Economic Growth, June 2011.

Christian Groth

A suggested solution to the problem set
at the exam in Economic Growth, June 15, 2011

(3-hours closed book exam)!

As formulated in the course description, a score of 12 is given if the student’s per-
formance demonstrates precise understanding of the concepts and methods needed for

analyzing the factors that matter for economic growth.

1. Solution to Problem 1 (45 %)

For convenience, key equations are repeated here:
K, =Y, — C, — 0K, Koy > 0 is given. (1.1)
The production function of firm 7 is
Yy = K (ALi)' ™, 0<a<l, (1.2)

where A; is the economy-wide technology level, > . K;; = K, and ), Ly = L;, where
L, is the labor force (= employment = population). Each firm is small relative to the

economy as a whole and perceives it has no influence on aggregate variables, including
Ay

a) We suppress the time index when not needed for clarity. Consider firm 7. Its
maximization of profits, II; = K*(AL;)'™ — (r + 0)K; — wL;, leads to the first-order

conditions
Ol JOK; = oKX YAL)"™ —(r+0)=0, (1.3)
ol /0L; = (1—a)KFAY™ L7 —w = 0.

We can write (1.3) as
ATk =1 4 6, (1.4)

IThe solution below contains more details and more precision than can be expected at a three hours
exam. The percentage weights should only be regarded as indicative. The final grade will ultimately be
based on an assessment of the quality of the answers to the exam questions in their totality.



where k; = K;/L;. From this follows that the chosen k; will be the same for all firms, say
k. In equilibrium Y, K; = K and 5", L; = L, where K and L are the available amounts
of capital and labor, respectively (both pre-determined). Since K = )" K; = >, kiL;
=> kL; = kL, the chosen capital intensity, k;, satisfies

K

kE,=k=
L

k, 1=1,2,...,N. (1.5)
As a consequence we can use (1.4) to determine the equilibrium interest rate:

ry = ATk — 6. (1.6)

The implied aggregate production function is

Y = Y Vi=) yli=) kAL =k"A""Y L =kA"L

% )

= kLAY LYY = KY(AL)Y = AV KLY = TKY LY. (1.7)

b)  TFP, =T, = A}~

c) We get
gy = agk + (1 — a)gr + gr,

where g7 is the residual, often named the Solow residual (we have gr = (1 — a)ga).

d) The TFP growth rate is

gr =gy —agx — (1 — a)gr.

The gross income share of capital is

(r+d0)K _ XK _ agp K

v v v =% (1.8)
The labor income share is
wb gt (-ofl (1.9)
Y Y Y
We now assume that A; evolves according to
A=K}, >0, 0<A<1, (*)



where € and A are given constants.

e) The assumption (*) says that the technology level has an exogenous component,
!, growing at the exogenous rate €, and an endogenous component, K. The latter can
be interpreted as reflecting “learning by investing”. The idea is that investment — the
production of capital goods — as an unintended by-product results in experience or what
we may call on-the-job learning. This adds to the knowledge about how to produce the
capital goods in a cost-efficient way and how to design them so that in combination
with labor they are more productive and better satisfy the needs of the users. The idea
stems from (Arrow, 1962) who hypothesized that the primary basis for learning is gross
investment. Yet, the term K} in (*), where \ is called the “learning parameter”, indicates
that the basis for learning is net investment, so that cumulative learning - the technology
level - is an increasing function of cumulative net investment, ffoo [7ds = K;. This latter
hypothesis is more popular for the only reason that it leads to simpler dynamics. Another
way in which the specification in (*) deviates from Arrow’s original ideas is by assuming

that technical progress is disembodied rather than embodied.

The learning is assumed to benefit essentially all firms in the economy due to knowledge
spillovers across firms. Such spillovers are reasonably fast relative to the time horizon

relevant for growth theory.
f) Combined with (*), (1.7) implies
Y; _ (eatK;\>1—aK£xL%—a _ e(l—a)athl-i-(l—a)/\L%—a (110)

so that
gy = (a+ (1 —a)\) gk + (1 — a)gr, + residual, (1.11)

where the residual is (1 — a)e.

g) To compare standard growth accounting with this, let the weights attached to gx
and gr, be denoted 71y and 7;, respectively. Then, in standard growth accounting we have
ng = (r+0)K/Y and n;, = wL/Y, respectively. Hence, by (1.8), the “contribution” to
output growth from growth in capital is set equal to agg. This is less than the “true

contribution” to output growth from growth in capital which, by (1.11), is
(a+ (1 —a)))gk. (1.12)

In this sense, standard growth accounting “underestimates” the “contribution” to output
growth from growth in capital. This is because the market price r does not reflect the

positive externality from capital investment.
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We now assume L; = Lye™, where n > 0, constant.

h) In view of (1.1), under balanced growth with positive saving, gy = gx. By (1.11)
and g, = n we then have gy = (a4 (1 —a)\) gy + (1 — a)gr + (1 — a)e, from which

follows
_n+e
MmN
With y = Y/ L, this implies
An+¢€
gy =gy —n= (= gk = 9a)- (1.13)
1—A
i) According to the model there are, according to (1.13), two ultimate sources of per

capita growth (along a BGP), learning by investing, represented by the term An, and an

exogenous source, represented by the parameter e.

The first source, learning, is more powerful, the higher is the population growth rate,
n. This role of population growth derives from the fact that at the economy-wide level
there are increasing returns to scale w.r.t. capital and labor. For the increasing returns
to be exploited, growth in the labor force is needed. The more fundamental background
is that technical knowledge is partly endogenous in the model and is at the same time a
non-rival good — its use by one firm does not (in itself) limit the amount of knowledge
available to other firms. In a large economic system more people benefit from a given
increase in knowledge than in a small economic system. At the same time the per capita
cost (here per capita net investment) of creating the increase in knowledge is less in the

large system than in the small system.

In contrast, the role of the exogenous component of the technology is not expanded

by the population growth rate n.

The learning mechanism, however, expands the role of both sources of per capita

growth. This is manifested by the appearance of the “multiplier” 1/(1— ) > 1 in (1.13).

According to the growth accounting in c),

gy =9y —n=algx — g1) + gr = ag + gr, (1.14)
where k = K/L and gr = (1—a)ga = (1 —a)(An+¢)/(1— ) = (1 —a)g, under balanced
growth.

Comparison: The natural interpretation of (1.13) is that (along a BGP) all per capita
growth “comes from” growth in the labor-augmenting technology level A, that is, from

“technical progress”. In contrast, (1.14) says that only a fraction of per capita growth
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is accounted for by “technical progress”, the remainder being accounted for by increases
in the capital intensity k. This way of characterizing the growth process is, however,
superficial for two reasons. First, even in a mere accounting perspective, the “direct
contribution” to gy from growth in K (or “direct contribution” to g, from growth in
k) is underestimated, as noted under g). Second, the growth in k is itself endogenous
and would be absent if there were no learning, no population growth, and no exogenous
technology growth. To see this, in (1.13) let A = n = & = 0. On the other hand, capital

accumulation is certainly a key factor in the learning process.

2. Solution to Problem 2 (45 %)

a) Yes, the “lab-equipment” version of the expanding input variety model is consist-
ent with this evidence. The “lab-equipment” version (in contrast to the two “knowledge-
spillover” versions, see below) features no positive externality from knowledge creation,
yet there is underinvestment in R&D. This is because the monopoly position (obtained
through the patent system) of innovators implies that the invented specialized interme-
diate goods are priced above marginal costs. Consequently, “too little” of these goods is
demanded, that is, the market for each variety is “too small”. This results in too little
remuneration of the R&D activity, which invents new types of intermediate goods, new
varieties. Consequently, there is too little incentive to do R&D, and the growth rate ends
up smaller than the social optimum as defined from the perspective of a social planner

respecting the preferences of an assumed representative infinitely-lived household.

b) Let the government pay a subsidy at constant rate, o, to purchases of intermediate
goods such that the price of intermediate good i is (1 — o)p;, where p; is the price set by
the monopolist supplier of intermediate good i. Let the government finance this subsidy

by taxing consumption at the constant rate 7.

(Although certainly not needed for answering the question, as phrased, we may men-
tion that p; = ¥ /(1 — ), where 3 is the inverse of the elasticity of substitution between
intermediate goods in the production of basic goods, and ) is the marginal cost of supply-
ing intermediate good ¢, when its technical design has already been invented. The optimal
o then equals 5. There exists a unique value of the constant consumption tax, 7, such that
the government can finance the subsidy while still maintaining a balanced budget. This is
because the model ends up as a reduced-form AK model featuring balanced growth from

the beginning.)
c) The distinctive feature of two other versions of the expanding input variety model
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is an aggregate invention production functions of the form
N; = nN{ Ly, n>0¢<1, (2.1)

where [V, is the number of existing different varieties of intermediate goods (indivisibilities
are ignored) and Lg; the input of research labor at time t. The number, V;, of existing
different varieties of intermediate goods can be interpreted as reflecting the stock of tech-
nical knowledge. The time derivative, N;, reflects the number of new technical designs
for intermediate goods, invented per time unit at time ¢. Thus, N, can be seen as the
increase per time unit in technical knowledge. This increase is determined by the input
of research labor, Lg;, and the economy-wide research productivity, 7Ny, exogenous to
the “small” individual R&D firms. For ¢ # 0, the research productivity depends on the
stock of technical knowledge. This dependency is positive if ¢ > 0 (“the standing on the
shoulders of giants case”) and negative if ¢ < 0 (“the fishing out case”, “the standing on

the toes case”).

The knife-edge case ¢ = 1 (together with n = 0, where n is the growth rate of the
labor force L) gives the Romer version. And the case ¢ < 1 (together with n > 0) gives
the Jones version (the calibration by Jones, 1995, suggests 0 < ¢ < 1).

d) Yes, both the Romer version and the Jones version (with ¢ > 0) are consistent
with the mentioned evidence. Both the monopoly pricing mentioned under a) and the
positive intertemporal externality of R&D via the economy-wide productivity term nN;

contribute to the tendency to underinvestment in R&D.

e) Yes, the positive intertemporal externality of R&D in these two versions calls for
a research subsidy, s, in addition to the subsidy to purchases of intermediate goods men-
tioned under b). The cost to the R&D firm will then be (1 — s)w per unit of research

labor.

f) Let the patent-R&D ratio at time ¢ be named u;. Then then two model versions

mentioned under ¢) imply

Nt Nt Nt 1
U = =t - 2.2
' wy Ly Ny wy Ly ( )

g) Under balanced growth the Romer version has N, /Ny constant, w; growing at the
same rate as Ny, and Lg, (= L — Lyy) constant. Thus, the Romer version predicts a

constant u; over time.

Also the Jones version has, under balanced growth, N;/N; constant (= n/(1 —¢)) and

wy growing at the same rate as N;. But the factor 1/Lg; will be falling under balanced
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growth in the Jones model when n > 0 (which the model allows). Indeed, under balanced
growth, Lgr; = srlL;, where the researchers’ fraction, sg, of the labor force is constant
so that Lgr; grows at the same rate as the labor force. It follows that the Jones version

predicts the patent-R&D ratio, u;, to be falling over time.

Remark: The somewhat demanding step in this reasoning is the constancy of N;/w;
under balanced growth. This constancy is only implicit in Acemoglu’s §13.2-3. Yet, in-
tuition should be enough to reach the conclusion. Indeed, in all the R&D-based models
we have considered in the course, under balanced growth labor productivity in manufac-
turing, Y/Ly, grows at the same rate as knowledge, N. In turn, the labor income share
in manufacturing, wly /Y, is constant. So also w grows at the same rate as N, implying

that N;/w; is constant under balanced growth.

A more formal approach is of course to derive the conclusion about constancy of
N;/w; in detail from profit maximization in the manufacturing sector. Suppressing the

time index, profit of the representative firm in the sector is

N N
=Y — Zpixi —wlLy, where Y=A (Z %15) L'f,, A > 0 constant.

=1 =1

The first-order conditions are

ng = (1-B)Az; "L —p; =0, i=1,2,...,N, (2.3)

oIl A N

o, = A\ =0 (2.4
=1

From (2.3)
7= (A(1 = )P Lyp; .

Since monopoly pricing in the intermediate goods sector leads to p; = /(1 — ) = p,

i=1,2,..., N, the chosen z; = const - Ly = x, the same for all i. So (2.4) implies
w= BAle_ﬁLf,_l = BAN - const* P,
saying that w/N is constant.

h) The observed systematic decline in the empirical patent-R&D ratio in the US, at
the same time as the labor force has been growing (n > 0), fits well with the Jones version,

but not with the Romer version.



3. Solution to Problem 3 (10 %)

We define human capital as the stock of productive skills embodied in an individual.

Increases in this stock occurs through formal education and on-the-job-training.

Consider an individual who at time 0 begins going to school (full-time) and then leaves
school at time S. Then this individual has spent S time units (say years) under formal
education. Suppose the individual thereafter never returns to school. Then the simplest
possible version of a schooling technology gives the human capital, h;, of this individual

at time ¢t > S, i.e., after leaving school, as
he = h(S), where h(0) >0, ' >0, (3.1)

ignoring the effect of on-the-job training. Indeed, empirically, the primary input in edu-
cation is the time spent by the students studying. This time is not used in work and gives
thereby rise to an opportunity cost of studying. (In a macroeconomic context, we might
perceive the costs associated with teachers’ time and educational buildings and equipment

as being either negligible or implicit in the function symbol A(-).)

A desirable property of a schooling technology is that the “stuff” it generates, which
we call hy;, is approximately proportional to labor productivity and is thereby, at least
under perfect competition, approximately proportional to the obtained real wage.

One popular specification is h(S) = S¥, ¢ > 0.

Another specification is the sometimes used “Mincerian equation”, h(S) = h(0)e??,
1 > 0. As noted in one of the lecture notes, such an exponential form comes from a false
analogy between Jacob Mincer’s cross-sectional evidence on relative wages at a given
point time and a production function for human capital. Moreover, the strong convexity
implied by an exponential specification has several awkward properties, including that the

second-order condition in a standard human wealth maximization problem is violated.

To take effects of on-the-job training into account, we may extend (3.1) to
hy = h(S,t — 9), where h(0,t) >0, hiy >0, hj_g > 0.

assuming that the person in question is a “full-time worker”.

To take cohort-effects into account, we may assume that a person who is “born” at
time v (v for “vintage”) and spends the first S years of life full-time in school, at t > v+.5

has human capital
hy = h(v, S), where h(v,0) > 0, hly > 0.
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If efficiency of schooling is improving over time, b/ > 0.

In more complicated settings, a schooling technology is specified as a differential equa-
tion. Let s; € [0,1] denote the fraction of time spent in school at time ¢. This allows
the individual to go to school only part-time and for example spend the remainder of
time working, in which case 1 — s; = fraction of time spent working at time ¢. The time
dependency of s; takes into account that an individual may spend a varying fraction of

available time in school and the remainder in work.

Here a schooling technology may, for ¢ > 0, be given in the differential form

hy = % = G(t, hy, s1), ho > 0 given.

The “static” specification, h(S) = S¥, ¢ > 0, mentioned above, is in fact a solution

to this differential equation in the special case where
hy = pt¥ts,, ho = 0 given, (3.2)

and
_J 1for0<t <S8,
5 = 0 fort > S.

Indeed, integrating (3.2) we have for t > S
¢ s
hy = ho + / hydr =0 +/ e Ydr +0= [7'“’]6q = 5%,
0 0

Also the Mankiw, Romer, and Weil (1992) approach (MRW) to aggregate human
capital formation may be seen as representing a “schooling technology”. Let aggregate

human capital be H = hL, where h is average human capital in the labor force. Then,

MRW assume

- dH

where 0y is the depreciation rate for human capital, 5 is educational gross investment,
defined (in principle) as
Igy=Y —Ix—C,

where Y is GDP, I is gross investment in physical capital, and C'is consumption. Based
on their cross-country regression analysis, MRW find that the following production func-

tion for a country’s GDP is an acceptable approximation:
Y — K1/3(hL)1/3(AL)1/3 — [(1/3(141/2]11/21'/>2/37
where A represents the level of technology and is growing over time.

9



These three equations together can be seen as representing a schooling technology in
a broad sense. It may be claimed, however, that a weakness of this approach is that labor
productivity is not proportional to the “stuff”’, h, generated this way and by the authors
called “human capital”. Indeed, the “quality function”, ¢(h), is not linear, but a strictly

concave function, h'/2.
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