Problem Set V

V. 1 A famous paper by Mankiw, Romer, and Weil (1992) carries out a cross-country regression analysis (98 countries, 1960-1985) based on the aggregate production function,

$$
\begin{equation*}
Y_{t}=K_{t}^{\alpha} H_{t}^{\beta}\left(A_{t} L_{t}\right)^{1-\alpha-\beta}, \quad 0<\alpha<\alpha+\beta<1, \tag{*}
\end{equation*}
$$

where Y is GDP, K aggregate capital input, H aggregate human capital input, A the technology level, and L input of man-hours, $L_{t}=L_{0} e^{n t}, n$ constant. The gross investment rates in the two types of capital are a fraction s_{K} and s_{H} of GDP, respectively. Assuming that $A_{t}=A_{0} e^{g t}, g \geq 0$, is the same for all countries in the sample (apart from a noise term affecting A_{0}), the authors conclude that $\alpha=\beta=1 / 3$ fits the data quite well.

Let h denote average human capital, i.e., $h \equiv H / L$, and suppose all workers at any time t have the same amount of human capital, equal to h_{t}.
a) Show that $\left(^{*}\right)$ can be rewritten on the form $Y_{t}=F\left(K_{t}, X_{t} L_{t}\right)$, where F is homogeneous of degree one. Indicate what X_{t} must be in terms of h and A and what the implied "quality function" is.
b) When we study individual firms' decisions, this alternative way of writing the production function is more convenient than the form $\left({ }^{*}\right)$. Explain why.
c) Within a Ramsey-style set-up, where s_{K} and s_{H} are endogenous and time-dependent, it can be shown that the economy converges to a steady state with $\tilde{y} \equiv Y /(A L)=$ $\left(\tilde{k}^{*}\right)^{\alpha}\left(\tilde{h}^{*}\right)^{\beta}$, where \tilde{k}^{*} and \tilde{h}^{*} are the constant steady state values of $\tilde{k} \equiv K /(A L)$ and $\tilde{h} \equiv h / A$. Find the long-run growth rate of $y \equiv Y / L$. Does human capital accumulation drive per capita growth in the long run?

In Section 11.2 in the textbook by Acemoglu the author presents a Ramsey-style onesector approach to human and physical capital accumulation. The production function is

$$
\begin{equation*}
Y_{t}=F\left(K_{t}, h_{t} L_{t}\right), \tag{**}
\end{equation*}
$$

where F is a neoclassical production function with CRS satisfying the Inada conditions. We shall compare the implications of $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ under the assumption that A_{t} in $\left(^{*}\right)$ is time-independent and equals 1 .
d) Does $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ imply the same or different answers to the last question in c$)$? Comment.
e) Briefly evaluate the set-up in Section 11.2 in the Acemoglu textbook from a theoretical as well as empirical perspective.
f) If we want a linear quality function, as implicit in ($\left.{ }^{* *}\right)$, to be empirically realistic, there is an alternative approach that might do better. What approach is that?
V. 2 Consider a closed economy with human capital formation and two production sectors, manufacturing and R\&D. For simplicity we may imagine that the R\&D sector is governed by the government. Time is continuous. At the aggregate level we have:

$$
\begin{align*}
Y_{t} & =A_{t}^{\gamma} K_{t}^{\alpha}\left(\bar{h}_{t} L_{Y, t}\right)^{1-\alpha}, \quad \gamma>0,0<\alpha<1, \tag{1}\\
\dot{K}_{t} & =Y_{t}-C_{t}-\delta K_{t}, \quad \delta \geq 0, \tag{2}\\
\dot{A}_{t} & =\eta A_{t}^{\varphi}\left(\bar{h}_{t} L_{A, t}\right)^{1-\varepsilon}, \quad \eta>0, \varphi<1,0 \leq \varepsilon<1, \tag{3}\\
L_{Y, t}+L_{A, t} & =L_{t}=\text { labor force. } \tag{4}
\end{align*}
$$

Here A_{t} measures the stock of technical knowledge and \bar{h}_{t} is average human capital in the labor force at time t (otherwise notation is standard). The case $\varphi>0$ corresponds to the "standing on the shoulders" hypothesis and the case $\varepsilon>0$ corresponds to the "stepping on the toes" hypothesis (ε reflects the degree of overlapping in R\&D).

From now we ignore the explicit dating of the variables unless needed for clarity. Let the growth rate of a variable $x>0$ be denoted g_{x} (not necessarily positive and not necessarily constant over time). Assume that all variables in the model are positive and remain so.
a) Write down a growth accounting relation expressing g_{Y} in terms of $g_{A}, g_{K}, g_{\bar{h}}$, and $g_{L_{Y}}$.
b) Express g_{A} in terms of A, \bar{h}, L_{A}.
c) Presupposing $g_{A}>0$, express the growth rate of g_{A} in terms of $g_{A}, g_{\bar{h}}$, and $g_{L_{A}}$.

Let the time unit be one year. Suppose an individual "born" at time v (v for "vintage") spends the first S years of life in education and then enters the labor market with a human capital level which at time $t \geq v+S$ is $h(S)$, where $h^{\prime}>0$. After leaving education the individual works full-time until death (for simplicity). We ignore the role of teachers and schooling equipment. At least to begin with, we assume for simplicity that S is a constant and thus independent of v. Then with a stationary age distribution in society,

$$
\begin{equation*}
L_{t}=(1-\sigma) N_{t} \tag{5}
\end{equation*}
$$

where N_{t} is the size of the (adult) population at time t and σ is the constant fraction of this population under education (σ will be an increasing function of S). We assume that life expectancy is constant and that the population grows at a constant rate $n \geq 0$:

$$
\begin{equation*}
N_{t}=N_{0} e^{n t} \tag{6}
\end{equation*}
$$

Let a balanced growth path (BGP) in this economy be defined as a path along which $g_{Y}, g_{C}, g_{K}, g_{A}, g_{\bar{h}}, g_{L_{A}}$, and $g_{L_{Y}}$ are constant.
d) Show that

$$
g_{A}=\frac{(1-\varepsilon)\left(g_{\bar{h}}+n\right)}{1-\varphi}
$$

e) From a certain general proposition we can be sure that along a BGP, $g_{Y}=g_{K}$. What proposition and why?
f) We can also be sure that $g_{L_{Y}}=n$ under balanced growth. Why?
g) Defining $y \equiv Y / L$, it follows that under balanced growth,

$$
g_{y}=\frac{\gamma g_{A}}{1-\alpha}+g_{\bar{h}} .
$$

How?
h) It is possible to express g_{y} under balanced growth in terms of only one endogenous variable, $g_{\bar{h}}$. Show this.
i) Comment on the role of n in the resulting formula for g_{y}.
V. 3 This problem presupposes that you have solved Problem V.2, in particular question h).
a) Consider two connected statements: "The model in Problem V. 2 assumes diminishing marginal productivity of knowledge in knowledge creation;" and "hence, sustained exponential per capita growth requires $n>0$ or $g_{\bar{h}}>0$." Evaluate these statements.
b) Given the prospect of non-increasing population in the world economy in the long run, what is the prospect of sustained exponential per capita growth in the world economy according to the model?

Suppose $h(S)=S^{\mu}, \mu>0$.
c) Demographic data exists saying that life expectancy tends to grow arithmetically, in fact, almost by a quarter of a year per year. Assuming this to continue, and going a little outside the model, what is the prospect of sustained exponential per capita growth in the world economy? Discuss.
d) Although hardly realistic, suppose $h(S)$ is exponential as in the Mincer equation. Then again answer c).

V. 4 Short questions

a) In the theory of human capital and economic growth we encounter different hypotheses about the schooling technology. List some examples. Briefly comment.
b) "Arrow's learning-by-investing model predicts that the share of capital income in national income is constant in the long run if and only if the aggregate production function is Cobb-Douglas." True or false? Why?

