the T (t) in (8) as the “level of technology”, we have:

COROLLARY In a balanced growth path with positive gross saving and the technology

level growing at the rate γ, output grows at the rate γ + n and labor productivity at the

rate γ.

Proof That gY = γ + n follows from (i) of the proposition. As to gy we have

yt =
Y (0)egY t

L(0)ent0
= y(0)e(gY −n)t = y(0)eγt. ¤

We shall now consider the implication of Harrod-neutrality for the income shares of

capital and labor under perfect competition.
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3 Harrod-neutrality and the functional income dis-
tribution

There is one facet of Kaldor’s stylized facts we have not yet related to Harrod-neutral

technical progress, namely the long-run “approximate” constancy of the income share of

labor, wL/Y, and the rate of return to capital, (Y − wL − δK)/K. But at least with

neoclassical technology and perfect competition in the output and factor markets these

properties are inherent in the combination of constant returns to scale and balanced

growth.

To see this, let Y (t) = F (K(t), T (t)L(t)) ≡ F̃ (K(t), T (t)L(t); 0) where F is neoclassi-

cal and has CRS. Let the (gross) capital income share in period t be denoted α(t), that

is,

α(t) =
(r(t) + δ)K(t)

Y (t)
=
(∂Y (t)/∂K(t))K(t)

Y (t)
.

The labor income share will be

w(t)L(t)

Y (t)
=
(∂Y (t)/∂L(t))L(t)

Y (t)
.

Proposition 3 (factor income shares) Suppose the path (K(t), Y (t), C(t))∞t=0 is a bal-

anced growth path in this economy with positive saving. Then α(t) = α, a constant ∈ (0, 1).
The labor income share will be 1− α and the rate of return on capital αq − δ, where q is

the constant output-capital ratio along the balanced growth path.

Proof We have Y (t) = F (K(t), T (t)L(t)) = T (t)L(t)F (k̃(t), 1) ≡ T (t)L(t)f(k̃(t)). By

balanced growth, Y (t)/K(t) is some constant, q. Since Y (t)/K(t) = f(k̃(t))/k̃(t) and

f 00 < 0, this implies k̃(t) constant, say equal to k̃∗. But ∂Y (t)/∂K(t) = f 0(k̃(t)), which then

equals the constant f 0(k̃∗) along the balanced growth path. It follows that α(t) = f 0(k̃∗)/q

≡ α ∈ (0, 1) in view of f 00 < 0. By Euler’s theorem,5 then (∂Y (t)/∂L(t))L(t)/Y (t) =

1−α(t) = 1−α ∈ (0, 1). Finally, the rate of return on capital is (1−w(t)L(t))Y (t)/K(t)−δ
= αq − δ. ¤

Among other things, this proposition is of interest in relation to one of the “stylized

facts” claimed by Kaldor, namely the one saying that the functional income distribution

has no trend. Note, however, that the proposition implies constancy of the income shares,

5From Euler’s theorem, KFK + LFL = F (K,L), when F is homogeneous of degree one.
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but does not determine them, except in terms of q. But q (or k̃∗) will generally be unknown

as long as we have not specified a theory of saving. This takes us to theories of aggregate

saving, for example the Ramsey model.

4 Appendix: Growth formulas in continuous time

Let the variables z, x, and y be continuous and differentiable functions of time t. Suppose

z(t), x(t), and y(t) are positive for all t. Then:

PRODUCT RULE:

z(t) = x(t)y(t)⇒ ż(t)

z(t)
=

ẋ(t)

x(t)
+

ẏ(t)

y(t)
.

Proof. Taking logs on both sides of the equation z(t) = x(t)y(t) gives ln z(t) = lnx(t) +

ln y(t). Differentiation wrt. t, using the chain rule, gives the conclusion. ¤

The procedure applied in this proof is called logarithmic differentiation wrt. t.

FRACTION RULE

z(t) =
x(t)

y(t)
⇒ ż(t)

z(t)
=

ẋ(t)

x(t)
− ẏ(t)

y(t)
.

The proof is similar.

POWER FUNCTION RULE

z(t) = x(t)α ⇒ ż(t)

z(t)
= α

ẋ(t)

x(t)
.

The proof is similar.

An advantage of continuous time analysis is that these simple rules are exactly true

in continuous time. In discrete time, the analogue formulas are only approximately true

and the approximation can be quite bad unless ẋ(t)/x(t) and ẏ(t)/y(t) are “small”.
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