
Economic Growth Lecture Note 5

14.02.2013. Christian Groth

Aspects of transitional dynamics.

Barro-style growth regression analysis

In this lecture note we deal with three issues, all of which are related to the transitional

dynamics of a growth model:

• Do poor countries necessarily tend to approach their steady state from below?

• How fast (or rather how slow) are the transitional dynamics in a growth model?

• What exactly is the theoretical foundation for a Barro-style growth regression equa-
tion?

The Solow growth model may serve as the analytical point of departure for the first

two issues (and to some extent also for the third issue) and to some extent also for the

third.

1 Point of departure: the Solow model

As is well-known, the fundamental differential equation for the Solow model is

·
̃() = (̃())− ( +  + )̃() ̃(0) = ̃0  0, (1)

where ̃() ≡ ()(()()) (̃()) ≡  (̃() 1) () = 0
 and () = 0



(standard notation). The production function  is neoclassical with CRS and the para-

meters satisfy 0    1 and  +  +   0 The production function on intensive form,

 therefore satisfies (0) ≥ 0  0  0  00  0 and

lim
̃→0

 0(̃) 
 +  + 


 lim

̃→∞
 0(̃) (A1)

Then there exists a unique non-trivial steady state, ̃∗  0 that is, a unique positive

solution to the equation

(̃∗) = ( +  + )̃∗ (2)
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Figure 1:

Furthermore, given an arbitrary ̃0  0 we have for all  ≥ 0
·
̃() T 0 for ̃() S ̃∗ (3)

respectively. The steady state, ̃∗ is thus globally asymptotically stable in the sense that

for all ̃0  0 lim→∞ ̃() = ∗ and this convergence is monotonic (in the sense that

̃()− ̃∗ does not change sign during the adjustment process).

From now on the dating of ̃ is suppressed unless needed for clarity. Fig. 1 illustrates

the dynamics as seen from the perspective of (1) (in this and the two next figures, 

should read . Fig. 2 illustrates the dynamics emerging when we rewrite (1) this way:

·
̃ = 

µ
(̃)−  +  + 


̃

¶
T 0 for ̃ S ̃∗

In Fig. 3 yet another illustration is exhibited, based on rewriting (1) this way:

·
̃

̃
= 

(̃)

̃
− ( +  + )

where (̃)̃ is gross saving per unit of capital,  ≡ ( − )

An important variable in the analysis of the adjustment process towards steady state
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is the output elasticity w.r.t. capital:








=

̃

(̃)
 0(̃) ≡ (̃) (4)

where 0  (̃)  1 for all ̃  0

2 Do poor countries tend to approach their steady

state from below?

From some textbooks (for instance Barro and Sala-i-Martin, 2004) one gets the impression

that poor countries tend to approach their steady state from below. But this is not what

the Penn World Table data seems to indicate. And from a theoretical point of view the

size of ̃0 relative to ̃
∗ is certainly ambiguous, whether the country is rich or poor. To

see this, consider a poor country with initial effective capital intensity

̃0 ≡ 0

00


Here00 will typically be small for a poor country (the country has not yet accumulated

much capital relative to its fast-growing population). The technology level, 0 however,

also tends to be small for a poor country. Hence, whether we should expect ̃0  ̃∗ or

̃0  ̃∗ is not obvious apriori. Or equivalently: whether we should expect that a poor

country’s GDP at an arbitrary point in time grows at a rate higher or lower than the

country’s steady-state growth rate,  +  is not obvious apriori.

While Fig. 3 illustrates the case where the inequality ̃0  ̃∗ holds, Fig. 1 and 2

illustrate the opposite case. There exists some empirical evidence indicating that poor

countries tend to approach their steady state from above. Indeed, Cho and Graham (1996)

find that “on average, countries with a lower income per adult are above their steady-state

positions, while countries with a higher income are below their steady-state positions”.

The prejudice that poor countries apriori should tend to approach their steady state

from below seems to come from a confusion of conditional and unconditional  conver-

gence. The Solow model predicts - and data supports - that within a group of countries

with similar structural characteristics (approximately the same  0    and ) the

initially poorer countries will grow faster than the richer countries. This is because the

poorer countries (small (0) = (̃0)0) will be the countries with relatively small initial

capital-labor ratio, 0 As all the countries in the group have approximately the same 0
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the poorer countries thus have ̃0 ≡ 00 relatively small, i.e., ̃0  ̃∗. From  ≡ 

≡ ̃ = (̃) follows that the growth rate in output per worker of these poor countries

tends to exceed  Indeed, we have generally

̇


=

·
̃

̃
+  =

 0(̃)
·
̃

(̃)
+  T  for

·
̃ T 0 i.e., for ̃ S ̃∗

So, within the group, the poor countries tend to approach the steady state, ̃∗ from below.

The countries in the world as a whole, however, differ a lot w.r.t. their structural

characteristics, including their 0 Unconditional  convergence is definitely rejected by

the data. Then there is no reason to expect the poorer countries to have ̃0  ̃∗ rather

than ̃0  ̃∗. Indeed, according to the mentioned study by Cho and Graham (1996), it

turns out that the data for the relatively poor countries favors the latter inequality rather

than the first.

3 Convergence speed and adjustment time

Our next issue is: How fast (or rather how slow) are the transitional dynamics in a growth

model? To put it another way: according to a given growth model with convergence, how

fast does the economy approach its steady state? The answer turns out to be: not very

fast - to say the least. This is a rather general conclusion and is confirmed by the empirics:

adjustment processes in a growth context are quite time consuming.

In Acemoglu’s textbook we meet the concept of speed of convergence at p. 54 (under

an alternative name, rate of adjustment) and p. 81 (in connection with Barro-style growth

regressions). Here we shall go more into detail with the issue of speed of convergence.

Again the Solow model is our frame of reference. We search for a formula for the speed

of convergence of ̃() and ()∗() in a closed economy described by the Solow model.

So our analysis is concerned with within-country convergence: how fast do variables such

as ̃ and  approach their steady state paths in a closed economy? The key adjustment

mechanism is linked to diminishing returns to capital (falling marginal productivity of

capital) in the process of capital accumulation. The problem of cross-country convergence

(which is what “ convergence” and “ convergence” are about) is in principle more

complex because also such mechanisms as technological catching-up and cross-country

factor movements are involved.
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3.1 Convergence speed for ̃()

The ratio of
·
̃() to (̃()− ̃∗) 6= 0 can be written

·
̃()

̃()− ̃∗
=

(̃()− ̃∗)

̃()− ̃∗
 (5)

since ̃∗ = 0 We define the instantaneous speed of convergence at time  as the

(proportionate) rate of decline of the distance
¯̄̄
̃()− ̃∗

¯̄̄
at time  and we denote it

SOC(̃)
1 Thus,

SOC(̃) ≡ −

³¯̄̄
̃()− ̃∗

¯̄̄´
¯̄̄

̃()− ̃∗
¯̄̄ = −(̃()− ̃∗)

̃()− ̃∗
 (6)

where the equality sign is valid for monotonic convergence.

Generally, SOC(̃) depends on both the absolute size of the difference ̃ − ̃∗ at time

 and its sign. But if the difference is already “small”, SOC(̃) will be “almost” constant

for increasing  and we can find an approximate measure for it. Let the function (̃) be

defined by (̃) ≡ (̃)−̃ where  ≡  +  +  A first-order Taylor approximation

of (̃) around ̃ = ̃∗ gives

(̃) ≈ (̃∗) + 0(̃∗)(̃ − ̃∗) = 0 + ( 0(̃∗)−)(̃ − ̃∗)

For ̃ in a small neighborhood of the steady state, ̃∗ we thus have

·
̃ = (̃) ≈ ( 0(̃∗)−)(̃ − ̃∗)

= (
 0(̃∗)


− 1)(̃ − ̃∗)

= (
̃∗

0
(̃∗)

(̃∗)
− 1)(̃ − ̃∗) (from (2))

≡ ((̃∗)− 1)(̃ − ̃∗) (from (4)).

Applying the definition (6) and the identity  ≡  +  +  we now get

SOC(̃) = −(̃()− ̃∗)

̃()− ̃∗
≈ (1− (̃∗))( +  + ) ≡ (̃∗)  0 (7)

This result tells us how fast, approximately, the economy approaches its steady state if

it starts “close” to it. If, for example, (̃∗) = 002 per year, then 2 percent of the gap

1Synonyms for speed of convergence are rate of convergence, rate of adjustment or adjustment speed.
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between ̃() and ̃∗ vanishes per year. We also see that everything else equal, a higher

output elasticity w.r.t. capital implies a lower speed of convergence.

In the limit, for
¯̄̄
̃ − ̃∗

¯̄̄
→ 0 the instantaneous speed of convergence coincides with

what is called the asymptotic speed of convergence, defined as

SOC∗(̃) ≡ lim
|̃−̃∗|→0

SOC(̃) = (̃∗) (8)

Multiplying through by−(̃()−̃∗) the equation (7) takes the form of a homogeneous
linear differential equation (with constant coefficient), ̇() = () the solution of which

is () = (0) With () = ̃()− ̃∗ and “=” replaced by “≈”, we get in the present
case

̃()− ̃∗ ≈ (̃(0)− ̃∗)−(̃
∗) (9)

This is the approximative time path for the gap between ̃() and ̃∗ and shows how the

gap becomes smaller and smaller at the rate (̃∗).

One of the reasons that the speed of convergence is important is that it indicates

what weight should be placed on transitional dynamics of a growth model relative to the

steady-state behavior. The speed of convergence matters for instance for the evaluation

of growth-promoting policies. In growth models with diminishing marginal productivity

of production factors, successful growth-promoting policies have transitory growth effects

and permanent level effects. Slower convergence implies that the full benefits are slower

to arrive.

3.2 Convergence speed for log ̃()

We have found an approximate expression for the convergence speed of ̃ Since models in

empirical analysis and applied theory are often based on log-linearization, we might ask

what the speed of convergence of log ̃ is. The answer is: approximately the same and

asymptotically exactly the same as that of ̃ itself! Let us see why.

A first-order Taylor approximation of log ̃() around ̃ = ̃∗ gives

log ̃() ≈ log ̃∗ + 1

̃∗
(̃()− ̃∗) (10)
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By definition

SOC(log ̃) = −(log ̃()− log ̃
∗)

log ̃()− log ̃∗ = − ̃()

̃()(log ̃()− log ̃∗)

≈ − ̃()

̃()
̃()−̃∗

̃∗

=
̃∗

̃()
SOC(̃)→ SOC∗(̃) = (̃∗) for ̃()→ ̃∗(11)

where in the second line we have used, first, the approximation (10), second, the definition

in (7), and third, the definition in (8).

So, at least in a neighborhood of the steady state, the instantaneous rate of decline of

the logarithmic distance of ̃ to the steady-state value of ̃ approximates the instantaneous

rate of decline of the distance of ̃ itself to its steady-state value. The asymptotic speed

of convergence of log ̃ coincides with that of ̃ itself and is exactly (̃∗)

In the Cobb-Douglas case (where (̃∗) is a constant, say ) it is possible to find an

explicit solution to the Solow model, see Acemoglu p. 53 and Exercise II.2. It turns out

that the instantaneous speed of convergence in a finite distance from the steady state is

a constant and equals the asymptotic speed of convergence, (1− )( +  + )

3.3 Convergence speed for ()∗()

The variable which we are interested in is usually not so much ̃ in itself, but rather labor

productivity, () ≡ ̃()() In the interesting case where   0 labor productivity does

not converge towards a constant. We therefore focus on the ratio ()∗() where ∗()

denotes the hypothetical value of labor productivity at time  conditional on the economy

being on its steady-state path, i.e.,

∗() ≡ ̃∗() (12)

We have
()

∗()
≡ ̃()()

̃∗()
=

̃()

̃∗
 (13)

As ̃() → ̃∗ for →∞ the ratio ()∗() converges towards 1 for →∞
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Taking logs on both sides of (13), we get

log
()

∗()
= log

̃()

̃∗
= log ̃()− log ̃∗

≈ log ̃∗ +
1

̃∗
(̃()− ∗)− log ̃∗ (first-order Taylor approx. of log ̃ )

=
1

(̃∗)
((̃())− (̃∗))

≈ 1

(̃∗)
((̃∗) +  0(̃∗)(̃()− ̃∗)− (̃∗)) (first-order approx. of (̃))

=
̃∗ 0(̃∗)

(̃∗)

̃()− ̃∗

̃∗
≡ (̃∗)

̃()− ̃∗

̃∗

≈ (̃∗)(log ̃()− log ̃∗) (by (10)). (14)

Multiplying through by −(log ̃()− log ̃∗) in (11) and carrying out the differentiation
w.r.t. time, we find an approximate expression for the growth rate of ̃

̃()

̃()
≡ ̃() ≈ −

̃∗

̃()
SOC(̃)(log ̃()− log ̃∗)

→ −(̃∗)(log ̃()− log ̃∗) for ̃()→ ̃∗ (15)

where the convergence follows from the last part of (11). We now calculate the time

derivative on both sides of (14) to get

(log
()

∗()
) = (log

̃()

̃∗
) =

̃()

̃()
≡ ̃()

≈ (̃∗)̃() ≈ −(̃∗)(̃∗)(log ̃()− log ̃∗) (16)

from (15). Dividing through by − log(()∗()) in this expression, taking (14) into
account, gives

−
(log

()

∗())

log
()

∗()

= −
(log

()

∗() − log 1)
log

()

∗() − log 1
≡ SOC(log



∗
) ≈ (̃∗) (17)

in view of log 1 = 0. So the logarithmic distance of  from its value on the steady-state

path at time  has approximately the same rate of decline as the logarithmic distance of

̃ from ̃’s value on the steady-state path at time  The asymptotic speed of convergence

for log ()∗() is exactly the same as that for ̃ namely (̃∗).

What about the speed of convergence of ()∗() itself? Here the same principle as

in (11) applies. The asymptotic speed of convergence for log(()∗()) is the same as

that for ()∗() (and vice versa), namely (̃∗)
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With one year as our time unit, standard parameter values are:  = 002  = 001

 = 005 and (̃∗) = 13 We then get (̃∗) = (1− (̃∗))( +  + ) = 0053 per year.

In the empirical Chapter 11 of Barro and Sala-i-Martin (2004), it is argued that a lower

value of (̃∗) say 0.02 per year, fits the data better. This requires (̃∗) = 075 Such a

high value of (̃∗) (≈ the income share of capital) may seem difficult to defend. But if

we reinterpret  in the Solow model so as to include human capital (skills embodied in

human beings and acquired through education and learning by doing), a value of (̃∗) at

that level may not be far out.

3.4 Adjustment time

Let  be the time that it takes for the fraction  ∈ (0 1) of the initial gap between ̃

and ̃∗ to be eliminated, i.e.,  satisfies the equation¯̄̄
̃()− ̃∗

¯̄̄
¯̄̄
̃(0)− ̃∗

¯̄̄ = ̃()− ̃∗

̃(0)− ̃∗
= 1−  (18)

where 1−  is the fraction of the initial gap still remaining at time . In (18) we have

applied that (̃()− ̃∗) = (̃(0)− ̃∗) in view of monotonic convergence.

By (9), we have

̃()− ̃∗ ≈ (̃(0)− ̃∗)−(̃
∗) 

In view of (18), this implies

1−  ≈ −(̃
∗) 

Taking logs on both sides and solving for  gives

 ≈ − log(1− )

(̃∗)
 (19)

This is the approximate adjustment time required for ̃ to eliminate the fraction  of the

initial distance of ̃ to its steady-state value, ̃∗, when the adjustment speed (speed of

convergence) is (̃∗)

Often we consider the half-life of the adjustment, that is, the time it takes for half of

the initial gap to be eliminated. To find the half-life of the adjustment of ̃ we put  = 1
2

in (19). Again we use one year as our time unit. With the previous parameter values, we

have (̃∗) = 0053 per year and thus

 1
2
≈ − log

1
2

0053
≈ 069

0053
= 13 1 years.
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As noted above, Barro and Sala-i-Martin (2004) estimate the asymptotic speed of con-

vergence to be (̃∗) = 0.02 per year. With this value, the half-life is approximately

 1
2
≈ − log

1
2

002
≈ 069
002

= 347 years.

And the time needed to eliminate three quarters of the initial distance to steady state,

 34 will then be about 70 years (= 2 · 35 years, since 1− 34 = 1
2
· 1
2
).

Among empirical analysts there is not general agreement about the size of (̃∗).

Some authors, for example Islam (1995), using a panel data approach, find speeds of

convergence considerably larger, between 005 and 009. McQuinne and Whelan (2007)

get similar results. There is a growing realization that the speed of convergence differs

across periods and groups of countries. Perhaps an empirically reasonable range is 002 

(̃∗)  009 Correspondingly, a reasonable range for the half-life of the adjustment will

be 76 years   1
2
 347 years.

Most of the empirical studies of convergence use a variety of cross-country regression

analysis of the kind described in the next section. Yet the theoretical frame of reference

is often the Solow model - or its extension with human capital (Mankiw et al., 1992).

These models are closed economy models with exogenous technical progress and deal

with “within-country” convergence. It is not obvious that they constitute an appropriate

framework for studying cross-country convergence in a globalized world where capital

mobility and to some extent also labor mobility are important and where some countries

are pushing the technological frontier further out, while others try to imitate and catch

up. At least one should be aware that the empirical estimates obtained may reflect

mechanisms in addition to the falling marginal productivity of capital in the process of

capital accumulation.

4 Barro-style growth regression equations

Barro-style growth regression analysis, which became very popular in the 1990s, draws

upon transitional dynamics aspects (including the speed of convergence) as well as steady

state aspects of neoclassical growth theory (for instance the Solow model or the Ramsey

model).

In his Section 3.2 of Chapter 3 Acemoglu presents Barro’s growth regression equations

in an unconventional form, see Acemoglu’s equations (3.12), (3.13), and (3.14). The left-

hand side appears as if it is just the growth rate of  (output per unit of labor) from one
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year to the next. But the true left-hand side of a Barro equation is the average compound

annual growth rate of  over many years. Moreover, since Acemoglu’s text is very brief

about the formal links to the underlying neoclassical theory of transitional dynamics, we

will spell the details out here.

Most of the preparatory work has already been done above. The point of departure is

a neoclassical one-sector growth model for a closed economy:

·
̃ = (̃)(̃)− ( +  + ) (20)

where ̃() ≡ ()(()()) () = 0
 and () = 0

 as above. The Solow

model is the special case where the saving-income ratio, (̃) is a constant  ∈ (0 1)
It is assumed that the model, (20), generates monotonic convergence, i.e., ̃ → ̃∗  0

for  → ∞ Hence, in a neighborhood of the steady state, all the above formulas, based

on the Solow model, are still valid. The asymptotic speed of convergence for ()∗()

is thus still (̃∗) as defined in (7). For notational convenience, we will just denote it

 interpreted as a derived parameter, i.e.,

 = (1− (̃∗))( +  + ) ≡ (̃∗) (21)

In view of () ≡ ̃()() we have () = ̃() +  By (16) and the definition of ,

() ≈  − (̃∗)(log ̃()− log ̃∗) ≈  − (log ()− log ∗()) (22)

where the last approximation comes from (14). This is Acemoglu’s Equation (3.10) (recall

that Acemoglu’s ∗ is the same as our ̃∗)

With the horizontal axis representing time, Fig. 4 gives an illustration of these tran-

sitional dynamics. As () =  log () and  =  log ∗() (22) is equivalent with

(log  − log ∗ )


≈ −(log  − log ∗ ) (23)

So again we have a simple differential equation of the form ̇() = () the solution of

which is () = (0) The solution of (23) is thus

log ()− log ∗() ≈ (log (0)− log ∗(0))−

As ∗() = ∗(0) this can written

log () ≈ log ∗(0) + + (log (0)− log ∗(0))− (24)
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Figure 4:

The solid curve in Fig. 4 depicts the evolution of log () in the case where ̃0  ̃∗ (note

that log ∗(0) = log (̃∗)+ log0). The dotted curve exemplifies the case where ̃0  ̃∗.

The figure illustrates per capita income convergence: low initial income is associated with

a high subsequent growth rate which, however, diminishes along with the diminishing

logarithmic distance of per capita income to its level on the steady state path.

For convenience, we will from now on treat (24) as an equality. Subtracting log (0)

on both sides, we get

log ()− log (0) = log ∗(0)− log (0) + + (log (0)− log ∗(0))−

= − (1− −)(log (0)− log ∗(0))

Dividing through by   0 gives

log ()− log (0)


=  − 1− −


(log (0)− log ∗(0)) (25)

On the left-hand side appears the average compound annual growth rate of  from period

0 to period  which we will denote ̄(0 ) On the right-hand side appears the initial

distance of log  to its hypothetical level along the steady state path. The coefficient,

−(1 − −) to this distance is negative and approaches zero for  → ∞ Thus (25) is

a translation into growth form of the convergence of log  towards the steady-state path,

log ∗  in the theoretical model without shocks. Rearranging the right-hand side, we get

̄(0 ) =  +
1− −


log ∗(0)− 1− −


log (0) ≡ 0 + 1 log (0)
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where both the constant 0 ≡  +
£
(1− −)

¤
log ∗(0) and the coefficient 1 ≡ −(1−

−) are determined by “structural characteristics”. Indeed,  is determined by   

and (̃∗) through (21), and ∗(0) is determined by 0 and (̃∗) through (12), where, in

turn, ̃∗ is determined by the steady state condition (̃∗)(̃∗) = (+ + )̃∗ ∗ being

the saving-income ratio in the steady state.

With data for  countries,  = 1 2. . .   a test of the unconditional convergence

hypothesis may be based on the regression equation

̄(0 ) = 0 + 1 log (0) +   ∼ (0 2) (26)

where  is the error term. This can be seen as a Barro growth regression equation in

its simplest form. For countries in the entire world, the theoretical hypothesis 1  0 is

clearly not supported (or, to use the language of statistics, the null hypothesis, 1 = 0 is

not rejected).2

Allowing for the considered countries having different structural characteristics, the

Barro growth regression equation takes the form

̄(0 ) = 0 + 1 log (0) +  1  0  ∼ (0 2) (27)

In this “fixed effects” form, the equation has often been applied for a test of the conditional

convergence hypothesis, 1  0 often supporting this hypothesis.

From the estimate of 1 the implied estimate of the asymptotic speed of convergence,

 is readily obtained through the formula 1 ≡ (1−−) Even  and therefore also the
slope, 1 does depend, theoretically, on country-specific structural characteristics. But

the sensitivity on these do not generally seem large enough to blur the analysis based on

(27) which abstracts from this dependency.

With the aim of testing hypotheses about growth determinants, Barro (1991) and

Barro and Sala-i-Martin (1992, 2004) decompose 0 so as to reflect the role of a set of

measurable potentially causal variables,

0 = 0 + 1 + 22 + . . . + 

where the ’s are the coefficients and the ’s are the potentially causal variables.3 These

variables could be measurable Solow-type parameters among those appearing in (20)

2Cf. Acemoglu, p. 16. For the OECD countries, however, 1 is definitely estimated to be negative (cf.

Acemoglu, p. 17).
3Note that our  vector is called  in Acemoglu, pp. 83-84. So Acemoglu’s  is to be distinquished

from our  which denotes the asymptotic speed of convergence.

14



or a broader set of determinants, including for instance the investment-income ratio,

the educational level in the labor force, and institutional variables like rule of law and

democracy. Some studies include the initial within-country inequality in income or wealth

among the ’s and extend the theoretical framework correspondingly.4

From an econometric point of view there are several problematic features in regressions

of Barro’s form (also called the  convergence approach). These problems are discussed

in Acemoglu pp. 82-85.
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Economic Growth Lecture Note 6

04.02.2013 Christian Groth

On the Simon-Kremer version of the
population-breeds-ideas model

This lecture note relates to Section 2 of Acemoglu’s Chapter 4 and explains the details

of what Acemoglu (p. 114) calls the Simon-Kremer version of the population-breeds-ideas

model.

1 The model

Suppose a pre-industrial economy can be described by:

 = 
 


 

1−   0 0    1 (1)

̇ = 
   0 0   ≤ 1 0  0 given (2)

 =


̄
≡  ̄  0 (3)

where  is aggregate output,  the level of technical knowledge,  the labor force (=

population),  the amount of land (fixed), and ̄ subsistence minimum (so the  in

Acemoglu’s equation (4.2) is simply the inverse of the subsistence minimum). Both 

and ̄ are considered as constant parameters. Time is continuous and it is understood

that a kind of Malthusian population mechanism (see below) is operative behind the

scene.

The exclusion of capital from the aggregate production function, (1), reflects the pre-

sumption that capital (tools etc.) is quantitatively of minor importance in a pre-industrial

economy. In accordance with the replication argument, the production function has CRS

w.r.t. the rival inputs, labor and land. The factor 
 measures total factor productivity.

In view of (2), the technology level,  is rising over time. The increase in  per time

unit is seen to be an increasing function of the size of the population. This reflects the hy-

pothesis that population breeds ideas; these are non-rival and enter the pool of technical

knowledge available for society as a whole. The rate per capita,  by which population

breeds ideas is an increasing function of the already existing level of technical knowledge.

1



This reflects the hypothesis that the larger is the stock of ideas, the easier do new ideas

arise (perhaps by combination of existing ideas).

Equation (3) is a shortcut description of a Malthusian population mechanism. Suppose

the true mechanism is

̇ = ( − ̄)   0 ̄  0 (4)

where  ≡  is per capita income and ̄ is subsistence minimum. A rise in  above

̄will lead to increases in , thereby generating downward pressure on  and perhaps

end up pushing  below ̄When this happens, population will be decreasing for a while

and so return towards its sustainable level, ̄ Equation (3) treats this mechanism as if

the population instantaneously adjusts to its sustainable level (as if  →∞). The model
hereby gives a long-run picture, ignoring the Malthusian ups and downs in population

and per capita income about the subsistence minimum. The important feature is that the

technology level and thereby  as well as the sustainable population will be rising over

time. This speeds up the arrival of new ideas and so raises  even faster.

For simplicity, we now normalize the constant  to be 1.

2 Law of motion

The dynamics of the model can be reduced to one differential equation, the law of motion

of technical knowledge. By (3),  =  = 
 


 . Consequently 

1−
 = 

 so that

 = 
1

1−


1−
 

Substituting this into (2) gives the law of motion of technical knowledge:

̇ = 
1

1−
+ 

1−
 ≡ ̂

+ 
1−

  (5)

Define  ≡ + 
1− and assume   1 Then (5) can be written

̇ = ̂

  (6)

which is a nonlinear differential equation in 1 Let  ≡ 1− Then

̇ = (1− )
−
 ̂


 = (1− )̂ (7)

1The differential equation, (6), is a special case of what is known as the Bernoulli equation.
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Figure 1:

a constant. To find  from this, we only need simple integration:

 = 0 +

Z 

0

̇ = 0 + (1− )̂

As  = 
1

1− and 0 = 
1−
0  this implies

 = 
1

1−
 =

h

1−
0 + (1− )̂

i 1
1−

=
1h


1−
0 − (− 1)̂

i 1
−1

 (8)

3 The inevitable ending of the Malthusian regime

The result (8) helps us in understanding why the Malthusian regime must come to an end

(at least if the model is an acceptable description of the Malthusian regime).

Although to begin with,  may grow extremely slowly, the growth in  will be

accelerating because of the positive feedback (visible in (2)) from both rising population

and rising . Indeed, since   1 the denominator in (8) will be decreasing over time and

approach zero in finite time, namely as  approaches the finite value ∗ = 
1−
0 ((−1)̂)

Fig. 1 illustrates. The evolution of technical knowledge becomes explosive as  approaches

∗

It follows from (1) that explosive growth in  implies explosive growth in  The

acceleration in the evolution of  will sooner or later make  move fast enough so that

the Malthusian population mechanism (which for biological reasons has to be slow) can

not catch up. Then, what was in the Malthusian population mechanism, equation (4),

3



earlier only a transitory excess of  over ̄, will sooner or later become a permanent excess

and take the form of sustained growth in .

According to equation (4), this should lead to a permanently rising population growth

rate. As economic history has testified, however, the rising standard of living changed

the demographics and resulted in the “demographic transition” with fertility declining

faster than mortality. This results in completely different dynamics about which the

present model has nothing to say.2 As to the demographic transition as such, explanations

suggested by economists include: higher opportunity costs of raising children, the trade-

off between “quality” (educational level) of the offspring and their “quantity”, skill-biased

technical change, and improved contraception technology.

The present model is about dynamics in the Malthusian regime of the pre-industrial

epoch. The story told by the model is the following. When the feedback parameter, 

is above one, the Malthusian regime has to come to an end because the battle between

scarcity of land (or natural resources more generally) and technological progress will

inevitably be won by the latter.3

4 Closing remarks

The cases   1 and  = 1 are considered in Exercise III.3. The case  = 1 corresponds

to Acemoglu’s first version (p. 113) of the population-breeds-ideas model. In that version,

 has the value 1−  and  = 0 (two arbitrary knife-edge conditions). Then a constant

growth rate in   and  results and  remains at ̄ forever.

On the basis of demographers’ estimates of the growth in global population over most

of human history, Kremer (1993) finds empirical support for   1

5 Appendix

Mathematically, the background for the explosion result is that the solution to a first-

order differential equation of the form ̇() = + ()   1  6= 0 (0) = 0 given, is

always explosive. Indeed, the solution,  = () will have the property that ()→ ±∞
2Kremer (1993), however, also includes an extended model taking some of these changed dynamics

into account.
3The mathematical background for the explosion result is explained in the appendix.
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for  → ∗ for some fixed ∗  0; and thereby the solution is defined only on a bounded

time interval.

Take the differential equation ̇() = 1 + ()2 as an example. As is well-known, the

solution is () = tan  = sin  cos , defined on the interval (−2 2)
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