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(3-hours closed book exam)1

As formulated in the course description, a score of 12 is given if the student’s per-

formance demonstrates precise understanding of the concepts and methods needed for

analyzing the factors that matter for economic growth.

1. Solution to Problem 1 (45 %)

We are informed that if a person attends school for S years, he or she obtains human

capital h = h(S), h′ > 0. A person “born”at time v (v arbitrary) chooses S to maximize

HWv =

∫ ∞
v+S

ŵth(S)e−(r+m)(t−v)dt, (*)

where ŵt is the market-determined real wage per year per unit of human capital at time

t, r is a constant real interest rate, and m is a parameter such that the probability of

surviving at least until age τ > 0 is e−mτ . It is assumed that owing to technical progress,

ŵt = ŵ0e
gt, (**)

where g is a constant satisfying 0 < g < r +m.

a) The individual chooses S so as to maximize human wealth (da.: humanformue),

that is, the present value of expected future labour earnings; ŵt multiplied by h(S) is the

annual real wage to a person educated S years; m is the mortality rate (here assumed

age independent), and r +m is the effective discount rate, given a perfect credit and life

annuity market. Behind the supposition that the individual chooses schooling length solely

with a view to maximize human wealth lies the implicit assumption that the Separation

Theorem holds. This is the theorem saying that under certain conditions, maximizing

1The solution below contains more details and more precision than can be expected at a three hours
exam. The percentage weights should only be regarded as indicative. The final grade will ultimately be
based on an assessment of the quality of the answers to the exam questions in their totality.



lifetime utility can be separated into two decision problems, one of choosing schooling

length to maximize human wealth and one of choosing a consumption-saving plan to

maximize lifetime utility given the maximized human wealth. A condition needed for this

theorem to hold is that there is no direct utility from “going to school”or “being a learned

person”.

The reason that the horizon in (*) is infinite is that the assumed survival probability,

e−mτ , for any age τ is positive. Of course, this is an abstraction. Yet the implied quant-

itative error may be tolerable because e−mτ , although always positive, is extremely small

when τ is large.

b) Substituting (**) into (*), we get

HWν = h(S)

∫ ∞
ν+S

ŵ0e
gte−(r+m)(t−ν)dt = ŵ0h(S)

∫ ∞
ν+S

egνe[g−(r+m)](t−ν)dt

= ŵ0e
gνh(S)

(
e[g−(r+m)](t−ν)

g − (r +m)

∣∣∣∣∞
ν+S

)
= ŵ0e

gνh(S)
e[g−(r+m)]S

r +m− g ≡ HW (ν, S).(1.1)

An interior solution to the problem maxS HW (ν, S) satisfies the first-order condition:

∂HW (ν, S)

∂S
=

ŵ0e
gν

r +m− g
[
h′(S)e[g−(r+m)]S − h(S)e[g−(r+m)]S(r +m− g)

]
= HW (ν, S)

[
h′(S)

h(S)
− (r +m− g)

]
= 0, (1.2)

from which follows
h′(S)

h(S)
= r +m− g ≡ r̃. (1.3)

c) The left-hand side of (1.3) is the proportionate marginal return to schooling (the

proportionate return to staying one more year under education). In the optimal plan this

equals the effective discount rate appearing on the right-hand side of (1.3), namely the

interest rate adjusted for (a) the approximate probability of dying within a year from

“now”, 1− e−m ≈ m) and (b) wage growth due to technical progress. The trade-off faced

by the individual is the following: increasing S by one year results in a higher level of

human capital (future earning power), but postpones the time when earning an income

begins. The effective interest cost is diminished by g, reflecting the fact that the real wage

per unit of human capital will grow by the rate g from the current year to the next year.

The intuition behind the first-order condition (1.3) is perhaps easier to grasp if we put

g on the left-hand-side and multiply by ŵt in the numerator as well as the denominator.

Then the condition reads:

ŵth
′(S) + ŵth(S)g

ŵth(S)
= r +m.
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On the the left-hand side we now have the actual net rate of return obtained by investing

one more year in education. In the numerator we have the direct increase in wage income

by increasing S by one unit plus the gain arising from the fact that human capital,

h(S), is worth more in earnings capacity one year later due to technical progress. In the

denominator we have the educational investment made by letting the obtained human

capital, h(S), “stay”one more year in school instead of working. In an optimal plan the

actual net rate of return on the marginal investment equals the required rate of return,

r+m. This is what could be obtained by the alternative strategy, which is to leave school

after S years and then invest the first years’s labor income in a life annuity paying the net

rate of return, r+m, per year (until death). That is, the first-order condition can be seen

as a no-arbitrage equation. (As is quite usual, our interpretation treats marginal changes

as if they were discrete. Thereby our interpretation is, of course, only approximative.)

d) From now we assume

h(S) = Sη, η > 0. (***)

Then h′ = ηSη−1 so that (1.3) gives

h′(S)

h(S)
=
η

S
= r̃.

Solving for S gives

S =
η

r̃
≡ S∗. (1.4)

We are told that the second-order condition to ensure that the first-order condition gives

an optimum is that the elasticity of h′ w.r.t. S is smaller than the elasticity of h w.r.t. S

at least at S = S∗. The latter elasticity is

S

h
h′ =

S

Sη
ηSη−1 = η,

and the former is

h′′ = η(η − 1)Sη−2 so that
S

h′
h′′ =

S

ηSη−1
η(η − 1)Sη−2 = η − 1.

Hence, the second-order condition is satisfied.

e) With η = 0.6, r = 0.06, m = 0.008, and g = 0.018 we get

S∗ =
0.6

0.06 + 0.008− 0.018
= 12 years.

Comment: We may think of these 12 years as the typical length of primary and secondary

school together. Alternatively and perhaps closer to the model setup, we may think of
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S as the educational length after primary school (or later). One might argue that m

is set a bit low. Indeed, with the assumed survival probability, e−mτ , life expectancy is

1/m = 125 years if m = 0.008.

f) An increase in life expectancy decreases m. Hence, an increase in life expectancy

increases S. The intuition is that the longer the expected period where you can enjoy the

fruits of education the higher is the incentive to invest more in education.

We are now told that the economy considered is a small open economy where the

representative firm has the production function

Yt = F (Kt, AthLt).

There is perfect competition in all markets and r is given from the world market.

g) Suppressing for the moment the explicit dating of the variables, the firm solves the

problem:

max
Kd,Ld

Π = F (Kd, AhLd)− (r + δ)Kd − wLd.

First-order conditions are

F1(K
d, AhLd)− (r + δ) = 0, (FOC1)

F2(K
d, AhLd)Ah− w = 0. (FOC2)

In view of CRS, we have F (K,AhL) = AhLF (k̃, 1) ≡ AhLf(k̃), where k̃ ≡ K/(AhL).

Consequently, by (FOC1),

f ′(k̃d) = F1(K
d, AhLd) = r + δ.

A solution for the desired capital intensity, k̃d, will be unique since f ′′ < 0. Let us denote

it k̃∗. So

k̃∗ = f ′−1(r + δ).

Since r + δ is constant over time, so is k̃∗.

As F2(K,AhL) = f(k̃)− f ′(k̃)k̃, (FOC2) together with k̃ = k̃∗ gives

wt = (f(k̃∗)− f ′(k̃∗)k̃∗)Atht = (f(k̃∗)− f ′(k̃∗)k̃∗)Ath(S∗), (1.5)

for a typical member of the labor force. Here (***) with S given by (1.4) can be inserted.

Remark. An alternative approach to determining wt is to do this without introducing

the production function on intensive form, f. As F is homogeneous of degree one, the
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partial derivatives, F1 and F2, are, by Euler’s theorem, homogeneous of degree zero.

From (FOC1) therefore follows that F1(k̃d, 1) = r+ δ. In view of F11 < 0, this determines

k̃d uniquely as k̃∗. Then, by (FOC2), wt is determined as wt = F2(k̃
∗, 1)Ath(S∗).

h) In terms of the real wage per unit of human capital, ŵt, we have

wt = ŵth(S∗).

Inserting (**) gives

wt = ŵ0e
gth(S∗) = w0e

gt,

showing that the growth rate of wt is g. Comparing with (1.5) we see that also the

technology level, At, must grow at the rate g.

i) We have

yt ≡
Yt
Lt

=
F (Kt, AthLt)

Lt
=
AthLtf(k̃∗)

Lt
= Ath(S∗)f(k̃∗).

As h is an increasing function of S, more education is seen to imply higher per capita

income, yt.

The growth rate of yt equals the growth rate, g, of At and is independent of the level

of education.

As a comment one could for instance refer to the parallel with the saving rate in the

Solow model. In that model, a higher saving rate will have a temporary growth effect

but no permanent growth effect (in the regular case at least). In the present model,

more education (from S1 to S2 > S1, say) will have a temporary growth effect. But in

the long run there will only be a level effect. In real life a hypothetical transition from

S1 to S2 in the whole labor force takes quite some time during which the level effect

builds up, thereby giving growth a boost with some durability although not permanent.

If we go a little outside the model and assume there is sustained arithmetic growth in

life expectancy, we may imagine that also S, and thereby h(S), will be forever growing,

although at a diminishing rate. The boost to the growth rate of y will thereby peter out

in the very long run.

2. Solution to Problem 2 (40 %)

For convenience, key equations are repeated here:

K̇t = Yt − Ct − δKt, δ ≥ 0.
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The production function of firm i = 1, 2, . . . , N is

Yit = Kα
it(AtLit)

1−α, 0 < α < 1, (*)

where At is the economy-wide technology level,
∑

iKit = Kt, and
∑

i Lit = Lt, where

Lt = L0e
nt, n ≥ 0, is the labor force (= employment = population). Each firm is small

relative to the economy as a whole and perceives it has no influence on aggregate variables,

including At.

a) We suppress the time index when not needed for clarity. Consider firm i. Its

maximization of profits, Πi = Kα
i (ALi)

1−α − (r + δ)Ki − wLi, leads to the first-order

conditions

∂Πi/∂Ki = αKα−1
i (ALi)

1−α − (r + δ) = 0, (2.1)

∂Πi/∂Li = (1− α)Kα
i A

1−αL−αi − w = 0.

We can write (2.1) as

αA1−αkα−1i = r + δ, (2.2)

where ki ≡ Ki/Li. From (2.2) follows that the chosen ki will be the same for all firms,

say k̄. In equilibrium
∑

iKi = K and
∑

i Li = L, where K and L are the available

amounts of capital and labor, respectively (both pre-determined). Since
∑

iKi =
∑

i kiLi

=
∑

i k̄Li = k̄L, the chosen capital intensity, ki, satisfies

ki = k̄ =
K

L
≡ k, i = 1, 2, ..., N. (2.3)

Substituting into (2.2) gives r = αA1−αkα−1 − δ. Reintroducing explicit dating of the

variables, the solution for the equilibrium interest rate at time t is

rt = αA1−αt kα−1t − δ, (2.4)

where both At and kt are pre-determined.

The implied aggregate production function is

Y =
∑
i

Yi ≡
∑
i

yiLi =
∑
i

kαi A
1−αLi = kαA1−α

∑
i

Li = kαA1−αL

= kαLαA1−αL1−α = Kα(AL)1−α.

So

Yt = Kα
t (AtLt)

1−α. (2.5)

We are now told that At evolves according to

At = Kλ
t , 0 < λ ≤ 1, (**)
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where λ is a constant.

b) According to the general hypothesis of learning-by-investing the economy-wide

technology level in (*) is an increasing function of society’s previous experience, proxied

by cumulative aggregate net investment:

At =

(∫ t

−∞
Ins ds

)λ
= Kλ

t , 0 < λ ≤ 1, (2.6)

where Ins is aggregate net investment and λ is the “learning parameter”.

The idea is that investment − the production of capital goods − as an unintended
by-product results in experience or what we may alternatively call on-the-job learning.

This adds to the knowledge about how to produce the capital goods in a cost-effi cient

way and how to design them so that in combination with labor they are more productive

and better satisfy the needs of the users. The learning is assumed to benefit essentially

all firms in the economy. There are knowledge spillovers across firms and these spillovers

are reasonably fast relative to the time horizon relevant for growth theory.

c) To calculate the social marginal productivity of capital we first insert (**) into

(2.5) to get

Yt = Kα
t (Kλ

t Lt)
1−α = K

α+λ(1−α)
t L1−αt .

So, with SP indicating “from a social planner’s perspective”, we have

∂Yt
∂Kt |SP

= [α + λ(1− α)]K
α+λ(1−α)−1
t L1−αt = [α + λ(1− α)]K

λ(1−α)
t kα−1t . (2.7)

When calculating the private marginal productivity of capital, we keep At constant in

(2.5) so as to get

∂Yt
∂Kt |At fixed

= αKα−1
t (AtLt)

1−α = αA1−αt kα−1t = αK
λ(1−α)
t kα−1t , (2.8)

by (**). We see that
∂Yt
∂Kt |At fixed

=
α

α + λ(1− α)

∂Yt
∂Kt |SP

. (2.9)

Thereby, whenever λ > 0, the social marginal productivity of capital is greater than the

private marginal productivity of capital.

d) The learning-by-investing in this economy is a positive externality. It therefore

“invites”government intervention in the market mechanism.

e) The policy proposal is to offer an investment subsidy s ∈ (0, 1) to the firms so that

their capital costs are reduced to (1 − s)(r + δ) per unit of capital per time unit. Given
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s, (2.1) is replaced by

∂Πi/∂Ki = αKα−1
i (ALi)

1−α − (1− s)(r + δ) = 0,

so that in equilibrium we have

αA1−αt kα−1t = (1− s)(r + δ),

where again kt ≡ Kt/Lt is pre-determined from the supply side. Thus, the equilibrium

interest rate satisfies

rt =
αA1−αt kα−1t

1− s − δ =

∂Yt
∂Kt |At fixed

1− s − δ, (2.10)

by (2.8).

Since there is no capital income taxation, the equilibrium interest rate constitutes

the intertemporal rate of transformation faced by the consumer. Effi ciency requires that

this rate equals the net social marginal productivity of capital, which is ∂Yt/∂Kt|SP − δ.
Substituting (2.9) into (2.10) the requirement thus is that s satisfies

α

(1− s) [α + λ(1− α)]

∂Yt
∂Kt |SP

− δ =
∂Yt
∂Kt |SP

− δ.

Both δ and ∂Yt/∂Kt|SP cancels out and we get

1− s =
α

α + λ(1− α)
,

or

s =
λ(1− α)

α + λ(1− α)
.

f) With α = 1/3 and λ = 1
2
, we get

s =
1
2
· 2/3

1/3 + 1
2
· 2/3

=
1

2
.

With α = 1/3 and λ = 1, we get

s =
2/3

1/3 + 2/3
=

2

3
.

So in the latter case the effi cient subsidy is larger. The intuition behind this fact is that a

higher value of the learning parameter reflects a larger positive externality which requires

a larger subsidy to be fully internalized.

From now on we consider the case 0 < λ < 1 and n > 0.
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g) For any production function Y = F (K,AL) which is homogeneous of degree one,

we have
Y

K
= F (1,

AL

K
). (2.11)

Under balanced growth with positive gross saving, Y/K is constant over time. Then

(2.11) implies that AL/K is constant over time so that

gK = gA + gL. (2.12)

In the present case A = Kλ and gL = n. Hence, (2.12) implies

gK = λgK + n,

from which follows

gK =
n

1− λ.

Thereby

gy = gY − n = gK − n =
n

1− λ − n =
λn

1− λ.

h) With λ < 1, the model generates semi-endogenous growth (positive per capita

growth is generated by an internal mechanism in the model but to sustain the growth

rate, growth in some exogenous factor, here the labor force, is needed). The subsidy rate,

s, has no permanent growth effect, “only”a level effect and, if raised to a higher constant

level, a temporary growth effect.

A higher n, however, implies a higher gy in balanced growth and thereby a permanent

growth effect.

Comment: Although there are diminishing marginal returns to capital at the aggregate

level, there are increasing returns to scale w.r.t. capital and labor taken together. In this

case growth in the labor force not only counterbalances the falling marginal productivity

of aggregate capital (this counter-balancing role reflects the complementarity between K

and L), but also upholds sustained productivity growth − the more so the higher is n.

3. Solution to Problem 3 (15 %)

a) The answer to this question is a matter of opinion. But a reasonable argument

should be given.

A “scale effect”is present if some variable representing the size of the economy affects

either the productivity level in the economy or the long-run productivity growth rate.

Usually, by size is meant population size.
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Personally, I tend to view the presence of “weak” scale effects (i.e., scale effects on

levels, not on growth) in an endogenous growth model as a strength of the model. My

case for this view is that I consider technical knowledge to be the main driving force

in the evolution of productivity − and technical knowledge is a nonrival good, thereby
suggesting an advantage of scale.

Let the aggregate production function be Y = F (K,AL), where A is the level of tech-

nical knowledge and F is a CRS production function with positive marginal productivities.

Consider (average) labor productivity: y = Y/L = F (K/L,A). Because of the nonrivalry

of technical knowledge, labor productivity depends on the total stock of knowledge, not

on this stock per worker (in contrast, labor productivity depends on capital per worker,

not on the total stock of capital). Hence, for the following reasons a scale effect on the

productivity level should be expected:

• Everything else equal, a larger population breeds more new ideas per time unit.

• The per capita cost of creating increases in knowledge through R&D is smaller the
larger is the population.

• As illustrated by the model of Problem 2, to the extent that learning by investing

is operative, it is (via knowledge spillovers) total investment that matters rather

than per capita investment; and, everything else equal, total investment is larger in

a larger economy.

There is, however, a counteracting factor. As environmental economics has emphas-

ized, a tendency to positive scale effects on levels may be more or less counteracted by

congestion and aggravated environmental problems ultimately caused by increased popu-

lation and a population density above some threshold.

As to the empirical aspects of the issue, we should first of all remember that in view

of cross-border diffusion of ideas and technology, a positive scale effect (whether weak

or strong) should not be seen as a prediction about individual countries, but rather as

pertaining to larger regions, nowadays probably the total industrialized part of the world.

So cross-country regression analysis is not the right framework for testing for scale effects,

whether on levels or the growth rate. The relevant scale variable is not the size of the

country, but the size of a larger region to which the country belongs, perhaps the whole

world; and multivariate time series analysis seems the most relevant approach.

Considering the very-long run history of population and per capita income of different

regions of the world, there clearly exists evidence in favour of scale effects (Kremer, 1993).
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Also more recent econometric studies supporting the hypothesis of positive scale effects

on levels are available. Finally, considering the economic growth in China and India in

the last three decades, we must acknowledge that this impressive performance at least

does not speak against the existence of positive scale effects on levels.

b) The phrase “variety is productive”is associated with a certain class of R&D-based

endogenous growth models, namely those where the productivity-driving force comes

from “horizontal innovations” involving new specialized inputs. The assumption is that

the “expanding input variety”allows gains from increased specialization and division of

labor.

This idea is for instance implicit in the production function of the manufacturing sector

in the model known as the “lab-equipment”model:

Yt = A

(
Nt∑
i=1

xit
1−β

)
Lβt , A > 0, 0 < β < 1, (3.1)

where Yt, Lt, and xit denote output of the firm, labor input, and input of the specialized

intermediate good i, respectively, where i = 1, 2, ..., Nt. Because the intermediate goods

enter the production function in a symmetric way and at the same time have the same

price (coming from the same markup on the same unit costs), in equilibrium the same

amount of each will be demanded, i.e., xit = xt, i = 1, 2, ..., Nt. So (3.1) gives

Yt = ANtx
1−β
t Lβt = A(Ntxt)

1−β(NtLt)
β,

where Ntxt measures the total input of intermediate goods. Keeping this constant (i.e.,

letting xt decrease along with increases in Nt), we see that nevertheless output increases

along with increases in Nt. Indeed,

∂Yt
∂Nt |Ntxt fixed

> 0,

reflecting that “variety is productive”. The mathematical background is that as (3.1) is

specified, the marginal productivity of each intermediate good is higher when its quantity

is lower. So splitting a given total quantity, Ntxt, up into more specialized intermediate

goods (higher Nt) gives higher output.

c) The R&D-based growth model by Charles Jones is an “expanding input variety”

model where “knowledge-spillovers”play a key role. In the notation by Acemoglu, the

expected output of new technical designs in R&D firm j is

EtṄjt = η̃Ljt, η̃ > 0.
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The individual R&D firms are “small” and take the research productivity, η̃, as given.

Nevertheless this productivity is determined according to

η̃ = ηNϕ
t , η > 0, ϕ < 1, (3.2)

where Nt is the total number of input varieties in the economy at time t. Because the

uncertainty is ideosyncratic and the economy is assumed “large”, at the aggregate level the

actual number of new technical designs invented per time unit coincide with the expected

number, i.e., Ṅt = EtṄt (by the “law of large numbers”).

Yet we do not necessarily have Ṅt =
∑

j Ṅjt = η̃LRt, where LRt =
∑

j Ljt. Instead,

according to Jones, we have

Ṅt = η̃LλRt, 0 < λ ≤ 1,

where η̃ is still given by (3.2). The point is that λ < 1 is possible. The interpretation is

that some “overlap”(“stepping on toes”) in R&D is likely. The “degree of overlapping”

in research is then measured by 1− λ.
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