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Productive government services

Below we give a detailed account of the analytical derivations in the two models with

productive public services, discussed in B & S, § 4.4. In the first model, which is sometimes

called the Barro growth model (after Barro, 1990), the productive public service is thought

of as completely non-rival. An economic good is called nonrival if its use by one agent

does not prevent or limit its use by other agents. All members of society can receive the

benefit of the same good. In the second model the service is partially rival in the sense

that congestion problems may arise.

1 The pure public goods model (B & S, § 4.4.1)

In general it is most natural to think of productive government services as coming from

a stock of public capital (infrastructure, general technical knowledge etc.). Then the

associated government spending does not directly deliver the service, but represents gross

investment building up and maintaining the public capital stock. But in Barro’s model

these things are modelled in a simplified way. There is no stock of public capital. The

productive public service is a flow variable coming directly from current government

spending. We may think of a gratis technical information service on TV or the internet.

Another example would be software that is downloadable from the internet and provided

by the government free of charge. Face-to-face teaching in schools would not be a good

example because that form of teaching is to a large extent rival (there are limits on the

size of the audience in a lecture room). But TV- or internet-transmitted lectures would

be an example.

Strictly speaking such government services are not pure public goods, although the

headline of this section suggests otherwise (as does the corresponding headline in B & S,

p. 220). Recall that a pure public good is defined as a good that is not only non-rival but

also non-excludable. A good is non-excludable if the supplier or the owner of the good

cannot, technologically or legally, charge a fee for its use. But it is possible to demand
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payment for TV- or internet-transmitted services. National defence, rule by law, and

basic science are examples of pure public goods.

Whatever the degree of excludability or lack of excludability, what is important for the

growth model to be considered is the non-rival character of the productive public service

and the fact that it is provided free of charge.

1.1 The firms

In contrast to the learning-by-investing model of B & S, Section 4.3, here a Cobb-Douglas

specification of the production function is introduced from the beginning. We consider a

closed economy with a large number of firms, i = 1, 2, ..., N. There is perfect competition

in output and labor markets. Firm i produces according to

Yit = AKα
it(GtLit)

1−α, A > 0, 0 < α < 1, (1)

where Gt is the amount per time unit of the productive public service. GDP or aggregate

output is Yt =
P

i Yit. From national income accounting we have

Yt = ctL+Gt + It,

where It is gross investment and L is the population size which equals the size of the labor

force and is assumed constant over time (in order to avoid a forever rising growth rate, cf.

the strong scale effect discussed below). In (1) we see that the total amount of the public

service is available to each firm (or each worker). Therefore, for a given Gt, the total

benefit from the service is proportional to the number of users. This is a manifestation of

the nonrival character of the service.1

From now, when not needed for clarity, the timing of the variables is suppressed for

notational convenience. Assume there are no taxes on firms. Letting r̂ denote capital

costs (i.e., r̂ = r + δ), the decision problem of firm i is:

max
Ki,Li

Πi = AKα
i (GLi)

1−α − r̂Ki − wLi.

FOCs:

∂Πi/∂Ki = αAKα−1
i (GLi)

1−α − r̂ = 0, (FOC1)

∂Πi/∂Li = (1− α)AKα
i (GLi)

−αG− w = 0. (FOC2)

1If the public services were rival, we should imagine that each worker had access to gt ≡ Gt/L units
per time unit of the service so that Yit = AKα

it(gtLit)
1−α.
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From (FOC1) we find

ki ≡ Ki/Li = (αA/r̂)
1/(1−α)G. (2)

We see that all firms choose the same capital intensity (this is what makes aggregation

easy).

1.2 The government

We assume that the government chooses G such that G/Y is constant over time:

G = ḡY, 0 < ḡ ≤ 1− α. (3)

The upper bound on ḡ is imposed to ensure existence of general equilibrium. The public

expenditure is financed by a lump-sum tax, τ , such that

τL = G. (4)

There are no other government expenditures than G.

1.3 General equilibrium and the implied aggregate production
function

Equilibrium in the factor markets impliesX
i

Ki = K, and (5)X
i

Li = L, (6)

where K and L are the supplies of capital and labor at time t. Since all firms choose

the same capital intensity, the chosen capital intensity must in general equilibrium equal

the pre-determined k ≡ K/L from the supply side. Since yi ≡ Yi/Li = Akαi G
1−α =

AkαG1−α ≡ y, aggregate output can be written

Y =
X
i

Yi =
X
i

yiLi = y
X
i

Li = yL = AkαG1−αL. (7)

Now we can express G and Y in terms of pre-determined variables and parameters

only. Indeed, inserting (7) into (3) yields G = ḡAkαG1−αL. Solving for G, we find

G = (ḡAL)1/αk. (8)
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By (7), the aggregate production function can now be written

Y = AkαG1−αL = Akα
£
(ḡAL)1/αk

¤1−α
L

= A
1
α (ḡL)

1−α
α kL ≡ ĀK, (9)

where, for convenience, we have introduced the constant

Ā ≡ A
1
α (ḡL)

1−α
α . (10)

Using that ki = k in (2) gives

r̂ = αA(G/k)1−α = αA
£
(ḡAL)1/α

¤1−α
= αA

1
α (ḡL)

1−α
α ,

where the second equality follows from (8). Thus, since r̂ = r + δ,

r = αA
1
α (ḡL)

1−α
α − δ ≡ αĀ− δ ≡ r̄. (11)

We see that the aggregate production function is of AK form and the equilibrium real

interest rate is constant over time. We now embed this in a Ramsey-style household sector

and so we get a reduced-form AK Ramsey model.

1.4 The households

Each member of the representative household supplies inelastically one unit of labor per

time unit, so that our measure for population, L, also measures labor supply. With

at denoting real financial wealth per capita in the household, its intertemporal decision

problem is:

maxU0 =

Z ∞

0

c1−θt − 1
1− θ

e−ρtdt s.t.

ct ≥ 0,

ȧt = r̄at + wt + τ t − ct, a0 given,

lim
t→∞

ate
−r̄t ≥ 0. (NPG)

Since taxes, τ , are lump-sum, the first-order conditions lead to the Keynes-Ramsey rule,

ċt
ct
=
1

θ
(r̄ − ρ) =

1

θ
(αĀ− δ − ρ) ≡ γ. (12)

In addition the household’s optimal plan will satisfy the transversality condition that the

(NPG) condition holds with equality.

The constant real interest rate implies that consumption grows, from date zero, at a

constant rate, γ. Note that γ, via (10) and (11), is an increasing function of ḡ.
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2 Dynamics

To ensure growth we assume Ā > (δ + ρ)/α, i.e.,

A
1
α (ḡL)

1−α
α > δ + ρ; (A1)

this requires that ḡ is not too small. On the other hand, to ensure bounded utility we

assume

ρ > (1− θ)γ, (A2)

which (if θ < 1) requires that g, hence ḡ, is not too high (here is then an implicit further

constraint on ḡ, in addition to that in (3)). From the Keynes-Ramsey rule (12) we have

r = ρ+ θγ, so that the assumption (A2) is equivalent with

r > γ, (13)

i.e., the real interest rate is higher than the GDP growth rate (as in all representative

agent models with infinite time horizon, this is a necessary condition for an equilibrium

to exist).

2.1 Movement of k and y over time

How does capital intensity and output per capita move over time? We have

k̇ =
K̇

L
=

Y −G− C − δK

L
= (1− ḡ)y − c− δk

= (1− ḡ)A
1
α (ḡL)

1−α
α k − δk − c0e

γt =
£
(1− ḡ)Ā− δ

¤
k − c0e

γt.

This is a linear differential equation in k. Its solution (cf. Appendix to LN 4) is

kt =

µ
k0 −

c0
(1− ḡ)Ā− δ − γ

¶
e[(1−ḡ)Ā−δ]t +

c0
(1− ḡ)Ā− δ − γ

eγt, (14)

presupposing

(1− ḡ)Ā− δ 6= γ. (15)

The transversality condition of the household can be written

lim
t→∞

kte
−r̄t = 0. (TVC)

We now show that, in view of (14) and the parameter restriction in (3) below, this

transversality condition is satisfied if and only if

c0 =
£
(1− ḡ)Ā− δ − γ

¤
k0. (16)
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Indeed, multiplying through in (14) by e−r̄t we get

kte
−r̄t = (k0 −

c0
(1− ḡ)Ā− δ − γ

)e[(1−ḡ)Ā−δ−r̄]t +
c0

(1− ḡ)Ā− δ − γ
e−(r̄−γ)t, (17)

where, in view of (13), the last term approaches zero for t→∞. In view of the constraint

on ḡ in (3), we have 1− ḡ ≥ α, hence (1− ḡ)Ā−δ ≥ r̄, by (11). Combining this with (13),

we see that (15) holds and that c0 in (16) is positive as it should be.2 And since ḡ ≤ 1−α,
the constant coefficient to t in the first exponential function in (17) is nonnegative. Hence,

satisfying (TVC) requires the first term to vanish. This is the same as requiring (16) to

hold.

Inserting (16) into (14) gives

kt =
c0

(1− ḡ)Ā− δ − γ
eγt = k0e

γt,

that is, from date zero, k grows at the same constant rate as c, the rate γ. Since, by

(9), y = Āk, y does the same. There are no transitional dynamics. This is also what we

should expect in view of the model implying a constant real interest rate and a constant

output-capital ratio, Ā.

2.2 Interesting results

The model exhibits fully endogenous growth. In addition to the standard results for fully

endogenous growth models (like ∂γ/∂ρ < 0, ∂γ/∂θ < 0), we get from (12) and (10)

∂γ

∂ḡ
=

α

θ

∂Ā

∂ḡ
=
1− α

θ
A

1
αL

1−α
α ḡ

1
α
−2 > 0,

indicating that the productive public service promotes growth. The model also generates

a strong scale effect:
∂γ

∂L
=

α

θ

∂Ā

∂L
=
1− α

θ
A

1
α ḡ

1−α
α L

1
α
−2 > 0.

This scale effect on growth comes about because the productive public service is assumed

to be nonrival. A higher G raises total factor productivity and a given G can costlessly

be spread to additional users. Indeed, the nonrival character of G implies that per capita

output depends on the total amount of the productive service, G, not on the per capita

amount, G/L. In other words, the per capita cost of raising total factor productivity by

a given amount is a decreasing function of population size.
2Here we see the role of the constraint on ḡ in (3). Without this constraint there is a risk that c0 in

(16) would be negative which is tantamount to non-existence of equilibrium. The intuition is that a too
large G/Y would imply too little gross investment to deliver the capital accumulation needed to sustain
the high growth in consumption warranted by the high r̄ implied by a high G/Y .
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2.3 Digression: the corresponding semi-endogenous growthmodel

The above results are due to the strong assumption that labor efficiency is proportional

to G. That is, there are no diminishing returns to the productivity-enhancing effect of a

higher G. This is the reason that the model becomes a fully endogenous growth model.

Now, consider a more general specification of firm i’s production function:

Yit = AKα
it(G

λ
tLit)

1−α, A > 0, 0 < α < 1, 0 < λ ≤ 1.

We can derive the aggregate production function in a similar way as above. We get

Y =
¡
Aḡλ(1−α)KαL1−α

¢ 1
1−λ(1−α) .

Taking growth rates on both sides gives

gY =
α

1− λ(1− α)
gK +

1− α

1− λ(1− α)
n,

where we allow n ≥ 0. Assuming λ < 1, we get under balanced growth, where gY = gK ,

gY =
n

1− λ
and gy = gY − n =

λn

1− λ
.

Hence, ∂gy/∂ḡ = 0 = ∂gy/∂L0. A rise in ḡ no longer has a permanent positive effect on

productivity growth (only a temporary positive effect). And the strong scale effect has

been replaced by a weak scale effect. This change in the results are due to the diminishing

returns to the productivity-enhancing effect of a higher G implied by a λ < 1. The fact

that there is still a scale effect, although weak, is the natural implication of the productive

public service being nonrival.

3 The social planner’s solution

We now return to the knife-edge case λ = 1, on which B & S focus their analysis.

So far the level of ḡ has been arbitrary. But can we say something about an optimal

level of ḡ? To find out we study the social planner’s problem.

To ensure static efficiency in production the social planner will dictate (as did the

market mechanism) the same marginal productivities of capital and labor in all firms,

hence the same capital intensity in all firms. So again the aggregate production will be

as in (7), namely

Yt = Akαt G
1−α
t L = AKα

t (GtL)
1−α. (18)
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The social planner faces the dynamic optimization problem:

max
(ct,Gt)

U0 =

Z ∞

0

c1−θt − 1
1− θ

e−ρtdt s.t.

ct ≥ 0, Gt ≥ 0,

K̇t = AKα
t (GtL)

1−α −Gt − ctL− δKt, K0 > 0 given, (19)

Kt ≥ 0.

The current-value Hamiltonian is

H =
c1−θ − 1
1− θ

+ μ

⎛⎝ Yz }| {
AKα(GL)1−α −G− cL− δK

⎞⎠ ,

where the co-state variable μ can be interpreted as the shadow price of capital along the

optimal path. An interior solution must satisfy the first-order conditions

∂H/∂c = c−θ − μL = 0, i.e., c−θ = μL, (FOC1)

∂H/∂G = μ(
∂Y

∂G
− 1) = 0, i.e., ∂Y

∂G
= (1− α)

Y

G
= 1 or

G

Y
= 1− α, (FOC2)

∂H/∂K = μ(
∂Y

∂K
− δ) = ρμ− μ̇, i.e.,

∂Y

∂K
− δ = ρ− μ̇

μ
. (FOC3)

Our conjecture is that the transversality condition

lim
t→∞

Ktμte
−ρt = 0 (TVCsp)

is also a necessary optimality condition. This guess will be of help in finding a candidate

solution. Having found a candidate solution, we can appeal to Mangasarian’s theorem on

sufficient conditions, cf. Lecture Note 8, p. 12, to ensure that our candidate solution is

really a solution.

Log-differentiation wrt. t in (FOC1) and inserting into (FOC3) gives the usual Keynes-

Ramsey rule,
ċt
ct
=
1

θ
(
∂Y

∂K
− δ − ρ), (20)

where
∂Y

∂K
= αA(

G

K
)1−αL1−α = α

Y

K
. (21)

According to (FOC2), optimality requires ∂Y/∂G = 1. This is not surprising. The

(real) cost of increasing G by one unit is one (i.e., one output unit less will be available

for other uses) and the real benefit is dY = (∂Y/∂G)dG = (∂Y/∂G) · 1. Therefore, the
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optimality condition, MB = MC, requires dY = 1, that is, ∂Y/∂G = 1. To put it

differently: a necessary condition for Y − G to be maximized is that dY = dG. Since

∂Y/∂G = (1 − α)Y/G, the implication is that G = (1 − α)Y or ḡSP = 1 − α. Inserting

this into (18) and solving for Y gives

Y = A1/α [(1− α)L](1−α)/αK ≡ ÃK. (22)

In the above analysis of the market economy we assumed 0 < ḡ ≤ 1−α, which implies
ḡ ≤ ḡSP . Correspondingly,

Ā = A1/α(ḡL)(1−α)/α ≤ Ã, (23)

with strict equality if and only if ḡ = 1 − α. If the government in the market economy

chooses ḡ = 1 − α, then Ā from the market economy is the same as Ã in the social

planner’s solution.

We can now write (19) as

K̇ = (1− G

Y
)Y − cL− δK = αY − cL− δK = αÃK − cL− δK. (24)

Inserting (22) into (21) gives
∂Y

∂K
= αÃ. (25)

From (20) we get
ċt
ct
=
1

θ
(αÃ− δ − ρ) ≡ γSP , (26)

a constant. Note that it would be wrong to conclude from (22) that the marginal product

of capital at the aggregate level equals Ã. The fact is that (22) is just a “reduced form”

where G is not visible. But behind the relation in (22) lies the presumption that G/Y

is constant, i.e., that G is increased along with Y . Indeed, in (22) the increase in Y

associated with an increase in K is partly the effect of the implicit increase in G following

the increase in K. The true marginal product of capital at the aggregate level is as given

by (25) which is smaller than Ã.

Comparing the growth rate, γ, in the market economy with γSP , we see that (23)

implies

γ ≤ γSP ,

with strict equality if and only if ḡ = 1−α. It follows that the parameter restriction (A1)

ensures γSP > 0. On the other hand, to ensure bounded utility we now need

ρ > (1− θ)γSP , (A2’)
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which, for θ < 1, is more demanding than (A2).

Given (26), we may write (24) as

K̇ = (αÃ− δ)K − c0Le
γSP t. (27)

From this and the transversality condition (TVCsp), we can derive (by a similar procedure

as above for the market economy) that the required initial consumption level, c0, will be

such that
Ẏ

Y
=

K̇

K
=

ċ

c
= γSP . (28)

In fact, instead of going through a detailed derivation, we may simply refer to the fact

that the social planner’s system belongs to the AK family (constant marginal product

of capital at the aggregate level and constant output-capital ratio). Then, for a Ramsey

set-up, it is a general result that k and y must from date zero grow at the same rate as c

(there are no transitional dynamics). From this general knowledge we can find the initial

consumption level, c0. Indeed, combining (27) and (28) gives

γSP =
K̇t

Kt
= αÃ− δ − ct

kt
.

Solving for ct gives ct = (aÃ− δ − γSP )kt so that

c0 = (aÃ− δ − γSP )k0. (29)

In view of (A2’), ρ + θγSP > γSP and since, from (26), ρ + θγSP = αÃ− δ, the propor-

tionality factor in (29) is strictly positive (otherwise no solution to the social planner’s

problem would exist).

In the same way as in Lecture Note 8, p. 12 we can now appeal to Mangasarian’s

theorem on sufficient conditions, to ensure that our candidate solution is really an optimal

solution.

An interesting conclusion is that if the government in the market economy chooses

ḡ = 1−α (static efficiency), then not only is the market economy’s growth rate the same

as that chosen by the social planner, but the entire resource allocation is the same. This is

due, however, to the unrealistic assumption of lump-sum taxation. If the public services

were financed by an income tax (including taxation of capital income), then the market

economy would get a growth rate lower than the optimal one in spite of ḡ = 1−α. This is
because of the wedge that arises in this case between the social returns to saving, αÃ− δ,
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given in (25), and the private (after-tax) returns, (1 − τ r)r̄.3 The capital income tax is

a disincentive to save; and in a closed economy, this amounts to a disincentive to invest.

In a fully endogenous growth model as this one this acts as a drag on growth even in the

long run.

However, a constant consumption tax, τ c, is a non-distortionary tax (since labor supply

is inelastic) and could be used to finance the government spending G.

4 Productive public services with congestion (B & S,
§ 4.4.2)

The results are different if there are congestion problems associated with the productive

public service, i.e., if it is partly rival. For example, optimal taxation will be different.

And as B & S (p. 223) emphasize, the empirically problematic scale effect on growth will

disappear.4

Let us assume the service is partly rival, but non-excludable. The combination of

rivalry and non-excludability implies that a free-access problem arises. Infrastructure ser-

vices are an example (in principle); think of the highways to Copenhagen during rush

hours.5 Due to the presence of congestion effects, a growing population can be allowed

without implying a forever increasing growth rate. Hence, we assume that the represen-

tative household is of size L, where

L = L0e
nt, n ≥ 0.

Each member of the household supplies inelastically one unit of labor per time unit, so

that also labor supply grows at the constant rate n ≥ 0. (B & S unnecessarily assume

n = 0.)

We follow B & S and assume firm i has the production function

Yi = Af(
G

Y
)Ki, (30)

where the non-congestion function f satisfies6

f(0) ≥ 0, f 0 > 0, f 00 < 0. (31)
3See Exercise III.1.
4As we saw above, this scale effect on growth will of course also disappear if we maintain non-rivalry,

but replace the knife-edge assumption λ = 1 by 0 < λ < 1.
5I say “in principle”, because taking infrastructure seriously would require modelling infrastructure

as a stock variable, not as a flow variable as B & S do.
6An alternative way of representing congestion is sketched in the appendix.
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There are non-diminishing returns to capital, even at firm level. This is a strong (and

questionable) assumption which can, at best, only be maintained if we think of Ki as

“broad capital”, including either human capital or firm-specific knowledge capital, cf. B

& S, § 5.1. (Or, if you want, you may think of Ki as only physical capital, and interpret

the model as describing a thought experiment: a fully automatized economy.)

4.1 The market economy

Since ∂Yi/∂Ki = Af(G
Y
), profit maximization under perfect competition implies

Ki

⎧⎨⎩ =∞, if Af(G
Y
) > r + δ,

undetermined, if Af(G
Y
) = r + δ,

= 0, if Af(G
Y
) < r + δ.

(32)

Equilibrium in the factor market impliesX
i

Ki = K,

i.e., demand is equal to supply. By (32), this requires (since K > 0) that the real rate of

interest adjusts so that

r = Af(
G

Y
)− δ. (33)

The government chooses G such that G/Y is a constant, ḡ ∈ (0, 1). There are no other
government expenditures than G. The government budget is balanced. We postpone

specification of how what taxation rule is used.

Households have infinite horizon and are described in the usual Ramsey way. The

consumption/saving behavior leads to the Keynes-Ramsey rule, which in case of lump-

sum taxation takes the form

ċ

c
=
1

θ
(r − ρ) =

1

θ
(Af(ḡ)− δ − ρ) . (34)

The aggregate production function becomes

Y =
X
i

Yi = Af(ḡ)
X
i

Ki = Af(ḡ)K. (35)

Now let us consider the social planner’s problem.
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4.2 The social planner

Ex ante, the social planner need not choose G/Y constant. So the aggregate production

function faced by the social planner should be written in the general form,

Y =
X
i

Yi = Af(
G

Y
)
X
i

Ki = Af(
G

Y
)K. (36)

The decision problem is

max
(ct,Gt)

∞
t=0

Z ∞

0

c1−θt − 1
1− θ

e−(ρ−n)tdt s.t.

ct ≥ 0, Gt ≥ 0, (37)

K̇t = Af(
Gt

Yt
)Kt −Gt − ctLt − δKt, where K0 is given, and Yt is as in (36),(38)

Kt ≥ 0 for all t ≥ 0. (39)

The current-value Hamiltonian is

H =
c1−θ − 1
1− θ

+ μ

⎛⎜⎜⎝
Yz }| {

Af(
G

Y
)K −G− cL− δK

⎞⎟⎟⎠ .

First-order conditions are

∂H

∂c
= c−θ − μL = 0⇒ c−θ = μL⇒−θ ċ

c
=

μ̇

μ
+ n, (FOC1)

∂H

∂G
= μ

µ
∂Y

∂G
− 1
¶
= 0⇒ ∂Y

∂G
= 1, (FOC2)

∂H

∂K
= μ

µ
∂Y

∂K
− δ

¶
= (ρ− n)μ− μ̇⇒ ∂Y

∂K
− δ = ρ− n− μ̇

μ
. (FOC3)

The conjectured necessary transversality condition is

lim
t→∞

Ktμte
−(ρ−n)t = 0. (TVC*)

From (FOC1) and (FOC3) we get

ċ

c
=
1

θ
(
∂Y

∂K
− δ − ρ), (K-R)

where ∂Y/∂K (< Af(G/Y )) is to be found.

To proceed we shall use (FOC2). But we cannot directly calculate ∂Y/∂G from (36),

since Y appears on both sides. Instead we consider (36) as an equation of the form

Y = h(Y,G,K), (40)
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which defines Y as an implicit function of G and K,

Y = Y (G,K).

To find the partial derivatives of this implicit function we use implicit differentiation. To

illustrate our procedure, consider (40). Taking the total differential on both sides, we get

dY = hY dY + hGdG+ hKdK.

From this, by setting dK = 0, we find

∂Y

∂G
=

hG
1− hY

.

And by setting dG = 0, we find
∂Y

∂K
=

hK
1− hY

.

Applying this procedure to (36), we find

dY = A

∙
f

µ
G

Y

¶
dK +Kf 0

µ
G

Y

¶
Y dG−GdY

Y 2

¸
⇒∙

1 +AKf 0
µ
G

Y

¶
G

Y 2

¸
dY = Af

µ
G

Y

¶
dK +

AK

Y
f 0
µ
G

Y

¶
dG⇒"

1 +
f 0
¡
G
Y

¢
f
¡
G
Y

¢ G
Y

#
dY = Af

µ
G

Y

¶
dK +

f 0
¡
G
Y

¢
f
¡
G
Y

¢ dG, (41)

since AK/Y = 1/f(G
Y
), by (36). Hence, first we have7

∂Y

∂G
=

f 0
¡
G
Y

¢
/f
¡
G
Y

¢
1 +

f 0(GY )
f(GY )

G
Y

=
f 0
¡
G
Y

¢
f
¡
G
Y

¢
+ f 0

¡
G
Y

¢
G
Y

= 1, (by (FOC2))

⇒ f 0
µ
G

Y

¶
= f

µ
G

Y

¶
+ f 0

µ
G

Y

¶
G

Y
⇒µ

1− G

Y

¶
f 0
µ
G

Y

¶
= f

µ
G

Y

¶
. (42)

Second, the marginal product of capital is

∂Y

∂K
=

Af
¡
G
Y

¢
1 +

f 0(GY )
f(GY )

G
Y

=
Af
¡
G
Y

¢
1 + 1

1−G/Y
G
Y

. (by (42))

= (1− G

Y
)Af

µ
G

Y

¶
. (43)

7There is a typo in (4.52) in B & S, p. 224. The factor L should be replaced by 1/L.
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Figure 1: Determination of g∗.

Graphs of the left-hand side and the right-hand side of (42) are shown in Fig. 1. The

unique crossing point gives the optimal G/Y, which we denote g∗. For G/Y < g∗, the

high marginal product of G, and thus the productivity effect of a higher G, dominates

the combined effect of the higher direct cost in the form of a higher G (which for given

Y makes Y −G smaller) and the congestion resulting from the higher Y. So in this case

dY > dG, implying that a marginal increase in G pays. On the other hand, if G/Y > g∗,

the marginal product of G, and thus the productivity effect of a higher G is dominated

by the combined effect of the high direct cost in the form of a high G and the congestion

effect of the resulting high Y and so dY < dG. Hence, in this case a marginal decrease in

G pays. Notice that g∗ is time independent (and independent of n).

With G/Y = g∗, (43) implies

∂Y

∂K
= (1− g∗)Af (g∗) , (44)

and (K-R) becomes
ċ

c
=
1

θ
[(1− g∗)Af (g∗)− δ − ρ] ≡ γSP . (45)

Again, since the marginal and average product of capital are constant,8 we have an

AK-style model and there will be no transitional dynamics. Right from date zero c, k, and

y grow at the same constant rate, γSP . This rate is positive if and only if (1− g∗)Af (g∗) >

δ+ ρ, which we assume. Further, to ensure boundedness of the utility integral we assume

8Y/K = Af(G/Y ) = Af(g∗).
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(1− θ)γSP < ρ− n. (One should now check whether the above first-order conditions and

the conjectured transversality condition are sufficient conditions for an optimal solution.

One could probably use the Mangasarian conditions as in Lecture Note 8. I have not had

time to check this.)

4.3 How to obtain the SP allocation in a decentralized economy

Under a balanced government budget, the required tax revenue is

T = G = g∗Y.

Let the tax revenue as a proportion of income be called τ . Then the required τ is

τ ≡ T

Y
= g∗ ≡ τ ∗.

The interesting conclusion is that even if, in the market economy, the government chooses

the “right” G/Y, i.e., G/Y = g∗, financing G with lump-sum taxes will not provide the

social planner’s allocation. Instead a too high growth rate is generated. This is seen by

comparing (34) with (45). The explanation is that lump-sum taxation gives no correction

for the negative externality implied by congestion.

In the decentralized equilibrium there is a tendency to a kind of overaccumulation be-

cause, with lump-sum taxes, the private agents do not internalize the congestion costs

of higher production. The “private” marginal product of capital implied by (30) is

Af (g∗), whereas the social marginal product of capital, given in (44), is lower, namely

(1− g∗)Af (g∗) . Thus, with lump-sum taxation the return to saving is too high. To put

it differently, the cost of a too high level of saving is that, initially, consumption is too

low in the sense that the initially forgone consumption is worth more in terms of current

utility than the (discounted value of) the increase in future consumption that is obtained

by higher saving and higher future growth.

In this model, internalization of the congestion costs requires a “distorting” tax. For

example, a production tax at rate τ ∗ would do the job. Indeed, an extra cost (in addition

to the direct production costs) should be imposed on a producer who raises Yi. This extra

cost should be enough to finance the extra government service needed to maintain the

public services available to others, i.e., to keep G/Y constant. The required extra cost is

(G/Y )dY = g∗Af(g∗), cf. (44).
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4.4 The relationship between τ and the per capita growth rate

Here we add an interesting observation, not mentioned in B & S.

Consider the case where the tax revenue as a proportion of income can be any given

constant τ ∈ (0, 1), not necessarily equal to g∗. Let G be determined by the tax revenue:

G = τY.

Suppose τ takes the form of a production tax such that firm i’s after-tax revenue from

sales are (1− τ)Yi. Then, instead of (33) we get

r = (1− τ)Af(τ)− δ,

and (34) is replaced by

ċ

c
=
1

θ
(r − ρ) =

1

θ
[(1− τ)Af(τ)− δ − ρ] ≡ γ(τ).

Now, consider the problem: given that a production tax must be used, what level

should it have to maximize growth? To derive an answer, we find the first-order condition

by differentiating wrt. τ :

γ0(τ) =
A

θ
[(1− τ)f 0(τ)− f(τ)] = 0⇒

(1− τ)f 0(τ)− f(τ) = 0.

But this is exactly the same condition as (42) above, so that our candidate for a solution

to the growth maximization problem is τ = τ ∗. What about the second-order condition?

We get

γ00(τ) =
A

θ
[(1− τ)f 00(τ)− f 0(τ)− f 0(τ)] < 0,

by the assumptions on f in (31); Fig. 2 illustrates. It follows that τ = τ ∗ is the solution,

i.e., τ ∗ is that tax rate which maximizes growth in the decentralized equilibrium, given

the requirement that a production tax has to be used. The explanation is that τ = τ ∗ is

required to ensure the “static efficiency” condition, ∂Y/∂G = 1. Satisfying this condition

is a “minimum” requirement for maximizing growth in any fully endogenous growth model

with productive public services.

The intuition behind the hump-shaped growth curve in Fig. 2 is the following. On the

one hand a higher tax rate allows for a higher G, which means more productive public

services. Everything else equal, this tends to raise the marginal product of capital and

17



 

1 
*τ  

*γ  

γ  

τ  

( )γ τ  

O 

Figure 2:

increase the growth rate γ. But everything else is not equal. First, for a given Y, a higherG

leaves less “surplus”, Y −G, available for other purposes, including capital accumulation.

Second, there are diminishing returns to a higher G, not only for the usual reason of a

diminishing direct effect on Y, as envisioned by the fact that f 00 < 0, but also because of

the congestion effect of higher economic activity (here higher Y ). Third, a higher G is here

financed by a production tax and such a tax decreases firms’ after-tax marginal product

of capital and thereby the equilibrium real interest rate. This decreases the incentive to

save and thereby the level of investment in the economy. In a fully endogenous growth

model this decreases growth not only for a while, but permanently.

When τ (and therefore G) is low, the “direct” marginal product of G at the aggregate

level is high, and this effect dominates the others. On the other hand, when τ (and

therefore G) is high, the “direct” marginal product of G at the aggregate level is low, and

then the other effects dominate.

Let us summarize. We have considered a model where production activity implies

congestion, a negative externality. Hence, there should be a tax on production activity

in some form or another. It need not be a production tax as considered here (in a more

general setting it could be a fee on using the public service, for example a turnpike fee). In

the present model it turns out that if a production tax is used to finance the public service,

the level of this tax rate which is needed to accomplish the social planner’s allocation is
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also the tax level which maximizes the per capita growth rate, given that a production tax

has to be used.

This said, it should be added that it is because of the disputable assumption of a

reduced-form AK structure, cf. (35), that it is possible to affect the per capita growth

rate not only temporarily but permanently by the choice of a tax rate.

5 A final remark

Above we have, like B & S, modeled the productive public service as a flow directly

related to the current public spending. Public infrastructure is different in the sense that

is a stock and the associated service is proportional to this stock. A model of this requires

that we introduce infrastructure as public capital, Kg. If this public capital is non-rival,

firm i’s production function would be

Yit = F (Kit, Lit;Kgt).

Ignoring public consumption, the public spending, Gt, in the national accounting equation

would then represent public investment so that K̇gt = Gt − δgKgt.
9

6 Appendix

Since B & F let f(G/Y ) enter the way it does in (30) and f 0 > 0, the interpretation

of f(G/Y ) is that it indicates the degree of non-congestion. We might instead want to

introduce a positively-valued congestion function h(Y/G), defined for 0 < Y/G < ∞,

where h0 < 0, h00 > 0. Then (30) would be replaced by

Yi = Ah(Y/G)Ki,

which would perhaps be a more intuitive way of looking at the matter.

Another hypothesis is that congestion of public services involves G in relation to K,

rather than Y. This is considered in B & S, Exercise Problem 4.6, where firm i has the

production function

Yi = Af(
G

K
)Ki.

9See, e.g., Nagatani et al. (SJE, 1993).
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