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Preface

This is a collection of earlier separate lecture notes in Economic Growth.

The notes have been used in recent years in the course Economic Growth

within the Master’s Program in Economics at the Department of Economics,

University of Copenhagen.

Compared with the earlier versions of the lecture notes some chapters

have been extended and in some cases divided into several chapters. In

addition, discovered typos and similar have been corrected. In some of the

chapters a terminal list of references is at present lacking.

The lecture notes are in no way intended as a substitute for the text-

book: D. Acemoglu, Introduction to Modern Economic Growth, Princeton

University Press, 2009. The lecture notes are meant to be read along with

the textbook. Some parts of the lecture notes are alternative presentations

of stuff also covered by the textbook, while many other parts are comple-

mentary in the sense of presenting additional material. Sections marked by

an asterisk, *, are cursory reading.

For constructive criticism I thank Niklas Brønager, class instructor since

2012, and plenty of earlier students. No doubt, obscurities remain. Hence, I

very much welcome comments and suggestions of any kind relating to these

lecture notes.

February 2014

Christian Groth
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Chapter 1

Introduction to economic

growth

This introductory lecture is a refresher on basic concepts.

Section 1.1 defines Economic Growth as a field of economics. In Section

1.2 formulas for calculation of compound average growth rates in discrete

and continuous time are presented. Section 1.3 briefly presents two sets of

stylized facts. Finally, Section 1.4 discusses, in an informal way, the different

concepts of cross-country income convergence. In his introductory Chapter

1, §1.5, Acemoglu briefly touches upon these concepts.

1.1 The field

Economic growth analysis is the study of what factors and mechanisms deter-

mine the time path of productivity (a simple index of productivity is output

per unit of labor). The focus is on

• productivity levels and

• productivity growth.

1.1.1 Economic growth theory

Economic growth theory endogenizes productivity growth via considering

human capital accumulation (formal education as well as learning-by-doing)

and endogenous research and development. Also the conditioning role of

geography and juridical, political, and cultural institutions is taken into ac-

count.

1



2 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

Although for practical reasons, economic growth theory is often stated in

terms of easily measurable variables like per capita GDP, the term “economic

growth” may be interpreted as referring to something deeper. We could think

of “economic growth” as the widening of the opportunities of human beings

to lead freer and more worthwhile lives.

To make our complex economic environment accessible for theoretical

analysis we use economic models. What is an economic model? It is a way

of organizing one’s thoughts about the economic functioning of a society. A

more specific answer is to define an economic model as a conceptual struc-

ture based on a set of mathematically formulated assumptions which have

an economic interpretation and from which empirically testable predictions

can be derived. In particular, an economic growth model is an economic

model concerned with productivity issues. The union of connected and non-

contradictory models dealing with economic growth and the theorems derived

from these constitute an economic growth theory. Occasionally, intense con-

troversies about the validity of different growth theories take place.

The terms “New Growth Theory” and “endogenous growth theory” re-

fer to theory and models which attempt at explaining sustained per capita

growth as an outcome of internal mechanisms in the model rather than just

a reflection of exogenous technical progress as in “Old Growth Theory”.

Among the themes addressed in this course are:

• How is the world income distribution evolving?

• Why do living standards differ so much across countries and regions?
Why are some countries 50 times richer than others?

• Why do per capita growth rates differ over long periods?

• What are the roles of human capital and technology innovation in eco-
nomic growth? Getting the questions right.

• Catching-up and increased speed of communication and technology dif-
fusion.

• Economic growth, natural resources, and the environment (including
the climate). What are the limits to growth?

• Policies to ignite and sustain productivity growth.

• The prospects of growth in the future.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



1.1. The field 3

The course concentrates on mechanisms behind the evolution of produc-

tivity in the industrialized world. We study these mechanisms as integral

parts of dynamic general equilibrium models. The exam is a test of the ex-

tent to which the student has acquired understanding of these models, is

able to evaluate them, from both a theoretical and empirical perspective,

and is able to use them to analyze specific economic questions. The course

is calculus intensive.

1.1.2 Some long-run data

Let  denote real GDP (per year) and let  be population size. Then 

is GDP per capita. Further, let  denote the average (compound) growth

rate of  per year since 1870 and let  denote the average (compound)

growth rate of  per year since 1870. Table 1.1 gives these growth rates

for four countries.

 
Denmark 2,67 1,87

UK 1,96 1,46

USA 3,40 1,89

Japan 3,54 2,54

Table 1.1: Average annual growth rate of GDP and GDP per capita in percent,

1870—2006. Discrete compounding. Source: Maddison, A: The World Economy:

Historical Statistics, 2006, Table 1b, 1c and 5c.

Figure 1.1 displays the time path of annual GDP and GDP per capita in

Denmark 1870-2006 along with regression lines estimated by OLS (logarith-

mic scale on the vertical axis). Figure 1.2 displays the time path of GDP per

capita in UK, USA, and Japan 1870-2006. In both figures the average annual

growth rates are reported. In spite of being based on exactly the same data

as Table 1.1, the numbers are slightly different. Indeed, the numbers in the

figures are slightly lower than those in the table. The reason is that discrete

compounding is used in Table 1.1 while continuous compounding is used in

the two figures. These two alternative methods of calculation are explained

in the next section.
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4 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

Figure 1.1: GDP and GDP per capita (1990 International Geary-Khamis dollars)

in Denmark, 1870-2006. Source: Maddison, A. (2009). Statistics on World Popu-

lation, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

1.2 Calculation of the average growth rate

1.2.1 Discrete compounding

Let  denote aggregate labor productivity, i.e.,  ≡  where  is employ-

ment. The average growth rate of  from period 0 to period  with discrete

compounding, is that  which satisfies

 = 0(1 +)  = 1 2  , or (1.1)

1 + = (


0
)1 i.e.,

 = (


0
)1 − 1 (1.2)

“Compounding” means adding the one-period “net return” to the “princi-

pal” before adding next period’s “net return” (like with interest on interest,

also called “compound interest”). Obviously,  will generally be quite dif-

ferent from the arithmetic average of the period-by-period growth rates. To

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



1.2. Calculation of the average growth rate 5

Figure 1.2: GDP per capita (1990 International Geary-Khamis dollars) in UK,

USA and Japan, 1870-2006. Source: Maddison, A. (2009). Statistics on World

Population, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

underline this,  is sometimes called the “average compound growth rate”

or the “geometric average growth rate”.

Using a pocket calculator, the following steps in the calculation of  may

be convenient. Take logs on both sides of (1.1) to get

ln


0
=  ln(1 +) ⇒

ln(1 +) =
ln 

0


⇒ (1.3)

 = antilog(
ln 

0


)− 1. (1.4)

Note that  in the formulas (1.2) and (1.4) equals the number of periods

minus 1.
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6 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

1.2.2 Continuous compounding

The average growth rate of , with continuous compounding, is that  which

satisfies

 = 0
 (1.5)

where  denotes the Euler number, i.e., the base of the natural logarithm.1

Solving for  gives

 =
ln 

0


=
ln  − ln 0


 (1.6)

The first formula in (1.6) is convenient for calculation with a pocket calcula-

tor, whereas the second formula is perhaps closer to intuition. Another name

for  is the “exponential average growth rate”.

Again, the  in the formula equals the number of periods minus 1.

Comparing with (1.3) we see that  = ln(1 +)   for   0 Yet, by

a first-order Taylor approximation about  = 0 we have

 = ln(1 +) ≈  for  “small”. (1.7)

For a given data set the  calculated from (1.2) will be slightly above the

 calculated from (1.6), cf. the mentioned difference between the growth rates

in Table 1.1 and those in Figure 1.1 and Figure 1.2. The reason is that a given

growth force is more powerful when compounding is continuous rather than

discrete. Anyway, the difference between  and  is usually unimportant.

If for example  refers to the annual GDP growth rate, it will be a small

number, and the difference between  and  immaterial. For example, to

 = 0040 corresponds  ≈ 0039 Even if  = 010, the corresponding  is

00953. But if  stands for the inflation rate and there is high inflation, the

difference between  and  will be substantial. During hyperinflation the

monthly inflation rate may be, say,  = 100%, but the corresponding  will

be only 69%.

Which method, discrete or continuous compounding, is preferable? To

some extent it is a matter of taste or convenience. In period analysis discrete

compounding is most common and in continuous time analysis continuous

compounding is most common.

For calculation with a pocket calculator the continuous compounding for-

mula, (1.6), is slightly easier to use than the discrete compounding formulas,

whether (1.2) or (1.4).

To avoid too much sensitiveness to the initial and terminal observations,

which may involve measurement error or depend on the state of the business

1Unless otherwise specified, whenever we write ln or log  the natural logarithm is

understood.
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1.3. Some stylized facts of economic growth 7

cycle, one can use an OLS approach to the trend coefficient,  in the following

regression:

ln = + + 

This is in fact what is done in Fig. 1.1.

1.2.3 Doubling time

How long time does it take for  to double if the growth rate with discrete

compounding is ? Knowing  we rewrite the formula (1.3):

 =
ln 

0

ln(1 +)
=

ln 2

ln(1 +)
≈ 06931

ln(1 +)


With  = 00187 cf. Table 1.1, we find

 ≈ 374 years,
meaning that productivity doubles every 374 years.

How long time does it take for  to double if the growth rate with con-

tinuous compounding is ? The answer is based on rewriting the formula

(1.6):

 =
ln 

0


=
ln 2


≈ 06931




Maintaining the value 00187 also for  we find

 ≈ 06931
00187

≈ 371 years.

Again, with a pocket calculator the continuous compounding formula is

slightly easier to use. With a lower  say  = 001 we find doubling time

equal to 691 years. With  = 007 (think of China since the 1970’s), dou-

bling time is about 10 years! Owing to the compounding exponential growth

is extremely powerful.

1.3 Some stylized facts of economic growth

1.3.1 The Kuznets facts

A well-known characteristic of modern economic growth is structural change:

unbalanced sectorial growth. There is a massive reallocation of labor from

agriculture into industry (manufacturing, construction, and mining) and fur-

ther into services (including transport and communication). The shares of
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8 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

 

Figure 1.3: The Kuznets facts. Source: Kongsamut et al., Beyond Balanced

Growth, Review of Economic Studies, vol. 68, Oct. 2001, 869-82.

total consumption expenditure going to these three sectors have moved sim-

ilarly. Differences in the demand elasticities with respect to income seem the

main explanation. These observations are often referred to as the Kuznets

facts (after Simon Kuznets, 1901-85, see, e.g., Kuznets 1957).

The two graphs in Figure 1.3 illustrate the Kuznets facts.

1.3.2 Kaldor’s stylized facts

Surprisingly, in spite of the Kuznets facts, the evolution at the aggregate level

in developed countries is by many economists seen as roughly described by

what is called Kaldor’s “stylized facts” (after the Hungarian-British econo-
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1.4. Concepts of income convergence 9

mist Nicholas Kaldor, 1908-1986, see, e.g., Kaldor 1957, 1961)2:

1. Real output per man-hour grows at a more or less constant rate

over fairly long periods of time. (Of course, there are short-run fluctuations

superposed around this trend.)

2. The stock of physical capital per man-hour grows at a more or less

constant rate over fairly long periods of time.

3. The ratio of output to capital shows no systematic trend.

4. The rate of return to capital shows no systematic trend.

5. The income shares of labor and capital (in the national account-

ing sense, i.e., including land and other natural resources), respectively, are

nearly constant.

6. The growth rate of output per man-hour differs substantially across

countries.

These claimed regularities do certainly not fit all developed countries

equally well. Although Solow’s growth model (Solow, 1956) can be seen

as the first successful attempt at building a model consistent with Kaldor’s

“stylized facts”, Solow once remarked about them: “There is no doubt that

they are stylized, though it is possible to question whether they are facts”

(Solow, 1970). But the Kaldor “facts” do at least seem to fit the US and

UK quite well, see, e.g., Attfield and Temple (2010). The sixth Kaldor fact

is, of course, well documented empirically (a nice summary is contained in

Pritchett, 1997).

Kaldor also proposed hypotheses about the links between growth in the

different sectors (see, e.g., Kaldor 1967):

a. Productivity growth in the manufacturing and construction sec-

tors is enhanced by output growth in these sectors (this is also known as

Verdoorn’s Law). Increasing returns to scale and learning by doing are the

main factors behind this.

b. Productivity growth in agriculture and services is enhanced by out-

put growth in the manufacturing and construction sectors.

1.4 Concepts of income convergence

The two most popular across-country income convergence concepts are “

convergence” and “ convergence”.

2Kaldor presented his six regularities as “a stylised view of the facts”.
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10 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

1.4.1  convergence vs.  convergence

Definition 1 We say that  convergence occurs for a given selection of coun-

tries if there is a tendency for the poor (those with low income per capita or

low output per worker) to subsequently grow faster than the rich.

By “grow faster” is meant that the growth rate of per capita income (or

per worker output) is systematically higher.

In many contexts, a more appropriate convergence concept is the follow-

ing:

Definition 2 We say that  convergence, with respect to a given measure of

dispersion, occurs for a given collection of countries if this measure of disper-

sion, applied to income per capita or output per worker across the countries,

declines systematically over time. On the other hand,  divergence occurs, if

the dispersion increases systematically over time.

The reason that  convergence must be considered the more appropri-

ate concept is the following. In the end, it is the question of increasing

or decreasing dispersion across countries that we are interested in. From a

superficial point of view one might think that  convergence implies decreas-

ing dispersion and vice versa, so that  convergence and  convergence are

more or less equivalent concepts. But since the world is not deterministic,

but stochastic, this is not true. Indeed,  convergence is only a necessary,

not a sufficient condition for  convergence. This is because over time some

reshuffling among the countries is always taking place, and this implies that

there will always be some extreme countries (those initially far away from

the mean) that move closer to the mean, thus creating a negative correla-

tion between initial level and subsequent growth, in spite of equally many

countries moving from a middle position toward one of the extremes.3 In

this way  convergence may be observed at the same time as there is no 

convergence; the mere presence of random measurement errors implies a bias

in this direction because a growth rate depends negatively on the initial mea-

surement and positively on the later measurement. In fact,  convergence

may be consistent with  divergence (for a formal proof of this claim, see

Barro and Sala-i-Martin, 2004, pp. 50-51 and 462 ff.; see also Valdés, 1999,

p. 49-50, and Romer, 2001, p. 32-34).

3As an intuitive analogy, think of the ordinal rankings of the sports teams in a league.

The dispersion of rankings is constant by definition. Yet, no doubt there will allways be

some tendency for weak teams to rebound toward the mean and of champions to revert

to mediocrity. (This example is taken from the first edition of Barro and Sala-i-Martin,

Economic Growth, 1995; I do not know why, but the example has been deleted in the

second edition from 2004.)
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1.4. Concepts of income convergence 11

Hence, it is wrong to conclude from  convergence (poor countries tend

to grow faster than rich ones) to  convergence (reduced dispersion of per

capita income) without any further investigation. The mistake is called “re-

gression towards the mean” or “Galton’s fallacy”. Francis Galton was an

anthropologist (and a cousin of Darwin), who in the late nineteenth century

observed that tall fathers tended to have not as tall sons and small fathers

tended to have taller sons. From this he falsely concluded that there was

a tendency to averaging out of the differences in height in the population.

Indeed, being a true aristocrat, Galton found this tendency pitiable. But

since his conclusion was mistaken, he did not really have to worry.

Since  convergence comes closer to what we are ultimately looking for,

from now, when we speak of just “income convergence”,  convergence is

understood.

In the above definitions of  convergence and  convergence, respectively,

we were vague as to what kind of selection of countries is considered. In

principle we would like it to be a representative sample of the “population”

of countries that we are interested in. The population could be all countries

in the world. Or it could be the countries that a century ago had obtained a

certain level of development.

One should be aware that historical GDP data are constructed retrospec-

tively. Long time series data have only been constructed for those countries

that became relatively rich during the after-WWII period. Thus, if we as

our sample select the countries for which long data series exist, a so-called

selection bias is involved which generates a spurious convergence. A country

which was poor a century ago will only appear in the sample if it grew rapidly

over the next 100 years. A country which was relatively rich a century ago

will appear in the sample unconditionally. This selection bias problem was

pointed out by DeLong (1988) in a criticism of widespread false interpreta-

tions of Maddison’s long data series (Maddison 1982).

1.4.2 Measures of dispersion

Our next problem is: what measure of dispersion is to be used as a useful

descriptive statistics for  convergence? Here there are different possibilities.

To be precise about this we need some notation. Let

 ≡ 


 and

 ≡ 




c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



12 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

where  = real GDP,  = employment, and  = population. If the focus

is on living standards,  is the relevant variable.4 But if the focus is on

(labor) productivity, it is  that is relevant. Since most growth models

focus on  rather than  let os take  as our example.

One might think that the standard deviation of  could be a relevant

measure of dispersion when discussing whether  convergence is present or

not. The standard deviation of  across  countries in a given year is

 ≡
vuut1



X
=1

( − ̄)2 (1.8)

where

̄ ≡
P

 


 (1.9)

i.e., ̄ is the average output per worker. However, if this measure were used,

it would be hard to find any group of countries for which there is income

convergence. This is because  tends to grow over time for most countries,

and then there is an inherent tendency for the variance also to grow; hence

also the square root of the variance,  tends to grow. Indeed, suppose that

for all countries,  is doubled from time 1 to time 2 Then, automatically,

 is also doubled. But hardly anyone would interpret this as an increase in

the income inequality across the countries.

Hence, it is more adequate to look at the standard deviation of relative

income levels:

̄ ≡
s
1



X


(


̄
− 1)2 (1.10)

This measure is the same as what is called the coefficient of variation, 

usually defined as

 ≡ 

̄
 (1.11)

that is, the standard deviation of  standardized by the mean. That the two

measures are identical can be seen in this way:



̄
≡

q
1


P
( − ̄)2

̄
=

s
1



X


(
 − ̄

̄
)2 =

s
1



X


(


̄
− 1)2 ≡ ̄

4Or perhaps better,  where  ≡  ≡  − − Here,  denotes net

interest payments on foreign debt and  denotes net labor income of foreign workers in

the country.
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1.4. Concepts of income convergence 13

The point is that the coefficient of variation is “scale free”, which the standard

deviation itself is not.

Instead of the coefficient of variation, another scale free measure is often

used, namely the standard deviation of ln , i.e.,

ln  ≡
s
1



X


(ln  − ln ∗)2 (1.12)

where

ln ∗ ≡
P

 ln 


 (1.13)

Note that ∗ is the geometric average, i.e., ∗ ≡ 
√
12 · · ·  Now, by a

first-order Taylor approximation of ln  around  = ̄, we have

ln  ≈ ln ̄ + 1
̄
( − ̄)

Hence, as a very rough approximation we have ln  ≈ ̄ =  though

this approximation can be quite poor (cf. Dalgaard and Vastrup, 2001).

It may be possible, however, to defend the use of ln  in its own right to

the extent that  tends to be approximately lognormally distributed across

countries.

Yet another possible measure of income dispersion across countries is the

Gini index (see for example Cowell, 1995).

1.4.3 Weighting by size of population

Another important issue is whether the applied dispersion measure is based

on a weighting of the countries by size of population. For the world as a

whole, when no weighting by size of population is used, then there is a slight

tendency to income divergence according to the ln  criterion (Acemoglu,

2009, p. 4), where  is per capita income (≡ ). As seen by Fig. 4 below,

this tendency is not so clear according to the  criterion. Anyway, when

there is weighting by size of population, then in the last twenty years there

has been a tendency to income convergence at the global level (Sala-i-Martin

2006; Acemoglu, 2009, p. 6). With weighting by size of population (1.12) is

modified to

ln  ≡
sX



(ln  − ln ∗)2

where

 =



and ln ∗ ≡

X


 ln 
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14 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

1.4.4 Unconditional vs. conditional convergence

Yet another distinction in the study of income convergence is that between

unconditional (or absolute) and conditional convergence. We say that a

large heterogeneous group of countries (say the countries in the world) show

unconditional income convergence if income convergence occurs for the whole

group without conditioning on specific characteristics of the countries. If

income convergence occurs only for a subgroup of the countries, namely those

countries that in advance share the same “structural characteristics”, then

we say there is conditional income convergence. As noted earlier, when we

speak of just income “convergence”, income “ convergence” is understood.

If in a given context there might be doubt, one should of course be explicit

and speak of unconditional or conditional  convergence. Similarly, if the

focus for some reason is on  convergence, we should distinguish between

unconditional and conditional  convergence.

What the precise meaning of “structural characteristics” is, will depend

on what model of the countries the researcher has in mind. According to

the Solow model, a set of relevant “structural characteristics” are: the aggre-

gate production function, the initial level of technology, the rate of technical

progress, the capital depreciation rate, the saving rate, and the population

growth rate. But the Solow model, as well as its extension with human cap-

ital (Mankiw et al., 1992), is a model of a closed economy with exogenous

technical progress. The model deals with “within-country” convergence in

the sense that the model predicts that a closed economy being initially be-

low or above its steady state path, will over time converge towards its steady

state path. It is far from obvious that this kind of model is a good model

of cross-country convergence in a globalized world where capital mobility

and to some extent also labor mobility are important and some countries are

pushing the technological frontier further out, while others try to imitate and

catch up.

1.4.5 A bird’s-eye view of the data

In the following no serious econometrics is attempted. We use the term

“trend” in an admittedly loose sense.

Figure 1.4 shows the time profile for the standard deviation of  itself for

12 EU countries, whereas Figure 1.5 and Figure 1.6 show the time profile

of the standard deviation of log  and the time profile of the coefficient of

variation, respectively. Comparing the upward trend in Figure 1.4 with the

downward trend in the two other figures, we have an illustration of the fact

that the movement of the standard deviation of  itself does not capture
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Figure 1.4: Standard deviation of GDP per capita and per worker across 12 EU

countries, 1950-1998.
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12 EU countries, 1950-1998.

income convergence. To put it another way: although there seems to be

conditional income convergence with respect to the two scale-free measures,

Figure 1.4 shows that this tendency to convergence is not so strong as to

produce a narrowing of the absolute distance between the EU countries.5

Figure 1.7 shows the time path of the coefficient of variation across 121

countries in the world, 22 OECD countries and 12 EU countries, respectively.

We see the lack of unconditional income convergence, but the presence of con-

ditional income convergence. One should not over-interpret the observation

of convergence for the 22 OECD countries over the period 1950-1990. It is

likely that this observation suffer from the selection bias problem mentioned

in Section 1.4.1. A country that was poor in 1950 will typically have become

a member of OECD only if it grew relatively fast afterwards.

5Unfortunately, sometimes misleading graphs or texts to graphs about across-country

income convergence are published. In the collection of exercises, Chapter 1, you are asked

to discuss some examples of this.
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countries.

1.4.6 Other convergence concepts

Of course, just considering the time profile of the first and second moments

of a distribution may sometimes be a poor characterization of the evolution

of the distribution. For example, there are signs that the distribution has

polarized into twin peaks of rich and poor countries (Quah, 1996a; Jones,

1997). Related to this observation is the notion of club convergence. If in-

come convergence occurs only among a subgroup of the countries that to

some extent share the same initial conditions, then we say there is club-

convergence. This concept is relevant in a setting where there are multiple

steady states toward which countries can converge. At least at the theoret-

ical level multiple steady states can easily arise in overlapping generations

models. Then the initial condition for a given country matters for which of

these steady states this country is heading to. Similarly, we may say that

conditional club-convergence is present, if income convergence occurs only

for a subgroup of the countries, namely countries sharing similar structural

characteristics (this may to some extent be true for the OECD countries)

and, within an interval, similar initial conditions.

Instead of focusing on income convergence, one could study TFP conver-
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gence at aggregate or industry level.6 Sometimes the less demanding concept

of growth rate convergence is the focus.

The above considerations are only of a very elementary nature and are

only about descriptive statistics. The reader is referred to the large existing

literature on concepts and econometric methods of relevance for character-

izing the evolution of world income distribution (see Quah, 1996b, 1996c,

1997, and for a survey, see Islam 2003).
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Chapter 2

Review of technology

The aim of this chapter is, first, to introduce the terminology concerning

firms’ technology and technological change used in the lectures and exercises

of this course. At a few points I deviate somewhat from definitions in Ace-

moglu’s book. Section 1.3 can be used as a formula manual for the case of

CRS.

Second, the chapter contains a brief discussion of the somewhat contro-

versial notions of a representative firm and an aggregate production function.

Regarding the distinction between discrete and continuous time analysis,

most of the definitions contained in this chapter are applicable to both.

2.1 The production technology

Consider a two-factor production function given by

 =  () (2.1)

where  is output (value added) per time unit,  is capital input per time

unit, and  is labor input per time unit ( ≥ 0  ≥ 0). We may think of
(2.1) as describing the output of a firm, a sector, or the economy as a whole.

It is in any case a very simplified description, ignoring the heterogeneity of

output, capital, and labor. Yet, for many macroeconomic questions it may

be a useful first approach. Note that in (2.1) not only  but also  and 

represent flows, that is, quantities per unit of time. If the time unit is one

year, we think of  as measured in machine hours per year. Similarly, we

think of  as measured in labor hours per year. Unless otherwise specified, it

is understood that the rate of utilization of the production factors is constant

over time and normalized to one for each production factor. As explained

in Chapter 1, we can then use the same symbol,  for the flow of capital

services as for the stock of capital. Similarly with 

23



24 CHAPTER 2. REVIEW OF TECHNOLOGY

2.1.1 A neoclassical production function

By definition,  and  are non-negative. It is generally understood that a

production function,  =  () is continuous and that  (0 0) = 0 (no in-

put, no output). Sometimes, when specific functional forms are used to repre-

sent a production function, that function may not be defined at points where

 = 0 or  = 0 or both. In such a case we adopt the convention that the do-

main of the function is understood extended to include such boundary points

whenever it is possible to assign function values to them such that continuity

is maintained. For instance the function  () =  + ( + )

where   0 and   0 is not defined at () = (0 0) But by assigning

the function value 0 to the point (0 0) we maintain both continuity and the

“no input, no output” property, cf. Exercise 2.4.

We call the production function neoclassical if for all () with   0

and   0 the following additional conditions are satisfied:

(a)  () has continuous first- and second-order partial derivatives sat-

isfying:

  0   0 (2.2)

  0   0 (2.3)

(b)  () is strictly quasiconcave (i.e., the level curves, also called iso-

quants, are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous

substitution possibilities between  and  and the marginal productivities

are positive, but diminishing in own factor. Thus, for a given number of ma-

chines, adding one more unit of labor, adds to output, but less so, the higher

is already the labor input. And (b) says that every isoquant,  () = ̄ 

has a strictly convex form qualitatively similar to that shown in Figure 2.1.1

When we speak of for example  as the marginal productivity of labor, it

is because the “pure” partial derivative,  =  has the denomina-

tion of a productivity (output units/yr)/(man-yrs/yr). It is quite common,

however, to refer to  as the marginal product of labor. Then a unit mar-

ginal increase in the labor input is understood: ∆ ≈ ()∆ = 

when ∆ = 1 Similarly,  can be interpreted as the marginal productiv-

ity of capital or as the marginal product of capital. In the latter case it is

understood that ∆ = 1 so that ∆ ≈ ()∆ = 

1For any fixed ̄ ≥ 0 the associated isoquant is the level set

{() ∈ R+|  () = ̄
ª

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The definition of a neoclassical production function can be extended to

the case of  inputs. Let the input quantities be 1 2      and consider

a production function  =  (12     ) Then  is called neoclassical if

all the marginal productivities are positive, but diminishing, and  is strictly

quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix

A).

Returning to the two-factor case, since  () presumably depends on

the level of technical knowledge and this level depends on time,  we might

want to replace (2.1) by

 =  ( ) (2.4)

where the superscript on  indicates that the production function may shift

over time, due to changes in technology. We then say that  (·) is a neoclas-
sical production function if it satisfies the conditions (a) and (b) for all pairs

( ). Technological progress can then be said to occur when, for  and

 held constant, output increases with 

For convenience, to begin with we skip the explicit reference to time and

level of technology.

The marginal rate of substitution Given a neoclassical production

function  we consider the isoquant defined by  () = ̄  where ̄

is a positive constant. The marginal rate of substitution, , of  for

 at the point () is defined as the absolute slope of the isoquant at that

point, cf. Figure 2.1. The equation  () = ̄ defines  as an implicit

function of  By implicit differentiation we find () +()

= 0 from which follows

 ≡ −
 |=̄ =

()

()
 0 (2.5)

That is,  measures the amount of  that can be saved (approxi-

mately) by applying an extra unit of labor. In turn, this equals the ratio

of the marginal productivities of labor and capital, respectively.2 Since 

is neoclassical, by definition  is strictly quasi-concave and so the marginal

rate of substitution is diminishing as substitution proceeds, i.e., as the labor

input is further increased along a given isoquant. Notice that this feature

characterizes the marginal rate of substitution for any neoclassical production

function, whatever the returns to scale (see below).

2The subscript
¯̄
 = ̄ in (2.5) indicates that we are moving along a given isoquant,

 () = ̄  Expressions like, e.g., () or 2() mean the partial derivative of

 w.r.t. the second argument, evaluated at the point ()
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Figure 2.1:  as the absolute slope of the isoquant.

When we want to draw attention to the dependency of the marginal rate of

substitution on the factor combination considered, we write ()

Sometimes in the literature, the marginal rate of substitution between two

production factors,  and  is called the technical rate of substitution (or

the technical rate of transformation) in order to distinguish from a consumer’s

marginal rate of substitution between two consumption goods.

As is well-known from microeconomics, a firm that minimizes production

costs for a given output level and given factor prices, will choose a factor com-

bination such that  equals the ratio of the factor prices. If  ()

is homogeneous of degree , then the marginal rate of substitution depends

only on the factor proportion and is thus the same at any point on the ray

 = (̄̄) That is, in this case the expansion path is a straight line.

The Inada conditions A continuously differentiable production function

is said to satisfy the Inada conditions3 if

lim
→0

() = ∞ lim
→∞

() = 0 (2.6)

lim
→0

() = ∞ lim
→∞

() = 0 (2.7)

In this case, the marginal productivity of either production factor has no

upper bound when the input of the factor becomes infinitely small. And the

marginal productivity is gradually vanishing when the input of the factor

increases without bound. Actually, (2.6) and (2.7) express four conditions,

which it is preferable to consider separately and label one by one. In (2.6) we

have two Inada conditions for  (the marginal productivity of capital),

the first being a lower, the second an upper Inada condition for . And

3After the Japanese economist Ken-Ichi Inada, 1925-2002.
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in (2.7) we have two Inada conditions for  (the marginal productivity

of labor), the first being a lower, the second an upper Inada condition for

. In the literature, when a sentence like “the Inada conditions are

assumed” appears, it is sometimes not made clear which, and how many, of

the four are meant. Unless it is evident from the context, it is better to be

explicit about what is meant.

The definition of a neoclassical production function we gave above is quite

common in macroeconomic journal articles and convenient because of its

flexibility. There are textbooks that define a neoclassical production function

more narrowly by including the Inada conditions as a requirement for calling

the production function neoclassical. In contrast, in this course, when in a

given context we need one or another Inada condition, we state it explicitly

as an additional assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by

the same factor? There may be different answers to this question, depending

on circumstances. We consider a production function  () where   0

and   0 Then  is said to have constant returns to scale (CRS for short)

if it is homogeneous of degree one, i.e., if for all () and all   0

 ( ) =  ()

As all inputs are scaled up or down by some factor  1, output is scaled up

or down by the same factor.4 The assumption of CRS is often defended by

the replication argument. Before discussing this argument, lets us define the

two alternative “pure” cases.

The production function  () is said to have increasing returns to

scale (IRS for short) if, for all () and all   1,

 ( )   ()

That is, IRS is present if, when all inputs are scaled up by some factor 

1, output is scaled up by more than this factor. The existence of gains by

specialization and division of labor, synergy effects, etc. sometimes speak in

support of this assumption, at least up to a certain level of production. The

assumption is also called the economies of scale assumption.

4In their definition of a neoclassical production function some textbooks add constant

returns to scale as a requirement besides (a) and (b). This course follows the alternative

terminology where, if in a given context an assumption of constant returns to scale is

needed, this is stated as an additional assumption.
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Another possibility is decreasing returns to scale (DRS). This is said to

occur when for all () and all   1

 ( )   ()

That is, DRS is present if, when all inputs are scaled up by some factor,

output is scaled up by less than this factor. This assumption is also called

the diseconomies of scale assumption. The underlying hypothesis may be

that control and coordination problems confine the expansion of size. Or,

considering the “replication argument” below, DRS may simply reflect that

behind the scene there is an additional production factor, for example land

or a irreplaceable quality of management, which is tacitly held fixed, when

the factors of production are varied.

EXAMPLE 1 The production function

 =    0 0    1 0    1 (2.8)

where   and  are given parameters, is called a Cobb-Douglas production

function. The parameter  depends on the choice of measurement units; for

a given such choice it reflects “efficiency”, also called the “total factor pro-

ductivity”. Exercise 2.2 asks the reader to verify that (2.8) satisfies (a) and

(b) above and is therefore a neoclassical production function. The function

is homogeneous of degree + . If +  = 1 there are CRS. If +   1

there are DRS, and if  +   1 there are IRS. Note that  and  must

be less than 1 in order not to violate the diminishing marginal productivity

condition. ¤
EXAMPLE 2 The production function

 = min()   0   0 (2.9)

where  and  are given parameters, is called a Leontief production function

or a fixed-coefficients production function;  and  are called the technical

coefficients. The function is not neoclassical, since the conditions (a) and (b)

are not satisfied. Indeed, with this production function the production fac-

tors are not substitutable at all. This case is also known as the case of perfect

complementarity between the production factors. The interpretation is that

already installed production equipment requires a fixed number of workers to

operate it. The inverse of the parameters  and  indicate the required cap-

ital input per unit of output and the required labor input per unit of output,

respectively. Extended to many inputs, this type of production function is

often used in multi-sector input-output models (also called Leontief models).
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In aggregate analysis neoclassical production functions, allowing substitution

between capital and labor, are more popular than Leontief functions. But

sometimes the latter are preferred, in particular in short-run analysis with

focus on the use of already installed equipment where the substitution pos-

sibilities are limited.5 As (2.9) reads, the function has CRS. A generalized

form of the Leontief function is  = min( ) where   0. When

  1 there are DRS, and when   1 there are IRS. ¤

The replication argument The assumption of CRS is widely used in

macroeconomics. The model builder may appeal to the replication argument.

To explain the content of this argument we have to first clarify the distinction

between rival and nonrival inputs or more generally the distinction between

rival and nonrival goods. A good is rival if its character is such that one

agent’s use of it inhibits other agents’ use of it at the same time. A pencil

is thus rival. Many production inputs like raw materials, machines, labor

etc. have this property. In contrast, however, technical knowledge like a

farmaceutical formula or an engineering principle is nonrival. An unbounded

number of factories can simultaneously use the same farmaceutical formula.

The replication argument now says that by, conceptually, doubling all the

rival inputs, we should always be able to double the output, since we just

“replicate” what we are already doing. One should be aware that the CRS

assumption is about technology in the sense of functions linking inputs to

outputs − limits to the availability of input resources is an entirely different
matter. The fact that for example managerial talent may be in limited supply

does not preclude the thought experiment that if a firm could double all its

inputs, including the number of talented managers, then the output level

could also be doubled.

The replication argument presupposes, first, that all the relevant inputs

are explicit as arguments in the production function; second, that these are

changed equiproportionately. This, however, exhibits the weakness of the

replication argument as a defence for assuming CRS of our present production

function,  (·) One could easily make the case that besides capital and labor,
also land is a necessary input and should appear as a separate argument.6

If an industrial firm decides to duplicate what it has been doing, it needs a

piece of land to build another plant like the first. Then, on the basis of the

replication argument we should in fact expect DRS w.r.t. capital and labor

alone. In manufacturing and services, empirically, this and other possible

5Cf. Section 2.4.
6We think of “capital” as producible means of production, whereas “land” refers to

non-producible natural resources, including for example building sites.
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sources for departure from CRS may be minor and so many macroeconomists

feel comfortable enough with assuming CRS w.r.t.  and  alone, at least

as a first approximation. This approximation is, however, less applicable to

poor countries, where natural resources may be a quantitatively important

production factor.

There is a further problem with the replication argument. Strictly speak-

ing, the CRS claim is that by changing all the inputs equiproportionately

by any positive factor,  which does not have to be an integer, the firm

should be able to get output changed by the same factor. Hence, the replica-

tion argument requires that indivisibilities are negligible, which is certainly

not always the case. In fact, the replication argument is more an argument

against DRS than for CRS in particular. The argument does not rule out

IRS due to synergy effects as size is increased.

Sometimes the replication line of reasoning is given a more subtle form.

This builds on a useful local measure of returns to scale, named the elasticity

of scale.

The elasticity of scale* To allow for indivisibilities and mixed cases (for

example IRS at low levels of production and CRS or DRS at higher levels),

we need a local measure of returns to scale. One defines the elasticity of

scale, () of  at the point () where  ()  0 as

() =


 ()

 ( )


≈ ∆ ( ) ()

∆
 evaluated at  = 1

(2.10)

So the elasticity of scale at a point () indicates the (approximate) per-

centage increase in output when both inputs are increased by 1 percent. We

say that

if ()

⎧⎨⎩  1 then there are locally IRS,

= 1 then there are locally CRS,

 1 then there are locally DRS.

(2.11)

The production function may have the same elasticity of scale everywhere.

This is the case if and only if the production function is homogeneous. If 

is homogeneous of degree  then () =  and  is called the elasticity

of scale parameter.

Note that the elasticity of scale at a point () will always equal the

sum of the partial output elasticities at that point:

() =
()

 ()
+

()

 ()
 (2.12)

This follows from the definition in (2.10) by taking into account that
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Figure 2.2: Locally CRS at optimal plant size.

 ( )


= ( ) + ( )

= () + () when evaluated at  = 1

Figure 2.2 illustrates a popular case from introductory economics, an

average cost curve which from the perspective of the individual firm (or plant)

is U-shaped: at low levels of output there are falling average costs (thus IRS),

at higher levels rising average costs (thus DRS).7 Given the input prices, 

and  and a specified output level, ̄  we know that the cost minimizing

factor combination (̄ ̄) is such that (̄ ̄)(̄ ̄) =  It is

shown in Appendix A that the elasticity of scale at (̄ ̄) will satisfy:

(̄ ̄) =
(̄ )

(̄ )
 (2.13)

where (̄ ) is average costs (the minimum unit cost associated with

producing ̄ ) and (̄ ) is marginal costs at the output level ̄ . The

 in  and  stands for “long-run”, indicating that both capital and

labor are considered variable production factors within the period considered.

At the optimal plant size,  ∗ there is equality between  and ,

implying a unit elasticity of scale, that is, locally we have CRS. That the long-

run average costs are here portrayed as rising for ̄   ∗ is not essential
for the argument but may reflect either that coordination difficulties are

inevitable or that some additional production factor, say the building site of

the plant, is tacitly held fixed.

Anyway, we have here a more subtle replication argument for CRS w.r.t.

 and  at the aggregate level. Even though technologies may differ across

plants, the surviving plants in a competitive market will have the same aver-

age costs at the optimal plant size. In the medium and long run, changes in

7By a “firm” is generally meant the company as a whole. A company may have several

“manufacturing plants” placed at different locations.
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aggregate output will take place primarily by entry and exit of optimal-size

plants. Then, with a large number of relatively small plants, each produc-

ing at approximately constant unit costs for small output variations, we can

without substantial error assume constant returns to scale at the aggregate

level. So the argument goes. Notice, however, that even in this form the

replication argument is not entirely convincing since the question of indivis-

ibility remains. The optimal plant size may be large relative to the market

− and is in fact so in many industries. Besides, in this case also the perfect
competition premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed. Notwithstand-

ing the theoretical and empirical ambiguities, the assumption of CRS w.r.t.

capital and labor has a prominent role in macroeconomics. In many con-

texts it is regarded as an acceptable approximation and a convenient simple

background for studying the question at hand.

Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-

hand side of (2.13) equals unity);

(ii) if production factors are paid according to their marginal productivi-

ties, factor payments exactly exhaust total output so that pure profits

are neither positive nor negative (so the right-hand side of (2.12) equals

unity);

(iii) a production function known to exhibit CRS and satisfy property (a)

from the definition of a neoclassical production function above, will au-

tomatically satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always

  0 i.e., it exhibits “direct complementarity” between  and

;

(v) a two-factor production function known to have CRS and to be twice

continuously differentiable with positive marginal productivity of each

factor everywhere in such a way that all isoquants are strictly convex to

the origin, must have diminishing marginal productivities everywhere.8

8Proofs of these claims can be found in intermediate microeconomics textbooks and in

the Appendix to Chapter 2 of my Lecture Notes in Macroeconomics.
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A principal implication of the CRS assumption is that it allows a re-

duction of dimensionality. Considering a neoclassical production function,

 =  () with   0 we can under CRS write  () =  ( 1)

≡ () where  ≡  is called the capital-labor ratio (sometimes the cap-

ital intensity) and () is the production function in intensive form (some-

times named the per capita production function). Thus output per unit of

labor depends only on the capital intensity:

 ≡ 


= ()

When the original production function  is neoclassical, under CRS the

expression for the marginal productivity of capital simplifies:

() =



=

 [()]


=  0()




=  0() (2.14)

And the marginal productivity of labor can be written

() =



=

 [()]


= () +  0()





= () +  0()(−−2) = ()−  0() (2.15)

A neoclassical CRS production function in intensive form always has a posi-

tive first derivative and a negative second derivative, i.e.,  0  0 and  00  0
The property  0  0 follows from (2.14) and (2.2). And the property  00  0
follows from (2.3) combined with

() =
 0()


=  00()



=  00()

1




For a neoclassical production function with CRS, we also have

()−  0()  0 for all   0 (2.16)

in view of (0) ≥ 0 and  00  0 Moreover,

lim
→0

[()−  0()] = (0) (2.17)

Indeed, from the mean value theorem9 we know there exists a number  ∈
(0 1) such that for any given   0 we have ()−(0) =  0() From this
follows ()− 0() = (0)  ()− 0() since  0()   0() by  00  0.

9This theorem says that if  is continuous in [ ] and differentiable in ( ) then

there exists at least one point  in ( ) such that  0() = (()− ())( − )
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In view of (0) ≥ 0 this establishes (2.16) And from ()  ()−  0()
 (0) and continuity of  follows (2.17).

Under CRS the Inada conditions for  can be written

lim
→0

 0() =∞ lim
→∞

 0() = 0 (2.18)

In this case standard parlance is just to say that “ satisfies the Inada con-

ditions”.

An input which must be positive for positive output to arise is called an

essential input ; an input which is not essential is called an inessential input.

The second part of (2.18), representing the upper Inada condition for

under CRS, has the implication that labor is an essential input; but capital

need not be, as the production function () = + (1 + )   0   0

illustrates. Similarly, under CRS the upper Inada condition for implies

that capital is an essential input. These claims are proved in Appendix C.

Combining these results, when both the upper Inada conditions hold and

CRS obtain, then both capital and labor are essential inputs.10

Figure 2.3 is drawn to provide an intuitive understanding of a neoclassical

CRS production function and at the same time illustrate that the lower Inada

conditions are more questionable than the upper Inada conditions. The left

panel of Figure 2.3 shows output per unit of labor for a CRS neoclassical pro-

duction function satisfying the Inada conditions for . The () in the

diagram could for instance represent the Cobb-Douglas function in Example

1 with  = 1− i.e., () =  The right panel of Figure 2.3 shows a non-

neoclassical case where only two alternative Leontief techniques are available,

technique 1:  = min(11) and technique 2:  = min(22) In the

exposed case it is assumed that 2  1 and 2  1 (if 2 ≥ 1 at the

same time as 2  1 technique 1 would not be efficient, because the same

output could be obtained with less input of at least one of the factors by

shifting to technique 2). If the available  and  are such that   11
or   22, some of either  or  respectively, is idle. If, however, the

available and  are such that 11    22 it is efficient to combine

the two techniques and use the fraction  of  and  in technique 1 and the

remainder in technique 2, where  = (22 − )(22 −11) In this

way we get the “labor productivity curve” OPQR (the envelope of the two

techniques) in Figure 2.3. Note that for  → 0  stays equal to1 ∞

whereas for all   22  = 0 A similar feature remains true, when

we consider many, say  alternative efficient Leontief techniques available.

Assuming these techniques cover a considerable range w.r.t. the  ratios,

10Given a Cobb-Douglas production function, both production factors are essential

whether we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neo-

classical technology with Inada conditions for MPK satisfied; the graphical repre-

sentation of MPK and MPL at  = 0.as 
0(0) and (0)−  0(0)0 are indicated.

Right: a combination of two efficient Leontief techniques.

we get a labor productivity curve looking more like that of a neoclassical CRS

production function. On the one hand, this gives some intuition of what lies

behind the assumption of a neoclassical CRS production function. On the

other hand, it remains true that for all     = 011 whereas

for  → 0  stays equal to 1  ∞ thus questioning the lower Inada

condition.

The implausibility of the lower Inada conditions is also underlined if we

look at their implication in combination with the more reasonable upper

Inada conditions. Indeed, the four Inada conditions taken together imply,

under CRS, that output has no upper bound when either input goes to

infinity for fixed amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often

take into account the existence of technological change. When technological

change occurs, the production function becomes time-dependent. Over time

the production factors tend to become more productive: more output for

given inputs. To put it differently: the isoquants move inward. When this is

the case, we say that the technological change displays technological progress.

11Here we assume the techniques are numbered according to ranking with respect to the

size of 
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Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by

(2.4). Empirical studies typically specialize (2.4) by assuming that techno-

logical change take a form known as factor-augmenting technological change:

 =  ( ) (2.19)

where  is a (time-independent) neoclassical production function,   and

 are output, capital, and labor input, respectively, at time  while  and

 are time-dependent efficiencies of capital and labor, respectively, reflecting

technological change. In macroeconomics an even more specific form is often

assumed, namely the form of Harrod-neutral technological change.12 This

amounts to assuming that  in (2.19) is a constant (which we can then

normalize to one). So only  which we will then denote  is changing over

time, and we have

 =  ( ) (2.20)

The efficiency of labor,  is then said to indicate the technology level. Al-

though one can imagine natural disasters implying a fall in  generally 
tends to rise over time and then we say that (2.20) represents Harrod-neutral

technological progress. An alternative name for this is labor-augmenting tech-

nological progress (technological change acts as if the labor input were aug-

mented).

If the function  in (2.20) is homogeneous of degree one (so that the

technology exhibits CRS w.r.t. capital and labor), we may write

̃ ≡ 



=  (




 1) =  (̃ 1) ≡ (̃)  0  0  00  0

where ̃ ≡ () ≡  (habitually called the “effective” capital in-

tensity or, if there is no risk of confusion, just the capital intensity). In

rough accordance with a general trend in aggregate productivity data for

industrialized countries we often assume that  grows at a constant rate, 

so that in discrete time  = 0(1 + ) and in continuous time  = 0


where   0 The popularity in macroeconomics of the hypothesis of labor-

augmenting technological progress derives from its consistency with Kaldor’s

“stylized facts”, cf. Chapter 4.

There exists two alternative concepts of neutral technological progress.

Hicks-neutral technological progress is said to occur if technological develop-

ment is such that the production function can be written in the form

 =  ( ) (2.21)

12The name refers to the English economist Roy F. Harrod, 1900−1978.
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where, again,  is a (time-independent) neoclassical production function,

while  is the growing technology level.
13 The assumption of Hicks-neutrality

has been used more in microeconomics and partial equilibrium analysis than

in macroeconomics. If  has CRS, we can write (2.21) as  =  ( )

Comparing with (2.19), we see that in this case Hicks-neutrality is equivalent

with  =  in (2.19), whereby technological change is said to be equally

factor-augmenting.

Finally, in a kind of symmetric analogy with (2.20), Solow-neutral tech-

nological progress14 is often in textbooks presented by a formula like:

 =  ( ) (2.22)

Another name for the same is capital-augmenting technological progress (be-

cause here technological change acts as if the capital input were augmented).

Solow’s original concept15 of neutral technological change is not well por-

trayed this way, however, since it is related to the notion of embodied tech-

nological change and capital of different vintages, see below.

It is easily shown (Exercise 2.5) that the Cobb-Douglas production func-

tion (2.8) satisfies all three neutrality criteria at the same time, if it satisfies

one of them (which it does if technological change does not affect  and ).

It can also be shown that within the class of neoclassical CRS production

functions the Cobb-Douglas function is the only one with this property (see

Exercise 4.? in Chapter 4).

Note that the neutrality concepts do not say anything about the source

of technological progress, only about the quantitative form in which it ma-

terializes. For instance, the occurrence of Harrod-neutrality should not be

interpreted as indicating that the technological change emanates specifically

from the labor input in some sense. Harrod-neutrality only means that tech-

nological innovations predominantly are such that not only do labor and

capital in combination become more productive, but this happens to man-

ifest itself in the form (2.20). Similarly, if indeed an improvement in the

quality of the labor input occurs, this “labor-specific” improvement may be

manifested in a higher   or both.

Before proceeding, we briefly comment on how the capital stock, 

is typically measured. While data on gross investment,  is available in

national income and product accounts, data on  usually is not. One ap-

13The name refers to the English economist and Nobel Prize laureate John R. Hicks,

1904−1989.
14The name refers to the American economist and Nobel Prize laureate Robert Solow

(1924−).
15Solow (1960).

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



38 CHAPTER 2. REVIEW OF TECHNOLOGY

proach to the measurement of  is the perpetual inventory method which

builds upon the accounting relationship

 = −1 + (1− )−1 (2.23)

Assuming a constant capital depreciation rate  backward substitution gives

 = −1+(1−) [−2 + (1− )−2] = . . . =
X
=1

(1−)−1−+(1−)− 

(2.24)

Based on a long time series for  and an estimate of  one can insert these

observed values in the formula and calculate , starting from a rough con-

jecture about the initial value −  The result will not be very sensitive to
this conjecture since for large  the last term in (2.24) becomes very small.

Embodied vs. disembodied technological progress

There exists an additional taxonomy of technological change. We say that

technological change is embodied, if taking advantage of new technical knowl-

edge requires construction of new investment goods. The new technology is

incorporated in the design of newly produced equipment, but this equipment

will not participate in subsequent technological progress. An example: only

the most recent vintage of a computer series incorporates the most recent

advance in information technology. Then investment goods produced later

(investment goods of a later “vintage”) have higher productivity than in-

vestment goods produced earlier at the same resource cost. Thus investment

becomes an important driving force in productivity increases.

We way formalize embodied technological progress by writing capital ac-

cumulation in the following way:

+1 − =  −  (2.25)

where  is gross investment in period , i.e.,  =  −  and  measures

the “quality” (productivity) of newly produced investment goods. The rising

level of technology implies rising  so that a given level of investment gives

rise to a greater and greater addition to the capital stock,  measured

in efficiency units. In aggregate models  and  are produced with the

same technology, the aggregate production function. From this together with

(2.25) follows that  capital goods can be produced at the same minimum

cost as one consumption good. Hence, the equilibrium price,  of capital

goods in terms of the consumption good must equal the inverse of  i.e.,

 = 1 The output-capital ratio in value terms is () = 
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Note that even if technological change does not directly appear in the

production function, that is, even if for instance (2.20) is replaced by 
=  ( ) the economy may experience a rising standard of living when 

is growing over time.

In contrast, disembodied technological change occurs when new technical

and organizational knowledge increases the combined productivity of the pro-

duction factors independently of when they were constructed or educated. If

the appearing in (2.20), (2.21), and (2.22) above refers to the total, histor-

ically accumulated capital stock as calculated by (2.24), then the evolution

of  in these expressions can be seen as representing disembodied technolog-

ical change. All vintages of the capital equipment benefit from a rise in the

technology level  No new investment is needed to benefit.

Based on data for the U.S. 1950-1990, and taking quality improvements

into account, Greenwood et al. (1997) estimate that embodied technological

progress explains about 60% of the growth in output per man hour. So,

empirically, embodied technological progress seems to play a dominant role.

As this tends not to be fully incorporated in national income accounting at

fixed prices, there is a need to adjust the investment levels in (2.24) to better

take estimated quality improvements into account. Otherwise the resulting

 will not indicate the capital stock measured in efficiency units.

2.3 The concepts of a representative firm and

an aggregate production function

Many macroeconomic models make use of the simplifying notion of a rep-

resentative firm. By this is meant a fictional firm whose production “rep-

resents” aggregate production (value added) in a sector or in society as a

whole.

Suppose there are  firms in the sector considered or in society as a

whole. Let   be the production function for firm  so that  =  ( )

where ,  and  are output, capital input, and labor input, respectively,

 = 1 2     . Further, let  = Σ
=1,  = Σ

=1 and  = Σ
=1.

Ignoring technological change, suppose these aggregate variables in a given

society turn out to be related through some production function,  ∗(·) in
the following way:

 =  ∗()

Then  ∗() is called the aggregate production function or the production

function of the representative firm. It is as if aggregate production is the

result of the behavior of such a single firm.
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A simple example where the aggregate production function is well-defined

is the following. Suppose that all firms have the same production function,

i.e.,  (·) =  (·) so that  =  ( )  = 1 2      If in addition  has

CRS, we then have

 =  ( ) =  ( 1) ≡ ()

where  ≡  Hence, facing given factor prices, cost minimizing firms

will choose the same capital intensity  =  for all  From  =  then

follows
P

 = 
P

  so that  =  Thence,

 ≡
X

 =
X

() = ()
X

 = () =  ( 1) =  ()

In this (trivial) case the aggregate production function is well-defined and

turns out to be exactly the same as the identical CRS production functions

of the individual firms.

Allowing for the existence of different production functions at firm level,

we may define the aggregate production function as

 () = max
(11)≥0

 1(1 1) + · · ·+ ( )

s.t.
X


 ≤ 
X


 ≤ 

Allowing also the existence of different output goods, different capital goods,

and different types of labor makes the issue more intricate, of course. Yet,

if firms are price taking profit maximizers and there are nonincreasing re-

turns to scale, we at least know that the aggregate outcome is as if, for given

prices, the firms jointly maximize aggregate profit on the basis of their com-

bined production technology. The problem is, however, that the conditions

needed for this to imply existence of an aggregate production function which

is well-behaved (in the sense of inheriting simple qualitative properties from

its constituent parts) are restrictive.

Nevertheless macroeconomics often treats aggregate output as a single ho-

mogeneous good and capital and labor as being two single and homogeneous

inputs. There was in the 1960s a heated debate about the problems involved

in this, with particular emphasis on the aggregation of different kinds of

equipment into one variable, the capital stock “”. The debate is known

as the “Cambridge controversy” because the dispute was between a group of

economists from Cambridge University, UK, and a group fromMassachusetts

Institute of Technology (MIT), which is located in Cambridge, USA. The for-

mer group questioned the theoretical robustness of several of the neoclassical

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



2.3. The concepts of a representative firm and an aggregate production

function 41

tenets, including the proposition that rising aggregate capital intensity tends

to be associated with a falling rate of interest. Starting at the disaggregate

level, an association of this sort is not a logical necessity because, with differ-

ent production functions across the industries, the relative prices of produced

inputs tend to change, when the interest rate changes. While acknowledging

the possibility of “paradoxical” relationships, the latter group maintained

that in a macroeconomic context they are likely to cause devastating prob-

lems only under exceptional circumstances. In the end this is a matter of

empirical assessment.16

To avoid complexity and because, for many important issues in growth

theory, there is today no well-tried alternative, we shall in this course most

of the time use aggregate constructs like “ ”, “”, and “” as simplify-

ing devices, hopefully acceptable in a first approximation. There are cases,

however, where some disaggregation is pertinent. When for example the role

of imperfect competition is in focus, we shall be ready to disaggregate the

production side of the economy into several product lines, each producing its

own differentiated product. We shall also touch upon a type of growth models

where a key ingredient is the phenomenon of “creative destruction” meaning

that an incumbent technological leader is competed out by an entrant with

a qualitatively new technology.

Like the representative firm, the representative household and the aggre-

gate consumption function are simplifying notions that should be applied

only when they do not get in the way of the issue to be studied. The im-

portance of budget constraints may make it even more difficult to aggregate

over households than over firms. Yet, if (and that is a big if) all households

have the same constant propensity to consume out of income, aggregation

is straightforward and the representative household is a meaningful concept.

On the other hand, if we aim at understanding, say, the interaction between

lending and borrowing households, perhaps via financial intermediaries, the

representative household is not a useful starting point. Similarly, if the theme

is conflicts of interests between firm owners and employees, the existence of

different types of households should be taken into account.

16In his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What

the ‘paradoxical’ comparative statics [of disaggregate capital theory] has taught us is

simply that modelling the world as having a single capital good is not a priori justified.

So be it.”
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2.4 Long-run vs. short-run production func-

tions*

Is the substitutability between capital and labor the same “ex ante” and

“ex post”? By ex ante is meant “when plant and machinery are to be de-

cided upon” and by ex post is meant “after the equipment is designed and

constructed”. In the standard neoclassical competitive setup there is a pre-

sumption that also after the construction and installation of the equipment

in the firm, the ratio of the factor inputs can be fully adjusted to a change

in the relative factor price. In practice, however, when some machinery has

been constructed and installed, its functioning will often require a more or

less fixed number of machine operators. What can be varied is just the degree

of utilization of the machinery. That is, after construction and installation

of the machinery, the choice opportunities are no longer described by the

neoclassical production function but by a Leontief production function,

 = min(̄)   0   0 (2.26)

where ̄ is the size of the installed machinery (a fixed factor in the short

run) measured in efficiency units,  is its utilization rate (0 ≤  ≤ 1) and 
and  are given technical coefficients measuring efficiency.

So in the short run the choice variables are  and  In fact, essentially

only  is a choice variable since efficient production trivially requires  =

̄ Under “full capacity utilization” we have  = 1 (each machine is

used 24 hours per day seven days per week). “Capacity” is given as ̄ per

week. Producing efficiently at capacity requires = ̄ and the marginal

product by increasing labor input is here nil. But if demand,   is less than

capacity, satisfying this demand efficiently requires  =  (̄)  1 and 

=   As long as   1 the marginal productivity of labor is a constant,



The various efficient input proportions that are possible ex ante may be

approximately described by a neoclassical CRS production function. Let this

function on intensive form be denoted  = ()When investment is decided

upon and undertaken, there is thus a choice between alternative efficient pairs

of the technical coefficients  and  in (2.26). These pairs satisfy

() =  =  (2.27)

So, for an increasing sequence of ’s, 1 2. . . , . . . , the corresponding

pairs are ( ) = (() ())  = 1 2. . . .17 We say that ex ante,

17The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as con-
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depending on the relative factor prices as they are “now” and are expected

to evolve in the future, a suitable technique, ( ) is chosen from an

opportunity set described by the given neoclassical production function. But

ex post, i.e., when the equipment corresponding to this technique is installed,

the production opportunities are described by a Leontief production function

with () = ( )

In the picturesque language of Phelps (1963), technology is in this case

putty-clay. Ex ante the technology involves capital which is “putty” in the

sense of being in a malleable state which can be transformed into a range of

various machinery requiring capital-labor ratios of different magnitude. But

once the machinery is constructed, it enters a “hardened” state and becomes

”clay”. Then factor substitution is no longer possible; the capital-labor ra-

tio at full capacity utilization is fixed at the level  =  as in (2.26).

Following the terminology of Johansen (1972), we say that a putty-clay tech-

nology involves a “long-run production function” which is neoclassical and a

“short-run production function” which is Leontief.

In contrast, the standard neoclassical setup assumes the same range of

substitutability between capital and labor ex ante and ex post. Then the

technology is called putty-putty. This term may also be used if ex post there

is at least some substitutability although less than ex ante. At the opposite

pole of putty-putty we may consider a technology which is clay-clay. Here

neither ex ante nor ex post is factor substitution possible. Table 2.1 gives an

overview of the alternative cases.

Table 2.1. Technologies classified according to

factor substitutability ex ante and ex post

Ex post substitution

Ex ante substitution possible impossible

possible putty-putty putty-clay

impossible clay-clay

The putty-clay case is generally considered the realistic case. As time

proceeds, technological progress occurs. To take this into account, we may

replace (2.27) and (2.26) by ( ) =  =  and  = min(̄ )

respectively. If a new pair of Leontief coefficients, (2  2) efficiency-

dominates its predecessor (by satisfying 2 ≥ 1 and 2 ≥ 1 with at

structed this way from the neoclassical production function in the left-hand panel of the

figure.
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least one strict equality), it may pay the firm to invest in the new technol-

ogy at the same time as some old machinery is scrapped. Real wages tend

to rise along with technological progress and the scrapping occurs because

the revenue from using the old machinery in production no longer covers the

associated labor costs.

The clay property ex-post of many technologies is important for short-run

analysis. It implies that there may be non-decreasing marginal productivity

of labor up to a certain point. It also implies that in its investment decision

the firmwill have to take expected future technologies and future factor prices

into account. For many issues in long-run analysis the clay property ex-post

may be less important, since over time adjustment takes place through new

investment.

2.5 Literature notes

As to the question of the empirical validity of the constant returns to scale

assumption, Malinvaud (1998) offers an account of the econometric difficul-

ties associated with estimating production functions. Studies by Basu (1996)

and Basu and Fernald (1997) suggest returns to scale are about constant or

decreasing. Studies by Hall (1990), Caballero and Lyons (1992), Harris and

Lau (1992), Antweiler and Treffler (2002), and Harrison (2003) suggest there

are quantitatively significant increasing returns, either internal or external.

On this background it is not surprising that the case of IRS (at least at in-

dustry level), together with market forms different from perfect competition,

has in recent years received more attention in macroeconomics and in the

theory of economic growth.

Macroeconomists’ use of the value-laden term “technological progress” in

connection with technological change may seem suspect. But the term should

be interpreted as merely a label for certain types of shifts of isoquants in an

abstract universe. At a more concrete and disaggregate level analysts of

course make use of more refined notions about technological change, recog-

nizing for example not only benefits of new technologies, but also the risks,

including risk of fundamental mistakes (think of the introduction and later

abandonment of asbestos in the construction industry).

An informative history of technology is ...

Embodied technological progress, sometimes called investment-specific

technological progress, is explored in, for instance, Solow (1960), Greenwood

et al. (1997), and Groth and Wendner (2014). Hulten (2001) surveys the

literature and issues related to measurement of the direct contribution of

capital accumulation and technological change, respectively, to productivity
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growth.

Conditions ensuring that a representative household is admitted and the

concept of Gorman preferences are discussed in Acemoglu (2009). Another

useful source, also concerning the conditions for the representative firm to be

a meaningful notion, is Mas-Colell et al. (1995). For general discussions of the

limitations of representative agent approaches, see Kirman (1992) and Galle-

gati and Kirman (1999). Reviews of the “Cambridge Controversy” are con-

tained in Mas-Colell (1989) and Felipe and Fisher (2003). The last-mentioned

authors find the conditions required for the well-behavedness of these con-

structs so stringent that it is difficult to believe that actual economies are

in any sense close to satisfy them. For a less distrustful view, see for in-

stance Ferguson (1969), Johansen (1972), Malinvaud (1998), Jorgenson et al.

(2005), and Jones (2005).

It is often assumed that capital depreciation can be described as geomet-

ric (in continuous time exponential) evaporation of the capital stock. This

formula is popular in macroeconomics, more so because of its simplicity than

its realism. An introduction to more general approaches to depreciation is

contained in, e.g., Nickell (1978).

2.6 References

(incomplete)

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



46 CHAPTER 2. REVIEW OF TECHNOLOGY

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



Chapter 3

Continuous time analysis

Because dynamic analysis is generally easier in continuous time, growth mod-

els are often stated in continuous time. This chapter gives an account of the

conceptual aspects of continuous time analysis. Appendix A considers sim-

ple growth arithmetic in continuous time. And Appendix B provides solution

formulas for linear first-order differential equations.

3.1 The transition from discrete time to con-

tinuous time

We start from a discrete time framework. The run of time is divided into

successive periods of equal length, taken as the time-unit. Let us here index

the periods by  = 0 1 2 . Thus financial wealth accumulates according to

+1 −  =  0 given,

where  is (net) saving in period 

3.1.1 Multiple compounding per year

With time flowing continuously, we let () refer to financial wealth at time

 Similarly, (+∆) refers to financial wealth at time +∆ To begin with,

let ∆ equal one time unit. Then (∆) equals () and is of the same value

as  Consider the forward first difference in  ∆() ≡ (+∆)− () It

makes sense to consider this change in  in relation to the length of the time

interval involved, that is, to consider the ratio ∆()∆ As long as ∆ = 1

with  = ∆ we have ∆()∆ = (+1 − )1 = +1 −  Now, keep

the time unit unchanged, but let the length of the time interval [ +∆)

47



48 CHAPTER 3. CONTINUOUS TIME ANALYSIS

approach zero, i.e., let ∆ → 0. When (·) is a differentiable function, we
have

lim
∆→0

∆()

∆
= lim

∆→0
(+∆)− ()

∆
=

()




where () often written ̇() is known as the derivative of (·) at the
point  Wealth accumulation in continuous time can then be written

̇() = () (0) = 0 given, (3.1)

where () is the saving flow at time . For ∆ “small” we have the approx-

imation ∆() ≈ ̇()∆ = ()∆ In particular, for ∆ = 1 we have ∆()

= (+ 1)− () ≈ ()

As time unit choose one year. Going back to discrete time we have that if

wealth grows at a constant rate   0 per year, then after  periods of length

one year, with annual compounding, we have

 = 0(1 + )  = 0 1 2  . (3.2)

If instead compounding (adding saving to the principal) occurs  times a

year, then after  periods of length 1 year and a growth rate of  per

such period,

 = 0(1 +



) (3.3)

With  still denoting time measured in years passed since date 0, we have

 =  periods. Substituting into (3.3) gives

() =  = 0(1 +



) = 0

∙
(1 +

1


)
¸

 where  ≡ 




We keep  and  fixed, but let  →∞ and thus →∞ Then, in the limit

there is continuous compounding and it can be shown that

() = 0
 (3.4)

where  is a mathematical constant called the base of the natural logarithm

and defined as  ≡ lim→∞(1 + 1) ' 2.7182818285....
The formula (3.4) is the continuous-time analogue to the discrete time for-

mula (3.2) with annual compounding. A geometric growth factor is replaced

by an exponential growth factor.

We can also view the formulas (3.2) and (3.4) as the solutions to a differ-

ence equation and a differential equation, respectively. Thus, (3.2) is the so-

lution to the linear difference equation +1 = (1+), given the initial value

0 And (3.4) is the solution to the linear differential equation ̇() = ()
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3.1. The transition from discrete time to continuous time 49

given the initial condition (0) = 0 Now consider a time-dependent growth

rate, () The corresponding differential equation is ̇() = ()() and it

has the solution

() = (0)
 
0
()  (3.5)

where the exponent,
R 
0
() , is the definite integral of the function ()

from 0 to  The result (3.5) is called the basic accumulation formula in

continuous time and the factor 
 
0
() is called the growth factor or the

accumulation factor.

3.1.2 Compound interest and discounting

Let () denote the short-term real interest rate in continuous time at time .

To clarify what is meant by this, consider a deposit of  () euro on a drawing

account in a bank at time . If the general price level in the economy at time

 is  () euro, the real value of the deposit is () =  () () at time 

By definition the real rate of return on the deposit in continuous time (with

continuous compounding) at time  is the (proportionate) instantaneous rate

at which the real value of the deposit expands per time unit when there is

no withdrawal from the account. Thus, if the instantaneous nominal interest

rate is () we have ̇ () () = () and so, by the fraction rule in continuous

time (cf. Appendix A),

() =
̇()

()
=

̇ ()

 ()
− ̇ ()

 ()
= ()− () (3.6)

where () ≡ ̇ () () is the instantaneous inflation rate. In contrast to the

corresponding formula in discrete time, this formula is exact. Sometimes ()

and () are referred to as the nominal and real interest intensity, respectively,

or the nominal and real force of interest.

Calculating the terminal value of the deposit at time 1  0 given its

value at time 0 and assuming no withdrawal in the time interval [0 1], the

accumulation formula (3.5) immediately yields

(1) = (0)
 1
0

()

When calculating present values in continuous time analysis, we use com-

pound discounting. We simply reverse the accumulation formula and go from

the compounded or terminal value to the present value (0). Similarly, given

a consumption plan, (())1=0, the present value of this plan as seen from

time 0 is

 =

Z 1

0

() − (3.7)
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50 CHAPTER 3. CONTINUOUS TIME ANALYSIS

presupposing a constant interest rate. Instead of the geometric discount

factor, 1(1 + ) from discrete time analysis, we have here an exponential

discount factor, 1() = − and instead of a sum, an integral. When the
interest rate varies over time, (3.7) is replaced by

 =

Z 1

0

() 
−  

0
()



In (3.7) () is discounted by − ≈ (1 + )− for  “small”. This might
not seem analogue to the discrete-time discounting in (??) where it is −1
that is discounted by (1 + )− assuming a constant interest rate. When
taking into account the timing convention that payment for −1 in period
 − 1 occurs at the end of the period (= time ) there is no discrepancy,

however, since the continuous-time analogue to this payment is ().

3.2 The allowed range for parameter values

The allowed range for parameters may change when we go from discrete time

to continuous time with continuous compounding. For example, the usual

equation for aggregate capital accumulation in continuous time is

̇() = ()− () (0) = 0 given, (3.8)

where () is the capital stock, () is the gross investment at time  and

 ≥ 0 is the (physical) capital depreciation rate. Unlike in discrete time, here
  1 is conceptually allowed. Indeed, suppose for simplicity that () = 0

for all  ≥ 0; then (3.8) gives () = 0
−. This formula is meaningful for

any  ≥ 0 Usually, the time unit used in continuous time macro models is
one year (or, in business cycle theory, rather a quarter of a year) and then a

realistic value of  is of course  1 (say, between 0.05 and 0.10). However, if

the time unit applied to the model is large (think of a Diamond-style OLG

model), say 30 years, then   1 may fit better, empirically, if the model

is converted into continuous time with the same time unit. Suppose, for

example, that physical capital has a half-life of 10 years. With 30 years as

our time unit, inserting into the formula 12 = −3 gives  = (ln 2) · 3 ' 2
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good

is 1 and thus constant. More generally, if we let the relative price of the

capital good in terms of the consumption good at time  be () and allow

̇() 6= 0 then we have to distinguish between the physical depreciation

of capital,  and the economic depreciation, that is, the loss in economic
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3.3. Stocks and flows 51

value of a machine per time unit. The economic depreciation will be () =

() − ̇() namely the economic value of the physical wear and tear (and

technological obsolescence, say) minus the capital gain (positive or negative)

on the machine.

Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates

of return and discount rates in general.

3.3 Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make

a clear distinction between stocks (say wealth) and flows (say consumption

or saving). Recall, a stock variable is a variable measured as a quantity at a

given point in time. The variables () and () considered above are stock

variables. A flow variable is a variable measured as quantity per time unit

at a given point in time. The variables () ̇() and () are flow variables.

One can not add a stock and a flow, because they have different denomi-

nations. What exactly is meant by this? The elementary measurement units

in economics are quantity units (so many machines of a certain kind or so

many liters of oil or so many units of payment, for instance) and time units

(months, quarters, years). On the basis of these we can form composite mea-

surement units. Thus, the capital stock,  has the denomination “quantity

of machines”, whereas investment,  has the denomination “quantity of ma-

chines per time unit” or, shorter, “quantity/time”. A growth rate or interest

rate has the denomination “(quantity/time)/quantity” = “time−1”. If we
change our time unit, say from quarters to years, the value of a flow variable

as well as a growth rate is changed, in this case quadrupled (presupposing

annual compounding).

In continuous time analysis expressions like()+() or()+̇() are

thus illegitimate. But one can write (+∆) ≈ ()+(()−())∆ or

̇()∆ ≈ (()− ())∆ In the same way, suppose a bath tub at time 

contains 50 liters of water and that the tap pours 1
2
liter per second into the

tub for some time. Then a sum like 50  + 1
2
(/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount

would be 50  + 1
2
· 60 ((/sec)×sec) = 80 . In analogy, economic flow

variables in continuous time should be seen as intensities defined for every

 in the time interval considered, say the time interval [0,  ) or perhaps

[0, ∞). For example, when we say that () is “investment” at time ,

this is really a short-hand for “investment intensity” at time . The actual

investment in a time interval [0 0 +∆)  i.e., the invested amount during
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Figure 3.1: With ∆ “small” the integral of () from 0 to 0+∆ is ≈ the hatched
area.

this time interval, is the integral,
R 0+∆

0
() ≈ (0)∆ Similarly, the flow

of individual saving, () should be interpreted as the saving intensity at

time  The actual saving in a time interval [0 0 +∆)  i.e., the saved (or

accumulated) amount during this time interval, is the integral,
R 0+∆

0
()

If ∆ is “small”, this integral is approximately equal to the product (0) ·∆,

cf. the hatched area in Figure 3.1.

The notation commonly used in discrete time analysis blurs the distinc-

tion between stocks and flows. Expressions like +1 = + without further

comment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are

added. In fact, however, it is wealth at the beginning of period  and the

saved amount during period  that are added: +1 =  +  ·∆. The tacit

condition is that the period length, ∆ is the time unit, so that ∆ = 1.

But suppose that, for example in a business cycle model, the period length

is one quarter, but the time unit is one year. Then saving in quarter  is 
= (+1 − ) · 4 per year.

3.4 The choice between discrete and contin-

uous time analysis

In empirical economics, data typically come in discrete time form and data

for flow variables typically refer to periods of constant length. One could

argue that this discrete form of the data speaks for discrete time rather than

continuous time modelling. And the fact that economic actors often think
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and plan in period terms, may seem a good reason for putting at least mi-

croeconomic analysis in period terms. Nonetheless real time is continuous.

And it can hardly be said that the mass of economic actors think and plan

with one and the same period. In macroeconomics we consider the sum of

the actions. In this perspective the continuous time approach has the advan-

tage of allowing variation within the usually artificial periods in which the

data are chopped up. And for example centralized asset markets equilibrate

almost instantaneously and respond immediately to new information. For

such markets a formulation in continuous time seems preferable.

There is also a risk that a discrete time model may generate artificial

oscillations over time. Suppose the “true” model of some mechanism is given

by the differential equation

̇ =    −1 (3.9)

The solution is () = (0) which converges in a monotonic way toward 0

for →∞ However, the analyst takes a discrete time approach and sets up

the seemingly “corresponding” discrete time model

+1 −  = 

This yields the difference equation +1 = (1 + ), where 1 +   0 The

solution is  = (1 + )0  = 0 1 2     As (1 + ) is positive when 

is even and negative when  is odd, oscillations arise in spite of the “true”

model generating monotonous convergence towards the steady state ∗ = 0.
It should be added, however, that this potential problem can always be

avoided within discrete time models by choosing a sufficiently short period

length. Indeed, the solution to a differential equation can always be ob-

tained as the limit of the solution to a corresponding difference equation for

the period length approaching zero. In the case of (3.9) the approximating

difference equation is +1 = (1 + ∆) where ∆ is the period length,

 = ∆, and  = (∆) By choosing ∆ small enough, the solution comes

arbitrarily close to the solution of (3.9). It is generally more difficult to go

in the opposite direction and find a differential equation that approximates

a given difference equation. But the problem is solved as soon as a differ-

ential equation has been found that has the initial difference equation as an

approximating difference equation.

From the point of view of the economic contents, the choice between

discrete time and continuous time may be a matter of taste. From the point

of view of mathematical convenience, the continuous time formulation, which

has worked so well in the natural sciences, seems preferable. At least this is so

in the absence of uncertainty. For problems where uncertainty is important,
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discrete time formulations are easier to work with unless one is familiar with

stochastic calculus.

3.5 Appendix

A. Growth arithmetic in continuous time

Let the variables   and  be differentiable functions of time  Suppose

() () and () are positive for all  Then:

PRODUCT RULE () = ()()⇒ ̇()

()
=

̇()

()
+

̇()

()


Proof. Taking logs on both sides of the equation () = ()() gives ln ()

= ln() + ln (). Differentiation w.r.t. , using the chain rule, gives the

conclusion. ¤

The procedure applied in this proof is called logarithmic differentiation

w.r.t. 

FRACTION RULE () =
()

()
⇒ ̇()

()
=

̇()

()
− ̇()

()


The proof is similar.

POWER FUNCTION RULE () = () ⇒ ̇()

()
= 

̇()

()


The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time

the analogue formulas are only approximately true and the approximation

can be quite bad unless the growth rates of  and  are small.

B. Solution formulas for linear differential equations of first order

For a general differential equation of first order, ̇() = (() ) with

(0) = 0 and where  is a continuous function, we have, at least for 

in an interval (−+) for some   0

() = 0 +

Z 

0

(() ) (*)

To get a confirmation, calculate ̇() from (*).

For the special case of a linear differential equation of first order, ̇() +

()() = () we can specify the solution. Three sub-cases of rising com-

plexity are:
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1. ̇() + () =  with  6= 0 and initial condition (0) = 0 Solution:

() = (0 − ∗)−(−0) + ∗ where ∗ =





If  = 0 we get, directly from (*), the solution () = 0 + 1

2. ̇() + () = () with initial condition (0) = 0  Solution:

() = 0
−(−0) + −(−0)

Z 

0

()(−0)

Special case: () =  with  6= − and initial condition (0) = 0 

Solution:

() = 0
−(−0)+−(−0)

Z 

0

(+)(−0) = (0−


+ 
)−(−0)+



+ 
(−0)

3. ̇() + ()() = () with initial condition (0) = 0  Solution:

() = 0
−  

0
()

+ 
−  

0
()

Z 

0

()
 
0
()



Special case: () = 0 Solution:

() = 0
−  

0
()



Even more special case: () = 0 and () =  a constant. Solution:

() = 0
−(−0)

Remark 1 For 0 = 0 most of the formulas will look simpler.

Remark 2 To check whether a suggested solution is a solution, calculate

the time derivative of the suggested solution and add an arbitrary constant.

By appropriate adjustment of the constant, the final result should be a repli-

cation of the original differential equation together with its initial condition.

1Some non-linear differential equations can be transformed into this simple case. For

simplicity let 0 = 0 Consider the equation ̇() = ()  0  0 given,  6= 0  6= 1

(a Bernoulli equation). To find the solution for () let () ≡ ()1− Then, ̇()
= (1 − )()− ̇() = (1 − )()−() = (1 − ) The solution for this is ()

= 0 + (1 − ) where 0 = 
1−
0  Thereby the solution for () is () = ()1(1−)

=
³

1−
0 + (1− )

´1(1−)
 which is defined for   −1−0 ((1− )
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Chapter 4

Balanced growth theorems

In this chapter we shall discuss three fundamental propositions about bal-

anced growth. In view of the generality of the propositions, they have a

broad field of application.

The chapter covers the stuff in Acemoglu’s §2.7.3. Our propositions 1

and 2 are slight extensions of part 1 and 2, respectively, of what Acemoglu

calls Uzawa’s Theorem I (Acemoglu, 2009, p. 60). Proposition 3 essentially

corresponds to what Acemoglu calls Uzawa’s Theorem II (Acemoglu, 2009,

p. 63).

4.1 Balanced growth and constancy of key ra-

tios

First we shall define the terms “steady state” and “balanced growth” as they

are usually defined in growth theory. With respect to “balanced growth” this

implies a minor deviation from the way Acemoglu briefly defines it informally

on his page 57. The main purpose of the present chapter is to lay bare

the connections between these two concepts as well as their relation to the

hypothesis of Harrod-neutral technical progress and Kaldor’s stylized facts.

4.1.1 The concepts of steady state and balanced growth

A basic equation in many one-sector growth models for a closed economy in

continuous time is

̇ =  −  =  −  −  ≡  −  (4.1)

where  is aggregate capital,  aggregate gross investment,  aggregate

output,  aggregate consumption,  aggregate gross saving (≡  −), and

57
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 ≥ 0 is a constant physical capital depreciation rate.
Usually, in the theoretical literature on dynamic models, a steady state is

defined in the following way:

Definition 3 A steady state of a dynamic model is a stationary solution to

the fundamental differential equation(s) of the model.

Or briefly: a steady state is a stationary point of a dynamic process.

Let us take the Solow growth model as an example. Here gross saving

equals  where  is a constant, 0    1 Aggregate output is given by a

neoclassical production function,  with CRS and Harrod-neutral technical

progress:  =  () =  (̃ 1) ≡ (̃) where  is the labor

force,  is the level of technology, and ̃ ≡ () is the (effective) capital

intensity. Moreover,  0  0 and  00  0 Solow assumes () = (0) and

() = (0), where  ≥ 0 and  ≥ 0 are the constant growth rates of the
labor force and technology, respectively. By log-differentiating ̃ w.r.t. 1

we end up with the fundamental differential equation (“law of motion”) of

the Solow model:
·
̃ = (̃)− ( +  + )̃ (4.2)

Thus, in the Solow model, a (non-trivial) steady state is a ̃∗  0 such that,

if ̃ = ̃∗ then
·
̃ = 0

The most common definition in the literature of balanced growth for an

aggregate economy is the following:

Definition 4 A balanced growth path is a path ()∞=0 along which the
quantities  and  are positive and grow at constant rates (not necessarily

positive and not necessarily the same).

Acemoglu, however, defines (p. 57) balanced growth in the following way:

“balanced growth refers to an allocation where output grows at a constant

rate and capital-output ratio, the interest rate, and factor shares remain con-

stant”. My problem with this definition is that it mixes growth of quantities

with distribution aspects (interest rate and factor income shares). And it is

not made clear what is meant by the output-capital ratio if the relative price

of capital goods is changing over time. So I stick to the standard definition

above which is known to function well in many different contexts.

1Or by directly using the fraction rule, see Appendix A to Chapter 3.
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4.1.2 A general result about balanced growth

We now leave the specific Solow model. The interesting fact is that, given the

dynamic resource constraint (4.1), we have always that if there is balanced

growth with positive gross saving, then the ratios  and  are constant

(by “always” is meant: independently of how saving is determined and of how

the labor force and technology change). And also the other way round: as

long as gross saving is positive, constancy of the  and  ratios is

enough to ensure balanced growth. So balanced growth and constancy of

key ratios are essentially equivalent.

This is a very practical general observation. And since Acemoglu does

not state any balanced growth theorem at this general level, we shall do it,

in a precise way, here, together with a proof. Letting  denote the growth

rate of the (positively valued) variable  i.e.,  ≡ ̇ we claim:

Proposition 1 (the balanced growth equivalence theorem). Let ()∞=0
be a path along which ,  and  ≡  −  are positive for all  ≥ 0
Then, given the accumulation equation (4.1), the following holds:

(i) if there is balanced growth, then  =  =   and the ratios 

and  are constant;

(ii) if  and  are constant, then  and  grow at the same

constant rate, i.e., not only is there balanced growth, but the growth

rates of  and  are the same.

Proof Consider a path ()∞=0 along which ,  and  ≡  − 

are positive for all  ≥ 0 (i) Assume there is balanced growth. Then, by

definition,     and  are constant. Hence, by (4.1), we have that  =

 +  is constant, implying

 =   (4.3)

Further, since  =  + 

 =
̇


=

̇


+

̇


= 




+ 




= 




+ 




(by (4.3))

= 



+ 

 − 


=




( − ) +   (4.4)

Now, let us provisionally assume that  6=   Then (4.4) gives




=

 − 

 − 
 (4.5)
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a constant, so that  =   But this result implies, by (4.5), that  = 1

i.e.,  =  In view of (4.1), however, this outcome contradicts the given

condition that   0 Hence, our provisional assumption is wrong, and we

have  =  . By (4.4), this implies  =  =   but now without

the condition  = 1 being implied. It follows that  and  are

constant. Then, also  = ()() is constant.

(ii) Suppose  and  are constant. Then  =  =  , so that

 is a constant. We now show that this implies that  is constant.

Indeed, from (4.1),  = 1− so that also  is constant. It follows

that  =  =  so that  is constant. By (4.1),




=

̇ + 


=  + 

so that  is constant. This, together with constancy of  and 

implies that also  and  are constant. ¤

Remark. It is part (i) of the proposition which requires the assumption   0

for all  ≥ 0 If  = 0 we would have  = − and  ≡  −  =  hence

 =  for all  ≥ 0 Then there would be balanced growth if the common
value of  and  had a constant growth rate. This growth rate, however,

could easily differ from that of Suppose  = 1−  =  and  = 

( and  constants). Then we would have  =  = −+(1−) which
could easily be strictly positive and thereby different from  = − ≤ 0 so
that (i) no longer holds. ¤

The nice feature is that this proposition holds for any model for which

the simple dynamic resource constraint (4.1) is valid. No assumptions about

for example CRS and other technology aspects or about market form are

involved. Further, the proposition suggests that if one accepts Kaldor’s styl-

ized facts as a description of the past century’s growth experience, and if

one wants a model consistent with them, one should construct the model

such that it can generate balanced growth. For a model to be capable of

generating balanced growth, however, technological progress must be of the

Harrod-neutral type (i.e., be labor-augmenting), at least in a neighborhood

of the balanced growth path. For a fairly general context (but of course not

as general as that of Proposition 1), this was shown already by Uzawa (1961).

The next section presents a modernized version of Uzawa’s contribution.
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4.2 The crucial role of Harrod-neutrality

Let the aggregate production function be

 () = ̃ (() (); ) (4.6)

The only technology assumption needed is that ̃ has CRS w.r.t. the first two

arguments (̃ need not be neoclassical for example). As a representation of

technical progress, we assume ̃  0 for all  ≥ 0 (i.e., as time proceeds,
unchanged inputs result in more and more output). We also assume that the

labor force evolves according to

() = (0) (4.7)

where  is a constant. Further, non-consumed output is invested and so (4.1)

is the dynamic resource constraint of the economy.

Proposition 2 (Uzawa’s balanced growth theorem) Let ( ()() ())∞=0,
where 0  ()   () for all  ≥ 0 be a path satisfying the capital accumu-
lation equation (4.1), given the CRS-production function (5.2) and the labor

force path in (4.7). Then:

(i) a necessary condition for this path to be a balanced growth path is that

along the path it holds that

 () = ̃ (() (); ) = ̃ (() ()(); 0) (4.8)

where () =  with  ≡  − ;

(ii) for any   0 such that there is a    +  +  with the property

that ̃ (1 −1; 0) =  for some   0 (i.e., at any  hence also  = 0,

the production function ̃ in (5.2) allows an output-capital ratio equal

to ), a sufficient condition for the existence of a balanced growth path

with output-capital ratio , is that the technology can be written as in

(4.8) with () = .

Proof (i)2 Suppose the path ( ()() ())∞=0 is a balanced growth path.
By definition,  and  are then constant, so that () = (0) and

 () =  (0)  We then have

 ()−  =  (0) = ̃ ((0) (0); 0) = ̃ (()− ()−; 0) (4.9)

2This part draws upon Schlicht (2006), who generalized a proof in Wan (1971, p. 59)

for the special case of a constant saving rate.
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where we have used (5.2) with  = 0 In view of the precondition that ()

≡  ()−()  0 we know from (i) of Proposition 1, that  is constant

so that  =  . By CRS, (4.9) then implies

 () = ̃ (() − () −; 0) = ̃ (() ( −)(); 0)

We see that (4.8) holds for () =  with  ≡  − 

(ii) Suppose (4.8) holds with () =  Let   0 be given such that

there is a    +  +  with the property that ̃ (1 −1; 0) =  for some

  0 Then our first claim is that with (0) = (0)  ≡ ( +  + )

and () =  (), (4.1), (4.7), and (4.8) imply  ()() =  for all  ≥ 0.
Indeed, by construction

 (0)

(0)
=

̃ ((0) (0); 0)

(0)
= ̃ (1 −1; 0) =  =

 +  + 


 (4.10)

It follows that  (0)(0) −  =  +  So, by (4.1), we have ̇(0)(0)

=  (0)(0)−  = + implying that  initially grows at the same rate

as effective labor input, ()(). Then, in view of ̃ being homogeneous of

degree one w.r.t. its first two arguments, also  grows initially at this rate.

As an implication, the ratio  does not change, but remains equal to the

right-hand side of (4.10) for all  ≥ 0. Consequently,  and  continue to

grow at the same constant rate,  + . As  = (1 − )  grows forever

also at this constant rate. Hence, the path ( ()() ())∞=0 is a balanced
growth path, as was to be proved. ¤

The form (4.8) indicates that along a balanced growth path, technical

progress must be purely “labor augmenting”, that is, Harrod-neutral. It is in

this case convenient to define a new CRS function, by  (() ()())

≡ ̃ (() ()(); 0) Then (i) of the proposition implies that at least along

the balanced growth path, we can rewrite the production function this way:

 () = ̃ (() (); ) =  (() ()()) (4.11)

where () =  with  ≡  − 

It is important to recognize that the occurrence of Harrod-neutrality says

nothing about what the source of technological progress is. Harrod-neutrality

should not be interpreted as indicating that the technological progress em-

anates specifically from the labor input. Harrod-neutrality only means that

technical innovations predominantly are such that not only do labor and cap-

ital in combination become more productive, but this happens to manifest
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itself at the aggregate level in the form (4.11).3

What is the intuition behind the Uzawa result that for balanced growth

to be possible, technical progress must have the purely labor-augmenting

form? First, notice that there is an asymmetry between capital and labor.

Capital is an accumulated amount of non-consumed output. In contrast, in

simple macro models labor is a non-produced production factor which (at

least in this context) grows in an exogenous way. Second, because of CRS,

the original formulation, (5.2), of the production function implies that

1 = ̃ (
()

 ()

()

 ()
; ) (4.12)

Now, since capital is accumulated non-consumed output, it inherits the trend

in output such that () () must be constant along a balanced growth

path (this is what Proposition 1 is about). Labor does not inherit the trend in

output; indeed, the ratio () () is free to adjust as time proceeds. When

there is technical progress (̃  0) along a balanced growth path, this

progress must manifest itself in the form of a changing () () in (4.12)

as  proceeds, precisely because () () must be constant along the path.

In the “normal” case where ̃  0 the needed change in () () is a

fall (i.e., a rise in  ()()) This is what (4.12) shows. Indeed, the fall in

() () must exactly offset the effect on ̃ of the rising  when there is a

fixed capital-output ratio.4 It follows that along the balanced growth path,

 ()() is an increasing implicit function of  If we denote this function

() we end up with (4.11).

The generality of Uzawa’s theorem is noteworthy. The theorem assumes

CRS, but does not presuppose that the technology is neoclassical, not to

speak of satisfying the Inada conditions.5 And the theorem holds for exoge-

nous as well as endogenous technological progress. It is also worth mentioning

that the proof of the sufficiency part of the theorem is constructive. It pro-

vides a method to construct a hypothetical balanced growth path (BGP from

now).6

A simple implication of the Uzawa theorem is the following. Interpreting

the () in (4.8) as the “level of technology”, we have:

3For a CRS Cobb-Douglas production function with technological progress, Harrod-

neutrality is present whenever the output elasticity w.r.t capital (often denoted ) is

constant over time.
4This way of presenting the intuition behind the Uzawa result draws upon Jones and

Scrimgeour (2008).
5Many accounts of the Uzawa theorem, including Jones and Scrimgeour (2008), presume

a neoclassical production function, but the theorem is much more general.
6Part (ii) of Proposition 2 is ignored in Acemoglu’s book.
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COROLLARY Along a BGP with positive gross saving and the technology

level, () growing at the rate  output grows at the rate + while labor

productivity,  ≡  and consumption per unit of labor,  ≡  grow

at the rate 

Proof That  =  +  follows from (i) of Proposition 2. As to the growth

rate of labor productivity we have

 =
 (0) 

(0)
= (0)( −) = (0)

Finally, by Proposition 1, along a BGP with   0  must grow at the same

rate as  ¤
We shall now consider the implication of Harrod-neutrality for the income

shares of capital and labor when the technology is neoclassical and markets

are perfectly competitive.

4.3 Harrod-neutrality and the functional in-

come distribution

There is one facet of Kaldor’s stylized facts we have so far not related to

Harrod-neutral technical progress, namely the long-run “approximate” con-

stancy of both the income share of labor,  and the rate of return to

capital. At least with neoclassical technology, profit maximizing firms, and

perfect competition in the output and factor markets, these properties are

inherent in the combination of constant returns to scale, balanced growth,

and the assumption that the relative price of capital goods (relative to con-

sumption goods) equals one. The latter condition holds in models where the

capital good is nothing but non-consumed output, cf. (4.1).7

To see this, we start out from a neoclassical CRS production function

with Harrod-neutral technological progress,

 () =  (() ()()) (4.13)

With () denoting the real wage at time  in equilibrium under perfect

competition the labor income share will be

()()

 ()
=

 ()

()
()

 ()
=

2(() ()())()()

 ()
 (4.14)

7The reader may think of the “corn economy” example in Acemoglu, p. 28.
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In this simple model, without natural resources, capital (gross) income equals

non-labor income,  () − ()() Hence, if () denotes the (net) rate of

return to capital at time , then

() =
 ()− ()()− ()

()
 (4.15)

Denoting the capital (gross) income share by () we can write this ()

(in equilibrium) in three ways:

() ≡  ()− ()()

 ()
=
(() + )()

 ()


() =
 (() ()())− 2(() ()())()()

 ()
=

1(() ()())()

 ()


() =

 ()

()
()

 ()
 (4.16)

where the first row comes from (4.15), the second from (4.13) and (4.14), the

third from the second together with Euler’s theorem.8 Comparing the first

and the last row, we see that in equilibrium

 ()

()
= () + 

In this condition we recognize one of the first-order conditions in the rep-

resentative firm’s profit maximization problem under perfect competition,

since () +  can be seen as the firm’s required gross rate of return.9

In the absence of uncertainty, the equilibrium real interest rate in the

bond market must equal the rate of return on capital, () And () +  can

then be seen as the firm’s cost of disposal over capital per unit of capital per

time unit, consisting of interest cost plus capital depreciation.

Proposition 3 (factor income shares and rate of return under balanced

growth) Let the path (()  () ())∞=0 be a BGP in a competitive economy
with the production function (4.13) and with positive saving. Then, along the

BGP, the () in (4.16) is a constant,  ∈ (0 1). The labor income share
will be 1− and the (net) rate of return on capital will be  = −  where

 is the constant output-capital ratio along the BGP.

8From Euler’s theorem, 1 + 2 =  () when  is homogeneous of degree

one
9With natural resources, say land, entering the set of production factors, the formula,

(4.15), for the rate of return to capital should be modified by subtracting rents from the

numerator.
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Proof By CRS we have  () =  (() ()()) = ()() (̃() 1)

≡ ()()(̃()) In view of part (i) of Proposition 2, by balanced growth,

 ()() is some constant, . Since  ()() = (̃())̃() and  00  0
this implies ̃() constant, say equal to ̃∗ But  ()() =  0(̃())which
then equals the constant  0(̃∗) along the BGP. It then follows from (4.16)

that () =  0(̃∗) ≡  Moreover, 0    1 where 0   follows from

 0  0 and   1 from the fact that  =  = (̃∗)̃∗   0(̃∗) in view
of  00  0 and (0) ≥ 0 Then, by the first equality in (4.16), ()() ()
= 1− () = 1− . Finally, by (4.15), the (net) rate of return on capital is

 = (1− ()() ()) ()()−  =  −  ¤

This proposition is of interest by displaying a link from balanced growth

to constancy of factor income shares and the rate of return, that is, some

of the “stylized facts” claimed by Kaldor. Note, however, that although the

proposition implies constancy of the income shares and the rate of return,

it does not determine them, except in terms of  and  But both  and,

generally,  are endogenous and depend on ̃∗10 which will generally be
unknown as long as we have not specified a theory of saving. This takes us

to theories of aggregate saving, for example the simple Ramsey model, cf.

Chapter 8 in Acemoglu’s book.

4.4 What if technological change is embod-

ied?

In our presentation of technological progress above we have implicitly as-

sumed that all technological change is disembodied. And the way the propo-

sitions 1, 2, and 3, are formulated assume this.

As noted in Chapter 2, disembodied technological change occurs when new

technical knowledge advances the combined productivity of capital and labor

independently of whether the workers operate old or new machines. Consider

again the aggregate dynamic resource constraint (4.1) and the production

function (5.2):

̇() =  ()− ()− () (*)

 () = ̃ (() (); ) ̃   0 (**)

Here  ()−() is aggregate gross investment, () For a given level of ()
the resulting amount of new capital goods per time unit (̇()+()), mea-

sured in efficiency units, is independent of when this investment occurs. It is

10As to  there is of course a trivial exception, namely the case where the production

function is Cobb-Douglas and  therefore is a given parameter.
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thereby not affected by technological progress. Similarly, the interpretation

of ̃  0 in (**) is that the higher technology level obtained as time

proceeds results in higher productivity of all capital and labor. Thus also

firms that have only old capital equipment benefit from recent advances in

technical knowledge. No new investment is needed to take advantage of the

recent technological and organizational developments.11

In contrast, we say that technological change is embodied, if taking ad-

vantage of new technical knowledge requires construction of new investment

goods. The newest technology is incorporated in the design of newly pro-

duced equipment; and this equipment will not participate in subsequent

technological progress. Whatever the source of new technical knowledge,

investment becomes an important bearer of the productivity increases which

this new knowledge makes possible. Without new investment, the potential

productivity increases remain potential instead of being realized.

As also noted in Chapter 2, we may represent embodied technological

progress (also called investment-specific technological change) by writing cap-

ital accumulation in the following way,

̇() = ()()− () (4.17)

where () is gross investment at time  and () measures the “quality”

(productivity) of newly produced investment goods. The increasing level of

technology implies increasing () so that a given level of investment gives

rise to a greater and greater additions to the capital stock,  measured

in efficiency units. As in our aggregate framework,  capital goods can be

produced at the same minimum cost as one consumption good, we have · =
1 where  is the equilibrium price of capital goods in terms of consumption

goods. So embodied technological progress is likely to result in a steady

decline in the relative price of capital equipment, a prediction confirmed by

the data (see, e.g., Greenwood et al., 1997).

This raises the question how the propositions 1, 2, and 3 fare in the case

of embodied technological progress. The answer is that a generalized version

of Proposition 1 goes through. Essentially, we only need to replace (4.1) by

(4.17) and interpret  in Proposition 1 as the value of the capital stock, i.e.,

we have to replace  by ̃ = 

But the concept of Harrod-neutrality no longer fits the situation with-

out further elaboration. Hence to obtain analogies to Proposition 2 and

Proposition 3 is a more complicated matter. Suffice it to say that with em-

11In the standard versions of the Solow model and the Ramsey model it is assumed that

all technological progress has this form - for no other reason than that this is by far the

simplest case to analyze.
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bodied technological progress, the class of production functions that are con-

sistent with balanced growth is smaller than with disembodied technological

progress.

4.5 Concluding remarks

In the Solow model as well as in many other models with disembodied tech-

nological progress, a steady state and a balanced growth path imply each

other. Indeed, they are two sides of the same process. There exist cases,

however, where this equivalence does not hold (some open economy models

and some models with embodied technical change). Therefore, it is recom-

mendable always to maintain a terminological distinction between the two

concepts, steady state and balanced growth.12

Note that the definition of balanced growth refers to aggregate variables.

At the same time as there is balanced growth at the aggregate level, structural

change may occur. That is, a changing sectorial composition of the economy

is under certain conditions compatible with balanced growth (in a generalized

sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,

2001, and Acemoglu, 2009, Chapter 20).

In view of the key importance of Harrod-neutrality, a natural question is:

has growth theory uncovered any endogenous tendency for technical progress

to converge to Harrod-neutrality? Fortunately, in his Chapter 15 Acemoglu

outlines a theory about a mechanism entailing such a tendency, the theory of

“directed technical change”. Jones (2005) suggests an alternative mechanism.
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Chapter 5

The concepts of TFP and

growth accounting: Some

warnings

5.1 Introduction

This chapter discusses the concepts of Total Factor Productivity, TFP, and

TFP growth, and ends up with three warnings regarding uncritical use of

them.

First, however, we should provide a precise definition of the TFP level

which is in fact a tricky concept. Unfortunately, Acemoglu (p. 78) does

not make a clear distinction between TFP level and TFP growth. Moreover,

Acemoglu’s point of departure (p. 77) assumes a priori that the way the pro-

duction function is time-dependent can be represented by a one-dimensional

index, () The TFP concept and the applicability of growth accounting

are, however, not limited to this case.

For convenience, in this chapter we treat time as continuous (although

the timing of the variables is indicated merely by a subscript).1

5.2 TFP level and TFP growth

Let  denote aggregate output (value added in fixed prices) at time  in a

sector or the economy as a whole. Suppose  is determined by the function

 = ̃ ( ; ) (5.1)

1I thank Niklas Brønager for useful discussions related to this chapter.
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where is an aggregate input of physical capital and an index of quality-

adjusted labor input.2 The “quality-adjustment” of the input of labor (man-

hours per year) aims at taking educational level and work experience into

account. In fact, both output and the two inputs are aggregates of het-

erogeneous elements. The involved conceptual and measurement difficulties

are huge and there are different opinions in the growth accounting literature

about how to best deal with them. Here we ignore these problems. The

third argument in (5.1) is time,  indicating that the production function

̃ (·  · ; ) is time-dependent. Thus “shifts in the production function”, due
to changes in efficiency and technology (“technical change” for short), can

be taken into account. We treat time as continuous and assume that ̃ is

a neoclassical production function. When the partial derivative of ̃ w.r.t.

the third argument is positive, i.e., ̃  0 technical change amounts

to technical progress. We consider the economy from a purely supply-side

perspective.3

We shall here concentrate on the fundamentals of TFP and TFP growth.

These can in principle be described without taking the heterogeneity and

changing quality of the labor input into account. Hence we shall from now

on ignore this aspect and simplifying assume that labor is homogeneous and

labor quality is constant. So (5.1) is reduced to the simpler case,

 = ̃ ( ; ) (5.2)

where  is the number of man-hours per year. As to measurement of

, some adaptation of the perpetual inventory method
4 is typically used,

with some correction for under-estimated quality improvements of invest-

ment goods in national income accounting. The output measure is (or at

least should be) corrected correspondingly, also for under-estimated quality

improvements of consumption goods.

2Natural resources (land, oil wells, coal in the ground, etc.) constitute a third primary

production factor. The role of this factor is in growth accounting often subsumed under

.

3Sometimes in growth accounting the left-hand side variable,  in (5.2) is the gross

product rather than value added. Then non-durable intermediate inputs should be taken

into account as a third production factor and enter as an additional argument of ̃ in

(5.2). Since non-market production is difficult to measure, the government sector is usually

excluded from  in (5.2). Total Factor Productivity is by some authors called Multifactor

Productivity and abbreviated MFP.
4Cf. Chapter 2.
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5.2.1 TFP growth

The notion of Total Factor Productivity at time  TFP is intended to

indicate a level of productivity. Nevertheless there is a tendency in the

literature to evade a direct definition of this level and instead go straight

away to a decomposition of output growth. Let us start the same way here

but not forget to come back to the issue about what can be meant by the

level of TFP.

The growth rate of a variable  at time  will be denoted . Taking

logs and differentiating w.r.t.  in (5.2) we get

 ≡ ̇


=
1



h
̃( ; )̇ + ̃( ; )̇ + ̃( ; ) · 1

i
=

̃( ; )


 +

̃( ; )


 +

̃( ; )



≡  +  +
̃( ; )


 (5.3)

where  and  are shorthands for ( ; ) ≡ ̃(;)

̃ (;)
and ( ; )

≡ ̃(;)

̃ (;)
 respectively, that is, the partial output elasticities w.r.t. the

two production factors, evaluated at the factor combination ( ) at time

 Finally, ̃( ; ) ≡ ̃, that is, the partial derivative w.r.t. the

third argument of the function ̃ , evaluated at the point (  )

The equation (5.3) is the basic growth-accounting relation, showing how

the output growth rate can be decomposed into the “contribution” from

growth in each of the inputs and a residual. The TFP growth rate is defined

as the residual

TFP, ≡  − ( + ) =
̃( ; )


 (5.4)

So the TFP growth rate is what is left when from the output growth rate is

subtracted the “contribution” from growth in the factor inputs weighted by

the output elasticities w.r.t. these inputs. This is sometimes interpreted as

reflecting that part of the output growth rate which is explained by technical

progress. One should be careful, however, not to identify a descriptive ac-

counting relationship with deeper causality. Without a complete model, at

most one can say that the TFP growth rate measures that fraction of output

growth that is not directly attributable to growth in the capital and labor

inputs. So:
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The TFP growth rate can be interpreted as reflecting the “direct

contribution” to current output growth from current technical

change (in a broad sense including learning by doing and organi-

zational improvement).

Let us consider how the actual estimation of TFP, can be carried out.

The output elasticities w.r.t. capital and labor,  and  will, under

perfect competition and absence of externalities, equal the income shares of

capital and labor, respectively. Time series for these income shares and for

 ,  and  hence also for   and , can be obtained (directly or

with some adaptation) from national income accounts. This allows straight-

forward measurement of the residual, TFP, 
5

The decomposition in (5.4) was introduced already by Solow (1957). Since

the TFP growth rate appears as a residual, it is sometimes called the Solow

residual. As a residual it may reflect the contribution of many things, some

wanted (current technical innovation in a broad sense including organiza-

tional improvement), others unwanted (such as varying capacity utilization,

omitted inputs, measurement errors, and aggregation bias).

5.2.2 The TFP level

Now let us consider the level of TFP, that “something” for which we have

calculated its growth rate without yet having defined what it really is. But

knowing the growth rate of TFP for all  in a certain time interval, we in fact

have a differential equation in the TFP level of the form () = ()()

namely:

(TFP) = TFP, ·TFP
The solution of this simple linear differential equation is6

TFP = TFP0
 
0
TFP,  (5.5)

For a given initial value TFP0  0 (which may be normalized to 1 if de-

sired), the time path of TFP is determined by the right-hand side of (5.5).

Consequently:

The TFP level at time  can interpreted as reflecting the cumula-

tive “direct contribution” to output since time 0 from cumulative

technical change since time 0.

5Of course, data are in discrete time. So to make actual calculations we have to translate

(5.4) into discrete time. The weights  and  can then be estimated by two-years

moving averages of the factor income shares as shown in Acemoglu (2009, p. 79).
6See Appendix B of Chapter 3 in these lecture notes or Appendix B to Acemoglu.
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Why do we say “direct contribution”? The reason is that the cumulative

technical change since time 0 may also have an indirect effect on output,

namely via affecting the output elasticities w.r.t. capital and labor,  and

 Through this channel cumulative technical change affects the role of

input growth for output growth. This possible indirect effect over time of

technical change is not included in the TFP concept.

To clarify the matter we will compare the TFP calculation under Hicks-

neutral technical change with that under other forms of technical change.

5.3 The case of Hicks-neutrality*

In the case of Hicks neutrality, by definition, technical change can be repre-

sented by the evolution of a one-dimensional variable,  and the production

function in (5.2) can be specified as

 = ̃ ( ; ) =  ( ) (5.6)

Here the TFP level is at any time, , identical to the level of if we normalize

the initial values of both  and TFP to be the same, i.e., TFP0 = 0  0.

Indeed, calculating the TFP growth rate, (5.4), on the basis of (5.6) gives

TFP, =
̃( ; )


=

̇ ( )

 ( )
=

̇



≡  (5.7)

where the second equality comes from the fact that  and  are kept fixed

when the partial derivative of ̃ w.r.t.  is calculated. The formula (5.5) now

gives

TFP = 0 · 
 
0
, = 

The nice feature of Hicks neutrality is thus that we can write

TFP =
̃ ( ; )

̃ ( ; 0)
=

 ( )

0 ( )
=  (5.8)

using the normalization 0 = 1 That is:

Under Hicks neutrality, current TFP appears as the ratio be-

tween the current output level and the hypothetical output level

that would have resulted from the current inputs of capital and

labor in case of no technical change since time 0.

So in the case of Hicks neutrality the economic meaning of the TFP level

is straightforward. The reason is that under Hicks neutrality the output

elasticities w.r.t. capital and labor,  and  are independent of technical

change.
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5.4 Absence of Hicks-neutrality*

The above very intuitive interpretation of TFP is only valid under Hicks-

neutral technical change. Neither under general technical change nor even

under Harrod- or Solow-neutral technical change (unless the production func-

tion is Cobb-Douglas so that both Harrod and Solow neutrality imply Hicks-

neutrality), will current TFP appear as the ratio between the current output

level and the hypothetical output level that would have resulted from the

current inputs of capital and labor in case of no technical change since time

0.

To see this, let us return to the general time-dependent production func-

tion in (5.2). Let  denote the ratio between the current output level at

time  and the hypothetical output level, ̃ ( ; 0) that would have ob-

tained with the current inputs of capital and labor in case of no change in

the technology since time 0, i.e.,

 ≡ ̃ ( ; )

̃ ( ; 0)
 (5.9)

So  can be seen as a factor of joint-productivity growth from time 0 to

time  evaluated at the time- input combination.

If this  should always indicate the level of TFP at time , the growth

rate of  should equal the growth rate of TFP. Generally, it does not,

however. Indeed, defining ( ) ≡ ̃ ( ; 0) by the rule for the time

derivative of fractions7, we have

 ≡ ̃ ( ; )

̃ ( ; )
− ( )

( )

=
1



h
̃( ; )̇ + ̃( ; )̇ + ̃( ; ) · 1

i
− 1

( )

h
( )̇ +( )̇

i
= ( ; ) + ( ; ) +

̃( ; )


−(( ; 0) + ( ; 0)) (5.10)

= (( ; )− ( ; 0))  + (( ; )− ( ; 0)) + TFP,

6= TFP, generally,

where TFP, is given in (5.4). Unless the partial output elasticities w.r.t.

capital and labor, respectively, are unaffected by technical change, the con-

clusion is that TFP will differ from our  defined in (5.9). So:

7See Appendix A to Chapter 3 of these lecture notes.
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In the absence of Hicks neutrality, current TFP does not gener-

ally appear as the ratio between the current output level and the

hypothetical output level that would have resulted from the cur-

rent inputs of capital and labor in case of no technical change

since time 0.

A closer look at  vs. TFP

As  in (5.9) is the time- output arising from the time- inputs relative to

the fictional time-0 output from the same inputs, we consider  along with

TFP as two alternative joint-productivity indices. From (5.10) we see that

TFP, =  −(( ; )− ( ; 0)) −(( ; )−( ; 0))

So the growth rate of TFP equals the growth rate of the joint-productivity

index  corrected for the cumulative impact of technical change since time 0

on the direct contribution to time- output growth from time- input growth.

This impact comes about when the output elasticities w.r.t. capital and la-

bor, respectively, are affected by technical change, that is, when ( ; )

6= ( ; 0) and/or ( ; ) 6= ( ; 0)

Under Hicks-neutral technical change there will be no correction because

the output elasticities are independent of technical change. In this case TFP

coincides with the index  In the absence of Hicks-neutrality the two indices

differ. This is why we in Section 2.2 characterized the TFP level as the

cumulative “direct contribution” to output since time 0 from cumulative

technical change, thus excluding the possible indirect contribution coming

about via the potential effect of technical change on the output elasticities

w.r.t. capital and labor and thereby on the contribution to output from input

growth.

Given that the joint-productivity index  is the more intuitive joint-

productivity measure, why is TFP the more popular measure? There are at

least two reasons for this. First, it can be shown that the TFP measure has

more convenient balanced growth properties. Second,  is more difficult to

measure. To see this we substitute (5.3) into (5.10) to get

 =  − (( ; 0) + ( ; 0)) (5.11)

The relevant output elasticities, ( ; 0)≡ ̃(;0)

̃ (;0)
and ( ; 0)

≡ ̃(;0)

̃ (;0)
 are hypothetical constructs, referring to the technology as it

was at time 0, but with the factor combination observed at time , not at time

0. The nice thing about the Solow residual is that under the assumptions
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of perfect competition and absence of externalities, it allows measurement

by using data on prices and quantities alone, that is, without knowledge

of the production function. To evaluate  , however, we need estimates

of the hypothetical output elasticities, ( ; 0) and ( ; 0) This

requires knowledge about how the output elasticities depend on the factor

combination and time, respectively, that is, knowledge about the production

function.

Now to the warnings concerning application of the TFP measure.

5.5 Three warnings

Balanced growth at the aggregate level, hence Harrod neutrality, seems to

characterize the growth experience of the UK and US over at least a century

(Kongsamut et al., 2001; Attfield and Temple, 2010). At the same time

the aggregate elasticity of factor substitution is generally estimated to be

significantly less than one (see, e.g., Antras, 2004). This amounts to rejection

of the Cobb-Douglas specification of the aggregate production function and

so, at the aggregate level, Harrod neutrality rules out Hicks neutrality.

Warning 1 Since Hicks-neutrality is empirically doubtful at the aggre-

gate level, TFP can often not be identified with the simple intuitive joint-

productivity measure  defined in (5.9) above.

Warning 2 When Harrod neutrality obtains, relative TFP growth rates

across sectors or countries can be quite deceptive.

Suppose there are  countries and that country  has the aggregate pro-

duction function

 =  ()( )  = 1 2  

where  () is a neoclassical production function with CRS and  is the level

of labor-augmenting technology which, for simplicity, we assume shared by

all the countries (these are open and “close” to each other). So technical

progress is Harrod-neutral. Let the growth rate of  be a constant   0

Many models imply that ̃ ≡ () tends to a constant, ̃
∗
 , in the long

run, which we assume is also the case here. Then, for →∞  ≡ 

≡ ̃ where ̃ → ̃∗ and  ≡  ≡ ̃ where ̃ → ̃∗ =  ()(̃∗ );
here  () is the production function on intensive form. So in the long run 
and  tend to  = .
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Formula (5.4) then gives the TFP growth rate of country  in the long

run as

TFP ≡  − (∗ 
+ (1− ∗ )) =  −  − ∗ (

− )

=  − ∗  = (1− ∗ ) (5.12)

where ∗ is the output elasticity w.r.t. capital, 
()0(̃)̃ ()(̃) evaluated

at ̃ = ̃∗  Under labor-augmenting technical progress, the TFP growth rate
thus varies negatively with the output elasticity w.r.t. capital (the capital

income share under perfect competition). Owing to differences in product

and industry composition, the countries have different ∗ ’s. In view of (5.12),
for two different countries,  and  we get





→
⎧⎨⎩
∞ if ∗  ∗ 
1 if ∗ = ∗ 
0 if ∗  ∗ 

(5.13)

for  → ∞8 Thus, in spite of long-run growth in the essential variable,

 being the same across the countries, their TFP growth rates are very

different. Countries with low ∗ ’s appear to be technologically very dynamic
and countries with high ∗ ’s appear to be lagging behind. It is all due to the
difference in  across countries; a higher  just means that a larger fraction

of  =  =  becomes “explained” by  in the growth accounting (5.12),

leaving a smaller residual. And the level of  has nothing to do with technical

progress.

We conclude that comparison of TFP levels across countries or time may

misrepresent the intuitive meaning of productivity and technical progress

when output elasticities w.r.t. capital differ and technical progress is Harrod-

neutral (even if technical progress were at the same time Hicks-neutral as is

the case with a Cobb-Douglas specification). It may be more reasonable to

just compare levels of  across countries and time.

Warning 3 Growth accounting is - as the name says - just about account-

ing and measurement. So do not confuse growth accounting with causality

in growth analysis. To talk about causality we need a theoretical model sup-

ported by the data. On the basis of such a model we can say that this or that

set of exogenous factors through the propagation mechanisms of the model

cause this or that phenomenon, including economic growth. In contrast, con-

sidering the growth accounting identity (5.3) in itself, none of the terms have

8If  is Cobb-Douglas with output elasticity w.r.t. capital equal to , the result

in (5.12) can be derived more directly by first defining  = 1− , then writing the

production function in the Hicks-neutral form (5.6), and finally use (5.7).
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priority over the others w.r.t. a causal role. And there are important omitted

variables. There are simple illustrations in Exercises III.1 and III.2.

In a complete model with exogenous technical progress, part of  will

be induced by this technical progress. If technical progress is endogenous

through learning by investing, as in Arrow (1962), there is mutual causa-

tion between  and technical progress. Yet another kind of model might

explain both technical progress and capital accumulation through R&D, cf.

the survey by Barro (1999).
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Chapter 6

Transitional dynamics.

Barro-style growth regressions

In this chapter we discuss three issues, all of which are related to the transi-

tional dynamics of a growth model:

• Do poor countries necessarily tend to approach their steady state from
below?

• How fast (or rather how slow) are the transitional dynamics in a growth
model?

• What exactly is the theoretical foundation for a Barro-style growth
regression analysis?

The Solow growth model may serve as the analytical point of departure

for the first two issues and to some extent also for the third.

6.1 Point of departure: the Solow model

As is well-known, the fundamental differential equation for the Solow model

is ·
̃() = (̃())− ( +  + )̃() ̃(0) = ̃0  0, (6.1)

where ̃() ≡ ()(()()) (̃()) ≡  (̃() 1) () = 0
 and

() = 0
 (standard notation). The production function  is neoclassical

with CRS and the parameters satisfy 0    1 and ++  0 The produc-

tion function on intensive form,  therefore satisfies (0) ≥ 0  0  0  00  0
and

lim
̃→0

 0(̃) 
 +  + 


 lim

̃→∞
 0(̃) (A1)
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Figure 6.1: Note:  means 

Then there exists a unique non-trivial steady state, ̃∗  0 that is, a unique
positive solution to the equation

(̃∗) = ( +  + )̃∗ (6.2)

Furthermore, given an arbitrary ̃0  0 we have for all  ≥ 0
·
̃() T 0 for ̃() S ̃∗ (6.3)

respectively. The steady state, ̃∗ is thus globally asymptotically stable in the
sense that for all ̃0  0 lim→∞ ̃() = ∗ and this convergence is monotonic
(in the sense that ̃() − ̃∗ does not change sign during the adjustment
process).

From now on the dating of ̃ is suppressed unless needed for clarity. Figure

6.1 illustrates the dynamics as seen from the perspective of (6.1) (in this and

the two next figures,  should read . Figure 6.2 illustrates the dynamics

emerging when we rewrite (6.1) this way:

·
̃ = 

µ
(̃)−  +  + 


̃

¶
T 0 for ̃ S ̃∗
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In Figure 6.3 yet another illustration is exhibited, based on rewriting (6.1)

this way:
·
̃

̃
= 

(̃)

̃
− ( +  + )

where (̃)̃ is gross saving per unit of capital,  ≡ ( − )

An important variable in the analysis of the adjustment process towards

steady state is the output elasticity w.r.t. capital:








=

̃

(̃)
 0(̃) ≡ (̃) (6.4)

where 0  (̃)  1 for all ̃  0

6.2 Do poor countries tend to approach their

steady state from below?

From some textbooks (for instance Barro and Sala-i-Martin, 2004) one gets

the impression that poor countries tend to approach their steady state from

below. But this is not what the Penn World Table data seems to indicate.

And from a theoretical point of view the size of ̃0 relative to ̃
∗ is certainly

ambiguous, whether the country is rich or poor. To see this, consider a poor

country with initial effective capital intensity

̃0 ≡ 0

00


Here 00 will typically be small for a poor country (the country has not

yet accumulated much capital relative to its fast-growing population). The

technology level, 0 however, also tends to be small for a poor country.

Hence, whether we should expect ̃0  ̃∗ or ̃0  ̃∗ is not obvious apriori.
Or equivalently: whether we should expect that a poor country’s GDP at an

arbitrary point in time grows at a rate higher or lower than the country’s

steady-state growth rate,  +  is not obvious apriori.

While Figure 6.3 illustrates the case where the inequality ̃0  ̃∗ holds,
Figure 6.1 and 6.2 illustrate the opposite case. There exists some empirical

evidence indicating that poor countries tend to approach their steady state

from above. Indeed, Cho and Graham (1996) find that “on average, countries

with a lower income per adult are above their steady-state positions, while

countries with a higher income are below their steady-state positions”.
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The prejudice that poor countries apriori should tend to approach their

steady state from below seems to come from a confusion of conditional and

unconditional  convergence. The Solow model predicts - and data supports

- that within a group of countries with similar structural characteristics (ap-

proximately the same  0    and ) the initially poorer countries will

grow faster than the richer countries. This is because the poorer countries

(small (0) = (̃0)0) will be the countries with relatively small initial

capital-labor ratio, 0 As all the countries in the group have approximately

the same 0 the poorer countries thus have ̃0 ≡ 00 relatively small, i.e.,

̃0  ̃∗. From  ≡  ≡ ̃ = (̃) follows that the growth rate in

output per worker of these poor countries tends to exceed  Indeed, we have

generally

̇


=

·
̃

̃
+  =

 0(̃)
·
̃

(̃)
+  T  for

·
̃ T 0 i.e., for ̃ S ̃∗

So, within the group, the poor countries tend to approach the steady state,

̃∗ from below.

The countries in the world as a whole, however, differ a lot w.r.t. their

structural characteristics, including their 0 Unconditional  convergence is

definitely rejected by the data. Then there is no reason to expect the poorer

countries to have ̃0  ̃∗ rather than ̃0  ̃∗. Indeed, according to the
mentioned study by Cho and Graham (1996), it turns out that the data for

the relatively poor countries favors the latter inequality rather than the first.

6.3 Convergence speed and adjustment time

Our next issue is: How fast (or rather how slow) are the transitional dynamics

in a growth model? To put it another way: according to a given growth model

with convergence, how fast does the economy approach its steady state? The

answer turns out to be: not very fast - to say the least. This is a rather

general conclusion and is confirmed by the empirics: adjustment processes

in a growth context are quite time consuming.

In Acemoglu’s textbook we meet the concept of speed of convergence at p.

54 (under an alternative name, rate of adjustment) and p. 81 (in connection

with Barro-style growth regressions). Here we shall go more into detail with

the issue of speed of convergence.

Again the Solow model is our frame of reference. We search for a formula

for the speed of convergence of ̃() and ()∗() in a closed economy de-
scribed by the Solow model. So our analysis is concerned with within-country
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convergence: how fast do variables such as ̃ and  approach their steady

state paths in a closed economy? The key adjustment mechanism is linked

to diminishing returns to capital (falling marginal productivity of capital)

in the process of capital accumulation. The problem of cross-country con-

vergence (which is what “ convergence” and “ convergence” are about)

is in principle more complex because also such mechanisms as technological

catching-up and cross-country factor movements are involved.

6.3.1 Convergence speed for ̃()

The ratio of
·
̃() to (̃()− ̃∗) 6= 0 can be written

·
̃()

̃()− ̃∗
=

(̃()− ̃∗)

̃()− ̃∗
 (6.5)

since ̃∗ = 0 We define the instantaneous speed of convergence at time

 as the (proportionate) rate of decline of the distance
¯̄̄
̃()− ̃∗

¯̄̄
at time 

and we denote it SOC(̃)
1 Thus,

SOC(̃) ≡ −

³¯̄̄
̃()− ̃∗

¯̄̄´
¯̄̄

̃()− ̃∗
¯̄̄ = −(̃()− ̃∗)

̃()− ̃∗
 (6.6)

where the equality sign is valid for monotonic convergence.

Generally, SOC(̃) depends on both the absolute size of the difference ̃

− ̃∗ at time  and its sign. But if the difference is already “small”, SOC(̃)

will be “almost” constant for increasing  and we can find an approximate

measure for it. Let the function (̃) be defined by (̃) ≡ (̃) − ̃

where  ≡ + + A first-order Taylor approximation of (̃) around ̃ =

̃∗ gives

(̃) ≈ (̃∗) + 0(̃∗)(̃ − ̃∗) = 0 + ( 0(̃∗)−)(̃ − ̃∗)

1Synonyms for speed of convergence are rate of convergence, rate of adjustment or

adjustment speed.
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For ̃ in a small neighborhood of the steady state, ̃∗ we thus have

·
̃ = (̃) ≈ ( 0(̃∗)−)(̃ − ̃∗)

= (
 0(̃∗)


− 1)(̃ − ̃∗)

= (
̃∗

0
(̃∗)

(̃∗)
− 1)(̃ − ̃∗) (from (6.2))

≡ ((̃∗)− 1)(̃ − ̃∗) (from (6.4)).

Applying the definition (6.6) and the identity  ≡ + +  we now get

SOC(̃) = −(̃()− ̃∗)

̃()− ̃∗
≈ (1− (̃∗))( +  + ) ≡ (̃∗)  0 (6.7)

This result tells us how fast, approximately, the economy approaches its

steady state if it starts “close” to it. If, for example, (̃∗) = 002 per year,
then 2 percent of the gap between ̃() and ̃∗ vanishes per year. We also see
that everything else equal, a higher output elasticity w.r.t. capital implies a

lower speed of convergence.

In the limit, for
¯̄̄
̃ − ̃∗

¯̄̄
→ 0 the instantaneous speed of convergence

coincides with what is called the asymptotic speed of convergence, defined as

SOC∗(̃) ≡ lim
|̃−̃∗|→0

SOC(̃) = (̃∗) (6.8)

Multiplying through by −(̃()− ̃∗) the equation (6.7) takes the form of
a homogeneous linear differential equation (with constant coefficient), ̇() =

() the solution of which is () = (0)With () = ̃()− ̃∗ and “=”
replaced by “≈”, we get in the present case

̃()− ̃∗ ≈ (̃(0)− ̃∗)−(̃
∗) (6.9)

This is the approximative time path for the gap between ̃() and ̃∗ and
shows how the gap becomes smaller and smaller at the rate (̃∗).
One of the reasons that the speed of convergence is important is that it

indicates what weight should be placed on transitional dynamics of a growth

model relative to the steady-state behavior. The speed of convergence mat-

ters for instance for the evaluation of growth-promoting policies. In growth

models with diminishing marginal productivity of production factors, suc-

cessful growth-promoting policies have transitory growth effects and perma-

nent level effects. Slower convergence implies that the full benefits are slower

to arrive.
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6.3.2 Convergence speed for log ̃()

We have found an approximate expression for the convergence speed of ̃

Since models in empirical analysis and applied theory are often based on log-

linearization, we might ask what the speed of convergence of log ̃ is. The

answer is: approximately the same and asymptotically exactly the same as

that of ̃ itself! Let us see why.

A first-order Taylor approximation of log ̃() around ̃ = ̃∗ gives

log ̃() ≈ log ̃∗ + 1

̃∗
(̃()− ̃∗) (6.10)

By definition

SOC(log ̃) = −(log ̃()− log ̃
∗)

log ̃()− log ̃∗ = − ̃()

̃()(log ̃()− log ̃∗)

≈ − ̃()

̃()
̃()−̃∗

̃∗

=
̃∗

̃()
SOC(̃)→ SOC∗(̃) = (̃∗) for ̃()→ ̃∗(6.11)

where in the second line we have used, first, the approximation (6.10), second,

the definition in (6.7), and third, the definition in (6.8).

So, at least in a neighborhood of the steady state, the instantaneous rate

of decline of the logarithmic distance of ̃ to the steady-state value of ̃

approximates the instantaneous rate of decline of the distance of ̃ itself to

its steady-state value. The asymptotic speed of convergence of log ̃ coincides

with that of ̃ itself and is exactly (̃∗)
In the Cobb-Douglas case (where (̃∗) is a constant, say ) it is possible

to find an explicit solution to the Solow model, see Acemoglu p. 53 and

Exercise II.2. It turns out that the instantaneous speed of convergence in a

finite distance from the steady state is a constant and equals the asymptotic

speed of convergence, (1− )( +  + )

6.3.3 Convergence speed for ()∗()

The variable which we are interested in is usually not so much ̃ in itself,

but rather labor productivity, () ≡ ̃()() In the interesting case where

  0 labor productivity does not converge towards a constant. We therefore

focus on the ratio ()∗() where ∗() denotes the hypothetical value of
labor productivity at time  conditional on the economy being on its steady-

state path, i.e.,

∗() ≡ ̃∗() (6.12)
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We have
()

∗()
≡ ̃()()

̃∗()
=

̃()

̃∗
 (6.13)

As ̃()→ ̃∗ for →∞ the ratio ()∗() converges towards 1 for →∞

Taking logs on both sides of (6.13), we get

log
()

∗()
= log

̃()

̃∗
= log ̃()− log ̃∗

≈ log ̃∗ +
1

̃∗
(̃()− ∗)− log ̃∗ (first-order Taylor approx. of log ̃ )

=
1

(̃∗)
((̃())− (̃∗))

≈ 1

(̃∗)
((̃∗) +  0(̃∗)(̃()− ̃∗)− (̃∗)) (first-order approx. of (̃))

=
̃∗ 0(̃∗)

(̃∗)

̃()− ̃∗

̃∗
≡ (̃∗)

̃()− ̃∗

̃∗

≈ (̃∗)(log ̃()− log ̃∗) (by (6.10)). (6.14)

Multiplying through by −(log ̃()− log ̃∗) in (6.11) and carrying out the
differentiation w.r.t. time, we find an approximate expression for the growth

rate of ̃

̃()

̃()
≡ ̃() ≈ −

̃∗

̃()
SOC(̃)(log ̃()− log ̃∗)

→ −(̃∗)(log ̃()− log ̃∗) for ̃()→ ̃∗ (6.15)

where the convergence follows from the last part of (6.11). We now calculate

the time derivative on both sides of (6.14) to get

(log
()

∗()
) = (log

̃()

̃∗
) =

̃()

̃()
≡ ̃()

≈ (̃∗)̃() ≈ −(̃∗)(̃∗)(log ̃()− log ̃∗) (6.16)
from (6.15). Dividing through by − log(()∗()) in this expression, taking
(6.14) into account, gives

−
(log

()

∗())

log
()

∗()

= −
(log

()

∗() − log 1)
log

()

∗() − log 1
≡ SOC(log



∗
) ≈ (̃∗) (6.17)

in view of log 1 = 0. So the logarithmic distance of  from its value on the

steady-state path at time  has approximately the same rate of decline as the
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logarithmic distance of ̃ from ̃’s value on the steady-state path at time 

The asymptotic speed of convergence for log ()∗() is exactly the same
as that for ̃ namely (̃∗).
What about the speed of convergence of ()∗() itself? Here the same

principle as in (6.11) applies. The asymptotic speed of convergence for

log(()∗()) is the same as that for ()∗() (and vice versa), namely
(̃∗)
With one year as our time unit, standard parameter values are:  = 002

 = 001  = 005 and (̃∗) = 13We then get (̃∗) = (1−(̃∗))(++)
= 0053 per year. In the empirical Chapter 11 of Barro and Sala-i-Martin

(2004), it is argued that a lower value of (̃∗) say 0.02 per year, fits the data
better. This requires (̃∗) = 075 Such a high value of (̃∗) (≈ the income
share of capital) may seem difficult to defend. But if we reinterpret  in

the Solow model so as to include human capital (skills embodied in human

beings and acquired through education and learning by doing), a value of

(̃∗) at that level may not be far out.

6.3.4 Adjustment time

Let  be the time that it takes for the fraction  ∈ (0 1) of the initial gap
between ̃ and ̃∗ to be eliminated, i.e.,  satisfies the equation¯̄̄

̃()− ̃∗
¯̄̄

¯̄̄
̃(0)− ̃∗

¯̄̄ = ̃()− ̃∗

̃(0)− ̃∗
= 1−  (6.18)

where 1 −  is the fraction of the initial gap still remaining at time . In

(6.18) we have applied that (̃() − ̃∗) = (̃(0) − ̃∗) in view of

monotonic convergence.

By (6.9), we have

̃()− ̃∗ ≈ (̃(0)− ̃∗)−(̃
∗) 

In view of (6.18), this implies

1−  ≈ −(̃
∗) 

Taking logs on both sides and solving for  gives

 ≈ − log(1− )

(̃∗)
 (6.19)
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This is the approximate adjustment time required for ̃ to eliminate the

fraction  of the initial distance of ̃ to its steady-state value, ̃∗, when the
adjustment speed (speed of convergence) is (̃∗)
Often we consider the half-life of the adjustment, that is, the time it

takes for half of the initial gap to be eliminated. To find the half-life of the

adjustment of ̃ we put  = 1
2
in (6.19). Again we use one year as our time

unit. With the previous parameter values, we have (̃∗) = 0053 per year
and thus

 1
2
≈ − log

1
2

0053
≈ 069

0053
= 13 1 years.

As noted above, Barro and Sala-i-Martin (2004) estimate the asymptotic

speed of convergence to be (̃∗) = 0.02 per year. With this value, the

half-life is approximately

 1
2
≈ − log

1
2

002
≈ 069
002

= 347 years.

And the time needed to eliminate three quarters of the initial distance to

steady state,  34 will then be about 70 years (= 2 ·35 years, since 1−34 =
1
2
· 1
2
).

Among empirical analysts there is not general agreement about the size of

(̃∗). Some authors, for example Islam (1995), using a panel data approach,
find speeds of convergence considerably larger, between 005 and 009. Mc-

Quinne and Whelan (2007) get similar results. There is a growing realization

that the speed of convergence differs across periods and groups of countries.

Perhaps an empirically reasonable range is 002  (̃∗)  009 Correspond-
ingly, a reasonable range for the half-life of the adjustment will be 76 years

  1
2
 347 years.

Most of the empirical studies of convergence use a variety of cross-country

regression analysis of the kind described in the next section. Yet the theoret-

ical frame of reference is often the Solow model - or its extension with human

capital (Mankiw et al., 1992). These models are closed economy models with

exogenous technical progress and deal with “within-country” convergence. It

is not obvious that they constitute an appropriate framework for studying

cross-country convergence in a globalized world where capital mobility and to

some extent also labor mobility are important and where some countries are

pushing the technological frontier further out, while others try to imitate and

catch up. At least one should be aware that the empirical estimates obtained

may reflect mechanisms in addition to the falling marginal productivity of

capital in the process of capital accumulation.
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6.4 Barro-style growth regressions

Barro-style growth regression analysis, which became very popular in the

1990s, draws upon transitional dynamics aspects (including the speed of con-

vergence) as well as steady state aspects of neoclassical growth theory (for

instance the Solow model or the Ramsey model).

In his Section 3.2 of Chapter 3 Acemoglu presents Barro’s growth regres-

sion equations in an unconventional form, see Acemoglu’s equations (3.12),

(3.13), and (3.14). The left-hand side appears as if it is just the growth rate

of  (output per unit of labor) from one year to the next. But the true left-

hand side of a Barro equation is the average compound annual growth rate of

 over many years. Moreover, since Acemoglu’s text is very brief about the

formal links to the underlying neoclassical theory of transitional dynamics,

we will spell the details out here.

Most of the preparatory work has already been done above. The point of

departure is a neoclassical one-sector growth model for a closed economy:

·
̃() = (̃())(̃())− ( +  + )() ̃(0) = ̃0  0 given, (6.20)

where ̃() ≡ ()(()()) () = 0
 and () = 0

 as above.

The Solow model is the special case where the saving-income ratio, (̃())

is a constant  ∈ (0 1)
It is assumed that the model, (6.20), generates monotonic convergence,

i.e., ̃() → ̃∗  0 for  → ∞ Applying again a first-order Taylor approxi-

mation, as in Section 3.1, and taking into account that (̃) now may depend

on ̃ as for instance it generally does in the Ramsey model, we find the

asymptotic speed of convergence for ̃ to be

SOC∗(̃) = (1− (̃∗)− (̃∗))( +  + ) ≡ (̃∗)  0 (*)

where (̃∗) ≡ ̃∗0(̃∗)(̃∗) is the elasticity of the saving-income ratio w.r.t.
the effective capital intensity, evaluated at ̃ = ̃∗ (In case of the Ramsey
model, one can alternatively use the fact that SOC∗(̃) equals the absolute
value of the negative eigenvalue of the Jacobian matrix associated with the

dynamic system of the model, evaluated in the steady state. For a fully

specified Ramsey model this eigenvalue can be numerically calculated by an

appropriate computer algorithm; in the Cobb-Douglas case there exists even

an explicit algebraic formula for the eigenvalue, see Barro and Sala-i-Martin,

2004). In a neighborhood of the steady state, the previous formulas remain

valid with (̃∗) defined as in (*). The asymptotic speed of convergence of for
example ()∗() is thus (̃∗) as given in (*). For notational convenience,
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we will just denote it  interpreted as a derived parameter, i.e.,

 = (1− (̃∗)− (̃∗))( +  + ) ≡ (̃∗) (6.21)

In case of the Solow model, (̃∗) = 0 and we are back in Section 3.
In view of () ≡ ̃()() we have () = ̃() +  By (6.16) and the

definition of ,

() ≈  − (̃∗)(log ̃()− log ̃∗) ≈  − (log ()− log ∗()) (6.22)

where the last approximation comes from (6.14). This generalizes Acemoglu’s

Equation (3.10) (recall that Acemoglu concentrates on the Solow model and

that his ∗ is the same as our ̃∗)
With the horizontal axis representing time, Figure 6.4 gives an illustration

of these transitional dynamics. As () =  log () and  =  log ∗()
(6.22) is equivalent with

(log ()− log ∗())


≈ −(log ()− log ∗()) (6.23)

So again we have a simple differential equation of the form ̇() = () the

solution of which is () = (0) The solution of (6.23) is thus

log ()− log ∗() ≈ (log (0)− log ∗(0))−
As ∗() = ∗(0) this can written

log () ≈ log ∗(0) + + (log (0)− log ∗(0))− (6.24)

The solid curve in Figure 6.4 depicts the evolution of log () in the case

where ̃0  ̃∗ (note that log ∗(0) = log (̃∗) + log0). The dotted curve
exemplifies the case where ̃0  ̃∗. The figure illustrates per capita income
convergence: low initial income is associated with a high subsequent growth

rate which, however, diminishes along with the diminishing logarithmic dis-

tance of per capita income to its level on the steady state path.

For convenience, we will from now on treat (6.24) as an equality. Sub-

tracting log (0) on both sides, we get

log ()− log (0) = log ∗(0)− log (0) + + (log (0)− log ∗(0))−
= − (1− −)(log (0)− log ∗(0))

Dividing through by   0 gives

log ()− log (0)


=  − 1− −


(log (0)− log ∗(0)) (6.25)
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On the left-hand side appears the average compound annual growth rate of

 from period 0 to period  which we will denote ̄(0 ) On the right-hand

side appears the initial distance of log  to its hypothetical level along the

steady state path. The coefficient, −(1− −) to this distance is negative
and approaches zero for  → ∞ Thus (6.25) is a translation into growth

form of the convergence of log  towards the steady-state path, log 
∗
  in the

theoretical model without shocks. Rearranging the right-hand side, we get

̄(0 ) =  +
1− −


log ∗(0)− 1− −


log (0) ≡ 0 + 1 log (0)

where both the constant 0 ≡  +
£
(1− −)

¤
log ∗(0) and the coefficient

1 ≡ −(1 − −) are determined by “structural characteristics”. Indeed,
 is determined by    (̃∗) and (̃∗) through (6.21), and ∗(0) is de-
termined by 0 and (̃∗) through (6.12), where, in turn, ̃∗ is determined
by the steady state condition (̃∗)(̃∗) = ( +  + )̃∗ (̃∗) being the
saving-income ratio in the steady state.

With data for  countries,  = 1 2. . .   a test of the unconditional

convergence hypothesis may be based on the regression equation

̄(0 ) = 0 + 1 log (0) +   ∼ (0 2) (6.26)

where  is the error term. This can be seen as a Barro growth regression

equation in its simplest form. For countries in the entire world, the theoret-

ical hypothesis 1  0 is clearly not supported (or, to use the language of
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statistics, the null hypothesis, 1 = 0 is not rejected).2

Allowing for the considered countries having different structural charac-

teristics, the Barro growth regression equation takes the form

̄(0 ) = 0 + 1 log (0) +  1  0  ∼ (0 2) (6.27)

In this “fixed effects” form, the equation has been applied for a test of the

conditional convergence hypothesis, 1  0 often supporting this hypothesis.

From the estimate of 1 the implied estimate of the asymptotic speed of

convergence,  is readily obtained through the formula 1 ≡ (1 − −)
Even  and therefore also the slope, 1 does depend, theoretically, on

country-specific structural characteristics. But the sensitivity on these do

not generally seem large enough to blur the analysis based on (6.27) which

abstracts from this dependency.

With the aim of testing hypotheses about growth determinants, Barro

(1991) and Barro and Sala-i-Martin (1992, 2004) decompose 0 so as to reflect

the role of a set of measurable potentially causal variables,

0 = 0 + 11 + 22 + . . . + 

where the ’s are the coefficients and the ’s are the potentially causal vari-

ables.3 These variables could be measurable Solow-type parameters among

those appearing in (6.20) or a broader set of determinants, including for in-

stance the educational level in the labor force, and institutional variables like

rule of law and democracy. Some studies include the initial within-country

inequality in income or wealth among the ’s and extend the theoretical

framework correspondingly.4

From an econometric point of view there are several problematic features

in regressions of Barro’s form (also called the  convergence approach). These

problems are discussed in Acemoglu pp. 82-85.
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Chapter 7

Michael Kremer’s

population-breeds-ideas model

This chapter relates to Section 2 of Acemoglu’s Chapter 4 and explains

the details of what may also be called the Simon-Kremer version of the

population-breeds-ideas model (cf. Acemoglu, p. 114).

7.1 The model

Suppose a pre-industrial economy can be described by:

 = 
 


 

1−   0 0    1 (7.1)

̇ = 
   0 0   ≤ 1 0  0 given (7.2)

 =


̄
≡  ̄  0 (7.3)

where  is aggregate output,  the level of technical knowledge,  the la-

bor force (= population),  the amount of land (fixed), and ̄ subsistence

minimum (so the  in Acemoglu’s equation (4.2) is simply the inverse of the

subsistence minimum). Both  and ̄ are considered as constant parameters.

Time is continuous and it is understood that a kind of Malthusian population

mechanism (see below) is operative behind the scene.

The exclusion of capital from the aggregate production function, (7.1),

reflects the presumption that capital (tools etc.) is quantitatively of minor

importance in a pre-industrial economy. In accordance with the replication

argument, the production function has CRS w.r.t. the rival inputs, labor and

land. The factor 
 measures total factor productivity. In view of (7.2), the

technology level,  is rising over time. The increase in  per time unit is

seen to be an increasing function of the size of the population. This reflects
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the hypothesis that population breeds ideas; these are non-rival and enter

the pool of technical knowledge available for society as a whole. The rate per

capita,  by which population breeds ideas is an increasing function of

the already existing level of technical knowledge. This reflects the hypothesis

that the larger is the stock of ideas the easier do new ideas arise (perhaps by

combination of existing ideas).

Equation (7.3) is a shortcut description of a Malthusian population mech-

anism. Suppose the true mechanism is

̇ = ( − ̄) T 0 for  T ̄ (7.4)

where   0 is the speed of adjustment,  ≡  is per capita income,

and ̄  0 is subsistence minimum. A rise in  above ̄will lead to increases

in , thereby generating downward pressure on  and perhaps end up

pushing  below ̄ When this happens, population will be decreasing for a

while and so return towards its sustainable level, ̄ Equation (7.3) treats

this mechanism as if the population instantaneously adjusts to its sustainable

level (as if  → ∞). The model hereby gives a long-run picture, ignoring
the Malthusian ups and downs in population and per capita income about

the subsistence minimum. The important feature is that the technology level

and thereby  as well as the sustainable population will be rising over time.

This speeds up the arrival of new ideas and so raises  even faster although

per-capita income remains at its long-run level, ̄.1

For simplicity, we now normalize the constant  to be 1.

7.2 Law of motion

The dynamics of the model can be reduced to one differential equation, the

law of motion of technical knowledge. By (7.3),  =  = 
 


 . Conse-

quently 1− = 
 so that

 = 
1

1−


1−
  (7.5)

Substituting this into (7.2) gives the law of motion of technical knowledge:

̇ = 
1

1−
+ 

1−
 ≡ ̂

+ 
1−

  (7.6)

1Extending the model with the institution of private ownership and competitive mar-

kets, the absence of a growing standard of living corresponds to the doctrine from classical

economics called the iron law of wages. This is the theory (from Malthus and Ricardo)

that scarce natural resources and the pressure from population growth causes real wages

to remain at subsistende level.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2014.



7.3. The inevitable ending of the Malthusian regime 101

Define  ≡ + 
1− and assume   1 Then (7.6) can be written

̇ = ̂

  (7.7)

which is a nonlinear differential equation in 2 Let  ≡ 1− Then

̇ = (1− )
−
 ̂


 = (1− )̂ (7.8)

a constant. To find  from this, we only need simple integration:

 = 0 +

Z 

0

̇ = 0 + (1− )̂

As  = 
1

1− and 0 = 
1−
0  this implies

 = 
1

1−
 =

h

1−
0 + (1− )̂

i 1
1−

=
1h


1−
0 − (− 1)̂

i 1
−1

 (7.9)

7.3 The inevitable ending of the Malthusian

regime

The result (7.9) helps us in understanding why the Malthusian regime must

come to an end (at least if the model is an acceptable description of the

Malthusian regime).

Although to begin with,  may grow extremely slowly, the growth in 

will be accelerating because of the positive feedback (visible in (7.2)) from

both rising population and rising . Indeed, since   1 the denominator

in (7.9) will be decreasing over time and approach zero in finite time, namely

as  approaches the finite value ∗ = 
1−
0 ((− 1)̂) Figure 7.1 illustrates.

The evolution of technical knowledge becomes explosive as  approaches ∗
It follows from (7.5) and (7.1) that explosive growth in implies explosive

growth in  and  respectively. The acceleration in the evolution of  will

sooner or later make  move fast enough so that the Malthusian population

mechanism (which for biological reasons has to be slow) can not catch up.

Then, what was in the Malthusian population mechanism, equation (7.4),

earlier only a transitory excess of  over ̄, will sooner or later become a

permanent excess and take the form of sustained growth in . This is known

as the take-off.

2The differential equation, (7.7), is a special case of what is known as the Bernoulli

equation. In spite of being a non-linear differential equation, the Bernoulli equation always

has an explicit solution.
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According to equation (7.4) the take-off should lead to a permanently

rising population growth rate. As economic history has testified, however,

along with the rising standard of living the demographics changed The de-

mographic transition took place with fertility declining faster than mortality.

This results in completely different dynamics about which the present model

has nothing to say.3 As to the demographic transition as such, explanations

suggested by economists include: higher opportunity costs of raising chil-

dren, the trade-off between “quality” (educational level) of the offspring and

their “quantity” (Becker, Galor), skill-biased technical change, and improved

contraception technology.

7.4 Closing remarks

The present model is about dynamics in the Malthusian regime of the pre-

industrial epoch. The story told by the model is the following. When the

feedback parameter,  is above one, the Malthusian regime has to come to

an end because the battle between scarcity of land (or natural resources more

generally) and technological progress will inevitably be won by the latter.4

The cases   1 and  = 1 are considered in Exercise III.3. The case

 = 1 corresponds to Acemoglu’s first version (p. 113) of the population-

breeds-ideas model. In that version,  has the value 1 −  and  = 0 (two

3Kremer (1993), however, also includes an extended model taking some of these changed

dynamics into account.
4The mathematical background for the explosion result is explained in the appendix.
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arbitrary knife-edge conditions). Then a constant growth rate in   and

 is the result and  remains at ̄ forever. Take-off never takes place.

On the basis of demographers’ estimates of the growth in global popula-

tion over most of human history, Kremer (1993) finds empirical support for

  1 Indeed, in the opposite case,  ≤ 1 there would not have been a rising
world population growth rate since one million years B.C. to the industrial

revolution. The data in Kremer (1993, p. 682) indicates that the population

growth rate has been more or less proportional to the size of population until

about the1960s.

7.5 Appendix

Mathematically, the background for the explosion result is that the solution

to a first-order differential equation of the form ̇() =  + ()   1

 6= 0 (0) = 0 given, is always explosive. Indeed, the solution,  = ()

will have the property that ()→ ±∞ for → ∗ for some fixed ∗  0; and
thereby the solution is defined only on a bounded time interval.

Take the differential equation ̇() = 1 + ()2 as an example. As is

well-known, the solution is () = tan  = sin  cos , defined on the interval

(−2 2)
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