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Learning-by-investing in two versions

This lecture note is a supplement to Acemoglu, §11.4-5.

In endogenous growth theory the Ramsey framework has been applied extensively as

a simplifying description of the household sector. In most endogenous growth theory

the focus is on mechanisms that generate and shape technological change. Different

hypotheses about the generation of new technologies are then often combined with a

simplified picture of the household sector as in the Ramsey model. Since this results in a

simple determination of the long-run interest rate (the modified golden rule), the analyst

can in a first approach concentrate on the main issue, technical change, without being

disturbed by aspects secondary to this issue.

As an example, let us consider one of the basic endogenous growth models, the

learning-by-investing model, sometimes called the learning-by-doing model. Learning from

investment experience and diffusion across firms of the resulting new technical knowledge

(positive externalities) play an important role.

There are two popular alternative versions of the model. The distinguishing feature

is whether the learning parameter (see below) is less than one or equal to one. The first

case corresponds to (a simplified version of) a famous model by Nobel laureate Kenneth

Arrow (1962). The second case has been drawn attention to by Paul Romer (1986) who

assumes that the learning parameter equals one.1 These two contributions start out from

a common framework which we now consider.

1 The common framework

We consider a closed economy with firms and households interacting under conditions of

perfect competition. Later, a government attempting to internalize the positive invest-

ment externality is introduced.

1This is the only case considered in Acemoglu’s Chapter 11.
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Let there be  firms in the economy ( “large”). Suppose they all have the same

neoclassical production function,  with CRS. Firm no.  faces the technology

 =  ( )  = 1 2   (1)

where the economy-wide technology level  is an increasing function of society’s previous

experience, proxied by cumulative aggregate net investment:

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (2)

where  is aggregate net investment and  =
P


2

The idea is that investment − the production of capital goods − as an unintended
by-product results in experience or what we may call on-the-job learning. Experience

allows producers to recognize opportunities for process and quality improvements. In this

way knowledge is achieved about how to produce the capital goods in a cost-efficient way

and how to design them so that in combination with labor they are more productive and

better satisfy the needs of the users. Moreover, as emphasized by Arrow,

“each new machine produced and put into use is capable of changing the

environment in which production takes place, so that learning is taking place

with continually new stimuli” (Arrow, 1962).3

The learning is assumed to benefit essentially all firms in the economy. There are

knowledge spillovers across firms and these spillovers are reasonably fast relative to the

time horizon relevant for growth theory. In our macroeconomic approach both  and

 are in fact assumed to be exactly the same for all firms in the economy. That is, in

this specification the firms producing consumption-goods benefit from the learning just

as much as the firms producing capital-goods.

The parameter  indicates the elasticity of the general technology level,  with respect

to cumulative aggregate net investment and is named the “learning parameter”. Whereas

Arrow assumes   1 Romer focuses on the case  = 1 The case of   1 is ruled out

since it would lead to explosive growth (infinite output in finite time) and is therefore not

plausible.

2For arbitrary units of measurement for labor and output the hypothesis is  = 
    0 In (2)

measurement units are chosen such that  = 1 .
3Concerning empirical evidence of learning-by-doing and learning-by-investing, see Lecture Note 11.

The citation of Arrow indicates that it was rather experience from cumulative gross investment he had

in mind as the basis for learning. Yet the hypothesis in (2) is the more popular one - seemingly for no

better reason that that it leads to simpler dynamics. Another way in which (2) deviates from Arrow’s

original ideas is by assuming that technical progress is disembodied rather than embodied, an important

distinction to which we return in Lecture Note 11.
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1.1 The individual firm

In the simple Ramsey model we assumed that households directly own the capital goods

in the economy and rent them out to the firms. When discussing learning-by-investment

it somehow fits the intuition better if we (realistically) assume that the firms generally

own the capital goods they use. They then finance their capital investment by issuing

shares and bonds. Households’ financial wealth then consists of these shares and bonds.

Consider firm  There is perfect competition in all markets. So the firm is a price

taker. Its problem is to choose a production and investment plan which maximizes the

present value,  of expected future cash-flows. Thus the firm chooses ( )
∞
=0 to

maximize

 =

Z ∞

0

[ ( )−  − ] 
−  

0


subject to ̇ =  −  Here  and  are the real wage and gross investment,

respectively, at time ,  is the real interest rate at time  and  ≥ 0 is the capital

depreciation rate. Capital installation costs and other kinds of adjustment costs are

assumed minor and can be ignored. It can be shown that in this case the firm’s problem

is equivalent to maximization of current pure profits in every short time interval. So, as

hitherto, we can describe the firm as just solving a series of static profit maximization

problems.

We suppress the time index when not needed for clarity. At any date firm  maximizes

current pure profits, Π =  ( ) − ( + ) −  This leads to the first-order

conditions for an interior solution:

Π = 1( )− ( + ) = 0 (3)

Π = 2( )−  = 0

Behind (3) is the presumption that each firm is small relative to the economy as a whole,

so that each firm’s investment has a negligible effect on the economy-wide technology level

. Since  is homogeneous of degree one, by Euler’s theorem,4 the first-order partial

derivatives, 1 and 2 are homogeneous of degree 0. Thus, we can write (3) as

1( ) =  +  (4)

where  ≡ . Since  is neoclassical, 11  0 Therefore (4) determines  uniquely.

4A function ( ) defined in a domain  is homogeneous of degree  if for all ( ) in  ( )

= ( ) for all   0 If a differentiable function ( ) is homogeneous of degree  then (i)

 01( ) +  02( ) = ( ) and (ii) the first-order partial derivatives,  01( ) and  02( ) are
homogeneous of degree − 1.
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From (4) follows that the chosen capital-labor ratio,  will be the same for all firms, say

̄

1.2 The individual household

The household sector is described by our standard Ramsey framework with inelastic labor

supply and a constant population growth rate  ≥ 0. The households have CRRA in-
stantaneous utility with parameter   0 The pure rate of time preference is a constant,

. The flow budget identity in per capita terms is

̇ = ( − ) +  −  0 given,

where  is per capita financial wealth. The NPG condition is

lim
→∞


−  

0
(−) ≥ 0

The resulting consumption-saving plan implies that per capita consumption follows the

Keynes-Ramsey rule,
̇


=
1


( − )

and the transversality condition that the NPG condition is satisfied with strict equality.

In general equilibrium of our closed economy without natural resources and government

debt,  will equal 

1.3 Equilibrium in factor markets

In equilibrium
P

 =  and
P

  =  where  and  are the available amounts

of capital and labor, respectively (both pre-determined). Since  =
P

 =
P

 

=
P

 ̄ = ̄ the chosen capital intensity,  satisfies

 = ̄ =



≡   = 1 2   (5)

As a consequence we can use (4) to determine the equilibrium interest rate:

 = 1( )−  (6)

That is, whereas in the firm’s first-order condition (4) causality goes from  to  in

(6) causality goes from  to  Note also that in our closed economy with no natural

resources and no government debt,  will equal 
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The implied aggregate production function is

 =
X


 ≡
X


 =
X


 ( ) =
X


 () (by (1) and (5))

=  ()
X


 =  () =  () =  () (by (2)), (7)

where we have several times used that  is homogeneous of degree one.

2 The arrow case:   1

The Arrow case is the robust case where the learning parameter satisfies 0    1

The method for analyzing the Arrow case is analogue to that used in the study of the

Ramsey model with exogenous technical progress. In particular, aggregate capital per

unit of effective labor, ̃ ≡ () is a key variable. Let ̃ ≡ () Then

̃ =
 ()


=  (̃ 1) ≡ (̃)  0  0  00  0 (8)

We can now write (6) as

 =  0(̃)−  (9)

where ̃ is pre-determined.

2.1 Dynamics

From the definition ̃ ≡ () follows

·
̃

̃
=

̇


− ̇


− ̇


=

̇


− 

̇


−  (by (2))

= (1− )
 −  − 


−  = (1− )

̃ − ̃− ̃

̃
−  where ̃ ≡ 


≡ 




Multiplying through by ̃ we have

·
̃ = (1− )((̃)− ̃)− [(1− ) + ] ̃ (10)

In view of (9), the Keynes-Ramsey rule implies

 ≡ ̇


=
1


( − ) =

1



³
 0(̃)−  − 

´
 (11)

Defining ̃ ≡  now follows


̃

̃
=

̇


− ̇


=

̇


− 

̇


=

̇


− 

 − − 


=

̇


− 

̃
(̃ − ̃− ̃)

=
1


( 0(̃)−  − )− 

̃
(̃ − ̃− ̃)
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Multiplying through by ̃ we have

·
̃ =

∙
1


( 0(̃)−  − )− 

̃
((̃)− ̃− ̃)

¸
̃ (12)

The two coupled differential equations, (10) and (12), determine the evolution over

time of the economy.

2.1.1 Phase diagram

Fig. 1 depicts the phase diagram. The
·
̃ = 0 locus comes from (10), which gives

·
̃ = 0 for ̃ = (̃)− ( + 

1− 
)̃ (13)

where we realistically may assume that + (1− )  0 As to the
·
̃ = 0 locus, we have

·
̃ = 0 for ̃ = (̃)− ̃ − ̃


( 0(̃)−  − )

= (̃)− ̃ − ̃


 ≡ (̃) (from (11)). (14)

Before determining the slope of the
·
̃ = 0 locus, it is convenient to consider the steady

state, (̃∗ ̃∗).

2.1.2 Steady state

In a steady state ̃ and ̃ are constant so that the growth rate of  as well as  equals

̇+  i.e.,

̇


=

̇


=

̇


+  = 

̇


+ 

Solving gives

̇


=

̇


=



1− 


Thence, in a steady state

 =
̇


−  =



1− 
−  =



1− 
≡ ∗  and (15)

̇


= 

̇


=



1− 
= ∗  (16)

The steady-state values of  and ̃ respectively, will therefore satisfy, by (11),

∗ =  0(̃∗)−  = + ∗ = + 


1− 
 (17)
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Figure 1:

To ensure existence of a steady state we assume that the private marginal product of

capital is sufficiently sensitive to capital per unit of effective labor, from now called the

“capital intensity”:

lim
̃→0

 0(̃)   + + 


1− 
 lim

̃→∞
 0(̃) (A1)

The transversality condition of the representative household is that lim→∞ 
−  

0
(−)

= 0 where  is per capita financial wealth. In general equilibrium  =  ≡ ̃ where

 in steady state grows according to (16). Thus, in steady state the transversality con-

dition can be written

lim
→∞

̃∗(
∗
−∗+) = 0 (TVC)

For this to hold, we need

∗  ∗ +  =


1− 
 (18)

by (15). In view of (17), this is equivalent to

−   (1− )


1− 
 (A2)

which we assume satisfied.

As to the slope of the
·
̃ = 0 locus we have from (14)

0(̃) =  0(̃)−  − 1

(̃
 00(̃)


+ )   0(̃)−  − 1

 (19)
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since  00  0 At least in a small neighborhood of the steady state we can sign the right-

hand side of this expression. Indeed,

 0(̃∗)− − 1

∗ = + ∗ −

1


∗ = + 



1− 
− 

1− 
= −− (1− )



1− 
 0 (20)

by (15) and (A2). So, combining with (19), we conclude that 0(̃∗)  0 By continuity,

in a small neighborhood of the steady state, 0(̃) ≈ 0(̃∗)  0 Therefore, close to the

steady state, the
·
̃ = 0 locus is positively sloped, as indicated in Fig. 1.

Still, we have to check the following question: In a neighborhood of the steady state,

which is steeper, the
·
̃ = 0 locus or the

·
̃ = 0 locus? The slope of the latter is  0(̃)− −

(1− ) from (13) At the steady state this slope is

 0(̃∗)−  − 1

∗ ∈ (0 0(̃∗))

in view of (20) and (19). The
·
̃ = 0 locus is thus steeper. So, the

·
̃ = 0 locus crosses the

·
̃ = 0 locus from below and can only cross once.

The assumption (A1) ensures existence of a ̃∗  0 satisfying (17). As Fig. 1 is drawn,

a little more is implicitly assumed namely that there exists a ̄  0 such that the private

net marginal product of capital equals the the steady-state growth rate of output, i.e.,

 0(̄)−  = (
̇


)∗ = (

̇


)∗ +

̇


=



1− 
+  =



1− 
 (21)

where we have used (16). Thus, the tangent to the
·
̃ = 0 locus at ̃ = ̄ is horizontal and

̄  ̃∗ as indicated in the figure.

Note, however, that ̄ is not the golden-rule capital intensity. The latter is the capital

intensity, ̃ at which the social net marginal product of capital equals the steady-state

growth rate of output (see Appendix). If ̃ exists, it will be larger than ̄ as indicated

in Fig. 1. To see this, we now derive a convenient expression for the social marginal

product of capital. From (7) we have




= 1(·) + 2(·)−1 =  0(̃) + 2(·)(−1) (by (8))

=  0(̃) + ( (·)− 1(·))−1 (by Euler’s theorem)

=  0(̃) + ((̃)−  0(̃))−1 (by (8) and (2))

=  0(̃) + ((̃)−1−  0(̃)) =  0(̃) + 
(̃)− ̃ 0(̃)

̃
  0(̃)

in view of ̃ = () = 1−−1 and (̃)̃ −  0(̃)  0 As expected, the positive

externality makes the social marginal product of capital larger than the private. Since
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we can also write  = (1− ) 0(̃) + (̃)̃ we see that  is a decreasing

function of ̃

Now, the golden rule capital intensity, ̃ will be that capital intensity which satisfies

 0(̃) + 
(̃)− ̃

0(̃)

̃
−  = (

̇


)∗ =



1− 


To ensure there exists such a ̃ we strengthen the right-hand side inequality in (A1)

by the assumption

lim
̃→∞

Ã
 0(̃) + 

(̃)− ̃ 0(̃)

̃

!
  +



1− 
 (A3)

This, together with (A1) and 
00
 0, implies existence of a unique ̃, and in view of

our additional assumption (A2) we have 0  ̃∗  ̄  ̃ as displayed in Fig. 1.

2.1.3 Stability

The arrows in Fig. 1 indicate the direction of movement, as determined by (10) and

(12)). We see that the steady state is a saddle point. The dynamic system has one pre-

determined variable, ̃ and one jump variable, ̃ The saddle path is not parallel to the

jump variable axis. We claim that for a given ̃0  0 (i) the initial value of ̃0 will be the

ordinate to the point where the vertical line ̃ = ̃0 crosses the saddle path; (ii) over time

the economy will move along the saddle path towards the steady state. Indeed, this time

path is consistent with all conditions of general equilibrium, including the transversality

condition (TVC). And the path is the only technically feasible path with this property.

Indeed, all the divergent paths in Fig. 1 can be ruled out as equilibrium paths because

they can be shown to violate the transversality condition of the household.

In the long run  and  ≡  ≡ ̃ = (̃∗) grow at the rate (1− ) which is

positive if and only if   0 This is an example of endogenous growth in the sense that

the positive long-run per capita growth rate is generated through an internal mechanism

(learning) in the model (in contrast to exogenous technology growth as in the Ramsey

model with exogenous technical progress).

2.2 Two types of endogenous growth

One may distinguish between two types of endogenous growth. One is called fully en-

dogenous growth which occurs when the long-run growth rate of  is positive without the

support by growth in any exogenous factor (for example exogenous growth in the labor
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force); the Romer case, to be considered in the next section, provides an example. The

other type is called semi-endogenous growth and is present if growth is endogenous but a

positive per capita growth rate can not be maintained in the long run without the support

by growth in some exogenous factor (for example growth in the labor force). Clearly, in

the Arrow model of learning by investing, growth is “only” semi-endogenous. The tech-

nical reason for this is the assumption that the learning parameter  is below 1 which

implies diminishing returns to capital at the aggregate level. If and only if   0 do we

have ̇  0 in the long run.5 In line with this, ∗  0

The key role of population growth derives from the fact that although there are di-

minishing marginal returns to capital at the aggregate level, there are increasing returns

to scale w.r.t. capital and labor. For the increasing returns to be exploited, growth in the

labor force is needed. To put it differently: when there are increasing returns to  and 

together, growth in the labor force not only counterbalances the falling marginal product

of aggregate capital (this counter-balancing role reflects the complementarity between 

and ), but also upholds sustained productivity growth.

Note that in the semi-endogenous growth case ∗ = (1 − )2  0 for   0

That is, a higher value of the learning parameter implies higher per capita growth in

the long run, when   0. Note also that ∗ = 0 = ∗ that is, in the semi-

endogenous growth case preference parameters do not matter for long-run growth. As

indicated by (15), the long-run growth rate is tied down by the learning parameter, 

and the rate of population growth,  But, like in the simple Ramsey model, it can be

shown that preference parameters matter for the level of the growth path. This suggests

that taxes and subsidies do not have long-run growth effects, but “only” level effects.

3 Romer’s limiting case:  = 1  = 0

We now consider the limiting case  = 1 We should think of it as a thought experiment

because, by most observers, the value 1 is considered an unrealistically high value for the

learning parameter. To avoid a forever rising growth rate we have to add the restriction

 = 0

The resulting model turns out to be extremely simple and at the same time it gives

striking results (both circumstances have probably contributed to its popularity).

5Note, however, that the model, and therefore (15), presupposes  ≥ 0 If   0 then  would tend to

be decreasing and so, by (2), the level of technical knowledge would be decreasing, which is implausible,

at least for a modern industrialized economy.
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First, with  = 1 we get  =  and so the equilibrium interest rate is, by (6),

 = 1()−  = 1(1 )−  ≡ ̄

where we have divided the two arguments of 1() by  ≡  and again used Euler’s

theorem. Note that the interest rate is constant “from the beginning” and independent

of the historically given initial value of  0. The aggregate production function is now

 =  () =  (1 )  constant,

and is thus linear in the aggregate capital stock.6 In this way the general neoclassical

presumption of diminishing returns to capital has been suspended and replaced by exactly

constant returns to capital. So the Romer model belongs to the class of reduced-form AK

models, that is, models where in general equilibrium the interest rate and the output-

capital ratio are necessarily constant over time whatever the initial conditions.

The method for analyzing an AKmodel is different from the one used for a diminishing

returns model as above.

3.1 Dynamics

The Keynes-Ramsey rule now takes the form

̇


=
1


(̄ − ) =

1


(1(1 )−  − ) ≡  (22)

which is also constant “from the beginning”. To ensure positive growth, we assume

1(1 )−    (A1’)

And to ensure bounded intertemporal utility (and existence of equilibrium), it is assumed

that

  (1− ) and therefore    +  = ̄ (A2’)

Solving the linear differential equation (22) gives

 = 0
 (23)

where 0 is unknown so far (because  is not a predetermined variable). We shall find 0

by applying the households’ transversality condition

lim
→∞


−̄ = lim

→∞


−̄ = 0 (TVC)

6Acemoglu, p. 400, writes this as  = ̃()
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Figure 2: Illustration of the fact that for  = ̄ (̄ given),  (1 ̄)   1(1 ̄)

First, note that the dynamic resource constraint for the economy is

̇ =  − −  =  (1 ) − − 

or, in per-capita terms,

̇ = [ (1 )− ]  − 0
 (24)

In this equation it is important that  (1 )−−  0 To understand this inequality, note

that, by (A2’),  (1 )−−   (1 )−−̄ =  (1 )−1(1 ) = 2(1 )  0 where

the first equality is due to ̄ = 1(1 )− and the second is due to the fact that since  is
homogeneous of degree 1, we have, by Euler’s theorem,  (1 ) = 1(1 ) · 1+2(1 )

 1(1 )   in view of (A1’). The key property  (1 ) − 1(1 )  0 is illustrated

in Fig. 2.

The solution of a general linear differential equation of the form ̇() + () = 

with  6= − is
() = ((0)− 

+ 
)− +



+ 
 (25)

Thus the solution to (24) is

 = (0 − 0

 (1 )−  − 
)( (1)−) +

0

 (1 )−  − 
 (26)

To check whether (TVC) is satisfied we consider


−̄ = (0 − 0

 (1 )−  − 
)( (1)−−̄) +

0

 (1 )−  − 
(−̄)

→ (0 − 0

 (1 )−  − 
)( (1)−−̄) for →∞
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since ̄   by (A2’). But ̄ = 1(1 )−    (1 )−  and so (TVC) is only satisfied

if

0 = ( (1 )−  − )0 (27)

If 0 is less than this, there will be over-saving and (TVC) is violated (
−̄ → ∞ for

 → ∞ since  = ). If 0 is higher than this, both the NPG and (TVC) are violated

(
−̄ → −∞ for →∞).
Inserting the solution for 0 into (26), we get

 =
0

 (1 )−  − 
 = 0



that is,  grows at the same constant rate as  “from the beginning” Since  ≡ 

=  (1 ) the same is true for  Hence, from start the system is in balanced growth

(there is no transitional dynamics).

This is a case of fully endogenous growth in the sense that the long-run growth rate

of  is positive without the support by growth in any exogenous factor. This outcome is

due to the absence of diminishing returns to aggregate capital, which is implied by the

assumed high value of the learning parameter. But the empirical foundation for this high

value is weak, to say the least, cf. Lecture Note 11. A further drawback of this special

version of the learning model is that the results are non-robust. With  slightly less than

1, we are back in the Arrow case and growth peters out, since  = 0 With  slightly

above 1, it can be shown that growth becomes explosive (infinite output in finite time!).

The Romer case,  = 1 is thus a knife-edge case in a double sense. First, it imposes

a particular value for a parameter which apriori can take any value within an interval.

Second, the imposed value leads to non-robust results; values in a hair’s breadth distance

result in qualitatively different behavior of the dynamic system.

Note that the causal structure in the steady state in the diminishing returns case is

different than in the AK-case of Romer. In the diminishing returns case the steady-state

growth rate is determined first, as ∗ in (15), then ∗ is determined through the Keynes-

Ramsey rule and, finally,  is determined by the technology, given ∗ In contrast,

the Romer case has  and  directly given as  (1 ) and ̄ respectively. In turn, ̄

determines the growth rate through the Keynes-Ramsey rule

3.2 Economic policy in the Romer case

In the AK case, that is, the fully endogenous growth case,   0 and   0

Thus, preference parameters matter for the long-run growth rate and not “only” for the
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level of the growth path. This suggests that taxes and subsidies can have long-run growth

effects. In any case, in this model there is a motivation for government intervention due to

the positive externality of private investment. This motivation is present whether   1

or  = 1 Here we concentrate on the latter case, which is the simplest one. We first find

the social planner’s solution.

3.2.1 The social planner

The social planner faces the aggregate production function  =  (1 ) or, in per

capita terms,  =  (1 ) The social planner’s problem is to choose ()
∞
=0 to maximize

0 =

Z ∞

0

1−

1− 
− s.t.

 ≥ 0

̇ =  (1 ) −  −  0  0 given, (28)

 ≥ 0 for all   0 (29)

The current-value Hamiltonian is

(   ) =
1−

1− 
+  ( (1 ) − − ) 

where  =  is the adjoint variable associated with the state variable, which is capital

per unit of labor. Necessary first-order conditions for an interior optimal solution are




= − −  = 0, i.e., − =  (30)




= ( (1 )− ) = −̇ +  (31)

We guess that also the transversality condition,

lim
→∞


− = 0 (32)

must be satisfied by an optimal solution. This guess will be of help in finding a candidate

solution. Having found a candidate solution, we shall invoke a theorem on sufficient

conditions to ensure that our candidate solution is really a solution.

Log-differentiating w.r.t.  in (30) and combining with (31) gives the social planner’s

Keynes-Ramsey rule,
̇


=
1


( (1 )−  − ) ≡   (33)

We see that    This is because the social planner internalizes the economy-wide

learning effect associated with capital investment, that is, the social planner takes into
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account that the “social” marginal product of capital is  =  (1 )  1(1 ) To

ensure bounded intertemporal utility we sharpen (A2’) to

  (1− )  (A2”)

To find the time path of , note that the dynamic resource constraint (28) can be written

̇ = ( (1 )− ) − 0
 

in view of (33). By the general solution formula (25) this has the solution

 = (0 − 0

 (1 )−  − 
)( (1)−) +

0

 (1 )−  − 
  (34)

In view of (31), in an interior optimal solution the time path of the adjoint variable  is

 = 0
−[( (1)−−]

where 0 = −0  0 by (30) Thus, the conjectured transversality condition (32) implies

lim
→∞


−( (1)−) = 0 (35)

where we have eliminated 0 To ensure that this is satisfied, we multiply  from (34) by

−( (1)−) to get


−( (1)−) = 0 − 0

 (1 )−  − 
+

0

 (1 )−  − 
[−( (1)−)]

→ 0 − 0

 (1 )−  − 
for →∞

since, by (A2”),   + =  (1 )−  in view of (33). Thus, (35) is only satisfied

if

0 = ( (1 )−  −  )0 (36)

Inserting this solution for 0 into (34), we get

 =
0

 (1 )−  − 
  = 0

 

that is,  grows at the same constant rate as  “from the beginning” Since  ≡ 

=  (1 ) the same is true for  Hence, our candidate for the social planner’s solution

is from start in balanced growth (there is no transitional dynamics).

The next step is to check whether our candidate solution satisfies a set of sufficient

conditions for an optimal solution. Here we can useMangasarian’s theorem which, applied

to a problem like this, with one control variable and one state variable, says that the

following conditions are sufficient:
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(a) Concavity: The Hamiltonian is jointly concave in the control and state variables,

here  and .

(b) Non-negativity: There is for all  ≥ 0 a non-negativity constraint on the state

variable; and the co-state variable,  is non-negative for all  ≥ 0.

(c) TVC: The candidate solution satisfies the transversality condition lim→∞ 
−

= 0 where 
− is the discounted co-state variable.

In the present case we see that the Hamiltonian is a sum of concave functions and

therefore is itself concave in ( ) Further, from (29) we see that condition (b) is satisfied.

Finally, our candidate solution is constructed so as to satisfy condition (c). The conclusion

is that our candidate solution is an optimal solution. We call it the SP allocation.

3.2.2 Implementing the SP allocation in the market economy

Returning to the market economy, we assume there is a policy maker, say the government,

with only two activities. These are (i) paying an investment subsidy,  to the firms so

that their capital costs are reduced to

(1− )( + )

per unit of capital per time unit; (ii) financing this subsidy by a constant consumption

tax rate  

Let us first find the size of  needed to establish the SP allocation. Firm  now chooses

 such that




| fixed = 1() = (1− )( + )

By Euler’s theorem this implies

1() = (1− )( + ) for all 

so that in equilibrium we must have

1() = (1− )( + )

where  ≡  which is pre-determined from the supply side. Thus, the equilibrium

interest rate must satisfy

 =
1()

1− 
−  =

1(1 )

1− 
−  (37)
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again using Euler’s theorem.

It follows that  should be chosen such that the “right”  arises. What is the “right” ?

It is that net rate of return which is implied by the production technology at the aggregate

level, namely −  =  (1 )−  If we can obtain  =  (1 )−  then there is no

wedge between the intertemporal rate of transformation faced by the consumer and that

implied by the technology. The required  thus satisfies

 =
1(1 )

1− 
−  =  (1 )− 

so that

 = 1− 1(1 )

 (1 )
=

 (1 )− 1(1 )

 (1 )
=

2(1 )

 (1 )


It remains to find the required consumption tax rate   The tax revenue will be 

and the required tax revenue is

T = ( + ) = ( (1 )− 1(1 )) = 

Thus, with a balanced budget the required tax rate is

 =
T

=

 (1 )− 1(1 )


=

 (1 )− 1(1 )

 (1 )−  − 
 0 (38)

where we have used that the proportionality in (36) between  and  holds for all  ≥ 0
Substituting (33) into (38), the solution for  can be written

 =
 [ (1 )− 1(1 )]

( − 1)( (1 )− ) + 
=

2(1 )

( − 1)( (1 )− ) + 


The required tax rate on consumption is thus a constant. It therefore does not distort

the consumption/saving decision on the margin, cf. Lecture Note 9.

It follows that the allocation obtained by this subsidy-tax policy is the SP allocation.

A policy, here the policy ( ) which in a decentralized system induces the SP allocation,

is called a first-best policy.

4 Appendix: The golden-rule capital intensity in the

Arrow case

In our discussion of the Arrow model in Section 2 (where 0    1) we claimed

that the golden-rule capital intensity, ̃ will be that effective capital-labor ratio at

which the social net marginal product of capital equals the steady-state growth rate of
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output. In this respect the Arrow model with endogenous technical progress is similar

to the standard neoclassical growth model with exogenous technical progress. This claim

corresponds to a very general theorem, valid also for models with many capital goods and

non-existence of an aggregate production function, saying that the highest sustainable

path for consumption per unit of labor in the economy will be that path which results

from those techniques which profit maximizing firms choose under perfect competition

when the real interest rate equals the steady-state growth rate of GNP (see Gale and

Rockwell, 1975).

To prove our claim, note that in steady state, (14) holds whereby consumption per

unit of labor (here the same as per capita consumption as  = labor force = population)

can be written

 ≡ ̃ =

∙
(̃)− ( + 

1− 
)̃

¸




=

∙
(̃)− ( + 

1− 
)̃

¸³
0


1− 

´
(by ∗ =



1− 
)

=

∙
(̃)− ( + 

1− 
)̃

¸³
(̃0)

1
1− 


1− 

´
(from ̃ =




 

=
1−





also for  = 0)

=

∙
(̃)− ( + 

1− 
)̃

¸
̃


1−0


1− 


1−  ≡ 0


1− 


1− (̃)

We look for that value of ̃ at which this steady-state path  is at the highest techni-

cally feasible level. The positive coefficient, 0


1− 

1− , is the only time dependent factor

and can be ignored since it is exogenous. The problem is thereby reduced to the static

problem of maximizing (̃) with respect to ̃  0 We find

0(̃) =

∙
 0(̃)− ( + 

1− 
)

¸
̃


1− +

∙
(̃)− ( + 

1− 
)̃

¸


1− 
̃


1−−1

=

"
 0(̃)− ( + 

1− 
) +

Ã
(̃)

̃
− ( + 

1− 
)

!


1− 

#
̃


1−

=

"
(1− ) 0(̃)− (1− ) − + 

(̃)

̃
− ( +



1− 
)

#
̃


1−

1− 

=

"
(1− ) 0(̃)−  + 

(̃)

̃
− 

1− 

#
̃


1−

1− 
≡ (̃)

̃


1−

1− 
 (39)

The first-order condition for the problem, 0(̃) = 0 is equivalent to (̃) = 0 After

ordering this gives

 0(̃) + 
(̃)− ̃ 0(̃)

̃
−  =



1− 
 (40)

We see that

0(̃) R 0 for (̃) R 0
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respectively. Moreover,

0(̃) = (1− ) 00(̃)− 
(̃)− ̃ 0(̃)

̃2
 0

in view of  00  0 and (̃)̃   0(̃) So a ̃  0 satisfying (̃) = 0 is the unique

maximizer of (̃) By (A1) and (A3) in Section 2 such a ̃ exists and is thereby the same

as the ̃ we were looking for.

The left-hand side of (40) equals the social marginal product of capital and the right-

hand side equals the steady-state growth rate of output. At ̃ = ̃ it therefore holds

that




−  =

Ã
̇



!∗


This confirms our claim in Section 2.1.2 about ̃.

–
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