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(3-hours closed book exam)1

As formulated in the course description, a score of 12 is given if the student’s per-

formance demonstrates precise understanding of the concepts and methods needed for

analyzing the factors that matter for economic growth.

1. Solution to Problem 1 (40 %)

Consider a simple closed economy where two goods get produced: corn and new ideas.

Time is continuous. The labor force (in this problem the same as population), Lt, grows

at an exogenous constant rate n ≥ 0, i.e., Lt = L0e
nt. People can work as farmers, LY t,

or researchers, LAt, where LY t + LAt = Lt and LAt = sALt, where, for simplicity, sA is

assumed constant, 0 < sA < 1. The production functions are:

Yt = Aσt J
αL1−α

Y t , σ > 0, 0 < α < 1, (*)

Ȧt = µAϕt LAt, µ > 0, ϕ < 1, (**)

where Yt is corn output, J is the amount of land (fixed), and At the level of technical

knowledge. Let the growth rate of a variable x > 0 at a given point in time be denoted

gx (not necessarily a constant). Let y ≡ Y/L.

a) From (*) follows

yt ≡
Yt
Lt

= Aσt J
αL−αY t = Aσt J

α [(1− sA)Lt]
−α ,

so that

gy = σgA − αgL = σgA − αn. (1.1)

1The solution below contains more details and more precision than can be expected at a three hours
exam. The percentage weights should only be regarded as indicative. The final grade will ultimately be
based on an assessment of the quality of the answers to the exam questions in their totality.



b) From (**) follows

gA ≡
Ȧt
At

= µAϕ−1
t sALt > 0,

since sA > 0.

c)
ġA
gA

= (ϕ− 1)gA + n = n− (1− ϕ)gA,

so that

ġA = [n− (1− ϕ)gA] gA T 0 for gA S
n

1− ϕ,

respectively. Hence

gA −→
n

1− ϕ ≡ g∗A for t −→∞.

d) By (1.1),

gy = σgA − αn −→t→∞ σ
n

1− ϕ − αn =

(
σ

1− ϕ − α
)
n ≡ g∗y. (1.2)

e) When n > 0, (1.2) implies

g∗y T 0 for
σ

1− ϕ T α, (1.3)

respectively.

f) From (1.3) follows that when n > 0, we have g∗y > 0 if and only if σ/(1 − ϕ) > α.

In this case (1.2) implies
∂g∗y
∂n

=
σ

1− ϕ − α > 0.

The economic intuition behind this is that per capita growth in this model is driven

by knowledge creation and knowledge is a nonrival good. This implies a scale effect

(advantage of scale measured by population size). In view of ϕ < 1, it is “only”a weak

scale effect, also called a scale effect on levels. It implies that higher population growth

results in higher per capita growth in the long run. This is in contrast to what is known

as a strong scale effect (corresponding to ϕ = 1) whereby a larger population as such

(without population growth) would be enough to generate a higher per capita growth

rate in the long run.

g) The alternative case, g∗y < 0, is also possible in the model, namely when σ/(1−ϕ) <

α. Here α is the output elasticity w.r.t. land which is a non-producible production factor.

So, for a given level of knowledge agriculture faces decreasing returns w.r.t. producible
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factors and population growth will result in falling per capita income (as in Malthus’

theory). To circumvent this inherent tendency to Malthusian misery, either a high output

elasticity w.r.t. knowledge (high σ) or a high growth rate of knowledge (high 1/(1− ϕ)),

or both, is needed. The case σ/(1− ϕ) < α is a situation where these conditions are not

satisfied.

h) No! Constant marginal productivity of labor in agriculture corresponds to the case

α = 0. The key formulas above are still valid, but now we necessarily have σ/(1 − ϕ) >

α = 0. This corresponds to the situation described under f) and g∗y < 0 is not possible.

Intuitively, in spite of n > 0, Malthusian misery is avoided because in agriculture there

are no diminishing returns w.r.t. producible inputs. And because of technical progress

there is indeed positive per capita growth.

2. Solution to Problem 2 (45 %)

We consider a closed economy with two production sectors, manufacturing and R&D.

Time is continuous. At the aggregate level we have:

Yt = TtK
α
t (h̄tLY t)

1−α, 0 < α < 1, (2.1)

K̇t = Yt − ctNt − δKt, δ ≥ 0, (2.2)

Tt = Aσt , σ > 0, (2.3)

Ȧt = ηAϕt h̄tLAt, η > 0, ϕ < 1, (2.4)

LY t + LAt = Lt, (2.5)

where Yt is manufacturing output, Kt is capital input, h̄t is average human capital in

the labor force, ct is per capita consumption, and Nt is population at time t; otherwise

notation corresponds to that in Problem 1.

We assume that all variables in the model are positive and remain so.

a) By (2.1),

gY = gT + αgK + (1− α)(gh̄ + gLY ). (2.6)

The TFP growth rate is defined as

gTFP ≡ gY − (αgK + (1− α)(gh̄ + gLY )) = gT , (2.7)

here.
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b) In (2.4) the case 0 < ϕ < 1 represents the “standing on the shoulders”case where

knowledge creation becomes easier the more knowledge there is already. In contrast,

the case ϕ < 0 represents the “fishing out”case, also called the “easiest inventions are

made first”case, where it becomes more and more diffi cult to create the next advance in

technical knowledge.

c) From (2.4) follows

gA ≡
Ȧt
At

= µAϕ−1
t h̄tLAt > 0,

so that
ġA
gA

= (ϕ− 1)gA + gh̄ + gLA . (2.8)

Additional information: After schooling in S years, individual human capital is h(S),

h′ > 0. No role for teachers and schooling equipment. Life expectancy constant over time

and S the same for all individuals independently of time of birth. After leaving school,

individuals works full-time until death. The population grows at a constant rate n > 0 :

Nt = N0e
nt. (2.9)

As age distribution is assumed stationary,

Lt = (1− β)Nt, (2.10)

where β is the constant fraction of this population under education (β is an increasing

function of S). It is further assumed that:

(i) the economy has balanced growth (gY , gC , gK , gA, gh̄, gLA , and gLY are constant);

and

(ii) Y − cN > 0 for all t.

d) Yes, as gLA and gLY are constant along a BGP, we can be sure that gLY = n along

the BGP. Indeed, suppose that instead gLY > n and still constant (as it must be along

a BGP). Then after some time we would have Lt (= LY t + LAt) growing at a rate above

n, which is a contradiction. And if we imagine that gLY < n, then, in order for the sum,

LY t + LAt, to grow at the rate n, we would need gLA > n and still constant, which again

leads to a contradiction.

e) The proposition says that given the accumulation equation (2.2) (where N is pro-

portional to L) and given gross saving is positive, we have along a BGP that gY = gK .
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f) It follows from the additional information above that h̄ = h(S) so that gh̄ = 0.

Then, by (2.6) and (2.3),

gy = gY − n = gT + αgK + (1− α)n− n = gT + α(gK − n) = gT + αgk. (2.11)

g) As gY = gK , we have gy = gk. Then, by (2.11),

gy =
σgA

1− α. (2.12)

h) The result (2.11) decomposes productivity growth into a “contribution”from tech-

nical change and a contribution from “capital deepening”(growth in k). The result (2.12),

however, goes deeper and displays that technical change in generated by knowledge growth

and that knowledge growth is the only source of productivity growth.

In view of (2.7) and (2.3), we have gTFP = gT = σgA. So we can re-write (2.11):

gy = gTFP + αgk. (2.13)

This equation corresponds to the statement: “The TFP growth rate measures the con-

tribution to productivity growth from growth in technology”; one could continue the

statement by saying that the remainder contribution comes from capital deepening. The

statement is somewhat misleading since it understates the contribution from knowledge

growth. Indeed, (2.12) displays that knowledge growth is the only source of productivity

growth and the reason is that also capital deepening is due to knowledge growth.

A way of reconciling the interpretations of (2.13) and (2.12) is by saying that (2.13)

displays the two factors behind the current increase in y, while (2.12) takes into account

that the capital deepening is itself, in a long-run perspective, driven by knowledge growth.

i) By (2.8) together with gh̄ = 0 and gLA = n follows that along a BGP (where gA is

constant)

0 = (ϕ− 1)gA + n,

whereby we find

gA =
n

1− ϕ. (2.14)

Hence, by (2.12),

gy =
σn

(1− ϕ)(1− α)
≡ g∗y. (2.15)

Here we have taken into account that in our endogenous growth model also knowledge

growth is endogenous. It is determined by resource allocation to R&D. Along a BGP
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the growth rate of knowledge is determined as in (2.14), implying that gy is ultimately

determined as in (2.15).

In (2.15) the role of n, σ and ϕ is analogue to that in Problem 1. However, the role of

the elasticity parameter, α, w.r.t. the non-human rival production factor in manufacturing

is here completely different from the role of α in the agricultural economy in Problem 1.

In the present model a higher α implies higher g∗y when n > 0, while in the agricultural

economy model it implied lower g∗y, cf. (1.2). The reason is that when the non-human

production factor is capital, it can be accumulated and its accumulation contributes to

growth. When the non-human production factor is land, however, it is not producible,

and its scarcity implies a drag on growth.

3. Solution to Problem 3 (15 %)

a) Formulas like gy = λn/(1−λ) come from semi-endogenous knowledge-driven growth

models like Arrow’s or Jones’. Here population growth contributes to per capita growth

as explained under f) in Problem 1. In view of cross-border diffusion of ideas and tech-

nology, this proposition should not be seen as a prediction about individual countries,

however. It should rather be seen as pertaining to larger regions, nowadays probably

the total industrialized part of the world. So the single country is not the relevant unit

of observation and cross-country regression analysis thereby not the right framework for

testing such a link from n to gy.

b) True!

We have

Yjt = F (Kjt, AjtLjt) = f(k̃jt)AjtLjt, j = 1, 2, ..., N,

where f is the production function on intensive form and k̃jt ≡ Kjt/(AjtLjt) is the effective

capital intensity. Let the common capital depreciation rate be denoted δ. From firms profit

maximization under perfect competition then follows

f ′(k̃jt) = r + δ,

which shows that the chosen effective capital intensity is the same for all countries and

constant over time. Let it be denoted k̃∗. The equilibrium real wage in country j at time

t will be

wjt =
∂Yjt
∂Ljt

=
∂
(
f(k̃)AjtLjt

)
∂Ljt

= f(k̃)Ajt = f(k̃)Aj0e
gt.
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Hence, in countries with a relatively high technology level, Aj0, the wage level will also be

relatively high for the same quality of labor (according to the present framework). There

will therefore be a strong economic incentive for workers to migrate.

c) There are two main versions of the expanding input variety model, namely the

lab-equipment version and the knowledge-spillover version. In the lab-equipment version

the invention production function is specified as

Ṅt = ηZt, η > 0, η constant, (3.1)

where knowledge (proportional to the number of existing varieties of intermediate goods)

is by Acemoglu denoted Nt while Zt is the aggregate R&D investment per time unit. This

investment is simply a flow of basic goods allocated to R&D.

In the knowledge-spillover version the input to R&D is research labor and the invention

production function is typically specified as

Ṅt = ηNϕ
t LRt, η > 0, ϕ ≤ 1, (3.2)

where LRt is the input of research labor at time t.

The lab-equipment version features no positive externality from knowledge creation,

yet there is underinvestment in R&D. This is because the monopoly position of innovators

implies that the invented specialized intermediate goods are priced above marginal costs.

Consequently, “too little”of these goods is demanded, that is, the market for each variety

is “too small”. A suffi cient policy remedy turns out to be a subsidy (of appropriate size)

to purchases of intermediate goods.

In the knowledge-spillover version market failure derives not only from monopoly pri-

cing but also from the positive intertemporal externality of R&D via the economy-wide

productivity factor Nϕ
t . This calls for a research subsidy in addition to the subsidy to

purchases of intermediate goods.

There are two famous sub-versions of (3.2). There is the knife-edge case ϕ = 1 which,

together with n = 0 (where n is the growth rate of the labor force L = LN +LY ), gives the

Romer version. This version features “fully endogenous”growth in the sense that positive

per capita growth is generated by an internal mechanism in the model and the “growth

engine”is strong enough to sustain a positive per capita growth rate forever without the

support by growth in an exogenous factor.

The alternative sub-case of (3.2) is the case ϕ < 1 which, together with n ≥ 0, gives

the Jones version. With n > 0, growth is here “semi-endogenous”growth in the sense
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that positive per capita growth is generated by an internal mechanism in the model, but

the “growth engine” is not strong enough to sustain a positive per capita growth rate

forever without the support by growth in an exogenous factor. In both the Jones version

and the models of Problem 1 and Problem 2 this exogenous factor is the population size.

–
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