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Preface

This is a collection of earlier separate lecture notes in Economic Growth.
The notes have been used in recent years in the course Economic Growth
within the Master’s Program in Economics at the Department of Economics,
University of Copenhagen.
Compared with the earlier versions of the lecture notes some chapters

have been extended and in some cases divided into several chapters. In
addition, discovered typos and similar have been corrected. In some of the
chapters a terminal list of references is at present lacking.
The lecture notes are in no way intended as a substitute for the text-

book: D. Acemoglu, Introduction to Modern Economic Growth, Princeton
University Press, 2009. The lecture notes are meant to be read along with
the textbook. Some parts of the lecture notes are alternative presentations
of stuff also covered by the textbook, while many other parts are comple-
mentary in the sense of presenting additional material. Sections marked by
an asterisk, *, are cursory reading.
For constructive criticism I thank Niklas Brønager, class instructor since

2012, and plenty of earlier students. No doubt, obscurities remain. Hence, I
very much welcome comments and suggestions of any kind relating to these
lecture notes.

February 2014

Christian Groth
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Chapter 1

Introduction to economic

growth

This introductory lecture is a refresher on basic concepts.

Section 1.1 defines Economic Growth as a field of economics. In Section

1.2 formulas for calculation of compound average growth rates in discrete

and continuous time are presented. Section 1.3 briefly presents two sets of

stylized facts. Finally, Section 1.4 discusses, in an informal way, the different

concepts of cross-country income convergence. In his introductory Chapter

1, §1.5, Acemoglu briefly touches upon these concepts.

1.1 The field

Economic growth analysis is the study of what factors and mechanisms deter-

mine the time path of productivity (a simple index of productivity is output

per unit of labor). The focus is on

• productivity levels and

• productivity growth.

1.1.1 Economic growth theory

Economic growth theory endogenizes productivity growth via considering

human capital accumulation (formal education as well as learning-by-doing)

and endogenous research and development. Also the conditioning role of

geography and juridical, political, and cultural institutions is taken into ac-

count.

1



2 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

Although for practical reasons, economic growth theory is often stated in

terms of easily measurable variables like per capita GDP, the term “economic

growth” may be interpreted as referring to something deeper. We could think

of “economic growth” as the widening of the opportunities of human beings

to lead freer and more worthwhile lives.

To make our complex economic environment accessible for theoretical

analysis we use economic models. What is an economic model? It is a way

of organizing one’s thoughts about the economic functioning of a society. A

more specific answer is to define an economic model as a conceptual struc-

ture based on a set of mathematically formulated assumptions which have

an economic interpretation and from which empirically testable predictions

can be derived. In particular, an economic growth model is an economic

model concerned with productivity issues. The union of connected and non-

contradictory models dealing with economic growth and the theorems derived

from these constitute an economic growth theory. Occasionally, intense con-

troversies about the validity of different growth theories take place.

The terms “New Growth Theory” and “endogenous growth theory” re-

fer to theory and models which attempt at explaining sustained per capita

growth as an outcome of internal mechanisms in the model rather than just

a reflection of exogenous technical progress as in “Old Growth Theory”.

Among the themes addressed in this course are:

• How is the world income distribution evolving?

• Why do living standards differ so much across countries and regions?
Why are some countries 50 times richer than others?

• Why do per capita growth rates differ over long periods?

• What are the roles of human capital and technology innovation in eco-
nomic growth? Getting the questions right.

• Catching-up and increased speed of communication and technology dif-
fusion.

• Economic growth, natural resources, and the environment (including
the climate). What are the limits to growth?

• Policies to ignite and sustain productivity growth.

• The prospects of growth in the future.
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1.1. The field 3

The course concentrates on mechanisms behind the evolution of produc-

tivity in the industrialized world. We study these mechanisms as integral

parts of dynamic general equilibrium models. The exam is a test of the ex-

tent to which the student has acquired understanding of these models, is

able to evaluate them, from both a theoretical and empirical perspective,

and is able to use them to analyze specific economic questions. The course

is calculus intensive.

1.1.2 Some long-run data

Let  denote real GDP (per year) and let  be population size. Then 

is GDP per capita. Further, let  denote the average (compound) growth

rate of  per year since 1870 and let  denote the average (compound)

growth rate of  per year since 1870. Table 1.1 gives these growth rates

for four countries.

 
Denmark 2,67 1,87

UK 1,96 1,46

USA 3,40 1,89

Japan 3,54 2,54

Table 1.1: Average annual growth rate of GDP and GDP per capita in percent,

1870—2006. Discrete compounding. Source: Maddison, A: The World Economy:

Historical Statistics, 2006, Table 1b, 1c and 5c.

Figure 1.1 displays the time path of annual GDP and GDP per capita in

Denmark 1870-2006 along with regression lines estimated by OLS (logarith-

mic scale on the vertical axis). Figure 1.2 displays the time path of GDP per

capita in UK, USA, and Japan 1870-2006. In both figures the average annual

growth rates are reported. In spite of being based on exactly the same data

as Table 1.1, the numbers are slightly different. Indeed, the numbers in the

figures are slightly lower than those in the table. The reason is that discrete

compounding is used in Table 1.1 while continuous compounding is used in

the two figures. These two alternative methods of calculation are explained

in the next section.
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4 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

Figure 1.1: GDP and GDP per capita (1990 International Geary-Khamis dollars)

in Denmark, 1870-2006. Source: Maddison, A. (2009). Statistics on World Popu-

lation, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

1.2 Calculation of the average growth rate

1.2.1 Discrete compounding

Let  denote aggregate labor productivity, i.e.,  ≡  where  is employ-

ment. The average growth rate of  from period 0 to period  with discrete

compounding, is that  which satisfies

 = 0(1 +)  = 1 2  , or (1.1)

1 + = (


0
)1 i.e.,

 = (


0
)1 − 1 (1.2)

“Compounding” means adding the one-period “net return” to the “princi-

pal” before adding next period’s “net return” (like with interest on interest,

also called “compound interest”). Obviously,  will generally be quite dif-

ferent from the arithmetic average of the period-by-period growth rates. To
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1.2. Calculation of the average growth rate 5

Figure 1.2: GDP per capita (1990 International Geary-Khamis dollars) in UK,

USA and Japan, 1870-2006. Source: Maddison, A. (2009). Statistics on World

Population, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

underline this,  is sometimes called the “average compound growth rate”

or the “geometric average growth rate”.

Using a pocket calculator, the following steps in the calculation of  may

be convenient. Take logs on both sides of (1.1) to get

ln


0
=  ln(1 +) ⇒

ln(1 +) =
ln 

0


⇒ (1.3)

 = antilog(
ln 

0


)− 1. (1.4)

Note that  in the formulas (1.2) and (1.4) equals the number of periods

minus 1.
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6 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

1.2.2 Continuous compounding

The average growth rate of , with continuous compounding, is that  which

satisfies

 = 0
 (1.5)

where  denotes the Euler number, i.e., the base of the natural logarithm.1

Solving for  gives

 =
ln 

0


=
ln  − ln 0


 (1.6)

The first formula in (1.6) is convenient for calculation with a pocket calcula-

tor, whereas the second formula is perhaps closer to intuition. Another name

for  is the “exponential average growth rate”.

Again, the  in the formula equals the number of periods minus 1.

Comparing with (1.3) we see that  = ln(1 +)   for   0 Yet, by

a first-order Taylor approximation about  = 0 we have

 = ln(1 +) ≈  for  “small”. (1.7)

For a given data set the  calculated from (1.2) will be slightly above the

 calculated from (1.6), cf. the mentioned difference between the growth rates

in Table 1.1 and those in Figure 1.1 and Figure 1.2. The reason is that a given

growth force is more powerful when compounding is continuous rather than

discrete. Anyway, the difference between  and  is usually unimportant.

If for example  refers to the annual GDP growth rate, it will be a small

number, and the difference between  and  immaterial. For example, to

 = 0040 corresponds  ≈ 0039 Even if  = 010, the corresponding  is

00953. But if  stands for the inflation rate and there is high inflation, the

difference between  and  will be substantial. During hyperinflation the

monthly inflation rate may be, say,  = 100%, but the corresponding  will

be only 69%.

Which method, discrete or continuous compounding, is preferable? To

some extent it is a matter of taste or convenience. In period analysis discrete

compounding is most common and in continuous time analysis continuous

compounding is most common.

For calculation with a pocket calculator the continuous compounding for-

mula, (1.6), is slightly easier to use than the discrete compounding formulas,

whether (1.2) or (1.4).

To avoid too much sensitiveness to the initial and terminal observations,

which may involve measurement error or depend on the state of the business

1Unless otherwise specified, whenever we write ln or log  the natural logarithm is

understood.
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cycle, one can use an OLS approach to the trend coefficient,  in the following

regression:

ln = + + 

This is in fact what is done in Fig. 1.1.

1.2.3 Doubling time

How long time does it take for  to double if the growth rate with discrete

compounding is ? Knowing  we rewrite the formula (1.3):

 =
ln 

0

ln(1 +)
=

ln 2

ln(1 +)
≈ 06931

ln(1 +)


With  = 00187 cf. Table 1.1, we find

 ≈ 374 years,
meaning that productivity doubles every 374 years.

How long time does it take for  to double if the growth rate with con-

tinuous compounding is ? The answer is based on rewriting the formula

(1.6):

 =
ln 

0


=
ln 2


≈ 06931




Maintaining the value 00187 also for  we find

 ≈ 06931
00187

≈ 371 years.

Again, with a pocket calculator the continuous compounding formula is

slightly easier to use. With a lower  say  = 001 we find doubling time

equal to 691 years. With  = 007 (think of China since the 1970’s), dou-

bling time is about 10 years! Owing to the compounding exponential growth

is extremely powerful.

1.3 Some stylized facts of economic growth

1.3.1 The Kuznets facts

A well-known characteristic of modern economic growth is structural change:

unbalanced sectorial growth. There is a massive reallocation of labor from

agriculture into industry (manufacturing, construction, and mining) and fur-

ther into services (including transport and communication). The shares of
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Figure 1.3: The Kuznets facts. Source: Kongsamut et al., Beyond Balanced

Growth, Review of Economic Studies, vol. 68, Oct. 2001, 869-82.

total consumption expenditure going to these three sectors have moved sim-

ilarly. Differences in the demand elasticities with respect to income seem the

main explanation. These observations are often referred to as the Kuznets

facts (after Simon Kuznets, 1901-85, see, e.g., Kuznets 1957).

The two graphs in Figure 1.3 illustrate the Kuznets facts.

1.3.2 Kaldor’s stylized facts

Surprisingly, in spite of the Kuznets facts, the evolution at the aggregate level

in developed countries is by many economists seen as roughly described by

what is called Kaldor’s “stylized facts” (after the Hungarian-British econo-
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mist Nicholas Kaldor, 1908-1986, see, e.g., Kaldor 1957, 1961)2:

1. Real output per man-hour grows at a more or less constant rate

over fairly long periods of time. (Of course, there are short-run fluctuations

superposed around this trend.)

2. The stock of physical capital per man-hour grows at a more or less

constant rate over fairly long periods of time.

3. The ratio of output to capital shows no systematic trend.

4. The rate of return to capital shows no systematic trend.

5. The income shares of labor and capital (in the national account-

ing sense, i.e., including land and other natural resources), respectively, are

nearly constant.

6. The growth rate of output per man-hour differs substantially across

countries.

These claimed regularities do certainly not fit all developed countries

equally well. Although Solow’s growth model (Solow, 1956) can be seen

as the first successful attempt at building a model consistent with Kaldor’s

“stylized facts”, Solow once remarked about them: “There is no doubt that

they are stylized, though it is possible to question whether they are facts”

(Solow, 1970). But the Kaldor “facts” do at least seem to fit the US and

UK quite well, see, e.g., Attfield and Temple (2010). The sixth Kaldor fact

is, of course, well documented empirically (a nice summary is contained in

Pritchett, 1997).

Kaldor also proposed hypotheses about the links between growth in the

different sectors (see, e.g., Kaldor 1967):

a. Productivity growth in the manufacturing and construction sec-

tors is enhanced by output growth in these sectors (this is also known as

Verdoorn’s Law). Increasing returns to scale and learning by doing are the

main factors behind this.

b. Productivity growth in agriculture and services is enhanced by out-

put growth in the manufacturing and construction sectors.

1.4 Concepts of income convergence

The two most popular across-country income convergence concepts are “

convergence” and “ convergence”.

2Kaldor presented his six regularities as “a stylised view of the facts”.
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1.4.1  convergence vs.  convergence

Definition 1 We say that  convergence occurs for a given selection of coun-

tries if there is a tendency for the poor (those with low income per capita or

low output per worker) to subsequently grow faster than the rich.

By “grow faster” is meant that the growth rate of per capita income (or

per worker output) is systematically higher.

In many contexts, a more appropriate convergence concept is the follow-

ing:

Definition 2 We say that  convergence, with respect to a given measure of

dispersion, occurs for a given collection of countries if this measure of disper-

sion, applied to income per capita or output per worker across the countries,

declines systematically over time. On the other hand,  divergence occurs, if

the dispersion increases systematically over time.

The reason that  convergence must be considered the more appropri-

ate concept is the following. In the end, it is the question of increasing

or decreasing dispersion across countries that we are interested in. From a

superficial point of view one might think that  convergence implies decreas-

ing dispersion and vice versa, so that  convergence and  convergence are

more or less equivalent concepts. But since the world is not deterministic,

but stochastic, this is not true. Indeed,  convergence is only a necessary,

not a sufficient condition for  convergence. This is because over time some

reshuffling among the countries is always taking place, and this implies that

there will always be some extreme countries (those initially far away from

the mean) that move closer to the mean, thus creating a negative correla-

tion between initial level and subsequent growth, in spite of equally many

countries moving from a middle position toward one of the extremes.3 In

this way  convergence may be observed at the same time as there is no 

convergence; the mere presence of random measurement errors implies a bias

in this direction because a growth rate depends negatively on the initial mea-

surement and positively on the later measurement. In fact,  convergence

may be consistent with  divergence (for a formal proof of this claim, see

Barro and Sala-i-Martin, 2004, pp. 50-51 and 462 ff.; see also Valdés, 1999,

p. 49-50, and Romer, 2001, p. 32-34).

3As an intuitive analogy, think of the ordinal rankings of the sports teams in a league.

The dispersion of rankings is constant by definition. Yet, no doubt there will allways be

some tendency for weak teams to rebound toward the mean and of champions to revert

to mediocrity. (This example is taken from the first edition of Barro and Sala-i-Martin,

Economic Growth, 1995; I do not know why, but the example has been deleted in the

second edition from 2004.)
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Hence, it is wrong to conclude from  convergence (poor countries tend

to grow faster than rich ones) to  convergence (reduced dispersion of per

capita income) without any further investigation. The mistake is called “re-

gression towards the mean” or “Galton’s fallacy”. Francis Galton was an

anthropologist (and a cousin of Darwin), who in the late nineteenth century

observed that tall fathers tended to have not as tall sons and small fathers

tended to have taller sons. From this he falsely concluded that there was

a tendency to averaging out of the differences in height in the population.

Indeed, being a true aristocrat, Galton found this tendency pitiable. But

since his conclusion was mistaken, he did not really have to worry.

Since  convergence comes closer to what we are ultimately looking for,

from now, when we speak of just “income convergence”,  convergence is

understood.

In the above definitions of  convergence and  convergence, respectively,

we were vague as to what kind of selection of countries is considered. In

principle we would like it to be a representative sample of the “population”

of countries that we are interested in. The population could be all countries

in the world. Or it could be the countries that a century ago had obtained a

certain level of development.

One should be aware that historical GDP data are constructed retrospec-

tively. Long time series data have only been constructed for those countries

that became relatively rich during the after-WWII period. Thus, if we as

our sample select the countries for which long data series exist, a so-called

selection bias is involved which generates a spurious convergence. A country

which was poor a century ago will only appear in the sample if it grew rapidly

over the next 100 years. A country which was relatively rich a century ago

will appear in the sample unconditionally. This selection bias problem was

pointed out by DeLong (1988) in a criticism of widespread false interpreta-

tions of Maddison’s long data series (Maddison 1982).

1.4.2 Measures of dispersion

Our next problem is: what measure of dispersion is to be used as a useful

descriptive statistics for  convergence? Here there are different possibilities.

To be precise about this we need some notation. Let

 ≡ 


 and

 ≡ 



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12 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

where  = real GDP,  = employment, and  = population. If the focus

is on living standards,  is the relevant variable.4 But if the focus is on

(labor) productivity, it is  that is relevant. Since most growth models

focus on  rather than  let os take  as our example.

One might think that the standard deviation of  could be a relevant

measure of dispersion when discussing whether  convergence is present or

not. The standard deviation of  across  countries in a given year is

 ≡
vuut1



X
=1

( − ̄)2 (1.8)

where

̄ ≡
P

 


 (1.9)

i.e., ̄ is the average output per worker. However, if this measure were used,

it would be hard to find any group of countries for which there is income

convergence. This is because  tends to grow over time for most countries,

and then there is an inherent tendency for the variance also to grow; hence

also the square root of the variance,  tends to grow. Indeed, suppose that

for all countries,  is doubled from time 1 to time 2 Then, automatically,

 is also doubled. But hardly anyone would interpret this as an increase in

the income inequality across the countries.

Hence, it is more adequate to look at the standard deviation of relative

income levels:

̄ ≡
s
1



X


(


̄
− 1)2 (1.10)

This measure is the same as what is called the coefficient of variation, 

usually defined as

 ≡ 

̄
 (1.11)

that is, the standard deviation of  standardized by the mean. That the two

measures are identical can be seen in this way:



̄
≡

q
1


P
( − ̄)2

̄
=

s
1



X


(
 − ̄

̄
)2 =

s
1



X


(


̄
− 1)2 ≡ ̄

4Or perhaps better,  where  ≡  ≡  − − Here,  denotes net

interest payments on foreign debt and  denotes net labor income of foreign workers in

the country.
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The point is that the coefficient of variation is “scale free”, which the standard

deviation itself is not.

Instead of the coefficient of variation, another scale free measure is often

used, namely the standard deviation of ln , i.e.,

ln  ≡
s
1



X


(ln  − ln ∗)2 (1.12)

where

ln ∗ ≡
P

 ln 


 (1.13)

Note that ∗ is the geometric average, i.e., ∗ ≡ 
√
12 · · ·  Now, by a

first-order Taylor approximation of ln  around  = ̄, we have

ln  ≈ ln ̄ + 1
̄
( − ̄)

Hence, as a very rough approximation we have ln  ≈ ̄ =  though

this approximation can be quite poor (cf. Dalgaard and Vastrup, 2001).

It may be possible, however, to defend the use of ln  in its own right to

the extent that  tends to be approximately lognormally distributed across

countries.

Yet another possible measure of income dispersion across countries is the

Gini index (see for example Cowell, 1995).

1.4.3 Weighting by size of population

Another important issue is whether the applied dispersion measure is based

on a weighting of the countries by size of population. For the world as a

whole, when no weighting by size of population is used, then there is a slight

tendency to income divergence according to the ln  criterion (Acemoglu,

2009, p. 4), where  is per capita income (≡ ). As seen by Fig. 4 below,

this tendency is not so clear according to the  criterion. Anyway, when

there is weighting by size of population, then in the last twenty years there

has been a tendency to income convergence at the global level (Sala-i-Martin

2006; Acemoglu, 2009, p. 6). With weighting by size of population (1.12) is

modified to

ln  ≡
sX



(ln  − ln ∗)2

where

 =



and ln ∗ ≡

X


 ln 
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1.4.4 Unconditional vs. conditional convergence

Yet another distinction in the study of income convergence is that between

unconditional (or absolute) and conditional convergence. We say that a

large heterogeneous group of countries (say the countries in the world) show

unconditional income convergence if income convergence occurs for the whole

group without conditioning on specific characteristics of the countries. If

income convergence occurs only for a subgroup of the countries, namely those

countries that in advance share the same “structural characteristics”, then

we say there is conditional income convergence. As noted earlier, when we

speak of just income “convergence”, income “ convergence” is understood.

If in a given context there might be doubt, one should of course be explicit

and speak of unconditional or conditional  convergence. Similarly, if the

focus for some reason is on  convergence, we should distinguish between

unconditional and conditional  convergence.

What the precise meaning of “structural characteristics” is, will depend

on what model of the countries the researcher has in mind. According to

the Solow model, a set of relevant “structural characteristics” are: the aggre-

gate production function, the initial level of technology, the rate of technical

progress, the capital depreciation rate, the saving rate, and the population

growth rate. But the Solow model, as well as its extension with human cap-

ital (Mankiw et al., 1992), is a model of a closed economy with exogenous

technical progress. The model deals with “within-country” convergence in

the sense that the model predicts that a closed economy being initially be-

low or above its steady state path, will over time converge towards its steady

state path. It is far from obvious that this kind of model is a good model

of cross-country convergence in a globalized world where capital mobility

and to some extent also labor mobility are important and some countries are

pushing the technological frontier further out, while others try to imitate and

catch up.

1.4.5 A bird’s-eye view of the data

In the following no serious econometrics is attempted. We use the term

“trend” in an admittedly loose sense.

Figure 1.4 shows the time profile for the standard deviation of  itself for

12 EU countries, whereas Figure 1.5 and Figure 1.6 show the time profile

of the standard deviation of log  and the time profile of the coefficient of

variation, respectively. Comparing the upward trend in Figure 1.4 with the

downward trend in the two other figures, we have an illustration of the fact

that the movement of the standard deviation of  itself does not capture
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Figure 1.4: Standard deviation of GDP per capita and per worker across 12 EU

countries, 1950-1998.
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12 EU countries, 1950-1998.
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Figure 1.6: Coefficient of variation of GDP per capita and GDP per worker across

12 EU countries, 1950-1998.

income convergence. To put it another way: although there seems to be

conditional income convergence with respect to the two scale-free measures,

Figure 1.4 shows that this tendency to convergence is not so strong as to

produce a narrowing of the absolute distance between the EU countries.5

Figure 1.7 shows the time path of the coefficient of variation across 121

countries in the world, 22 OECD countries and 12 EU countries, respectively.

We see the lack of unconditional income convergence, but the presence of con-

ditional income convergence. One should not over-interpret the observation

of convergence for the 22 OECD countries over the period 1950-1990. It is

likely that this observation suffer from the selection bias problem mentioned

in Section 1.4.1. A country that was poor in 1950 will typically have become

a member of OECD only if it grew relatively fast afterwards.

5Unfortunately, sometimes misleading graphs or texts to graphs about across-country

income convergence are published. In the collection of exercises, Chapter 1, you are asked

to discuss some examples of this.
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Figure 1.7: Coefficient of variation of income per capita across different sets of

countries.

1.4.6 Other convergence concepts

Of course, just considering the time profile of the first and second moments

of a distribution may sometimes be a poor characterization of the evolution

of the distribution. For example, there are signs that the distribution has

polarized into twin peaks of rich and poor countries (Quah, 1996a; Jones,

1997). Related to this observation is the notion of club convergence. If in-

come convergence occurs only among a subgroup of the countries that to

some extent share the same initial conditions, then we say there is club-

convergence. This concept is relevant in a setting where there are multiple

steady states toward which countries can converge. At least at the theoret-

ical level multiple steady states can easily arise in overlapping generations

models. Then the initial condition for a given country matters for which of

these steady states this country is heading to. Similarly, we may say that

conditional club-convergence is present, if income convergence occurs only

for a subgroup of the countries, namely countries sharing similar structural

characteristics (this may to some extent be true for the OECD countries)

and, within an interval, similar initial conditions.

Instead of focusing on income convergence, one could study TFP conver-
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gence at aggregate or industry level.6 Sometimes the less demanding concept

of growth rate convergence is the focus.

The above considerations are only of a very elementary nature and are

only about descriptive statistics. The reader is referred to the large existing

literature on concepts and econometric methods of relevance for character-

izing the evolution of world income distribution (see Quah, 1996b, 1996c,

1997, and for a survey, see Islam 2003).
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Chapter 2

Review of technology

The aim of this chapter is, first, to introduce the terminology concerning

firms’ technology and technological change used in the lectures and exercises

of this course. At a few points I deviate somewhat from definitions in Ace-

moglu’s book. Section 1.3 can be used as a formula manual for the case of

CRS.

Second, the chapter contains a brief discussion of the somewhat contro-

versial notions of a representative firm and an aggregate production function.

Regarding the distinction between discrete and continuous time analysis,

most of the definitions contained in this chapter are applicable to both.

2.1 The production technology

Consider a two-factor production function given by

 =  () (2.1)

where  is output (value added) per time unit,  is capital input per time

unit, and  is labor input per time unit ( ≥ 0  ≥ 0). We may think of
(2.1) as describing the output of a firm, a sector, or the economy as a whole.

It is in any case a very simplified description, ignoring the heterogeneity of

output, capital, and labor. Yet, for many macroeconomic questions it may

be a useful first approach. Note that in (2.1) not only  but also  and 

represent flows, that is, quantities per unit of time. If the time unit is one

year, we think of  as measured in machine hours per year. Similarly, we

think of  as measured in labor hours per year. Unless otherwise specified, it

is understood that the rate of utilization of the production factors is constant

over time and normalized to one for each production factor. As explained

in Chapter 1, we can then use the same symbol,  for the flow of capital

services as for the stock of capital. Similarly with 

23



24 CHAPTER 2. REVIEW OF TECHNOLOGY

2.1.1 A neoclassical production function

By definition,  and  are non-negative. It is generally understood that a

production function,  =  () is continuous and that  (0 0) = 0 (no in-

put, no output). Sometimes, when specific functional forms are used to repre-

sent a production function, that function may not be defined at points where

 = 0 or  = 0 or both. In such a case we adopt the convention that the do-

main of the function is understood extended to include such boundary points

whenever it is possible to assign function values to them such that continuity

is maintained. For instance the function  () =  + ( + )

where   0 and   0 is not defined at () = (0 0) But by assigning

the function value 0 to the point (0 0) we maintain both continuity and the

“no input, no output” property, cf. Exercise 2.4.

We call the production function neoclassical if for all () with   0

and   0 the following additional conditions are satisfied:

(a)  () has continuous first- and second-order partial derivatives sat-

isfying:

  0   0 (2.2)

  0   0 (2.3)

(b)  () is strictly quasiconcave (i.e., the level curves, also called iso-

quants, are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous

substitution possibilities between  and  and the marginal productivities

are positive, but diminishing in own factor. Thus, for a given number of ma-

chines, adding one more unit of labor, adds to output, but less so, the higher

is already the labor input. And (b) says that every isoquant,  () = ̄ 

has a strictly convex form qualitatively similar to that shown in Figure 2.1.1

When we speak of for example  as the marginal productivity of labor, it

is because the “pure” partial derivative,  =  has the denomina-

tion of a productivity (output units/yr)/(man-yrs/yr). It is quite common,

however, to refer to  as the marginal product of labor. Then a unit mar-

ginal increase in the labor input is understood: ∆ ≈ ()∆ = 

when ∆ = 1 Similarly,  can be interpreted as the marginal productiv-

ity of capital or as the marginal product of capital. In the latter case it is

understood that ∆ = 1 so that ∆ ≈ ()∆ = 

1For any fixed ̄ ≥ 0 the associated isoquant is the level set

{() ∈ R+|  () = ̄
ª


c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



2.1. The production technology 25

The definition of a neoclassical production function can be extended to

the case of  inputs. Let the input quantities be 1 2      and consider

a production function  =  (12     ) Then  is called neoclassical if

all the marginal productivities are positive, but diminishing, and  is strictly

quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix

A).

Returning to the two-factor case, since  () presumably depends on

the level of technical knowledge and this level depends on time,  we might

want to replace (2.1) by

 =  ( ) (2.4)

where the superscript on  indicates that the production function may shift

over time, due to changes in technology. We then say that  (·) is a neoclas-
sical production function if it satisfies the conditions (a) and (b) for all pairs

( ). Technological progress can then be said to occur when, for  and

 held constant, output increases with 

For convenience, to begin with we skip the explicit reference to time and

level of technology.

The marginal rate of substitution Given a neoclassical production

function  we consider the isoquant defined by  () = ̄  where ̄

is a positive constant. The marginal rate of substitution, , of  for

 at the point () is defined as the absolute slope of the isoquant at that

point, cf. Figure 2.1. The equation  () = ̄ defines  as an implicit

function of  By implicit differentiation we find () +()

= 0 from which follows

 ≡ −
 |=̄ =

()

()
 0 (2.5)

That is,  measures the amount of  that can be saved (approxi-

mately) by applying an extra unit of labor. In turn, this equals the ratio

of the marginal productivities of labor and capital, respectively.2 Since 

is neoclassical, by definition  is strictly quasi-concave and so the marginal

rate of substitution is diminishing as substitution proceeds, i.e., as the labor

input is further increased along a given isoquant. Notice that this feature

characterizes the marginal rate of substitution for any neoclassical production

function, whatever the returns to scale (see below).

2The subscript
¯̄
 = ̄ in (2.5) indicates that we are moving along a given isoquant,

 () = ̄  Expressions like, e.g., () or 2() mean the partial derivative of

 w.r.t. the second argument, evaluated at the point ()
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Figure 2.1:  as the absolute slope of the isoquant.

When we want to draw attention to the dependency of the marginal rate of

substitution on the factor combination considered, we write ()

Sometimes in the literature, the marginal rate of substitution between two

production factors,  and  is called the technical rate of substitution (or

the technical rate of transformation) in order to distinguish from a consumer’s

marginal rate of substitution between two consumption goods.

As is well-known from microeconomics, a firm that minimizes production

costs for a given output level and given factor prices, will choose a factor com-

bination such that  equals the ratio of the factor prices. If  ()

is homogeneous of degree , then the marginal rate of substitution depends

only on the factor proportion and is thus the same at any point on the ray

 = (̄̄) That is, in this case the expansion path is a straight line.

The Inada conditions A continuously differentiable production function

is said to satisfy the Inada conditions3 if

lim
→0

() = ∞ lim
→∞

() = 0 (2.6)

lim
→0

() = ∞ lim
→∞

() = 0 (2.7)

In this case, the marginal productivity of either production factor has no

upper bound when the input of the factor becomes infinitely small. And the

marginal productivity is gradually vanishing when the input of the factor

increases without bound. Actually, (2.6) and (2.7) express four conditions,

which it is preferable to consider separately and label one by one. In (2.6) we

have two Inada conditions for  (the marginal productivity of capital),

the first being a lower, the second an upper Inada condition for . And

3After the Japanese economist Ken-Ichi Inada, 1925-2002.
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in (2.7) we have two Inada conditions for  (the marginal productivity

of labor), the first being a lower, the second an upper Inada condition for

. In the literature, when a sentence like “the Inada conditions are

assumed” appears, it is sometimes not made clear which, and how many, of

the four are meant. Unless it is evident from the context, it is better to be

explicit about what is meant.

The definition of a neoclassical production function we gave above is quite

common in macroeconomic journal articles and convenient because of its

flexibility. There are textbooks that define a neoclassical production function

more narrowly by including the Inada conditions as a requirement for calling

the production function neoclassical. In contrast, in this course, when in a

given context we need one or another Inada condition, we state it explicitly

as an additional assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by

the same factor? There may be different answers to this question, depending

on circumstances. We consider a production function  () where   0

and   0 Then  is said to have constant returns to scale (CRS for short)

if it is homogeneous of degree one, i.e., if for all () and all   0

 ( ) =  ()

As all inputs are scaled up or down by some factor  1, output is scaled up

or down by the same factor.4 The assumption of CRS is often defended by

the replication argument. Before discussing this argument, lets us define the

two alternative “pure” cases.

The production function  () is said to have increasing returns to

scale (IRS for short) if, for all () and all   1,

 ( )   ()

That is, IRS is present if, when all inputs are scaled up by some factor 

1, output is scaled up by more than this factor. The existence of gains by

specialization and division of labor, synergy effects, etc. sometimes speak in

support of this assumption, at least up to a certain level of production. The

assumption is also called the economies of scale assumption.

4In their definition of a neoclassical production function some textbooks add constant

returns to scale as a requirement besides (a) and (b). This course follows the alternative

terminology where, if in a given context an assumption of constant returns to scale is

needed, this is stated as an additional assumption.
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Another possibility is decreasing returns to scale (DRS). This is said to

occur when for all () and all   1

 ( )   ()

That is, DRS is present if, when all inputs are scaled up by some factor,

output is scaled up by less than this factor. This assumption is also called

the diseconomies of scale assumption. The underlying hypothesis may be

that control and coordination problems confine the expansion of size. Or,

considering the “replication argument” below, DRS may simply reflect that

behind the scene there is an additional production factor, for example land

or a irreplaceable quality of management, which is tacitly held fixed, when

the factors of production are varied.

EXAMPLE 1 The production function

 =    0 0    1 0    1 (2.8)

where   and  are given parameters, is called a Cobb-Douglas production

function. The parameter  depends on the choice of measurement units; for

a given such choice it reflects “efficiency”, also called the “total factor pro-

ductivity”. Exercise 2.2 asks the reader to verify that (2.8) satisfies (a) and

(b) above and is therefore a neoclassical production function. The function

is homogeneous of degree + . If +  = 1 there are CRS. If +   1

there are DRS, and if  +   1 there are IRS. Note that  and  must

be less than 1 in order not to violate the diminishing marginal productivity

condition. ¤
EXAMPLE 2 The production function

 = min()   0   0 (2.9)

where  and  are given parameters, is called a Leontief production function

or a fixed-coefficients production function;  and  are called the technical

coefficients. The function is not neoclassical, since the conditions (a) and (b)

are not satisfied. Indeed, with this production function the production fac-

tors are not substitutable at all. This case is also known as the case of perfect

complementarity between the production factors. The interpretation is that

already installed production equipment requires a fixed number of workers to

operate it. The inverse of the parameters  and  indicate the required cap-

ital input per unit of output and the required labor input per unit of output,

respectively. Extended to many inputs, this type of production function is

often used in multi-sector input-output models (also called Leontief models).
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In aggregate analysis neoclassical production functions, allowing substitution

between capital and labor, are more popular than Leontief functions. But

sometimes the latter are preferred, in particular in short-run analysis with

focus on the use of already installed equipment where the substitution pos-

sibilities are limited.5 As (2.9) reads, the function has CRS. A generalized

form of the Leontief function is  = min( ) where   0. When

  1 there are DRS, and when   1 there are IRS. ¤

The replication argument The assumption of CRS is widely used in

macroeconomics. The model builder may appeal to the replication argument.

To explain the content of this argument we have to first clarify the distinction

between rival and nonrival inputs or more generally the distinction between

rival and nonrival goods. A good is rival if its character is such that one

agent’s use of it inhibits other agents’ use of it at the same time. A pencil

is thus rival. Many production inputs like raw materials, machines, labor

etc. have this property. In contrast, however, technical knowledge like a

farmaceutical formula or an engineering principle is nonrival. An unbounded

number of factories can simultaneously use the same farmaceutical formula.

The replication argument now says that by, conceptually, doubling all the

rival inputs, we should always be able to double the output, since we just

“replicate” what we are already doing. One should be aware that the CRS

assumption is about technology in the sense of functions linking inputs to

outputs − limits to the availability of input resources is an entirely different
matter. The fact that for example managerial talent may be in limited supply

does not preclude the thought experiment that if a firm could double all its

inputs, including the number of talented managers, then the output level

could also be doubled.

The replication argument presupposes, first, that all the relevant inputs

are explicit as arguments in the production function; second, that these are

changed equiproportionately. This, however, exhibits the weakness of the

replication argument as a defence for assuming CRS of our present production

function,  (·) One could easily make the case that besides capital and labor,
also land is a necessary input and should appear as a separate argument.6

If an industrial firm decides to duplicate what it has been doing, it needs a

piece of land to build another plant like the first. Then, on the basis of the

replication argument we should in fact expect DRS w.r.t. capital and labor

alone. In manufacturing and services, empirically, this and other possible

5Cf. Section 2.4.
6We think of “capital” as producible means of production, whereas “land” refers to

non-producible natural resources, including for example building sites.
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sources for departure from CRS may be minor and so many macroeconomists

feel comfortable enough with assuming CRS w.r.t.  and  alone, at least

as a first approximation. This approximation is, however, less applicable to

poor countries, where natural resources may be a quantitatively important

production factor.

There is a further problem with the replication argument. Strictly speak-

ing, the CRS claim is that by changing all the inputs equiproportionately

by any positive factor,  which does not have to be an integer, the firm

should be able to get output changed by the same factor. Hence, the replica-

tion argument requires that indivisibilities are negligible, which is certainly

not always the case. In fact, the replication argument is more an argument

against DRS than for CRS in particular. The argument does not rule out

IRS due to synergy effects as size is increased.

Sometimes the replication line of reasoning is given a more subtle form.

This builds on a useful local measure of returns to scale, named the elasticity

of scale.

The elasticity of scale* To allow for indivisibilities and mixed cases (for

example IRS at low levels of production and CRS or DRS at higher levels),

we need a local measure of returns to scale. One defines the elasticity of

scale, () of  at the point () where  ()  0 as

() =


 ()

 ( )


≈ ∆ ( ) ()

∆
 evaluated at  = 1

(2.10)

So the elasticity of scale at a point () indicates the (approximate) per-

centage increase in output when both inputs are increased by 1 percent. We

say that

if ()

⎧⎨⎩  1 then there are locally IRS,

= 1 then there are locally CRS,

 1 then there are locally DRS.

(2.11)

The production function may have the same elasticity of scale everywhere.

This is the case if and only if the production function is homogeneous. If 

is homogeneous of degree  then () =  and  is called the elasticity

of scale parameter.

Note that the elasticity of scale at a point () will always equal the

sum of the partial output elasticities at that point:

() =
()

 ()
+

()

 ()
 (2.12)

This follows from the definition in (2.10) by taking into account that
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Figure 2.2: Locally CRS at optimal plant size.

 ( )


= ( ) + ( )

= () + () when evaluated at  = 1

Figure 2.2 illustrates a popular case from introductory economics, an

average cost curve which from the perspective of the individual firm (or plant)

is U-shaped: at low levels of output there are falling average costs (thus IRS),

at higher levels rising average costs (thus DRS).7 Given the input prices, 

and  and a specified output level, ̄  we know that the cost minimizing

factor combination (̄ ̄) is such that (̄ ̄)(̄ ̄) =  It is

shown in Appendix A that the elasticity of scale at (̄ ̄) will satisfy:

(̄ ̄) =
(̄ )

(̄ )
 (2.13)

where (̄ ) is average costs (the minimum unit cost associated with

producing ̄ ) and (̄ ) is marginal costs at the output level ̄ . The

 in  and  stands for “long-run”, indicating that both capital and

labor are considered variable production factors within the period considered.

At the optimal plant size,  ∗ there is equality between  and ,

implying a unit elasticity of scale, that is, locally we have CRS. That the long-

run average costs are here portrayed as rising for ̄   ∗ is not essential
for the argument but may reflect either that coordination difficulties are

inevitable or that some additional production factor, say the building site of

the plant, is tacitly held fixed.

Anyway, we have here a more subtle replication argument for CRS w.r.t.

 and  at the aggregate level. Even though technologies may differ across

plants, the surviving plants in a competitive market will have the same aver-

age costs at the optimal plant size. In the medium and long run, changes in

7By a “firm” is generally meant the company as a whole. A company may have several

“manufacturing plants” placed at different locations.
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aggregate output will take place primarily by entry and exit of optimal-size

plants. Then, with a large number of relatively small plants, each produc-

ing at approximately constant unit costs for small output variations, we can

without substantial error assume constant returns to scale at the aggregate

level. So the argument goes. Notice, however, that even in this form the

replication argument is not entirely convincing since the question of indivis-

ibility remains. The optimal plant size may be large relative to the market

− and is in fact so in many industries. Besides, in this case also the perfect
competition premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed. Notwithstand-

ing the theoretical and empirical ambiguities, the assumption of CRS w.r.t.

capital and labor has a prominent role in macroeconomics. In many con-

texts it is regarded as an acceptable approximation and a convenient simple

background for studying the question at hand.

Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-

hand side of (2.13) equals unity);

(ii) if production factors are paid according to their marginal productivi-

ties, factor payments exactly exhaust total output so that pure profits

are neither positive nor negative (so the right-hand side of (2.12) equals

unity);

(iii) a production function known to exhibit CRS and satisfy property (a)

from the definition of a neoclassical production function above, will au-

tomatically satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always

  0 i.e., it exhibits “direct complementarity” between  and

;

(v) a two-factor production function known to have CRS and to be twice

continuously differentiable with positive marginal productivity of each

factor everywhere in such a way that all isoquants are strictly convex to

the origin, must have diminishing marginal productivities everywhere.8

8Proofs of these claims can be found in intermediate microeconomics textbooks and in

the Appendix to Chapter 2 of my Lecture Notes in Macroeconomics.
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A principal implication of the CRS assumption is that it allows a re-

duction of dimensionality. Considering a neoclassical production function,

 =  () with   0 we can under CRS write  () =  ( 1)

≡ () where  ≡  is called the capital-labor ratio (sometimes the cap-

ital intensity) and () is the production function in intensive form (some-

times named the per capita production function). Thus output per unit of

labor depends only on the capital intensity:

 ≡ 


= ()

When the original production function  is neoclassical, under CRS the

expression for the marginal productivity of capital simplifies:

() =



=

 [()]


=  0()




=  0() (2.14)

And the marginal productivity of labor can be written

() =



=

 [()]


= () +  0()





= () +  0()(−−2) = ()−  0() (2.15)

A neoclassical CRS production function in intensive form always has a posi-

tive first derivative and a negative second derivative, i.e.,  0  0 and  00  0
The property  0  0 follows from (2.14) and (2.2). And the property  00  0
follows from (2.3) combined with

() =
 0()


=  00()



=  00()

1




For a neoclassical production function with CRS, we also have

()−  0()  0 for all   0 (2.16)

in view of (0) ≥ 0 and  00  0 Moreover,

lim
→0

[()−  0()] = (0) (2.17)

Indeed, from the mean value theorem9 we know there exists a number  ∈
(0 1) such that for any given   0 we have ()−(0) =  0() From this
follows ()− 0() = (0)  ()− 0() since  0()   0() by  00  0.

9This theorem says that if  is continuous in [ ] and differentiable in ( ) then

there exists at least one point  in ( ) such that  0() = (()− ())( − )
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In view of (0) ≥ 0 this establishes (2.16) And from ()  ()−  0()
 (0) and continuity of  follows (2.17).

Under CRS the Inada conditions for  can be written

lim
→0

 0() =∞ lim
→∞

 0() = 0 (2.18)

In this case standard parlance is just to say that “ satisfies the Inada con-

ditions”.

An input which must be positive for positive output to arise is called an

essential input ; an input which is not essential is called an inessential input.

The second part of (2.18), representing the upper Inada condition for

under CRS, has the implication that labor is an essential input; but capital

need not be, as the production function () = + (1 + )   0   0

illustrates. Similarly, under CRS the upper Inada condition for implies

that capital is an essential input. These claims are proved in Appendix C.

Combining these results, when both the upper Inada conditions hold and

CRS obtain, then both capital and labor are essential inputs.10

Figure 2.3 is drawn to provide an intuitive understanding of a neoclassical

CRS production function and at the same time illustrate that the lower Inada

conditions are more questionable than the upper Inada conditions. The left

panel of Figure 2.3 shows output per unit of labor for a CRS neoclassical pro-

duction function satisfying the Inada conditions for . The () in the

diagram could for instance represent the Cobb-Douglas function in Example

1 with  = 1− i.e., () =  The right panel of Figure 2.3 shows a non-

neoclassical case where only two alternative Leontief techniques are available,

technique 1:  = min(11) and technique 2:  = min(22) In the

exposed case it is assumed that 2  1 and 2  1 (if 2 ≥ 1 at the

same time as 2  1 technique 1 would not be efficient, because the same

output could be obtained with less input of at least one of the factors by

shifting to technique 2). If the available  and  are such that   11
or   22, some of either  or  respectively, is idle. If, however, the

available and  are such that 11    22 it is efficient to combine

the two techniques and use the fraction  of  and  in technique 1 and the

remainder in technique 2, where  = (22 − )(22 −11) In this

way we get the “labor productivity curve” OPQR (the envelope of the two

techniques) in Figure 2.3. Note that for  → 0  stays equal to1 ∞

whereas for all   22  = 0 A similar feature remains true, when

we consider many, say  alternative efficient Leontief techniques available.

Assuming these techniques cover a considerable range w.r.t. the  ratios,

10Given a Cobb-Douglas production function, both production factors are essential

whether we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neo-

classical technology with Inada conditions for MPK satisfied; the graphical repre-

sentation of MPK and MPL at  = 0.as 
0(0) and (0)−  0(0)0 are indicated.

Right: a combination of two efficient Leontief techniques.

we get a labor productivity curve looking more like that of a neoclassical CRS

production function. On the one hand, this gives some intuition of what lies

behind the assumption of a neoclassical CRS production function. On the

other hand, it remains true that for all     = 011 whereas

for  → 0  stays equal to 1  ∞ thus questioning the lower Inada

condition.

The implausibility of the lower Inada conditions is also underlined if we

look at their implication in combination with the more reasonable upper

Inada conditions. Indeed, the four Inada conditions taken together imply,

under CRS, that output has no upper bound when either input goes to

infinity for fixed amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often

take into account the existence of technological change. When technological

change occurs, the production function becomes time-dependent. Over time

the production factors tend to become more productive: more output for

given inputs. To put it differently: the isoquants move inward. When this is

the case, we say that the technological change displays technological progress.

11Here we assume the techniques are numbered according to ranking with respect to the

size of 
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Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by

(2.4). Empirical studies typically specialize (2.4) by assuming that techno-

logical change take a form known as factor-augmenting technological change:

 =  ( ) (2.19)

where  is a (time-independent) neoclassical production function,   and

 are output, capital, and labor input, respectively, at time  while  and

 are time-dependent efficiencies of capital and labor, respectively, reflecting

technological change. In macroeconomics an even more specific form is often

assumed, namely the form of Harrod-neutral technological change.12 This

amounts to assuming that  in (2.19) is a constant (which we can then

normalize to one). So only  which we will then denote  is changing over

time, and we have

 =  ( ) (2.20)

The efficiency of labor,  is then said to indicate the technology level. Al-

though one can imagine natural disasters implying a fall in  generally 
tends to rise over time and then we say that (2.20) represents Harrod-neutral

technological progress. An alternative name for this is labor-augmenting tech-

nological progress (technological change acts as if the labor input were aug-

mented).

If the function  in (2.20) is homogeneous of degree one (so that the

technology exhibits CRS w.r.t. capital and labor), we may write

̃ ≡ 



=  (




 1) =  (̃ 1) ≡ (̃)  0  0  00  0

where ̃ ≡ () ≡  (habitually called the “effective” capital in-

tensity or, if there is no risk of confusion, just the capital intensity). In

rough accordance with a general trend in aggregate productivity data for

industrialized countries we often assume that  grows at a constant rate, 

so that in discrete time  = 0(1 + ) and in continuous time  = 0


where   0 The popularity in macroeconomics of the hypothesis of labor-

augmenting technological progress derives from its consistency with Kaldor’s

“stylized facts”, cf. Chapter 4.

There exists two alternative concepts of neutral technological progress.

Hicks-neutral technological progress is said to occur if technological develop-

ment is such that the production function can be written in the form

 =  ( ) (2.21)

12The name refers to the English economist Roy F. Harrod, 1900−1978.
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where, again,  is a (time-independent) neoclassical production function,

while  is the growing technology level.
13 The assumption of Hicks-neutrality

has been used more in microeconomics and partial equilibrium analysis than

in macroeconomics. If  has CRS, we can write (2.21) as  =  ( )

Comparing with (2.19), we see that in this case Hicks-neutrality is equivalent

with  =  in (2.19), whereby technological change is said to be equally

factor-augmenting.

Finally, in a kind of symmetric analogy with (2.20), Solow-neutral tech-

nological progress14 is often in textbooks presented by a formula like:

 =  ( ) (2.22)

Another name for the same is capital-augmenting technological progress (be-

cause here technological change acts as if the capital input were augmented).

Solow’s original concept15 of neutral technological change is not well por-

trayed this way, however, since it is related to the notion of embodied tech-

nological change and capital of different vintages, see below.

It is easily shown (Exercise 2.5) that the Cobb-Douglas production func-

tion (2.8) satisfies all three neutrality criteria at the same time, if it satisfies

one of them (which it does if technological change does not affect  and ).

It can also be shown that within the class of neoclassical CRS production

functions the Cobb-Douglas function is the only one with this property (see

Exercise 4.? in Chapter 4).

Note that the neutrality concepts do not say anything about the source

of technological progress, only about the quantitative form in which it ma-

terializes. For instance, the occurrence of Harrod-neutrality should not be

interpreted as indicating that the technological change emanates specifically

from the labor input in some sense. Harrod-neutrality only means that tech-

nological innovations predominantly are such that not only do labor and

capital in combination become more productive, but this happens to man-

ifest itself in the form (2.20). Similarly, if indeed an improvement in the

quality of the labor input occurs, this “labor-specific” improvement may be

manifested in a higher   or both.

Before proceeding, we briefly comment on how the capital stock, 

is typically measured. While data on gross investment,  is available in

national income and product accounts, data on  usually is not. One ap-

13The name refers to the English economist and Nobel Prize laureate John R. Hicks,

1904−1989.
14The name refers to the American economist and Nobel Prize laureate Robert Solow

(1924−).
15Solow (1960).
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proach to the measurement of  is the perpetual inventory method which

builds upon the accounting relationship

 = −1 + (1− )−1 (2.23)

Assuming a constant capital depreciation rate  backward substitution gives

 = −1+(1−) [−2 + (1− )−2] = . . . =
X
=1

(1−)−1−+(1−)− 

(2.24)

Based on a long time series for  and an estimate of  one can insert these

observed values in the formula and calculate , starting from a rough con-

jecture about the initial value −  The result will not be very sensitive to
this conjecture since for large  the last term in (2.24) becomes very small.

Embodied vs. disembodied technological progress

There exists an additional taxonomy of technological change. We say that

technological change is embodied, if taking advantage of new technical knowl-

edge requires construction of new investment goods. The new technology is

incorporated in the design of newly produced equipment, but this equipment

will not participate in subsequent technological progress. An example: only

the most recent vintage of a computer series incorporates the most recent

advance in information technology. Then investment goods produced later

(investment goods of a later “vintage”) have higher productivity than in-

vestment goods produced earlier at the same resource cost. Thus investment

becomes an important driving force in productivity increases.

We way formalize embodied technological progress by writing capital ac-

cumulation in the following way:

+1 − =  −  (2.25)

where  is gross investment in period , i.e.,  =  −  and  measures

the “quality” (productivity) of newly produced investment goods. The rising

level of technology implies rising  so that a given level of investment gives

rise to a greater and greater addition to the capital stock,  measured

in efficiency units. In aggregate models  and  are produced with the

same technology, the aggregate production function. From this together with

(2.25) follows that  capital goods can be produced at the same minimum

cost as one consumption good. Hence, the equilibrium price,  of capital

goods in terms of the consumption good must equal the inverse of  i.e.,

 = 1 The output-capital ratio in value terms is () = 
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Note that even if technological change does not directly appear in the

production function, that is, even if for instance (2.20) is replaced by 
=  ( ) the economy may experience a rising standard of living when 

is growing over time.

In contrast, disembodied technological change occurs when new technical

and organizational knowledge increases the combined productivity of the pro-

duction factors independently of when they were constructed or educated. If

the appearing in (2.20), (2.21), and (2.22) above refers to the total, histor-

ically accumulated capital stock as calculated by (2.24), then the evolution

of  in these expressions can be seen as representing disembodied technolog-

ical change. All vintages of the capital equipment benefit from a rise in the

technology level  No new investment is needed to benefit.

Based on data for the U.S. 1950-1990, and taking quality improvements

into account, Greenwood et al. (1997) estimate that embodied technological

progress explains about 60% of the growth in output per man hour. So,

empirically, embodied technological progress seems to play a dominant role.

As this tends not to be fully incorporated in national income accounting at

fixed prices, there is a need to adjust the investment levels in (2.24) to better

take estimated quality improvements into account. Otherwise the resulting

 will not indicate the capital stock measured in efficiency units.

2.3 The concepts of a representative firm and

an aggregate production function

Many macroeconomic models make use of the simplifying notion of a rep-

resentative firm. By this is meant a fictional firm whose production “rep-

resents” aggregate production (value added) in a sector or in society as a

whole.

Suppose there are  firms in the sector considered or in society as a

whole. Let   be the production function for firm  so that  =  ( )

where ,  and  are output, capital input, and labor input, respectively,

 = 1 2     . Further, let  = Σ
=1,  = Σ

=1 and  = Σ
=1.

Ignoring technological change, suppose these aggregate variables in a given

society turn out to be related through some production function,  ∗(·) in
the following way:

 =  ∗()

Then  ∗() is called the aggregate production function or the production

function of the representative firm. It is as if aggregate production is the

result of the behavior of such a single firm.
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A simple example where the aggregate production function is well-defined

is the following. Suppose that all firms have the same production function,

i.e.,  (·) =  (·) so that  =  ( )  = 1 2      If in addition  has

CRS, we then have

 =  ( ) =  ( 1) ≡ ()

where  ≡  Hence, facing given factor prices, cost minimizing firms

will choose the same capital intensity  =  for all  From  =  then

follows
P

 = 
P

  so that  =  Thence,

 ≡
X

 =
X

() = ()
X

 = () =  ( 1) =  ()

In this (trivial) case the aggregate production function is well-defined and

turns out to be exactly the same as the identical CRS production functions

of the individual firms.

Allowing for the existence of different production functions at firm level,

we may define the aggregate production function as

 () = max
(11)≥0

 1(1 1) + · · ·+ ( )

s.t.
X


 ≤ 
X


 ≤ 

Allowing also the existence of different output goods, different capital goods,

and different types of labor makes the issue more intricate, of course. Yet,

if firms are price taking profit maximizers and there are nonincreasing re-

turns to scale, we at least know that the aggregate outcome is as if, for given

prices, the firms jointly maximize aggregate profit on the basis of their com-

bined production technology. The problem is, however, that the conditions

needed for this to imply existence of an aggregate production function which

is well-behaved (in the sense of inheriting simple qualitative properties from

its constituent parts) are restrictive.

Nevertheless macroeconomics often treats aggregate output as a single ho-

mogeneous good and capital and labor as being two single and homogeneous

inputs. There was in the 1960s a heated debate about the problems involved

in this, with particular emphasis on the aggregation of different kinds of

equipment into one variable, the capital stock “”. The debate is known

as the “Cambridge controversy” because the dispute was between a group of

economists from Cambridge University, UK, and a group fromMassachusetts

Institute of Technology (MIT), which is located in Cambridge, USA. The for-

mer group questioned the theoretical robustness of several of the neoclassical
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tenets, including the proposition that rising aggregate capital intensity tends

to be associated with a falling rate of interest. Starting at the disaggregate

level, an association of this sort is not a logical necessity because, with differ-

ent production functions across the industries, the relative prices of produced

inputs tend to change, when the interest rate changes. While acknowledging

the possibility of “paradoxical” relationships, the latter group maintained

that in a macroeconomic context they are likely to cause devastating prob-

lems only under exceptional circumstances. In the end this is a matter of

empirical assessment.16

To avoid complexity and because, for many important issues in growth

theory, there is today no well-tried alternative, we shall in this course most

of the time use aggregate constructs like “ ”, “”, and “” as simplify-

ing devices, hopefully acceptable in a first approximation. There are cases,

however, where some disaggregation is pertinent. When for example the role

of imperfect competition is in focus, we shall be ready to disaggregate the

production side of the economy into several product lines, each producing its

own differentiated product. We shall also touch upon a type of growth models

where a key ingredient is the phenomenon of “creative destruction” meaning

that an incumbent technological leader is competed out by an entrant with

a qualitatively new technology.

Like the representative firm, the representative household and the aggre-

gate consumption function are simplifying notions that should be applied

only when they do not get in the way of the issue to be studied. The im-

portance of budget constraints may make it even more difficult to aggregate

over households than over firms. Yet, if (and that is a big if) all households

have the same constant propensity to consume out of income, aggregation

is straightforward and the representative household is a meaningful concept.

On the other hand, if we aim at understanding, say, the interaction between

lending and borrowing households, perhaps via financial intermediaries, the

representative household is not a useful starting point. Similarly, if the theme

is conflicts of interests between firm owners and employees, the existence of

different types of households should be taken into account.

16In his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What

the ‘paradoxical’ comparative statics [of disaggregate capital theory] has taught us is

simply that modelling the world as having a single capital good is not a priori justified.

So be it.”
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2.4 Long-run vs. short-run production func-

tions*

Is the substitutability between capital and labor the same “ex ante” and

“ex post”? By ex ante is meant “when plant and machinery are to be de-

cided upon” and by ex post is meant “after the equipment is designed and

constructed”. In the standard neoclassical competitive setup there is a pre-

sumption that also after the construction and installation of the equipment

in the firm, the ratio of the factor inputs can be fully adjusted to a change

in the relative factor price. In practice, however, when some machinery has

been constructed and installed, its functioning will often require a more or

less fixed number of machine operators. What can be varied is just the degree

of utilization of the machinery. That is, after construction and installation

of the machinery, the choice opportunities are no longer described by the

neoclassical production function but by a Leontief production function,

 = min(̄)   0   0 (2.26)

where ̄ is the size of the installed machinery (a fixed factor in the short

run) measured in efficiency units,  is its utilization rate (0 ≤  ≤ 1) and 
and  are given technical coefficients measuring efficiency.

So in the short run the choice variables are  and  In fact, essentially

only  is a choice variable since efficient production trivially requires  =

̄ Under “full capacity utilization” we have  = 1 (each machine is

used 24 hours per day seven days per week). “Capacity” is given as ̄ per

week. Producing efficiently at capacity requires = ̄ and the marginal

product by increasing labor input is here nil. But if demand,   is less than

capacity, satisfying this demand efficiently requires  =  (̄)  1 and 

=   As long as   1 the marginal productivity of labor is a constant,



The various efficient input proportions that are possible ex ante may be

approximately described by a neoclassical CRS production function. Let this

function on intensive form be denoted  = ()When investment is decided

upon and undertaken, there is thus a choice between alternative efficient pairs

of the technical coefficients  and  in (2.26). These pairs satisfy

() =  =  (2.27)

So, for an increasing sequence of ’s, 1 2. . . , . . . , the corresponding

pairs are ( ) = (() ())  = 1 2. . . .17 We say that ex ante,

17The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as con-
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depending on the relative factor prices as they are “now” and are expected

to evolve in the future, a suitable technique, ( ) is chosen from an

opportunity set described by the given neoclassical production function. But

ex post, i.e., when the equipment corresponding to this technique is installed,

the production opportunities are described by a Leontief production function

with () = ( )

In the picturesque language of Phelps (1963), technology is in this case

putty-clay. Ex ante the technology involves capital which is “putty” in the

sense of being in a malleable state which can be transformed into a range of

various machinery requiring capital-labor ratios of different magnitude. But

once the machinery is constructed, it enters a “hardened” state and becomes

”clay”. Then factor substitution is no longer possible; the capital-labor ra-

tio at full capacity utilization is fixed at the level  =  as in (2.26).

Following the terminology of Johansen (1972), we say that a putty-clay tech-

nology involves a “long-run production function” which is neoclassical and a

“short-run production function” which is Leontief.

In contrast, the standard neoclassical setup assumes the same range of

substitutability between capital and labor ex ante and ex post. Then the

technology is called putty-putty. This term may also be used if ex post there

is at least some substitutability although less than ex ante. At the opposite

pole of putty-putty we may consider a technology which is clay-clay. Here

neither ex ante nor ex post is factor substitution possible. Table 2.1 gives an

overview of the alternative cases.

Table 2.1. Technologies classified according to

factor substitutability ex ante and ex post

Ex post substitution

Ex ante substitution possible impossible

possible putty-putty putty-clay

impossible clay-clay

The putty-clay case is generally considered the realistic case. As time

proceeds, technological progress occurs. To take this into account, we may

replace (2.27) and (2.26) by ( ) =  =  and  = min(̄ )

respectively. If a new pair of Leontief coefficients, (2  2) efficiency-

dominates its predecessor (by satisfying 2 ≥ 1 and 2 ≥ 1 with at

structed this way from the neoclassical production function in the left-hand panel of the

figure.
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least one strict equality), it may pay the firm to invest in the new technol-

ogy at the same time as some old machinery is scrapped. Real wages tend

to rise along with technological progress and the scrapping occurs because

the revenue from using the old machinery in production no longer covers the

associated labor costs.

The clay property ex-post of many technologies is important for short-run

analysis. It implies that there may be non-decreasing marginal productivity

of labor up to a certain point. It also implies that in its investment decision

the firmwill have to take expected future technologies and future factor prices

into account. For many issues in long-run analysis the clay property ex-post

may be less important, since over time adjustment takes place through new

investment.

2.5 Literature notes

As to the question of the empirical validity of the constant returns to scale

assumption, Malinvaud (1998) offers an account of the econometric difficul-

ties associated with estimating production functions. Studies by Basu (1996)

and Basu and Fernald (1997) suggest returns to scale are about constant or

decreasing. Studies by Hall (1990), Caballero and Lyons (1992), Harris and

Lau (1992), Antweiler and Treffler (2002), and Harrison (2003) suggest there

are quantitatively significant increasing returns, either internal or external.

On this background it is not surprising that the case of IRS (at least at in-

dustry level), together with market forms different from perfect competition,

has in recent years received more attention in macroeconomics and in the

theory of economic growth.

Macroeconomists’ use of the value-laden term “technological progress” in

connection with technological change may seem suspect. But the term should

be interpreted as merely a label for certain types of shifts of isoquants in an

abstract universe. At a more concrete and disaggregate level analysts of

course make use of more refined notions about technological change, recog-

nizing for example not only benefits of new technologies, but also the risks,

including risk of fundamental mistakes (think of the introduction and later

abandonment of asbestos in the construction industry).

An informative history of technology is ...

Embodied technological progress, sometimes called investment-specific

technological progress, is explored in, for instance, Solow (1960), Greenwood

et al. (1997), and Groth and Wendner (2014). Hulten (2001) surveys the

literature and issues related to measurement of the direct contribution of

capital accumulation and technological change, respectively, to productivity
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growth.

Conditions ensuring that a representative household is admitted and the

concept of Gorman preferences are discussed in Acemoglu (2009). Another

useful source, also concerning the conditions for the representative firm to be

a meaningful notion, is Mas-Colell et al. (1995). For general discussions of the

limitations of representative agent approaches, see Kirman (1992) and Galle-

gati and Kirman (1999). Reviews of the “Cambridge Controversy” are con-

tained in Mas-Colell (1989) and Felipe and Fisher (2003). The last-mentioned

authors find the conditions required for the well-behavedness of these con-

structs so stringent that it is difficult to believe that actual economies are

in any sense close to satisfy them. For a less distrustful view, see for in-

stance Ferguson (1969), Johansen (1972), Malinvaud (1998), Jorgenson et al.

(2005), and Jones (2005).

It is often assumed that capital depreciation can be described as geomet-

ric (in continuous time exponential) evaporation of the capital stock. This

formula is popular in macroeconomics, more so because of its simplicity than

its realism. An introduction to more general approaches to depreciation is

contained in, e.g., Nickell (1978).

2.6 References

(incomplete)

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



46 CHAPTER 2. REVIEW OF TECHNOLOGY

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



Chapter 3

Continuous time analysis

Because dynamic analysis is generally easier in continuous time, growth mod-

els are often stated in continuous time. This chapter gives an account of the

conceptual aspects of continuous time analysis. Appendix A considers sim-

ple growth arithmetic in continuous time. And Appendix B provides solution

formulas for linear first-order differential equations.

3.1 The transition from discrete time to con-

tinuous time

We start from a discrete time framework. The run of time is divided into

successive periods of equal length, taken as the time-unit. Let us here index

the periods by  = 0 1 2 . Thus financial wealth accumulates according to

+1 −  =  0 given,

where  is (net) saving in period 

3.1.1 Multiple compounding per year

With time flowing continuously, we let () refer to financial wealth at time

 Similarly, (+∆) refers to financial wealth at time +∆ To begin with,

let ∆ equal one time unit. Then (∆) equals () and is of the same value

as  Consider the forward first difference in  ∆() ≡ (+∆)− () It

makes sense to consider this change in  in relation to the length of the time

interval involved, that is, to consider the ratio ∆()∆ As long as ∆ = 1

with  = ∆ we have ∆()∆ = (+1 − )1 = +1 −  Now, keep

the time unit unchanged, but let the length of the time interval [ +∆)

47
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approach zero, i.e., let ∆ → 0. When (·) is a differentiable function, we
have

lim
∆→0

∆()

∆
= lim

∆→0
(+∆)− ()

∆
=

()




where () often written ̇() is known as the derivative of (·) at the
point  Wealth accumulation in continuous time can then be written

̇() = () (0) = 0 given, (3.1)

where () is the saving flow at time . For ∆ “small” we have the approx-

imation ∆() ≈ ̇()∆ = ()∆ In particular, for ∆ = 1 we have ∆()

= (+ 1)− () ≈ ()

As time unit choose one year. Going back to discrete time we have that if

wealth grows at a constant rate   0 per year, then after  periods of length

one year, with annual compounding, we have

 = 0(1 + )  = 0 1 2  . (3.2)

If instead compounding (adding saving to the principal) occurs  times a

year, then after  periods of length 1 year and a growth rate of  per

such period,

 = 0(1 +



) (3.3)

With  still denoting time measured in years passed since date 0, we have

 =  periods. Substituting into (3.3) gives

() =  = 0(1 +



) = 0

∙
(1 +

1


)
¸

 where  ≡ 




We keep  and  fixed, but let  →∞ and thus →∞ Then, in the limit

there is continuous compounding and it can be shown that

() = 0
 (3.4)

where  is a mathematical constant called the base of the natural logarithm

and defined as  ≡ lim→∞(1 + 1) ' 2.7182818285....
The formula (3.4) is the continuous-time analogue to the discrete time for-

mula (3.2) with annual compounding. A geometric growth factor is replaced

by an exponential growth factor.

We can also view the formulas (3.2) and (3.4) as the solutions to a differ-

ence equation and a differential equation, respectively. Thus, (3.2) is the so-

lution to the linear difference equation +1 = (1+), given the initial value

0 And (3.4) is the solution to the linear differential equation ̇() = ()
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given the initial condition (0) = 0 Now consider a time-dependent growth

rate, () The corresponding differential equation is ̇() = ()() and it

has the solution

() = (0)
 
0
()  (3.5)

where the exponent,
R 
0
() , is the definite integral of the function ()

from 0 to  The result (3.5) is called the basic accumulation formula in

continuous time and the factor 
 
0
() is called the growth factor or the

accumulation factor.

3.1.2 Compound interest and discounting

Let () denote the short-term real interest rate in continuous time at time .

To clarify what is meant by this, consider a deposit of  () euro on a drawing

account in a bank at time . If the general price level in the economy at time

 is  () euro, the real value of the deposit is () =  () () at time 

By definition the real rate of return on the deposit in continuous time (with

continuous compounding) at time  is the (proportionate) instantaneous rate

at which the real value of the deposit expands per time unit when there is

no withdrawal from the account. Thus, if the instantaneous nominal interest

rate is () we have ̇ () () = () and so, by the fraction rule in continuous

time (cf. Appendix A),

() =
̇()

()
=

̇ ()

 ()
− ̇ ()

 ()
= ()− () (3.6)

where () ≡ ̇ () () is the instantaneous inflation rate. In contrast to the

corresponding formula in discrete time, this formula is exact. Sometimes ()

and () are referred to as the nominal and real interest intensity, respectively,

or the nominal and real force of interest.

Calculating the terminal value of the deposit at time 1  0 given its

value at time 0 and assuming no withdrawal in the time interval [0 1], the

accumulation formula (3.5) immediately yields

(1) = (0)
 1
0

()

When calculating present values in continuous time analysis, we use com-

pound discounting. We simply reverse the accumulation formula and go from

the compounded or terminal value to the present value (0). Similarly, given

a consumption plan, (())1=0, the present value of this plan as seen from

time 0 is

 =

Z 1

0

() − (3.7)
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presupposing a constant interest rate. Instead of the geometric discount

factor, 1(1 + ) from discrete time analysis, we have here an exponential

discount factor, 1() = − and instead of a sum, an integral. When the
interest rate varies over time, (3.7) is replaced by

 =

Z 1

0

() 
−  

0
()



In (3.7) () is discounted by − ≈ (1 + )− for  “small”. This might
not seem analogue to the discrete-time discounting in (??) where it is −1
that is discounted by (1 + )− assuming a constant interest rate. When
taking into account the timing convention that payment for −1 in period
 − 1 occurs at the end of the period (= time ) there is no discrepancy,

however, since the continuous-time analogue to this payment is ().

3.2 The allowed range for parameter values

The allowed range for parameters may change when we go from discrete time

to continuous time with continuous compounding. For example, the usual

equation for aggregate capital accumulation in continuous time is

̇() = ()− () (0) = 0 given, (3.8)

where () is the capital stock, () is the gross investment at time  and

 ≥ 0 is the (physical) capital depreciation rate. Unlike in discrete time, here
  1 is conceptually allowed. Indeed, suppose for simplicity that () = 0

for all  ≥ 0; then (3.8) gives () = 0
−. This formula is meaningful for

any  ≥ 0 Usually, the time unit used in continuous time macro models is
one year (or, in business cycle theory, rather a quarter of a year) and then a

realistic value of  is of course  1 (say, between 0.05 and 0.10). However, if

the time unit applied to the model is large (think of a Diamond-style OLG

model), say 30 years, then   1 may fit better, empirically, if the model

is converted into continuous time with the same time unit. Suppose, for

example, that physical capital has a half-life of 10 years. With 30 years as

our time unit, inserting into the formula 12 = −3 gives  = (ln 2) · 3 ' 2
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good

is 1 and thus constant. More generally, if we let the relative price of the

capital good in terms of the consumption good at time  be () and allow

̇() 6= 0 then we have to distinguish between the physical depreciation

of capital,  and the economic depreciation, that is, the loss in economic
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value of a machine per time unit. The economic depreciation will be () =

() − ̇() namely the economic value of the physical wear and tear (and

technological obsolescence, say) minus the capital gain (positive or negative)

on the machine.

Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates

of return and discount rates in general.

3.3 Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make

a clear distinction between stocks (say wealth) and flows (say consumption

or saving). Recall, a stock variable is a variable measured as a quantity at a

given point in time. The variables () and () considered above are stock

variables. A flow variable is a variable measured as quantity per time unit

at a given point in time. The variables () ̇() and () are flow variables.

One can not add a stock and a flow, because they have different denomi-

nations. What exactly is meant by this? The elementary measurement units

in economics are quantity units (so many machines of a certain kind or so

many liters of oil or so many units of payment, for instance) and time units

(months, quarters, years). On the basis of these we can form composite mea-

surement units. Thus, the capital stock,  has the denomination “quantity

of machines”, whereas investment,  has the denomination “quantity of ma-

chines per time unit” or, shorter, “quantity/time”. A growth rate or interest

rate has the denomination “(quantity/time)/quantity” = “time−1”. If we
change our time unit, say from quarters to years, the value of a flow variable

as well as a growth rate is changed, in this case quadrupled (presupposing

annual compounding).

In continuous time analysis expressions like()+() or()+̇() are

thus illegitimate. But one can write (+∆) ≈ ()+(()−())∆ or

̇()∆ ≈ (()− ())∆ In the same way, suppose a bath tub at time 

contains 50 liters of water and that the tap pours 1
2
liter per second into the

tub for some time. Then a sum like 50  + 1
2
(/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount

would be 50  + 1
2
· 60 ((/sec)×sec) = 80 . In analogy, economic flow

variables in continuous time should be seen as intensities defined for every

 in the time interval considered, say the time interval [0,  ) or perhaps

[0, ∞). For example, when we say that () is “investment” at time ,

this is really a short-hand for “investment intensity” at time . The actual

investment in a time interval [0 0 +∆)  i.e., the invested amount during
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Figure 3.1: With ∆ “small” the integral of () from 0 to 0+∆ is ≈ the hatched
area.

this time interval, is the integral,
R 0+∆

0
() ≈ (0)∆ Similarly, the flow

of individual saving, () should be interpreted as the saving intensity at

time  The actual saving in a time interval [0 0 +∆)  i.e., the saved (or

accumulated) amount during this time interval, is the integral,
R 0+∆

0
()

If ∆ is “small”, this integral is approximately equal to the product (0) ·∆,

cf. the hatched area in Figure 3.1.

The notation commonly used in discrete time analysis blurs the distinc-

tion between stocks and flows. Expressions like +1 = + without further

comment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are

added. In fact, however, it is wealth at the beginning of period  and the

saved amount during period  that are added: +1 =  +  ·∆. The tacit

condition is that the period length, ∆ is the time unit, so that ∆ = 1.

But suppose that, for example in a business cycle model, the period length

is one quarter, but the time unit is one year. Then saving in quarter  is 
= (+1 − ) · 4 per year.

3.4 The choice between discrete and contin-

uous time analysis

In empirical economics, data typically come in discrete time form and data

for flow variables typically refer to periods of constant length. One could

argue that this discrete form of the data speaks for discrete time rather than

continuous time modelling. And the fact that economic actors often think
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and plan in period terms, may seem a good reason for putting at least mi-

croeconomic analysis in period terms. Nonetheless real time is continuous.

And it can hardly be said that the mass of economic actors think and plan

with one and the same period. In macroeconomics we consider the sum of

the actions. In this perspective the continuous time approach has the advan-

tage of allowing variation within the usually artificial periods in which the

data are chopped up. And for example centralized asset markets equilibrate

almost instantaneously and respond immediately to new information. For

such markets a formulation in continuous time seems preferable.

There is also a risk that a discrete time model may generate artificial

oscillations over time. Suppose the “true” model of some mechanism is given

by the differential equation

̇ =    −1 (3.9)

The solution is () = (0) which converges in a monotonic way toward 0

for →∞ However, the analyst takes a discrete time approach and sets up

the seemingly “corresponding” discrete time model

+1 −  = 

This yields the difference equation +1 = (1 + ), where 1 +   0 The

solution is  = (1 + )0  = 0 1 2     As (1 + ) is positive when 

is even and negative when  is odd, oscillations arise in spite of the “true”

model generating monotonous convergence towards the steady state ∗ = 0.
It should be added, however, that this potential problem can always be

avoided within discrete time models by choosing a sufficiently short period

length. Indeed, the solution to a differential equation can always be ob-

tained as the limit of the solution to a corresponding difference equation for

the period length approaching zero. In the case of (3.9) the approximating

difference equation is +1 = (1 + ∆) where ∆ is the period length,

 = ∆, and  = (∆) By choosing ∆ small enough, the solution comes

arbitrarily close to the solution of (3.9). It is generally more difficult to go

in the opposite direction and find a differential equation that approximates

a given difference equation. But the problem is solved as soon as a differ-

ential equation has been found that has the initial difference equation as an

approximating difference equation.

From the point of view of the economic contents, the choice between

discrete time and continuous time may be a matter of taste. From the point

of view of mathematical convenience, the continuous time formulation, which

has worked so well in the natural sciences, seems preferable. At least this is so

in the absence of uncertainty. For problems where uncertainty is important,
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discrete time formulations are easier to work with unless one is familiar with

stochastic calculus.

3.5 Appendix

A. Growth arithmetic in continuous time

Let the variables   and  be differentiable functions of time  Suppose

() () and () are positive for all  Then:

PRODUCT RULE () = ()()⇒ ̇()

()
=

̇()

()
+

̇()

()


Proof. Taking logs on both sides of the equation () = ()() gives ln ()

= ln() + ln (). Differentiation w.r.t. , using the chain rule, gives the

conclusion. ¤

The procedure applied in this proof is called logarithmic differentiation

w.r.t. 

FRACTION RULE () =
()

()
⇒ ̇()

()
=

̇()

()
− ̇()

()


The proof is similar.

POWER FUNCTION RULE () = () ⇒ ̇()

()
= 

̇()

()


The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time

the analogue formulas are only approximately true and the approximation

can be quite bad unless the growth rates of  and  are small.

B. Solution formulas for linear differential equations of first order

For a general differential equation of first order, ̇() = (() ) with

(0) = 0 and where  is a continuous function, we have, at least for 

in an interval (−+) for some   0

() = 0 +

Z 

0

(() ) (*)

To get a confirmation, calculate ̇() from (*).

For the special case of a linear differential equation of first order, ̇() +

()() = () we can specify the solution. Three sub-cases of rising com-

plexity are:
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1. ̇() + () =  with  6= 0 and initial condition (0) = 0 Solution:

() = (0 − ∗)−(−0) + ∗ where ∗ =





If  = 0 we get, directly from (*), the solution () = 0 + 1

2. ̇() + () = () with initial condition (0) = 0  Solution:

() = 0
−(−0) + −(−0)

Z 

0

()(−0)

Special case: () =  with  6= − and initial condition (0) = 0 

Solution:

() = 0
−(−0)+−(−0)

Z 

0

(+)(−0) = (0−


+ 
)−(−0)+



+ 
(−0)

3. ̇() + ()() = () with initial condition (0) = 0  Solution:

() = 0
−  

0
()

+ 
−  

0
()

Z 

0

()
 
0
()



Special case: () = 0 Solution:

() = 0
−  

0
()



Even more special case: () = 0 and () =  a constant. Solution:

() = 0
−(−0)

Remark 1 For 0 = 0 most of the formulas will look simpler.

Remark 2 To check whether a suggested solution is a solution, calculate

the time derivative of the suggested solution and add an arbitrary constant.

By appropriate adjustment of the constant, the final result should be a repli-

cation of the original differential equation together with its initial condition.

1Some non-linear differential equations can be transformed into this simple case. For

simplicity let 0 = 0 Consider the equation ̇() = ()  0  0 given,  6= 0  6= 1

(a Bernoulli equation). To find the solution for () let () ≡ ()1− Then, ̇()
= (1 − )()− ̇() = (1 − )()−() = (1 − ) The solution for this is ()

= 0 + (1 − ) where 0 = 
1−
0  Thereby the solution for () is () = ()1(1−)

=
³

1−
0 + (1− )

´1(1−)
 which is defined for   −1−0 ((1− )
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Chapter 4

Balanced growth theorems

In this chapter we shall discuss three fundamental propositions about bal-

anced growth. In view of the generality of the propositions, they have a

broad field of application.

The chapter covers the stuff in Acemoglu’s §2.7.3. Our propositions 1

and 2 are slight extensions of part 1 and 2, respectively, of what Acemoglu

calls Uzawa’s Theorem I (Acemoglu, 2009, p. 60). Proposition 3 essentially

corresponds to what Acemoglu calls Uzawa’s Theorem II (Acemoglu, 2009,

p. 63).

4.1 Balanced growth and constancy of key ra-

tios

First we shall define the terms “steady state” and “balanced growth” as they

are usually defined in growth theory. With respect to “balanced growth” this

implies a minor deviation from the way Acemoglu briefly defines it informally

on his page 57. The main purpose of the present chapter is to lay bare

the connections between these two concepts as well as their relation to the

hypothesis of Harrod-neutral technical progress and Kaldor’s stylized facts.

4.1.1 The concepts of steady state and balanced growth

A basic equation in many one-sector growth models for a closed economy in

continuous time is

̇ =  −  =  −  −  ≡  −  (4.1)

where  is aggregate capital,  aggregate gross investment,  aggregate

output,  aggregate consumption,  aggregate gross saving (≡  −), and

57



58 CHAPTER 4. BALANCED GROWTH THEOREMS

 ≥ 0 is a constant physical capital depreciation rate.
Usually, in the theoretical literature on dynamic models, a steady state is

defined in the following way:

Definition 3 A steady state of a dynamic model is a stationary solution to

the fundamental differential equation(s) of the model.

Or briefly: a steady state is a stationary point of a dynamic process.

Let us take the Solow growth model as an example. Here gross saving

equals  where  is a constant, 0    1 Aggregate output is given by a

neoclassical production function,  with CRS and Harrod-neutral technical

progress:  =  () =  (̃ 1) ≡ (̃) where  is the labor

force,  is the level of technology, and ̃ ≡ () is the (effective) capital

intensity. Moreover,  0  0 and  00  0 Solow assumes () = (0) and

() = (0), where  ≥ 0 and  ≥ 0 are the constant growth rates of the
labor force and technology, respectively. By log-differentiating ̃ w.r.t. 1

we end up with the fundamental differential equation (“law of motion”) of

the Solow model:
·
̃ = (̃)− ( +  + )̃ (4.2)

Thus, in the Solow model, a (non-trivial) steady state is a ̃∗  0 such that,

if ̃ = ̃∗ then
·
̃ = 0

The most common definition in the literature of balanced growth for an

aggregate economy is the following:

Definition 4 A balanced growth path is a path ()∞=0 along which the
quantities  and  are positive and grow at constant rates (not necessarily

positive and not necessarily the same).

Acemoglu, however, defines (p. 57) balanced growth in the following way:

“balanced growth refers to an allocation where output grows at a constant

rate and capital-output ratio, the interest rate, and factor shares remain con-

stant”. My problem with this definition is that it mixes growth of quantities

with distribution aspects (interest rate and factor income shares). And it is

not made clear what is meant by the output-capital ratio if the relative price

of capital goods is changing over time. So I stick to the standard definition

above which is known to function well in many different contexts.

1Or by directly using the fraction rule, see Appendix A to Chapter 3.
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4.1.2 A general result about balanced growth

We now leave the specific Solow model. The interesting fact is that, given the

dynamic resource constraint (4.1), we have always that if there is balanced

growth with positive gross saving, then the ratios  and  are constant

(by “always” is meant: independently of how saving is determined and of how

the labor force and technology change). And also the other way round: as

long as gross saving is positive, constancy of the  and  ratios is

enough to ensure balanced growth. So balanced growth and constancy of

key ratios are essentially equivalent.

This is a very practical general observation. And since Acemoglu does

not state any balanced growth theorem at this general level, we shall do it,

in a precise way, here, together with a proof. Letting  denote the growth

rate of the (positively valued) variable  i.e.,  ≡ ̇ we claim:

Proposition 1 (the balanced growth equivalence theorem). Let ()∞=0
be a path along which ,  and  ≡  −  are positive for all  ≥ 0
Then, given the accumulation equation (4.1), the following holds:

(i) if there is balanced growth, then  =  =   and the ratios 

and  are constant;

(ii) if  and  are constant, then  and  grow at the same

constant rate, i.e., not only is there balanced growth, but the growth

rates of  and  are the same.

Proof Consider a path ()∞=0 along which ,  and  ≡  − 

are positive for all  ≥ 0 (i) Assume there is balanced growth. Then, by

definition,     and  are constant. Hence, by (4.1), we have that  =

 +  is constant, implying

 =   (4.3)

Further, since  =  + 

 =
̇


=

̇


+

̇


= 




+ 




= 




+ 




(by (4.3))

= 



+ 

 − 


=




( − ) +   (4.4)

Now, let us provisionally assume that  6=   Then (4.4) gives




=

 − 

 − 
 (4.5)
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a constant, so that  =   But this result implies, by (4.5), that  = 1

i.e.,  =  In view of (4.1), however, this outcome contradicts the given

condition that   0 Hence, our provisional assumption is wrong, and we

have  =  . By (4.4), this implies  =  =   but now without

the condition  = 1 being implied. It follows that  and  are

constant. Then, also  = ()() is constant.

(ii) Suppose  and  are constant. Then  =  =  , so that

 is a constant. We now show that this implies that  is constant.

Indeed, from (4.1),  = 1− so that also  is constant. It follows

that  =  =  so that  is constant. By (4.1),




=

̇ + 


=  + 

so that  is constant. This, together with constancy of  and 

implies that also  and  are constant. ¤

Remark. It is part (i) of the proposition which requires the assumption   0

for all  ≥ 0 If  = 0 we would have  = − and  ≡  −  =  hence

 =  for all  ≥ 0 Then there would be balanced growth if the common
value of  and  had a constant growth rate. This growth rate, however,

could easily differ from that of Suppose  = 1−  =  and  = 

( and  constants). Then we would have  =  = −+(1−) which
could easily be strictly positive and thereby different from  = − ≤ 0 so
that (i) no longer holds. ¤

The nice feature is that this proposition holds for any model for which

the simple dynamic resource constraint (4.1) is valid. No assumptions about

for example CRS and other technology aspects or about market form are

involved. Further, the proposition suggests that if one accepts Kaldor’s styl-

ized facts as a description of the past century’s growth experience, and if

one wants a model consistent with them, one should construct the model

such that it can generate balanced growth. For a model to be capable of

generating balanced growth, however, technological progress must be of the

Harrod-neutral type (i.e., be labor-augmenting), at least in a neighborhood

of the balanced growth path. For a fairly general context (but of course not

as general as that of Proposition 1), this was shown already by Uzawa (1961).

The next section presents a modernized version of Uzawa’s contribution.
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4.2 The crucial role of Harrod-neutrality

Let the aggregate production function be

 () = ̃ (() (); ) (4.6)

The only technology assumption needed is that ̃ has CRS w.r.t. the first two

arguments (̃ need not be neoclassical for example). As a representation of

technical progress, we assume ̃  0 for all  ≥ 0 (i.e., as time proceeds,
unchanged inputs result in more and more output). We also assume that the

labor force evolves according to

() = (0) (4.7)

where  is a constant. Further, non-consumed output is invested and so (4.1)

is the dynamic resource constraint of the economy.

Proposition 2 (Uzawa’s balanced growth theorem) Let ( ()() ())∞=0,
where 0  ()   () for all  ≥ 0 be a path satisfying the capital accumu-
lation equation (4.1), given the CRS-production function (5.2) and the labor

force path in (4.7). Then:

(i) a necessary condition for this path to be a balanced growth path is that

along the path it holds that

 () = ̃ (() (); ) = ̃ (() ()(); 0) (4.8)

where () =  with  ≡  − ;

(ii) for any   0 such that there is a    +  +  with the property

that ̃ (1 −1; 0) =  for some   0 (i.e., at any  hence also  = 0,

the production function ̃ in (5.2) allows an output-capital ratio equal

to ), a sufficient condition for the existence of a balanced growth path

with output-capital ratio , is that the technology can be written as in

(4.8) with () = .

Proof (i)2 Suppose the path ( ()() ())∞=0 is a balanced growth path.
By definition,  and  are then constant, so that () = (0) and

 () =  (0)  We then have

 ()−  =  (0) = ̃ ((0) (0); 0) = ̃ (()− ()−; 0) (4.9)

2This part draws upon Schlicht (2006), who generalized a proof in Wan (1971, p. 59)

for the special case of a constant saving rate.
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where we have used (5.2) with  = 0 In view of the precondition that ()

≡  ()−()  0 we know from (i) of Proposition 1, that  is constant

so that  =  . By CRS, (4.9) then implies

 () = ̃ (() − () −; 0) = ̃ (() ( −)(); 0)

We see that (4.8) holds for () =  with  ≡  − 

(ii) Suppose (4.8) holds with () =  Let   0 be given such that

there is a    +  +  with the property that ̃ (1 −1; 0) =  for some

  0 Then our first claim is that with (0) = (0)  ≡ ( +  + )

and () =  (), (4.1), (4.7), and (4.8) imply  ()() =  for all  ≥ 0.
Indeed, by construction

 (0)

(0)
=

̃ ((0) (0); 0)

(0)
= ̃ (1 −1; 0) =  =

 +  + 


 (4.10)

It follows that  (0)(0) −  =  +  So, by (4.1), we have ̇(0)(0)

=  (0)(0)−  = + implying that  initially grows at the same rate

as effective labor input, ()(). Then, in view of ̃ being homogeneous of

degree one w.r.t. its first two arguments, also  grows initially at this rate.

As an implication, the ratio  does not change, but remains equal to the

right-hand side of (4.10) for all  ≥ 0. Consequently,  and  continue to

grow at the same constant rate,  + . As  = (1 − )  grows forever

also at this constant rate. Hence, the path ( ()() ())∞=0 is a balanced
growth path, as was to be proved. ¤

The form (4.8) indicates that along a balanced growth path, technical

progress must be purely “labor augmenting”, that is, Harrod-neutral. It is in

this case convenient to define a new CRS function, by  (() ()())

≡ ̃ (() ()(); 0) Then (i) of the proposition implies that at least along

the balanced growth path, we can rewrite the production function this way:

 () = ̃ (() (); ) =  (() ()()) (4.11)

where () =  with  ≡  − 

It is important to recognize that the occurrence of Harrod-neutrality says

nothing about what the source of technological progress is. Harrod-neutrality

should not be interpreted as indicating that the technological progress em-

anates specifically from the labor input. Harrod-neutrality only means that

technical innovations predominantly are such that not only do labor and cap-

ital in combination become more productive, but this happens to manifest
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itself at the aggregate level in the form (4.11).3

What is the intuition behind the Uzawa result that for balanced growth

to be possible, technical progress must have the purely labor-augmenting

form? First, notice that there is an asymmetry between capital and labor.

Capital is an accumulated amount of non-consumed output. In contrast, in

simple macro models labor is a non-produced production factor which (at

least in this context) grows in an exogenous way. Second, because of CRS,

the original formulation, (5.2), of the production function implies that

1 = ̃ (
()

 ()

()

 ()
; ) (4.12)

Now, since capital is accumulated non-consumed output, it inherits the trend

in output such that () () must be constant along a balanced growth

path (this is what Proposition 1 is about). Labor does not inherit the trend in

output; indeed, the ratio () () is free to adjust as time proceeds. When

there is technical progress (̃  0) along a balanced growth path, this

progress must manifest itself in the form of a changing () () in (4.12)

as  proceeds, precisely because () () must be constant along the path.

In the “normal” case where ̃  0 the needed change in () () is a

fall (i.e., a rise in  ()()) This is what (4.12) shows. Indeed, the fall in

() () must exactly offset the effect on ̃ of the rising  when there is a

fixed capital-output ratio.4 It follows that along the balanced growth path,

 ()() is an increasing implicit function of  If we denote this function

() we end up with (4.11).

The generality of Uzawa’s theorem is noteworthy. The theorem assumes

CRS, but does not presuppose that the technology is neoclassical, not to

speak of satisfying the Inada conditions.5 And the theorem holds for exoge-

nous as well as endogenous technological progress. It is also worth mentioning

that the proof of the sufficiency part of the theorem is constructive. It pro-

vides a method to construct a hypothetical balanced growth path (BGP from

now).6

A simple implication of the Uzawa theorem is the following. Interpreting

the () in (4.8) as the “level of technology”, we have:

3For a CRS Cobb-Douglas production function with technological progress, Harrod-

neutrality is present whenever the output elasticity w.r.t capital (often denoted ) is

constant over time.
4This way of presenting the intuition behind the Uzawa result draws upon Jones and

Scrimgeour (2008).
5Many accounts of the Uzawa theorem, including Jones and Scrimgeour (2008), presume

a neoclassical production function, but the theorem is much more general.
6Part (ii) of Proposition 2 is ignored in Acemoglu’s book.
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COROLLARY Along a BGP with positive gross saving and the technology

level, () growing at the rate  output grows at the rate + while labor

productivity,  ≡  and consumption per unit of labor,  ≡  grow

at the rate 

Proof That  =  +  follows from (i) of Proposition 2. As to the growth

rate of labor productivity we have

 =
 (0) 

(0)
= (0)( −) = (0)

Finally, by Proposition 1, along a BGP with   0  must grow at the same

rate as  ¤
We shall now consider the implication of Harrod-neutrality for the income

shares of capital and labor when the technology is neoclassical and markets

are perfectly competitive.

4.3 Harrod-neutrality and the functional in-

come distribution

There is one facet of Kaldor’s stylized facts we have so far not related to

Harrod-neutral technical progress, namely the long-run “approximate” con-

stancy of both the income share of labor,  and the rate of return to

capital. At least with neoclassical technology, profit maximizing firms, and

perfect competition in the output and factor markets, these properties are

inherent in the combination of constant returns to scale, balanced growth,

and the assumption that the relative price of capital goods (relative to con-

sumption goods) equals one. The latter condition holds in models where the

capital good is nothing but non-consumed output, cf. (4.1).7

To see this, we start out from a neoclassical CRS production function

with Harrod-neutral technological progress,

 () =  (() ()()) (4.13)

With () denoting the real wage at time  in equilibrium under perfect

competition the labor income share will be

()()

 ()
=

 ()

()
()

 ()
=

2(() ()())()()

 ()
 (4.14)

7The reader may think of the “corn economy” example in Acemoglu, p. 28.
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In this simple model, without natural resources, capital (gross) income equals

non-labor income,  () − ()() Hence, if () denotes the (net) rate of

return to capital at time , then

() =
 ()− ()()− ()

()
 (4.15)

Denoting the capital (gross) income share by () we can write this ()

(in equilibrium) in three ways:

() ≡  ()− ()()

 ()
=
(() + )()

 ()


() =
 (() ()())− 2(() ()())()()

 ()
=

1(() ()())()

 ()


() =

 ()

()
()

 ()
 (4.16)

where the first row comes from (4.15), the second from (4.13) and (4.14), the

third from the second together with Euler’s theorem.8 Comparing the first

and the last row, we see that in equilibrium

 ()

()
= () + 

In this condition we recognize one of the first-order conditions in the rep-

resentative firm’s profit maximization problem under perfect competition,

since () +  can be seen as the firm’s required gross rate of return.9

In the absence of uncertainty, the equilibrium real interest rate in the

bond market must equal the rate of return on capital, () And () +  can

then be seen as the firm’s cost of disposal over capital per unit of capital per

time unit, consisting of interest cost plus capital depreciation.

Proposition 3 (factor income shares and rate of return under balanced

growth) Let the path (()  () ())∞=0 be a BGP in a competitive economy
with the production function (4.13) and with positive saving. Then, along the

BGP, the () in (4.16) is a constant,  ∈ (0 1). The labor income share
will be 1− and the (net) rate of return on capital will be  = −  where

 is the constant output-capital ratio along the BGP.

8From Euler’s theorem, 1 + 2 =  () when  is homogeneous of degree

one
9With natural resources, say land, entering the set of production factors, the formula,

(4.15), for the rate of return to capital should be modified by subtracting rents from the

numerator.
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Proof By CRS we have  () =  (() ()()) = ()() (̃() 1)

≡ ()()(̃()) In view of part (i) of Proposition 2, by balanced growth,

 ()() is some constant, . Since  ()() = (̃())̃() and  00  0
this implies ̃() constant, say equal to ̃∗ But  ()() =  0(̃())which
then equals the constant  0(̃∗) along the BGP. It then follows from (4.16)

that () =  0(̃∗) ≡  Moreover, 0    1 where 0   follows from

 0  0 and   1 from the fact that  =  = (̃∗)̃∗   0(̃∗) in view
of  00  0 and (0) ≥ 0 Then, by the first equality in (4.16), ()() ()
= 1− () = 1− . Finally, by (4.15), the (net) rate of return on capital is

 = (1− ()() ()) ()()−  =  −  ¤

This proposition is of interest by displaying a link from balanced growth

to constancy of factor income shares and the rate of return, that is, some

of the “stylized facts” claimed by Kaldor. Note, however, that although the

proposition implies constancy of the income shares and the rate of return,

it does not determine them, except in terms of  and  But both  and,

generally,  are endogenous and depend on ̃∗10 which will generally be
unknown as long as we have not specified a theory of saving. This takes us

to theories of aggregate saving, for example the simple Ramsey model, cf.

Chapter 8 in Acemoglu’s book.

4.4 What if technological change is embod-

ied?

In our presentation of technological progress above we have implicitly as-

sumed that all technological change is disembodied. And the way the propo-

sitions 1, 2, and 3, are formulated assume this.

As noted in Chapter 2, disembodied technological change occurs when new

technical knowledge advances the combined productivity of capital and labor

independently of whether the workers operate old or new machines. Consider

again the aggregate dynamic resource constraint (4.1) and the production

function (5.2):

̇() =  ()− ()− () (*)

 () = ̃ (() (); ) ̃   0 (**)

Here  ()−() is aggregate gross investment, () For a given level of ()
the resulting amount of new capital goods per time unit (̇()+()), mea-

sured in efficiency units, is independent of when this investment occurs. It is

10As to  there is of course a trivial exception, namely the case where the production

function is Cobb-Douglas and  therefore is a given parameter.
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thereby not affected by technological progress. Similarly, the interpretation

of ̃  0 in (**) is that the higher technology level obtained as time

proceeds results in higher productivity of all capital and labor. Thus also

firms that have only old capital equipment benefit from recent advances in

technical knowledge. No new investment is needed to take advantage of the

recent technological and organizational developments.11

In contrast, we say that technological change is embodied, if taking ad-

vantage of new technical knowledge requires construction of new investment

goods. The newest technology is incorporated in the design of newly pro-

duced equipment; and this equipment will not participate in subsequent

technological progress. Whatever the source of new technical knowledge,

investment becomes an important bearer of the productivity increases which

this new knowledge makes possible. Without new investment, the potential

productivity increases remain potential instead of being realized.

As also noted in Chapter 2, we may represent embodied technological

progress (also called investment-specific technological change) by writing cap-

ital accumulation in the following way,

̇() = ()()− () (4.17)

where () is gross investment at time  and () measures the “quality”

(productivity) of newly produced investment goods. The increasing level of

technology implies increasing () so that a given level of investment gives

rise to a greater and greater additions to the capital stock,  measured

in efficiency units. As in our aggregate framework,  capital goods can be

produced at the same minimum cost as one consumption good, we have · =
1 where  is the equilibrium price of capital goods in terms of consumption

goods. So embodied technological progress is likely to result in a steady

decline in the relative price of capital equipment, a prediction confirmed by

the data (see, e.g., Greenwood et al., 1997).

This raises the question how the propositions 1, 2, and 3 fare in the case

of embodied technological progress. The answer is that a generalized version

of Proposition 1 goes through. Essentially, we only need to replace (4.1) by

(4.17) and interpret  in Proposition 1 as the value of the capital stock, i.e.,

we have to replace  by ̃ = 

But the concept of Harrod-neutrality no longer fits the situation with-

out further elaboration. Hence to obtain analogies to Proposition 2 and

Proposition 3 is a more complicated matter. Suffice it to say that with em-

11In the standard versions of the Solow model and the Ramsey model it is assumed that

all technological progress has this form - for no other reason than that this is by far the

simplest case to analyze.
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bodied technological progress, the class of production functions that are con-

sistent with balanced growth is smaller than with disembodied technological

progress.

4.5 Concluding remarks

In the Solow model as well as in many other models with disembodied tech-

nological progress, a steady state and a balanced growth path imply each

other. Indeed, they are two sides of the same process. There exist cases,

however, where this equivalence does not hold (some open economy models

and some models with embodied technical change). Therefore, it is recom-

mendable always to maintain a terminological distinction between the two

concepts, steady state and balanced growth.12

Note that the definition of balanced growth refers to aggregate variables.

At the same time as there is balanced growth at the aggregate level, structural

change may occur. That is, a changing sectorial composition of the economy

is under certain conditions compatible with balanced growth (in a generalized

sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,

2001, and Acemoglu, 2009, Chapter 20).

In view of the key importance of Harrod-neutrality, a natural question is:

has growth theory uncovered any endogenous tendency for technical progress

to converge to Harrod-neutrality? Fortunately, in his Chapter 15 Acemoglu

outlines a theory about a mechanism entailing such a tendency, the theory of

“directed technical change”. Jones (2005) suggests an alternative mechanism.
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Chapter 5

The concepts of TFP and

growth accounting: Some

warnings

5.1 Introduction

This chapter discusses the concepts of Total Factor Productivity, TFP, and

TFP growth, and ends up with three warnings regarding uncritical use of

them.

First, however, we should provide a precise definition of the TFP level

which is in fact a tricky concept. Unfortunately, Acemoglu (p. 78) does

not make a clear distinction between TFP level and TFP growth. Moreover,

Acemoglu’s point of departure (p. 77) assumes a priori that the way the pro-

duction function is time-dependent can be represented by a one-dimensional

index, () The TFP concept and the applicability of growth accounting

are, however, not limited to this case.

For convenience, in this chapter we treat time as continuous (although

the timing of the variables is indicated merely by a subscript).1

5.2 TFP level and TFP growth

Let  denote aggregate output (value added in fixed prices) at time  in a

sector or the economy as a whole. Suppose  is determined by the function

 = ̃ ( ; ) (5.1)

1I thank Niklas Brønager for useful discussions related to this chapter.

71



72

CHAPTER 5. THE CONCEPTS OF TFP AND GROWTH

ACCOUNTING: SOME WARNINGS

where is an aggregate input of physical capital and an index of quality-

adjusted labor input.2 The “quality-adjustment” of the input of labor (man-

hours per year) aims at taking educational level and work experience into

account. In fact, both output and the two inputs are aggregates of het-

erogeneous elements. The involved conceptual and measurement difficulties

are huge and there are different opinions in the growth accounting literature

about how to best deal with them. Here we ignore these problems. The

third argument in (5.1) is time,  indicating that the production function

̃ (·  · ; ) is time-dependent. Thus “shifts in the production function”, due
to changes in efficiency and technology (“technical change” for short), can

be taken into account. We treat time as continuous and assume that ̃ is

a neoclassical production function. When the partial derivative of ̃ w.r.t.

the third argument is positive, i.e., ̃  0 technical change amounts

to technical progress. We consider the economy from a purely supply-side

perspective.3

We shall here concentrate on the fundamentals of TFP and TFP growth.

These can in principle be described without taking the heterogeneity and

changing quality of the labor input into account. Hence we shall from now

on ignore this aspect and simplifying assume that labor is homogeneous and

labor quality is constant. So (5.1) is reduced to the simpler case,

 = ̃ ( ; ) (5.2)

where  is the number of man-hours per year. As to measurement of

, some adaptation of the perpetual inventory method
4 is typically used,

with some correction for under-estimated quality improvements of invest-

ment goods in national income accounting. The output measure is (or at

least should be) corrected correspondingly, also for under-estimated quality

improvements of consumption goods.

2Natural resources (land, oil wells, coal in the ground, etc.) constitute a third primary

production factor. The role of this factor is in growth accounting often subsumed under

.

3Sometimes in growth accounting the left-hand side variable,  in (5.2) is the gross

product rather than value added. Then non-durable intermediate inputs should be taken

into account as a third production factor and enter as an additional argument of ̃ in

(5.2). Since non-market production is difficult to measure, the government sector is usually

excluded from  in (5.2). Total Factor Productivity is by some authors called Multifactor

Productivity and abbreviated MFP.
4Cf. Chapter 2.
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5.2.1 TFP growth

The notion of Total Factor Productivity at time  TFP is intended to

indicate a level of productivity. Nevertheless there is a tendency in the

literature to evade a direct definition of this level and instead go straight

away to a decomposition of output growth. Let us start the same way here

but not forget to come back to the issue about what can be meant by the

level of TFP.

The growth rate of a variable  at time  will be denoted . Taking

logs and differentiating w.r.t.  in (5.2) we get

 ≡ ̇


=
1



h
̃( ; )̇ + ̃( ; )̇ + ̃( ; ) · 1

i
=

̃( ; )


 +

̃( ; )


 +

̃( ; )



≡  +  +
̃( ; )


 (5.3)

where  and  are shorthands for ( ; ) ≡ ̃(;)

̃ (;)
and ( ; )

≡ ̃(;)

̃ (;)
 respectively, that is, the partial output elasticities w.r.t. the

two production factors, evaluated at the factor combination ( ) at time

 Finally, ̃( ; ) ≡ ̃, that is, the partial derivative w.r.t. the

third argument of the function ̃ , evaluated at the point (  )

The equation (5.3) is the basic growth-accounting relation, showing how

the output growth rate can be decomposed into the “contribution” from

growth in each of the inputs and a residual. The TFP growth rate is defined

as the residual

TFP, ≡  − ( + ) =
̃( ; )


 (5.4)

So the TFP growth rate is what is left when from the output growth rate is

subtracted the “contribution” from growth in the factor inputs weighted by

the output elasticities w.r.t. these inputs. This is sometimes interpreted as

reflecting that part of the output growth rate which is explained by technical

progress. One should be careful, however, not to identify a descriptive ac-

counting relationship with deeper causality. Without a complete model, at

most one can say that the TFP growth rate measures that fraction of output

growth that is not directly attributable to growth in the capital and labor

inputs. So:
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The TFP growth rate can be interpreted as reflecting the “direct

contribution” to current output growth from current technical

change (in a broad sense including learning by doing and organi-

zational improvement).

Let us consider how the actual estimation of TFP, can be carried out.

The output elasticities w.r.t. capital and labor,  and  will, under

perfect competition and absence of externalities, equal the income shares of

capital and labor, respectively. Time series for these income shares and for

 ,  and  hence also for   and , can be obtained (directly or

with some adaptation) from national income accounts. This allows straight-

forward measurement of the residual, TFP, 
5

The decomposition in (5.4) was introduced already by Solow (1957). Since

the TFP growth rate appears as a residual, it is sometimes called the Solow

residual. As a residual it may reflect the contribution of many things, some

wanted (current technical innovation in a broad sense including organiza-

tional improvement), others unwanted (such as varying capacity utilization,

omitted inputs, measurement errors, and aggregation bias).

5.2.2 The TFP level

Now let us consider the level of TFP, that “something” for which we have

calculated its growth rate without yet having defined what it really is. But

knowing the growth rate of TFP for all  in a certain time interval, we in fact

have a differential equation in the TFP level of the form () = ()()

namely:

(TFP) = TFP, ·TFP
The solution of this simple linear differential equation is6

TFP = TFP0
 
0
TFP,  (5.5)

For a given initial value TFP0  0 (which may be normalized to 1 if de-

sired), the time path of TFP is determined by the right-hand side of (5.5).

Consequently:

The TFP level at time  can interpreted as reflecting the cumula-

tive “direct contribution” to output since time 0 from cumulative

technical change since time 0.

5Of course, data are in discrete time. So to make actual calculations we have to translate

(5.4) into discrete time. The weights  and  can then be estimated by two-years

moving averages of the factor income shares as shown in Acemoglu (2009, p. 79).
6See Appendix B of Chapter 3 in these lecture notes or Appendix B to Acemoglu.
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Why do we say “direct contribution”? The reason is that the cumulative

technical change since time 0 may also have an indirect effect on output,

namely via affecting the output elasticities w.r.t. capital and labor,  and

 Through this channel cumulative technical change affects the role of

input growth for output growth. This possible indirect effect over time of

technical change is not included in the TFP concept.

To clarify the matter we will compare the TFP calculation under Hicks-

neutral technical change with that under other forms of technical change.

5.3 The case of Hicks-neutrality*

In the case of Hicks neutrality, by definition, technical change can be repre-

sented by the evolution of a one-dimensional variable,  and the production

function in (5.2) can be specified as

 = ̃ ( ; ) =  ( ) (5.6)

Here the TFP level is at any time, , identical to the level of if we normalize

the initial values of both  and TFP to be the same, i.e., TFP0 = 0  0.

Indeed, calculating the TFP growth rate, (5.4), on the basis of (5.6) gives

TFP, =
̃( ; )


=

̇ ( )

 ( )
=

̇



≡  (5.7)

where the second equality comes from the fact that  and  are kept fixed

when the partial derivative of ̃ w.r.t.  is calculated. The formula (5.5) now

gives

TFP = 0 · 
 
0
, = 

The nice feature of Hicks neutrality is thus that we can write

TFP =
̃ ( ; )

̃ ( ; 0)
=

 ( )

0 ( )
=  (5.8)

using the normalization 0 = 1 That is:

Under Hicks neutrality, current TFP appears as the ratio be-

tween the current output level and the hypothetical output level

that would have resulted from the current inputs of capital and

labor in case of no technical change since time 0.

So in the case of Hicks neutrality the economic meaning of the TFP level

is straightforward. The reason is that under Hicks neutrality the output

elasticities w.r.t. capital and labor,  and  are independent of technical

change.
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5.4 Absence of Hicks-neutrality*

The above very intuitive interpretation of TFP is only valid under Hicks-

neutral technical change. Neither under general technical change nor even

under Harrod- or Solow-neutral technical change (unless the production func-

tion is Cobb-Douglas so that both Harrod and Solow neutrality imply Hicks-

neutrality), will current TFP appear as the ratio between the current output

level and the hypothetical output level that would have resulted from the

current inputs of capital and labor in case of no technical change since time

0.

To see this, let us return to the general time-dependent production func-

tion in (5.2). Let  denote the ratio between the current output level at

time  and the hypothetical output level, ̃ ( ; 0) that would have ob-

tained with the current inputs of capital and labor in case of no change in

the technology since time 0, i.e.,

 ≡ ̃ ( ; )

̃ ( ; 0)
 (5.9)

So  can be seen as a factor of joint-productivity growth from time 0 to

time  evaluated at the time- input combination.

If this  should always indicate the level of TFP at time , the growth

rate of  should equal the growth rate of TFP. Generally, it does not,

however. Indeed, defining ( ) ≡ ̃ ( ; 0) by the rule for the time

derivative of fractions7, we have

 ≡ ̃ ( ; )

̃ ( ; )
− ( )

( )

=
1



h
̃( ; )̇ + ̃( ; )̇ + ̃( ; ) · 1

i
− 1

( )

h
( )̇ +( )̇

i
= ( ; ) + ( ; ) +

̃( ; )


−(( ; 0) + ( ; 0)) (5.10)

= (( ; )− ( ; 0))  + (( ; )− ( ; 0)) + TFP,

6= TFP, generally,

where TFP, is given in (5.4). Unless the partial output elasticities w.r.t.

capital and labor, respectively, are unaffected by technical change, the con-

clusion is that TFP will differ from our  defined in (5.9). So:

7See Appendix A to Chapter 3 of these lecture notes.
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In the absence of Hicks neutrality, current TFP does not gener-

ally appear as the ratio between the current output level and the

hypothetical output level that would have resulted from the cur-

rent inputs of capital and labor in case of no technical change

since time 0.

A closer look at  vs. TFP

As  in (5.9) is the time- output arising from the time- inputs relative to

the fictional time-0 output from the same inputs, we consider  along with

TFP as two alternative joint-productivity indices. From (5.10) we see that

TFP, =  −(( ; )− ( ; 0)) −(( ; )−( ; 0))

So the growth rate of TFP equals the growth rate of the joint-productivity

index  corrected for the cumulative impact of technical change since time 0

on the direct contribution to time- output growth from time- input growth.

This impact comes about when the output elasticities w.r.t. capital and la-

bor, respectively, are affected by technical change, that is, when ( ; )

6= ( ; 0) and/or ( ; ) 6= ( ; 0)

Under Hicks-neutral technical change there will be no correction because

the output elasticities are independent of technical change. In this case TFP

coincides with the index  In the absence of Hicks-neutrality the two indices

differ. This is why we in Section 2.2 characterized the TFP level as the

cumulative “direct contribution” to output since time 0 from cumulative

technical change, thus excluding the possible indirect contribution coming

about via the potential effect of technical change on the output elasticities

w.r.t. capital and labor and thereby on the contribution to output from input

growth.

Given that the joint-productivity index  is the more intuitive joint-

productivity measure, why is TFP the more popular measure? There are at

least two reasons for this. First, it can be shown that the TFP measure has

more convenient balanced growth properties. Second,  is more difficult to

measure. To see this we substitute (5.3) into (5.10) to get

 =  − (( ; 0) + ( ; 0)) (5.11)

The relevant output elasticities, ( ; 0)≡ ̃(;0)

̃ (;0)
and ( ; 0)

≡ ̃(;0)

̃ (;0)
 are hypothetical constructs, referring to the technology as it

was at time 0, but with the factor combination observed at time , not at time

0. The nice thing about the Solow residual is that under the assumptions
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of perfect competition and absence of externalities, it allows measurement

by using data on prices and quantities alone, that is, without knowledge

of the production function. To evaluate  , however, we need estimates

of the hypothetical output elasticities, ( ; 0) and ( ; 0) This

requires knowledge about how the output elasticities depend on the factor

combination and time, respectively, that is, knowledge about the production

function.

Now to the warnings concerning application of the TFP measure.

5.5 Three warnings

Balanced growth at the aggregate level, hence Harrod neutrality, seems to

characterize the growth experience of the UK and US over at least a century

(Kongsamut et al., 2001; Attfield and Temple, 2010). At the same time

the aggregate elasticity of factor substitution is generally estimated to be

significantly less than one (see, e.g., Antras, 2004). This amounts to rejection

of the Cobb-Douglas specification of the aggregate production function and

so, at the aggregate level, Harrod neutrality rules out Hicks neutrality.

Warning 1 Since Hicks-neutrality is empirically doubtful at the aggre-

gate level, TFP can often not be identified with the simple intuitive joint-

productivity measure  defined in (5.9) above.

Warning 2 When Harrod neutrality obtains, relative TFP growth rates

across sectors or countries can be quite deceptive.

Suppose there are  countries and that country  has the aggregate pro-

duction function

 =  ()( )  = 1 2  

where  () is a neoclassical production function with CRS and  is the level

of labor-augmenting technology which, for simplicity, we assume shared by

all the countries (these are open and “close” to each other). So technical

progress is Harrod-neutral. Let the growth rate of  be a constant   0

Many models imply that ̃ ≡ () tends to a constant, ̃
∗
 , in the long

run, which we assume is also the case here. Then, for →∞  ≡ 

≡ ̃ where ̃ → ̃∗ and  ≡  ≡ ̃ where ̃ → ̃∗ =  ()(̃∗ );
here  () is the production function on intensive form. So in the long run 
and  tend to  = .
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Formula (5.4) then gives the TFP growth rate of country  in the long

run as

TFP ≡  − (∗ 
+ (1− ∗ )) =  −  − ∗ (

− )

=  − ∗  = (1− ∗ ) (5.12)

where ∗ is the output elasticity w.r.t. capital, 
()0(̃)̃ ()(̃) evaluated

at ̃ = ̃∗  Under labor-augmenting technical progress, the TFP growth rate
thus varies negatively with the output elasticity w.r.t. capital (the capital

income share under perfect competition). Owing to differences in product

and industry composition, the countries have different ∗ ’s. In view of (5.12),
for two different countries,  and  we get





→
⎧⎨⎩
∞ if ∗  ∗ 
1 if ∗ = ∗ 
0 if ∗  ∗ 

(5.13)

for  → ∞8 Thus, in spite of long-run growth in the essential variable,

 being the same across the countries, their TFP growth rates are very

different. Countries with low ∗ ’s appear to be technologically very dynamic
and countries with high ∗ ’s appear to be lagging behind. It is all due to the
difference in  across countries; a higher  just means that a larger fraction

of  =  =  becomes “explained” by  in the growth accounting (5.12),

leaving a smaller residual. And the level of  has nothing to do with technical

progress.

We conclude that comparison of TFP levels across countries or time may

misrepresent the intuitive meaning of productivity and technical progress

when output elasticities w.r.t. capital differ and technical progress is Harrod-

neutral (even if technical progress were at the same time Hicks-neutral as is

the case with a Cobb-Douglas specification). It may be more reasonable to

just compare levels of  across countries and time.

Warning 3 Growth accounting is - as the name says - just about account-

ing and measurement. So do not confuse growth accounting with causality

in growth analysis. To talk about causality we need a theoretical model sup-

ported by the data. On the basis of such a model we can say that this or that

set of exogenous factors through the propagation mechanisms of the model

cause this or that phenomenon, including economic growth. In contrast, con-

sidering the growth accounting identity (5.3) in itself, none of the terms have

8If  is Cobb-Douglas with output elasticity w.r.t. capital equal to , the result

in (5.12) can be derived more directly by first defining  = 1− , then writing the

production function in the Hicks-neutral form (5.6), and finally use (5.7).
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priority over the others w.r.t. a causal role. And there are important omitted

variables. There are simple illustrations in Exercises III.1 and III.2.

In a complete model with exogenous technical progress, part of  will

be induced by this technical progress. If technical progress is endogenous

through learning by investing, as in Arrow (1962), there is mutual causa-

tion between  and technical progress. Yet another kind of model might

explain both technical progress and capital accumulation through R&D, cf.

the survey by Barro (1999).
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Chapter 6

Transitional dynamics.

Barro-style growth regressions

In this chapter we discuss three issues, all of which are related to the transi-

tional dynamics of a growth model:

• Do poor countries necessarily tend to approach their steady state from
below?

• How fast (or rather how slow) are the transitional dynamics in a growth
model?

• What exactly is the theoretical foundation for a Barro-style growth
regression analysis?

The Solow growth model may serve as the analytical point of departure

for the first two issues and to some extent also for the third.

6.1 Point of departure: the Solow model

As is well-known, the fundamental differential equation for the Solow model

is ·
̃() = (̃())− ( +  + )̃() ̃(0) = ̃0  0, (6.1)

where ̃() ≡ ()(()()) (̃()) ≡  (̃() 1) () = 0
 and

() = 0
 (standard notation). The production function  is neoclassical

with CRS and the parameters satisfy 0    1 and ++  0 The produc-

tion function on intensive form,  therefore satisfies (0) ≥ 0  0  0  00  0
and

lim
̃→0

 0(̃) 
 +  + 


 lim

̃→∞
 0(̃) (A1)
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Figure 6.1: Note:  means 

Then there exists a unique non-trivial steady state, ̃∗  0 that is, a unique
positive solution to the equation

(̃∗) = ( +  + )̃∗ (6.2)

Furthermore, given an arbitrary ̃0  0 we have for all  ≥ 0
·
̃() T 0 for ̃() S ̃∗ (6.3)

respectively. The steady state, ̃∗ is thus globally asymptotically stable in the
sense that for all ̃0  0 lim→∞ ̃() = ∗ and this convergence is monotonic
(in the sense that ̃() − ̃∗ does not change sign during the adjustment
process).

From now on the dating of ̃ is suppressed unless needed for clarity. Figure

6.1 illustrates the dynamics as seen from the perspective of (6.1) (in this and

the two next figures,  should read . Figure 6.2 illustrates the dynamics

emerging when we rewrite (6.1) this way:

·
̃ = 

µ
(̃)−  +  + 


̃

¶
T 0 for ̃ S ̃∗
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In Figure 6.3 yet another illustration is exhibited, based on rewriting (6.1)

this way:
·
̃

̃
= 

(̃)

̃
− ( +  + )

where (̃)̃ is gross saving per unit of capital,  ≡ ( − )

An important variable in the analysis of the adjustment process towards

steady state is the output elasticity w.r.t. capital:








=

̃

(̃)
 0(̃) ≡ (̃) (6.4)

where 0  (̃)  1 for all ̃  0

6.2 Do poor countries tend to approach their

steady state from below?

From some textbooks (for instance Barro and Sala-i-Martin, 2004) one gets

the impression that poor countries tend to approach their steady state from

below. But this is not what the Penn World Table data seems to indicate.

And from a theoretical point of view the size of ̃0 relative to ̃
∗ is certainly

ambiguous, whether the country is rich or poor. To see this, consider a poor

country with initial effective capital intensity

̃0 ≡ 0

00


Here 00 will typically be small for a poor country (the country has not

yet accumulated much capital relative to its fast-growing population). The

technology level, 0 however, also tends to be small for a poor country.

Hence, whether we should expect ̃0  ̃∗ or ̃0  ̃∗ is not obvious apriori.
Or equivalently: whether we should expect that a poor country’s GDP at an

arbitrary point in time grows at a rate higher or lower than the country’s

steady-state growth rate,  +  is not obvious apriori.

While Figure 6.3 illustrates the case where the inequality ̃0  ̃∗ holds,
Figure 6.1 and 6.2 illustrate the opposite case. There exists some empirical

evidence indicating that poor countries tend to approach their steady state

from above. Indeed, Cho and Graham (1996) find that “on average, countries

with a lower income per adult are above their steady-state positions, while

countries with a higher income are below their steady-state positions”.
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The prejudice that poor countries apriori should tend to approach their

steady state from below seems to come from a confusion of conditional and

unconditional  convergence. The Solow model predicts - and data supports

- that within a group of countries with similar structural characteristics (ap-

proximately the same  0    and ) the initially poorer countries will

grow faster than the richer countries. This is because the poorer countries

(small (0) = (̃0)0) will be the countries with relatively small initial

capital-labor ratio, 0 As all the countries in the group have approximately

the same 0 the poorer countries thus have ̃0 ≡ 00 relatively small, i.e.,

̃0  ̃∗. From  ≡  ≡ ̃ = (̃) follows that the growth rate in

output per worker of these poor countries tends to exceed  Indeed, we have

generally

̇


=

·
̃

̃
+  =

 0(̃)
·
̃

(̃)
+  T  for

·
̃ T 0 i.e., for ̃ S ̃∗

So, within the group, the poor countries tend to approach the steady state,

̃∗ from below.

The countries in the world as a whole, however, differ a lot w.r.t. their

structural characteristics, including their 0 Unconditional  convergence is

definitely rejected by the data. Then there is no reason to expect the poorer

countries to have ̃0  ̃∗ rather than ̃0  ̃∗. Indeed, according to the
mentioned study by Cho and Graham (1996), it turns out that the data for

the relatively poor countries favors the latter inequality rather than the first.

6.3 Convergence speed and adjustment time

Our next issue is: How fast (or rather how slow) are the transitional dynamics

in a growth model? To put it another way: according to a given growth model

with convergence, how fast does the economy approach its steady state? The

answer turns out to be: not very fast - to say the least. This is a rather

general conclusion and is confirmed by the empirics: adjustment processes

in a growth context are quite time consuming.

In Acemoglu’s textbook we meet the concept of speed of convergence at p.

54 (under an alternative name, rate of adjustment) and p. 81 (in connection

with Barro-style growth regressions). Here we shall go more into detail with

the issue of speed of convergence.

Again the Solow model is our frame of reference. We search for a formula

for the speed of convergence of ̃() and ()∗() in a closed economy de-
scribed by the Solow model. So our analysis is concerned with within-country
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convergence: how fast do variables such as ̃ and  approach their steady

state paths in a closed economy? The key adjustment mechanism is linked

to diminishing returns to capital (falling marginal productivity of capital)

in the process of capital accumulation. The problem of cross-country con-

vergence (which is what “ convergence” and “ convergence” are about)

is in principle more complex because also such mechanisms as technological

catching-up and cross-country factor movements are involved.

6.3.1 Convergence speed for ̃()

The ratio of
·
̃() to (̃()− ̃∗) 6= 0 can be written

·
̃()

̃()− ̃∗
=

(̃()− ̃∗)

̃()− ̃∗
 (6.5)

since ̃∗ = 0 We define the instantaneous speed of convergence at time

 as the (proportionate) rate of decline of the distance
¯̄̄
̃()− ̃∗

¯̄̄
at time 

and we denote it SOC(̃)
1 Thus,

SOC(̃) ≡ −

³¯̄̄
̃()− ̃∗

¯̄̄´
¯̄̄

̃()− ̃∗
¯̄̄ = −(̃()− ̃∗)

̃()− ̃∗
 (6.6)

where the equality sign is valid for monotonic convergence.

Generally, SOC(̃) depends on both the absolute size of the difference ̃

− ̃∗ at time  and its sign. But if the difference is already “small”, SOC(̃)

will be “almost” constant for increasing  and we can find an approximate

measure for it. Let the function (̃) be defined by (̃) ≡ (̃) − ̃

where  ≡ + + A first-order Taylor approximation of (̃) around ̃ =

̃∗ gives

(̃) ≈ (̃∗) + 0(̃∗)(̃ − ̃∗) = 0 + ( 0(̃∗)−)(̃ − ̃∗)

1Synonyms for speed of convergence are rate of convergence, rate of adjustment or

adjustment speed.
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For ̃ in a small neighborhood of the steady state, ̃∗ we thus have

·
̃ = (̃) ≈ ( 0(̃∗)−)(̃ − ̃∗)

= (
 0(̃∗)


− 1)(̃ − ̃∗)

= (
̃∗

0
(̃∗)

(̃∗)
− 1)(̃ − ̃∗) (from (6.2))

≡ ((̃∗)− 1)(̃ − ̃∗) (from (6.4)).

Applying the definition (6.6) and the identity  ≡ + +  we now get

SOC(̃) = −(̃()− ̃∗)

̃()− ̃∗
≈ (1− (̃∗))( +  + ) ≡ (̃∗)  0 (6.7)

This result tells us how fast, approximately, the economy approaches its

steady state if it starts “close” to it. If, for example, (̃∗) = 002 per year,
then 2 percent of the gap between ̃() and ̃∗ vanishes per year. We also see
that everything else equal, a higher output elasticity w.r.t. capital implies a

lower speed of convergence.

In the limit, for
¯̄̄
̃ − ̃∗

¯̄̄
→ 0 the instantaneous speed of convergence

coincides with what is called the asymptotic speed of convergence, defined as

SOC∗(̃) ≡ lim
|̃−̃∗|→0

SOC(̃) = (̃∗) (6.8)

Multiplying through by −(̃()− ̃∗) the equation (6.7) takes the form of
a homogeneous linear differential equation (with constant coefficient), ̇() =

() the solution of which is () = (0)With () = ̃()− ̃∗ and “=”
replaced by “≈”, we get in the present case

̃()− ̃∗ ≈ (̃(0)− ̃∗)−(̃
∗) (6.9)

This is the approximative time path for the gap between ̃() and ̃∗ and
shows how the gap becomes smaller and smaller at the rate (̃∗).
One of the reasons that the speed of convergence is important is that it

indicates what weight should be placed on transitional dynamics of a growth

model relative to the steady-state behavior. The speed of convergence mat-

ters for instance for the evaluation of growth-promoting policies. In growth

models with diminishing marginal productivity of production factors, suc-

cessful growth-promoting policies have transitory growth effects and perma-

nent level effects. Slower convergence implies that the full benefits are slower

to arrive.
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6.3.2 Convergence speed for log ̃()

We have found an approximate expression for the convergence speed of ̃

Since models in empirical analysis and applied theory are often based on log-

linearization, we might ask what the speed of convergence of log ̃ is. The

answer is: approximately the same and asymptotically exactly the same as

that of ̃ itself! Let us see why.

A first-order Taylor approximation of log ̃() around ̃ = ̃∗ gives

log ̃() ≈ log ̃∗ + 1

̃∗
(̃()− ̃∗) (6.10)

By definition

SOC(log ̃) = −(log ̃()− log ̃
∗)

log ̃()− log ̃∗ = − ̃()

̃()(log ̃()− log ̃∗)

≈ − ̃()

̃()
̃()−̃∗

̃∗

=
̃∗

̃()
SOC(̃)→ SOC∗(̃) = (̃∗) for ̃()→ ̃∗(6.11)

where in the second line we have used, first, the approximation (6.10), second,

the definition in (6.7), and third, the definition in (6.8).

So, at least in a neighborhood of the steady state, the instantaneous rate

of decline of the logarithmic distance of ̃ to the steady-state value of ̃

approximates the instantaneous rate of decline of the distance of ̃ itself to

its steady-state value. The asymptotic speed of convergence of log ̃ coincides

with that of ̃ itself and is exactly (̃∗)
In the Cobb-Douglas case (where (̃∗) is a constant, say ) it is possible

to find an explicit solution to the Solow model, see Acemoglu p. 53 and

Exercise II.2. It turns out that the instantaneous speed of convergence in a

finite distance from the steady state is a constant and equals the asymptotic

speed of convergence, (1− )( +  + )

6.3.3 Convergence speed for ()∗()

The variable which we are interested in is usually not so much ̃ in itself,

but rather labor productivity, () ≡ ̃()() In the interesting case where

  0 labor productivity does not converge towards a constant. We therefore

focus on the ratio ()∗() where ∗() denotes the hypothetical value of
labor productivity at time  conditional on the economy being on its steady-

state path, i.e.,

∗() ≡ ̃∗() (6.12)
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We have
()

∗()
≡ ̃()()

̃∗()
=

̃()

̃∗
 (6.13)

As ̃()→ ̃∗ for →∞ the ratio ()∗() converges towards 1 for →∞

Taking logs on both sides of (6.13), we get

log
()

∗()
= log

̃()

̃∗
= log ̃()− log ̃∗

≈ log ̃∗ +
1

̃∗
(̃()− ∗)− log ̃∗ (first-order Taylor approx. of log ̃ )

=
1

(̃∗)
((̃())− (̃∗))

≈ 1

(̃∗)
((̃∗) +  0(̃∗)(̃()− ̃∗)− (̃∗)) (first-order approx. of (̃))

=
̃∗ 0(̃∗)

(̃∗)

̃()− ̃∗

̃∗
≡ (̃∗)

̃()− ̃∗

̃∗

≈ (̃∗)(log ̃()− log ̃∗) (by (6.10)). (6.14)

Multiplying through by −(log ̃()− log ̃∗) in (6.11) and carrying out the
differentiation w.r.t. time, we find an approximate expression for the growth

rate of ̃

̃()

̃()
≡ ̃() ≈ −

̃∗

̃()
SOC(̃)(log ̃()− log ̃∗)

→ −(̃∗)(log ̃()− log ̃∗) for ̃()→ ̃∗ (6.15)

where the convergence follows from the last part of (6.11). We now calculate

the time derivative on both sides of (6.14) to get

(log
()

∗()
) = (log

̃()

̃∗
) =

̃()

̃()
≡ ̃()

≈ (̃∗)̃() ≈ −(̃∗)(̃∗)(log ̃()− log ̃∗) (6.16)
from (6.15). Dividing through by − log(()∗()) in this expression, taking
(6.14) into account, gives

−
(log

()

∗())

log
()

∗()

= −
(log

()

∗() − log 1)
log

()

∗() − log 1
≡ SOC(log



∗
) ≈ (̃∗) (6.17)

in view of log 1 = 0. So the logarithmic distance of  from its value on the

steady-state path at time  has approximately the same rate of decline as the
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logarithmic distance of ̃ from ̃’s value on the steady-state path at time 

The asymptotic speed of convergence for log ()∗() is exactly the same
as that for ̃ namely (̃∗).
What about the speed of convergence of ()∗() itself? Here the same

principle as in (6.11) applies. The asymptotic speed of convergence for

log(()∗()) is the same as that for ()∗() (and vice versa), namely
(̃∗)
With one year as our time unit, standard parameter values are:  = 002

 = 001  = 005 and (̃∗) = 13We then get (̃∗) = (1−(̃∗))(++)
= 0053 per year. In the empirical Chapter 11 of Barro and Sala-i-Martin

(2004), it is argued that a lower value of (̃∗) say 0.02 per year, fits the data
better. This requires (̃∗) = 075 Such a high value of (̃∗) (≈ the income
share of capital) may seem difficult to defend. But if we reinterpret  in

the Solow model so as to include human capital (skills embodied in human

beings and acquired through education and learning by doing), a value of

(̃∗) at that level may not be far out.

6.3.4 Adjustment time

Let  be the time that it takes for the fraction  ∈ (0 1) of the initial gap
between ̃ and ̃∗ to be eliminated, i.e.,  satisfies the equation¯̄̄

̃()− ̃∗
¯̄̄

¯̄̄
̃(0)− ̃∗

¯̄̄ = ̃()− ̃∗

̃(0)− ̃∗
= 1−  (6.18)

where 1 −  is the fraction of the initial gap still remaining at time . In

(6.18) we have applied that (̃() − ̃∗) = (̃(0) − ̃∗) in view of

monotonic convergence.

By (6.9), we have

̃()− ̃∗ ≈ (̃(0)− ̃∗)−(̃
∗) 

In view of (6.18), this implies

1−  ≈ −(̃
∗) 

Taking logs on both sides and solving for  gives

 ≈ − log(1− )

(̃∗)
 (6.19)
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This is the approximate adjustment time required for ̃ to eliminate the

fraction  of the initial distance of ̃ to its steady-state value, ̃∗, when the
adjustment speed (speed of convergence) is (̃∗)
Often we consider the half-life of the adjustment, that is, the time it

takes for half of the initial gap to be eliminated. To find the half-life of the

adjustment of ̃ we put  = 1
2
in (6.19). Again we use one year as our time

unit. With the previous parameter values, we have (̃∗) = 0053 per year
and thus

 1
2
≈ − log

1
2

0053
≈ 069

0053
= 13 1 years.

As noted above, Barro and Sala-i-Martin (2004) estimate the asymptotic

speed of convergence to be (̃∗) = 0.02 per year. With this value, the

half-life is approximately

 1
2
≈ − log

1
2

002
≈ 069
002

= 347 years.

And the time needed to eliminate three quarters of the initial distance to

steady state,  34 will then be about 70 years (= 2 ·35 years, since 1−34 =
1
2
· 1
2
).

Among empirical analysts there is not general agreement about the size of

(̃∗). Some authors, for example Islam (1995), using a panel data approach,
find speeds of convergence considerably larger, between 005 and 009. Mc-

Quinne and Whelan (2007) get similar results. There is a growing realization

that the speed of convergence differs across periods and groups of countries.

Perhaps an empirically reasonable range is 002  (̃∗)  009 Correspond-
ingly, a reasonable range for the half-life of the adjustment will be 76 years

  1
2
 347 years.

Most of the empirical studies of convergence use a variety of cross-country

regression analysis of the kind described in the next section. Yet the theoret-

ical frame of reference is often the Solow model - or its extension with human

capital (Mankiw et al., 1992). These models are closed economy models with

exogenous technical progress and deal with “within-country” convergence. It

is not obvious that they constitute an appropriate framework for studying

cross-country convergence in a globalized world where capital mobility and to

some extent also labor mobility are important and where some countries are

pushing the technological frontier further out, while others try to imitate and

catch up. At least one should be aware that the empirical estimates obtained

may reflect mechanisms in addition to the falling marginal productivity of

capital in the process of capital accumulation.
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6.4 Barro-style growth regressions

Barro-style growth regression analysis, which became very popular in the

1990s, draws upon transitional dynamics aspects (including the speed of con-

vergence) as well as steady state aspects of neoclassical growth theory (for

instance the Solow model or the Ramsey model).

In his Section 3.2 of Chapter 3 Acemoglu presents Barro’s growth regres-

sion equations in an unconventional form, see Acemoglu’s equations (3.12),

(3.13), and (3.14). The left-hand side appears as if it is just the growth rate

of  (output per unit of labor) from one year to the next. But the true left-

hand side of a Barro equation is the average compound annual growth rate of

 over many years. Moreover, since Acemoglu’s text is very brief about the

formal links to the underlying neoclassical theory of transitional dynamics,

we will spell the details out here.

Most of the preparatory work has already been done above. The point of

departure is a neoclassical one-sector growth model for a closed economy:

·
̃() = (̃())(̃())− ( +  + )() ̃(0) = ̃0  0 given, (6.20)

where ̃() ≡ ()(()()) () = 0
 and () = 0

 as above.

The Solow model is the special case where the saving-income ratio, (̃())

is a constant  ∈ (0 1)
It is assumed that the model, (6.20), generates monotonic convergence,

i.e., ̃() → ̃∗  0 for  → ∞ Applying again a first-order Taylor approxi-

mation, as in Section 3.1, and taking into account that (̃) now may depend

on ̃ as for instance it generally does in the Ramsey model, we find the

asymptotic speed of convergence for ̃ to be

SOC∗(̃) = (1− (̃∗)− (̃∗))( +  + ) ≡ (̃∗)  0 (*)

where (̃∗) ≡ ̃∗0(̃∗)(̃∗) is the elasticity of the saving-income ratio w.r.t.
the effective capital intensity, evaluated at ̃ = ̃∗ (In case of the Ramsey
model, one can alternatively use the fact that SOC∗(̃) equals the absolute
value of the negative eigenvalue of the Jacobian matrix associated with the

dynamic system of the model, evaluated in the steady state. For a fully

specified Ramsey model this eigenvalue can be numerically calculated by an

appropriate computer algorithm; in the Cobb-Douglas case there exists even

an explicit algebraic formula for the eigenvalue, see Barro and Sala-i-Martin,

2004). In a neighborhood of the steady state, the previous formulas remain

valid with (̃∗) defined as in (*). The asymptotic speed of convergence of for
example ()∗() is thus (̃∗) as given in (*). For notational convenience,
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we will just denote it  interpreted as a derived parameter, i.e.,

 = (1− (̃∗)− (̃∗))( +  + ) ≡ (̃∗) (6.21)

In case of the Solow model, (̃∗) = 0 and we are back in Section 3.
In view of () ≡ ̃()() we have () = ̃() +  By (6.16) and the

definition of ,

() ≈  − (̃∗)(log ̃()− log ̃∗) ≈  − (log ()− log ∗()) (6.22)

where the last approximation comes from (6.14). This generalizes Acemoglu’s

Equation (3.10) (recall that Acemoglu concentrates on the Solow model and

that his ∗ is the same as our ̃∗)
With the horizontal axis representing time, Figure 6.4 gives an illustration

of these transitional dynamics. As () =  log () and  =  log ∗()
(6.22) is equivalent with

(log ()− log ∗())


≈ −(log ()− log ∗()) (6.23)

So again we have a simple differential equation of the form ̇() = () the

solution of which is () = (0) The solution of (6.23) is thus

log ()− log ∗() ≈ (log (0)− log ∗(0))−
As ∗() = ∗(0) this can written

log () ≈ log ∗(0) + + (log (0)− log ∗(0))− (6.24)

The solid curve in Figure 6.4 depicts the evolution of log () in the case

where ̃0  ̃∗ (note that log ∗(0) = log (̃∗) + log0). The dotted curve
exemplifies the case where ̃0  ̃∗. The figure illustrates per capita income
convergence: low initial income is associated with a high subsequent growth

rate which, however, diminishes along with the diminishing logarithmic dis-

tance of per capita income to its level on the steady state path.

For convenience, we will from now on treat (6.24) as an equality. Sub-

tracting log (0) on both sides, we get

log ()− log (0) = log ∗(0)− log (0) + + (log (0)− log ∗(0))−
= − (1− −)(log (0)− log ∗(0))

Dividing through by   0 gives

log ()− log (0)


=  − 1− −


(log (0)− log ∗(0)) (6.25)
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On the left-hand side appears the average compound annual growth rate of

 from period 0 to period  which we will denote ̄(0 ) On the right-hand

side appears the initial distance of log  to its hypothetical level along the

steady state path. The coefficient, −(1− −) to this distance is negative
and approaches zero for  → ∞ Thus (6.25) is a translation into growth

form of the convergence of log  towards the steady-state path, log 
∗
  in the

theoretical model without shocks. Rearranging the right-hand side, we get

̄(0 ) =  +
1− −


log ∗(0)− 1− −


log (0) ≡ 0 + 1 log (0)

where both the constant 0 ≡  +
£
(1− −)

¤
log ∗(0) and the coefficient

1 ≡ −(1 − −) are determined by “structural characteristics”. Indeed,
 is determined by    (̃∗) and (̃∗) through (6.21), and ∗(0) is de-
termined by 0 and (̃∗) through (6.12), where, in turn, ̃∗ is determined
by the steady state condition (̃∗)(̃∗) = ( +  + )̃∗ (̃∗) being the
saving-income ratio in the steady state.

With data for  countries,  = 1 2. . .   a test of the unconditional

convergence hypothesis may be based on the regression equation

̄(0 ) = 0 + 1 log (0) +   ∼ (0 2) (6.26)

where  is the error term. This can be seen as a Barro growth regression

equation in its simplest form. For countries in the entire world, the theoret-

ical hypothesis 1  0 is clearly not supported (or, to use the language of
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statistics, the null hypothesis, 1 = 0 is not rejected).2

Allowing for the considered countries having different structural charac-

teristics, the Barro growth regression equation takes the form

̄(0 ) = 0 + 1 log (0) +  1  0  ∼ (0 2) (6.27)

In this “fixed effects” form, the equation has been applied for a test of the

conditional convergence hypothesis, 1  0 often supporting this hypothesis.

From the estimate of 1 the implied estimate of the asymptotic speed of

convergence,  is readily obtained through the formula 1 ≡ (1 − −)
Even  and therefore also the slope, 1 does depend, theoretically, on

country-specific structural characteristics. But the sensitivity on these do

not generally seem large enough to blur the analysis based on (6.27) which

abstracts from this dependency.

With the aim of testing hypotheses about growth determinants, Barro

(1991) and Barro and Sala-i-Martin (1992, 2004) decompose 0 so as to reflect

the role of a set of measurable potentially causal variables,

0 = 0 + 11 + 22 + . . . + 

where the ’s are the coefficients and the ’s are the potentially causal vari-

ables.3 These variables could be measurable Solow-type parameters among

those appearing in (6.20) or a broader set of determinants, including for in-

stance the educational level in the labor force, and institutional variables like

rule of law and democracy. Some studies include the initial within-country

inequality in income or wealth among the ’s and extend the theoretical

framework correspondingly.4

From an econometric point of view there are several problematic features

in regressions of Barro’s form (also called the  convergence approach). These

problems are discussed in Acemoglu pp. 82-85.
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Chapter 7

Michael Kremer’s

population-breeds-ideas model

This chapter relates to Section 2 of Acemoglu’s Chapter 4 and explains

the details of what may also be called the Simon-Kremer version of the

population-breeds-ideas model (cf. Acemoglu, p. 114).

7.1 The model

Suppose a pre-industrial economy can be described by:

 = 
 


 

1−   0 0    1 (7.1)

̇ = 
   0 0   ≤ 1 0  0 given (7.2)

 =


̄
≡  ̄  0 (7.3)

where  is aggregate output,  the level of technical knowledge,  the la-

bor force (= population),  the amount of land (fixed), and ̄ subsistence

minimum (so the  in Acemoglu’s equation (4.2) is simply the inverse of the

subsistence minimum). Both  and ̄ are considered as constant parameters.

Time is continuous and it is understood that a kind of Malthusian population

mechanism (see below) is operative behind the scene.

The exclusion of capital from the aggregate production function, (7.1),

reflects the presumption that capital (tools etc.) is quantitatively of minor

importance in a pre-industrial economy. In accordance with the replication

argument, the production function has CRS w.r.t. the rival inputs, labor and

land. The factor 
 measures total factor productivity. In view of (7.2), the

technology level,  is rising over time. The increase in  per time unit is

seen to be an increasing function of the size of the population. This reflects
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the hypothesis that population breeds ideas; these are non-rival and enter

the pool of technical knowledge available for society as a whole. The rate per

capita,  by which population breeds ideas is an increasing function of

the already existing level of technical knowledge. This reflects the hypothesis

that the larger is the stock of ideas the easier do new ideas arise (perhaps by

combination of existing ideas).

Equation (7.3) is a shortcut description of a Malthusian population mech-

anism. Suppose the true mechanism is

̇ = ( − ̄) T 0 for  T ̄ (7.4)

where   0 is the speed of adjustment,  ≡  is per capita income,

and ̄  0 is subsistence minimum. A rise in  above ̄will lead to increases

in , thereby generating downward pressure on  and perhaps end up

pushing  below ̄ When this happens, population will be decreasing for a

while and so return towards its sustainable level, ̄ Equation (7.3) treats

this mechanism as if the population instantaneously adjusts to its sustainable

level (as if  → ∞). The model hereby gives a long-run picture, ignoring
the Malthusian ups and downs in population and per capita income about

the subsistence minimum. The important feature is that the technology level

and thereby  as well as the sustainable population will be rising over time.

This speeds up the arrival of new ideas and so raises  even faster although

per-capita income remains at its long-run level, ̄.1

For simplicity, we now normalize the constant  to be 1.

7.2 Law of motion

The dynamics of the model can be reduced to one differential equation, the

law of motion of technical knowledge. By (7.3),  =  = 
 


 . Conse-

quently 1− = 
 so that

 = 
1

1−


1−
  (7.5)

Substituting this into (7.2) gives the law of motion of technical knowledge:

̇ = 
1

1−
+ 

1−
 ≡ ̂

+ 
1−

  (7.6)

1Extending the model with the institution of private ownership and competitive mar-

kets, the absence of a growing standard of living corresponds to the doctrine from classical

economics called the iron law of wages. This is the theory (from Malthus and Ricardo)

that scarce natural resources and the pressure from population growth causes real wages

to remain at subsistende level.
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Define  ≡ + 
1− and assume   1 Then (7.6) can be written

̇ = ̂

  (7.7)

which is a nonlinear differential equation in 2 Let  ≡ 1− Then

̇ = (1− )
−
 ̂


 = (1− )̂ (7.8)

a constant. To find  from this, we only need simple integration:

 = 0 +

Z 

0

̇ = 0 + (1− )̂

As  = 
1

1− and 0 = 
1−
0  this implies

 = 
1

1−
 =

h

1−
0 + (1− )̂

i 1
1−

=
1h


1−
0 − (− 1)̂

i 1
−1

 (7.9)

7.3 The inevitable ending of the Malthusian

regime

The result (7.9) helps us in understanding why the Malthusian regime must

come to an end (at least if the model is an acceptable description of the

Malthusian regime).

Although to begin with,  may grow extremely slowly, the growth in 

will be accelerating because of the positive feedback (visible in (7.2)) from

both rising population and rising . Indeed, since   1 the denominator

in (7.9) will be decreasing over time and approach zero in finite time, namely

as  approaches the finite value ∗ = 
1−
0 ((− 1)̂) Figure 7.1 illustrates.

The evolution of technical knowledge becomes explosive as  approaches ∗
It follows from (7.5) and (7.1) that explosive growth in implies explosive

growth in  and  respectively. The acceleration in the evolution of  will

sooner or later make  move fast enough so that the Malthusian population

mechanism (which for biological reasons has to be slow) can not catch up.

Then, what was in the Malthusian population mechanism, equation (7.4),

earlier only a transitory excess of  over ̄, will sooner or later become a

permanent excess and take the form of sustained growth in . This is known

as the take-off.

2The differential equation, (7.7), is a special case of what is known as the Bernoulli

equation. In spite of being a non-linear differential equation, the Bernoulli equation always

has an explicit solution.
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Figure 7.1

According to equation (7.4) the take-off should lead to a permanently

rising population growth rate. As economic history has testified, however,

along with the rising standard of living the demographics changed The de-

mographic transition took place with fertility declining faster than mortality.

This results in completely different dynamics about which the present model

has nothing to say.3 As to the demographic transition as such, explanations

suggested by economists include: higher opportunity costs of raising chil-

dren, the trade-off between “quality” (educational level) of the offspring and

their “quantity” (Becker, Galor), skill-biased technical change, and improved

contraception technology.

7.4 Closing remarks

The present model is about dynamics in the Malthusian regime of the pre-

industrial epoch. The story told by the model is the following. When the

feedback parameter,  is above one, the Malthusian regime has to come to

an end because the battle between scarcity of land (or natural resources more

generally) and technological progress will inevitably be won by the latter.4

The cases   1 and  = 1 are considered in Exercise III.3. The case

 = 1 corresponds to Acemoglu’s first version (p. 113) of the population-

breeds-ideas model. In that version,  has the value 1 −  and  = 0 (two

3Kremer (1993), however, also includes an extended model taking some of these changed

dynamics into account.
4The mathematical background for the explosion result is explained in the appendix.
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arbitrary knife-edge conditions). Then a constant growth rate in   and

 is the result and  remains at ̄ forever. Take-off never takes place.

On the basis of demographers’ estimates of the growth in global popula-

tion over most of human history, Kremer (1993) finds empirical support for

  1 Indeed, in the opposite case,  ≤ 1 there would not have been a rising
world population growth rate since one million years B.C. to the industrial

revolution. The data in Kremer (1993, p. 682) indicates that the population

growth rate has been more or less proportional to the size of population until

about the1960s.

7.5 Appendix

Mathematically, the background for the explosion result is that the solution

to a first-order differential equation of the form ̇() =  + ()   1

 6= 0 (0) = 0 given, is always explosive. Indeed, the solution,  = ()

will have the property that ()→ ±∞ for → ∗ for some fixed ∗  0; and
thereby the solution is defined only on a bounded time interval.

Take the differential equation ̇() = 1 + ()2 as an example. As is

well-known, the solution is () = tan  = sin  cos , defined on the interval

(−2 2)

7.6 References

Becker, G. S., ...

Galor, O., 2011, Unified Growth Theory, Princeton University Press.

Kremer, M., 1993, Population Growth and Technological Change: One Mil-

lion B.C. to 1990, Quarterly Journal of Economics 108, No. 3.

List of contents to be continued.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



104

CHAPTER 7. MICHAEL KREMER’S

POPULATION-BREEDS-IDEAS MODEL

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



Chapter 8

Choice of social discount rate

With an application to the climate change problem

A controversial issue within economists’debate on long-term public in-
vestment and the climate change problem is the choice of discount rate. This
choice matters a lot for the present value of a project which involves costs
that begin now and benefits that occur only after many years, say 75-100-200
years from now, as is the case with the measures against global warming.
Compare the present value of receiving 1000 inflation-corrected euros a

hundred years from now under two alternative discount rates, r = 0.07 and
r = 0.01 per year:

PV0 = 1000 ∗ e−r∗100 =

{
0.9 if r = 0.07,
368 if r = 0.01.

So when evaluated at a 7 percent discount rate the 1000 inflation-corrected
euros a hundred years from now are worth less than 1 euro today. But with
a discount rate at 1 percent they are worth 368 euros today.
In this chapter we discuss different aspects of social discounting, that

is, discounting from a policy maker’s point of view. We shall set up the
theoretical framework around the concept of optimal capital accumulation
described in Acemoglu, Chapter 8, Section 8.3. In the final sections we apply
the framework to an elementary discussion of the climate change problem
from an economic perspective.
Unfortunately it is not always recognized that “discount rate”can mean

several different things. This sometimes leads to serious confusion, even
within academic debates about policies addressing climate change. We there-
fore start with the ABC of discounting.
A discount rate is an interest rate applied in the construction of a discount

factor. The latter is a factor by which a project’s future costs or benefits,
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measured in some unit of account, are converted into present equivalents.
Applying a discount factor thus allows economic effects occurring at different
times to be compared. The lower the discount factor the higher the associated
discount rate.
Think of period t as running from date t to date t + 1. More precisely,

think of period t as the time interval [t, t+ 1) on a continuous time axis
with time unit equal to the period length. With time t thus referring to
the beginning of period t, we speak of “date t” as synonymous with time
t. This timing convention is common in discrete-time growth and business
cycle theory and is convenient because it makes switching between discrete
and continuous time analysis fairly easy.1 Unless otherwise indicated, our
period length, hence our time unit, will be one year.

8.1 Basic distinctions relating to discounting

A basic reason that we have to distinguish between different types of discount
rates is that there is a variety of possible units of account.
To simplify matters, in this section we assume there is no uncertainty

unless otherwise indicated. Future market interest rates will thus with prob-
ability one be equal to the ex ante expected future interest rates.

8.1.1 The unit of account

Money as the unit of account

When the unit of account is money, we talk about a nominal discount rate.
More specifically, if the money unit is euro, we talk about an euro discount
rate. Consider a one-period bond promising one euro at date one to the
investor buying the bond at date 0. If the market interest rate is i0, the
present value at date 0 of the bond is

1

1 + i0
euro.

In this calculation the (nominal) discount factor is 1/(1 + i0) and tells how
many euro need be invested in the bond at time 0 to obtain 1 euro at time
1. When the interest rate in this way appears as a constituent of a discount
factor, it is called a (nominal) discount rate. Like any interest rate it tells

1Note, however, that this timing convention is different from that in the standard
finance literature where, for example, Kt would denote the end-of-period t stock that
begins to yield its services next period.
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how many additional units of account (here euros) are returned after one
period of unit length, if one unit of account (one euro) is invested in the
asset at the beginning of the period.2

A payment stream, z0, z1,. . . , zt,. . . , zT , where zt (≷ 0) is the net payment
in euro due at the end of period t, has present value (in euro as seen from
the beginning of period 0)

PV0 =
z0

1 + i0
+

z1

(1 + i0)(1 + i1)
+ · · ·+ zT−1

(1 + i0)(1 + i1) · · · (1 + iT−1)
, (8.1)

where it is the nominal interest rate in euro on a one-period bond from date
t to date t+ 1, t = 0, 1, . . . , T − 1.
The average nominal discount rate from date T to date 0 is the number_

i 0,T−1 satisfying

1 +
_
i 0,T−1 = ((1 + i0)(1 + i1) · · · (1 + iT−1))1/T . (8.2)

The corresponding nominal discount factor is

(1 +
_
i 0,T−1)−T =

1

(1 + i0)(1 + i1) · · · (1 + iT−1)
. (8.3)

If i is constant, the average nominal discount rate is of course the same as i
and the nominal discount factor is simply 1/(1 + i)T .
If the stream of z’s in (8.1) represents expected but uncertain dividends

to an investor as seen from date 0, we may ask: What is the relevant discount
rate to be applied on the stream by the investor? The answer is that the
relevant discount rate is that rate of return the investor can obtain generally
on investments with a similar risk profile. So the relevant discount rate is
simply the opportunity cost faced by the investor.
In continuous time with continuous compounding the formulas corre-

sponding to (8.1), (8.2), and (8.3) are

PV0 =

∫ T

0

z(t) e
−
∫ t
0
i(τ)dτ

dt, (8.4)

_
i(0, T ) ≡

∫ T
0
i(τ)dτ

T
, and (8.5)

e−
_
i (0,T )T = e−

∫ T
0
i(τ)dτ . (8.6)

And as above, if i is constant, the nominal discount factor takes the simple
form e−iT .

2A discount factor is by definition a non-negative number. Hence, a discount rate in
discrete time is by definition greater than −1.
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Consumption as the unit of account

When the unit of account is a basket of consumption goods or, for simplicity,
just a homogeneous consumption good, we talk about a consumption discount
rate (or a real discount rate). Let the consumption good’s price in terms
of euros be Pt, t = 0, 1,. . . , T. A consumption stream c0, c1,. . . , ct,. . . , cT ,
where ct is available at the end of period t, has present value (as seen from
the beginning of period 0)

PV0 =
c0

1 + r0

+
c1

(1 + r0)(1 + r1)
+ · · ·+ cT−1

(1 + r0)(1 + r1) · · · (1 + rT−1)
. (8.7)

Instead of the nominal interest rate, the proper discount rate is now the real
interest rate, rt, on a one-period bond from date t to date t + 1. Ignoring
indexed bonds, the real interest rate is not directly observable, but can be
calculated in the following way from the observable nominal interest rate it :

1 + rt =
Pt−1(1 + it)

Pt
=

1 + it
1 + πt

,

where Pt−1 is the price (in terms of money) of a period-(t− 1) consumption
good paid for at the end of period t − 1 (= the beginning of period t) and
πt ≡ Pt/Pt−1 − 1 is the inflation rate from period t− 1 to period t.
The consumption discount factor (or real discount factor) from date t+ 1

to date t is 1/(1+rt). This discount factor tells how many consumption goods’
worth need be invested in the bond at time t to obtain one consumption
good’s worth at time t+1. The stream c0, c1,. . . , ct,. . . , cT could alternatively
represent an income stream measured in current consumption units. Then
the real interest interest rate, rt, would still be the relevant real discount rate
and (8.7) would give the present real value of the income stream.
The average consumption discount rate and the corresponding consump-

tion discount factor are defined in a way analogous to (8.2) and (8.3), respec-
tively, but with it replaced by rt. Similarly for the continuous time versions
(8.4), (8.5), and (8.6).

Utility as the unit of account

Even though “utility”is not a measurable entity but just a convenient math-
ematical devise used to represent preferences, a utility discount rate is in
many cases a meaningful concept.
Suppose intertemporal preferences can be represented by a sum of period

utilities discounted by a constant rate, ρ :

U(c0, c1, · · · , cT−1) = u(c0) +
u(c1)

1 + ρ
+ · · ·+ u(cT−1)

(1 + ρ)T−1
, (8.8)
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where u(·) is the period utility function. Here ρ appears as a utility dis-
count rate. The associated utility discount factor from date T to date 0 is
1/(1 + ρ)T−1. We may alternatively write the intertemporal utility function
as Ũ(c0, c1, · · · , cT−1) ≡ (1 + ρ)−1U(c0, c1, · · · , cT−1). Then the utility dis-
count factor from date T to date 0 appears instead as 1/(1 + ρ)T , which
in form corresponds exactly to (8.3); this difference is, however, immaterial,
since Ũ(·) and U(·) represent the same preferences and will imply the same
choices. In continuous time (with continuous compounding) the “sum” of
discounted utility is

U0 =

∫ T

0

u(c(t))e−ρtdt,

where e−ρt is the utility discount factor from time t to time 0.3

8.1.2 The economic context

Along with the unit of account the economic context of the investment project
to be evaluated matters for the choice of discount rate. Here is a brief list of
important distinctions:

1. It matters whether the circumstances of relevance for the investment
project are endowed with certainty, computable risk, or non-computable
risk, also called fundamental uncertainty. In the latter case, the prob-
ability distribution is unknown (or scientists deeply disagree about it)
and, typically, the full range of possible outcomes is unknown.

2. Length of the time horizon. Recently several countries have decided
to draw a line between less than vs. more than 30-50 years, choosing
a lower discount rate for years on the other side of the line. This is
in accordance with recommendations from economists and statisticians
arguing that the further ahead in time the discount rate applies, the
smaller should it be. With longer time horizons systematic risk and
fundamental uncertainty, about both the socio-economic environment
as such and the results of the specific project, play a larger role, thus
motivating precautionary saving.

3. A single or several different kinds consumption goods. As we shall
see below, the relevant consumption discount rate in a given context

3Note that a first-order Taylor approximation of ex around x = 0 gives ex ≈ e0 +
e0(x− 0) = 1 + x for x “small”; hence, x ≈ ln(1 + x) for x “small”. Replacing x by ρ and
taking powers, we see the analogy between e−ρt and (1 + ρ)−t. Because of the continuous
compounding, we have e−ρt < (1 + ρ)−t whenever ρ > 0 and t > 0 and the difference
increases with rising t.
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depends on several factors, including the growth rate of consump-
tion. When fundamentally different consumption goods enter the util-
ity function - for instance an ordinary produced commodity versus ser-
vices from the eco-system - then a disaggregate setup is needed and the
relevant consumption discount rate may become an intricate matter.
Sterner and Persson (2008) give an introduction to this issue.

4. Private vs. social. Discounting from an individual household’s or firm’s
point of view, as it occurs in private investment analysis, is one thing.
Discounting from a government’s point of view is another, and in con-
nection with evaluation of government projects we speak of social cost-
benefit analysis. Here externalities and other market failures should
be taken into account. Whatever the unit of account, a discount rate
applied in social cost-benefit analysis is called a social discount rate.

5. Micro vs. macro. Social cost-benefit analysis may be concerned with a
microeconomic project and policy initiatives that involve only marginal
changes. In this case a lot of circumstances are exogenous (like in
partial equilibrium analysis). Alternatively social cost-benefit analysis
may be concerned with a macroeconomic project and involve over-all
changes. At this level more circumstances are endogenous, including
possibly the rate of economic growth and the quality of the natural
environment on a grand scale. In macroeconomic cost-benefit analysis
intra- and intergenerational ethical issues are thus important.

8.2 Criteria for choice of a social discount
rate

There has been some disagreement among both economists and policy makers
about how to discount in social cost-benefit analysis, in particular when the
economy as a whole and a long time horizon are involved. At one side we
have the descriptive approach to social discounting, sometimes called the
opportunity cost view:

According to this view, even when considering climate change
policy evaluation and caring seriously about future generations,
the average market rate of return, before taxes, is the relevant
discount rate. This is because funds used today to pay the cost of,
say, mitigating greenhouse gas emissions, could be set aside and
invested in other things and thereby accumulate at the market
rate of return for the benefit of the future generations.
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At the other side we find a series of opinions that are not easily lumped
together apart from their scepticism about the descriptive approach (in its
narrow sense as defined above). These “other views”are commonly grouped
together under the label the normative or prescriptive approach. This ter-
minology has become standard. With some hesitation we adopt it here (the
reason for the hesitation should become clear below).
One reason that the descriptive approach is by some considered inappro-

priate is the presence of market failures.4 Another is the presence of conflict-
ing interests: those people who benefit may not be the same as those who
bear the costs. And where as yet unborn generations are involved, diffi cult
ethical and coordination issues arise.
Amartia Sen (1961) pointed at the isolation paradox. Suppose each old

has an altruistic concern for all members of the next generation. Then a
transfer from any member of the old generation to the heir entails an exter-
nality that benefits all other members of the old generation. A nation-wide
coordination (political agreement) that internalizes these externalities would
raise intergenerational transfers (bequests etc.) and this corresponds to a
lowering of the intergenerational utility discount rate, ρ, cf. (8.8).
More generally, members of the present generations may be willing to

join in a collective contract of more saving and investment by all, though
unwilling to save more in isolation.
Other reasons for a relatively low social discount rate have been pro-

posed. One is based on the super-responsibility argument: the government
has responsibility over a longer time horizon than those currently alive. An-
other is based on the dual-role argument : the members of the currently alive
generations may in their political or public role be more concerned about
the welfare of the future generations than they are in their private economic
decisions.
Critics of the descriptive approach may agree about the relevance of ask-

ing: “To what extent will investments made to reduce greenhouse gas emis-
sions displace investments made elsewhere?”. They may be inclined to add
that there is no guarantee that the funds in question are set aside for invest-
ment benefitting generations alive two hundred years ahead, say.
Another point against the descriptive approach is that the future damages

of global warming could easily be underestimated. If nothing is done now, the
risk of the damage being irreparable at any cost becomes higher. Applying
the current market rate of return as discount rate for damages occurring

4Intervening into the debate about the suitable discount rate for climate change
projects, Heal (2008) asks ironically: “Is it appropriate to assume no market failure in
evaluating a consumption discount rate for a model of climate change?”.
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say 200 years from now on may imply that these damages become almost
imperceptible and so action tends to be postponed. This may be problematic
if there is a positive albeit low probability that a tipping point with disastrous
consequences is reached.

The reason for hesitation to lump together these “other views" under
the labels normative or prescriptive approach is that the contraposition of
“descriptive”versus “normative”in this context may be misleading. In the
final analysis also the descriptive approach has a normative element namely
the view that the social discount rate ought to be that implied by the market
behavior of the current generations as reflected in the current market interest
rate - the alternative is seen as paternalism.5

Anyway, in practice there seems to be a kind of convergence in the sense
that elements from the descriptive and the prescriptive way of thinking tend
to be combined. Nevertheless, there is considerable diversity across coun-
tries regarding the governments’offi cial “social consumption discount rate”
(sometimes just called the “social discount rate”) to be applied for public
investment projects. Even considering only West-European countries and
Western Offshoots, including the U.S., the range is roughly from 8% to 2%
per year. An increasing fraction of these countries prescribe a lower rate for
benefits and costs accruing more than 30-50 years in the future (Harrison,
2010). The Danish Ministry of Finance recently (May 2013) reduced its social
consumption discount rate from 5% per year to 4% per year for the first 35
years of the time horizon of the project, 3% for the years in the interval 36 to
69 years, and 2% for the remainder of the time horizon if relevant.6 Among
economists involved in climate change policy evaluation there is a wide range
regarding what the recommended social discount rate should be (from 1.4%
to 8.0%).7 An evaluation of the net worth of the public involvement in the
Danish wind energy sector in the 1990s gives opposite conclusions depend-
ing on whether the discount rate is 5-6% (until recently the offi cial Danish
discount rate) or 3-4% (Hansen, 2010).

This diversity notwithstanding, let us consider some examples of social
cost-benefit problems of a macroeconomic nature and with a long time hori-
zon. Our first example will be the standard neoclassical problem of optimal
capital accumulation.

5Here the other side of the debate may respond that such “paternalism”need not be
illigitimate but rather the responsibility of democratically elected governments.

6Finansministeriet (2013) .
7Harrison (2010).
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8.3 Optimal capital accumulation

The perspective is that of an ”all-knowing and all-powerful”social planner
facing a basic intertemporal allocation problem in a closed economy: how
much should society save? The point of departure for this problem is the
prescriptive approach. The only discount rate which is decided in advance is
the utility discount rate, ρ. No consumption discount rate is part of either
the objective function or the constraints. Instead, a long-run consumption
discount rate applicable to a class of public investment problems comes out
as a by-product of the steady-state solution to the problem.

8.3.1 The setting

We place our social planner in the simplest neoclassical set-up with exogenous
Harrod-neutral technical change. Uncertainty is ignored. Although time is
continuous, for simplicity we date the variables by sub-indices, thus writing
Yt etc. The aggregate production function is neoclassical and has CRS:

Yt = F (Kt, TtLt) ≡ TtLtf(k̃t), (8.9)

where Yt is output, Kt physical capital input, and Lt labor input which
equals the labor force which in turn equals the population and grows at the
constant rate n. The argument in the production function on intensive form
is defined by k̃t ≡ Kt/(TtLt). The factor Tt represents the economy-wide level
of technology and grows exogenously according to

Tt = T0e
gt, (8.10)

where T0 > 0 and g ≥ 0 are given constants. Population grows at the
constant rate n ≥ 0. Output is used for consumption and investment so that

K̇t = Yt − ctLt − δKt, (8.11)

where ct is per capita consumption and δ ≥ 0 a constant capital depreciation
rate.
The social planner’s objective is to maximize a social welfare function,

W . We assume that this function is time separable with (i) an instantaneous
utility function u(c) with u′ > 0 and u′′ < 0 and where c is per capita
consumption; (ii) a constant utility discount rate ρ ≥ 0, often named “the
pure rate of time preference”; and (iii) an infinite time horizon. The social
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planner’s optimization problem is to choose a plan (ct)
∞
t=0 so as to maximize

W =

∫ ∞
0

u(ct)Lte
−ρtdt s.t. (8.12)

ct ≥ 0, (8.13)
·
k̃t = f(k̃t)−

ct
Tt
− (δ + g + n)k̃t, k̃0 > 0 given, (8.14)

k̃t ≥ 0 for all t ≥ 0. (8.15)

Comments
1. If there are technically feasible paths along which the improper integral

W goes to +∞, a maximum of W does not exist (in the CRRA case, u(c) =
c1−θ/(1 − θ), θ > 0, this will happen if and only if the parameter condition
ρ− n > (1− θ)g is not satisfied). By “optimizing”we then mean finding an
“overtaking optimal”solution or a “catching-up optimal”solution, assuming
one of either exists (cf. Sydsæter et al. 2008).
2. The long time horizon should be seen as involving many successive

and as yet unborn generations. Comparisons across time should primarily
be interpreted as comparisons across generations.
3. The model abstracts from inequality within generations.
4. By weighting per capita utility by Lt and thereby effectively taking

population growth, n, into account, the social welfare function (8.12) respects
the principle of discounted classical utilitarianism. A positive pure rate of
time preference, ρ, implies discounting the utility of future people just be-
cause they belong to the future. Some analysts defend this discounting of the
future by the argument that it is a typical characteristic of an individual’s
preferences. Others find that this is not a valid argument for long-horizon
evaluations because these involve different persons and even as yet unborn
generations. For example Stern (2007) argues that the only ethically defen-
sible reason for choosing a positive ρ is that there is always a small risk of
extinction of the human race due to for example a devastating meteorite or
nuclear war. This issue aside, in (8.12) the effective utility discount rate
will be ρ− n. This implies that the larger is n, the more weight is assigned
to the future because more people will be available.8 We shall throughout
assume that the size of population is exogenous although this may not ac-
cord entirely well with large public investment projects, like climate change
mitigation, that have implication for health and mortality. With endoge-

8In contrast, the principle of discounted average utilitarianism is characterized by pop-
ulation growth not affecting the effective utility discount rate. This corresponds to elimi-
nating the factor Lt in the integrand in (8.12).
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nous population very diffi cult ethical issues arise (Dasgupta (2001), Broome
(2005)).

8.3.2 First-order conditions and their economic inter-
pretation

To characterize the solution to the problem, we use the Maximum Principle.
The current-value Hamiltonian is

H(k̃, c, λ, t) = u(c) + λ
[
f(k̃)− c

T
− (δ + g + n)k̃

]
,

where λ is the adjoint variable associated with the dynamic constraint (8.14).
An interior optimal path (k̃t, ct)

∞
t=0 will satisfy that there exists a continuous

function λ = λt such that, for all t ≥ 0,

∂H

∂c
= 0, i.e., u′(c) =

λ

T
, and (8.16)

∂H

∂k̃
= λ(f ′(k̃)− δ − g − n) = (ρ− n)λ− λ̇ (8.17)

hold along the path and the transversality condition,

lim
t→∞

k̃tλte
−(ρ−n)t = 0, (8.18)

is satisfied.
By taking logs on both sides of (8.16) and differentiating w.r.t. t we get

du′(ct)/dt

u′(ct)
=
u′′(ct)

u′(ct)
ċt =

λ̇t
λt
− g = ρ− (f ′(k̃t)− δ),

where the last equality comes from (8.17). Reordering gives

f ′(k̃t)− δ = ρ+

(
−u

′′(ct)

u′(ct)

)
ċt, (8.19)

where the term (−u′′(ct)/u′(ct)) > 0 indicates the rate of decline in marginal
utility when consumption is increased by one unit. So the right-hand side of
(8.19) exceeds ρ when ċt > 0.
A technically feasible path satisfying both (8.19) and the transversality

condition (12.33) with λt = Ttu
′(ct) will be an optimal path and there are no

other optimal paths.9

9This follows fromMangasarian’s suffi ciency theorem and the fact that the Hamiltonian
is strictly concave in (k̃, c̃). The implied resource allocation will be the same as that
of a competitive conomy with the same technology as that given in (8.9) and with a
representative household that has the same intertemporal preferences as those of the social
planner given in (8.12) (this is the Equivalence theorem).
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The optimality condition (8.19) could of course be written on the stan-
dard Keynes-Ramsey rule form, where ċt/ct is isolated on one side of the
equation. But from the perspective of rates of return, and therefore discount
rates, the form (8.19) is more useful, however. The condition expresses the
general principle that in the optimal plan the marginal unit of per capita out-
put is equally valuable whether used for investment or current consumption.
When used for investment, it gives a rate of return equal to the net marginal
productivity of capital indicated on the left-hand side of (8.19). When used
for current consumption, it raises current utility. Doing this to an extent
just enough so that no further postponement of consumption is justified, the
required rate of return is exactly obtained. The condition (8.19) says that
in the optimal plan the actual marginal rate of return (the left-hand side)
equals the required marginal rate of return (the right-hand side).

Reading the optimality condition (8.19) from the right to the left, there is
an analogy between this condition and the general microeconomic principle
that the consumer equates the marginal rate of substitution, MRS, between
any two consumption goods with the price ratio given from the market.
In the present context the two goods refer to the same consumption good
delivered in two successive time intervals. And instead of a price ratio we
have the marginal rate of transformation, MRT, between consumption in
the two time intervals as given by technology. The analogy is only partial,
however, because this MRT is, from the perspective of the optimizing agent
(the social planner) not a given but is endogenous just as much as the MRS
is endogenous.

8.3.3 The social consumption discount rate

More specifically, (8.19) says that the social planner will sacrifice per capita
consumption today for more per capita consumption tomorrow only up to
the point where this saving for the next generations is compensated by a rate
of return suffi ciently above ρ. Naturally, the required compensation is higher,
the faster marginal utility declines with rising consumption, i.e., the larger
is (−u′′/u′)ċ. Indeed, every extra unit of consumption handed over to future
generations delivers a smaller and smaller marginal utility to these future
generations. So the marginal unit of investment today is only warranted if
the marginal rate of return is suffi ciently above ρ, as indicated by (8.19).

Letting the required marginal rate of return be denoted rSPt and letting
the values of the variables along the optimal time path be marked by a bar,
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we can write the right-hand side of (8.19) as

rSPt = ρ+ θ(c̄t)

·
c̄t
c̄t
, (8.20)

where θ(c) ≡ −cu′′(c)/u′(c) > 0 (the absolute elasticity of marginal utility of
consumption). For a given θ(c̄t), a higher per capita consumption growth rate
implies a higher required rate of return on marginal saving. In other words,
the higher the standard of living of future generations compared with cur-
rent generations, the higher is the required rate of return on current marginal
saving. Indeed, less should be saved for the future generations. Similarly, for

a given per capita consumption growth rate,
·
c̄t/c̄t > 0, the required rate of

return on marginal saving is higher, the larger is θ(c̄t). This is because θ(c̄t)
reflects aversion towards consumption inequality across time and generations
(in a context with uncertainty θ(c̄t) also reflects what is known as the rela-
tive risk aversion, see below). Indeed, θ(c̄t) indicates the percentage fall in
marginal utility when per capita consumption is raised by one percent. So a
higher θ(c̄t) contributes to more consumption smoothing over time.
So far these remarks are only various ways of interpreting an optimality

condition. Worth emphasizing is:

• The required marginal rate of return (the right-hand side of (8.20)) at
time t is not something given in advance, but an endogenous and time-
dependent variable which along the optimal path must equal the actual
marginal rate of return (the endogenous rate of return on investment
represented by the left-hand side of equation (8.20)). Indeed, both
the required and the actual marginal rates of return are endogenous
because they depend on the endogenous variables ct and ċt and on
what has been decided up to time t and is reflected in the current value
of the state variable, k̃t. As we know from phase diagram analysis in
the (k̃, c/T ) plane, there are infinitely many technically feasible paths
satisfying the inverted Keynes-Ramsey rule in (8.20) for all t ≥ 0.What
is lacking up to now is to select among these paths one that satisfies
the transversality condition (12.33).

• In the present problem the only discount rate which is decided in ad-
vance is the utility discount rate, ρ. No consumption discount rate is
part of either the objective function or the constraints. We shall now
see, however, that a long-run consumption discount rate applicable to
(less-inclusive) public investment problems comes out as a by-product
of the steady-state solution to the problem.

c© Groth, Lecture notes in Economic Growth, (mimeo) 2014.



118 CHAPTER 8. CHOICE OF SOCIAL DISCOUNT RATE

Steady state

To help existence of a steady state we now assume that the instantaneous
utility, u(c), belong to the CRRA family so that θ(c) = θ, a positive constant.
Then

u(c) =

{
c1−θ−1

1−θ , when θ > 0, θ 6= 1,

ln c, when θ = 1.
(8.21)

We know that if the parameter condition ρ − n > (1 − θ)g holds and f
satisfies the Inada conditions, then there exists a unique path satisfying the
necessary and suffi cient optimality conditions, including the transversality
condition (12.33). Moreover, this path converges to a balanced growth path
with a constant effective capital-labor ratio, k̃∗, satisfying f ′(k̃∗)−δ = ρ+θg.

So, at least for the long run, we may replace
·
c̄t/c̄t in (8.20) with the constant

rate of exogenous technical progress, g. Then (8.20) reduces to a required
consumption rate of return that is now constant and given by the parameters
in the problem:

rSP = ρ+ θg. (8.22)

This rSP is the prevalent suggestion for the choice of a social consumption
discount rate. Note that as long as g > 0, rSP will be positive even if
ρ = 0. A higher θ will imply stronger discounting of additional consumption
in the future because higher θ means faster decline in the marginal utility of
consumption in response to a given rise in consumption. So with g equal to,
say, 1.5% per year, the social discount rate rSP is in fact more sensitive to
the value of θ than to the value of ρ. Note also that a higher g raises rsp and
thereby reduces the incentive to save and invest.
Now consider a potential public investment project with time horizon

T (≤ ∞) which comes at the expense of an investment in capital in the
“usual”way as described above. Suppose the project is “minor”or “local”
in the sense of not affecting the structure of the economy as a whole, like
for instance the long-run per capita growth rate, g. Let the project involve
an initial investment outlay of k0 and a stream of real net revenues, (zt)

T
t=0,

assuming that both costs and benefits are measurable in terms of current
consumption equivalents.10 Letting rSP serve to convert future consumption
into current consumption equivalents, we calculate the present value of the
project,

PV0 = −k0 +

∫ T

0

zte
−rSP tdt.

10We bypass all the diffi cult issues involved in converting non-marketed goods like envi-
ronmental qualities, biodiversity, health, and mortality risk etc. into consumption equiv-
alents.
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The project is worth undertaking if PV0 > 0.

Limitations of the Ramsey formula rSP = ρ+ θg

For a closed economy, reasonably well described by the model, it makes
sense to choose the rSP given in (8.22) as discount rate for public investment
projects if the economy is not “far” from its steady state. Yet there are
several cases where modification is needed:

1. Assuming the model still describes the economy reasonably well, if
the actual economy is initially “far”from its steady state and T is of
moderate size, g in (8.22) should be replaced by a somewhat larger
value if k̃0 < k̃ (since in that case ċ/c > g) and somewhat smaller value
if k̃0 > k̃ (since in that case ċ/c < g).

2. The role of natural resources, especially non-renewable natural resources,
has been ignored. If they are essential inputs, the parameter g needs
reinterpretation and a negative value can not be ruled out apriori. In
that case the social discount rate can in principle be negative.

3. Global problems like the climate change problem has an important in-
ternational dimension. As there is great variation in the standard of
living, c, and to some extent also in g across developed and develop-
ing countries, it might be relevant to include not only a parameter, θ1,
reflecting aversion towards consumption inequality over time and gen-
erations but also a parameter, θ2, reflecting aversion towards spatial
consumption inequality, i.e., inequality across countries.

4. Another limitation of the Ramsey formula (8.22), as it stands, is that
it ignores uncertainty. In particular with a long planning horizon un-
certainty both concerning the results of the investment project and
concerning the socio-economic environment are important and should
of course be incorporated in the analysis.

5. Finally, for “large”macroeconomic projects, the long-run technology
growth rate may not be given, but dependent on the chosen policy.
In that case, neither g nor rSP are given. This is in fact the typical
situation within the macroeconomic theory of endogenous productivity
growth. Then formulation of a “broader”optimization problem is nec-
essary and only parameters like the utility discount rate, ρ, and the
elasticity of marginal utility of consumption, θ, will in this case serve
as points of departure.
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In connection with the climate change problem we shall in the next section
apply a brief article by Arrow (2007)11 to illustrate at least one way to deal
with the problems 4 and 5.

8.4 The climate change problem from an eco-
nomic point of view

There is now overwhelming agreement among scientists that man-made global
warming is a reality. Mankind faces a truly large-scale and global economic
problem with potentially dramatic consequences for economic and social de-
velopment in centuries. Future economic evolution is uncertain and depends
on policies chosen now. A series of possible “act now”measures has been
described in detail in the voluminous The economics of climate change. The
Stern Review, made by a team of researchers lead by the prominent British
economist Nicholas Stern (Stern 2007).
The mentioned article by Arrow is essentially a comment on the Stern

Review and on the debate about discount rates it provoked among climate
economists as well as in the general public. It is Arrow’s view that taking
risk aversion properly into account implies that the conclusion of the Stern
Review goes through: Mankind is better off to act now to reduce CO2 emis-
sions substantially rather than to risk the consequences of failing to meet this
challenge. In many areas of life, high insurance premia are willingly paid to
reduce risks. It is in such a perspective that part of the costs of mitigation
should be seen.

8.4.1 Damage projections

As asserted by the Stern Review, the CO2 problem is “the greatest and
widest-ranging market failure ever seen”(Stern 2007, p. ). The current level
of CO2 (including other greenhouse gases, in CO2 equivalents) is today (i.e.,
in 2007) about 430 parts per million (ppm), compared with 280 ppm before
the industrial revolution. Under a “business as usual”assumption the level
will likely be around 550 ppm by 2035 and will continue to increase. The
level 550 ppm is almost twice the pre-industrial level, and a level that has
not been reached for several million years.
Most climate change models predict this would be associated with a rise

in temperature of at least two degrees Centigrade, probably more. A contin-
uation of “business as usual”is likely to lead to a trebling of CO2 by the end

11Arrow won the Nobel Prize in Economics in 1972.
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of the century and to a 50% likelihood of a rise in temperature of more than
five degrees Centigrade. Five degrees Centigrade are about the same as the
increase from the last ice age to the present.
The full consequences of such rises are not known. But drastic negative

effects on agriculture in the heavily populated tropical regions due to changes
in rainfall patterns are certain. The rise in the sea level will wipe out small
island countries, and for example Bangladesh will loose much of its land
area. A reversal of the Gulf Stream is possible, which could cause climate in
Europe to resemble that of Greenland. Tropical storms and other kinds of
extreme weather events will become severe and many glaciers will disappear
and with them, valuable water supplies.
The challenging factors are that the emissions of CO2 and other gases

are almost irreversible. They constitute a global negative externality at a
grand scale. The Stern Review assesses that avoiding such an outcome is
possible by a series of concrete measures (carbon taxes, technology policy,
international collective action) aimed at stopping or at least reducing the
emission of green-house gases and mitigate their consequences. Out of the
Stern Review’s suggested range of the estimated costs associated with this,
in his evaluation of an “act now”policy Arrow chooses a cost level of 1% of
GNP every year forever (see below).
According to many observers, postponing action is likely to increase both

risks and costs. The Stern Review suggests that the costs of action now
are less than the costs of inaction because the marginal damages of rising
temperature increase strongly as temperatures rise. In the words by Nobel
Laureate, Joseph Stiglitz: “[The Stern Review]makes clear that the question
is not whether we can afford to act, but whether we can afford not to act”
(Stiglitz, 2007).

8.4.2 Uncertainty, risk aversion, and the certainty-equivalent
loss

Since there is uncertainty about the size of the future damages, we follow Ar-
row’s attempt to convert this uncertainty into the certainty-equivalent dam-
age.
Given preferences involving risk aversion, an uncertain gain can be eval-

uated as being equivalent to a single gain smaller than the expected value
(the “average”) of the possible outcomes. With the green-house gas effect
mankind is facing an uncertain damage which should be evaluated as being
equivalent to a single loss greater than the expected value of the possible
damages. For the so-called High-climate Scenario (considered by Arrow to
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Figure 8.1: The density function of the per capita consumption loss X in year
2200.

be the best-substantiated scenario) the Stern Review estimates that by year
2200 the losses in global GNP per capita, by following a “business as usual”
policy compared with , have an expected value of 13.8% of what global GNP
per capita would be if green-house gas concentration is prevented from ex-
ceeding 550 ppm. The estimated loss distribution has a 0.05 percentile of
about 3% and a 0.95 percentile of about 34%.
Assuming consumption per capita, c, in year 2200 is proportional to GNP

per capita in year 2200, let us recapitulate:

under “mitigation now”policy (MNP): c = c1,

under “business as usual”(BAU): c = (1−X)c1 ≡ c0,

where c1 is considered given while X is a stochastic variable measuring the
fraction of c1 lost in year 2200 due to the damage occurring under BAU. A
probability density function of X according to the High-climate Scenario is
represented by f(x) in Figure 8.1. The expected loss of EX =

∫ 1

0
xf(x)dx

= 0.138 is indicated and so are the 5th and 95th percentiles of 0.03 and 0.34,
respectively.12 The distribution is right-skew.
Let x0 denote the certainty-equivalent loss, that is, the number x0 satis-

fying
u((1− x0)c1) = Eu((1−X)c1) = Eu(c0). (8.23)

This means that an agent with preferences expressed by u is indifferent be-
tween facing a certain loss of size x0 or an uncertain loss, X, that has density
function f .
The condition (8.23) is illustrated in Figure 8.2. The density function for

the stochastic BAU consumption level, c0, is indicated in the lower panel of

12The Stern Review estimates that X < 0 has zero probability.
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Figure 8.2: The certanty-equivalent loss, x0, assuming expected utility is known.
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the figure by a reversed coordinate system. If the utility function is specified
and one knows the complete density function, then Eu((1−X)c1) is known
and the certainty-equivalent BAU consumption level (1− x0)c1, can be read
off the diagram.
The instantaneous utility function chosen by Arrow as well as Stern is of

the CRRA form (8.21). Arrow proposes the value 2 for θ, while the Stern
Review relies on θ = 1 which by many critics was considered “too low”from
a descriptive-empirical point of view. As mentioned above, in a context of
uncertainty, θ not only measures the aversion towards consumption inequality
across time and generations but also the level of relative risk aversion.
The problem now is that the loss density function f(x) is not known.

The Stern Review only reports an estimated mean of 0.138 together with
estimated 5th and 95th percentiles of 0.03 and 0.34, respectively. This does
not suffi ce for calculation of a good estimate of expected utility, Eu((1 −
X)c1). At best one can give a rough approximation. Arrow’s approach to
this problem is to split the probability mass into two halves and place them
on the 5th and 95th percentiles, respectively, assuming this gives a reasonable
approximation:

Eu((1−X)c1) ≈ u((1− 0.03)c1)0.5 + u((1− 0.34)c1)0.5. (8.24)

With u(c) given as CRRA, by (8.23) and (8.24) we thus have

[(1− x0)c1]1−θ

1− θ ≈ [(1− 0.03)c1]1−θ

1− θ 0.5 +
[(1− 0.34)c1]1−θ

1− θ 0.5,

since the additive constant −1/(1−θ) cancels out on both sides. We see that
also c1−θ

1 /(1− θ) cancels out on both sides so that we are left with

(1− x0)1−θ ≈ (1− 0.03)1−θ0.5 + (1− 0.34)1−θ0.5.

With θ = 2 the approximative estimate of the certainty-equivalent loss is
x̂0 = 0.21, that is “about 20%”(of GNP per capita in year 2200) as Arrow
says (Arrow 2007, p. 5).13

Here we shall proceed with this estimate of the certainty-equivalent loss
while in the appendix we briefly discuss the quality of the estimate. On
average the estimated certainty-equivalent loss corresponds to a decrease of
the expected growth rate per year of GNP per capita between year 2001 and
year 2200 from g1 = 1.3% (the base rate of GNP per capita growth before
the damages by further “business as usual”) to g0 = 1.2% per year.

13Although the calculation behind these “about 20%”is not directly reported in Arrow’s
brief article, he has in an e-mail to me confirmed that (8.24) is the applied method.
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8.4.3 Comparing benefit and costs

Avoiding the projected fall in average per capita consumption growth is thus
the benefit of the “mitigation now” policy while the costs amount to the
above-mentioned 1% of GNP every year forever.
The criterion for assessing whether the “mitigation now”policy is worth

the costs is the social (in fact “global”) welfare function presented in (8.12)
above with instantaneous utility being of CRRA form.14 Following Arrow
we let θ equal 2 (while Stern has θ = 1).

The Stern Review has been criticized by several economic analysts for
adopting “too low”values of both the two intergenerational preference para-
meters, θ and ρ. As to the rate of time preference, ρ, following the “descriptive
approach”, these critics argue that a level about 1-3% per year is better in
line with a backward calculation from observed market rates of return. An-
ticipating such criticism, the Stern Review fights back by claiming that such
high values are not ethically defensible since they amount to discriminating
future generations for the only reason that they belong to the future. As
mentioned in Section 8.3.1, Stern argues that the only ethically defensible
reason for choosing a positive ρ is that there always is a small risk of ex-
tinction of the human race due to for example a devastating meteorite or
nuclear war. Based on this view, Stern chooses a value of ρ close to zero,
namely ρ = 0.001.15 As Arrow argues and as we shall see in a moment, this
disagreement as to the size of ρ is not really crucial given the involved benefit
and costs.

The break-even utility discount rate

Assuming balanced growth with some constant productivity growth rate, g,
consumption per capita will also grow at the rate g, i.e., ct = c(0)egt for all
t ≥ 0.16 Then

u(ct) =
(c(0)egt)1−θ

1− θ − 1

1− θ ,

14We ignore the minor difference vis-a-vis the Stern Review that it brings in a so-called
scrap value function subsuming discounted utility from year 2200 to infinity.
15This is in fact a relatively high value of ρ in the sense that it suggests that the

probability of extinction within one hundred years from now is as high as 9.5% (1−P (X <
x)) = 1−e−0.1 = 0.095). But as the Stern Review (p. 53) indicates, the term “extinction”
is meant to include “partial extinction by som exogenous or man-made force which has
little to do with climate change”.
16To avoid confusion with the above c0, we write initial per capita consumption c(0)

rather than c0.
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along the balanced growth path. As adding or subtracting a constant from
the utility function changes neither the preferences nor the economic behav-
ior, from now we skip the constant (1 − θ)−1. Under the BAU policy the
social welfare function then takes the value17

W0 =
c(0)1−θ

1− θ

∫ ∞
0

(eg0t)1−θe−(ρ−n)tdt =
c(0)1−θ

1− θ

∫ ∞
0

e[(1−θ)g0−(ρ−n)]tdt

=
c(0)1−θ

1− θ
1

ρ− n− (1− θ)g0

.

Let the value of the welfare outcome under the “mitigation now”policy be
denoted W1. According to the numbers mentioned above, the latter policy
involves a cost whereby c(0) is replaced by c(0)′ = 0.99c(0) and a benefit
whereby g0 = 0.012 is replaced by g1 = 0.013.18 We get

W1 =
(0.99c(0))1−θ

1− θ
1

ρ− n− (1− θ)g1

.

Since the benefits of the “mitigation now”policy come in the future and
the costs are there from date zero, we have W1 > W0 only if the effective
utility discount rate, ρ−n, is below some upper bound. Let us calculate the
least upper bound. With θ = 2, we have

W1 = −(0.99c(0))−1 1

ρ− n+ g1

> W0 = −(c(0))−1 1

ρ− n+ g0

⇒ 1

0.99(ρ− n+ g1)
<

1

ρ− n+ g0

⇒ 0.99(ρ− n+ g1) > ρ− n+ g0

⇒ 0.01(ρ− n) < 0.99g1 − g0 = 0.00087

⇒ ρ− n < 0.087 or ρ− n < 8.7% per year.

The break-even level for ρ− n at which W1 = W0 is thus 8.7% per year.
As Arrow remarks, “no estimate of the pure rate of time preference even

by those who believe in relatively strong discounting of the future has ever
approached 8.5%”.19 The conclusion is that given the estimated certainty-
17The transversality condition holds and the utility integral W0 is convergent if ρ − n

> (1 − θ)g0. In the present case where ρ = 0.001, θ = 2 and g0 = 0.012, W0 is thus
convergent for n < ρ− (1− θ)g0 = ρ+ g0 = 0.013. This inequality seems likely to hold.
18By taking g1 = 0.013 > g0 also after year 2200, we deviate a little from both Arrow

and Stern in a direction favoring the Stern conclusion slightly.
19Possibly the difference between Arrow’s 8.5% and our result is due to the point men-

tioned in the previous footnote. Another minor difference is that Arrow seemingly takes n
to be zero since he speaks of the “pure rate of time preference”rather than the “effective
rate of time preference”, ρ− n.
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equivalent loss, the “mitigation now”policy passes the cost-benefit test for
any reasonable value of the pure rate of time preference.
It should be mentioned that there has been considerably disagreement

also about other aspects of the Stern Review’s investigation, not the least
the time profiles for the projected benefits and costs.20 So it is fair to say that
“further sensitivity analysis is called for”, as Arrow remarks. He adds: “Still,
I believe there can be little serious argument over the importance of a policy
of avoiding major further increases in combustion by-products”(Arrow 2007,
p. 5)

8.5 Conclusion

In his brief analysis of the economics of the climate change problem Arrow
(2007) finds the fundamental conclusion of the Stern Review justified even
if one, unlike the Stern Review, heavily discounts the utility of future gen-
erations. In addition to discounting, risk aversion plays a key role in the
argument. A significant part of the costs of mitigation is like an insurance
premium society should be ready to pay.
The analysis above took a computable risk approach. For more elaborate

accounts about uncertainty issues, also involving situations with systematic
uncertainty, about c1 for instance, increasing with the length of the time hori-
zon as well as fundamental uncertainty, see the list of references, in particular
the papers by Gollier and Weitzman.
We have been tacit concerning the diffi cult political economy problems

about how to obtain coordinated international action vis-a-vis global warm-
ing. About this, see, e.g., Gersbach (2008) and Roemer (2010).

8.6 Appendix: A closer look at Arrow’s esti-
mate of the certainty loss

In this appendix we briefly discuss Arrow’s estimate of the certainty-equivalent
loss based on (8.24). The applied procedure would be accurate if the density
function f(x) were symmetric and the utility function u(c) were linear.
So let us first consider the case of a linear utility function, ũ(c), cf. the

stippled positively sloped line in Figure 8.3. With f(x) symmetric, EX co-
incides with the median of the distribution. Given the estimated 5th and
95th percentiles of 0.03 and 0.34, respectively, we would thus have EX

20See for example: http://en.wikipedia.org/wiki/Stern_Review#cite_ref-5
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Figure 8.3: The case of symmetric density. Comparison of linear and strictly
concave utility function.

= (0.34 − 0.03)/2 = 0.156. So E((1 − X)c1) = (1 − 0.156)c1. In view of
ũ(c) being linear, we then get ũ((1 − 0.156)c1) = Eũ((1 − X)c1). And for
this case an estimate of the certainty-equivalent loss, x0, of course equals
EX = 0.156.

The “true”density function, f(x), is right-skew, however, and has EX =
0.138. In combination with the linear utility function, ũ(c), this implies an
estimate of x0 equal to 0.138, that is, we get a lower value for the certainty-
equivalent loss than with a symmetric density function.
Now let us consider the “true”utility function, u(c). In Figure 8.3 it is

represented by the solid strictly concave curve u(c0). Let us again imagine
for a while that the density function is symmetric. As before, half of the
probability mass would then be to the right of the mean of c0, (1− 0.156)c1,
and the other half to the left. The density function might happen to be such
that the expected utility is just the average of utility at the 5th percentile
and utility at the 95th percentile, that is, as if the two halves of the prob-
ability mass were placed at the 5th and 95th percentiles of 0.03 and 0.34,
respectively; if so, the estimated certainty-equivalent loss is the x̂0 shown in
Figure 8.3.
This would just be a peculiar coincidence, however. The probability mass

of the symmetric density function could be more, or less, concentrated close

c© Groth, Lecture notes in Economic Growth, (mimeo) 2014.



8.7. References 129

to EX = 0.156. In case it is more concentrated, it is as if the two halves of
the probability mass are placed at the consumption levels (1 − 0.156 + a)c1

and (1 − 0.156 − a)c1 for some “small” positive a, cf. Figure 8.3. The
corresponding estimate of the certainty-equivalent loss is denoted x̂′0 in the
figure and is smaller than x̂0 so that the associated c0 is larger than before.
Finally, we may conjecture that allowing for the actual right-skewness

of the density function will generally tend to diminish the estimate of the
certainty-equivalent loss.
The conclusion seems to be that Arrow’s procedure, as it stands, is ques-

tionable. Or the procedure is based on assumptions about the properties
of the density function not spelled out in the article. Anyway, sensitivity
analysis is called for. This could be part of an interesting master’s thesis by
someone better equipped in mathematical statistics than the present author
is.
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Chapter 9

Human capital, learning
technology, and the Mincer
equation

This chapter is meant as a supplement to Acemoglu, §10.1-2 and §11.2. First
an overview of different approaches to human capital formation in macroeco-
nomics is given. Next we go into detail with one of these approaches, the
life-cycle approach. In Section 9.3 a simple model of the choice of school-
ing length is considered. Finally, Section 9.4 presents the theory behind the
empirical relationship named the Mincer equation.1 In this connection it is
emphasized that the Mincer equation should be seen as an equilibrium rela-
tionship for relative wages at a given point in time rather than as a production
function for human capital.

9.1 Conceptual issues

We define human capital as the stock of productive skills embodied in an
individual. Increases in this stock occurs through formal education and on-
the-job-training. By contributing to the maintenance of life and well-being,
also health care is of importance for the stock of human capital and the
incentive to invest in human capital.
Since human capital is embodied in individuals and can only be used one

place at a time, it is a rival and excludable good. Human capital is thus
very different from technical knowledge. We think of technical knowledge as
a list of instructions about how different inputs can be combined to produce
a certain output. A principle of chemical engineering is an example of a piece

1After Mincer (1958, 1974).
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of technical knowledge. In contrast to human capital, technical knowledge
is a non-rival and only partially excludable good. Competence in applying
technical knowledge is one of the skills that to a larger or smaller extent is
part of human capital.

9.1.1 Macroeconomic approaches to human capital

In the macroeconomic literature there are different theoretical approaches to
the modelling of human capital. Broadly speaking we may distinguish these
approaches along two “dimensions”: 1) What characteristics of human capi-
tal are emphasized? 2) What characteristics of the decision maker investing
in human capital are emphasized? Combining these two “dimensions”, we
get Table 1.

Table 1. Macroeconomic approaches to the modelling of human capital

The character of the decision The character of human capital (hc):
maker Is hc treated as essentially different from physical capital?

No Yes
Solow-type rule-of-thumb households Mankiw et al. (1992)

Infinitely-lived family “dynasties” Barro&Sala-i-Martin (2004) Lucas (1988)
(the representative agent approach)
Finitely-lived individuals going through Ben-Porath (1967)
a life cycle (the life cycle approach) Heijdra&Romp (2009)

My personal opinion is that for most issues the approach in the lower-
right corner of Table 1 is preferable, that is, the approach treating human
capital as a distinct capital good in a life cycle perspective. The viewpoint
is:
First, by being embodied in a person and being lost upon death of this

person, human capital is very different from physical capital. In addition,
investment in human capital is irreversible (can not be recovered). Human
capital is also distinct in view of the limited extend to which it can be used
as a collateral, at least in non-slave societies. Financing an investment in
physical capital, a house for example, by credit is comparatively easy because
the house can serve as a collateral. A creditor can not gain title to a person,
however. At most a creditor can gain title to a part of that person’s future
earnings in excess of a certain level required for a “normal”or “minimum”
standard of living.
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Second, educational investment is closely related to life expectancy and
the life cycle of human beings: school - work - retirement. So a life cycle per-
spective seems the natural approach. Fortunately, convenient macroeconomic
frameworks incorporating life cycle aspects exist in the form of overlapping
generations models (for example Diamond’s OLG model or Blanchard’s con-
tinuous time OLG model).

9.1.2 Human capital and the effi ciency of labor

Generally we tend to think of human capital as a combination of different
skills. Macroeconomics, however, often tries (justified or not) to boil down
the notion of human capital to a one-dimensional entity. So let us imagine
that the current stock of human capital in society is measured by the one-
dimensional index H. With L denoting the size of the labor force, we define
h ≡ H/L, that is, h is the average stock of human capital in the labor
force. Further, let the “quality”(or “effi ciency”) of this stock in production
be denoted q (under certain conditions this quality might be proxied by the
average real wage per man-hour). Then it is reasonable to link q and h by
some increasing quality function

q = q(h), where q(0) ≥ 0, q′ > 0. (9.1)

Consider an aggregate production function, F̃ , giving output per time
unit at time t as

Y = F̃ (K, q(h)L; t),
∂F̃

∂t
> 0, (9.2)

where K is input of physical capital. The third argument of F̃ is time, t,
indicating that the production function is time-dependent due to technical
progress.
Generally the analyst would prefer a measure of human capital such that

the quality of human capital is proportional to the stock of human capital,
allowing us to write q(h) = h by normalizing the factor of proportionality
to be 1. The main reason is that an expedient variable representing human
capital in a model requires that the analyst can decompose the real wage
per working hour of a given person multiplicatively into two factors, the real
wage per unit of human capital per working hour and the stock of human
capital, h. That is, an expedient human capital concept requires that we can
write

w = wh · h, (9.3)

where wh is the real wage per unit of human capital per working hour. Indeed,
if we can write

Y = F̃ (K,hL; t), (9.4)
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under perfect competition we can write

w =
∂Y

∂L
= F̃2(K,hL; t)h = wh · h.

Under Harrod-neutral technical progress, (9.4) would take the form

Y = F̃ (K,hL; t) = F (K,AhL) ≡ F (K,EL), (9.5)

where E ≡ A · h is the “effective”labor input. The proportionality between
E and h will under perfect competition allow us to write

w =
∂Y

∂L
= F̃2(K,AhL; t)h = wE · E = wE · A · h = wh · h.

So with the introduction of the technology level, A, an additional decomposi-
tion, wh = wE ·A comes in, while the original decomposition in (9.3) remains
valid.
Whether or not the desired proportionality q(h) = h can be obtained

depends on how we model the formation of the “stuff” h. Empirically it
turns out that treating the formation of human capital as similar to that of
physical capital does not lead to the desired proportionality.

Treating the formation of human capital as similar to that of phys-
ical capital

Consider a model where human capital is formed in a way similar to physi-
cal capital. The Mankiw-Romer-Weil (1992) extension of the Solow growth
model with human capital is a case in point. Non-consumed aggregate out-
put is split into one part generating additional physical capital one-to-one,
while the other part generates additional human capital one-to-one. Then
for a closed economy in continuous time we can write:

Y = C + IK + IH ,

K̇ = IK − δKK, δK > 0,

Ḣ = IH − δHH, δH > 0, (9.6)

where IK and IH denote gross investment in physical and human capital, re-
spectively. This approach essentially assumes that human capital is produced
by the same technology as consumption and investment goods.
Suppose the huge practical measurement problems concerning IH have

been somehow overcome. Then from long time series for IH an index for Ht

can be constructed by the perpetual inventory method in a way similar to the
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way an index for Kt is constructed from long time series for IK . Indeed, in
discrete time, with 0 < δH < 1, we get, by backward substitution,

Ht+1 = IH,t + (1− δH)Ht = IH,t + (1− δH) [IH,t−1 + (1− δH)Ht−1]

=
T∑
i=0

(1− δH)iIH,t−i + (1− δH)T+1Ht−T . (9.7)

From the time series for IH , an estimate of δH , and a rough conjecture about
the initial value, Ht−T , we can calculate Ht+1. The result will not be very
sensitive to the conjectured value of Ht−T since for large T the last term in
(9.7) becomes very small.
In principle there need not be anything wrong with this approach. A

snag arises, however, if, without further notice, the approach is combined
with an explicit or implicit postulate that q(h) is proportional to the “stuff”,
h, brought into being in the way described by (9.6). The snag is that the
empirical evidence does not support this when the formation of human capital
is modelled as in (9.6). This is what, for instance, Mankiw, Romer, and Weil
(1992) find in their cross-country regression analysis based on the approach
in equation (9.6). One of their conclusions is that the following production
function for a country’s GDP is an acceptable approximation:

Y = BK1/3H1/3L1/3, (9.8)

where B stands for the total factor productivity of the country and is gener-
ally growing over time.2 Defining A = B3/2 and applying that H = hL, we
can write (9.8) on the form

Y = BK1/3(hL)1/3L1/3 = K1/3(h1/2AL)2/3.

That is, we end up with the form Y = F (K, q(h)AL) where q(h) = h1/2, not
q(h) = h. We should thus not expect the real wage to rise in proportion to
h, when h is considered as some “stuff”formed in a way similar to the way
physical capital is formed.
Before proceeding, a terminological point is in place. Why do we call q(h)

in (9.2) a “quality function”rather than simply a “productivity function”?
The reason is the following. With perfect competition and CRS, in equilib-
rium the real wage per man-hour would bew = ∂Y/∂L= F ′2(K,Aq(h)L))Aq(h)

2The way Mankiw-Romer-Weil measure IH is indirect and questionable. In addition,
the way they let their measure enter the regression equation has been criticized for con-
founding the effects of the human capital stock and human capital investment, cf. Gemmel
(1996) and Sianesi and Van Reenen (2003). It will take us too far to go into detail with
these problems here.
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=
[
f(k̃)− k̃f ′(k̃)

]
Aq(h), where k̃ ≡ K/(Aq(h)L). So, with a converging k̃,

the long-run growth rate of the real wage would in continuous time tend to
be

gw = gA + gq.

In this context we are inclined to identify “labor productivity”with Aq(h)
rather than just q(h) and “growth in labor productivity”with gA + gq rather
than just gq. So a distinct name for q seems appropriate and an often used
name is “quality”. The latter name might seem more straightforward. Nev-
ertheless we avoid it because it implies a risk of confusion with the standard
meaning of terms like “labor productivity”and “growth in labor productiv-
ity”. Indeed, with a converging k̃, the long-run growth rate of the real wage
would in continuous time be

gw = gA + gq.

We are in this context inclined to identify “labor productivity”with Aq(h)
rather than just q(h) and “growth in labor productivity”with gA + gq rather
than just gq. So a distinct name for q seems appropriate and an often used
name is “quality”.
The conclusion so far is that specifying human capital formation as in

(9.6) does not generally lead to a linear quality function. To obtain the
desired linearity we have to specify the formation of human capital in a way
different from the equation (9.6). This dissociation with the approach (9.6)
applies, of course, also to its equivalent form on a per capita basis,

ḣ = (
Ḣ

H
− n)h =

IH
L
− (δH + n)h. (9.9)

(In the derivation of (9.9) we have first calculated the growth rate of h ≡
H/L, then inserted (9.6), and finally multiplied through by h.)

9.2 The life-cycle approach to human capital

In the life-cycle approach to human capital formation we perceive h as the
human capital embodied in a single individual and lost upon death of this
individual. We study how h evolves over the lifetime of the individual as a
result of both educational investment (say time spent in school) and work
experience. In this way the life-cycle approach recognizes that human capi-
tal is different from physical capital. By seeing human capital formation as
the result of individual learning, the life-cycle approach opens up for distin-
guishing between the production technologies for human and physical capital.
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Thereby the life-cycle approach offers a better chance for obtaining the linear
relationship, q(h) = h.
Let the human capital at date t of an individual “born”(i.e., entering life

beyond childhood) at date 0 be denoted hx, where x stands for the age of this
individual. Let the total time available per time unit for study, work, and
leisure be normalized to 1. Let sx denote the fraction of time the individual
spends in school at age x. This allows the individual to go to school only part-
time and spend the remainder of non-leisure time working. If `x denotes the
fraction of time spent at work, we have

0 ≤ sx + `x ≤ 1.

The fraction of time used as leisure (or child rearing, say) at age x is 1−sx−`x.
If full retirement occurs at age x̄, we have sx = `x = 0 for x ≥ x̄.
As a slight generalization of equation (10.2) in Acemoglu (2009, p. 360,

where leisure is not considered), we assume that the increase in hx per time
unit generally depends on four variables: current time in school, current time
at work, human capital already obtained, and current calendar time itself,
that is,

ḣx ≡
dhx
dx

= G(sx, `x, hx, t), h0 ≥ 0 given. (9.10)

The function G can be seen as a production function for human capital -
in brief a learning technology. The first argument of G reflects the role of
formal education. Empirically, the primary input in formal education is the
time spent by the students studying; this time is not used in work or leisure
and it thereby gives rise to an opportunity cost of studying.3 The second
argument of G takes work experience into account and the third argument
allows for the already obtained level of human capital to affect the strength of
the influence from sx and `x. Finally, the fourth argument, current calendar
time allows for changes over time in the learning technology (organization of
the learning process). If we maintain our starting point that time of birth is
0, we can replace t by x.
More generally, consider an individual “born”at date v ≤ t (v for vin-

tage). If still alive at time t, the age of this individual is x ≡ t − v. Let us
assume that (9.10) is valid for general time of birth. Then obtained stock of
human capital at age x will be

hx = h0 +

∫ x

0

G(su, `u, hu, v + u)du.

3We may perceive the costs associated with teachers’time and educational buildings
and equipment as being either quantitatively negligible or implicit in the function symbol
G.
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A basic supposition in the life-cycle approach is that it is possible to specify
the function G such that a person’s time-t human capital involves a time-t
labor productivity proportional to this amount of human capital and thereby,
under perfect competition, a real wage proportional to this human capital.
Below we consider four specifications of the learning technology that one

may encounter in the literature.

EXAMPLE 1 In a path-breaking model by the Israeli economist Ben-Porath
(1967) the learning technology is specified this way:

ḣx = g(sxhx)− δhx, g′ > 0, g′′ < 0, δ > 0, h0 > 0.

Here time spent in school is more effi cient in building human capital the more
human capital the individual has already. Work experience does not add to
human capital formation. The parameter δ enters to reflect obsolescence (due
to technical change) of skills learnt in school and/or mortality. �

EXAMPLE 2 Growiec (2010) and Growiec and Groth (2013) study the
aggregate implications of a learning technology specified this way:

ḣx = (λsx + ξ`x)hx, λ > 0, ξ ≥ 0, h0 > 0. (9.11)

Here λ measures the effi ciency of schooling and ξ the effi ciency of work ex-
perience. The effects of schooling and (if ξ > 0) work experience are here
proportional to the level of human capital already obtained by the individ-
ual (a strong assumption which may be questioned). The linear differential
equation (9.11) allows an explicit solution,

hx = h0e
∫ x
0 (λsu+ξ`u)du, (9.12)

a formula valid as long as the person is alive. This result has some affi nity
with the approach by Lucas (1988) and with the “Mincer equation”, to be
considered below. �

EXAMPLE 3 Here we consider an individual with exogenous and constant
leisure. Hence time available for study and work is constant and conveniently
normalized to 1 (as if there were no leisure at all). In the beginning of life
beyond childhood the individual goes to school full-time in S time units
(years) and thereafter works full-time until death (no retirement). Thus

sx =

{
1 for 0 ≤ x < S,
0 for x ≥ S.

(9.13)
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We further simplify by ignoring the effect of work experience (or we may say
that work experience just offsets obsolescence of skills learnt in school). The
learning technology is specified as

ḣx = ηxη−1sx, η > 0, h0 = 0, (9.14)

If η < 1, it becomes more diffi cult to learn more the longer you have already
been to school. If η > 1, it becomes easier to learn more the longer you have
already been under education.
The specification (9.13) implies that throughout working life the individ-

ual has constant human capital equal to Sη. Indeed, integrating (9.9), we
have for t ≥ S and until time of death,

hx = h0 +

∫ x

0

ḣudu = 0 +

∫ S

0

ηuη−1du = uη|S0 = Sη. (9.15)

So the parameter η measures the elasticity of human capital w.r.t. the num-
ber of years in school. As briefly commented on in the concluding section,
there is some empirical support for the power function specification in (9.15)
and even the hypothesis η = 1 may not be rejected. �

In Example 1 there is no explicit solution for the level of human capital.
Then the solution can be characterized by phase diagram analysis (as in
Acemoglu, §10.3). In the examples 2 and 3 we can find an explicit solution
for the level of human capital. In this case the term “learning technology”is
used not only in connection with the original differential form as in (9.10), but
also for the integrated form, as in (9.12) and (9.15), respectively. Sometimes
the integrated form, like (9.15), is called a schooling technology.

EXAMPLE 4 Here we still assume the setup in (9.13) of Example 3, includ-
ing the absence of both after-school learning and gradual depreciation. But
the right-hand side of (9.14) is generalized to ϕ(x)sx, where ϕ(x) is some
positively valued function of age. Then we end up with human capital after
leaving school equal to some increasing function of S :

h = h(S), where h(0) ≥ 0, h′ > 0. (9.16)

In cross-section or time series analysis it may be relevant to extend this by
writing h = ah(S), a > 0; the parameter a would then reflect quality of
schooling. In the next section we shall focus on the form (9.16). �

Before proceeding, let us briefly comment on the problem of aggregation
over the different members of the labor force at a given point in time. In
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the aggregate framework of Section 9.1 multiplicity of skill types and job
types is ignored. Human capital is treated as a one-dimensional and additive
production factor. In production functions like (9.4) only aggregate human
capital, H, matters. So output is thought to be the same whether the in-
put is 2 million workers, each with one unit of human capital, or 1 million
workers, each with 2 units of human capital. In human capital theory this
questionable assumption is called the perfect substitutability assumption or
the effi ciency unit assumption (Sattinger, 1980). If we are willing to impose
this assumption going from micro to macro at a given point in time is concep-
tually simple. With h denoting individual human capital and f(h) being the
density function (so that

∫∞
0
f(h)dh = 1), we find average human capital in

the labor force as h̄ =
∫∞

0
hf(h)dh and aggregate human capital as H = h̄L,

where L is the size of the labor force. To build a theory of the evolution over
time of the density function, f(h), is, however, a complicated matter. This is
because heterogeneity within the different cohorts regarding both schooling
and retirement and changing fertility and mortality patterns are involved.
If we want to open up for a distinction between different types of jobs

and different types of labor, say, skilled and unskilled labor, we may replace
the production function (9.4) with

Y = F̃ (K,h1L1, h2L2; t), (9.17)

where L1 and L2 indicate man-hours delivered by the two types of workers,
respectively, and h1 and h2 are the associated human capital levels (measured
in effi ciency units for each of the two kinds of jobs), respectively. This could
be the basis for studying skill-biased technical change. In passing we note
that if and only if it is possible to rewrite this production function (9.17) as
Y = F (K,H; t), where H = h1L1 +h2L2, are the two types of labor perfectly
substitutable.

9.3 Choosing length of education

9.3.1 Human wealth

Whereas human capital is a production factor, human wealth is the present
value of expected future labor earnings generated by this production factor.
We assume (realistically!) that expected lifetime is finite while the age at

death, X, is stochastic (uncertain). Let `t−v(S) denote the supply of labor to
the labor market at time t by a person born at time v who at birth decides
to attend school full-time in the first S years of life and after that work full
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time until death. As `t−v(S) depends on the stochastic variable, X, `t−v(S)
is itself a stochastic variable with two possible outcomes:

`t−v(S) =

{
0 when t ≤ v + S or t > v +X,
` when v + S < t ≤ v +X,

where ` > 0 is an exogenous constant (“full-time” working). We further
assume that the probability for a newborn to survive at least until age x is
P (X > x) = e−mx, where m > 0. Although far from realistic, for simplicity
we assume that the involved mortality rate, m, is independent of x (and also
independent of calendar time).4

Let wt(S) denote the real wage received per working hour delivered at
time t by a person who after S years in school works ` hours per time unit,
say per year, until death. This allows us to write the present value as seen
from time v of expected earned lifetime earnings, i.e., the human wealth, for
a person “born”at time v as

HW (v, S) = 0 + Ev

(∫ v+X

v+S

wt(S)`e−r(t−v)dt

)
= 0 + Ev

(∫ ∞
v+S

wt(S)`t−v(S)e−r(t−v)dt

)
=

∫ ∞
v+S

Ev (wt(S)`t−v(S)) e−r(t−v)dt,

as in this context the integration operator
∫∞
v+S

(·)dt acts like a discrete-time
summation operator

∑∞
t=v . Hence,

HW (v, S) =

∫ ∞
v+S

wt(S)e−r(t−v) (` · P (X > t− v) + 0 · P (X ≤ t− v))dt

=

∫ ∞
v+S

wt(S)e−r(t−v)`e−m(t−v)dt

=

∫ ∞
v+S

wt(S)`e−(r+m)(t−v)dt. (9.18)

In writing the present value of the expected stream of labor income this
way, we have assumed that:

4If X denotes the uncertain age at death (a stochastic variable) and x is a nonneg-
ative number, the mortality rate (or “hazard rate” of death) at the age x is defined
as lim∆x→0

1
∆xP (X ≤ x+ ∆x| X > x) . In the present model this is assumed equal to

a constant, m. The unconditional probability of not reaching age x is then P (X ≤ x)
= 1 − e−mx. Hence the density function is f(x) = me−mx and life expectancy is E(X)
=
∫∞

0
xme−mxdx = 1/m. This is like in the “perpetual youth” overlapping generations

model by Blanchard (1985).
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1. There is no educational fee.

2. The risk-free interest rate, r, is constant over time.

We now introduce some additional assumptions:

3. Labor effi ciency is proportional to human capital so that the real wage
per working hour for a person with human capital h is wt = ŵth. Here
ŵt is the real wage per unit of human capital per working hour at time
t faced by the individual.5

4. Human capital is formed in accordance with the conditions in Example 4
of the previous section so that a person with S years of schooling has
h = h(S), h′ > 0.

5. Owing to technical progress at a constant rate g ∈ [0, r +m) ≥ 0, ŵt =
ŵ0e

gt. So technical progress makes a given h more and more productive
(direct complementarity between technology level and human capital
as in (9.5) above).

By the assumption 3, 4, and 5 (9.18) gives

HW (v, S) =

∫ ∞
S

ŵth(S)`e−(r+m)(t−v)dt (9.19)

= ŵ0e
gvh(S)`

∫ ∞
S

e[g−(r+m)](t−v)dt

= ŵ0e
gvh(S)`

(
e[g−(r+m)](t−ν)

g − (r +m)

∣∣∣∣∞
ν+S

)
= ŵ0e

gνh(S)`
e[g−(r+m)]S

r +m− g .

From now on we chose measurement units such that the “normal”working
time per year is 1 rather than `.

9.3.2 A perfect credit and life annuity market

Assuming the students themselves have to finance their costs of living, the
question is: how do students make a living while studying? While studying,
they borrow and later in life, when they have an income, they repay the loans
with interest.
In this context we shall introduce the simplifying assumption of a perfect

credit and life annuity market. The financial sector will be unwilling to
offer the students loans at the going risk-free interest rate, r. Indeed, a

5In the previous section this variable was called wh.
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creditor faces the risk that the student dies before having paid off the debt
including the compound interest. Given the described constant mortality
rate and existence of a perfect credit and life insurance market, it can be
shown that the equilibrium interest rate on student loans is the “actuarial
rate”, r + m. (This result presupposes that the insurance companies have
negligible administration costs.)
If the individual later in life, after having paid off the debt and obtained

a positive net financial position, places the savings on life annuity accounts
in life insurance companies, the actuarial rate, r̂ = r + m, will also be the
equilibrium rate of return received (until death) on these deposits. At death
the liability of the insurance company is cancelled.
The advantage of saving in life annuities (at least for people without a

bequest motive) is that life annuities imply a transfer of income from after
time of death to before time of death by offering a higher rate of return than
risk-free bonds, but only until the depositor dies. At that time the total
deposit is automatically transferred to the insurance company in return for
the high annuity payouts while the depositor was alive.6

9.3.3 Maximizing human wealth

Suppose that neither the educational process itself nor the resulting stock
of human capital enter the utility function (no “joy of going to school”, no
“joy of being a learned person”). In this perspective human capital is only
an investment good (not also a consumption good).7

If moreover there is no utility from leisure, the educational decision can
be separated from whatever plan for the time path of consumption and sav-
ing through life the individual may decide (cf. the Separation Theorem in
Acemoglu, §10.1). That is, the only incentive for acquiring human capital is
to increase the human wealth HW (ν, S) given in (9.19).
An interior solution to the problem maxS HW (v, S) satisfies the first-

order condition:

∂HW

∂S
(v, S) =

ŵ0

r +m− g
[
h′(S)e[g−(r+m)]S − h(S)e[g−(r+m)]S(r +m− g)

]
= HW (S)

[
h′(S)

h(S)
− (r +m− g)

]
= 0, (9.20)

6Whatever name is in practice used for the real world’s private pension arrangements,
including labor market pension arrangements, many of them have such life annuity ingre-
dients.

7For a broader conception of human capital, see for instance Sen (1997).
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from which follows

h′(S)

h(S)
= r +m− g ≡ r̃. (9.21)

We call (9.21) the schooling first-order condition and r̃ the effective dis-
count rate for the schooling decision. In the optimal plan this equals the
effective discount rate appearing on the right-hand side of (9.21), namely the
interest rate adjusted for (a) the approximate probability of dying within
a year from “now”, 1 − e−m ≈ m) and (b) wage growth due to technical
progress. The trade-off faced by the individual is the following: increasing S
by one year results in a higher level of human capital (higher future earning
power) but postpones by one year the time when earning an income begins.
The effective interest cost is diminished by g, reflecting the fact that the real
wage per unit of human capital will grow by the rate g from the current year
to the next year.

The intuition behind the first-order condition (9.21) is perhaps easier to
grasp if we put g on the left-hand-side and multiply by ŵt in the numerator
as well as the denominator. Then the condition reads:

ŵth
′(S) + ŵth(S)g

ŵth(S)
= r +m.

On the the left-hand side we now have the actual net rate of return obtained
by investing one more year in education. In the numerator we have the
direct increase in wage income by increasing S by one unit plus the gain
arising from the fact that human capital, h(S), is worth more in earnings
capacity one year later due to technical progress. In the denominator we
have the educational investment made by letting the obtained human capital,
h(S), “stay”one more year in school instead of at the labor market. In an
optimal plan the actual net rate of return on the marginal investment equals
the required rate of return, r + m. This is what could be obtained by the
alternative strategy, which is to leave school already after S years and then
invest the first years’s labor income in life annuities paying the net rate of
return, r+m, per year until death. That is, the first-order condition can be
seen as a no-arbitrage equation. (As is quite usual, our interpretation treats
marginal changes as if they were discrete. Thereby our interpretation is, of
course, only approximative.)

Suppose S = S∗ > 0 satisfies the first-order condition (9.21). To check
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the second-order condition, we consider

∂2HW

∂S2
(v, S∗)

= HW ′(S∗)

[
h′(S∗)

h(S∗)
− (r +m− g)

]
+HW (S∗)

h(S∗)h′′(S∗)− h′(S∗)2

h(S∗)2

= HW (S∗)

S∗

h′(S∗)h
′′(S∗)− S∗

h(S∗)h
′(S∗)

S∗h(S∗)
h′(S∗), (9.22)

since the first term on the right-hand side in the second row vanishes due to
(9.21) being satisfied at S = S∗. The second-order condition, ∂2HW/∂S2 < 0
at S = S∗ holds if and only if the elasticity of h w.r.t. S exceeds that of
h′ w.r.t. S at S = S∗. A suffi cient but not necessary condition for this is
that h′′ ≤ 0. Anyway, since HW (v, S) is a continuous function of S, if there
is a unique S∗ > 0 satisfying (9.21), and if ∂2HW/∂S2 < 0 holds for this
S∗, then this S∗ is the unique optimal length of education for the individual.
If individuals are alike in the sense of having the same innate abilities and
facing the same schooling technology h(·), they will all choose S∗.

EXAMPLE 5 Suppose h(S) = Sη, η > 0, as in Example 3. Then the first-
order condition (9.21) gives a unique solution S∗ = η/(r + m − g); and the
second-order condition (9.22) holds for all η > 0. More sharply decreasing
returns to schooling (smaller η) shortens the optimal time spent in school as
does of course a higher effective discount rate, r +m− g.
Consider two countries, one rich (industrialized) and one poor (agricul-

tural). With one year as the time unit, let the parameter values be as in the
first four columns in the table below. The resulting optimal S for each of the
countries is given in the last column.

η r m g S∗

rich country 0.6 0.06 0.01 0.02 12.0
poor country 0.6 0.12 0.02 0.00 4.3

The difference in S∗ is due to r and m being higher and g lower in the poor
country. �

The above example follows a short note by Jones (2007) entitled “A sim-
ple Mincerian approach to endogenizing schooling”. The term “Mincerian
approach”should here be interpreted in a broad sense as more or less syn-
onymous with “life-cycle approach”.
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Often in the macroeconomic literature, however, the term “Mincerian
approach”is identified with an exponential specification of the learning tech-
nology:

h(S) = h(0)eψS, ψ > 0. (9.23)

This exponential form can at the formal level be seen as resulting from a
combination of equation (9.11) from Example 2 and equation (9.13) from
Example 3. One should be aware, however, that the present simple frame-
work does not really embrace an exponential specification of h. Indeed, the
second-order condition (9.22) implied by the “perpetual youth”assumption
of age-independent mortality and no retirement, is incompatible with the
strong convexity implied by the exponential function. Of course, this must
be seen as a limitation of the “perpetual youth”setup (where there is no con-
clusive upper bound for anyone’s lifetime) rather than a reason for rejecting
apriori the exponential specification (9.23).
Anyway, the sole basis for a Mincerian exponential relationship is empir-

ical cross-sectional evidence on relative wages at a given point in time, cf.
Figure 9.1. As briefly commented in the concluding section, there seems to
be little empirical support for an exponential production function for human
capital. Moreover, as we shall now see, Mincer’s microeconomic explanation
of the exponential relationship (cf. Mincer, 1958, 1974) has nothing to do
with a specific production function for human capital.

9.4 Explaining the Mincer equation

In Mincer’s theory behind the observed exponential relationship called the
Mincer equation, there is no role at all for any specific schooling technology,
h(·), leading to a unique solution, S∗. The essential point is that the empir-
ical Mincer equation is based on heterogeneity in the jobs offered to people
(different educational levels not being perfectly substitutable). An exponen-
tial relationship where people, in spite of being alike ex ante, choose different
educational levels ex post can then arise through the equilibrium forces of
supply and demand in the job markets.
Imagine, first, a case where all individuals have in fact chosen the same

educational level, S∗, because they are ex ante alike and all face the same
arbitrary human capital production function, h(S), satisfying (9.22). Then
jobs that require other educational levels will go unfilled and so the job mar-
kets will not clear. The forces of excess demand and excess supply will then
tend to generate an educational wage profile different from the one presumed
in (9.19), that is, different from ŵth(S). Sooner or later an equilibrium edu-
cational wage profile tends to arise such that people are indifferent as to how
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Figure 9.1: The semi-log schooling-wage relationship for different countries.
Source: Krueger and Lindahl (2001).
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much schooling they choose, thereby allowing market clearing. This requires
a wage profile, wt(S), such that a marginal condition analogue to (9.21) holds
for all S for which there is a positive amount of labor traded in equilibrium,
say all S ∈

[
0, S̄

]
:

dwt(S)/dS

wt(S)
= r +m− g ≡ r̃ for all S ∈

[
0, S̄

]
. (9.24)

It is here assumed, in the spirit of assumption 7 above, that technical progress
implies that wt(S) for fixed S grows at the rate g, i.e., wt(S) = w0(S)egt,
for all S ∈

[
0, S̄

]
. The equation (9.24) is a linear differential equation for wt

w.r.t. S, defined in the interval 0 ≤ S ≤ S̄. And the function wt(S), where t is
fixed, is then unknown solution to this differential equation. That is, we have
a differential equation of the form dx(S)/dS = r̃x(S). This is a differential
equation where the unknown function x(S) is a function of schooling length
rather than calendar time. The solution is x(S) = x(0)er̃S. Replacing the
function x(·) with the function wt(·), we thus have the solution

wt(S) = wt(0)er̃S. (9.25)

Note that in the previous section, in the context of (9.21), we required
the proportionate marginal return to schooling to equal r̃ only for a specific
S, i.e.,

d(ŵth(S))/dS

ŵth(S)
=
h′(S)

h(S)
= r +m− g ≡ r̃ for S = S∗. (9.26)

This is only a first-order condition assumed to hold at some point, S∗. It will
generally not be a differential equation the solution of which gives a Min-
cerian exponential relationship. A differential equation requires a derivative
relationship to hold not only at one point, but in an interval for the indepen-
dent variable (S in (9.24)). Indeed, in (9.24) we require the proportionate
marginal return to schooling to equal r̃ in a whole interval of schooling lev-
els. Otherwise, with heterogeneity in the jobs offered there could not be
equilibrium.8

Returning to (9.25), by taking logs on both sides, we get

logwt(S) = logwt(0) + r̃S, (9.27)

which is the Mincer equation on log-linear form.

8As I see it, Acemoglu (2009, p. 362) makes the logical error of identifying a first-order
condition, (9.26), with a differential equation.
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Empirically, the Mincer equation does surprisingly well, cf. Figure 9.1.9

Note that (9.25) also yields a theory of how the “Mincerian slope”, ψ, in
(9.23) is determined, namely as the mortality- and growth-corrected real
interest rate, r̃. The evidence for this part of the theory is more scarce.
Given the equilibrium educational wage profile, wt(S), the human wealth

of an individual “born”at time 0 can be written

HW0 =

∫ ∞
S

wt(0)er̃Se−(r+m)tdt = er̃S
∫ ∞
S

w0(0)eḡte−(r+m)tdt

= w0(0)er̃S
∫ ∞
S

e[g−(r+m)]tdt = w0(0)er̃S
[
e[g−(r+m)]t

g − (r +m)

]∞
S

=
w0(0)

r +m− g , (9.28)

since r̃ ≡ r+m−g. In view of the adjustment of the S-dependent wage levels,
in equilibrium the human wealth of the individual is thus independent of S
(within an interval) according to the Mincerian theory. Indeed, the essence
of Mincer’s theory is that if one level of schooling implies a higher human
wealth than the other levels of schooling, the number of individuals choosing
that level of schooling will rise until the associated wage has been brought
down so as to be in line with the human wealth associated with the other
levels of schooling. Of course, such adjustment processes must in practice be
quite time consuming and can only be approximative.10

In this context, the original schooling technology, h(·), for human capital
formation has lost any importance. It does not enter human wealth in a
long-run equilibrium in the disaggregate model where human wealth is simply
given by (9.28). In this equilibrium people have different S’s and the received
wage of an individual per unit of work has no relationship with the human
capital production function, h(·), by which we started in this section.
Although there thus exists a microeconomic theory behind a Mincerian

relationship, this theory gives us a relationship for relative wages in a cross-
section at a given point in time. It leaves open what an intertemporal pro-
duction function for human capital, relating educational investment, S, to a
resulting level, h, of labor effi ciency in a macroeconomic setting, looks like.
Besides, the Mincerian slope, r̃, is a market price, not an aspect of schooling
technology.

9The slopes are in the interval (0.05, 0.15).
10Who among the ex ante similar individuals ends up with what schooling level is inde-

terminate.
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9.5 Some empirics

In their cross-country regression analysis de la Fuente and Domenech (2006)
find a relationship essentially like that in Example 3 with η = 1.11

Similarly, the cross-country study, based on calibration, by Bills and
Klenow (2000) as well as the time series study by Cervelatti and Sunde
(2010) favor the hypothesis of diminishing returns to schooling. According
to this, the linear term, r̃S, in the exponent in (9.23) should be replaced by
a strictly concave function of S. These findings are in accordance with the
results by Psacharopoulus (1994). For S > 0, the power function in Example
5 can be written h = Sη = eη lnS and thus in better harmony with the data
than the exponential function (9.23). A parameter indicating the quality of
schooling may be added: h = aeηS, where a > 0 may be a function of the
teacher-pupil ratio, teaching materials per student etc. See Caselli (2005).

Outlook

Models based on the life-cycle approach to human capital typically conclude
that education is productivity enhancing, i.e., education has a level effect on
income per capita but is not a factor which in itself can explain sustained per
capita growth, cf. Exercise V.7 and V.8. Amore plausible main driving factor
behind growth seems rather to be technological innovations. A higher level
of per capita human capital may temporarily raise the speed of innovations,
however.

Final remark

This chapter considered human capital as a productivity-enhancing factor.
There is a complementary perspective on human capital, namely the Nelson-
Phelps hypothesis about the key role of human capital for technology adop-
tion and technological catching up, see Acemoglu, §10.8, and Exercise Prob-
lem V.3.
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Chapter 10

Human capital and knowledge
creation in a growing economy

As a follow-up on the concept of a schooling technology presented in Chapter
9, Section 9.2, the present chapter considers aspects of the interplay between
physical capital, human capital, and knowledge creation in a simple balanced
growth framework.

10.1 The model

We consider a closed economy with education and two production sectors,
manufacturing and R&D. Time is continuous. Postponing the modeling of
education a little, at the aggregate level we have:

Yt = TtK
α
t (h̄tLY t)

1−α, 0 < α < 1, (10.1)

K̇t = Yt − ctNt − δKt, δ ≥ 0, K0 > 0 given, (10.2)

Tt = Aσt , σ > 0, (10.3)

Ȧt = γAϕt h̄tLAt, γ > 0, ϕ < 1, A0 > 0 given, (10.4)

0 < LY t ≤ LY t + LAt = Lt, (10.5)

where Yt is manufacturing output (the value of which is less than GNP when
LAt > 0), Tt is total factor productivity (TFP), Kt is physical capital input,
h̄t is average human capital in the labor force, LY t and LAt are inputs of
labor in manufacturing and R&D, respectively, Ct is aggregate consumption,
At is the stock of technical knowledge, and Lt is aggregate labor input, all at
time t. The size of population is denoted Nt and so per capita consumption
is ct ≡ Ct/Nt.
Comments: As to (10.5), h̄tLAt is the total input of human capital per

time unit in R&D and γAϕt is the productivity of this input at the aggregate
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level. The parameter ϕ measures the elasticity of research productivity w.r.t.
the level of the available stock of technical knowledge. The case 0 < ϕ < 1
represents the “standing on the shoulders” case where knowledge creation
becomes easier the more knowledge there is already. In contrast, the case
ϕ < 0 represents the “fishing out”case, also called the “easiest inventions are
made first”case. This would reflect that it becomes more and more diffi cult
to create the next advance in technical knowledge. As to (10.5), the strict
and weak inequalities are motivated by the view that for the system to be
economically viable, there must be activity in the Y -sector whereas it is of
interest to allow for − and compare − the cases LAt > 0 and LAt = 0 (active
versus passive R&D sector).
The population growth rate is assumed constant:

Nt = N0e
nt, n ≥ 0, N0 > 0 given. (10.6)

We assume a stationary age distribution in the population. Although details
about schooling are postponed, we already here assume that schooling and
retirement are consistent with the labor force being a constant fraction of
the population:

Lt = (1− β)Nt, (10.7)

where β ∈ (0, 1). Then, by (10.6) follows

Lt = L0e
nt, n ≥ 0, L0 > 0. (10.8)

We let the growth rate at time t of a variable x > 0 be denoted gxt. When
writing just gx, without the time index t, it is understood that the growth
rate of x is constant over time.

10.2 Productivity growth along a BGP with
R&D

Let us first find an expression for the TFP growth rate. By log-differentiation
w.r.t. t in (10.1), we have

gY t = gTt + αgKt + (1− α)(gh̄t + gLY t). (10.9)

The current TFP growth rate is thus

gTFPt ≡ gY t − (αgKt + (1− α)(gh̄t + gLY t)) = gTt = σgAt, (10.10)

where the last equality follows from (10.3). By (10.4), we get

gAt ≡
Ȧt
At

= γAϕ−1
t h̄tLAt = 0, with > if and only if LAt > 0. (10.11)
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We shall first consider the case of active R&D:

ASSUMPTION (A1): LAt > 0 for all t ≥ 0.

This assumption implies gAt > 0 and so the growth rate of gAt is well-defined.
By log-differentiation w.r.t. t in (10.11) we have

ġAt
gAt

= (ϕ− 1)gAt + gh̄t + gLAt. (10.12)

10.2.1 Balanced growth with R&D

In the present context we define a balanced growth path (BGP) as a path
along which gY t, gCt, gKt, gAt, and gh̄t are constant (not necessarily equal
and not necessarily positive). With y denoting per capita manufacturing
output, i.e., y ≡ Y/L, let us find the growth rate of y in balanced growth
with active R&D. We introduce the following additional assumptions:

ASSUMPTION (A2): The economy follows a BGP.

ASSUMPTION (A3): Yt − ctNt > 0 for all t ≥ 0.

By imposing (A3), we rule out the degenerate case where gK = −δ.
Along a BGP, by definition, gAt is a constant, gA. Since thereby ġA = 0,

solving for gA in (10.12) gives

gA =
gh̄t + gLAt

1− ϕ > 0, (10.13)

where the positivity is due to the assumption (A1). For the formula (10.13)
to be consistent with balanced growth, gLAt must be a constant, gLA , since
otherwise gA and gh̄t could not both be constant as they must in balanced
growth, by definition. Moreover, we must have gLA = n. To see this, imagine
that gLA < n. Then, in order for the growth rate of the sum LY t + LAt
to accord with (10.8), we would need gLY t > n forever, which would imply
LY t + LAt > Lt sooner or later. This is a contradiction. And if instead we
imagine that gLA > n while still being constant, we would, at least after
some time, have LAt > Lt, again a contradiction. We conclude that gLA = n.
For LY t + LAt to accord with (10.8), it then follows that also gLY t must be
a constant, gLY , and equal to n. We have hereby proved that along a BGP
with R&D,

gLA = gLY = n. (10.14)

It follows that LA/L is constant along a BGP with R&D.
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Given the accumulation equation (10.2) and the assumption (A3), it fol-
lows by the Balanced Growth Equivalence Theorem of Chapter 4 that

gC = gY = gK

along a BGP. From (10.9), together with (10.7) and the definition c ≡ C/N ,
then follows that along a BGP,

gc = gy = gY − n = gT + αgK + (1− α)(gh̄ + n)− n
= gT + α(gK − n) + (1− α)gh̄ = gT + αgk + (1− α)gh̄, (10.15)

where the last equality comes from k ≡ K/LY and gLY = n. As gK = gY and
gLY = gL, we have gk = gy. Then (10.15) gives

gy =
gT

1− α + gh̄ =
σgA

1− α + gh̄, (10.16)

in view of (10.10).

Education

Let the time unit be one year. Suppose an individual “born”at time v (v for
“vintage”) spends the first S years of life in school and then enters the labor
market with a human capital equal to h(S), where h′ > 0. We ignore the
role of teachers and schooling equipment in the formation of human capital.
The role of work experience for human capital later in life is likewise ignored.
Moreover, we assume that S is the same for all members of a given cohort
and also − until further notice − the same across cohorts. So

h̄ = h(S), h′ > 0. (10.17)

After leaving school, individuals work full-time until either death before
age R or retirement at age R where R > S, of course; life expectancy is
assumed the same for all cohorts. Assuming a stationary age distribution in
the population, we see that β in (10.7) represents the constant fraction of
the population consisting of people either below age S, i.e., under education,
or above age R, i.e., retired people (β will be an increasing function of S and
a decreasing function of R).1

1A complete model would treat S as endogenous in general equilibrium. In a partial
equilibrium analysis one could possibly use an approach similar to the one in Chapter 9,
Section 9.3. We shall not enter into that, however, because the next step, determination
of the real rate of interest in general equilibrium, is a complex problem and requires a
lot of additional specifications of households’characteristica and market structure. Fortu-
nately, it is not necessary to determine S as long as the focus is only on determining the
productivity growth rate along a BGP.
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Sustained productivity growth along a BGP

It follows that average human capital is constant. Thus gh̄ = 0 and (10.16)
reduces to

gy =
σgA

1− α > 0, (10.18)

In equation (10.15) productivity growth, gy, is decomposed into a con-
tribution from technical change, a contribution from “capital deepening”
(growth in k), and a contribution from human capital growth if any. As long
as S in (10.17) is assumed constant over time, there is no human capital
growth. So we can re-write (10.15):

gy = gT + αgk = gTFP + αgk, (10.19)

in view of gTFP = gT = σgA from (10.10). This equation decomposes the
productivity growth rate into a direct contribution from technical change and
a direct contribution from capital deepening. Digging deeper, (10.18) tells
us that both these direct contributions rest on sustained knowledge growth.
The correct interpretation of (10.19) is that it just displays the two factors
behind the current increase in y, while (10.18) takes into account that both
TFP growth and capital deepening are in a long-run perspective themselves
driven by knowledge growth.

10.2.2 A precondition for sustained productivity growth
when gh̄ = 0: population growth

We saw that along a BGP with R&D, gLA = n. By (10.13) and gh̄ = 0 then
follows that along a BGP with R&D,

gA =
n

1− ϕ > 0. (10.20)

From this inequality we see that existence of a BGP with R&D requires

ASSUMPTION (A4): n > 0

to hold.
On the basis of (A4) and (10.18) we finally conclude that

gy =
σn

(1− ϕ)(1− α)
> 0. (10.21)

Here we have taken into account that also knowledge growth is endogenous
in that it is determined by allocation of resources (research workers) to R&D
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activity. The result (10.21) tells us that not only is population growth neces-
sary for sustained productivity growth but productivity growth is faster the
faster is population growth.
Why does population growth ultimately help productivity growth (at

least in this model)? The explanation is that productivity growth is driven
by knowledge creation. Knowledge is a nonrival good − its use by one agent
does not, in itself, limit its simultaneous use by other agents. Considering the
producible T in (10.1) as an additional production factor along with capital
and labor, (10.1) displays increasing returns to scale in manufacturing w.r.t.
these three production factors. Although there are diminishing marginal
returns to capital, there are increasing returns to scale w.r.t. capital, labor,
and the accumulative technology level. For the increasing returns to unfold
in the long run, growth in the labor force (hence in population) is needed.
Growth in the labor force and T not only counterbalances the falling marginal
productivity of capital,2 but actually upholds sustained per capita growth −
the more so the faster is population growth.
The growth-promoting role of the exogenous rate of population growth

reflects the presence of what is called a weak scale effect in the model. A scale
effect is said to be present in an economic system if there is an advantage of
scale measured by population size. This advantage of scale is in the present
case due to the productivity-enhancing role of a nonrival good, technical
knowledge, that is produced by the research workers in the idea-creating
R&D sector. Thereby higher population growth results in higher per capita
growth in the long run. On the other hand, a large population is not in itself,
when ϕ < 1, suffi cient to generate sustained positive per capita growth. This
is why we talk of a weak scale effect. In contrast, what is known as a strong
scale effect (associated with the case ϕ ≥ 1) is present if a larger population
as such (without population growth) would be enough to generate higher per
capita growth in the long run.
In view of cross-border diffusion of ideas and technology, the result (10.21)

should not be seen as a prediction about individual countries. It should
rather be seen as pertaining to larger regions, nowadays probably the total
industrialized part of the world. So the single country is not the relevant
unit of observation and cross-country regression analysis thereby not the
right framework for testing such a link from n to gy.
The reason that in (10.21), a higher σ promotes productivity growth

is that σ indicates the sensitivity (elasticity) of TFP w.r.t. accumulative
knowledge. Indeed, the larger is σ, the larger is the percentage increase

2This counter-balancing role reflects the direct complementarity between the produc-
tion factors in (10.1).
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in manufacturing output that results from a one-percentage increase in the
stock of knowledge.
The intuition behind the growth-enhancing role of α in (10.21) follows

from (10.1) which indicates that α measures the elasticity of manufacturing
output w.r.t. another accumulative input, physical capital. The larger is α,
the larger is the percentage increase in manufacturing output resulting from
a one-percentage increase in the stock of capital.
Finally, the intuition behind the growth-enhancing role of ϕ in (10.21)

can be obtained from the equation (10.4) which describes the creation of
new knowledge. The equation shows that the larger is ϕ, the larger is the
percentage increase in the time-derivative of technical knowledge resulting
from a one-percentage increase in the stock of knowledge.

10.2.3 The concept of endogenous growth

The above analysis provides an example of endogenous growth in the sense
that the positive sustained per capita growth rate is generated through an
economic mechanism within the model, allocation of resources to R&D.
This is in contrast to the Solow or standard Ramsey model where techni-
cal progress is exogenous, given as manna from heaven.
There are basically two types of endogenous growth. One is called semi-

endogenous growth and is present if growth is endogenous but a positive
per capita growth rate can not be sustained in the long run without the
support from growth in some exogenous factor (for example growth in the
labor force). As n > 0 is needed for sustained per capita growth in the above
model, growth is here driven by R&D in a semi-endogenous way.
The other type of endogenous growth is called fully endogenous growth

and occurs if the long-run growth rate of Y/L is positive without the support
from growth in any exogenous factor (for example growth in the labor force).

10.3 Permanent level effects

In the result (10.21), there is no trace of the size of the fraction, LA/L, of
the labor force allocated to R&D. This is due to the assumption that ϕ < 1.
This assumption implies diminishing marginal productivity of knowledge in
the creation of new knowledge. Indeed, when ϕ < 1, ∂Ȧ/∂A = γϕAϕ−1h̄LA
is a decreasing function of the stock of knowledge already obtained. A shift
of LA/L to a higher level can temporarily generate faster knowledge growth
and thereby faster productivity growth, but due to the diminishing marginal
productivity of knowledge in the creation of new knowledge, in the long run
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gA and gy will be back at their balanced-growth level given in (10.20) and
(10.21), respectively.
It can be shown, however, that a marginally higher LA/L generally has

a permanent level effect, that is, a permanent effect on y along a BGP. If
initially LA/L is “small”, this level effect tends to be positive. This is like
in the Solow growth model where a shift to a higher saving-income ratio, s,
has a temporary positive growth effect and a permanent positive level effect
on y. In contrast to the Solow model, however, if LA/L is already “large”,
the level effect on y of a marginal increase in LA/L may be negative. This is
because Y is produced by LY = (1− LA/L)L, not L.3

As mentioned we treat the number of years in school and average human
capital, h̄,, as exogenous. Then it is simple to study the comparative-dynamic
effect of a higher level of average human capital, h̄ In the present model there
will be a permanent level effect on y but no permanent growth effect.
A complicating aspect here is that, given the model, a higher value of h̄

will be at the cost of a higher number of years in school, i.e., a higher S. A
higher S implies that a smaller fraction of the population will be in the labor
force, cf. (10.7) where β is an increasing function of S. This implies that
there is no longer a one-to-one relationship between a positive level effect
on y ≡ Y/L and a positive level effect on per capita consumption, c ≡ C/N
= (C/Y ) ·(Y/L) ·(L/N).We will not go into detail with this kind of trade-off
here.

10.4 The case of no R&D

As an alternative to (A1) we now consider the case of no R&D:

ASSUMPTION (A5): LAt = 0 for all t ≥ 0.

Under this assumption the whole labor force is employed in manufac-
turing, i.e., LY t = Lt for all t ≥ 0. There is no growth in knowledge and
therefore no TFP growth. Whether n > 0 or n = 0, along a BGP satisfy-
ing (A3), (10.19) is still valid but reduces to gy = αgk. At the same time,
however, the Balanced Growth Equivalence Theorem of Chapter 4 says that
along a BGP satisfying (A3), gY = gK , which implies gy = gk. As α ∈ 0, 1),
we have thus reached a contradiction unless gy = gk = 0.
So, as expected, without technological progress there can not exist sus-

tained per capita growth. To put it differently, along a BGP we necessarily
have gY = gK = gC = n, where C ≡ cN.

3In Exercise VII.7 you are asked to analyze this kind of problems in a more precise
way.
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10.5 Outlook

Given the prospect of non-increasing population in the world economy al-
ready within a century from now (United Nations, 2013), the prospect of
sustained per capita growth in the world economy in the very long run may
seem bleak according to the model. Let us take a closer look at the issue.

10.5.1 The case n = 0

Suppose n = 0 in the above model and return to the assumption (A1). As
gLA can no longer be a positive constant, gA and gy can no longer be positive
constants. Hence balanced growth with gy > 0 is impossible. Does this imply
that there need be economic stagnation in the sense of gy = 0? No, what is
ruled out is that yt = y0e

gyt is impossible for any constant gy > 0. So it is
exponential growth that is impossible.
Still paths along which yt → ∞ and ct → ∞ for t → ∞ are techni-

cally feasible. Along such paths, gy and gc will be positive forever, but with
limt→∞ gy = 0 and limt→∞ gc = 0. To see this, suppose LAt = LA, a positive
constant less than L, where L is the constant labor force which is propor-
tional to the constant population. Suppose further, for simplicity, that h̄ is
can be considered exogenous. Then, from (10.4) and (10.17) follows

Ȧt = γAϕt h̄LA ≡ ξAϕt , ξ ≡ γh̄LA.

This Bernoulli differential equation has the solution4

At =
[
A1−ϕ

0 + (1− ϕ)ξ · t
] 1
1−ϕ ≡

[
A1−ϕ

0 + (1− ϕ)γh̄LA · t
] 1
1−ϕ →∞ for t→∞.

(10.22)
The stock of knowledge thus follows what is known as a quasi-arithmetic
growth path − a form of less-than-exponential growth. The special case
ϕ = 0 leads to simple arithmetic growth: At = A0 + (1 − ϕ)ηh̄LA · t. In
case 0 < ϕ < 1, At features more-than-arithmetic growth and in case ϕ < 0,
At features less-than-arithmetic growth. It can be shown that with a social
welfare function of the standard Ramsey type, cf. Chapter 8, the social
planner’s solution converges, for t→∞, toward a path where also Kt, Yt, yt,
and ct feature quasi-arithmetic growth.5

4See Section 7.2 of Chapter 7.
5Groth et al. (2010).
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10.5.2 The case of rising life expectancy

There is another demographic aspect of potential importance for future pro-
ductivity growth, namely the prospect of increasing schooling length in the
wake of an increasing life expectancy.
Over the past 30-40 years average years of schooling have tended to grow

arithmetically at a rate of about 0.8 years per decade in the EU as a whole,
compared to 0.7 years in the US (Montanino et al. 2004). A central fac-
tor behind this development is the rising life expectancy due to improved
income, salubrity, nutrition, sanitation, and medicine. Increased life ex-
pectancy heightens the returns to education. In the first half of the twentieth
century life expectancy in the US improved at a rate of four years per decade.
In the second half the rate has been smaller, but still close to two years per
decade (Arias, 2004). Oeppen and Vaupel (2002) report that since 1840 fe-
male life expectancy in the record-holding country in the world has steadily
increased by almost a quarter of a year per year. To what extent such devel-
opments may continue is not clear. But at least for a long time to come we
may expect growth in life expectancy and thereby also in educational invest-
ment because of the lengthening of the recovery period for that investment.
Increasing schooling length introduces heterogeneity w.r.t. individual hu-

man capital into the model. In a cross-section of workers at a given point in
time the workers’h becomes a decreasing function of age. And increasing life
expectancy changes the aggregate growth process for population and labor
force. This takes us somewhat outside the above analytical framework with a
stationary age structure and no schooling heterogeneity. Yet let us speculate
a little.
Suppose the schooling technology can be presented by a power function:6

h = h(S) = Sη, η > 0. (10.23)

Let every member of cohort v ≥ 0 spend S(v) years in school, thereby leaving
school with human capital h(v) = S(v)η. Then the growth rate of h of the
cohort just leaving school is

dh(v)/dv

h(v)
=
ηS(v)η−1S ′(v)

S(v)η
= η

S ′(v)

S(v)
.

Assume sustained arithmetic growth in schooling length takes place due to
a steadily rising life expectancy. Then

S(v) = S0 + µv, S0 ≥ 0, µ > 0. (10.24)

6There is some empirical support for this hypothesis, cf. Section 9.5 of Chapter 9.
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Hence,

η
S ′(v)

S(v)
=

ηµ

S0 + µv
→ 0 for v →∞.

On this background the projection will be that also average human capital,
h̄t, will be growing over time but at a rate, gh̄, approaching 0 for t→∞. This
gives no chance that the gh̄ in the formula (10.13) can avoid approaching nil.
So our model rules out exponential per capita growth in the long run when
n = 0 and h(v) = S(v)η.
As a thought experiment, suppose instead that the schooling technology

is exponential:
h = h(S) = eψS(v), ψ > 0. (10.25)

Then the growth rate of the human capital of the cohort just leaving school
is

dh(v)/dv

h(v)
=
eψS(v)ψs′(v)

eψS(v)
= ψS ′(v) > 0. (10.26)

Assume arithmetic growth in life expectancy as well as schooling length,
the latter following (10.24). Then ψS ′(v) = ψµ, a positive constant. My
conjecture is that also average human capital, h̄t, will in this case under
certain conditions grow at the constant rate, ψµ, at least approximately (I
have not made the required demographic calculus).
Let us try some numbers. Suppose life expectancy in modern times

steadily increases by λ years per year and let schooling time and retirement
age be constant fractions of life expectancy. Let the schooling time fraction
be denoted ω. Then S ′(v) = µ = ωλ and gh̄ = ψS ′(v) = ψωλ. With λ = 0.2,
ω = 0.2, and ψ = 0.10, we get gh̄ = 0.004.7 Suppose n = 0.005 and ϕ = 0.5
(as suggested by Jones, 1995).8

Along a BGP with R&D we then have, by (10.13),

gA =
gh̄ + n

1− ϕ =
0.004 + 0.005

0.5
= 0.018.

In case σ = 1− α, (10.16) thus yields

gy = gA + gh̄ = 0.018 + 0.004 = 0.022.

7As reported by Krueger and Lindahl (2001), ψ is usually estimated to be in the range
(0.05, 0.15).

8n = 0.005 per year may seem a low number for the empirical growth rate of research
labor (scientists and engineers) in the US and other countries over the last century. On
the other hand, for simplicity our model has ignored the likely duplication externality
due to overlap in R&D at the economy-wide level. Taking that overlap into account, we
should replace h̄LA in (10.4) by (h̄LA)1−π, and n in (10.20) by (1− π)n, where π ∈ (0, 1)
measures the extent of duplication. Jones (1995) suggests π = 0.5.
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If instead n = 0 (in accordance with the long-run projection) and LAt =
LA ∈ (0, L), we get along a BGP with R&D

gy =
gh̄

1− ϕ + gh̄ =
0.004

1− ϕ + 0.004 = 0.012.

In spite of n = 0, the thought experiment (10.25) thus leads to a non-
negligible level of exponential growth. With the compounding effects of ex-
ponential growth it is certainly substantial. I call it a “thought experiment”
because the empirical support for the exponential human capital production
function (10.25) is weak if not non-existing.

10.6 Concluding remarks

In a semi-endogenous growth setting we have considered human capital for-
mation and knowledge creating R&D. The latter is ultimately the factor
driving productivity growth unless one is willing to make very strong assump-
tions about the human capital production function. Technical knowledge is
capable of performing this role because it is a nonrival good and is “infi-
nitely expansible”, as emphasized by Paul Romer (1990) and Danny Quah
(1996). Contrary to this, in Lucas (1988) the distinction between technical
knowledge and human capital is not emphasized and it is the accumulation
of human capital that is driving long-run productivity growth.9

In the above analysis we have ignored the role of scarce natural resources
for limits to growth. We will come back to this issue in chapters 12 and 16.
We have ruled ϕ = 1 out because in combination with n > 0 it would

tend to generate a forever growing productivity growth rate. We have ruled
ϕ > 1 out because in combination even with n = 0, it would tend to generate
infinite output in finite time. Jones (2005) argues that the empirical evidence
speaks for ϕ < 1 in modern times.
The above analysis simply tells us what the growth rate must be in the

long run provided that the system converges to balanced growth. On the
other hand, specification of the market structure and the household sector,
including demography and preferences, will be needed if we want to study
the adjustment processes outside balanced growth, determine an equilibrium
real interest rate etc.
It is due to the semi-endogenous growth setting (the ϕ < 1 assumption)

that one can find the long-run per capita growth rate from knowledge of

9Although distinguishing between human capital and knowledge creation, the approach
by Dalgaard and Kreiner (2001) is very different from the one we have followed above and
has more in common with Lucas.
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technology parameters and the rate of population growth alone. How the
market structure and the household sector are described, is immaterial for
the long-run growth rate. These things will in the long run have “only”level
effects.
Only if economic policy affects the technology parameters or the popu-

lation growth rate, will it be able to affect the long-run growth rate. Still,
economic policy can temporarily affect economic growth and in this way af-
fect the level of the long-run growth path.
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Chapter 11

AK and reduced-form AK
models. Consumption taxation.

In his Chapter 11 Acemoglu discusses simple fully-endogenous growth models
in the form of Ramsey-style AK and reduced-form AK models, respectively.
The name “AK”refers to a special feature of the aggregate production func-
tion, namely the absence of diminishing returns to capital. We present the
AK story within a Ramsey (i.e., representative agent) framework. A charac-
teristic result from AK models is that they have no transitional dynamics.
With the aim of synthesizing the formal characteristics of such models,

this lecture note gives an account of the common formal features of AK mod-
els (Section 11.1) and reduced-form AK models (Section 11.2), respectively.
Finally, in Section 11.3 we discuss conditions under which consumption tax-
ation is not distortionary.

11.1 General equilibrium dynamics in the sim-
ple AK model

In the simple AK model (Acemoglu, Ch. 11.1) we consider a fully automa-
tized economy where the aggregate production function is

Y (t) = AK(t), A > 0. (11.1)

Thus there are constant returns to capital, not diminishing returns, and
labor is no longer a production factor. This section provides a detailed proof
that when we embed this technology in a Ramsey framework with perfect
competition, the model generates balanced growth from the beginning. So
there will be no transitional dynamics.
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We consider a closed economy with perfect competition and no govern-
ment sector. The dynamic resource constraint for the economy is

K̇(t) = Y (t)−c(t)L(t)−δK(t) = AK(t)−c(t)L(t)−δK(t), K(0) > 0 given,
(11.2)

where L(t) is the population size. After having found the equilibrium interest
rate to be r = A − δ, we find the equilibrium growth rate of per capita
consumption to be

ċ(t)

c(t)
=

1

θ
(r − ρ) ≡ 1

θ
(A− δ − ρ) ≡ gc, (11.3)

a constant. To ensure positive growth we impose the parameter restriction

A− δ > ρ. (A1)

And to ensure boundedness of discounted utility (as well as existence of an
equilibrium path) we impose the additional parameter restriction:

ρ− n > (1− θ)gc. (A2)

Reordering gives
r = θgc + ρ > gc + n, (11.4)

where the equality is due to (11.3).
Solving the linear differential equation (11.3) gives

c(t) = c(0)egct, (11.5)

where c(0) is unknown so far (because c is not a predetermined variable).
We shall find c(0) by appealing to the household’s transversality condition,

lim
t→∞

a(t)e−(r−n)t = 0, (TVC)

where a(t) is per capita financial wealth at time t. Recalling the No-Ponzi-
Game condition,

lim
t→∞

a(t)e−(r−n)t ≥ 0, (NPG)

we see that the transversality condition is equivalent to the No-Ponzi-Game
condition being not over-satisfied.
Defining k(t) ≡ K(t)/L(t), the dynamic resource constraint, (11.2), is in

per-capita terms

k̇(t) = (A− δ − n)k(t)− c(0)egct, k(0) > 0 given, (11.6)
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where we have inserted (12.24). The solution to this linear differential equa-
tion is (cf. Appendix to Chapter 3)

k(t) =

(
k(0)− c(0)

r − n− gc

)
e(r−n)t +

c(0)

r − n− gc
egct, r ≡ A− δ. (11.7)

In our closed-economy framework with no public debt, a(t) = k(t). So the
question is: When will the time path (11.7) satisfy (TVC) with a(t) = k(t)?
To find out, we multiply by the discount factor e−(r−n)t on both sides of (11.7)
to get

k(t)e−(r−n)t = k(0)− c(0)

r − n− gc
+

c(0)

r − n− gc
e−(r−gc−n)t.

Thus, in view of the assumption (A2), (11.4) holds and thereby the last term
on the right-hand side vanishes for t→∞. Hence

lim
t→∞

k(t)e−(r−n)t = k(0)− c(0)

r − n− gc
.

From this we see that the representative household satisfies (TVC) if and
only if it chooses

c(0) = (r − n− gc)k(0). (11.8)

This is the equilibrium solution for the household’s chosen per capita con-
sumption at time t = 0. If the household instead had chosen c(0) < (r−n−
gc)k(0), then limt→∞ k(t)e−(r−n)t > 0 and so the household would not satisfy
(TVC) but instead be over-saving. And if it had chosen c(0)> (r−n−gc)k(0),
then limt→∞ k(t)e−(r−n)t < 0 and so the household would be over-consuming
and violate (NPG) (hence also (TVC)).
Substituting the solution for c(0) into (11.7) gives the evolution of k(t)

in equilibrium,

k(t) =
c(0)

r − n− gc
egct = k(0)egct.

So from the beginning k grows at the same constant rate as c. Since per
capita output is y ≡ Y/L = Ak, the same is true for per capita output.
Hence, from start the system is in balanced growth (there is no transitional
dynamics).
The AK model features one of the simplest kinds of endogenous growth

one can think of. Growth is endogenous in the model in the sense that there
is positive per capita growth in the long run, generated by an internal mecha-
nism in the model (not by exogenous technology growth). The endogenously
determined capital accumulation constitutes the mechanism through which
sustained per capita growth is generated. It is because the net marginal pro-
ductivity of capital is assumed constant and, according to (A1), higher than
the rate of impatience, ρ, that capital accumulation itself is so powerful.
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11.2 Reduced-form AK models

The models known as reduced-form AK models are a generalization of the
simple AK model considered above. In contrast to the simple AK model,
where only physical capital is an input, a reduced-form AK model assumes
a technology involving at least two different inputs. Yet it is possible that
in general equilibrium the aggregate production function ends up implying
proportionality between output and some measure of “broad capital”, i.e.,

Y (t) = BK̃(t),

where B is some endogenously determined positive constant and K̃(t) is
“broad capital”.1 If in addition the real interest rate in general equilibrium
ends up being a constant, the model is called a reduced-form AK model. In the
simple AK model constancy of average productivity of capital is postulated
from the beginning. In the reduced-form AKmodels the average productivity
of capital becomes and remains endogenously constant over time.
Thus, we end up with quite similar aggregate relations as those in the

simple AK model. Hence the solution procedure to find the equilibrium path
(see Chapter 12) is quite similar to that in the simple AK model above.
Again there will be no transitional dynamics.

The nice feature of AKmodels is that they provide very simple theoretical
examples of endogenous growth. The problematic feature is that they sim-
plify the technology description too much and at best constitute knife-edge
cases. More about this in Chapter 13.

11.3 On consumption taxation

As a preparation for the discussion later in this course of fiscal policy in
relation to economic growth, we shall here try to clarify an aspect of con-
sumption taxation. This is the question: is a consumption tax distortionary
- always? never? sometimes?
The answer is the following.
1. Suppose labor supply is elastic (due to leisure entering the utility

function). Then a consumption tax (whether constant or time-dependent) is
generally distortionary (not neutral). This is because it reduces the effective
opportunity cost of leisure by reducing the amount of consumption forgone
by working one hour less. Indeed, the tax makes consumption goods more

1Theoretically, K̃(t) could be the sum of physical and human capital. Empirically,
however, this does not seem to be a realistic example, cf. Exercises V.4 and V.5.
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expensive and so the amount of consumption that the agent can buy for
the hourly wage becomes smaller. The substitution effect on leisure of a
consumption tax is thus positive, while the income and wealth effects will be
negative. Generally, the net effect will not be zero, but it can be of any sign;
it may be small in absolute terms.
2. Suppose labor supply is inelastic (no trade-off between consumption

and leisure). Then, at least in the type of growth models we consider in this
course, a constant (time-independent) consumption tax acts as a lump-sum
tax and is thus non-distortionary. If the consumption tax is time-dependent,
however, a distortion of the intertemporal aspect of household decisions tends
to arise.
To understand answer 2, consider a Ramsey household with inelastic labor

supply. Suppose the household faces a time-varying consumption tax rate
τ t > 0. To obtain a consumption level per time unit equal to ct per capita,
the household has to spend

c̄t = (1 + τ t)ct

units of account (in real terms) per capita. Thus, spending c̄t per capita per
time unit results in the per capita consumption level

ct = (1 + τ t)
−1c̄t. (11.9)

In order to concentrate on the consumption tax as such, we assume the
tax revenue is simply given back as lump-sum transfers and that there are
no other government activities. Then, with a balanced government budget,
we have

xtLt = τ tctLt,

where xt is the per capita lump-sum transfer, exogenous to the household,
and Lt is the size of the representative household.
Assuming CRRA utility with parameter θ > 0, the instantaneous per

capita utility can be written

u(ct) =
c1−θ
t − 1

1− θ =
(1 + τ t)

θ−1c̄1−θ
t − 1

1− θ .

In our standard notation the household’s intertemporal optimization problem
is then to choose (c̄t)

∞
t=0 so as to maximize

U0 =

∫ ∞
0

(1 + τ t)
θ−1c̄1−θ

t − 1

1− θ e−(ρ−n)tdt s.t.

c̄t ≥ 0,

ȧt = (rt − n)at + wt + xt − c̄t, a0 given,

lim
t→∞

ate
−
∫∞
0 (rs−n)ds ≥ 0.

c© Groth, Lecture notes in Economic Growth, (mimeo) 2014.



176
CHAPTER 11. AK AND REDUCED-FORM AK

MODELS. CONSUMPTION TAXATION

From now, we let the timing of the variables be implicit unless needed for
clarity. The current-value Hamiltonian is

H =
(1 + τ)θ−1c̄1−θ − 1

1− θ + λ [(r − n)a+ w + x− c̄] ,

where λ is the co-state variable associated with financial per capita wealth,
a. An interior optimal solution will satisfy the first-order conditions

∂H

∂c̄
= (1 + τ)θ−1c̄−θ − λ = 0, so that (1 + τ)θ−1c̄−θ = λ, (11.10)

∂H

∂a
= λ(r − n) = −λ̇+ (ρ− n)λ, (11.11)

and a transversality condition which amounts to

lim
t→∞

ate
−
∫∞
0 (rs−n)ds = 0. (11.12)

We take logs in (11.10) to get

(θ − 1) log(1 + τ)− θ log c̄ = log λ.

Differentiating w.r.t. time, taking into account that τ = τ t, gives

(θ − 1)
τ̇

1 + τ
− θ

·
c̄

c̄
=
λ̇

λ
= ρ− r.

By ordering, we find the growth rate of consumption spending,

·
c̄

c̄
=

1

θ

[
r + (θ − 1)

τ̇

1 + τ
− ρ
]
.

Using (11.9), this gives the growth rate of consumption,

ċ

c
=

·
c̄

c̄
− τ̇

1 + τ
=

1

θ

[
r + (θ − 1)

τ̇

1 + τ
− ρ
]
− τ̇

1 + τ
=

1

θ
(r − τ̇

1 + τ
− ρ).

Assuming firms maximize profit under perfect competition, in equilibrium
the real interest rate will satisfy

r =
∂Y

∂K
− δ. (11.13)

But the effective real interest rate, r̂, faced by the consuming household, is

r̂ = r − τ̇

1 + τ
Q r for τ̇ R 0,
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respectively. If for example the consumption tax is increasing, then the effec-
tive real interest rate faced by the consumer is smaller than the market real
interest rate, given in (11.13), because saving implies postponing consump-
tion and future consumption is more expensive due to the higher consumption
tax rate.
The conclusion is that a time-varying consumption tax rate is distor-

tionary. It implies a wedge between the intertemporal rate of transformation
faced by the consumer, reflected by r̂, and the intertemporal rate of transfor-
mation available in the technology of society, indicated by r in (11.13). On
the other hand, if the consumption tax rate is constant, the consumption
tax is non-distortionary when there is no utility from leisure.

A remark on tax smoothing
In models with transitional dynamics it is often so that maintaining constant
tax rates is inconsistent with maintaining a balanced government budget. Is
the implication of this that we should recommend the government to let tax
rates be continually adjusted so as to maintain a forever balanced budget?
No! As the above example as well as business cycle theory suggest, maintain-
ing tax rates constant (“tax smoothing”), and thereby allowing government
deficits and surpluses to arise, will generally make more sense. In itself, a
budget deficit is not worrisome. It only becomes worrisome if it is not accom-
panied later by suffi cient budget surpluses to avoid an exploding government
debt/GDP ratio to arise. This requires that the tax rates taken together
have a level which in the long run matches the level of government expenses.
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Chapter 12

Learning by investing: two

versions

This lecture note is a supplement to Acemoglu, §11.4-5, where only Paul

Romer’s version of the learning-by-investing hypothesis is presented.

The learning-by-investing model, sometimes called the learning-by-doing

model, is one of the basic complete endogenous growth models. By “com-

plete” is meant that the model specifies not only the technological aspects of

the economy but also the market structure and the household sector, includ-

ing household preferences. As in much other endogenous growth theory the

modeling of the household sector follows Ramsey and assumes the existence

of a representative infinitely-lived household. Since this results in a simple

determination of the long-run interest rate (the modified golden rule), the

analyst can in a first approach concentrate on the main issue, technological

change, without being detracted by aspects secondary to this issue.

In the present model learning from investment experience and diffusion

across firms of the resulting new technical knowledge (positive externalities)

play an important role.

There are two popular alternative versions of the model. The distinguish-

ing feature is whether the learning parameter (see below) is less than one or

equal to one. The first case corresponds to (a simplified version of) a famous

model by Nobel laureate Kenneth Arrow (1962). The second case has been

drawn attention to by Paul Romer (1986) who assumes that the learning

parameter equals one. These two contributions start out from a common

framework which we now consider.
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12.1 The common framework

We consider a closed economy with firms and households interacting under

conditions of perfect competition. Later, a government attempting to inter-

nalize the positive investment externality is introduced.

Let there be  firms in the economy ( “large”). Suppose they all have

the same neoclassical production function,  with CRS. Firm no.  faces the

technology

 =  ( )  = 1 2   (12.1)

where the economy-wide technology level  is an increasing function of so-

ciety’s previous experience, proxied by cumulative aggregate net investment:

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (12.2)

where  is aggregate net investment and  =
P


1

The idea is that investment − the production of capital goods − as an
unintended by-product results in experience or what we may call on-the-job

learning. Experience allows producers to recognize opportunities for process

and quality improvements. In this way knowledge is achieved about how to

produce the capital goods in a cost-efficient way and how to design them so

that in combination with labor they are more productive and better satisfy

the needs of the users. Moreover, as emphasized by Arrow,

“each newmachine produced and put into use is capable of chang-

ing the environment in which production takes place, so that

learning is taking place with continually new stimuli” (Arrow,

1962).2

The learning is assumed to benefit essentially all firms in the economy.

There are knowledge spillovers across firms and these spillovers are reason-

ably fast relative to the time horizon relevant for growth theory. In our

macroeconomic approach both  and  are in fact assumed to be exactly

1With arbitrary units of measurement for labor and output the hypothesis is  = 
 

  0 In (12.2) measurement units are chosen such that  = 1.
2Concerning empirical evidence of learning-by-doing and learning-by-investing, see

Chapter 13. The citation of Arrow indicates that it was rather experience from cumu-

lative gross investment he had in mind as the basis for learning. Yet the hypothesis in

(12.2) is the more popular one - seemingly for no better reason than that it leads to

simpler dynamics. Another way in which (12.2) deviates from Arrow’s original ideas is

by assuming that technical progress is disembodied rather than embodied, an important

distinction to which we return in Chapter 13.
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the same for all firms in the economy. That is, in this specification the firms

producing consumption-goods benefit from the learning just as much as the

firms producing capital-goods.

The parameter  indicates the elasticity of the general technology level,

 with respect to cumulative aggregate net investment and is named the

“learning parameter”. Whereas Arrow assumes   1 Romer focuses on the

case  = 1 The case of   1 is ruled out since it would lead to explosive

growth (infinite output in finite time) and is therefore not plausible.

12.1.1 The individual firm

In the simple Ramsey model we assumed that households directly own the

capital goods in the economy and rent them out to the firms. When dis-

cussing learning-by-investment, it somehow fits the intuition better if we

(realistically) assume that the firms generally own the capital goods they

use. They then finance their capital investment by issuing shares and bonds.

Households’ financial wealth then consists of these shares and bonds.

Consider firm  There is perfect competition in all markets. So the firm

is a price taker. Its problem is to choose a production and investment plan

which maximizes the present value,  of expected future cash-flows. Thus

the firm chooses ( )
∞
=0 to maximize

0 =

Z ∞

0

[ ( )−  − ] 
−  

0


subject to ̇ =  −  Here  and  are the real wage and gross

investment, respectively, at time ,  is the real interest rate at time  and

 ≥ 0 is the capital depreciation rate. Rising marginal capital installation
costs and other kinds of adjustment costs are assumed minor and can be

ignored. It can be shown that in this case the firm’s problem is equivalent

to maximization of current pure profits in every short time interval. So, as

hitherto, we can describe the firm as just solving a series of static profit

maximization problems.

We suppress the time index when not needed for clarity. At any date firm

 maximizes current pure profits, Π =  ( )− ( + ) −  This

leads to the first-order conditions for an interior solution:

Π = 1( )− ( + ) = 0 (12.3)

Π = 2( )−  = 0

Behind (12.3) is the presumption that each firm is small relative to the econ-

omy as a whole, so that each firm’s investment has a negligible effect on

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



182

CHAPTER 12. LEARNING BY INVESTING:

TWO VERSIONS

the economy-wide technology level . Since  is homogeneous of degree

one, by Euler’s theorem,3 the first-order partial derivatives, 1 and 2 are

homogeneous of degree 0. Thus, we can write (12.3) as

1( ) =  +  (12.4)

where  ≡ . Since  is neoclassical, 11  0 Therefore (12.4) deter-

mines  uniquely. From (12.4) follows that the chosen capital-labor ratio,

 will be the same for all firms, say ̄

12.1.2 The individual household

The household sector is described by our standard Ramsey framework with

inelastic labor supply and a constant population growth rate  ≥ 0. The

households have CRRA instantaneous utility with parameter   0 The

pure rate of time preference is a constant, . The flow budget identity in per

capita terms is

̇ = ( − ) +  −  0 given,

where  is per capita financial wealth. The NPG condition is

lim
→∞


−  

0
(−) ≥ 0

The resulting consumption-saving plan implies that per capita consumption

follows the Keynes-Ramsey rule,

̇


=
1


( − )

and the transversality condition that the NPG condition is satisfied with

strict equality. In general equilibrium of our closed economy without natural

resources and government debt,  will equal 

12.1.3 Equilibrium in factor markets

In equilibrium
P

 =  and
P

  =  where  and  are the avail-

able amounts of capital and labor, respectively (both pre-determined). SinceP
 =

P
  =

P
 ̄ = ̄ the chosen capital intensity,  satisfies

 = ̄ =



≡   = 1 2   (12.5)

3Recall that a function ( ) defined in a domain  is homogeneous of degree  if for

all ( ) in  ( ) = ( ) for all   0 If a differentiable function ( ) is

homogeneous of degree  then (i)  01( ) +  02( ) = ( ) and (ii) the first-order

partial derivatives,  01( ) and  02( ) are homogeneous of degree − 1.
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As a consequence we can use (12.4) to determine the equilibrium interest

rate:

 = 1( )−  (12.6)

That is, whereas in the firm’s first-order condition (12.4) causality goes from

 to  in (12.6) causality goes from  to  Note also that in our closed

economy with no natural resources and no government debt,  will equal 

The implied aggregate production function is

 =
X


 ≡
X


 =
X


 ( ) =
X


 () (by (12.1) and (12.5))

=  ()
X


 =  () =  () =  () (by (12.2)), (12.7)

where we have several times used that  is homogeneous of degree one.

12.2 The arrow case:   1

The Arrow case is the robust case where the learning parameter satisfies

0    1 The method for analyzing the Arrow case is analogue to that

used in the study of the Ramsey model with exogenous technical progress.

In particular, aggregate capital per unit of effective labor, ̃ ≡ () is a

key variable. Let ̃ ≡ () Then

̃ =
 ()


=  (̃ 1) ≡ (̃)  0  0  00  0 (12.8)

We can now write (12.6) as

 =  0(̃)−  (12.9)

where ̃ is pre-determined.

12.2.1 Dynamics

From the definition ̃ ≡ () follows

·
̃

̃
=

̇


− ̇


− ̇


=

̇


− 

̇


−  (by (12.2))

= (1− )
 −  − 


−  = (1− )

̃ − ̃− ̃

̃
−  where ̃ ≡ 


≡ 



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Multiplying through by ̃ we have

·
̃ = (1− )((̃)− ̃)− [(1− ) + ] ̃ (12.10)

In view of (12.9), the Keynes-Ramsey rule implies

 ≡ ̇


=
1


( − ) =

1



³
 0(̃)−  − 

´
 (12.11)

Defining ̃ ≡  now follows



̃

̃
=

̇


− ̇


=

̇


− 

̇


=

̇


− 

 − − 


=

̇


− 

̃
(̃ − ̃− ̃)

=
1


( 0(̃)−  − )− 

̃
(̃ − ̃− ̃)

Multiplying through by ̃ we have

·
̃ =

∙
1


( 0(̃)−  − )− 

̃
((̃)− ̃− ̃)

¸
̃ (12.12)

The two coupled differential equations, (12.10) and (12.12), determine

the evolution over time of the economy.

Phase diagram

Figure 12.1 depicts the phase diagram. The
·
̃ = 0 locus comes from (12.10),

which gives
·
̃ = 0 for ̃ = (̃)− ( + 

1− 
)̃ (12.13)

where we realistically may assume that  + (1 − )  0 As to the
·
̃ = 0

locus, we have

·
̃ = 0 for ̃ = (̃)− ̃ − ̃


( 0(̃)−  − )

= (̃)− ̃ − ̃


 ≡ (̃) (from (12.11)). (12.14)

Before determining the slope of the
·
̃ = 0 locus, it is convenient to consider

the steady state, (̃∗ ̃∗).
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Steady state

In a steady state ̃ and ̃ are constant so that the growth rate of  as well

as  equals ̇+  i.e.,

̇


=

̇


=

̇


+  = 

̇


+ 

Solving gives

̇


=

̇


=



1− 


Thence, in a steady state

 =
̇


−  =



1− 
−  =



1− 
≡ ∗  and (12.15)

̇


= 

̇


=



1− 
= ∗  (12.16)

The steady-state values of  and ̃ respectively, will therefore satisfy, by

(12.11),

∗ =  0(̃∗)−  = + ∗ = + 


1− 
 (12.17)

To ensure existence of a steady state we assume that the private marginal

product of capital is sufficiently sensitive to capital per unit of effective labor,

from now called the “capital intensity”:

lim
̃→0

 0(̃)   + + 


1− 
 lim

̃→∞
 0(̃) (A1)

The transversality condition of the representative household is that lim→∞


−  
0
(−) = 0 where  is per capita financial wealth. In general equi-

librium  =  ≡ ̃ where  in steady state grows according to (12.16).

Thus, in steady state the transversality condition can be written

lim
→∞

̃∗(
∗
−∗+) = 0 (TVC)

For this to hold, we need

∗  ∗ +  =


1− 
 (12.18)

by (12.15). In view of (12.17), this is equivalent to

−   (1− )


1− 
 (A2)
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Figure 12.1: Phase diagram for the Arrow model.

which we assume satisfied.

As to the slope of the
·
̃ = 0 locus we have, from (12.14),

0(̃) =  0(̃)−  − 1

(̃
 00(̃)


+ )   0(̃)−  − 1

 (12.19)

since  00  0 At least in a small neighborhood of the steady state we can

sign the right-hand side of this expression. Indeed,

 0(̃∗)−−1

∗ = +∗−

1


∗ = +



1− 
− 

1− 
= −−(1−) 

1− 
 0

(12.20)

by (12.15) and (A2). So, combining with (12.19), we conclude that 0(̃∗)  0
By continuity, in a small neighborhood of the steady state, 0(̃) ≈ 0(̃∗)  0

Therefore, close to the steady state, the
·
̃ = 0 locus is positively sloped, as

indicated in Figure 12.1.

Still, we have to check the following question: In a neighborhood of the

steady state, which is steeper, the
·
̃ = 0 locus or the

·
̃ = 0 locus? The slope

of the latter is  0(̃)−  − (1− ) from (12.13) At the steady state this

slope is

 0(̃∗)−  − 1

∗ ∈ (0 0(̃∗))
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in view of (12.20) and (12.19). The
·
̃ = 0 locus is thus steeper. So, the

·
̃ = 0

locus crosses the
·
̃ = 0 locus from below and can only cross once.

The assumption (A1) ensures existence of a ̃∗  0 satisfying (12.17). As
Figure 12.1 is drawn, a little more is implicitly assumed namely that there

exists a ̂  0 such that the private net marginal product of capital equals

the steady-state growth rate of output, i.e.,

 0(̂)−  = (
̇


)∗ = (

̇


)∗ +

̇


=



1− 
+  =



1− 
 (12.21)

where we have used (12.16). Thus, the tangent to the
·
̃ = 0 locus at ̃ = ̂

is horizontal and ̂  ̃∗ as indicated in the figure.
Note, however, that ̂ is not the golden-rule capital intensity. The latter

is the capital intensity, ̃ at which the social net marginal product of

capital equals the steady-state growth rate of output (see Appendix). If ̃
exists, it will be larger than ̂ as indicated in Figure 12.1. To see this, we

now derive a convenient expression for the social marginal product of capital.

From (12.7) we have




= 1(·) + 2(·)−1 =  0(̃) + 2(·)(−1) (by (12.8))

=  0(̃) + ( (·)− 1(·))−1 (by Euler’s theorem)

=  0(̃) + ((̃)−  0(̃))−1 (by (12.8) and (12.2))

=  0(̃) + ((̃)−1−  0(̃)) =  0(̃) + 
(̃)− ̃ 0(̃)

̃
  0(̃)

in view of ̃ = () = 1−−1 and (̃)̃− 0(̃)  0As expected, the
positive externality makes the social marginal product of capital larger than

the private one. Since we can also write  = (1− ) 0(̃) + (̃)̃

we see that  is (still) a decreasing function of ̃ since both  0(̃) and
(̃)̃ are decreasing in ̃ So the golden rule capital intensity, ̃ will be

that capital intensity which satisfies

 0(̃) + 
(̃)− ̃

0(̃)

̃
−  =

Ã
̇



!∗
=



1− 


To ensure there exists such a ̃ we strengthen the right-hand side inequal-

ity in (A1) by the assumption

lim
̃→∞

Ã
 0(̃) + 

(̃)− ̃ 0(̃)

̃

!
  +



1− 
 (A3)
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This, together with (A1) and 
00
 0, implies existence of a unique ̃, and

in view of our additional assumption (A2), we have 0  ̃∗  ̂  ̃ as

displayed in Figure 12.1.

Stability

The arrows in Figure 12.1 indicate the direction of movement, as determined

by (12.10) and (12.12)). We see that the steady state is a saddle point. The

dynamic system has one pre-determined variable, ̃ and one jump variable, ̃

The saddle path is not parallel to the jump variable axis. We claim that for a

given ̃0  0 (i) the initial value of ̃0 will be the ordinate to the point where

the vertical line ̃ = ̃0 crosses the saddle path; (ii) over time the economy

will move along the saddle path towards the steady state. Indeed, this time

path is consistent with all conditions of general equilibrium, including the

transversality condition (TVC). And the path is the only technically feasible

path with this property. Indeed, all the divergent paths in Figure 12.1 can

be ruled out as equilibrium paths because they can be shown to violate the

transversality condition of the household.

In the long run  and  ≡ ≡ ̃= (̃∗) grow at the rate (1−)
which is positive if and only if   0 This is an example of endogenous growth

in the sense that the positive long-run per capita growth rate is generated

through an internal mechanism (learning) in the model (in contrast to exoge-

nous technology growth as in the Ramsey model with exogenous technical

progress).

12.2.2 Two types of endogenous growth

As also touched upon in Chapter 10, it is useful to distinguish between two

types of endogenous growth. Fully endogenous growth occurs when the long-

run growth rate of  is positive without the support from growth in any

exogenous factor (for example exogenous growth in the labor force); the

Romer case, to be considered in the next section, provides an example. Semi-

endogenous growth occurs if growth is endogenous but a positive per capita

growth rate can not be maintained in the long run without the support from

growth in some exogenous factor (for example growth in the labor force).

Clearly, in the Arrow version of learning by investing, growth is “only” semi-

endogenous. The technical reason for this is the assumption that the learning

parameter,  is below 1 which implies diminishing marginal returns to cap-

ital at the aggregate level. As a consequence, if and only if   0 do we
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have ̇  0 in the long run.4 In line with this, ∗  0

The key role of population growth derives from the fact that although

there are diminishing marginal returns to capital at the aggregate level, there

are increasing returns to scale w.r.t. capital and labor. For the increasing

returns to be exploited, growth in the labor force is needed. To put it differ-

ently: when there are increasing returns to  and  together, growth in the

labor force not only counterbalances the falling marginal product of aggre-

gate capital (this counter-balancing role reflects the direct complementarity

between  and ), but also upholds sustained productivity growth via the

learning mechanism.

Note that in the semi-endogenous growth case, ∗ = (1− )2  0

for   0 That is, a higher value of the learning parameter implies higher

per capita growth in the long run, when   0. Note also that ∗ = 0
= ∗ that is, in the semi-endogenous growth case, preference parameters
do not matter for the long-run per capita growth rate. As indicated by

(12.15), the long-run growth rate is tied down by the learning parameter,

 and the rate of population growth,  Like in the simple Ramsey model,

however, it can be shown that preference parameters matter for the level of

the growth path. For instance (12.17) shows that ̃∗  0 so that more

patience (lower ) imply a higher ̃∗ and thereby a higher  = (̃∗)

This suggests that although taxes and subsidies do not have long-run

growth effects, they can have level effects.

12.3 Romer’s limiting case:  = 1  = 0

We now consider the limiting case  = 1We should think of it as a thought

experiment because, by most observers, the value 1 is considered an unrealis-

tically high value for the learning parameter. Moreover, in combination with

  0 the value 1 will lead to a forever rising per capita growth rate which

does not accord the economic history of the industrialized world over more

than a century. To avoid a forever rising growth rate, we therefore introduce

the parameter restriction  = 0

The resulting model turns out to be extremely simple and at the same

time it gives striking results (both circumstances have probably contributed

to its popularity).

First, with  = 1 we get  =  and so the equilibrium interest rate is,

4Note, however, that the model, and therefore (12.15), presupposes  ≥ 0 If   0

then  would tend to be decreasing and so, by (12.2), the level of technical knowledge

would be decreasing, which is implausible, at least for a modern industrialized economy.
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by (12.6),

 = 1()−  = 1(1 )−  ≡ ̄

where we have divided the two arguments of 1() by  ≡  and

again used Euler’s theorem. Note that the interest rate is constant “from the

beginning” and independent of the historically given initial value of  0.

The aggregate production function is now

 =  () =  (1 )  constant, (12.22)

and is thus linear in the aggregate capital stock.5 In this way the general neo-

classical presumption of diminishing returns to capital has been suspended

and replaced by exactly constant returns to capital. Thereby the Romer

model belongs to the class of reduced-form AK models, that is, models where

in general equilibrium the interest rate and the aggregate output-capital ratio

are necessarily constant over time whatever the initial conditions.

The method for analyzing an AK model is different from the one used for

a diminishing returns model as above.

12.3.1 Dynamics

The Keynes-Ramsey rule now takes the form

̇


=
1


(̄ − ) =

1


(1(1 )−  − ) ≡  (12.23)

which is also constant “from the beginning”. To ensure positive growth, we

assume

1(1 )−    (A1’)

And to ensure bounded intertemporal utility (and existence of equilibrium),

it is assumed that

  (1− ) and therefore    +  = ̄ (A2’)

Solving the linear differential equation (12.23) gives

 = 0
 (12.24)

where 0 is unknown so far (because  is not a predetermined variable). We

shall find 0 by applying the households’ transversality condition

lim
→∞


−̄ = lim

→∞


−̄ = 0 (TVC)

5Acemoglu, p. 400, writes this as  = ̃()
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Figure 12.2: Illustration of the fact that for  given,  (1 )   1(1 )

First, note that the dynamic resource constraint for the economy is

̇ =  − −  =  (1 ) − − 

or, in per-capita terms,

̇ = [ (1 )− ]  − 0
 (12.25)

In this equation it is important that  (1 ) −  −   0 To understand

this inequality, note that, by (A2’),  (1 ) −  −    (1 ) −  − ̄ =

 (1 ) − 1(1 ) = 2(1 )  0 where the first equality is due to ̄

= 1(1 )−  and the second is due to the fact that since  is homogeneous

of degree 1, we have, by Euler’s theorem,  (1 ) = 1(1 ) · 1 + 2(1 )

 1(1 )   in view of (A1’). The key property  (1 )− 1(1 )  0 is

illustrated in Figure 12.2.

The solution of a general linear differential equation of the form ̇() +

() =  with  6= − is

() = ((0)− 

+ 
)− +



+ 
 (12.26)

Thus the solution to (12.25) is

 = (0 − 0

 (1 )−  − 
)( (1)−) +

0

 (1 )−  − 
 (12.27)
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To check whether (TVC) is satisfied we consider


−̄ = (0 − 0

 (1 )−  − 
)( (1)−−̄) +

0

 (1 )−  − 
(−̄)

→ (0 − 0

 (1 )−  − 
)( (1)−−̄) for →∞

since ̄   by (A2’). But ̄ = 1(1 )−    (1 )−  and so (TVC) is

only satisfied if

0 = ( (1 )−  − )0 (12.28)

If 0 is less than this, there will be over-saving and (TVC) is violated (
−̄ →

∞ for  → ∞ since  = ). If 0 is higher than this, both the NPG and

(TVC) are violated (
−̄ → −∞ for →∞).

Inserting the solution for 0 into (12.27), we get

 =
0

 (1 )−  − 
 = 0



that is,  grows at the same constant rate as  “from the beginning” Since

 ≡  =  (1 ) the same is true for  Hence, from start the system is

in balanced growth (there is no transitional dynamics).

This is a case of fully endogenous growth in the sense that the long-run

growth rate of  is positive without the support by growth in any exogenous

factor. This outcome is due to the absence of diminishing returns to aggregate

capital, which is implied by the assumed high value of the learning parameter.

But the empirical foundation for this high value is weak, to say the least, cf.

Chapter 13. A further drawback of this special version of the learning model

is that the results are non-robust. With  slightly less than 1, we are back

in the Arrow case and growth peters out, since  = 0With  slightly above

1, it can be shown that growth becomes explosive: infinite output in finite

time!6

The Romer case,  = 1 is thus a knife-edge case in a double sense. First,

it imposes a particular value for a parameter which apriori can take any value

within an interval. Second, the imposed value leads to non-robust results;

values in a hair’s breadth distance result in qualitatively different behavior

of the dynamic system.

Note that the causal structure in the long run in the diminishing returns

case is different than in the AK-case of Romer. In the diminishing returns

case the steady-state growth rate is determined first, as ∗ in (12.15), then
∗ is determined through the Keynes-Ramsey rule and, finally,  is de-

termined by the technology, given ∗ In contrast, the Romer case has 

6See Appendix B in Chapter 13.
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and  directly given as  (1 ) and ̄ respectively. In turn, ̄ determines the

(constant) equilibrium growth rate through the Keynes-Ramsey rule

12.3.2 Economic policy in the Romer case

In the AK case, that is, the fully endogenous growth case, we have 

 0 and   0 Thus, preference parameters matter for the long-run

growth rate and not “only” for the level of the upward-sloping time path

for per capita output. This suggests that taxes and subsidies can have long-

run growth effects. In any case, in this model there is a motivation for

government intervention due to the positive externality of private investment.

This motivation is present whether   1 or  = 1 Here we concentrate on

the latter case, for no better reason than that it is simpler. We first find the

social planner’s solution.

The social planner

The social planner faces the aggregate production function  =  (1 )

or, in per capita terms,  =  (1 ) The social planner’s problem is to

choose ()
∞
=0 to maximize

0 =

Z ∞

0

1−

1− 
− s.t.

 ≥ 0

̇ =  (1 ) −  −  0  0 given, (12.29)

 ≥ 0 for all   0 (12.30)

The current-value Hamiltonian is

(   ) =
1−

1− 
+  ( (1 ) − − ) 

where  =  is the adjoint variable associated with the state variable, which

is capital per unit of labor. Necessary first-order conditions for an interior

optimal solution are




= − −  = 0, i.e., − =  (12.31)




= ( (1 )− ) = −̇ +  (12.32)

We guess that also the transversality condition,

lim
→∞


− = 0 (12.33)
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must be satisfied by an optimal solution.7 This guess will be of help in finding

a candidate solution. Having found a candidate solution, we shall invoke a

theorem on sufficient conditions to ensure that our candidate solution is

really an optimal solution.

Log-differentiating w.r.t.  in (12.31) and combining with (12.32) gives

the social planner’s Keynes-Ramsey rule,

̇


=
1


( (1 )−  − ) ≡   (12.34)

We see that    This is because the social planner internalizes the

economy-wide learning effect associated with capital investment, that is, the

social planner takes into account that the “social” marginal product of capital

is  =  (1 )  1(1 ) To ensure bounded intertemporal utility we

sharpen (A2’) to

  (1− )  (A2”)

To find the time path of , note that the dynamic resource constraint (12.29)

can be written

̇ = ( (1 )− ) − 0
 

in view of (12.34). By the general solution formula (12.26) this has the

solution

 = (0− 0

 (1 )−  − 
)( (1)−) +

0

 (1 )−  − 
  (12.35)

In view of (12.32), in an interior optimal solution the time path of the adjoint

variable  is

 = 0
−[( (1)−−]

where 0 = −0  0 by (12.31) Thus, the conjectured transversality condi-

tion (12.33) implies

lim
→∞


−( (1)−) = 0 (12.36)

where we have eliminated 0 To ensure that this is satisfied, we multiply 
from (12.35) by −( (1)−) to get


−( (1)−) = 0 − 0

 (1 )−  − 
+

0

 (1 )−  − 
[−( (1)−)]

→ 0 − 0

 (1 )−  − 
for →∞

7The proviso implied by saying word “guess” is due to the fact that optimal control

theory does not guarantee that this “standard” transversality condition is necessary for

optimality in all infinite horizon optimization problems.
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since, by (A2”),    +  =  (1 ) −  in view of (12.34). Thus,

(12.36) is only satisfied if

0 = ( (1 )−  −  )0 (12.37)

Inserting this solution for 0 into (12.35), we get

 =
0

 (1 )−  − 
  = 0

 

that is,  grows at the same constant rate as  “from the beginning” Since 

≡  =  (1 ) the same is true for  Hence, our candidate for the social

planner’s solution is from start in balanced growth (there is no transitional

dynamics).

The next step is to check whether our candidate solution satisfies a set of

sufficient conditions for an optimal solution. Here we can use Mangasarian’s

theorem which, applied to a problem like this, with one control variable and

one state variable, says that the following conditions are sufficient:

(a) Concavity: The Hamiltonian is jointly concave in the control and state

variables, here  and .

(b) Non-negativity: There is for all  ≥ 0 a non-negativity constraint on
the state variable; and the co-state variable,  is non-negative for all

 ≥ 0.
(c) TVC: The candidate solution satisfies the transversality condition lim→∞ 

−

= 0 where 
− is the discounted co-state variable.

In the present case we see that the Hamiltonian is a sum of concave

functions and therefore is itself concave in ( ) Further, from (12.30) we see

that condition (b) is satisfied. Finally, our candidate solution is constructed

so as to satisfy condition (c). The conclusion is that our candidate solution

is an optimal solution. We call it the SP allocation.

Implementing the SP allocation in the market economy

Returning to the market economy, we assume there is a policy maker, say

the government, with only two activities. These are (i) paying an investment

subsidy,  to the firms so that their capital costs are reduced to

(1− )( + )

per unit of capital per time unit; (ii) financing this subsidy by a constant

consumption tax rate  
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Let us first find the size of  needed to establish the SP allocation. Firm

 now chooses  such that





| fixed = 1() = (1− )( + )

By Euler’s theorem this implies

1() = (1− )( + ) for all 

so that in equilibrium we must have

1() = (1− )( + )

where  ≡  which is pre-determined from the supply side. Thus, the

equilibrium interest rate must satisfy

 =
1()

1− 
−  =

1(1 )

1− 
−  (12.38)

again using Euler’s theorem.

It follows that  should be chosen such that the “right”  arises. What is

the “right” ? It is that net rate of return which is implied by the production

technology at the aggregate level, namely − =  (1 )− If we can
obtain  =  (1 )− then there is no wedge between the intertemporal rate
of transformation faced by the consumer and that implied by the technology.

The required  thus satisfies

 =
1(1 )

1− 
−  =  (1 )− 

so that

 = 1− 1(1 )

 (1 )
=

 (1 )− 1(1 )

 (1 )
=

2(1 )

 (1 )


In case  = 
 ()

1− 0    1  = 1. . .   this gives  = 1− 

It remains to find the required consumption tax rate   The tax revenue

will be  and the required tax revenue is

T = ( + ) = ( (1 )− 1(1 )) = 

Thus, with a balanced budget the required tax rate is

 =
T

=

 (1 )− 1(1 )


=

 (1 )− 1(1 )

 (1 )−  − 
 0 (12.39)
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where we have used that the proportionality in (12.37) between  and 

holds for all  ≥ 0 Substituting (12.34) into (12.39), the solution for  can
be written

 =
 [ (1 )− 1(1 )]

( − 1)( (1 )− ) + 
=

2(1 )

( − 1)( (1 )− ) + 


The required tax rate on consumption is thus a constant. It therefore does

not distort the consumption/saving decision on the margin, cf. Chapter 11.

It follows that the allocation obtained by this subsidy-tax policy is the SP

allocation. A policy, here the policy ( ) which in a decentralized system

induces the SP allocation, is called a first-best policy.

12.4 Appendix: The golden-rule capital in-

tensity in the Arrow case

In our discussion of the Arrow model in Section 12.2 (where 0    1)

we claimed that the golden-rule capital intensity, ̃ will be that effective

capital-labor ratio at which the social net marginal product of capital equals

the steady-state growth rate of output. In this respect the Arrow model with

endogenous technical progress is similar to the standard neoclassical growth

model with exogenous technical progress.

The claim corresponds to a very general theorem, valid also for models

with many capital goods and non-existence of an aggregate production func-

tion. This theorem says that the highest sustainable path for consumption

per unit of labor in the economy will be that path which results from those

techniques which profit maximizing firms choose under perfect competition

when the real interest rate equals the steady-state growth rate of GNP (see

Gale and Rockwell, 1975).

To prove our claim, note that in steady state, (12.14) holds whereby

consumption per unit of labor (here the same as per capita consumption in

view of  = labor force = population) can be written

 ≡ ̃ =

∙
(̃)− ( + 

1− 
)̃

¸




=

∙
(̃)− ( + 

1− 
)̃

¸³
0


1− 

´
(by ∗ =



1− 
)

=

∙
(̃)− ( + 

1− 
)̃

¸³
(̃0)

1
1− 


1− 

´
(from ̃ =




 

=
1−





also for  = 0)

=

∙
(̃)− ( + 

1− 
)̃

¸
̃


1−0


1− 


1−  ≡ (̃)0


1− 


1− 
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defining (̃) in the obvious way.

We look for that value of ̃ at which this steady-state path for  is at the

highest technically feasible level. The positive coefficient, 0


1− 

1− , is the

only time dependent factor and can be ignored since it is exogenous. The

problem is thereby reduced to the static problem of maximizing (̃) with

respect to ̃  0 We find

0(̃) =

∙
 0(̃)− ( + 

1− 
)

¸
̃


1− +

∙
(̃)− ( + 

1− 
)̃

¸


1− 
̃


1−−1

=

"
 0(̃)− ( + 

1− 
) +

Ã
(̃)

̃
− ( + 

1− 
)

!


1− 

#
̃


1−

=

"
(1− ) 0(̃)− (1− ) − + 

(̃)

̃
− ( +



1− 
)

#
̃


1−

1− 

=

"
(1− ) 0(̃)−  + 

(̃)

̃
− 

1− 

#
̃


1−

1− 
≡ (̃)

̃


1−

1− 
 (12.40)

defining (̃) in the obvious way. The first-order condition for the problem,

0(̃) = 0 is equivalent to (̃) = 0 After ordering this gives

 0(̃) + 
(̃)− ̃ 0(̃)

̃
−  =



1− 
 (12.41)

We see that

0(̃) R 0 for (̃) R 0
respectively. Moreover,

0(̃) = (1− ) 00(̃)− 
(̃)− ̃ 0(̃)

̃2
 0

in view of  00  0 and (̃)̃   0(̃) So a ̃  0 satisfying (̃) = 0 is the

unique maximizer of (̃) By (A1) and (A3) in Section 12.2 such a ̃ exists

and is thereby the same as the ̃ we were looking for.

The left-hand side of (12.41) equals the social marginal product of capital

and the right-hand side equals the steady-state growth rate of output. At

̃ = ̃ it therefore holds that




−  =

Ã
̇



!∗


This confirms our claim in Section 12.2 about ̃.
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Remark about the absence of a golden rule in the Romer model. In the

Romer moldel the golden rule is not a well-defined concept for the following

reason. Along any balanced growth path we have from (12.29),

 ≡ ̇


=  (1 )−  − 


=  (1 )−  − 0

0


because  (= ) is by definition constant along a balanced growth path,

whereby also  must be constant. We see that  is decreasing linearly

from  (1 ) −  to − when 00 rises from nil to  (1 ) So choosing

among alternative technically feasible balanced growth paths is inevitably a

choice between starting with low consumption to get high growth forever or

starting with high consumption to get low growth forever. Given any 0  0

the alternative possible balanced growth paths will therefore sooner or later

cross each other in the ( ln ) plane. Hence, for the given 0 there exists no

balanced growth path which for all  ≥ 0 has  higher than along any other
technically feasible balanced growth path. So no golden rule path exists.

This is a general property of AK and reduced-form AK models.

–
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Chapter 13

Perspectives on learning by

doing and learning by investing

This chapter adds some theoretical and empirical perspectives to the dis-

cussion in Chapter 12 and in Acemoglu, Chapter 11 and 12. The contents

are:

1. Learning by doing*

2. Disembodied learning by investing*

3. Disembodied vs. embodied technical change*

4. Static comparative advantage vs. dynamics of learning by doing*

5. Robustness and scale effects

(a) On terminology

(b) Robustness of simple endogenous growth models

(c) Weak and strong scale effects

(d) Discussion

Sections marked by an asterisk are only cursory reading.

The growth rate of any time-dependent variable   0 is written  ≡ ̇

In this chapter the economy-wide technology level at time  is denoted 
rather than 
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13.1 Learning by doing*

The term learning by doing refers to the hypothesis that accumulated work

experience, especially repetition of the same type of action, improves workers’

productivity and adds to technical knowledge.

A learning-by-doing model typically combines an aggregate CRS produc-

tion function,

 =  ( ) (13.1)

with a learning function, for example,

̇ =  
    0 0   ≤ 1 (13.2)

where  is a learning parameter and  is a constant that, depending on the

value of  and the complete model in which (13.2) is embedded, is either an

unimportant constant that depends only on measuring units or a parameter

of importance for the productivity level or even the productivity growth

rate. In Section 13.4 below, on the resource curse problem, we consider a

two-sector model where each sector’s productivity growth is governed by such

a relationship.

Another learning hypothesis is of the form

̇ =  
 


  0  0 given,   0  ≤ 1   0 (13.3)

Here both  and  are learning parameters, reflecting the elasticities of learn-

ing w.r.t. the technology level and labor hours, respectively. The higher the

number of human beings involved in production and the more time they

spend in production, the more experience is accumulated. Sub-optimal in-

gredients in the production processes are identified and eliminated. The

experience and knowledge arising in one firm or one sector is speedily dif-

fused to other firms and other sectors in the economy (knowledge spillovers

or “learning by watching”), and as a result the aggregate productivity level

is increased.1

Since hours spent,  is perhaps a better indicator for “new experience”

than output,  specification (13.3) may seem more appealing than specifi-

cation (13.2). So this section concentrates on (13.3).

If the labor force is growing  should be assumed strictly less than one,

because with  = 1 there would be a built-in tendency to forever faster

growth, which does not seem plausible. In fact,   0 can not be ruled

out; that would reflect that learning becomes more and more difficult (“the

easiest ideas are found first”). On the other hand, the case of “standing on

1Diffusion of proficiency also occurs via apprentice-master relationships.
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the shoulders” is also possible, that is, the case 0   ≤ 1, which is the case
where new learning becomes easier, the more is learnt already.

In “very-long-run” growth theory concerned with human development in

an economic history perspective, the  in (13.3) has been replaced simply

by the size of population in the relevant region (which may be considerably

larger than a single country). This is the “population breeds ideas” view,

cf. Kremer (1993). Anyway, many simple models consider the labor force

to be proportional to population size, and then it does not matter whether

we use the learning-by-doing interpretation or the population-breeds-ideas

interpretation.

The so-called Horndal effect (reported by Lundberg, 1961) was one of

the empirical observations motivating the learning-by-doing idea in growth

theory:

“The Horndal-iron works in Sweden had no new investment (and therefore

presumably no significant change in its methods of production) for a

period of 15 years, yet productivity (output per man-hour) rose on the

average close to 2 % per annum. We find again steadily increasing

performance which can only be imputed to learning from experience”

(here cited after Arrow, 1962).

Similar patterns of on-the-job productivity improvements have been ob-

served in ship-building, airframe construction, and chemical industries. On

the other hand, within a single production line there seems to be a tendency

for this kind of productivity increases to gradually peter out, which suggests

  0 in (13.3). We may call this phenomenon “diminishing returns in the

learning process”: the potential for new learning gradually evens out as more

and more learning has already taken place. But new products are continu-

ously invented and the accumulated knowledge is transmitted, more or less,

to the production of these new products that start on a “new learning curve”,

along which there is initially “a large amount to be learned”.2 This combi-

nation of qualitative innovation and continuous productivity improvement

through learning may at the aggregate level end up in a  ≥ 0 in (13.3).
In any case, whatever the sign of  at the aggregate level, with   1

this model is capable of generating sustained endogenous per capita growth

(without “growth explosion”) if the labor force is growing at a rate  

0. Indeed, as in Chapter 12, there are two cases that are consistent with

a balanced growth path (BGP for short) with positive per capita growth,

2A learning curve is a graph of estimated productivity (or its inverse, cf. Fig. 13.1 or

Fig. 13.2 below) as a function of cumulative output or of time passed since production of

the new product began at some plant.
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namely the case   1 combined with   0 and the case  = 1 combined

with  = 0

We will show this for a closed economy with  = 0
  ≥ 0 and with

capital accumulation according to

̇ =  −  =  −  −  0  0 given (13.4)

13.1.1 The case:   1 in (13.3)

Let us first consider the growth rate of  ≡  along a BGP. There are two

steps in the calculation of this growth rate.

Step 1. Given (13.4), from basic balanced growth theory (Chapter 4) we

know that along a BGP with positive gross saving, not only are, by definition,

 and  constant, but they are also the same, so that  is constant

over time. Owing to the CRS assumption, (13.1) implies that

1 =  (







) (13.5)

Since  is constant,  ≡  must be constant. This implies that

 =  =  −  (13.6)

a constant.

Step 2. Dividing through by  in (13.3), we get

 ≡ ̇


=  −1

 

 

Taking logs gives log  = log+(−1) log  + log And taking the time

derivative on both sides of this equation leads to

̇


= (− 1) +  (13.7)

In view of  being constant along a BGP, we have ̇ = 0 and so (13.7)

gives

 =


1− 


presupposing   1 Hence, by (13.6),

 =


1− 

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Under the assumption that   0 this per capita growth rate is positive,

whatever the sign of . Given  the growth rate is an increasing function

of both learning parameters. Since a positive per capita growth rate can in

the long run be maintained only if supported by   0 this is an example of

semi-endogenous growth (as long as  is exogenous).

This model thus gives growth results somewhat similar to the results

in Arrow’s learning-by-investing model, cf. Chapter 12. In both models the

learning is an unintended by-product of the work process and construction of

investment goods, respectively. And both models assume that knowledge is

non-appropriable (non-exclusive) and that knowledge spillovers across firms

are fast (in the time perspective of growth theory). So there are positive

externalities which may motivate government intervention.

Methodological remark: Different approaches to the calculation of

long-run growth rates Even within this semi-endogenous growth case,

depending on the situation, different approaches to the calculation of long-

run growth rates may be available. In Chapter 12, in the analysis of the

Arrow case   1 the point of departure in the calculation was the steady

state property of Arrow’s model that ̃ ≡ () is a constant. But this

point of departure presupposes that we have established a well-defined steady

state in the sense of a stationary point of a complete dynamic system (which

in the Arrow model consists of two first-order differential equations in ̃ and

̃ respectively), usually involving also a description of the household sector.

In the present case we are not in this situation because we have not specified

how the saving in (13.4) is determined. This explains why above (as well

as in Chapter 10) we have taken another approach to the calculation of the

long-run growth rate. We simply assume balanced growth and ask what

the growth rate must then be. If the technologies in the economy are such

that per capita growth in the long run can only be due to either exogenous

productivity growth or semi-endogenous productivity growth, this approach

is usually sufficient to determine a unique growth rate.

Note also, however, that this latter feature is in itself an interesting and

useful result (as exemplified in Chapter 10). It tells us what the growth

rate must be in the long run provided that the system converges to balanced

growth. The growth rate will be the same, independently of the market

structure and the specification of the household sector, that is, it will be the

same whether, for example, there is a Ramsey-style household sector or an

overlapping generations set-up.3 And at least in the first case the growth

3Specification of these things is needed if we want to study the transitional dynamics:

the adjustment processes outside balanced growth/steady state, including the question of
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rate will be the same whatever the size of the preference parameters (the

rate of time preference and the elasticity of marginal utility of consumption).

Moreover, only if economic policy affects the learning parameters or the pop-

ulation growth rate (two things that are often ruled out inherently by the

setup), will the long-run growth rate be affected. Still, economic policy can

temporarily affect economic growth and in this way affect the level of the

long-run growth path.

13.1.2 The case  = 1 in (13.3)

With  = 1 in (13.3), the above growth rate formulas are no longer valid.

But returning to (13.3), we have  = 

 . Then, unless  = 0 the growth

rate of  will tend to rise forever, since we have  = 

0

 → ∞ for

  0.

So we will assume  = 0 Then  = 0 for all  implying  = 

0 for

all . Since both  and 0 are exogenous, it is as if the rate of technical

progress,   were exogenous. Yet, technical progress is generated by an

internal mechanism. If the government by economic policy could affect  or

0 also  would be affected. In any case, under balanced growth, (13.5)

holds again and so  =  must be constant. This implies  =

 = 

0  0 Consequently, positive per capita growth can be maintained

forever without support of growth in any exogenous factor, that is, growth

is fully endogenous.

As in the semi-endogenous growth case we can here determine the growth

rate along a BGP independently of how the household sector is described.

And preference parameters do not affect the growth rate. The fact that this

is so even in the fully endogenous growth case is due to the “law of motion”

of technology making up a subsystem that is independent of the remainder of

the economic system. This is a special feature of the “growth engine” (13.3).

Although it is not a typical ingredient of endogenous growth models, this

growth engine can not be ruled out apriori. The simple alternative, (13.2), is

very different in that the endogenous aggregate output, , is involved. We

return to (13.2) in Section 13.4 below.

Before proceeding, a brief remark on the explosive case   1 in (13.2)

or (13.3) is in place. If we imagine   1 growth becomes explosive in

the extreme sense that output as well as productivity, hence also per capita

consumption, will tend to infinity in finite time. This is so even if  = 0

The argument is based on the mathematical fact that, given a differential

equation ̇ =  where   1 and 0  0 the solution  has the property

convergence to balanced growth/steady state.
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that there exists a 1  0 such that  → ∞ for  → 1. For details, see

Appendix B.

13.2 Disembodied learning by investing*

In the above framework the work process is a source of learning whether it

takes place in the consumption or capital goods sector. This is learning by

doing in a broad sense. If the source of learning is specifically associated

with the construction of capital goods, the learning by doing is often said to

be of the form of learning by investing. Why in the headline of this section

we have added the qualification “disembodied”, will be made clear in Section

13.3. Another name for learning by investing is investment-specific learning

by doing.

The prevalent view in the empirical literature seems to be that learning

by investing is the most important form of learning by doing; ship-building

and airframe construction are prominent examples. To the extent that the

construction of capital equipment is based on more complex and involved

technologies than is the production of consumer goods, we are also, intu-

itively, inclined to expect that the greatest potential for productivity in-

creases through learning is in the investment goods sector.4

In the simplest version of the learning-by-investment hypothesis, (13.3)

above is replaced by

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (13.8)

where  is aggregate net investment. This is the hypothesis that the economy-

wide technology level  is an increasing function of society’s previous ex-

perience, proxied by cumulative aggregate net investment.5 The Arrow and

Romer models, as described in Chapter 12, correspond to the cases 0    1

and  = 1 respectively.

In this framework, where the “growth engine” depends on capital accu-

mulation, it is only in the Arrow case that we can calculate the per-capita

growth rate along a BGP without specifying anything about the household

sector.

4After the information-and-communication technology (ICT) revolution, where a lot of

technically advanced consumer goods have entered the scene, this traditional presumption

may be less compelling.
5Contrary to the dynamic learning-by-doing specification (13.3), there is here no good

reason for allowing   0
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13.2.1 The Arrow case:   1 and  ≥ 0
We may apply the same two steps as in Section 13.1.1. Step 1 is then an

exact replication of step 1 above. Step 2 turns out to be even simpler than

above, because (13.8) immediately gives log  =  log so that  =  ,

which substituted into (13.6) yields

 =  =  =  −  =  − 

From this follows, first,

 =


1− 
 (13.9)

and, second,

 =


1− 


Alternatively, we may in this case condense the two steps into one by

rewriting (13.5) in the form





=  (1




) =  (1−1
 )

by (13.8). Along the BGP, since  is constant, so must the second argu-

ment, −1
 , be. It follows that

(− 1) +  = 0

thus confirming (13.9).

Whatever the approach to the calculation, the per capita growth rate is

here tied down by the size of the learning parameter and the growth rate of

the labor force.

13.2.2 The Romer case:  = 1 and  = 0

In the Romer case, however, the growth rate along a BGP cannot be de-

termined until the saving behavior in the economy is modeled. Indeed, the

knife-edge case  = 1 opens up for many different per capita growth rates

under balanced growth. Which one is “selected” by the economy depends on

how the household sector is described.

For a Ramsey setup with  = 0 the last part of Chapter 12 showed how the

growth rate generated by the economy depends on the rate of time preference

and the elasticity of marginal utility of consumption of the representative

household. Growth is here fully endogenous in the sense that a positive per

capita growth rate can be maintained forever without the support by growth

in any exogenous factor. Moreover, according to this model, economic policy

that internalizes the positive externality in the system can raise not only the

productivity level, but also the long-run productivity growth rate.
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Figure 13.1

13.2.3 The size of the learning parameter

What is from an empirical point of view a plausible value for the learning

parameter, ? This question is important because quite different results

emerge depending on whether  is close to 1 or considerably lower (fully

endogenous growth versus semi-endogenous growth). At the same time the

question is not easy to answer because  in the models is a parameter that is

meant to reflect the aggregate effect of the learning going on in single firms

and spreading across firms and industries.

Like Lucas (1993), we will consider the empirical studies of on-the-job

productivity increases in ship-building by Searle (1945) and Rapping (1965).

Both studies used data on the production of different types of cargo vessels

during the second world war. Figures 1 and 2 are taken from Lucas’ review

article. For the vessel type called “Liberty Ships” Lucas cites the observation

by Searle (1945):

“the reduction in man-hours per ship with each doubling of cumulative

output ranged from 12 to 24 percent.”

Let us try to connect this observation to the learning parameter  in

Arrow’s and Romer’s framework. We begin by considering firm  which
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Figure 13.2

operates in the investment goods sector. We imagine that firm ’s equipment

is unchanged during the observation period (as is understood in the above

citation as well as the citation from Arrow (1962) in Section 13.1). Let firm

’s current output and employment be  and  respectively. The current

labor productivity is then  =  Let the firm’s cumulative output

be denoted  This cumulative output is a part of cumulative investment

in society. At the micro-level the learning-by-investing hypothesis is the

hypothesis that labor productivity is an increasing function of the firm’s

cumulative output, 

In figures 1 and 2 the dependent variable is not directly labor productivity,

but its inverse, namely the required man-hours per unit of output,  =

 = 1 Figure 13.1 suggests a log-linear relationship between this

variable and the cumulative output:

log = −  log (13.10)

That is, as cumulative output rises, the required man-hours per unit of output

declines over time in this way:

 =







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Equivalently, labor productivity rises over time in this way:

 =
1



= −


So, specifying the relationship by a power function, as in (13.8), makes sense.

Now, let  = 1 be a fixed point in time. Then, (13.10) becomes

log1 = −  log1 

Let 2 be the later point in time where cumulative output has been doubled.

Then at time 2 the required man-hours per unit of output has declined to

log2 = −  log2 = −  log(21)

Hence,

log1 − log2 = − log1 +  log(21) =  log 2 (13.11)

Lucas’ citation above from Searle amounts to a claim that

012 
1 −2

1

 024 (13.12)

By a first-order Taylor approximation we have log2 ≈ log1 + (2 −
1)1 . Hence, (1 −2)1 ≈ log1 − log2  Substituting this

into (13.12) gives, approximately,

012  log1 − log2  024

Combining this with (13.11) gives 012   log 2  024 so that

017 =
012

log 2
  

024

log 2
= 035

Rapping (1965) finds by a more rigorous econometric approach  to be

in the vicinity of 0.26 (still ship building). Arrow (1962) and Solow (1997)

refer to data on airframe building. This data roughly suggests  = 13

How can this be translated into a guess on the “aggregate” learning pa-

rameter  in (13.8)? This is a complicated question and the subsequent

remarks are very tentative. First of all, the potential for both internal and

external learning seems to vary a lot across different industries. Second, the

amount of spillovers can not simply be added to the  above, since they are

already partly included in the estimate of  Even theoretically, the role of

experience in different industries cannot simply be added up because to some
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extent there is redundancy due to overlapping experience and sometimes the

learning in other industries is of limited relevance. Given that we are inter-

ested in an upper bound for  a “guestimate” is that the spillovers matter

for the final  at most the same as  from ship building so that  ≤ 26
On the basis of these casual considerations we claim that a  much higher

than about 23 may be considered fairly implausible. This speaks for the

Arrow case of semi-endogenous growth rather than the Romer case of fully

endogenous growth, at least as long as we think of learning by investing

as the sole source of productivity growth. Another point is that to the

extent learning is internal and at least temporarily appropriable, we should

expect at least some firms to internalize the phenomenon in its optimizing

behavior (Thornton and Thompson, 2001). Although the learning is far from

fully excludable, it takes time for others to discover and imitate technical

and organizational improvements. Many simple growth models ignore this

and treat all learning by doing and learning by investing as a 100 percent

externality, which seems an exaggeration.

A further issue is to what extent learning by investing takes the form of

disembodied versus embodied technical change. This is the topic of the next

section.

13.3 Disembodied vs. embodied technical change*

Arrow’s and Romer’s models build on the idea that the source of learning

is primarily experience in the investment goods sector. Both models assume

that the learning, via knowledge spillovers across firms, provides an engine

of productivity growth in essentially all sectors of the economy. And both

models (Arrow’s, however, only in its simplified version, which we considered

in Chapter 12, not in its original version) assume that a firm can benefit from

recent technical advances irrespective of whether it buys new equipment or

just uses old equipment. That is, the models assume that technical change

is disembodied.

6For more elaborate studies of empirical aspects of learning by doing and learning by

investing, see Irwin and Klenow (1994), Jovanovic and Nyarko (1995), and Greenwood and

Jovanovic (2001). Caballero and Lyons (1992) find clear evidence of positive externalities

across US manufacturing industries. Studies finding that the quantitative importance of

spillovers is significantly smaller than required by the Romer case include Englander and

Mittelstadt (1988) and Benhabib and Jovanovic (1991). See also the surveys by Syverson

(2011) and Thompson (2012).

Although in this lecture note we focus on learning as an externality, there exists studies

focusing on internal learning by doing, see, e.g., Gunn and Johri, 2011.
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13.3.1 Disembodied technical change

Disembodied technical change occurs when new technical knowledge advances

the combined productivity of capital and labor independently of whether the

workers operate old or new machines. Consider again (13.1) and (13.3).

When the  appearing in (13.1) refers to the total, historically accumu-

lated capital stock, then the interpretation is that the higher technology

level generated in (13.3) or (13.8) results in higher productivity of all labor,

independently of the vintage of the capital equipment with which this labor

is combined. Thus also firms with old capital equipment benefit from re-

cent advances in technical knowledge. No new investment is needed to take

advantage of the recent technological and organizational developments.

Examples of this kind of productivity increases include improvement in

management and work practices/organization and improvement in account-

ing.

13.3.2 Embodied technical change

In contrast, we say that technical change is embodied, if taking advantage of

new technical knowledge requires construction of new investment goods. The

newest technology is incorporated in the design of newly produced equipment;

and this equipment will not participate in subsequent technical progress. An

example: only the most recent vintage of a computer series incorporates the

most recent advance in information technology. Then investment goods pro-

duced later (investment goods of a later “vintage”) have higher productivity

than investment goods produced earlier at the same resource cost. Whatever

the source of new technical knowledge, investment becomes an important

bearer of the productivity increases which this new knowledge makes pos-

sible. Without new investment, the potential productivity increases remain

potential instead of being realized.7

One way to formally represent embodied technical progress is to write

capital accumulation in the following way,

̇ =  −  (13.13)

where  is gross investment at time  and  measures the “quality” (produc-

tivity) of newly produced investment goods. The rising level of technology

implies rising  so that a given level of investment gives rise to a greater and

greater addition to the capital stock,  measured in efficiency units. Even

7The concept of embodied technical change was introduced by Solow (1960). The notion

of Solow-neutral technical change is related to embodied technical change and capital of

different vintages.
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if technical change does not directly appear in the production function, that

is, even if for instance (13.1) is replaced by  =  ( ) the economy may

in this manner still experience a rising standard of living.

Figure 13.3: Relative price of equipment and quality-adjusted equipment

investment-to-GNP ratio. Source: Greenwood, Hercowitz, and Krusell (1997).

Embodied technical progress is likely to result in a steady decline in the

price of capital equipment relative to the price of consumption goods. This

prediction is confirmed by the data. Greenwood et al. (1997) find for the

U.S. that the relative price,  of capital equipment has been declining at

an average rate of 003 per year in the period 1950-1990, cf. the “Price”

curve in Figure 13.3.8 As the “Quantity” curve in Figure 13.3 shows, over

the same period there has been a secular rise in the ratio of new equipment

investment (in efficiency units) to GNP; note that what in the figure is called

the “investment-to-GNP Ratio” is really “quality-adjusted investment-to-

GNP Ratio”,  not the usual investment-income ratio,  .

Moreover, the correlation between de-trended  and de-trended 

is −046 Greenwood et al. interpret this as evidence that technical advances
have made equipment less expensive, triggering increases in the accumulation

of equipment both in the short and the long run. The authors also estimate

8The relative price index in Fig. 13.3 is based on the book by R. Gordon (1990), which

is an attempt to correct previous price indices for equipment by better taking into account

quality improvements in new equipment.
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that embodied technical change explains 60% of the growth in output per

man hour.

13.3.3 Embodied technical change and learning by in-

vesting

Whether technological progress is disembodied or embodied says nothing

about whether its source is exogenous or endogenous. Indeed, the increases

of  in (13.13) may be modeled as exogenous or endogenous. In the latter

case, a popular hypothesis is that the source is learning by investing. This

learning may take the form (13.8) above. In that case the experience that

matter for learning is cumulative net investment.

An alternative hypothesis is:

 =

µZ 

−∞


¶

 0   ≤ ̄ (13.14)

where  is gross investment at time  Here the experience that matter has

its basis in cumulative gross investment. An upper bound, ̄ for the learning

parameter is introduced to avoid explosive growth. The hypothesis (13.14)

seems closer to both intuition and the original ideas of Arrow:

“Each new machine produced and put into use is capable of

changing the environment in which production takes place, so

that learning is taking place with continually new stimuli” (Ar-

row, 1962).

Contrary to the integral based on net investment in (13.8), the integral

in the learning hypothesis (13.14) does not allow an immediate translation

into an expression in terms of the accumulated capital stock. Instead a new

state variable, cumulative gross investment, enter the system and opens up

for richer dynamics.

We may combine (13.14) with an aggregate Cobb-Douglas production

function,

 = 
 

1−
  (13.15)

Then the upper bound for the learning parameter in (13.14) is ̄ = (1−).9
9An alternative to the specification of embodied learning by gross investment in (13.14)

is

 =

µZ 

−∞


¶̃
 0  ̃ ≤

−
̃
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The case   (1− )

Suppose   (1 − ) Using (13.14) together with (13.13), (13.15), and

 =  −   one finds under balanced growth with  =  constant and

0    1

 =
(1− )(1 + )

1− (1 + )
 (13.16)

 =


1 + 
  (13.17)

 =
1

1 + 
  (13.18)

 =  =  −  =


1− (1 + )
 (13.19)

cf. Appendix A. We see that   0 if and only if   0 So growth is here

semi-endogenous.

Let us assume there is perfect competition in all markets. Since  capital

goods can be produced at the same minimum cost as one consumption good,

the equilibrium price,  of capital goods in terms of the consumption good

must equal the inverse of  that is,  = 1 With the consumption good

being the numeraire, let the rental rate in the market for capital services be

denoted  and the real interest rate in the market for loans be denoted 

Ignoring uncertainty, we have the no-arbitrage condition

 − ( − ̇)


=  (13.20)

where − ̇ is the true economic depreciation of the capital good per time

unit. Since  = 1 (13.17) and (13.16) indicate that along a BGP the

relative price of capital goods will be declining according to

 = − (1− )

1− (1 + )
 0

Note that    along the BGP. Is this a violation of Proposition 1 of

Chapter 4? No, that proposition presupposes that capital accumulation oc-

curs according to the standard equation (13.4), not (13.13). And although 
differs from   the output-capital ratio in value terms, () is constant

implying that it is cumulative quality-adjusted gross investment that matters, cf. Green-

wood and Jovanovic (2001). If combined with the production function (13.15) the appro-

priate upper bound on the learning parameter, ̃ is
−
̃ = 1− 
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along the BGP. In fact, the BGP complies entirely with Kaldor’s stylized

facts if we interpret “capital” as the value of capital, .

The formulas (13.16) and (13.19) display that (1 + )  1 is needed

to avoid a forever rising growth rate if   0. This inequality is equivalent

to   (1 − ) and confirms that the upper bound, ̄ in (13.14) equals

(1−)With  = 13 this upper bound is 2 The bound is thus no longer
1 as in the simple learning-by-investing model of Section 13.2. The reason is

twofold, namely partly that now  is formed via cumulative gross investment

instead of net investment, partly that the role of  is to strengthen capital

formation rather than the efficiency of production factors in aggregate final

goods produce.

When  = 0 the system can no longer generate a constant positive per

capita growth rate (exponential growth). Groth et al. (2010) show, however,

that the system is capable of generating quasi-arithmetic growth. This class of

growth processes, which fill the whole range between exponential growth and

complete stagnation, was briefly commented on in Section 10.5 of Chapter

10.

The case  = (1− ) and  = 0

When  = (1 − ) we have (1 + ) = 1 and so the growth formulas

(13.16) and (13.19) no longer hold. But the way that (13.17) and (13.18)

are derived (see Appendix A) ensures that these two equations remain valid

along a BGP. Given  = (1− ) (13.17) can be written  = (1− ) 

which is equivalent to

 = 1−


along a BGP ( is some positive constant to be determined).

To see whether a BGP exists, note that (??) implies

 =
̇


= 

−1
  = 

−(1−)
  = −(1−)−

  = −(1−)−
 

considering a BGP with  =  constant. Substituting (13.15) into this,

we get

 = −(1−)−
 

 
1− = −(1−)1− (13.21)

If  = 0, the right-hand side of (13.21) is constant and so is  = (1−)

by (13.17), and  =  = (1− ) by (13.19)

If   0 at the same time as  = (1−) however, there is a tendency

to a forever rising growth rate in , hence also in  and  . No BGP exists

in this case.
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Returning to the case where a BGP exists, a striking feature revealed by

(13.21) is that the saving rate,  matters for the growth rate of  hence also

for the growth rate of  and  respectively, along a BGP. As in the Romer

case of the disembodied learning-by-investing model, the growth rates along

a BGP cannot be determined until the saving behavior in the economy is

modeled.

So the considered knife-edge case,  = (1 − ) combined with  = 0

opens up for many different per capita growth rates under balanced growth.

Which one is “selected” by the economy depends on how the household sec-

tor is described. In a Ramsey setup with  = 0 one can show that the

growth rate under balanced growth depends negatively on the rate of time

preference and the elasticity of marginal utility of consumption of the repre-

sentative household. And not only is growth in this case fully endogenous in

the sense that a positive per capita growth rate can be maintained forever

without the support by growth in any exogenous factor. An economic pol-

icy that subsidizes investment can generate not only a transitory rise in the

productivity growth rate, but also a permanently higher productivity growth

rate.

In contrast to the Romer (1986) model, cf. Section 13.2.2 above, we do

not here end up with a reduced-form AK model. Indeed, we end up with a

model with transitional dynamics, as a consequence of the presence of two

state variables,  and 

If instead   1(1+) we get a tendency to explosive growth − infinite
output in finite time − a not plausible scenario, cf. Appendix B.

13.4 Static comparative advantage vs. dy-

namics of learning by doing*

In this section we will briefly discuss a development economics perspective

of the above learning-based growth models.

More specifically we will take a look at the possible “conflict” between

static comparative advantage and economic growth. The background to this

possible “conflict” is the dynamic externalities inherent in learning by doing

and learning by investing.
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13.4.1 A simple two-sector learning-by-doing model10

We consider an isolated economy with two production sectors, sector 1 and

sector 2, each producing its specific consumption good. Labor is the only

input and aggregate labor supply  is constant. There are many small firms

in the two sectors. Aggregate output in the sectors are:

1 = 11 (13.22)

2 = 22 (13.23)

where

1 + 2 = 

There are sector-specific learning-by-doing externalities in the following form:

̇1 = 11 1 ≥ 0 (13.24)

̇2 = 22 2 ≥ 0 (13.25)

Although not visible in our aggregate formulation, there are substantial

knowledge spillovers across firms within the sectors. Across sectors, spillovers

are assumed negligible.

Assume firms maximize profits and that there is perfect competition in the

goods and labor markets. Then, prices are equal to the (constant) marginal

costs. Let the relative price of sector 2-goods in terms of sector-1 goods be

called  (i.e., we use sector-1 goods as numeraire). Let the hourly wage in

terms of sector-1 goods be  In general equilibrium with production in both

sectors we then have

1 = 2 = 

saying that the value of the (constant) marginal productivity of labor in each

sector equals the wage. Hence,


2

1
= 1 or  =

1

2
 (13.26)

saying that the relative price of the two goods is inversely proportional to

the relative labor productivities in the two sectors. The demand side, which

is not modelled here, will of course play a role for the final allocation of labor

to the two sectors.

Taking logs in (13.26) and differentiating w.r.t.  gives

̇


=

̇1

1
− ̇2

2
=

11

1
− 22

2
= 11 −22

10Krugman (1987), Lucas (1988, Section 5).
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using (13.24) and (13.25). Thus,

̇ = (11 −22)

Assume sector 2 (say some industrial activity) is more disposed to learning-

by-doing than sector 1 (say mining) so that 2  1 Consider for simplicity

the case where at time 0 there is symmetry in the sense that 10 = 20

Then, the relative price  of sector-2 goods in terms of sector-1 goods will,

at least initially, tend to diminish over time. The resulting substitution ef-

fect is likely to stimulate demand for sector-2 goods. Suppose this effect is

large enough to ensure that 2 = 22 never becomes lower than 112

that is, 22 ≥ 11 for all  Then the scenario with ̇ ≤ 0 is sustained
over time and the sector with highest growth potential remains a substantial

constituent of the economy. This implies sustained economic growth in the

aggregate economy.

Now, suppose the country considered is a rather backward, developing

country which until time 0 has been a closed economy (very high tariffs etc.).

Then the country decides to open up for free foreign trade. Let the relative

world market price of sector 2-goods be ̄ which we for simplicity assume is

constant At time 0 there are two alternative possibilities to consider:

Case 1: ̄ 
10
20

(world-market price of good 2 higher than the opportu-

nity cost of producing good 2). Then the country specializes fully in sector-2

goods. Since this is the sector with a high growth potential, economic growth

is stimulated. The relative productivity level 12 decreases so that the

scenario with ̄  12 remains. A virtuous circle of dynamics of learning

by doing is unfolded and high economic growth is sustained.

Case 2: ̄ 
10
20

(world-market price of good 2 lower than the opportunity

cost of producing good 2). Then the country specializes fully in sector-1

goods. Since this is the sector with a low growth potential, economic growth

is impeded or completely halted. The relative productivity level 12 does

not decrease. Hence, the scenario with ̄  12 sustains itself and persists.

Low or zero economic growth is sustained. The static comparative advantage

in sector-1 goods remains and the country is locked in low growth.

If instead ̄ is time-dependent, suppose
·
̄  0 (by similar arguments as

for the closed economy). Then the case 2 scenario is again self-sustaining.

The point is that there may be circumstances (like in case 2), where

temporary protection for a backward country is growth promoting (this is a

specific kind of “infant industry” argument).
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13.4.2 A more robust specification

The way (13.24) and (13.25) are formulated, we have

̇1

1
= 11 (13.27)

̇2

2
= 22 (13.28)

by (13.22) and (13.23). Thus, the model implies scale effects on growth, that

is, strong scale effects.

An alternative specification introduces limits to learning-by-doing in the

following way:

̇1 = 1
1
1  1  1

̇2 = 2
2
2  2  1

Then (13.27) and (13.28) are replaced by

̇1

1
= 1

1−1
1 1

1  (13.29)

̇2

2
= 2

2−1
2 2

2  (13.30)

Now the problematic strong scale effect has disappeared. At the same time,

since 1−1  0 and 2−1  0 (13.29) and (13.30) show that growth peters
out as long as the “diminishing returns” to learning-by-doing are not offset

by an increasing labor force or an additional source (outside the model) of

technical progress. If   0 we get sustained growth of the semi-endogenous

type as in the Arrow model of learning-by-investing.

Yet the analysis may still be a basis for an “infant industry” argument. If

the circumstances are like in case 2, temporary protection may help a back-

ward country to enter a higher long-run path of evolution. Stiglitz underlines

South Korea as an example:

What matters is dynamic comparative advantage, or comparative

advantage in the long run, which can be shaped. Forty years ago,

South Korea had a comparative advantage in growing rice. Had

it stuck to that strength, it would not be the industrial giant that

it is today. It might be the world’s most efficient rice grower, but

it would still be poor (Stiglitz, 2012, p. 2).
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13.4.3 Resource curse?

The analysis also suggests a mechanism that, along with others, may help

explaining what is known as the resource curse problem. This problem refers

to the paradox that being abundant in natural resources may sometimes seem

a curse for a country rather than a blessing. At least quite many empirical

studies have shown a negative correlation between resource abundance and

economic growth (see, e.g., Sachs and Warner 1995, Gylfason et al., 1999).

The mechanism behind this phenomenon could be the following. Consider

a mining country with an abundance of natural resources in the ground.

Empirically, growth in total factor productivity in mining activity is relatively

low. Interpreting this as reflecting a relatively low learning potential, the

mining sector may be represented by sector 1 above. Given the abundance

of natural resources, 10 is likely to be high relative to the productivity in

the manufacturing sector, 20  So the country is likely to be in the situation

described as case 2. As a result, economic growth may never get started.

The basic problem here is, however, not of an economic nature in a nar-

row sense, but rather of an institutional character. Taxation on the natural

resource and use of the tax revenue for public investment in growth pro-

moting factors (infrastructure, health care, education, R&D) or directly in

the sector with high learning potential can from an economic point of view

circumvent the curse to a blessing. It is not the natural resources as such,

but rather barriers of a political character, conflicts of interest among groups

and social classes, even civil war over the right to exploit the resources, or

dominance by foreign superpowers, that may be the obstacles to a sound

economic development.11

Summing up: Discovery of a valuable mineral in the ground in a country

with weak institutions may, through corruption etc. have adverse effects on

resource allocation and economic growth in the country. But: "Resources

should be a blessing, not a curse. They can be, but it will not happen on its

own. And it will not happen easily” (Stiglitz, 2012, p. 2).

13.5 Robustness issues and scale effects

First some words about terminology.

11An additional potential obstacle is related to the possible response of a country’s real

exchange rate, and therefore its competitiveness, to a new discovery of natural resources

in a country.

Ploeg (2011) provides a survey over different theories related to the resource curse

problem. See also Ploeg and Venables (2012) and Stiglitz (2012).
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13.5.1 On terminology

How terms like “endogenous growth” and “semi-endogenous growth” are de-

fined varies in the literature. Recalling the notation  ≡  and  ≡ ̇

in this course we use the definitions:

Endogenous growth is present if there is a positive long-run per capita

growth rate (i.e.,   0) and the source of this is some internal mecha-

nism in the model (so that exogenous technology growth is not deeded).

Fully endogenous growth (sometimes called strictly endogenous growth) is

present if there is a positive long-run per capita growth rate and this

occurs without the support by growth in any exogenous factor (for

example exogenous growth in the labor force).

An example: the Romer version of the model of learning by investing

features fully endogenous growth. The technical reason for this is the as-

sumption that the learning parameter,  is such that there are constant

returns to capital at the aggregate level. We get   0 constant, and, in a

Ramsey set-up, results like   0 and   0, that is, preference

parameters matter for long-run growth. This suggests, at least at the theoret-

ical level, that taxes and subsidies, by affecting incentives, may have effects

on long-run growth (cf. Chapter 12). On the other hand, a fully-endogenous

growth model need not have this implication. We saw an example of this in

Section 13.1, where the “law of motion” of technology makes up a subsystem

that is independent of the remainder of the economic system.

In any case, fully endogenous growth is technologically possible if and

only if there are non-diminishing returns (at least asymptotically) to the

producible inputs in the growth-generating sector(s), also called the “growth

engine”. The growth engine in an endogenous growth model is defined as

the set of input-producing sectors or activities using their own output as

input. This set may consist of only one sector such as the manufacturing

sector in the simple AK model, the educational sector in the Lucas (1988)

model, or the R&D sector in the Romer (1990) model. A model is capable

of generating fully endogenous growth if the growth engine has CRS w.r.t.

producible inputs.

No argument like the replication argument for CRS w.r.t. the rival in-

puts exists regarding CRS w.r.t. the producible inputs. This is one of the

reasons that also another kind of endogenous growth is often considered in

the literature. This takes us to “semi-endogenous growth”.

Semi-endogenous growth is present if growth is endogenous but a posi-

tive long-run per capita growth rate can not be sustained without the
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support by growth in some exogenous factor (for example exogenous

growth in the labor force).

For example, the Arrow model of learning by investing features semi-

endogenous growth. The technical reason for this is the assumption that

the learning parameter,  is less than 1 which implies diminishing marginal

returns to capital at the aggregate level. Along a BGP we get

 =  =  =


1− 
 (13.31)

If and only if   0 can a positive  be maintained forever. When the

learning mechanism is assisted by population growth, it is strong enough to

over time endogenously maintain a constant average productivity of capital.

The key role of population growth derives from the fact that at the aggregate

level there are increasing returns to scale w.r.t. capital and labor. For the

increasing returns to be sufficiently exploited to generate exponential growth,

population growth is needed.12 Note that in this case  = 0 = 

that is, preference parameters do not matter for long-run growth (only for the

level of the growth path). This suggests that taxes and subsidies do not have

long-run growth effects. Yet, in Arrow’s model and similar semi-endogenous

growth models economic policy can have important long-run level effects.

Strangely enough, some textbooks (for example Barro and Sala-i-Martin,

2004) do not call much attention to the distinction between fully endogenous

growth and semi-endogenous growth. Rather, they tend to use the term

endogenous growth as synonymous with what we here call fully endogenous

growth. But there is certainly no reason to rule out apriori the parameter

cases corresponding to semi-endogenous growth.

In the Acemoglu textbook (Acemoglu, 2009, p. 448) “semi-endogenous

growth” is defined or characterized as endogenous growth where the long-

run per capita growth rate of the economy “does not respond to taxes or

other policies”. As an implication, endogenous growth which is not semi-

endogenous is in Acemoglu’s text implicitly defined as endogenous growth

where the long-run per capita growth rate of the economy does respond to

taxes or other policies.

We have defined the distinction between “semi-endogenous growth” and

“fully endogenous growth” differently. In our terminology, this distinction

does not coincide with the distinction between policy-dependent and policy-

invariant growth. Indeed, in our terminology positive per capita growth

12Of course the model shifts from featuring “semi-” to featuring “fully endogenous”

growth if the model is extended with an internal mechanism determining the population

growth rate.
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may rest on an “exogenous source” in the sense of deriving from exogenous

technical progress and yet the long-run per capita growth rate may be policy-

dependent. In Chapter 16 we will see an example in connection with the

so-called DHSS model.

There also exist models that according to our definition feature semi-

endogenous growth and yet the long-run per capita growth rate is policy-

dependent (Cozzi, 1997; Sorger, 2010). Similarly, there exist models that

according to our definition feature fully endogenous growth and yet the long-

run per capita growth rate is policy-invariant (Section 13.1.2 above shows

an example).

13.5.2 Robustness of simple endogenous growth mod-

els

The series of learning-based growth models considered above illustrate the

fact that endogenous growth models with exogenous population typically

exist in two varieties or cases. One is the fully endogenous growth case where

a particular value is imposed on a key parameter. This value is such that

there are constant returns (at least asymptotically) to producible inputs in

the growth engine of the economy.13 In the “corresponding” semi-endogenous

growth case, the key parameter is allowed to take any value in an open

interval. The endpoint of this interval appears as the “knife-edge” value

assumed in the fully endogenous growth case.

Although the two varieties build on qualitatively the same mathematical

model of a certain growth mechanism (say, learning by doing or research and

development), the long-run results turn out to be very sensitive to which

of the two cases is assumed. In the fully endogenous growth case a posi-

tive per-capita growth rate is maintained forever without support of growth

in any exogenous factor. In the semi-endogenous growth case, the growth

process needs “support” by some growing exogenous factor in order for sus-

tained growth to be possible. The established terminology is somewhat se-

ductive here. “Fully endogenous” sounds as something going much deeper

than “semi-endogenous”. But nothing of that sort should be implied. It is

just a matter of different parameter values.

13Suppose our CRS aggregate production function is  = +1−   0  

0 0    1 we have  ≡  = +, where  ≡ We then get  = +−1

→  for  → ∞ that is, the output-capital ratio converges to a positive constant when

the capital-labor ratio goes to infinity. We then say that asymptotically there are CRS

w.r.t. the producible inputs, here just  In this kind of “asymptotic” AK models the

force of diminishing returns to capital ultimately becomes negligible.
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As Solow (1997, pp. 7-8) emphasizes in connection with learning-by-

investing models (with constant population), the Romer case with  = 1 is a

very special case, indeed an “extreme case, not something intermediate”. A

value of  slightly above 1 leads to explosive growth: infinite output in finite

time even when  = 0.14 And a value of  slightly below 1 leads to growth

petering out in the long run even when  = 0.

Whereas the strength of the semi-endogenous growth case is its theo-

retical and empirical robustness, the convenience of the fully endogenous

growth case is that it has much simpler dynamics. Then the question arises

to what extent a fully endogenous growth model can be seen as a useful ap-

proximation to its semi-endogenous growth “counterpart”. Imagine that we

contemplate applying the fully endogenous growth case as a basis for making

forecasts or for policy evaluation in a situation where the “true” case is the

semi-endogenous growth case. Then we would like to know: Are the impulse-

response functions generated by a shock in the fully endogenous growth case

an acceptable approximation to those generated by the same shock in the

corresponding semi-endogenous growth case for a sufficiently long time hori-

zon to be of interest?15 The answer is “yes” if the critical parameter has a

value “close” to the knife edge value and “no” otherwise. How close it need

be, depends on circumstances. My own tentative impression is that usually

it is “closer” than what the empirical evidence warrants.

Even if a single growth-generating mechanism, like learning by doing, does

not in itself seem strong enough to generate a reduced-form AK model (the

fully endogenous growth case), there might exist complementary factors and

mechanisms that in total could generate something close to a reduced-form

AK model. The time-series test by Jones (1995b), however, rejects this.16

Comment on “petering out” when  = 0 The above-mentioned “pe-

tering out” of long-run growth in the semi-endogenous case when  = 0 takes

different forms in different models. When exponential growth cannot be sus-

tained in a model, sometimes it remains true that  → ∞ for  → ∞, and
sometimes instead complete stagnation results. In the present context, where

we focus on learning, it is the source of learning that matters. Suppose that,

as in the simple Arrow version (  1) of learning-by-investing in Section

13.2.1 above (and in Chapter 12), learning is associated with net investment,

then  = 0 will lead to complete stagnation in the sense that there is an

14A demonstration is in Appendix B.
15Obviously, the ultimate effects of the shock tend to be very different in the two models.
16There is an ongoing debate about this and similar empirical issues, see the course

website under Supplementary Material.
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upper bound on  that is never transcended. The productivity-driving fac-

tor, net investment, dries out. Even if there is an incentive to maintain the

capital stock, this does not require positive net investment and so learning

tends to stop. The productivity-driving factor, net investment, dries out.

When learning is associated with gross investment, however, learning

continues because even when net investment is vanishing, gross investment

remains positive because there is generally an incentive to maintain the cap-

ital stock. Thereby sustained learning is generated. In turn, this tends to

induce more investment than needed to replace wear and tear and so cap-

ital accumulates, although at a declining rate. The diminishing marginal

returns to capital are countervailed by the rising productivity of investment

goods due to learning. We get permanent though diminishing growth, that

is,  →∞ for →∞ at the same time as  → 0 but   0 remains true.

Arithmetic growth,  = 0 +  with   0 is an example. More generally,

as mentioned in Section 13.3.3, quasi-arithmetic growth tends to arise.

It is similar in the learning-by-doing examples of sections 13.1 and 13.4,

where learning is simply associated with producing. Learning continues even

if the capital stock is just upheld.

Another issue is whether there exist factors that in spite of  = 0 (or,

to be more precise, in spite of  → 0 as projected by the United Nations

to happen within a century from now (United Nations, 2013)) may replace

the growth-supporting role of population growth under semi-endogenous pa-

rameter conditions like   1. In Section 10.5 of Chapter 10 we indicated

scepticism that human capital accumulation would be able to do that. But

both urbanization and the evolution of information and communication tech-

nologies seem likely for a long time to at least help in that direction.

13.5.3 Weak and strong scale effects

Romer’s learning-by-investing hypothesis (where the learning parameter equals

1) implies a problematic (strong) scale effect. When embedded in a Ramsey

set-up, the model generates a time path along which

 =  =  =
1


(1(1 )−  − )

From this follows not only standard results for fully endogenous growth mod-

els, such as




 0




 0
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but also17




=
1


12(1 )  0 (13.32)

This is because in this model the rate of return, 1(1 )−  depends (posi-

tively) on  Interpreting the size (“scale”) of the economy as measured by

the size,  of the labor force, we call such an effect a scale effect. To distin-

guish it from another kind of scale effect, it is useful to name it a scale effect

on growth or a strong scale effect.

Scale effects can be of a less dramatic form. In this case we speak of a

scale effect on levels or a weak scale effect. This form arises when the learning

parameter is less than 1. We thus see from (13.31) that in Arrow’s model

of learning-by-investing the steady state growth rate is independent of the

size of the economy. Consequently, in Arrow’s model there is no strong scale

effect. There is, however, a (positive) scale effect on levels in the sense that

along a steady state growth path,



0
 0 (13.33)

This says the following. Suppose we consider two closed economies char-

acterized by the same parameters, including the same 18 The economies

differ only w.r.t. initial size of the labor force. Suppose both economies are

in steady state. Then, according to (13.33), the economy with the larger

labor force has, for all  larger output per unit of labor. The background is

the positive relationship between the labor efficiency index,  and aggregate

cumulative (net) investment,

 = 
 

which is due to learning and knowledge spillovers across firms. Thus, a given

level of per capita investment increases labor productivity more in a larger

economy (where ̇ will be larger) than in a smaller economy.

More generally, the fundamental background is that technical knowledge

is a non-rival good − its use by one firm does not (in itself) limit the amount
of knowledge available to other firms.19 In a large economic system, say an

integrated set of open economies, more people benefit from a given increase

in knowledge than in a small economic system. At the same time the per

17Here we use that a neoclassical production function  () with CRS satisfies the

“direct complementarity condition” 12  0
18Remember that in contrast to the Romer model, Arrow’s model allows   0
19By patent protection, secrecy, and copyright some aspects of technical knowledge are

sometimes partially excludable, but that is another matter. Excludability is ignored in our

simple learning-by-doing and learning-by-investing models.
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capita cost of creating the increase in knowledge is less in the large system

than in the small system.

To prove (13.33), note that along a steady state path

 ≡ ̃ = ̃∗ = (̃∗) = (̃∗)
  (13.34)

where

 ≡ ̃ = ̃∗ = ̃∗
 

Solving this equation for  gives

 = (̃
∗)

1(1−) = (̃∗0
)1(1−)

Substituting this into (13.34), we get

 = (̃∗)(̃∗0
)(1−) (13.35)

from which follows



0
=



1− 
(̃∗)(̃∗)(1−)[(1−)]−10 =



1− 



0
 0 (13.36)

since ̃∗ is independent of 0 This confirms (13.33). The scale effect on 
also gives scope for higher per capita consumption the higher is 0

The scale effect on levels displayed by (13.36) is increasing in the learn-

ing parameter  everything else equal. When  = 1 the scale effect is so

powerful that it is transformed into a scale effect on the growth rate.

13.5.4 Discussion

Are there good theoretical and/or empirical reasons to believe in the existence

of (positive) scale effects on levels or perhaps even on growth in the long run?

Let us start with some theoretical considerations.

Theoretical aspects

From the point of view of theory, we should recognize the likelihood that

offsetting forces are in play. On the one hand, there is the problem of limited

natural resources. For a given level of technology, if there are CRS w.r.t.

capital, labor, and land (or other natural resources), there are diminishing

returns to capital and labor taken together. In this Malthusian perspective,

an increased scale (increased population) results, everything else equal, in

lower rather than higher per capita output, that is, a negative scale effect

should be expected.
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On the other hand, there is the anti-Mathusian view that repeated im-

provements in technology tend to overcome, or rather more than overcome,

this Malthusian force, if appropriate socio-economic conditions are present.

Here the theory of endogenous technical change comes in by telling us that

a large population may be good for technical progress if the institutions in

society are growth-friendly. A larger population breeds more ideas, the more

so the better its education is; a larger population also promotes division of la-

bor and larger markets. This helps the creation of new technologies or, from

the perspective of an open economy, it helps the local adoption of already

existing technologies outside the country. In a less spectacular way it helps

by furthering day-by-day productivity increases due to learning by doing and

learning by watching. The non-rival character of technical knowledge is an

important feature behind all this. It implies that output per capita depends

on the total stock of ideas, not on the stock per person. This implies −
everything else equal − an advantage of scale.
In the models considered so far in this course, natural resources and the

environment have been more or less ignored. Here only a few remarks about

this limitation. The approach we have followed is intended to clarify certain

mechanisms − in abstraction from numerous things. The models in focus

have primarily been about aspects of an industrialized economy. Yet the

natural environment is always a precondition. A tendency to positive scale

effects on levels may be more or less counteracted by congestion and aggra-

vated environmental problems ultimately caused by increased population and

a population density above some threshold.

What can we say from an empirical point of view?

Empirical aspects

First of all we should remember that in view of cross-border diffusion of ideas

and technology, a positive scale effect (whether weak or strong) should not be

seen as a prediction about individual countries, but rather as pertaining to

larger regions, nowadays probably the total industrialized part of the world.

So cross-country regression analysis is not the right framework for testing

for scale effects, whether on levels or the growth rate. The relevant scale

variable is not the size of the country, but the size of a larger region to which

the country belongs, perhaps the whole world; and multivariate time series

analysis seems the most relevant approach.

Since in the last century there has been no clear upward trend in per

capita growth rates in spite of a growing world population (and also a growing

population in the industrialized part of the world separately), most econo-

mists do not believe in strong scale effects. But on the issue of weak scale
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effects the opinion is definitely more divided.

Considering the very-long run history of population and per capita income

of different regions of the world, there clearly exists evidence in favour of

scale effects (Kremer, 1993). Whether advantages of scale are present also

in a contemporary context is more debated. Recent econometric studies

supporting the hypothesis of positive scale effects on levels include Antweiler

and Trefler (2002) and Alcalá and Ciccone (2004). Finally, considering the

economic growth in China and India since the 1980s, we must acknowledge

that this impressive performance at least does not speak against the existence

of positive scale effects on levels.

Acemoglu seems to find positive scale effects on levels plausible at the

theoretical level (pp. 113-114). At the same time, however, later in his book

he seems somewhat skeptical as to the existence of empirical support for this.

Indeed, with regard to the fact that R&D-based theoretical growth models

tend to generate at least weak scale effects, Acemoglu claims: “It is not clear

whether data support these types of scale effects” (Acemoglu, 2009, p. 448).

My personal view on the matter is that although we should, of course,

recognize that offsetting forces, coming from our finite natural environment,

and a lot of uncertainty are in play, it seems likely that at least up to a

certain point there are positive scale effects on levels.

Policy implications If this holds true, it supports the view that inter-

national economic integration is generally a good idea. The concern about

congestion and environmental problems, in particular global warming, should

probably, however, preclude recommending governments and the United Na-

tions to try to promote population growth.

Moreover, it is important to remember the distinction between the global

and the local level. The  in the formula (13.31) refers to a much larger re-

gion than a single country. No recommendation of higher population growth

in a single country is implied by this theoretical formula. When discussing

economic policy from the perspective of a single country, all aspects of rel-

evance in the given local context should be incorporated. For a developing

country with limited infrastructure and weak educational system, family-

planning programs and similar may in many cases make sense from both a

social and a productivity point of view (cf. Dasgupta, 1995).

13.6 Appendix

A. Balanced growth in the embodied technical change model with

investment-specific learning
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In this appendix the results (13.16), (13.17), (13.18), and (13.19) are derived.

The model is:

 = 1− 0    1 (13.37)

 =  −  (13.38)

̇ =  −  (13.39)

 =

µZ 

−∞


¶

 0   ≤ ̄ (13.40)

 = 0
  ≥ 0 (13.41)

Consider a BGP. By definition,  and  then grow at constant rates, not

necessarily positive. With  =  constant and 0    1 (13.37) gives

 =  =  + (1− ) (13.42)

a constant. By (13.39),  =  

−  showing that  is constant along

a BGP. Hence,

 +  =   (13.43)

and so also  must be constant. From (13.40) follows that  = −1
Taking logs in this equation and differentiating w.r.t.  gives

̇


= −1


 +  = 0

in view of constancy of  Substituting into (13.43) yields (1 + ) =  

which combined with (13.42) gives

 =
(1− )(1 + )

1− (1 + )


which is (13.16). In view of  =  =  = ( + ) = (1 + ) the

results (13.17), (13.18), and (13.19) immediately follow.

B. Big bang a hair’s breadth from the AK

Here we shall prove the statement in Section 13.5.1: a hair’s breadth from

the AK assumption the technology is so productive as to generate infinite

output in finite time.

The simple AK model as well as reduced-form AK models end up in an

aggregate production function

 = 
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We ask the question: what happens if the exponent on  is not exactly 1,

but slightly above. For simplicity, let  = 1 and consider

 =   = 1 +   ' 0

Our claim is that when   1 a constant saving rate,  will generate infinite

 and  in finite time.

We embed the technology in a Solow-style model with  =  = 0 and

get:

̇ ≡ 


=  0    1 (0) = 0  0 given (13.44)

We see that not only is ̇  0 for all  ≥ 0 but ̇ is increasing over time

since  is increasing. So, for sure,  →∞ but how fast?

One way of answering this question exploits the fact that ̇ =  is

a Bernouilli equation and can be solved by considering the transformation

 = 1− as we do in Chapter 7 and Exercise III.3. Closely related to

that method is the approach below, which may have the advantage of being

somewhat more transparent.

To find out, note that (13.44) is a separable differential equation which

implies

− = 

By integration, Z
− =

Z
+ C ⇒

−+1

1− 
= + C (13.45)

where C is some constant, determined by the initial condition(0) = 0 For

 = 0 (13.45) gives C = −+1
0 (1−) Consequently, the solution  = ()

satisfies
0

1−

− 1 −
()1−

− 1 =  (13.46)

As  increases, the left-hand side of this equation follows suit since ()

increases and   1 There is a ̄  ∞ such that when  → ̄ from below,

() →∞ Indeed, by (13.46) we see that such a ̄ must be the solution to

the equation

lim
()→∞

µ
0

1−

− 1 −
()1−

− 1
¶
= ̄
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Since

lim
()→∞

µ
0

1−

− 1 −
()1−

− 1
¶
=

0
1−

− 1 

we find

̄ =
1



0
1−

− 1 

To get an idea about the implied order of magnitude, let the time unit be

one year and  = 01 00 = 1−
0 = 2 and  = 105 Then ̄ = 400 years.

So the Big Bang ( =∞) would occur in 400 years from now if  = 105

As Solow remarks (Solow 1994), this arrival to the Land of Cockaigne

would imply the “end of scarcity”, a very optimistic perspective.

In a discrete time setup we get an analogue conclusion. With airframe

construction in mind let us imagine that the learning parameter  is slightly

above 1. Then we must accept the implication that it takes only a finite

number of labor hours to produce an infinite number of airframes. This is

because, given the (direct) labor input required to produce the ’th in a

sequence of identical airframes is proportional to − the total labor input
required to produce the first  airframes is proportional to 11 +12 +13

+  + 1 Now, the infinite series
P∞

=1 1
 converges if   1 As a

consequence only a finite amount of labor is needed to produce an infinite

number of airframes. “This seems to contradict the whole idea of scarcity”,

Solow observes (Solow 1997, p. 8).
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Chapter 14

The lab-equipment model

In innovation-based endogenous growth models, technical knowledge and its

intentional creation is at the center of attention. Recall the definition of

technical knowledge as a list of instructions about how different inputs can

be combined to produce a certain output. For example it could be a principle

of chemical engineering. Such a list or principle can be copied on the black-

board, in books, in journals, on floppy disks etc. and can, by its nature, be

available and used over and over again at arbitrarily many places at the same

time. Thus, technical knowledge is a non-rival good.1 At least temporarily,

however, new technical knowledge may be temporarily excludable by patents,

secrecy, or copyright so that the innovator can maintain a monopoly on the

commercial use of new technical knowledge for some time.

The lab-equipment model (based on Paul Romer, AER 1987) is the sim-

plest model within the class of models focusing on horizontal innovations.

This term refers to inventions of new types of goods, i.e., new “technical

designs” in the language of Romer. The present model considers invention of

new technical designs for input goods, but a more general framework would

include new types of consumption goods as well.2 The rising number of vari-

eties of goods contributes to productivity via increased division of labor and

specialization in society. Thus this class of models is known as “increasing-

variety models”.

In Acemoglu’s Chapter 13, Section 13.1, the lab-equipment model is pre-

sented in a version containing two arbitrary parameter links. In the present

chapter we present the lab-equipment model without these parameter links.

1Even though a particular medium on which a copy of a list of inctructions is placed

is a rival good, it can usually be reproduced at very low cost in comparison with the cost

of making additions to the stock of technical knowledge.
2For a model where the new goods are new consumption goods, see Acemoglu, Chapter

13, Section 13.4.
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In addition, the presentation below goes into detail with the national income

aspects of the model and with the interaction between the financing needs of

R&D labs and the saving by the households.

14.1 Overview of the economy

We consider a closed market economy. The activities in the economy can be

subdivided into three sectors:

1. The basic-goods sector which operates under conditions of perfect com-

petition and free entry.

2. The specialized intermediate goods sector which operates under condi-

tions of monopolistic competition.

3. The R&D sector inventing new technical designs and operating under

conditions of perfect competition and free entry.

All produced goods are non-durable goods. There is no physical capital

(durable produced means of production) in the economy. All firms are profit

maximizers.

14.1.1 The sectorial production functions

In the basic-goods sector, sector 1, firms combine labor and  different inter-

mediate goods to produce a homogeneous output good. The representative

firm in the sector has the production function

 = 

Ã
X
=1


1−
!


    0 0    1 (14.1)

where  is output in the sector,  is a positive constant,  is input of

intermediate good  ( = 1 2  )  is the number of different types

of intermediate goods available at time  and  is labor input. To avoid

arbitrary parameter links, we do not introduce Acemoglu’s assumption that

the technical coefficient  happens to equal 1(1− ) Labor is not used in

the two other sectors.

Basic goods have three alternative uses. They can be used a) for consump-

tion, ; b) as raw material,  to be converted into specialized intermediate

goods (in Danish “halvfabrikata”); and c) as investment,  in R&D. Hence,

 =  + +  (14.2)
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In the specialized intermediate-goods sector, sector 2, at time  there are

 monopoly firms, each of which supplies a particular already invented

intermediate good. Once the technical design for intermediate good  has

been invented in sector 3 (see below), the inventor takes out (free of charge)

a perpetual patent on the commercial use of this design and enters sector

2 as an innovator. Given the technical design, the innovator can instantly

transform a certain number of basic goods into a proportional number of

intermediate goods of the invented specialized kind. Specifically, at every

time  it takes  units of the basic good to supply  units of intermediate

good  :

 units of the basic good y  units of intermediate good  (14.3)

where  is a positive constant. We may think of the new technical design

as a computer code which, once in place, just requires pressing a key on

a computer in order activate the desired number of transformations. The

computer cost is negligible and the transformation requires no labor.

Thus,  is both the marginal and the average cost of supplying the inter-

mediate good . This transformation technology applies to all intermediate

goods,  = 1 2  , and all . Hence, the  in (14.2) satisfies

 ≡ 

X
=1

 ≡  (14.4)

where  is the total supply of intermediate goods, all of which are used up

in the production of basic goods. Apart from introducing a specific symbol,

 for this total supply of intermediate goods, our notation is the same as

Acemoglu’s, Chapter 13. Yet, to help intuition, we think of variety as some-

thing discrete rather than a continuum and use summation across varieties

as in (14.1) and (14.4) whereas Acemoglu’s uses integrals.

The model gives a “truncated” picture of the R&D sector, sector 3, as

fictional research labs that transform incoming basic goods (now considered

as R&D “equipment”) into a random stream of research successes. A re-

search success is an invention of a technical design (blueprint) for making

a new specialized intermediate good. There is free entry to R&D activity.

The uncertainty associated with R&D is “ideosyncratic” (unsystematic, di-

versifiable) and the economy is “large”. On average it takes an input flow

of 1 units of the basic good, and nothing else, to obtain one successful

R&D outcome (an invention) per time unit. By the law of large numbers,

the aggregate number of new technical designs (inventions) in the economy

per time unit equals the expected number. Ignoring indivisibilities, we can
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therefore write

̇ ≡ 


=    0  constant, (14.5)

where, as noted above,  is the aggregate research input per time unit and 

is “research productivity”. Since the payoff to the outlay,  on R&D comes

in the future, this outlay makes up an investment. Although the invested

basic goods are non-durable goods, the resulting new technical knowledge is

durable.

At first sight this whole production setup may seem peculiar. In sector 2

as well as sector 3, parts of the output from sector 1 is used as input to be

transformed into specialized intermediate goods and new technical designs,

respectively. But there is no labor input in sector 2 and sector 3. Formulating

the three kinds of production in the economy in this manner is a convenient

way of saving notation and is typical in this type of models.3 A more realistic

full-fledged description of the production structure would start with a pro-

duction function, with both labor and intermediate goods as inputs, in each

sector. Then an assumption could be imposed that the production functions

are the same, apart from allowing the total factor productivity to vary across

the sectors (only if 1 =  = 1 would the total factor productivities be the

same). Setting the model up that way would fit intuition better but would

also require a more cumbersome notation. Anyway, the conclusions would

not be changed.

Before considering agents’ behavior, it may be clarifying to do a little

national income accounting.

14.1.2 National income accounting

The production side Using the basic good as our unit of account, all the

specialized intermediate goods will in equilibrium have the same price  (see

Section 14.3.2). We therefore have:

value added in sector 1 =  −  (14.6)

value added in sector 2 =  −

value added in sector 3 = ̇ − 

3At the same time it is the lack of direct research labor in sector 3 that motivates the

term “lab-equipment model”. And it is the multi-faceted use of output from sector 1 that

motivates the term “basic goods”.
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where  is the market value of an innovation and turns out to be independent

of time. The aggregate value added, or net national product, is

 =  −  +  − + ̇ − 

=  −  +  −  + ̇ −  =  −  (14.7)

where the last equality comes from ̇ −  = 0 in equilibrium due to

CRS and perfect competition in sector 3. Since there is no capital that

depreciates in the economy, gross national product and net national product

are the same.

Notice that the production function for  is a production function neither

for  nor even for value added in sector 1, but simply for the quantity

of produced goods in that sector. It is typical for a multi-sector model with

non-durable intermediate goods that the production functions in the different

sectors do not describe value added in the sector but the produced quantity.

The income side There are two kinds of income in the economy, wage

income and profits. The time- real wage per unit of labor is denoted 

and the profit per time unit earned by each monopoly firm in sector 2 is

denoted  (in equilibrium it turns out to be the same for all the monopoly

firms). Profits are immediately paid out to the share owners. Owing to

perfect competition and CRS in both sector 1 and sector 3, there is no profit

generated in these sectors. The income side of NNP is thereby

 =  + 

since the number of monopoly firms is  Aggregate income is used for

consumption and saving,

+  =  + 

The uses of NNP By (14.7) and (14.4), final output can be written

 =  −  =  − =  +  (14.8)

that is, as the sum of aggregate consumption and investment. Aggregate

saving is

 = +  −  =  −  = 

by (14.8), reflecting that aggregate saving in a closed economy equals aggre-

gate investment, the R&D expense, .
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14.1.3 The potential for sustained productivity growth

Already the production function (14.1) conveys the basic idea of an “increasing-

variety model”. In equilibrium we get  =  for all  since the intermediate

goods enter symmetrically in this production function and end up having the

same price (see below). Thereby, (14.1) becomes

 = 

 

1−
 = ()


1−
 

1−
 ≡ (  )

where  is the total input of intermediate goods. We see that





|=const. = 2(  )  0

This says that for a given total input,  of intermediate goods, and a

given  the higher the number of varieties (with which follows a lower  of

each intermediate since  is given), the more productive is this total input

of intermediate goods. “Variety is productive”. There are “gains to division

of labor and specialization in society”. The number of input varieties, 

can thus be interpreted as a measure of the level of productivity-enhancing

knowledge.4 Note also that the function  displays a form of increasing

returns to scale with respect to three “inputs”: intermediate goods, 

variety,  and labor, 

14.2 Households and the labor market

There are  households, all alike, with infinite horizon and preference para-

meters   0 and . Each household supplies inelastically one unit of labor

per time unit. Let  denote per capita consumption  A household

chooses a plan ()
∞
=0 to maximize

0 =

Z ∞

0


1−

1− 
− s.t.

 ≥ 0

̇ =  +  −  0 given,

lim
→∞


−  

0
 ≥ 0 (14.9)

4There exists a related class of models where growth (measured in terms of produced

economic value) is driven by increasing variety of consumption goods rather than increasing

variety of input goods. These models are sometimes called “love of variety” models. See

Acemoglu, Section 13.4.
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where  equals per capita financial wealth. In equilibrium

 =





because the only asset with market value in the economy is equity shares in

the monopoly firms the value of which equals the market value per technical

designs multiplied by the number of technical designs available. As accounted

for in Section 14.3.3, the households can fully diversify any risk so as to obtain

the rate of return,  with certainty on all their saving.

The first-order conditions for the consumption-saving problem lead to the

Keynes-Ramsey rule
̇


=
1


( − ) (14.10)

The necessary transversality condition is that the No-Ponzi-Game condition

(14.9) is satisfied with equality.

The labor market

There is perfect competition in the labor market. For every  the supply of

labor is  a constant. The demand for labor,  comes from the basic-goods

sector (as the two other sectors do not use labor). In equilibrium,

 =  (14.11)

14.3 Firms’ behavior

To save notation, in the description below, we take (14.11) for granted.

14.3.1 The competitive producers of basic goods

The representative firm in the basic-goods sector maximizes profit under

perfect competition:

max
12

Π = 

Ã
X
=1


1−


!
 −

X
=1

 − . (14.12)

The first-order conditions are, for every 

Π = −  = −  = 0 (14.13)

and

Π =  −  = (1− )
−
  −  = 0  = 1 2     
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This gives the demand for intermediate good :

 =

µ


(1− )

¶−1
= [(1− )]

1


−1
   = 1 2     

(14.14)

The price elasticity of demand, E for intermediate good  is thus −1
This reflects that the elasticity of substitution between14.17n the specialized

intermediate goods in (14.12) 1(1−(1−)) = 1 This elasticity is above 1.
Hence, while the specialized intermediate goods are not perfect substitutes,

they are sufficiently substitutable for a monopolistic competition equilibrium

in sector 2 to exist, as we shall now see.

14.3.2 The monopolist suppliers of intermediate goods

In principle the decision problem of monopolist  is the following. Subject to

the demand function (14.14), a price and quantity path (  )
∞
= should

be chosen so as to maximize the value of the firm (the present value of future

cash flows):

 =

Z ∞




−  


 (14.15)

where  is the profit at time  

 = ( − 1)  (14.16)

and where the discount discount rate is  the risk-free interest rate.

Since there is in this intertemporal problem no interdependence across

time, the problem reduces to a series of static problems, one for each  :

max


 = ( − 1)
s.t. (14.14).

To solve for , we could substitute the constraint into the expression for ,

take the derivative w.r.t.  and then equalize the result to zero.

Alternatively, we may use the rule that the profit maximizing price of

a monopolist is the price at which marginal revenue equals marginal cost,

 = This is the more intuitive route we will take. We have

 (= total revenue) =  = ()

where () denotes the maximum price at which the amount  can be sold.
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Thus, by the product rule,

 =



= () + 

0
() = 

µ
1 +




E

¶
≡ 

µ
1 +

1

E

¶
= 

µ
1 +

1

−1
¶
=  (1− ) 

from (14.14). Marginal cost is  =  So the profit maximizing price is

 =


1− 
≡    (14.17)

Owing to monopoly power, the price is above ; the mark-up (or “degree

of monopoly”) is 1(1− ) As expected, a lower absolute price elasticity of

demand, 1 results in a higher mark-up.

Since the elasticity of demand w.r.t. the price is independent of the

quantity demanded and since is constant, the chosen price is time inde-

pendent. Moreover the price is the same for all  = 1 2      . Substitution

into (14.14), (14.16), and (14.15), gives

 =

µ
(1− )2



¶1
 ≡  for all  (14.18)

 = ( − ) = (


1− 
− ) =



1− 
 ≡  for all  and(14.19)

 =

Z ∞




−  


 = 

Z ∞



−
 

 ≡  for all  (14.20)

respectively.  and  are constant over time. We see that all the monopoly

firms sell the same quantity  earn the same profit,  and have the same

market value,  In addition, (14.18) and (14.19) show that  and  are

constant over time. We will soon see that so is 

The reduced-form aggregate production function in the economy

Note that although we have skipped the two arbitrary parameter links,  =

1(1 − ) and  = 1 −  applied by Acemoglu, the resulting expressions

for    and  are tractable anyway.
5 So is the implied result for gross

5With his two parameter links Acemoglu obtains  = (1− )−2 from which follows

the simple formulas  =  and  =  for all  and all  Although these formulas

are, of course, simpler, they are “dangerous” when one wants to calculate, for instance,

 in order to assess the effect of a rise in  (the output elasticity w.r.t. labor) on

the monopoly profit .
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output in the basic-goods sector:

 = 
1− = 

µ
(1− )2



¶ 1−


 ≡ ̂ (14.21)

where we have inserted (14.18) into (14.1) and defined

̂ ≡ 

µ
(1− )2



¶ 1−




The value added in the sector is

 −  = ̂−  = (̂− )

where  and  are constants given in (14.17) and (14.18), respectively.

So both gross and net output in the basic-goods sector are proportional

to the number of intermediate-goods varieties (in some sense an index of the

endogenous level of technical knowledge in society). Moreover, a similar pro-

portionality will hold for the net national product,  . Indeed, according

to (14.8),

 =  −  = ̂−  = (̂− ) (14.22)

This is a first signal that the model is likely to end up as a reduced-form AK

model with  (“knowledge capital”) acting as the capital variable.

Now to the R&D firms of sector 3.

14.3.3 R&D firms

In Section 1.1 we expressed the aggregate number of new technical designs

(inventions) per time unit this way:

̇ ≡ 


=    0  constant, (*)

where  is the R&D investment (in terms of basic goods) and  is “research

productivity”. What is the microeconomic story behind this?

There is a “large” number of R&D labs and free entry and exit. All R&D

labs operate under the same conditions with regard to “research technol-

ogy”. The following simplifying assumptions are made. The random R&D

outcomes are:

(i) uncorrelated across time (no memory),
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(ii) uncorrelated across the R&D labs,

(iii) uncorrelated with any variable in the economy, and

(iv) there is no overlap in research.

The “no memory” assumption, (i), ignores learning over time within the

lab which seems a quite drastic assumption. Assumption (ii) seems dras-

tic as well, since some learning across R&D labs is likely. In combination,

the assumptions (i), (ii), and (iii) sum up to what is called “ideosyncratic”

uncertainty. The “no overlap” assumption, (iv), amounts to assuming that

inventions can go in so many directions that the likelihood of different re-

search labs chasing and making the same invention is negligible. So we can

find the aggregate increase in “knowledge” simply by summing the contribu-

tions by the individual research labs.

The “research technology”

The “research technology” faced by the individual R&D labs can be described

as a Poisson process. The expected number of successful research outcomes

(inventions) per time unit is proportional to the flow input of basic goods

into the lab.

Consider an arbitrary R&D lab,  at time   = 1 2      where  is

“large”. Let  be the amount of basic goods the lab devotes to research per

time unit. There is an instantaneous success arrival rate,  per unit invested

such that, given the research flow  the success arrival rate (= expected

number of inventions per time unit) at time , is

 =    0 (14.23)

The Poisson parameter, , measures “research productivity”. The interpre-

tation is that if  denotes the number of success arrivals in the time interval

( +∆]  then

 = lim
∆→0

( |∆)

∆
 (14.24)

where  is the conditional expectation operator at time .

At the aggregate level, since, by assumption, there is no overlap in re-

search,

∆

∆
=

P
()

∆
≈



³P
 

¯̄
()


=1∆

´
∆

=
X


( |∆)

∆

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Appealing to the law of large numbers, we replace “≈” by “=” ignore indi-
visibilities, and take limits:

̇ = lim
∆→0

∆

∆
=
X


lim
∆→0

( |∆)

∆
=
X


 = 
X


 = 

(14.25)

which is (*). The third equality in (14.25) comes from (14.24), the fifth from

(14.23), and the last from the definition of aggregate R&D input, .

The financing of R&D

There is a time lag of random length between a research lab’s outlay on R&D

and the arrival of a successful research outcome, an invention. During this

period, which in principle has no upper bound, the R&D lab is incurring

sunk costs and has no revenue at all. R&D is thus risky and continuous

refinancing is needed until the research is successful.

Under certain conditions, the required financing of R&D will nevertheless

be available. To clarify this, we first consider the situation after a successful

research outcome.

When a successful research outcome arrives, the inventor takes out (free

of charge) a perpetual patent on the commercial use of the invention. This

gives the invention the market value,  the same for all research labs, cf.

(14.20). The inventor can realize this market value either by licensing the

right to use the invention commercially or by directly herself entering sector

2 as a monopolist supplier of the new good made possible by the invention.

To fix ideas, we assume the latter always takes place.

We make two claims, one relating to a single R&D lab, the other relating

to the “loanable funds” market.

CLAIM 1 Given the market value,  of an invention, the expected payoff

per time unit per unit of basic goods invested in R&D is 

Proof Consider an arbitrary R&D lab  The probability of a successful re-

search outcome in a “small” time interval ( +∆] is approximately ∆

And the probability that more than one successful research outcome arrives

in the time interval is negligible. We thus have

 (R&D payoff |∆) ≈ ∆+ 0 · (1− ∆) = ∆ (14.26)

Substituting (14.23) into this and dividing through by ∆ gives

 (R&D payoff |∆)

∆
≈ ∆

∆
= 
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Letting ∆ → 0 “≈” can in the limit be replaced by “=”, thus confirming
the claim. ¤

Now consider the demand and supply in the “loanable funds” market.

CLAIM 2 Let
P

  =  (i) In any equilibrium in the “loanable funds”

market, whether with  = 0 or   0 we have

 ≤ 1 (14.27)

(ii) In any equilibrium in the “loanable funds” market where   0 we have

 = 1 (14.28)

Proof. (i) Suppose that, contrary to (14.27), we have   1 By Claim 1,

the expected R&D payoff per time unit per unit cost of R&D is then higher

than the R&D cost and so expected pure profit by doing R&D is positive.

The flow demand for finance to R&D firms will therefore be unbounded.

The flow supply of finance, ultimately coming from household saving, is,

however, bounded and thus there is excess demand for funds and thereby

not equilibrium.6 Thus   1 can be ruled out as an equilibrium and this

leaves (14.27) as the only possible state in an equilibrium.

(ii) Consider an equilibrium with   0 Since it is an equilibrium,

(14.27) must hold. By way of contradiction, let us imagine there is strict

inequality in (14.27). Then all R&D firms will choose  = 0 and we reach

the conclusion that  = 0 thus contradicting that   0 So there can

not be strict inequality in (14.27) and we are left with (14.28) as the only

possible state in an equilibrium with   0 ¤

It follows from Claim 2 that when the market value of inventions satisfy

(14.28), the cost of doing R&D is on average exactly covered by the expected

payoff. In return for putting one unit of account at the disposal of a research

lab, the household gets a payoff of  if the research turns out to be successful

and zero otherwise. In expected value the payoff is one unit of account. It is

as if the household buys a lottery ticket offered by the R&D lab to finance

it current R&D costs. The lottery prize consists of shares of stock giving

the right to the future monopoly profits if the current research is successful

within one time unit. The lottery is “fair” because the cost of participat-

ing equals the expected payoff. In spite of being risk averse (00()  0)

6For the sake of intuition, allow disequilibrium to exist in the very short run. Then

the excess demand for funds drives share prices down and the rate of return,  up, thus

lowering  (cf. (14.20)) until  = 1
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the households are willing to participate because the uncertainty is “ideo-

syncratic" and the economy is “large”. This allows the households to avoid

the risk by spreading their investment over a variety of R&D labs, i.e., by

diversifying their investment.

What is the size of the equilibrium real interest rate,  coming out of

this? This rate must satisfy the following no-arbitrage relation vis-a-vis the

instantaneous rate of return on shares in sector-2 firms supplying specialized

intermediate goods:

 =
 + 


 (14.29)

where  is the constant dividend (assuming all profit is paid out to the

share owners) and  is the capital gain (positive or negative) on holding

shares. As an implication of Claim 2, in an equilibrium with   0 the

market value of any invention is

 = 1 ≡ 

a constant. So  = 0 and (14.29) simplifies to

 =


1
=  ≡  (14.30)

where  is determined by (14.19). That is, along an equilibrium path with

  0 the interest rate is constant and determined by (14.30).

To ensure that   0 and thereby positive growth is present in the

economy, we need that the parameters are such that households do save.

In view of the Keynes-Ramsey rule, this requires    which in turn, by

(14.30), requires a sufficiently high research productivity

   (A1)

What ensures that household saving and R&D investment match each

other? Let aggregate financial wealth at time  be denoted A Then, in an

equilibrium with   0,

A ≡  =   =
1




In view of ̇ = , we therefore have

Ȧ =  ̇ =
1


̇ =

1


 =  (14.31)
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By definition, households’ aggregate saving, , equals the increase in finan-

cial wealth per time unit, i.e.,  = Ȧ
7 Substituting this into (14.31), we

see that the investment,  and saving,  are two sides of the same coin.

To understand that there are neither losers nor winners in this saving-

investment process, it may help intuition to imagine that all the saving,

∆ in a short time interval ( +∆] first goes to large mutual funds

which (without administrative costs). These mutual funds instantly use the

receipts to buy lottery tickets offered by R&D labs to cover current R&D

costs. For the mutual funds taken together this involves an exchange of

the outlay ∆ for shares giving the right to the future monopoly profits

associated with those research labs that turn out to be successful in the time

interval considered. By the law of large numbers the inventions by these labs

have exactly the same value as the outlay. Indeed, by (14.31), we have

 ̇∆ = ∆

From then on, holding shares in the monopolies supplying the newly invented

intermediate goods gives the normal rate of return in the economy,  A frac-

tion of the R&D labs have not been successful in the time interval considered

(and the financing to them has thereby been lost). But others have been

successful and made an invention. The unequal occurrence of failures and

successes across the many different R&D labs is neutralized when it comes

to the payout to the customers, i.e., the households who have deposits in the

mutual funds.

As an alternative financing setup, suppose that the R&D labs offer project

contracts of the following form. A contract stipulates that the investor pays

the lab 1 units of account per time unit until a successful research outcome

arrives. The corresponding liability of the lab, now an entrepreneur in sector

2, is that the permanent profit stream obtained on the invention goes to

the investor. By Claim 1, such R&D contracts have no market value. But

after a successful R&D outcome there is a capital gain in the sense that

the contracts become shares in the hands of the investors giving permanent

dividends equal to  per time unit and thus having a market value equal to

 = 1 forever.

Note that as the model is formulated, there is no value added in the

R&D sector, as was also mentioned in connection with (14.7) in Section

14.1.2. Instead, the value that at the aggregate level comes out as  ̇ is

just a costless one-to-one instantaneous transformation of  which is a part

of the value added created in the basic-goods sector. It is ultimately this

value added that households’ saving pays for.

7In this model households’ gross saving equals their net saving since there are no assets

that depreciate.
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14.4 General equilibrium of an economy sat-

isfying (A1)

The assumption (A1) ensures a research productivity high enough to provide

a rate of return exceeding the rate of time preference and thereby induce the

household saving needed for R&D investment,  to be positive. And from

(14.30) we know that along an equilibrium path with   0 and therefore

̇  0, the interest rate is a constant,  Then the Keynes-Ramsey rule,

(14.10), yields

̇


=
1


( − ) =

1


( − ) ≡  (14.32)

where  is given (14.19). To ensure that the path considered with ̇  0 is

really capable of being an equilibrium path, we need the parameter restriction

  (1− ) (A2)

since otherwise the transversality condition of the household could not be

satisfied.8

From (14.21) and (14.22) we know that along an equilibrium path, gross

as well as net output in the basic-goods sector are proportional to the stock

of “knowledge capital”,  Moreover, the analysis of the previous section

shows that the preliminary national income accounting sketched in Section

14.1.2 is correct. Hence, by (14.22), also the aggregate value added in the

economy as a whole, NNP, is proportional to  Indeed,

 =  −  = ̂−  = (̂− ) ≡ ̄

So the model does indeed belong to the class of reduced-form AK models.

14.4.1 The balanced growth path

From the general theory of reduced-form AK models with Ramsey house-

holds, we know that the “capital” variable of the model, here “knowledge

capital”,  will grow at the same constant rate as per capita consumption

already from the beginning. In the present case the latter growth rate is

given by (14.32). And

̇ =  = ( − ) = (̄ − ) (14.33)

8Another aspect of this is that (A2) ensures that the utility integral 0 is bounded and

thereby allows maximization in the first place.
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so that

 ≡ ̇



= 

µ
̄− 



¶


As  =  this implies

 = (̄− 


),

for all  ≥ 0 Hence, the so far unknown initial per capita consumption is

0 = (̄− 


)
0




Labour productivity can be defined as

 ≡  = ̄ (14.34)

hence  =  =  ≡ ∗
Thus the model generates fully endogenous balanced growth and there

are no transitional dynamics.

14.4.2 Comparative analysis

∗ = −1  0. Higher impatience ⇒ lower propensity to save ⇒
less investment in R&D.

∗  0. Higher desire for consumption smoothing ⇒ attempt to

transform some of the higher future consumption possibility into higher con-

sumption today ⇒ lower saving ⇒ less investment in R&D.

∗  0. Higher factor productivity ⇒ higher return on saving ⇒
more saving at the aggregate level (the negative substitution effect and wealth

effect on consumption dominates the positive income effect) ⇒ more invest-

ment in R&D. As usual the constant  need not have a narrow technical

interpretation. It can reflect the quality of the institutions in society (rule of

law etc.) and the level of “social capital”.9

∗  0. Higher R&D productivity results in more R&D investment

and higher growth.

∗  0. A larger population  implies lower per capita cost, 

associated with producing a given amount of new technical knowledge which

in turn improves productivity for all members of society. This is an impli-

cation of knowledge being a nonrival good. In a larger society, with larger

markets, the incentive to do R&D is therefore higher. In the present version

9By social capital is meant society’s stock of social networks and shared norms that

support and maintain confidence, credibility, trust, and trustworthiness.
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of the R&D model the result is a higher growth rate permanently. This is a

manifestation of the controversial strong scale effect (scale effect on growth),

typical for the “first-generation” innovation-based growth models with fully

endogenous growth. This strong scale effect, as well as the fully endogenous

growth property, is due to a “hidden” knife-edge condition in the specification

of the “growth engine”, essentially a knife-edge condition in the production

function for basic goods, cf. the general discussion in Chapter 13 and Exercise

VII.5.
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Chapter 15

Stochastic erosion of

innovator’s monopoly power

In this chapter we extend the lab-equipment model of Chapter 14 by adding

stochastic erosion of innovators’ monopoly power. The motivation is the

following.

The model of Chapter 14 assumed that the innovator had perpetual

monopoly over the production and sale of the new intermediate good. In

practice, by legislation patents are of limited duration, say 15 years. More-

over, it may be difficult to codify exactly the technical aspects of inventions,

hence not even within such a limited period do patents give 100% effective

protection. While the pharmaceutical industry rely quite much on patents,

in many other branches innovative firms use other protection strategies such

as concealment of the new technical design. In ICT industries copyright to

new software plays a significant role. Still, whatever the protection strategy

used, imitators sooner or later find out how to make very close substitutes.

To better accommodate these facts, the present chapter sets up a lab-

equipment model where competition in the supply of specialized intermediate

goods is more intense than in Chapter 14. For convenience we name the

model of Chapter 14 Model I. Compared with that model the only difference

in the new model is that the duration of monopoly power over the commercial

use of an invention is limited and uncertain. We name the resulting model

Model II. The notation is the same as in Model I. The analysis is related to

the brief discussion of the issues in Acemoglu’s Section 13.1.6 of his Chapter

13.

First a recapitulation of the technological aspects of the economy.
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CHAPTER 15. STOCHASTIC EROSION OF INNOVATOR’S

MONOPOLY POWER

15.1 The three production sectors

The technology of the economy is the same as in Model I. In the basic-goods

sector (sector 1) firms combine labor and  different intermediate goods to

produce a homogeneous output good. The representative firm in the sector

has the production function

 = 

Ã
X
=1


1−
!


    0 0    1 (15.1)

where ,  and  denote output of the firm, labor input, and input of

intermediate good , respectively, where  = 1 2  . This sector, as well

as the labor market, operate under perfect competition.

The aggregate output of basic goods is used partly for replacing the basic

goods,  used in the production of intermediate goods used up in the pro-

duction of basic goods, partly for consumption,  and partly for investment

in R&D, . Hence, we have

 =  +  +  (15.2)

In the intermediate-goods sector, sector 2, at time  there are monopoly

firms, each of which supplies a particular already invented intermediate good.

Once the technical design for intermediate good  has been invented in sector

3, the inventor enters sector 2 as an innovator. Given the technical design,

the innovator can instantly transform a certain number of basic goods into a

proportional number of intermediate goods of the invented specialized kind.

That is,

it takes  units of the basic good to supply  units of intermediate good 

(15.3)

where  is a positive constant. The transformation requires no labor. Thus,

 is both the marginal and the average cost of supplying the intermediate

good . This transformation technology applies to all intermediate goods,

 = 1 2  , and all . Hence, the  in (15.2) satisfies

 ≡ 

X
=1

 ≡  (15.4)

where  is the total supply of intermediate goods, all of which are used up

in the production of basic goods.

For a limited period after the invention has been made, through secrecy

or imperfect patenting the inventor maintains monopoly power over the com-

mercial use of the invention. The length of this period is uncertain, see below.
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In the R&D sector, sector 3, new “technical designs” (blueprints) for

making new specialized intermediate goods are invented. The uncertainty

associated with R&D is “ideosyncratic”. On average it takes an input of

1 units of the basic good, and nothing else, to obtain one successful R&D

outcome (an invention) per time unit. There is free entry to the R&D activ-

ity. Ignoring indivisibilities, the aggregate number of new technical designs

(inventions) in the economy per time unit is

̇ ≡ 


=    0  constant, (15.5)

where, as noted above,  is the aggregate R&D investment in terms of basic

goods delivered to sector 3 per time unit. As also noted above, after an

invention has been made, the inventor enters sector 2 as an innovator and

begins supplying the new intermediate good to firms in sector 1.

15.2 Temporary monopoly

To begin with the innovator has a monopoly over the production and sale

of the new intermediate good. This may be in the form of a more or less

effective patent (free of charge) or copyright to software or simply by secrecy

and concealment of the new technical design. But sooner or later imitators

find out how to make very close substitutes. There is uncertainty as to how

long the monopoly position of an innovator lasts.

We assume the cessation of monopoly power can be described by a Pois-

son process with an exogenous Poisson arrival rate   0 the same for all

monopolies.1 The “event” which “arrives” sooner or later is “exposure to

unbounded competition”. Independently of how long the monopoly posi-

tion for firm  has been maintained, the probability that it breaks down in

the next time interval of length ∆ is approximately  ·∆ for ∆ “small”.

Equivalently, if  denotes the remaining lifetime of the monopoly status of

intermediate good , then the probability that    is − for all   0

Further, the cessations of the different monopolies are stochastically inde-

pendent. The expected duration of a monopoly is 1

A prospective innovative “entrepreneur” who invests 1 unit of account

(the basic good) per time unit with the purpose of making an invention now

faces a double risk, namely first the risk that the R&D activity is unsuccessful

for a long time and second the risk that, when finally it is successful, the

monopoly profits on the R&D investment will only last for a short time.

The model assumes, however, that all uncertainty is idiosyncratic, that is,

1This approach builds on Barro and Sala-i-Martin (1995).
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the stochastic events that an R&D lab is successful in a given time interval

and that an innovator looses her monopoly position a given time interval

are uncorrelated across R&D labs, innovators, and time and are in fact not

correlated with anything in the economy. Assuming a “large” number of

intermediate goods still have a monopoly, investors can eliminate any risk

by diversifying their investment as described in Chapter 14. Of course, this

whole setup is an abstraction and can at best be considered a benchmark

case.

As labor supply is a constant,  clearing in the labor market implies

 =  We insert this into the production function (15.1) of the repre-

sentative firm in sector 1. Maximizing profit, this firm then demands, at

time , () = ((1− ))
1


−1
 units of intermediate good  per time

unit,  = 1 2  . As long as innovator  is still a monopolist, she faces

this downward-sloping demand curve with price elasticity −1 and sets the
price,  such that = (marginal revenue = marginal cost), that is,

(1− 1

1
) = 

when the basic good is the numeraire. Solving for  we get

 = (1 +markup) · =


1− 
≡ 

Thereby, as long as innovator  is still a monopolist, the sales of intermediate

good  is

() = () = ((1− ))
1

−1 =

µ
(1− )2



¶1
 ≡ () (15.6)

for all  = 1 2     . We shall call 
() the monopoly supply of a specific

intermediate good. The corresponding total revenue per time unit is ((1−
)) · () and the total cost is  · (). The earned profit per time unit is
thus

 = (− )() = (


1− 
− )() =



1− 
() ≡ () (15.7)

The formulas for () and () are the same as those for  and  respectively,

in Model I, cf. Chapter 14.

As described above, however, sooner or later innovator  loses the monopoly.

When this happens, intermediate good  faces perfect competition and its

price,  is driven down to the competitive market price = marginal cost =
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. Since also average cost is , the profit vanishes. The aggregate sales of

intermediate good  (now supplied by many competitors) are

() = () =

µ
(1− )



¶1
 ≡ (1−)−1() ≡ ()  () (15.8)

where () will be called the competitive supply of a specific intermediate

good. The inequality in (15.8) follows from 0    1 Economically, the

inequality in (15.8) reflects that the demand depends negatively on the price,

which is lower under competition.

To summarize: In view of production and cost symmetry, each interme-

diate good supplied under monopolistic conditions is supplied in the same

amount, () and each intermediate good supplied under competitive con-

ditions is supplied in the same but larger amount, (). That is,

 =

½
() if  is still a monopoly,

() if  is no longer a monopoly,
(15.9)

where () and () are given in (15.6) and (15.8), respectively.

15.3 The reduced-form aggregate production

function

Substituting (15.9) into (15.1), we can write output in sector 1 as

 = 
h

()
 (())1− +

()
 (

())1−
i
 (15.10)

where 
()
 is the number of intermediate goods that at time  are still sup-

plied under monopolistic conditions and 
()
 is the number of intermediate

goods that have become competitive. For each  we have

 = 
()
 +

()
  (15.11)

There are now two state variables in the model. There is therefore scope for

transitional dynamics, as we will soon see.

It is convenient to rewrite (15.10) this way:

 = 
h
( −

()
 )(

())1− +
()
 (1− )−(1−)(())1−

i


= 
h
 −

()
 +

()
 (1− )−(1−)

i
(())1−

= 
h
 + ((1− )−(1−) − 1) ()



i
(())1−

=

"
1 + ((1− )−(1−) − 1)

()




#
(())1− (15.12)
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Aggregate output is seen to depend on 
()
  If the dynamics are such

that 
()
  tends to a constant, then  will tend to be proportional to the

produced input,  since (
())1− is a constant, cf. (15.6). Therefore,

the model is likely capable of generating fully endogenous growth, driven by

R&D. We come back to this below.

The result in (15.12) can be written

 =

"
1 + ((1− )−(1−) − 1)

()




#

()
  

()
  (15.13)

where  
 ≡ (())1− is the equilibrium output of basic goods in

case of universal and perpetual monopoly power. So  
 is the same as the

equilibrium output in Model I. In that model we have  = 0 hence 
()
 = 0

for all  But with erosion of monopoly power, we have 
()
  0 and so a

fraction of the intermediate goods are supplied at a price equal to marginal

cost thus inducing efficient use of these. Thereby productivity is enhanced

and we get   
()
 in (15.12) (indeed, (1 − )−(1−)  1 in view of

0    1)

15.4 The no-arbitrage condition under uncer-

tainty

All uncertainty is assumed to be ideosyncratic. By holding shares in many

monopoly firms (portfolio diversification), the risk-averse households can

therefore eliminate any risk and obtain the risk-free rate of return,  with

certainty.2 The appropriate discount rate for calculating the present value

of expected future profits in any monopoly  is therefore  Consequently,

ruling out speculative bubbles, the market value of monopoly  at time  is

 =

Z ∞



()
−  


 (15.14)

where  is the profit obtained at time   now a stochastic variable as seen

from time    :

 =

½
() if firm  is still a monopolist at time  

0 otherwise.

2It may help the intuition to imagine that there is a market for safe loans. Then  will

be the interest rate on that market.
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Expected profit at time   as seen from time  is

() = ()−(−) + 0 · (1− −(−)) = ()−(−) (15.15)

Substituting into (15.14) we get

 = ()
Z ∞



−
 

(+) ≡  (15.16)

the same for all intermediate goods  that at time  still retain monopoly. This

expression gives the market value of a monopoly firm in a certainty-equivalent

form. On the one hand the integral in (15.16) “treats” the monopoly profit

stream as if it were perpetual, on the other hand this future potential profit

is discounted at an effective discount rate,  +  taking into account the

probability, −(−) that at time  the ability to earn this profit has disap-
peared.3

At this point we face the question: how is the risk-free rate of return,

 determined? To approach an answer, it is useful to derive a no-arbitrage

condition which is implicit in (15.14). It may help intuition to think of  as

the interest rate on a market for safe loans.

By differentiating (15.16) w.r.t.  using Leibniz’s’ formula,4 we get

() + ̇


=  +  (15.17)

where ̇ is the conditional capital gain, that is, the increase per time unit in

the market value of the monopoly firm at time , conditional on its monopoly

position remaining in place also in the next moment. This formula equal-

izes the instantaneous conditional rate of return per time unit on shares in

monopoly firms to the risk-free interest rate plus a premium reflecting the

risk that the monopoly position expires within the next instant.

Alternatively we may derive the condition (15.17) without appealing to

Leibniz’s’ formula (which may not be part of the reader’s standard math tool-

box). This alternative approach has the advantage of being more intuitive.

3So  in (15.16) has the same meaning as in the certainty case (Model I), in the sense

that  equals the current market value of a monopoly firm, that is,  is an observable

variable given that the firm is still a monopoly (otherwise,  = 0). The uncertainty is

about profits in the future and the discount rate for these equals the risk-free interest rate

plus a risk premium, here equal to  which is the approximate conditional probability

that the monopoly status breaks down in the time interval (   + 1]  given it is retained

up to time  
4See Appendix A.
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Let

 ≡ the firm’s earnings in the time interval ( +∆), given that the firm is still

a monopolist at time .

There will be no opportunities for arbitrage if the expected instantaneous rate

of return per time unit on shares in the monopoly firm equals the required

rate of return which is the risk-free interest rate,  This amounts to the

condition
lim∆→0

()

∆


=  (15.18)

The firm’s earnings, , is a stochastic variable and its expected value as seen

from time  is

 ≈ ∆(−) + (1− ∆)(() + ̇)∆ (15.19)

Indeed,  is the capital loss in case the monopoly position ceases and ∆ is

the approximate probability that this event occurs within the time interval

( +∆], given that at time  it has not yet occurred. Similarly, 1− ∆ is

the approximate probability that a monopoly position retained up to time 

remains in force at least up to time +∆ And ()+ ̇ is the total return

in that case. Now, (15.19) can be written:

() ≈ −∆ + (
() + ̇)∆− (() + ̇)(∆)2 (15.20)

= (() + ̇ − )∆− (() + ̇)(∆)2 ⇒
 ()

∆
≈ () + ̇ −  − (() + ̇)∆

→ () + ̇ −  for ∆→ 0

Hence, the condition (15.18) implies the no-arbitrage condition

() + ̇ − 


=  (15.21)

Reordering, we see that this is the same condition as (15.17).

15.5 The equilibrium rate of return when R&D

is active

The cost of making ̇ inventions per time unit in the aggregate at time 

is  = ̇ The expected cost per invention is thus 1. An equilibrium
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with active R&D therefore requires5

 = 1 ≡  (15.22)

So the market value of a monopoly firm is constant as long as the monopoly

position is upheld. The conditional capital gain, ̇ is therefore nil, whereby

substituting (15.22) into (15.21) and applying (15.7) yields

 = () −  = 


1− 
() −  ≡ ∗ ≡ () −   () (15.23)

where () is the equilibrium interest rate in Model I, that is, the case of

perpetual monopoly.

We see, first, that like in Model I, the equilibrium interest rate is a con-

stant, ∗ from the beginning. Second, in view of   0 we have ∗  ()

Because of the limited duration of monopoly power in our present model, the

expected rate of return on investing in R&D is smaller than in the case of no

erosion of monopoly power.

The description of the household sector is as in Model I, but now per

capita financial wealth is

 =

()
 




because there are only 
()
 =  − 

()
 firms with positive market value,

namely the number of firms that supply intermediate goods under monopo-

listic conditions. The households’ first-order conditions lead to the Keynes-

Ramsey rule

̇


=
1


(∗ − ) =

1


(() − − ) ≡ ∗  ()  (15.24)

where 
()
 is the per capita consumption growth rate from Model I, the case

of perpetual monopoly.

In order to have a growth model, we assume parameters are such that

∗  0 In addition, to avoid unbounded utility and help fulfillment of the

households’ transversality condition, we assume   (1 − )∗  These two
conditions amount to the parameter restrictions

()  (+ ) and (A1)

  (1− )∗ = (1− )
1


(() − − ) (A2)

5A more detailed argument is given in Chapter 14.
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where () ≡ (1−)−1() (from (15.23)) with () = (((1− )2))
1



(from (15.6)). So (A1) requires that the “growth engine” of the economic

system, as determined in particular by   and , is “powerful enough”.

Below we return to what exactly is meant by such a statement. Suffice it to

say here that increases in   and  augment the strength of the growth

engine (makes (A1) more likely to hold) while a rise in  reduces its strength

(makes (A1) less likely to hold).6

15.6 Transitional dynamics*

Given that cessations of individual monopolies follow the assumed indepen-

dent Poisson processes with arrival rate , the aggregate number of tran-

sitions per time unit from monopoly to competitive status follow a Poisson

process with arrival rate 
()
  The expected number of transitions per time

unit from monopoly to competitive status is then

̇
()
 = 

()
 

Assuming 
()
 is “large”, the difference between actual and expected tran-

sitions per time unit will be negligible (by the law of large numbers), and we

simply write

̇
()
 = 

()
 = ( −

()
 ) (15.25)

Let the fraction of intermediate goods supplied under competitive condi-

tions be denoted  ≡ 
()
  and let  ≡ ̇ for any positively-valued

variable  Then, by (15.25),

 = () −  = 
 −

()



()


−  = (−1 − 1)− 

= −1 − (+ ) R 0 for  Q


+ 
 (15.26)

The general law of movement of  is given by (15.5), which, together

6In view of () ≡ (1−)−1((1−)2)1−1 this role of  is due to 1−1 

0.
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with (15.2) and (15.13) and the definition ̃ ≡ 

 implies that

̇ =  = ( − − ) = 
n
 − (

()
 () +

()
 ())− 

o
= 

(Ã
1 + ((1− )−(1−) − 1)

()




!

()
 − (( −

()
 )

() +
()
 ())− 

)

= 

(
(1 + ((1− )−(1−) − 1))

()




− () + (() − ()))− ̃

)


= 
©¡
1 + ((1− )−(1−) − 1)

¢
(())1− − ()

+
£
() − (1− )−1()

¤
)− ̃

ª
 (by (15.8))

= 
©
(())1− − ()

+
£
((1− )−(1−) − 1)(())1− − ((1− )−1 − 1)()¤  − ̃

ª


≡  {1 +2 − ̃}

where the constants 1 and 2 are implicitly defined. The growth rate of 

can thus be written

 =  (1 +2 − ̃)  (15.27)

We now construct the implied dynamic system in the endogenous vari-

ables  and ̃ From (15.26) follows ̇ =  − ( + ) which combined

with (15.27) yields

̇ = − (+  (1 +2 − ̃))  (15.28)

Similarly, from ̃ ≡  follows
·
̃̃ =  −  = ∗ −   by (15.24). So,

·
̃ = (

∗
 −  (1 +2 − ̃)) ̃ (15.29)

The differential equations (15.28) and (15.29) constitute a dynamic system

with two endogenous variables,  and ̃ the first of which is a predetermined

variable while the second is a jump variable (forward-looking variable).

15.7 Long-run growth

In a steady state (̇ = 0 =
·
̃), by definition of ̃  =  = ∗  defined in

(15.24).In view of (15.26) and  = ∗ , the steady-state value of 

∗ =


+ ∗
 (15.30)
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Finally, the steady-state value of ̃ is ̃
∗ = (1 +2

∗ − ∗)
In the steady state there is balanced growth in the sense that   


()
 , and  grow at the same constant rate as  namely the rate 

∗
 given in

(15.24). This follows from the constancy of ̃ and  in steady state together

with the expression (15.13) for the aggregate production function in sector

1. Moreover, as to the total supply,  of intermediate goods we have  =


()
 ()+

()
 () = (− ()

 )
()+

()
 () =

£
(1− ∗)() + ∗()

¤


in the steady state, showing that  is proportional to  in the steady state.

And by (15.2), the delivery of basic goods to sector 2 is  = , which is

thus also proportional to  in the steady state. Hence, in steady state both

 and  grow at the same rate as  the rate 
∗
  The same is true for

R&D investment  = ̇ = ∗ As shown in Appendix B, where also

a phase diagram is sketched, the steady state is a saddle point; an only half-

finished dynamic analysis suggests that for any given initial 
()
0 0 ∈ (0 1)

there exists a unique solution to the model and it converges to the steady

state for →∞.
Like Model I, Model II thus generates fully endogenous growth with a

long-run per capita growth rate equal to ∗ in (15.24). What makes fully
endogenous growth possible is, as usual, that the “growth engine” of the

economy features constant returns to scale w.r.t. producible inputs. Gen-

erally, as defined in Chapter 13.5, the growth engine of a model is the set

of input-producing sectors using their own output as an input. After hav-

ing derived the aggregate production function in sector 1 as expressed in

(15.13), sector 2 can be considered integrated in sector 1. On this basis, sec-

tor 1 and sector 3 constitute the growth engine in the model. Basic goods,

 =  +  +  and technical knowledge, represented by the number, 

of varieties of intermediate goods, are the two kinds of producible inputs.

Sector 1 delivers the input flow  to itself and the input flow  to sector 3.

And sector 3 delivers the input flow  to sector 1. The production functions

(15.13) (with  () = ∗) and (15.5) show that in steady state there are
constant returns to scale w.r.t. these two producible inputs.

The long-run per capita growth rate, ∗  depends on those parameters
that are common with Model I in qualitatively the same way as in that

model, see last section in Chapter 14. It is noteworthy that the long-run per

capita growth rate is smaller than in Model I with perpetual monopolies, cf.

(15.24). In turn, the latter growth rate, which we named ∗ is smaller than
the social planner’s growth rate,   cf. Exercise VII.4. That is

∗  ∗   

The reason that our present ∗ ends up not only lower than the social plan-
ner’s growth rate, but also lower than in a corresponding economy with
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perpetual monopolies, is that the erosion of monopoly power implies less

protection of private ownership of the inventions. This reduces the private

profitability of R&D and thereby the incentive to do R&D. Indeed, (15.23)

indicates that a larger  i.e., a smaller expected duration, 1 of the sta-

tus as a monopolist, implies a lower per capita growth rate, ∗  So, whereas
erosion of monopoly power leads to a static efficiency gain compared with

perpetual monopoly as described in Section 15.3, it aggravates the underin-

vestment in R&D and thereby the dynamic distortion in the system. In this

way long-run growth is reduced even more, relative to the social optimum,

than in the case of perpetual monopolies.

15.8 Economic policy

At the theoretical level the analysis expose the presence of static and dynamic

distortions. At the empirical level for instance Jones and Williams (1998)

find that R&D investment in the U.S. economy is only about a fourth of the

social optimum. So government intervention seems motivated.

While in Model I, solving the static efficiency problem automatically im-

plies solving also the dynamic efficiency problem, this is not so in the present

model.

Two policy instruments are needed. To counteract the monopolist price

distortion and encourage demand for monopolized intermediate goods, a sub-

sidy to purchases of monopolized intermediate goods will work. This will also,

indirectly, encourage R&D but, because of the imperfect protection of inno-

vations, not to the extent needed for the first-best solution. A direct stimulus,

a subsidy, to R&D investment, is called for. Taxation on consumption and

labor income may provide the financing.

By comparing with the social planner’s allocation, it is possible to find

exact formulas for the subsidy rates and provide non-distortionary financing

such that the social planner’s allocation is replicated in a decentralized way.

Dilemmas in the design of patent systems

There are many dilemmas regarding how to design patent systems. Model

II above illustrates one of them, namely the question what the period length

of patents should be. The inverse of  can be interpreted as a measure of

the average duration of patents. A larger  (shorter duration) reduces static

inefficiency in the economy but it also aggravates the underinvestment in

R&D and thereby increases the dynamic inefficiency in the economy. We

could more generally interpret  as reflecting strictness of antitrust policy
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and the conclusion would be similar.

Going outside the present specific model, there a many further aspects

to take into account which we shall not attempt to do here. A survey is

contained in Hall and Harhoff (2012). We end this chapter by a citation

from Wikipedia (30-04-2014):

Legal scholars, economists, scientists, engineers, activists, poli-

cymakers, industries, and trade organizations have held differing

views on patents and engaged in contentious debates on the sub-

ject. Recent criticisms primarily from the scientific community

focus on the core tenant of the intended utility of patents, as now

some argue they are retarding innovation. Critical perspectives

emerged in the nineteenth century, and recent debates have dis-

cussed the merits and faults of software patents, nanotechnology

patents and biological patents. These debates are part of a larger

discourse on intellectual property protection which also reflects

differing perspectives on copyright.

15.9 Appendix

A. Taking the time derivative of  in (15.16)

We shall apply Leibniz’s’ formula7 which says:

 () =

Z ()

()

( ) =

 0() = (() )0()− (() )0() +
Z ()

()

 (  )




In the present case we have from (15.16),  = () (), where

 () =

Z ∞



−
 

(+)

whereby () = ∞ and () = , so that 0() = 0 and 0() = 1 We get

̇ = () 0() that is,

̇

()
=  0() = 0− −

 

(+) +

Z ∞



−
 

(+)( + )

= −1 + ( + ) () = −1 + ( + )


()


7For details, see any Math textbook, e.g., Sydsæter vol. II.
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Reordering gives

() + ̇


=  + 

which is the no-arbitrage condition (15.17).

B. Stability analysis

The Jacobian matrix, evaluated in the steady state, is

∗ =

"
̇ ̇̃


·
̃ 

·
̃̃

#
|(̃)=(∗̃∗)

=

∙ −(+  + 2
∗) ∗

−2̃∗ ̃∗

¸


The determinant of this matrix is

det ∗ = −(+  + 2
∗)̃∗ + ∗2̃

∗ = −(+ )̃
∗  0

Hence, the eigenvalues are of opposite sign and the steady state is a saddle

point. A possible configuration of the phase diagram is sketched in Fig. 15.1.

In the steady state the TVC of the households is satisfied in that


−∗ =


()
 


−

∗ =

()



−

∗ =
 −

()



−

∗

=
(1− )


−

∗ =
(1− ∗)0

∗ 


−

∗ → 0 for →∞

since ∗ ≡ () −  and (A2) combined with (15.24) implies ∗  ∗  The
TVC is therefore also satisfied along the unique converging path.
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Chapter 16

Natural resources and

economic growth

In this course, up to now, the relationship between economic growth and the

earth’s finite natural resources has been touched upon in connection with: the

discussion of returns to scale (Chapter 2), the transition from a pre-industrial

to an industrial economy (in Chapter 7), and the environmental problem of

global warming (Chapter 8). In a more systematic way the present chapter

reviews how natural resources, including the environment, relate to economic

growth.

The contents are:

• Classification of means of production.

• The notion of sustainable development.

• Renewable natural resources.

• Non-renewable natural resources.

• Natural resources and the issue of limits to economic growth.

The first two sections aim at establishing a common terminology for the

discussion.

16.1 Classification of means of production

We distinguish between different categories of production factors, also called

means of production. First the two broad categories:
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1. Producible means of production, also called man-made inputs.

2. Non-producible means of production.

The first category includes:

1.1 Physical inputs like processed raw materials, intermediate goods, ma-

chines, and buildings.

1.2 Human inputs of a produced character like technical knowledge (avail-

able in books, USB sticks etc.) and human capital.

The second category includes:

2.1 Human inputs of a non-produced character, sometimes called “raw la-

bor”.1

2.2 Natural resources. By definition in limited supply on this earth.

Natural resources can be sub-divided into:

2.2.1 Renewable resources, that is, natural resources the stock of which can

be replenished by a natural self-regeneration process. Hence, if the

resource is not over-exploited, it can be sustained in a more or less

constant amount. Examples: ground water, fertile soil, fish in the sea,

clean air, national parks.

2.2.2 Non-renewable resources, that is, natural resources which have no nat-

ural regeneration process (at least not within a relevant time scale).

The stock of a non-renewable resource is thus depletable. Examples:

fossil fuels, many non-energy minerals, virgin wilderness, endangered

species, ozone layer.

The climate change problem due to greenhouse gasses can be seen as be-

longing to somewhere between category 2.2.1 or 2.2.2 in that the atmosphere

has a natural self-regeneration ability, but the speed of regeneration is very

low.

Given the scarcity of natural resources and the pollution problems caused

by economic activity, key issues are:

a. Is sustainable development possible?

b. Is sustainable economic growth (in a per capita welfare sense) possible?

But what does “sustainable” and “sustainability” really mean”?

1Outside a slave society, biological reproduction is usually not considered as part of the

economic sphere of society even though formation and maintainance of raw labor requires

child rearing, health, food etc. and is thus conditioned by economic circumstances.
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16.2 The notion of sustainable development

The basic idea in the notion of sustainable development is to emphasize

intergenerational responsibility. The Brundtland Commission (1987) defined

sustainable development as “development that meets the needs of present

generations without compromising the ability of future generations to meet

theirs”.

In more standard economic terms we may define sustainable economic

development as a time path along which per capita welfare remains non-

decreasing across generations forever. An aspect of this is that current eco-

nomic activities should not impose significant economic risks on future gen-

erations. The “forever” in the definition can not, of course, be taken literally,

but as equivalent to “for a very long time horizon”. We know that the sun

will eventually (in some billion years) burn out and consequently life on earth

will become extinct.

Note also that our definition emphasizes welfare, which should be under-

stood in a broad sense, that is, as more or less synonymous with “quality of

life”, “living conditions”, or “well-being” (the term used in Smulders, 1995).

What may matter is thus not only the per capita amount of marketable con-

sumption goods, but also things like health, life expectancy, enjoyment of

services from the ecological system, and capability to lead a worthwhile live.

To make this more specific, consider the period utility function of a typical

individual. Suppose two variables enter as arguments, namely consumption,

 of a marketable produced good and some measure,  of the quality of

services from the eco-system. Suppose further that the period utility function

is of CES form:2

( ) =
£
 + (1− )

¤1
 0    1   1 (16.1)

The parameter  is called the substitution parameter. The elasticity of substi-

tution between the two goods is  = 1(1−)  0 a constant. When  → 1

(from below), the two goods become perfect substitutes (in that  → ∞).
The smaller is  the less substitutable are the two goods. When   0 we

have   1 and as  → −∞ the indifference curves become near to right

angled.3 According to many environmental economists, there are good rea-

2CES stands for Constant Elasticity of Substitution.
3By L’Hôpital’s rule for “0/0” it follows that, for fixed  and 

lim
→0 6=0

£
 + (1− )

¤1
= 1−

So the Cobb-Douglas utility function, which has elasticity of substitution between the

goods equal to 1, is an intermediate case, corresponding to  = 0. More details in the

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



276

CHAPTER 16. NATURAL RESOURCES AND ECONOMIC

GROWTH

sons to believe that   1, since water, basic foodstuff, clean air, absence of

catastrophic climate change, etc. are difficult to replace by produced goods

and services. In this case there is a limit to the extent at which a rising ,

along with a rising per capita income, can compensate for falling 

At the same time the techniques by which the ordinary consumption

good is currently produced may be “dirty” and thereby cause a falling . An

obvious policy response is the introduction of pollution taxes that increase the

incentive for firms to replace these techniques with cleaner ones. For certain

forms of pollution (e.g., sulfur dioxide, SO2 in the air) there is evidence of an

inverted U-curve relationship between the degree of pollution and the level

of economic development measured by GDP per capita − the environmental
Kuznets curve.

So an important element in sustainable economic development is that the

economic activity of current generations does not spoil the environmental

conditions for future generations. Living up to this requirement necessitates

economic and environmental strategies consistent with the planet’s endow-

ments. This means recognizing the role of environmental constraints for eco-

nomic development. A complicating factor is that specific abatement policies

vis-a-vis particular environmental problems may face resistance from interest

groups.

As defined, a criterion for sustainable economic development to be present

is that per capita welfare remains non-decreasing across generations. A sub-

category of this is sustainable economic growth which is present if per capita

welfare is growing across generations. Here we speak of growth in a welfare

sense, not in a physical sense. Permanent exponential per capita output

growth in a physical sense is of course not possible with limited natural re-

sources (matter or energy). The issue about sustainable growth is whether,

by combining the natural resources with man-made inputs (knowledge, hu-

man capital, and physical capital), an output stream of increasing quality,

and therefore increasing economic value, can be maintained. In modern times

capabilities of many digital electronic devices provide conspicuous examples

of exponential growth in quality (or efficiency). Think of processing speed,

memory capacity, and efficiency of electronic sensors. What is known as

Moore’s Law is the rule of thumb that there is a doubling of the efficiency of

microprocessors within every 18 months. The evolution of the internet has

provided faster and widened dissemination of information and fine arts.

Of course there are intrinsic difficulties associated with measuring sus-

tainability in terms of well-being. There now exists a large theoretical and

applied literature dealing with these issues. A variety of extensions and

appendix.
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modifications of the standard national income accounting GDP has been de-

veloped under the heading Green NNP (green net national product). An

essential feature in the measurement of Green NNP is that from the conven-

tional GDP (which essentially just measures the level of economic activity) is

subtracted the depreciation of not only the physical capital but also the en-

vironmental assets. The latter depreciate due to pollution, overburdening of

renewable natural resources, and depletion of reserves of non-renewable nat-

ural resources.4 In some approaches the focus is on whether a comprehensive

measure of wealth is maintained over time. Along with reproducible assets

and natural assets (including the damage to the atmosphere from greenhouse

gasses), Arrow et al. (2012) take in health, human capital, and “knowledge

capital” in their measure of “wealth”. They apply this measure in a study

of the United States, China, Brazil, India, and Venezuela over the period

1995-2000 and find that all five countries satisfy the sustainability criterion

of non-decreasing wealth in this broad sense. Indeed their wealth measure is

found to be growing in all five countries.5 Note that it is sustainability that

is claimed, not optimality.

In the next two sections we will go more into detail with the challenge

to sustainability and growth coming from renewable and non-renewable re-

sources, respectively. We shall primarily deal with the issues from the point of

view of technical feasibility of non-decreasing, and possibly rising, per-capita

consumption. Concerning the big questions about appropriate institutions

the reader is referred to the specialized literature.

We begin with renewable resources.

16.3 Renewable resources

A useful analytical tool is the following simple model of the stock dynamics

associated with a renewable resource.

Let  ≥ 0 denote the stock of the renewable resource at time  Then we
may write

̇ ≡ 


=  − = ()− (16.2)

4The depreciation of these environmental and natural assets is evaluated in terms of

the social planner’s shadow prices. See, e.g., Heal (1998), Weitzman (2001, 2003), and

Stiglitz et al. (2010).
5Of course, many measurement uncertainties and disputable issues of weighting are

involved; brief discussions, and questioning, of the study are contained in Solow (2012),

Hamilton (2012), and Smulders (2012). Regarding Denmark 1990-2009, a study by Lind

and Schou (2013), along lines somewhat similar to those of Arrow et al. (2012), also

suggests sustainability to hold.
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where  is the self-regeneration of the resource per time unit and  ≥ 0 is
the extraction (and use) of the resource per time unit at time . If for instance

the stock refers to the number of fish in the sea, the flow  represents the

number of fish caught per time unit. And if, in a pollution context, the stock

refers to “cleanness” of the air in cities,  measures, say, the emission of

sulfur dioxide, SO2, per time unit. The self-regenerated amount per time

unit depends on the available stock through the function () known as a

self-regeneration function.6

Until further notice, we stick to the first interpretation, that of  indi-

cating the size of a fish population. The self-regeneration function will often

have a bell-shape as illustrated in the upper panel of Figure 16.1. Essentially,

the self-regeneration ability is due to the flow of solar energy continuously

entering the the eco-system of the earth. This flow of solar energy is constant

and beyond human control.

There is a lower threshold, (0) ≥ 0 below which even with  = 0 there
are too few female fish to generate offspring, and the population necessar-

ily shrinks and eventually reaches zero. We may call (0) the minimum

sustainable stock.

At the other intersection with the horizontal axis, ̄(0) represents the

maximum sustainable stock. The eco-system cannot support further growth

in the fish population. The reason may be food scarcity or spreading of

diseases because of high population density.7 The value  indicated on

the vertical axis, in the upper panel equals = max (). This value is thus

the maximum sustainable yield per time unit. It is sustainable, presupposing

the size of the fish population is initially at least of size  = argmax ()

which is that value of  where () =  The size,   of the fish

population is consistent with maintaining the harvest  per time unit

forever in a steady state.

The lower panel in Figure 16.1 illustrates the dynamics in the ( ̇) plane,

given a fixed level of  = ̄ ∈ (0 ]. The arrows indicate the direction

of movement. In the long run, if  = ̄ for all  the stock will settle down

at the size ̄(̄) The stippled curve in the upper panel indicates ()− ̄

which is the same as ̇ in the lower panel which presumes  = ̄. The

stippled curve in the lower panel indicates the dynamics in case  = .

In this case the steady-state stock, ̄( ) =  , is unstable. In this

6Even if  represents the stock of a non-renewable resource, the equation (16.2) will

still be valid if we impose that there is no self-regeneration, i.e., () ≡ 0.
7Popular mathematical specifications of (·) include the logistic function () =

(1−) where   0   0 and the quasi-logistic function() = (1−)(−
1) where also   0 In both cases ̄(0) =  but (0) equals 0 in the first case and  in

the second.
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Figure 16.1: The self-generation function (upper panel) and stock dynamics for

 = ̄ ∈ (0 ] (lower panel).
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state a small negative shock to the stock will not lead to a gradual return

but to a self-reinforcing reduction of the stock as long as the extraction 

= is maintained.

 is an ecological maximum and not necessarily in any sense an eco-

nomic optimum. Indeed, since the search and extraction costs may be a

decreasing function of the fish density, hence of the stock, it may be worth-

while to increase the stock beyond  , thus settling for a smaller harvest

per time unit. Moreover, a microeconomic calculation will maximize the

sum of discounted expected profits per time unit, taking into account the

expected evolution of the market price of fish, the cost function, and the

dynamic relationship (16.2).

In addition to its importance for regeneration, the stock,  may have

amenity value and thus enter the instantaneous utility function. Then again

some conservation of the stock over and above  will be motivated.

A dynamic model with a renewable resource Consider a simple model

consisting of (16.2) together with

 =  (   )  ≥ 0
̇ =  −  −   ≥ 0 0  0 given,

 = 0
  ≥ 0 (16.3)

where  is aggregate output and  , and  are inputs of capital, labor,

and a renewable resource, respectively, per time unit at time  Let the aggre-

gate production function,  be neoclassical8 with constant returns to scale

w.r.t. the rival inputs   and  The assumption  ≥ 0 represents
exogenous technical progress. Further,  is aggregate consumption (≡ 

where  is per capita consumption) and  denotes a constant rate of capital

depreciation. There is no distinction between employment and population,

. The population growth rate,  is assumed constant.

Is sustainable economic development in this setting technically feasible?

The answer will be yes if non-decreasing per capita consumption can be

sustained forever. As the issue is about technical feasibility, we disregard

problems of “tragedy of the commons”. Or rather, we assume this problem

is avoided by appropriate institutions.

Suppose the use of the renewable resource is kept constant at a sustainable

level ̄ ∈ (0 ). To begin with, suppose  = 0 so that  =  for all

 ≥ 0 Assume that at  = ̄ the system is “productive” in the sense that

lim
→0

( ̄ 0)    lim
→∞

( ̄ 0) (A1)

8That is, marginal productivities of the production factors are positive, but diminishing;

and the upper contour sets are strictly convex.
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Figure 16.2: Sustainable consumption in the case of  = 0 and no technical progress

( and ̄ fixed).

This condition is satisfied in Figure 16.2 where the value ̄ has the property

 (̄  ̄ 0) = ̄ Given the circumstances, this value is the least upper

bound for a sustainable capital stock in the sense that

if  ≥ ̄ we have ̇  0 for any   0 while

if 0    ̄ we have ̇ = 0 for  =  ( ̄ 0)−   0

For such a  illustrated in Figure 16.2, a constant  =  ( ̄ 0) is main-

tained forever which implies non-decreasing per-capita income,  ≡ ,

forever. So, in spite of the limited availability of the natural resource, a non-

decreasing level of consumption is technically feasible even without technical

progress. A forever growing level of consumption will, of course, require

sufficient technical progress capable of substituting for the natural resource.

Now consider the case   0 Along a balanced growth path (if it exists)

we have

1 =  (








̄


 ) (16.4)

where  and  must be constant, cf. Chapter 4. Maintaining 

(= ()()) constant along this path when   0 requires that 
is constant and thereby that  grows at the rate  But then ̄ will be

declining over time. To compensate for this in (16.4), sufficient technical
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progress is necessary. This of course holds, a fortiori, for sustained growth in

per-capita consumption to occur.

As technical progress in the far future is by its very nature uncertain and

unpredictable, there can be no guarantee for sustained per capita growth.

Pollution As hinted at above, the concern that certain production meth-

ods involve pollution is commonly incorporated into economic analysis by

subsuming environmental quality into the general notion of renewable re-

sources. In that context  in (16.2) and Figure 16.1 will represent the “level

of environmental quality” and  will be the amount of dirty emissions per

time unit. Since the level of the environmental quality is likely to be an

argument in both the utility function and the production function, again

some limitation of the “extraction” (the pollution flow) is motivated. Pol-

lution taxes may help to encourage abatement activities and make technical

innovations towards cleaner production methods more profitable.

16.4 Non-renewable resources

Whereas extraction and use of renewable resources can be sustained at a

more or less constant level (if not too high), the situation is different with

non-renewable resources. They have no natural regeneration process (at least

not within a relevant time scale) and so continued extraction per time unit

of these resources will inevitably have to decline and approach zero in the

long run.

To get an idea of the implications, we will consider the Dasgupta-Heal-

Solow-Stiglitz model (DHSS model) from the 1970s.9

16.4.1 The DHSS model

The production side of the model is described by:

 =  (   )  ≥ 0 (16.5)

̇ =  −  −   ≥ 0 0  0 given, (16.6)

̇ = − ≡ − 0  0 given, (16.7)

 = 0
  ≥ 0 (16.8)

The new element is the replacement of (16.2) with (16.7), where  is the

stock of the non-renewable resource (e.g., oil reserves), and  is the depletion

9See, e.g., Stiglitz, 1974.
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rate. Since we must have  ≥ 0 for all  there is a finite upper bound on
cumulative resource extraction:Z ∞

0

 ≤ 0 (16.9)

Since the resource is non-renewable, no re-generation function appears in

(16.7). Uncertainty is ignored and the extraction activity involve no costs.10

As before, there is no distinction between employment and population, .

The model was formulated as a response to the pessimistic Malthusian

views of the Club of Rome (Meadows et al., 1972). Stiglitz (and fellow econo-

mists) asked the question: what are the technological conditions needed to

avoid falling per capita consumption in the long run in spite of the inevitable

decline in resource use? The answer is that there are three ways in which

this decline in resource use may be counterbalanced:

1. input substitution;

2. resource-saving technical progress;

3. increasing returns to scale.

Let us consider each of them in turn (although in practice the three

mechanisms tend to be intertwined).

Input substitution

By input substitution is meant the gradual replacement of the input of the

exhaustible natural resource by man-made input, capital. Substitution of fos-

sil fuel energy by solar, wind, tidal and wave energy resources is an example.

Similarly, more abundant lower-grade non-renewable resources can substitute

for scarce higher-grade non-renewable resources - and this will happen when

the scarcity price of these has become sufficiently high. A rise in the price

of a mineral makes a synthetic substitute cost-efficient or lead to increased

recycling of the mineral. Finally, the composition of final output can change

toward goods with less material content. Overall, capital accumulation can

be seen as the key background factor for such substitution processes (though

also the arrival of new technical knowledge may be involved - we come back

to this).

10This simplified description of resource extraction is the reason that it is common

to classify the model as a one-sector model, notwithstanding there are two productive

activities in the economy, manufacturing and resource extraction.
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Whether capital accumulation can do the job depends crucially on the

degree of substitutability between  and  To see this, let the produc-

tion function  be a three-factor CES production function. Suppressing the

explicit dating of the variables when not needed for clarity, we have.

 =
¡
1

 + 2
 + 3


¢1

 1 2 3  0 1+2+3 = 1   1  6= 0
(16.10)

The important parameter is  the substitution parameter. Let  denote the

cost to the firm per unit of the resource flow and let ̂ be the cost per unit

of capital (generally, ̂ =  +  where  is the real rate of interest). Then

̂ is the relative factor price, which may be expected to increase as the

resource becomes more scarce. The elasticity of substitution between  and

 is [()(̂)] (̂ )() evaluated along an isoquant curve,

i.e., the percentage rise in the - ratio that a cost-minimizing firm will

choose in response to a one-percent rise in the relative factor price, ̂

Since we consider a CES production function, this elasticity is a constant

 = 1(1 − )  0 Indeed, the three-factor CES production function has

the property that the elasticity of substitution between any pair of the three

production factors is the same.

First, suppose   1 i.e., 0    1 Then, for fixed  and   →¡
1

 + 2

¢1

 0 when → 0 In this case of high substitutability the

resource is seen to be inessential in the sense that it is not necessary for a

positive output. That is, from a production perspective, conservation of the

resource is not vital.

Suppose instead   1 i.e.,   0 Although increasing when decreases,

output per unit of the resource flow is then bounded from above. Conse-

quently, the finiteness of the resource inevitably implies doomsday sooner or

later if input substitution is the only salvage mechanism. To see this, keeping

 and  fixed, we get




=  (−)1 =

∙
1(




) + 2(




) + 3

¸1
→ 3

1 for → 0

(16.11)

since   0 Even if  and  are increasing, lim→0  = lim→0()
= 

1
3 · 0 = 0 Thus, when substitutability is low, the resource is essential

in the sense that output is nil in the absence of the resource.

What about the intermediate case  = 1? Although (16.10) is not de-

fined for  = 0 using L’Hôpital’s rule (as for the two-factor function, cf.

Appendix), it can be shown that
¡
1

 + 2
 + 3


¢1 → 123

for  → 0 In the limit a three-factor Cobb-Douglas function thus appears.

This function has  = 1 corresponding to  = 0 in the formula  = 1(1−)
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The interesting aspect of the Cobb-Douglas case is that it is the only

case where the resource is essential while at the same time output per unit

of the resource is unbounded from above (since  = 123−1 → ∞
for → 0).11 Under these circumstances it was considered an open question

whether non-decreasing per capita consumption could be sustained. There-

fore the Cobb-Douglas case was studied intensively. For example, Solow

(1974) showed that if  =  = 0, then a necessary and sufficient condition

that a constant positive level of consumption can be sustained is that 1  3

This condition in itself seems fairly realistic, since, empirically, 1 is many

times the size of 3 (Nordhaus and Tobin, 1972, Neumayer 2000). Solow

added the observation that under competitive conditions, the highest sus-

tainable level of consumption is obtained when investment in capital exactly

equals the resource rent,  ·  This result was generalized in Hartwick
(1977) and became known as Hartwick’s rule. If there is population growth

(  0) however, not even the Cobb-Douglas case allows sustainable per

capita consumption unless there is sufficient technical progress, as equation

(16.15) below will tell us.

Neumayer (2000) reports that the empirical evidence on the elasticity of

substitution between capital and energy is inconclusive. Ecological econo-

mists tend to claim the poor substitution case to be much more realistic

than the optimistic Cobb-Douglas case, not to speak of the case   1 This

invites considering the role of technical progress.

Technical progress

Solow (1974) and Stiglitz (1974) analyzed the theoretical possibility that

resource-saving technological change can overcome the declining use of non-

renewable resources that must be expected in the future. In this context

the focus is not only on whether a non-decreasing consumption level can

be maintained, but also on the possibility of sustained per capita growth in

consumption.

New production techniques may raise the efficiency of resource use. For

example, Dasgupta (1993) reports that during the period 1900 to the 1960s,

the quantity of coal required to generate a kilowatt-hour of electricity fell

from nearly seven pounds to less than one pound.12 Further, technological

developments make extraction of lower quality ores cost-effective and make

more durable forms of energy economical. On this background we incorpo-

rate resource-saving technical progress at the rate 3 along with labor-saving

11To avoid misunderstanding: by “Cobb-Douglas case” we refer to any function where

 enters in a “Cobb-Douglas fashion”, i.e., any function like  = ̃ ()1−33 
12For a historical account of energy technology, see Smil (1994).
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technical progress at the rate 2 So the CES production function reads

 =
¡
1

 + 2(2)
 + 3(3)


¢1

 (16.12)

where 2 = 2 and 3 = 3 assuming 2 and 3 to be exogenous positive

constants. If the (proportionate) rate of decline of  is kept smaller than

3 then the “effective” resource input is no longer decreasing over time. As

a consequence, even if   1 (the poor substitution case), the finiteness of

nature need not be an insurmountable obstacle to non-decreasing per capita

consumption.

Actually, a technology with   1 needs a considerable amount of resource-

saving technical progress to obtain compliance with the empirical fact that

the income share of natural resources has not been rising (Jones, 2002). When

  1 market forces tend to increase the income share of the factor that is

becoming relatively more scarce. Empirically,  and  have increased

systematically. However, with a sufficiently increasing 3, the income share

 need not increase in spite of   1 Similarly, for the model to comply

with Kaldor’s “stylized facts” (more or less constant growth rates of and

 and stationarity of the output-capital ratio, the income share of labor,

and the rate of return on capital), we need labor-saving technical change (2
growing over time).13 The motivation for not introducing a rising 1 and

replacing  in (16.12) by 1 is that this would be at odds with Kaldor’s

“stylized facts”, in particular the absence of a trend in the rate of return to

capital.

With 3  2 +  we end up with conditions allowing a balanced growth

path (BGP for short), defined as a path along which the quantities  

and  change at constant proportionate rates (some or all of which may be

negative). It is well-known that compliance with Kaldor’s “stylized facts”

is close to equivalent to existence of a balanced growth path. It can be

shown that along the BGP, (2) is constant and so  = 2 (hence also

 = 2)
14 Of course, one thing is that such a combination of assumptions

allows for constant growth in per capita consumption - which is more or less

what we have seen since the industrial revolution. Another thing is: will the

needed assumptions be satisfied for a long time in the future? Since we have

considered exogenous technical change, there is so far no hint from theory.

But, even taking endogenous technical change into account, there will be

many uncertainties about what technological changes will come through in

the future and how fast.

13Although the two forms of technical change are by many authors called “resource-

augmenting” and “labor-augmenting”, respectively, we prefer the more intuitive names,

“resource-saving” and “labor-saving”.
14For any positive variable ,  denotes the growth rate, ̇.
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Balanced growth in the Cobb-Douglas case Let us end this discussion

by some remarks about the Cobb-Douglas case. By making capital-saving,

labor-saving, and resource-saving technical progress indistinguishable, the

Cobb-Douglas case again constitutes a convenient intermediate case. Tech-

nical progress can simply be represented by

 = 123 1 2 3  0 1 + 2 + 3 = 1 (16.13)

where total factor productivity, , is growing over time. This, together with

(16.6) - (16.8), is now the model under examination.

Let us assume  grows at some constant rate   0 Log-differentiating

w.r.t. time in (16.13) yields the growth-accounting relation

 =  + 1 + 2+ 3 (16.14)

By a simple extension of the method in Chapter 4, it is easily shown that

along a BGP,  =  =  ≡  +  and, if nothing of the resource is left

unutilized forever,  =  ≡ ̇ = − = constant  015 With the

depletion rate,  denoted  (16.14) thus implies

 =  =
1

1− 1
( − 3− 3) (16.15)

since 1 + 2 − 1 = −3
Absent the need for input of limited natural resources, we would have

3 = 0 and so  = (1−1) But with 3  0 the non-renewable resource

is essential and implies a drag on per capita growth equal to 3(+)(1−1).
We get   0 if and only if   3(+ ) (where, the depletion rate,  can

in principle be chosen very small if we want a strict conservation policy).

It is noteworthy that in spite of per-capita growth being due to exogenous

technical progress, (16.15) shows that there is scope for policy affecting the

long-run per-capita growth rate to the extent that policy can affect the rate

of depletion  in the opposite direction.16

When speaking of “sustained growth” in and , it should not be under-

stood in a narrow physical sense. As alluded to earlier, we have to understand

 broadly as “produced means of production” of rising quality and falling

material intensity; similarly,  must be seen as a composite of consumer

“goods” with declining material intensity over time.17 This accords with the

empirical fact that as income rises, the share of consumption expenditures

15Otherwise,  could not be constant.
16Cf. Section 13.5.1 of Chapter 13.
17See Fagnart and Germain (2011).
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devoted to agricultural and industrial products declines and the share de-

voted to services, hobbies, and amusement increases. Although “economic

development” is perhaps a more appropriate term (suggesting qualitative and

structural change), we retain standard terminology and speak of “economic

growth”.

In any event, simple aggregate models like the present one should be

seen as no more than a frame of reference, a tool for thought experiments.

At best such models might have some validity as an approximate summary

description of a certain period of time. One should be aware that an economy

in which the ratio of capital to resource input grows without limit might

well enter a phase where technological relations (including the elasticity of

factor substitution) will be very different from now. For example, along any

economic development path, the aggregate input of non-renewable resources

must in the long run asymptotically approach zero. From a physical point of

view, however, there must be some minimum amount of the resource below

which it can not fulfil its role as a productive input. Thus, strictly speaking,

sustainability requires that in the “very long run”, non-renewable resources

become inessential.

A backstop technology We end this sub-section by a remark on a rather

different way of modeling resource-saving technical change. Dasgupta and

Heal (1974) present a model of resource-saving technical change, considering

it not as a smooth gradual process, but as something arriving in a discrete

once-for-all manner with economy-wide consequences. The authors envision

a future major discovery of, say, how to harness a lasting energy source such

that a hitherto essential resource like fossil fuel becomes inessential. The

contour of such a backstop technology might be currently known, but its

practical applicability still awaits a technological breakthrough. The time

until the arrival of this breakthrough is uncertain and may well be long. In

Dasgupta, Heal and Majumdar (1977) and Dasgupta, Heal and Pand (1980)

the idea is pursued further, by incorporating costly R&D. The likelihood of

the technological breakthrough to appear in a given time interval depends

positively on the accumulated R&D as well as the current R&D. It is shown

that under certain conditions an index reflecting the probability that the

resource becomes unimportant acts like an addition to the utility discount

rate and that R&D expenditure begins to decline after some time. This is an

interesting example of an early study of endogenous technological change.18

18A similar problem has been investigated by Kamien and Schwartz (1978) and Just et

al. (2005), using somewhat different approaches.
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Increasing returns to scale

The third circumstance that might help overcoming the finiteness of nature

is increasing returns to scale. For the CES function with poor substitution

(  1), however, increasing returns to scale, though helping, are not by

themselves sufficient to avoid doomsday. For details, see, e.g., Groth (2007).

Summary on the DHSS model

Apart from a few remarks by Stiglitz, the focus of the fathers of the DHSS

model is on constant returns to scale; and, as in the simple Solow and Ram-

sey growth models, only exogenous technical progress is considered. For our

purposes we may summarize the DHSS results in the following way. Non-

renewable resources do not really matter seriously if the elasticity of substi-

tution between them and man-made inputs is above one. If not, however,

then:

(a) absent technical progress, if  = 1 sustainable per capita consump-

tion requires 1  3 and  = 0 = ; otherwise, declining per capita

consumption is inevitable and this is definitely the prospect, if   1;

(b) on the other hand, if there is enough resource-saving and labor-saving

technical progress, non-decreasing per capita consumption and even

growing per capita consumption may be sustained;

(c) population growth, implying more mouths to feed from limited nat-

ural resources, exacerbates the drag on growth implied by a declining

resource input; indeed, as seen from (16.15), the drag on growth is

3(+ )(1− 1) along a BGP

16.4.2 Endogenous technical progress

An obvious next step is to examine how endogenizing technical change may

throw new light on the issues, in particular the visions (b) and (c). Without

going into detail here, we may mention that because of the non-rival character

of technical knowledge, endogenizing knowledge creation may have profound

implications, in particular concerning point (c). Indeed, the relationship be-

tween population growth and economic growth may be circumvented when

endogenous creation of ideas (implying a form of increasing returns to scale) is

considered. In Groth (2007) a series of innovation-based endogenous growth

models with non-renewable resources dealing with this is surveyed. The arti-

cle also touches on aspects of environmental policy aiming at enhancing the
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prospects of sustainable development or even sustainable economic growth.

Among other things, it is shown that the utilitarian principle of discounted

utility maximization may clash with a requirement of sustainability.

16.5 Natural resources and the issue of limits

to economic growth

Two distinguished professors were asked by a journalist: Are there limits to

economic growth?

The answers received were:

Clearly YES:

• A finite planet!
• The amount of cement, oil, steel, and water that we can use is limited!
Clearly NO:

• Human creativity has no bounds!
• The quality of wine, TV transmission of concerts, computer games, and
medical treatment knows no limits!

An aim of this chapter has been to bring to mind that it would be strange

if there were no limits to growth. So a better question is:

What determines the limits to economic growth?

The answer suggested is that these limits are determined by the capability

of the economic system to substitute limited natural resources by man-made

goods the variety and quality of which are expanded by creation of new ideas.

In this endeavour frontier countries, first the U.K. and Western Europe, next

the United States, have succeeded at a high rate for two and a half century.

To what extent this will continue in the future nobody knows. Some econo-

mists, e.g. Gordon (2012), argue there is an enduring tendency to slowing

down of innovation and economic growth (the low-hanging fruits have been

taken). Others, e.g. Brynjolfsson and McAfee (2014), disagree. They reason

that the potentials of information technology and digital communication are

on the verge of the point of ubiquity and flexible application. For these au-

thors the prospect is “The Second Machine Age” (the title of their book),

by which they mean a new innovative epoch where smart machines and new

ideas are combined and recombined - with pervasive influence on society.
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16.6 Appendix: The CES function

The CES (Constant Elasticity of Substitution) function is used in consumer

theory as a specification of preferences and in production theory as a specifi-

cation of a production function. Here we consider it as a production function.

It can be shown19 that if a neoclassical production function with CRS has

a constant elasticity of (factor) substitution different from one, it must be of

the form

 = 
£
 + (1− )

¤ 1
  (16.16)

where   and  are parameters satisfying   0, 0    1 and   1

 6= 0 This function has been used intensively in empirical studies and

is called a CES production function. For a given choice of measurement

units, the parameter  reflects efficiency and is thus called the efficiency

parameter. The parameters  and  are called the distribution parameter

and the substitution parameter, respectively. The restriction   1 ensures

that the isoquants are strictly convex to the origin. Note that if   0

the right-hand side of (16.16) is not defined when either  or  (or both)

equal 0 We can circumvent this problem by extending the domain of the

CES function and assign the function value 0 to these points when   0.

Continuity is maintained in the extended domain.

By taking partial derivatives in (16.16) and substituting back we get




= 

µ




¶1−
and




= (1− )

µ




¶1−
 (16.17)

where  = 
£
+ (1− )−

¤ 1
 and  = 

£
 + 1− 

¤ 1
  The mar-

ginal rate of substitution of  for  therefore is

 =



=
1− 


1−  0

Consequently,



=
1− 


(1− )−

where the inverse of the right-hand side is the value of  Substitut-

ing these expressions into the general definition of the elasticity of substitution

between capital and labor, evaluated at the point ()

̃() =




()

 |=̄ =
()




 |=̄

 (16.18)

19See, e.g., Arrow et al. (1961).
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gives

̃() =
1

1− 
≡  (16.19)

confirming the constancy of the elasticity of substitution, given (16.17). Since

  1   0 always A higher substitution parameter,  results in a higher

elasticity of substitution,  And  ≶ 1 for  ≶ 0 respectively.
Since  = 0 is not allowed in (16.16), at first sight we cannot get  = 1

from this formula. Yet,  = 1 can be introduced as the limiting case of (16.16)

when  → 0 which turns out to be the Cobb-Douglas function. Indeed, one

can show20 that, for fixed  and 


£
 + (1− )

¤ 1
 → 1− for  → 0

By a similar procedure as above we find that a Cobb-Douglas function always

has elasticity of substitution equal to 1; this is exactly the value taken by 

in (16.19) when  = 0. In addition, the Cobb-Douglas function is the only

production function that has unit elasticity of substitution everywhere.

Another interesting limiting case of the CES function appears when, for

fixed  and  we let  →−∞ so that  → 0 We get


£
 + (1− )

¤ 1
 → min() for  → −∞ (16.20)

So in this case the CES function approaches a Leontief production function,

the isoquants of which form a right angle, cf. Figure 16.3. In the limit there

is no possibility of substitution between capital and labor. In accordance

with this the elasticity of substitution calculated from (16.19) approaches

zero when  goes to −∞

Finally, let us consider the “opposite” transition. For fixed  and  we

let the substitution parameter rise towards 1 and get


£
 + (1− )

¤ 1
 →  [ + (1− )]  for  → 1

Here the elasticity of substitution calculated from (16.19) tends to ∞ and

the isoquants tend to straight lines with slope −(1 − ) In the limit,

the production function thus becomes linear and capital and labor become

perfect substitutes.

Figure 16.3 depicts isoquants for alternative CES production functions

and their limiting cases. In the Cobb-Douglas case,  = 1 the horizontal

and vertical asymptotes of the isoquant coincide with the coordinate axes.

20For proofs of this and the further claims below, see Appendix E of Chapter 4 in Groth

(2013).
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Figure 16.3: Isoquants for the CES production function for alternative values of

 = 1(1− ).

When   1 the horizontal and vertical asymptotes of the isoquant belong

to the interior of the positive quadrant. This implies that both capital and

labor are essential inputs. When   1 the isoquant terminates in points

on the coordinate axes. Then neither capital, nor labor are essential inputs.

Empirically there is not complete agreement about the “normal” size of the

elasticity of factor substitution for industrialized economies. The elasticity

also differs across the production sectors. A recent thorough econometric

study (Antràs, 2004) of U.S. data indicate the aggregate elasticity of substi-

tution to be in the interval (05 10).

The CES production function in intensive form

Dividing through by  on both sides of (16.16), we obtain the CES production

function in intensive form,

 ≡ 


= ( + 1− )

1
  (16.21)

where  ≡ . The marginal productivity of capital can be written

 =



= 

£
+ (1− )−

¤ 1−
 = 

³


´1−


which of course equals  in (16.17). We see that the CES function

violates either the lower or the upper Inada condition for , depending

on the sign of  Indeed, when   0 (i.e.,   1) then for  → 0 both 
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Figure 16.4: The CES production function for   1 (left panel) and   1 (right

panel).

and  approach an upper bound equal to 1 ∞ thus violating the

lower Inada condition for  (see the right-hand panel of Figure 2.3 in

Chapter 2). It is also noteworthy that in this case, for  →∞,  approaches
an upper bound equal to (1 − )1  ∞. These features reflect the low
degree of substitutability when   0

When instead   0 there is a high degree of substitutability (  1).

Then, for  →∞ both  and  → 1  0 thus violating the upper

Inada condition for  (see the right-hand panel of Figure 16.4). It is

also noteworthy that for  → 0,  approaches a positive lower bound equal

to (1− )1  0. Thus, in this case capital is not essential. At the same

time  → ∞ for  → 0 (so the lower Inada condition for the marginal

productivity of capital holds).

The marginal productivity of labor is

 =



= (1− )( + 1− )(1−) ≡ ()

from (16.17).

Since (16.16) is symmetric in and  we get a series of symmetric results

by considering output per unit of capital as ≡  = 
£
+ (1− )()

¤1


In total, therefore, when there is low substitutability (  0) for fixed input

of either of the production factors, there is an upper bound for how much

an unlimited input of the other production factor can increase output. And

when there is high substitutability (  0) there is no such bound and an

unlimited input of either production factor take output to infinity.

The Cobb-Douglas case, i.e., the limiting case for  → 0 constitutes in

several respects an intermediate case in that all four Inada conditions are

satisfied and we have  → 0 for  → 0 and  →∞ for  →∞

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



16.6. Appendix: The CES function 295

Generalizations

The CES production function considered above has CRS. By adding an elas-

ticity of scale parameter, , we get the generalized form

 = 
£
 + (1− )

¤ 
    0 (16.22)

In this form the CES function is homogeneous of degree  For 0    1

there are DRS, for  = 1 CRS, and for   1 IRS. If  6= 1 it may be

convenient to consider  ≡  1 = 1
£
 + (1− )

¤1
and  ≡ 

= 1( + 1− )1

The elasticity of substitution between  and  is  = 1(1−) whatever
the value of  So including the limiting cases as well as non-constant returns

to scale in the “family” of production functions with constant elasticity of

substitution, we have the simple classification displayed in Table 16.1.

Table 16.1 The family of production functions

with constant elasticity of substitution.

 = 0 0    1  = 1   1

Leontief CES Cobb-Douglas CES

Note that only for  ≤ 1 is (16.22) a neoclassical production function.
This is because, when   1 the conditions   0 and   0 do not

hold everywhere.

We may generalize further by assuming there are  inputs, in the amounts

12  Then the CES production function takes the form

 = 
£
11

 + 22
 + 


¤ 
    0 for all 

X


 = 1   0

(16.23)

In analogy with (16.18), for an -factor production function the partial elas-

ticity of substitution between factor  and factor  is defined as

 =




()

 |=̄


where it is understood that not only the output level but also all ,  6= , ,

are kept constant. Note that  =  In the CES case considered in (16.23),

all the partial elasticities of substitution take the same value, 1(1− )
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Chapter 17

Addendum to Chapter 2

The contents of this chapter are identical to the contents of Short Note 1 as

of 21.02.2014.

17.1 Skill-biased technical change in the sense

of Hicks: An example

Let output be produced through a differentiable three-factor production func-

tion ̃ :

 = ̃ (1 2 ) ̃   0

where  is capital input, 1 is input of unskilled labor, and 2 is input

of skilled labor. Suppose technological change is such that the production

function can be rewritten

̃ (1 2 ) =  ((1 2 )) (17.1)

where the function (1 2 ) represents a “human capital” aggregate. Let

the function  have CRS-neoclassical properties w.r.t. (1 2) and let

  0.

In equilibrium under perfect competition in the labor markets the relative

wage, the “skill premium”, will be

2

1
=

2

1
=

2

1
=

2(1 2 )

1(1 2 )
=

2(1 21 )

1(1 21 )
 (17.2)

where we have used Euler’s theorem1 (saying that if  is homogeneous of

degree one in its first two arguments, then the partial derivatives of  are

homogeneous of degree zero w.r.t. these arguments).

1Acemoglu, p. 29.
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Hicks’ definitions are now: If for all 21  0


³
2(121)

1(121)

´


2
1

constant
T 0 then technical change is⎧⎨⎩ skill-biased in the sense of Hicks,

skill-neutral in the sense of Hicks.

blue collar-biased in the sense of Hicks,

(17.3)

respectively. Combining with (17.2), we see that if the skill-premium has

an upward trend for fixed relative supplies of skilled and unskilled labor, a

possible explanation is that technological change is skill-biased in the sense

of Hicks.

In the US the skill premium (measured by the wage ratio for college grads

vis-a-vis high school grads) has had an upward trend since 1950 (see Jones

and Romer, 2010).2 If in the same period the relative supply of skilled labor

had been roughly constant, a suggested explanation could be skill-biased

technical change. In practice the relative supply of skilled labor has also

been rising over the same period (in fact even faster than the skill premium).

This suggests that the extend of “skill-biasedness” has been even stronger.3

An additional aspect of the story is that skill-biasedness helps explain

the observed increase in the relative supply of skilled labor. If for a constant

relative supply of skilled labor the skill premium is increasing, this increase

strengthens the incentive to go to college. Thereby the fraction of skilled

labor in the labor force tends to increase.

17.2 Capital-skill complementarity

Another potential source of a rising skill premium is capital-skill complemen-

tarity. Consider the production function

 = ̃ (1 2 ) =  (11 22) = (+11)
(22)

1− 0    1

where 1 and 2 are technical coefficients that may be rising over time.

In this production function capital and unskilled labor are perfectly sub-

stitutable (the partial elasticity of factor substitution is +∞) On the other
2On the other hand, over the years 1915 - 1950 the skill premium had a downward

trend (Jones and Romer, 2010).
3As the  function has CRS-neoclassical properties w.r.t. 1 and 2 22  0 and

12  0 cf. LN 2. Hence, with skill-neutral technical change we should have observed a

declining skill premium (even more so with blue collar-biased technical change).
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hand there is direct complementarity between capital and skilled labor (2(2) 

0)

In equilibrium under perfect competition the skill premium is

2

1
=

2

2
=
( +11)

(1− )(22)
−2

( +11)−11(22)1−
=
1− 



µ
 +11

22

¶
2

1


(17.4)

Here, even without technical change (1 and 2 constant), a rising capital

stock will, for fixed 1 and 2 raise the skill premium.

Equilibrium under perfect competition also implies




= ( +11)

−1(22)
1− = 

µ
 +11

22

¶−1
=  +  (17.5)

where  is the real interest rate at time  and  is the (constant) capital

depreciation rate. If in the long run  tends to be constant (cf. Kaldor’s

stylized facts), then also (+11)(22) will tend to be constant. In this

case, (17.4) shows that capital-skill complementarity is not sufficient for a

rising skill premium. For the skill premium to remain increasing in this case,

we need that technical change brings about a rising 21. This amounts

to skill-biasedness in a strong form.

The above observations are consistent with a story where capital equip-

ment gradually replaces unskilled labor and a rising skill premium induces

more and more people to go to college. The rising level of education in

the labor force contributes to productivity. This together with continued

technical change constitutes the basis for further capital accumulation and

productivity increases.

In particular since the early 1980s the skill premium has been sharply

increasing in the US (see Acemoglu, p. 498). This is also the period where

ICT technologies took off.
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Appendix 
 

Errata to lecture notes in Economic Growth, Spring 2014  
(as updated 7/5 2014) 

 4/3     Ch. 2, p. 38, line 1 from below: replace QY by qY. 
        1/4    More to Ch.2: p. 37, line 3 from below:    "higher At, Bt, or both"    should be    "higher 
at, bt, or both".     

           Ch. 4, p. 61, middle: "CRS production function (5.2)"    should read    "CRS production 
function (4.6)". 
               p. 62, line 1: replace (5.2) by (4.6). 
               p. 63, line 8: replace (5.2) by (4.6). 

           Ch. 5, p. 74, line 7: "absence of externalities"    should read    "absence of externalities and 
increasing returns to scale". 

24/3    Ch. 8, p. 127, headline of the appendix:    "certainty loss"    should read    "certainty-
equivalent loss". 
           Ch. 9, p. 136, line 7:    in the formula starting with w the factor h before the third equality 
sign should be Ah. 
                p. 138:    line 9-17 should be deleted. 
                p. 144, eq. (9.19):    the lower limit of integration should not be S but v + S. 
                p. 152, line 9:    "and thus in better harmony"    should read    "and is thus in better 
harmony". 
                    line 11:    "h = a*e^eta*S"    should read    "h = a*e^eta*lnS".  

 1/4    Ch. 9, p. 145, line 9 from below:    "no utility from leisure"    should read    "no utility from 
leisure and no bequest motive". 
                        -    line 1 from below:    "= HW(S)"    should read    "= HW(v, S)". 
                     p. 150, line 6:    "spirit of assumption 7"    should read    "spirit of assumption 5". 

 7/4    Ch. 10, p. 168, line 12 from below:    "in chapters 12 and 16"    should read    "in chapters 13 
and 16". 

28/4   Ch. 13, p. 205, line 14:    "Even within"    should read    "Within". 
                p. 217, line 10 from below:    "(??)"    should be    "(13.14)". 

29/4    Ch. 14, p. 245-46:    in (14.12), (14.13), and (14.14) the variables Pi, pi, xi, w, Y, and N 
should be indexed by a t. 
                    p. 246, line 4:    delete "14.17n". 
                    p. 246, line 5: "in (14.12)    should read    "in (14.12) is". 
                    p. 246, in (14.16) as well as four lines lower:    "1"    should be    "psi". 
                    p. 247, line 2:    delete the factor xi/pi before Elxipi. 
                    p. 253, line 7:    "which (without"    should read    "(that have no".   

 2/5    Ch. 15, p. 265: in (A1) in line 2 from below delete theta.     



 6/5    Ch. 14, p. 251, n. 6:    "drives share prices down and the rate of return, rt, up"    should 
read    "drives the interest rate, rt, up". 
                       p. 255, line 5:    "Hence, the so far unknown"    should read    "Hence, the until now 
unknown".  

          Ch. 15, p. 263-264:    every time you see a N_dot_t on these two pages, add a "+" as a top 
index on the N_dot_t. This is meant to indicate that what is meant is the conditional capital gain, 
that is, the increase per time unit in the market value of the monopoly firm at time t, conditional on 
its monopoly position remaining in place also in the next moment. 
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