
Chapter 13

Perspectives on learning by

doing and learning by investing

This chapter adds some theoretical and empirical perspectives to the dis-

cussion in Chapter 12 and in Acemoglu, Chapter 11 and 12. The contents

are:

1. Learning by doing, learning by using, learning by watching

2. Disembodied learning by investing

3. Disembodied vs. embodied technical change

4. Static comparative advantage vs. dynamics of learning by doing*

5. Robustness and scale effects

(a) On terminology

(b) Robustness of simple endogenous growth models

(c) Weak and strong scale effects

(d) Discussion

Sections and sub-sections marked by an asterisk are only cursory reading.

The growth rate of any time-dependent variable   0 is written  ≡ ̇

In this chapter the economy-wide technology level at time  is denoted 
rather than 
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CHAPTER 13. PERSPECTIVES ON LEARNING BY DOING

AND LEARNING BY INVESTING

13.1 Learning by doing, learning by using,

learning by watching

The term learning by doing refers to the hypothesis that accumulated work

experience, including repetition of the same type of action, improves workers’

productivity and adds to technical knowledge. In connection with training

in applying new production equipment sometimes the related term learning

by using is appropriate. In a broader context the literature sometimes refers

to spillover effects as learning by watching.

A learning-by-doing model typically combines an aggregate CRS produc-

tion function,

 =  ( ) (13.1)

with a learning function, for example,

̇ =  
    0 0   ≤ 1 (13.2)

where  is a learning parameter and  is a constant that, depending on the

value of  and the complete model in which (13.2) is embedded, is either an

unimportant constant that depends only on measuring units or a parameter

of importance for the productivity level or even the productivity growth

rate. In Section 13.4 below, on the resource curse problem, we consider a

two-sector model where each sector’s productivity growth is governed by such

a relationship.1

Another learning hypothesis is of the form

̇ =  
 


  0  0 given,   0  ≤ 1   0 (13.3)

Here both  and  are learning parameters, reflecting the elasticities of learn-

ing w.r.t. the technology level and labor hours, respectively. The higher the

number of human beings involved in production and the more time they

spend in production, the more experience is accumulated. Sub-optimal in-

gredients in the production processes are identified and eliminated. The

experience and knowledge arising in one firm or one sector is speedily dif-

fused to other firms and other sectors in the economy (knowledge spillovers

or learning by watching), and as a result the aggregate productivity level is

increased.2

1In his Chapter 20, Section 20.4, on industrialization and structural change Acemoglu

considers a model with two sectors, an agrarian and a manufacturing sector, where in the

latter learning by doing in the form (13.2) with  = 1 plays an important role.
2Diffusion of proficiency also occurs via apprentice-master relationships.
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Since hours spent,  is perhaps a better indicator for “new experience”

than output,  specification (13.3) may seem more appealing than specifi-

cation (13.2). So this section concentrates on (13.3).

If the labor force is growing  should be assumed strictly less than one,

because with  = 1 there would be a built-in tendency to forever faster

growth, which does not seem plausible. In fact,   0 can not be ruled

out; that would reflect that learning becomes more and more difficult (“the

easiest ideas are found first”). On the other hand, the case of “standing on

the shoulders” is also possible, that is, the case 0   ≤ 1, which is the case
where new learning becomes easier, the more is learnt already.

In “very-long-run” growth theory concerned with human development in

an economic history perspective, the  in (13.3) has been replaced simply

by the size of population in the relevant region (which may be considerably

larger than a single country). This is the “population breeds ideas” view,

cf. Kremer (1993). Anyway, many simple models consider the labor force

to be proportional to population size, and then it does not matter whether

we use the learning-by-doing interpretation or the population-breeds-ideas

interpretation.

The so-called Horndal effect (reported by Lundberg, 1961) was one of

the empirical observations motivating the learning-by-doing idea in growth

theory:

“The Horndal-iron works in Sweden had no new investment (and therefore

presumably no significant change in its methods of production) for a

period of 15 years, yet productivity (output per man-hour) rose on the

average close to 2 % per annum. We find again steadily increasing

performance which can only be imputed to learning from experience”

(here cited after Arrow, 1962).

Similar patterns of on-the-job productivity improvements have been ob-

served in ship-building, airframe construction, and chemical industries. On

the other hand, within a single production line there seems to be a tendency

for this kind of productivity increases to gradually peter out, which suggests

  0 in (13.3). We may call this phenomenon “diminishing returns in the

learning process”: the potential for new learning gradually evens out as more

and more learning has already taken place. But new products are continu-

ously invented and the accumulated knowledge is transmitted, more or less,

to the production of these new products that start on a “new learning curve”,

along which there is initially “a large amount to be learned”.3 This combi-

3A learning curve is a graph of estimated productivity (or its inverse, cf. Fig. 13.1 or

Fig. 13.2 below) as a function of cumulative output or of time passed since production of

the new product began at some plant.
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nation of qualitative innovation and continuous productivity improvement

through learning may at the aggregate level end up in a  ≥ 0 in (13.3).
In any case, whatever the sign of  at the aggregate level, with   1

this model is capable of generating sustained endogenous per capita growth

(without “growth explosion”) if the labor force is growing at a rate  

0. Indeed, as in Chapter 12, there are two cases that are consistent with

a balanced growth path (BGP for short) with positive per capita growth,

namely the case   1 combined with   0 and the case  = 1 combined

with  = 0

We will show this for a closed economy with  = 0
  ≥ 0 and with

capital accumulation according to

̇ =  −  =  −  −  0  0 given (13.4)

13.1.1 The case:   1 in (13.3)

Let us first consider the growth rate of  ≡  along a BGP. There are two

steps in the calculation of this growth rate.

Step 1. Given (13.4), from basic balanced growth theory (Chapter 4) we

know that along a BGP with positive gross saving, not only are, by definition,

 and  constant, but they are also the same, so that  is constant

over time. Owing to the CRS assumption, (13.1) implies that

1 =  (







) (13.5)

When  is constant,  ≡  must be constant, whereby

 =  =  −  (13.6)

a constant.

Step 2. Dividing through by  in (13.3), we get

 ≡ ̇


=  −1

 

 

Taking logs gives log  = log+(−1) log  + log And taking the time

derivative on both sides of this equation leads to

̇


= (− 1) +  (13.7)

In view of  being constant along a BGP, we have ̇ = 0 and so (13.7)

gives

 =


1− 

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presupposing   1 Hence, by (13.6),

 =


1− 


Under the assumption that   0 this per capita growth rate is positive,

whatever the sign of . Given  the growth rate is an increasing function

of both learning parameters. Since a positive per capita growth rate can in

the long run be maintained only if supported by   0 this is an example of

semi-endogenous growth (as long as  is exogenous).

This model thus gives growth results somewhat similar to the results

in Arrow’s learning-by-investing model, cf. Chapter 12. In both models the

learning is an unintended by-product of the work process and construction of

investment goods, respectively. And both models assume that knowledge is

non-appropriable (non-exclusive) and that knowledge spillovers across firms

are fast (in the time perspective of growth theory). So there are positive

externalities which may motivate government intervention.

Methodological remark: Different approaches to the calculation

of long-run growth rates Within this semi-endogenous growth case, de-

pending on the situation, different approaches to the calculation of long-run

growth rates may be available. In Chapter 12, in the analysis of the Arrow

case   1 the point of departure in the calculation was the steady state

property of Arrow’s model that ̃ ≡ () is a constant. But this point of

departure presupposes that we have established a well-defined steady state

in the sense of a stationary point of a complete dynamic system (which in

the Arrow model consists of two first-order differential equations in ̃ and ̃

respectively), usually involving also a description of the household sector.

In the present case we are not in this situation because we have not

specified how the saving in (13.4) is determined. This explains why above

(as well as in Chapter 10) we have taken another approach to the calculation

of the long-run growth rate. We simply assume balanced growth and ask

what the growth rate must then be. If the technologies in the economy

are such that per capita growth in the long run can only be due to either

exogenous productivity growth or semi-endogenous productivity growth, this

approach is usually sufficient to determine a unique growth rate.

Note also, however, that this latter feature is in itself an interesting and

useful result (as exemplified in Chapter 10). It tells us what the growth

rate must be in the long run provided that the system converges to balanced

growth. The growth rate will be the same, independently of the market

structure and the specification of the household sector, that is, it will be the

same whether, for example, there is a Ramsey-style household sector or an
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overlapping generations set-up.4 And at least in the first case the growth

rate will be the same whatever the size of the preference parameters (the

rate of time preference and the elasticity of marginal utility of consumption).

Moreover, only if economic policy affects the learning parameters or the pop-

ulation growth rate (two things that are often ruled out inherently by the

setup), will the long-run growth rate be affected. Still, economic policy can

temporarily affect economic growth and in this way affect the level of the

long-run growth path.

13.1.2 The case  = 1 in (13.3)

With  = 1 in (13.3), the above growth rate formulas are no longer valid.

But returning to (13.3), we have  = 

 . Then, unless  = 0 the growth

rate of  will tend to rise forever, since we have  = 

0

 → ∞ for

  0.

So we will assume  = 0 Then  = 0 for all  implying  = 

0 for

all . Since both  and 0 are exogenous, it is as if the rate of technical

progress,   were exogenous. Yet, technical progress is generated by an

internal mechanism. If the government by economic policy could affect  or

0 also  would be affected. In any case, under balanced growth, (13.5)

holds again and so  =  must be constant. This implies  =

 = 

0  0 Consequently, positive per capita growth can be maintained

forever without support of growth in any exogenous factor, that is, growth

is fully endogenous.

As in the semi-endogenous growth case we can here determine the growth

rate along a BGP independently of how the household sector is described.

And preference parameters do not affect the growth rate. The fact that this

is so even in the fully-endogenous growth case is due to the “law of motion”

of technology making up a subsystem that is independent of the remainder of

the economic system. This is a special feature of the “growth engine” (13.3).

Although it is not a typical ingredient of endogenous growth models, this

growth engine can not be ruled out apriori. The simple alternative, (13.2), is

very different in that the endogenous aggregate output, , is involved. We

return to (13.2) in Section 13.4 below.

Before proceeding, a brief remark on the explosive case   1 in (13.2)

or (13.3) is in place. If we imagine   1 growth becomes explosive in

the extreme sense that output as well as productivity, hence also per capita

consumption, will tend to infinity in finite time. This is so even if  = 0

4Specification of these things is needed if we want to study the transitional dynamics:

the adjustment processes outside balanced growth/steady state, including the question of

convergence to balanced growth/steady state.
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The argument is based on the mathematical fact that, given a differential

equation ̇ =  where   1 and 0  0 the solution  has the property

that there exists a 1  0 such that  → ∞ for  → 1. For details, see

Appendix B.

13.2 Disembodied learning by investing

In the above framework the work process is a source of learning whether it

takes place in the consumption or capital goods sector. This is learning by

doing in a broad sense. If the source of learning is specifically associated

with the construction of capital goods, the learning by doing is often said to

be of the form of learning by investing. Why in the headline of this section

we have added the qualification “disembodied”, will be made clear in Section

13.3. Another name for learning by investing is investment-specific learning

by doing.

The prevalent view in the empirical literature seems to be that learning

by investing is the most important form of learning by doing; ship-building

and airframe construction are prominent examples. To the extent that the

construction of capital equipment is based on more complex and involved

technologies than is the production of consumer goods, we are also, intu-

itively, inclined to expect that the greatest potential for productivity in-

creases through learning is in the investment goods sector.5

In the simplest version of the learning-by-investment hypothesis, (13.3)

above is replaced by

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (13.8)

where  is aggregate net investment. This is the hypothesis that the economy-

wide technology level  is an increasing function of society’s previous ex-

perience, proxied by cumulative aggregate net investment.6 The Arrow and

Romer models, as described in Chapter 12, correspond to the cases 0    1

and  = 1 respectively.

In this framework, where the “growth engine” depends on capital accu-

mulation, it is only in the Arrow case that we can calculate the per-capita

5After the information-and-communication technology (ICT) revolution, where a lot of

technically advanced consumer goods have entered the scene, this traditional presumption

may be less compelling.
6Contrary to the dynamic learning-by-doing specification (13.3), there is here no good

reason for allowing   0
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growth rate along a BGP without specifying anything about the household

sector.

13.2.1 The Arrow case:   1 and  ≥ 0
We may apply the same two steps as in Section 13.1.1. Step 1 is then an

exact replication of step 1 above. Step 2 turns out to be even simpler than

above, because (13.8) immediately gives log  =  log so that  =  ,

which substituted into (13.6) yields

 =  =  =  −  =  − 

From this follows, first,

 =


1− 
 (13.9)

and, second,

 =


1− 


Alternatively, we may in this case condense the two steps into one by

rewriting (13.5) in the form





=  (1




) =  (1−1
 )

by (13.8). Along the BGP, since  is constant, so must the second argu-

ment, −1
 , be. It follows that

(− 1) +  = 0

thus confirming (13.9).

Whatever the approach to the calculation, the per capita growth rate is

here tied down by the size of the learning parameter and the growth rate of

the labor force.

13.2.2 The Romer case:  = 1 and  = 0

In the Romer case, however, the growth rate along a BGP cannot be de-

termined until the saving behavior in the economy is modeled. Indeed, the

knife-edge case  = 1 opens up for many different per capita growth rates

under balanced growth. Which one is “selected” by the economy depends on

how the household sector is described.

For a Ramsey setup with  = 0 the last part of Chapter 12 showed how the

growth rate generated by the economy depends on the rate of time preference
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Figure 13.1: Man-hours per vessel against cumulative number of vessels completed

to date in shipyard 1 and shipyard 2, respectively. Log-log paper. Source: Searle

(1945).

and the elasticity of marginal utility of consumption of the representative

household. Growth is here fully-endogenous in the sense that a positive per

capita growth rate can be maintained forever without the support by growth

in any exogenous factor. Moreover, according to this model, economic policy

that internalizes the positive externality in the system can raise not only the

productivity level, but also the long-run productivity growth rate.

13.2.3 The size of the learning parameter

What is from an empirical point of view a plausible value for the learning

parameter, ? This question is important because quite different results

emerge depending on whether  is close to 1 or considerably lower (fully-

endogenous growth versus semi-endogenous growth). At the same time the

question is not easy to answer because  in the models is a parameter that is

meant to reflect the aggregate effect of the learning going on in single firms

and spreading across firms and industries.

Like Lucas (1993), we will consider the empirical studies of on-the-job

productivity increases in ship-building by Searle (1945) and Rapping (1965).

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



214

CHAPTER 13. PERSPECTIVES ON LEARNING BY DOING

AND LEARNING BY INVESTING

Figure 13.2: Average man-hours (over ten shipyards) per vessel gainst calendar

time. Four different vessel types. Source: Searle (1945).

Both studies used data on the production of different types of cargo vessels

during the second world war. Figures 1 and 2 are taken from Lucas’ review

article, Lucas (1993), but the original source is Searle (1945). For the vessel

type called “Liberty Ships” Lucas cites the observation by Searle (1945):

“the reduction in man-hours per ship with each doubling of cumulative

output ranged from 12 to 24 percent.”

Let us try to connect this observation to the learning parameter  in

Arrow’s and Romer’s framework. We begin by considering firm  which

operates in the investment goods sector. We imagine that firm ’s equipment

is unchanged during the observation period (as is understood in the above

citation as well as the citation from Arrow (1962) in Section 13.1). Let firm

’s current output and employment be  and  respectively. The current

labor productivity is then  =  Let the firm’s cumulative output

be denoted  This cumulative output is a part of cumulative investment

in society. At the micro-level the learning-by-investing hypothesis is the

hypothesis that labor productivity is an increasing function of the firm’s

cumulative output, 

In figures 1 and 2 the dependent variable is not directly labor productivity,

but its inverse, namely the required man-hours per unit of output,  =
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 = 1 Figure 13.1 suggests a log-linear relationship between this

variable and the cumulative output:

log = −  log (13.10)

That is, as cumulative output rises, the required man-hours per unit of output

declines over time in this way:

 =








Equivalently, labor productivity rises over time in this way:

 =
1



= −


So, specifying the relationship by a power function, as in (13.8), makes sense.

Now, let  = 1 be a fixed point in time. Then, (13.10) becomes

log1 = −  log1 

Let 2 be the later point in time where cumulative output has been doubled.

Then at time 2 the required man-hours per unit of output has declined to

log2 = −  log2 = −  log(21)

Hence,

log1 − log2 = − log1 +  log(21) =  log 2 (13.11)

Lucas’ citation above from Searle amounts to a claim that

012 
1 −2

1

 024 (13.12)

By a first-order Taylor approximation we have log2 ≈ log1 + (2 −
1)1 . Hence, (1 −2)1 ≈ log1 − log2  Substituting this

into (13.12) gives, approximately,

012  log1 − log2  024

Combining this with (13.11) gives 012   log 2  024 so that

017 =
012

log 2
  

024

log 2
= 035
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Rapping (1965) finds by a more rigorous econometric approach  to be

in the vicinity of 0.26 (still ship building). Arrow (1962) and Solow (1997)

refer to data on airframe building. This data roughly suggests  = 13

How can this be translated into a guess on the “aggregate” learning pa-

rameter  in (13.8)? This is a complicated question and the subsequent

remarks are very tentative. First of all, the potential for both internal and

external learning seems to vary a lot across different industries. Second, the

amount of spillovers can not simply be added to the  above, since they are

already partly included in the estimate of  Even theoretically, the role of

experience in different industries cannot simply be added up because to some

extent there is redundancy due to overlapping experience and sometimes the

learning in other industries is of limited relevance. Given that we are inter-

ested in an upper bound for  a “guestimate” is that the spillovers matter

for the final  at most the same as  from ship building so that  ≤ 27

On the basis of these casual considerations we claim that a  much higher

than about 23 may be considered fairly implausible. This speaks for the

Arrow case of semi-endogenous growth rather than the Romer case of fully-

endogenous growth, at least as long as we think of learning by investing

as the sole source of productivity growth. Another point is that to the

extent learning is internal and at least temporarily appropriable, we should

expect at least some firms to internalize the phenomenon in its optimizing

behavior (Thornton and Thompson, 2001). Although the learning is far from

fully excludable, it takes time for others to discover and imitate technical

and organizational improvements. Many simple growth models ignore this

and treat all learning by doing and learning by investing as a 100 percent

externality, which seems an exaggeration.

A further issue is to what extent learning by investing takes the form of

disembodied versus embodied technical change. This is the topic of the next

section.

7For more elaborate studies of empirical aspects of learning by doing and learning by

investing, see Irwin and Klenow (1994), Jovanovic and Nyarko (1995), and Greenwood and

Jovanovic (2001). Caballero and Lyons (1992) find clear evidence of positive externalities

across US manufacturing industries. Studies finding that the quantitative importance of

spillovers is significantly smaller than required by the Romer case include Englander and

Mittelstadt (1988) and Benhabib and Jovanovic (1991). See also the surveys by Syverson

(2011) and Thompson (2012).

Although in this lecture note we focus on learning as an externality, there exists studies

focusing on internal learning by doing, see, e.g., Gunn and Johri, 2011.
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13.3 Disembodied vs. embodied technical change

Arrow’s and Romer’s models build on the idea that the source of learning

is primarily experience in the investment goods sector. Both models assume

that the learning, via knowledge spillovers across firms, provides an engine

of productivity growth in essentially all sectors of the economy. And both

models (Arrow’s, however, only in its simplified version, which we considered

in Chapter 12, not in its original version) assume that a firm can benefit from

recent technical advances irrespective of whether it buys new equipment or

just uses old equipment. That is, the models assume that technical change

is disembodied.

13.3.1 Disembodied technical change

Disembodied technical change occurs when new technical knowledge advances

the combined productivity of capital and labor independently of whether the

workers operate old or new machines. Consider again (13.1) and (13.3).

When the  appearing in (13.1) refers to the total, historically accumu-

lated capital stock, then the interpretation is that the higher technology

level generated in (13.3) or (13.8) results in higher productivity of all labor,

independently of the vintage of the capital equipment with which this labor

is combined. Thus also firms with old capital equipment benefit from re-

cent advances in technical knowledge. No new investment is needed to take

advantage of the recent technological and organizational developments.

Examples of this kind of productivity increases include improvement in

management and work practices/organization and improvement in account-

ing.

13.3.2 Embodied technical change

In contrast, we say that technical change is embodied, if taking advantage of

new technical knowledge requires construction of new investment goods. The

newest technology is incorporated in the design of newly produced equipment;

and this equipment will not participate in subsequent technical progress. An

example: only the most recent vintage of a computer series incorporates the

most recent advance in information technology. Then investment goods pro-

duced later (investment goods of a later “vintage”) have higher productivity

than investment goods produced earlier at the same resource cost. Whatever

the source of new technical knowledge, investment becomes an important

bearer of the productivity increases which this new knowledge makes pos-

sible. Without new investment, the potential productivity increases remain
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potential instead of being realized.8

One way to formally represent embodied technical progress is to write

capital accumulation in the following way,

̇ =  −  (13.13)

where  is gross investment at time  and  measures the “quality” (produc-

tivity) of newly produced investment goods. The rising level of technology

implies rising  so that a given level of investment gives rise to a greater and

greater addition to the capital stock,  measured in efficiency units. Even

if technical change does not directly appear in the production function, that

is, even if for instance (13.1) is replaced by  =  ( ) the economy may

in this manner still experience a rising standard of living.

Figure 13.3: Relative price of equipment and quality-adjusted equipment

investment-to-GNP ratio. Source: Greenwood, Hercowitz, and Krusell (1997).

Embodied technical progress is likely to result in a steady decline in the

price of capital equipment relative to the price of consumption goods. This

prediction is confirmed by the data. Greenwood et al. (1997) find for the

U.S. that the relative price,  of capital equipment has been declining at

8The concept of embodied technical change was introduced by Solow (1960). The notion

of Solow-neutral technical change is related to embodied technical change and capital of

different vintages.
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an average rate of 003 per year in the period 1950-1990, cf. the “Price”

curve in Figure 13.3.9 As the “Quantity” curve in Figure 13.3 shows, over

the same period there has been a secular rise in the ratio of new equipment

investment (in efficiency units) to GNP; note that what in the figure is called

the “investment-to-GNP Ratio” is really “quality-adjusted investment-to-

GNP Ratio”,  not the usual investment-income ratio,  .

Moreover, the correlation between de-trended  and de-trended 

is −046 Greenwood et al. interpret this as evidence that technical advances
have made equipment less expensive, triggering increases in the accumulation

of equipment both in the short and the long run. The authors also estimate

that embodied technical change explains 60% of the growth in output per

man hour.

13.3.3 Embodied technical change and learning by in-

vesting

Whether technological progress is disembodied or embodied says nothing

about whether its source is exogenous or endogenous. Indeed, the increases

of  in (13.13) may be modeled as exogenous or endogenous. In the latter

case, a popular hypothesis is that the source is learning by investing. This

learning may take the form (13.8) above. In that case the experience that

matter for learning is cumulative net investment.

An alternative hypothesis is:

 =

µZ 

−∞


¶

 0   ≤ ̄ (13.14)

where  is gross investment at time  Here the experience that matter has

its basis in cumulative gross investment. An upper bound, ̄ for the learning

parameter is introduced to avoid explosive growth. The hypothesis (13.14)

seems closer to both intuition and the original ideas of Arrow:

“Each new machine produced and put into use is capable of

changing the environment in which production takes place, so

that learning is taking place with continually new stimuli” (Ar-

row, 1962).

Contrary to the integral based on net investment in (13.8), the integral

in the learning hypothesis (13.14) does not allow an immediate translation

9The relative price index in Fig. 13.3 is based on the book by R. Gordon (1990), which

is an attempt to correct previous price indices for equipment by better taking into account

quality improvements in new equipment.
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into an expression in terms of the accumulated capital stock. Instead a new

state variable, cumulative gross investment, enter the system and opens up

for richer dynamics.

We may combine (13.14) with an aggregate Cobb-Douglas production

function,

 = 
 

1−
  (13.15)

Then the upper bound for the learning parameter in (13.14) is ̄ = (1 −
).10

The case   (1− )

Suppose   (1 − ) Using (13.14) together with (13.13), (16.29), and

 =  −   one finds under balanced growth with  =  constant and

0    1

 =
(1− )(1 + )

1− (1 + )
 (13.16)

 =


1 + 
  (13.17)

 =
1

1 + 
  (13.18)

 =  =  −  =


1− (1 + )
 (13.19)

cf. Appendix A. We see that   0 if and only if   0 So growth is here

semi-endogenous.

Let us assume there is perfect competition in all markets. Since  capital

goods can be produced at the same minimum cost as one consumption good,

the equilibrium price,  of capital goods in terms of the consumption good

must equal the inverse of  that is,  = 1 With the consumption good

being the numeraire, let the rental rate in the market for capital services be

denoted  and the real interest rate in the market for loans be denoted 

10An alternative to the specification of embodied learning by gross investment in (13.14)

is

 =

µZ 

−∞


¶̃
 0  ̃ ≤

−
̃

implying that it is cumulative quality-adjusted gross investment that matters, cf. Green-

wood and Jovanovic (2001). If combined with the production function (16.29) the appro-

priate upper bound on the learning parameter, ̃ is
−
̃ = 1− 
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Ignoring uncertainty, we have the no-arbitrage condition

 − ( − ̇)


=  (13.20)

where − ̇ is the true economic depreciation of the capital good per time

unit. Since  = 1 (13.17) and (13.16) indicate that along a BGP the

relative price of capital goods will be declining according to

 = − (1− )

1− (1 + )
 0

Note that    along the BGP. Is this a violation of Proposition 1 of

Chapter 4? No, that proposition presupposes that capital accumulation oc-

curs according to the standard equation (13.4), not (13.13). And although 
differs from   the output-capital ratio in value terms, () is constant

along the BGP. In fact, the BGP complies entirely with Kaldor’s stylized

facts if we interpret “capital” as the value of capital, .

The formulas (13.16) and (13.19) display that (1 + )  1 is needed

to avoid a forever rising growth rate if   0. This inequality is equivalent

to   (1 − ) and confirms that the upper bound, ̄ in (13.14) equals

(1−)With  = 13 this upper bound is 2 The bound is thus no longer
1 as in the simple learning-by-investing model of Section 13.2. The reason is

twofold, namely partly that now  is formed via cumulative gross investment

instead of net investment, partly that the role of  is to strengthen capital

formation rather than the efficiency of production factors in aggregate final

goods produce.

When  = 0 the system can no longer generate a constant positive per

capita growth rate (exponential growth). Groth et al. (2010) show, however,

that the system is capable of generating quasi-arithmetic growth. This class of

growth processes, which fill the whole range between exponential growth and

complete stagnation, was briefly commented on in Section 10.5 of Chapter

10.

The case  = (1− ) and  = 0 ∗

When  = (1 − ) we have (1 + ) = 1 and so the growth formulas

(13.16) and (13.19) no longer hold. But the way that (13.17) and (13.18)

are derived (see Appendix A) ensures that these two equations remain valid

along a BGP. Given  = (1− ) (13.17) can be written  = (1− ) 

which is equivalent to

 = 1−

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along a BGP ( is some positive constant to be determined).

To see whether a BGP exists, note that (13.14) implies

 =
̇


= 

−1
  = 

−(1−)
  = −(1−)−

  = −(1−)−
 

considering a BGP with  =  constant. Substituting (16.29) into this,

we get

 = −(1−)−
 

 
1− = −(1−)1− (13.21)

If  = 0, the right-hand side of (13.21) is constant and so is  = (1−)

by (13.17), and  =  = (1− ) by (13.19)

If   0 at the same time as  = (1−) however, there is a tendency

to a forever rising growth rate in , hence also in  and  . No BGP exists

in this case.

Returning to the case where a BGP exists, a striking feature revealed by

(13.21) is that the saving rate,  matters for the growth rate of  hence also

for the growth rate of  and  respectively, along a BGP. As in the Romer

case of the disembodied learning-by-investing model, the growth rates along

a BGP cannot be determined until the saving behavior in the economy is

modeled.

So the considered knife-edge case,  = (1 − ) combined with  = 0

opens up for many different per capita growth rates under balanced growth.

Which one is “selected” by the economy depends on how the household sec-

tor is described. In a Ramsey setup with  = 0 one can show that the

growth rate under balanced growth depends negatively on the rate of time

preference and the elasticity of marginal utility of consumption of the repre-

sentative household. And not only is growth in this case fully endogenous in

the sense that a positive per capita growth rate can be maintained forever

without the support by growth in any exogenous factor. An economic pol-

icy that subsidizes investment can generate not only a transitory rise in the

productivity growth rate, but also a permanently higher productivity growth

rate.

In contrast to the Romer (1986) model, cf. Section 13.2.2 above, we do

not here end up with a reduced-form AK model. Indeed, we end up with a

model with transitional dynamics, as a consequence of the presence of two

state variables,  and 

If instead   1(1+) we get a tendency to explosive growth − infinite
output in finite time − a not plausible scenario, cf. Appendix B.
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13.4 Static comparative advantage vs. dy-

namics of learning by doing*

In this section we will briefly discuss a development economics perspective

of the above learning-based growth models.

More specifically we will take a look at the possible “conflict” between

static comparative advantage and economic growth. The background to this

possible “conflict” is the dynamic externalities inherent in learning by doing

and learning by investing.11

13.4.1 A simple two-sector learning-by-doing model

We consider an isolated economy with two production sectors, sector 1 and

sector 2, each producing its specific consumption good. Labor is the only

input and aggregate labor supply  is constant. There are many small firms

in the two sectors. Aggregate output in the sectors are:

1 = 11 (13.22)

2 = 22 (13.23)

where

1 + 2 = 

There are sector-specific learning-by-doing externalities in the following form:

̇1 = 11 1 ≥ 0 (13.24)

̇2 = 22 2 ≥ 0 (13.25)

Although not visible in our aggregate formulation, there are substantial

knowledge spillovers across firms within the sectors. Across sectors, spillovers

are assumed negligible.

Assume firms maximize profits and that there is perfect competition in the

goods and labor markets. Then, prices are equal to the (constant) marginal

costs. Let the relative price of sector 2-goods in terms of sector-1 goods be

called  (i.e., we use sector-1 goods as numeraire). Let the hourly wage in

terms of sector-1 goods be  In general equilibrium with production in both

sectors we then have

1 = 2 = 

11Krugman (1987), Lucas (1988, Section 5).
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saying that the value of the (constant) marginal productivity of labor in each

sector equals the wage. Hence,


2

1
= 1 or  =

1

2
 (13.26)

saying that the relative price of the two goods is inversely proportional to

the relative labor productivities in the two sectors. The demand side, which

is not modelled here, will of course play a role for the final allocation of labor

to the two sectors.

Taking logs in (13.26) and differentiating w.r.t.  gives

̇


=

̇1

1
− ̇2

2
=

11

1
− 22

2
= 11 −22

using (13.24) and (13.25). Thus,

̇ = (11 −22)

Assume sector 2 (say some industrial activity) is more disposed to learning-

by-doing than sector 1 (say mining) so that 2  1 Consider for simplicity

the case where at time 0 there is symmetry in the sense that 10 = 20

Then, the relative price  of sector-2 goods in terms of sector-1 goods will,

at least initially, tend to diminish over time. The resulting substitution ef-

fect is likely to stimulate demand for sector-2 goods. Suppose this effect is

large enough to ensure that 2 = 22 never becomes lower than 112

that is, 22 ≥ 11 for all  Then the scenario with ̇ ≤ 0 is sustained
over time and the sector with highest growth potential remains a substantial

constituent of the economy. This implies sustained economic growth in the

aggregate economy.

Now, suppose the country considered is a rather backward, developing

country which until time 0 has been a closed economy (very high tariffs etc.).

Then the country decides to open up for free foreign trade. Let the relative

world market price of sector 2-goods be ̄ which we for simplicity assume is

constant At time 0 there are two alternative possibilities to consider:

Case 1: ̄ 
10
20

(world-market price of good 2 higher than the opportu-

nity cost of producing good 2). Then the country specializes fully in sector-2

goods. Since this is the sector with a high growth potential, economic growth

is stimulated. The relative productivity level 12 decreases so that the

scenario with ̄  12 remains. A virtuous circle of dynamics of learning

by doing is unfolded and high economic growth is sustained.

Case 2: ̄ 
10
20

(world-market price of good 2 lower than the opportunity

cost of producing good 2). Then the country specializes fully in sector-1
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goods. Since this is the sector with a low growth potential, economic growth

is impeded or completely halted. The relative productivity level 12 does

not decrease. Hence, the scenario with ̄  12 sustains itself and persists.

Low or zero economic growth is sustained. The static comparative advantage

in sector-1 goods remains and the country is locked in low growth.

If instead ̄ is time-dependent, suppose
·
̄  0 (by similar arguments as

for the closed economy). Then the case 2 scenario is again self-sustaining.

The point is that there may be circumstances (like in case 2), where

temporary protection for a backward country is growth promoting (this is a

specific kind of “infant industry” argument).

13.4.2 A more robust specification

The way (13.24) and (13.25) are formulated, we have

̇1

1
= 11 (13.27)

̇2

2
= 22 (13.28)

by (13.22) and (13.23). Thus, the model implies scale effects on growth, that

is, strong scale effects.

An alternative specification introduces limits to learning-by-doing in the

following way:

̇1 = 1
1
1  1  1

̇2 = 2
2
2  2  1

Then (13.27) and (13.28) are replaced by

̇1

1
= 1

1−1
1 1

1  (13.29)

̇2

2
= 2

2−1
2 2

2  (13.30)

Now the problematic strong scale effect has disappeared. At the same time,

since 1−1  0 and 2−1  0 (13.29) and (13.30) show that growth peters
out as long as the “diminishing returns” to learning-by-doing are not offset

by an increasing labor force or an additional source (outside the model) of

technical progress. If   0 we get sustained growth of the semi-endogenous

type as in the Arrow model of learning-by-investing.
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Yet the analysis may still be a basis for an “infant industry” argument. If

the circumstances are like in case 2, temporary protection may help a back-

ward country to enter a higher long-run path of evolution. Stiglitz underlines

South Korea as an example:

What matters is dynamic comparative advantage, or comparative

advantage in the long run, which can be shaped. Forty years ago,

South Korea had a comparative advantage in growing rice. Had

it stuck to that strength, it would not be the industrial giant that

it is today. It might be the world’s most efficient rice grower, but

it would still be poor (Stiglitz, 2012, p. 2).

This point is related to two different aspects of technical knowledge. On

the one hand, technical knowledge is a nonrival good and this non-rivalness

speaks for openness, thereby improving conditions for knowledge spillovers

and learning from other countries. On the other hand, the potential for

knowledge accumulation and internal learning by doing is different in dif-

ferent production sectors. And some sectors with a lot of internal learning

potential and economies of scale never gets started unless to begin with they

are protected from foreign competition.

13.4.3 Resource curse?

The analysis also suggests a mechanism that, along with others, may help

explaining what is known as the resource curse problem. This problem refers

to the paradox that being abundant in natural resources may sometimes seem

a curse for a country rather than a blessing. At least quite many empirical

studies have shown a negative correlation between resource abundance and

economic growth (see, e.g., Sachs and Warner 1995, Gylfason et al., 1999).

The mechanism behind this phenomenon could be the following. Consider

a mining country with an abundance of natural resources in the ground.

Empirically, growth in total factor productivity in mining activity is relatively

low. Interpreting this as reflecting a relatively low learning potential, the

mining sector may be represented by sector 1 above. Given the abundance

of natural resources, 10 is likely to be high relative to the productivity in

the manufacturing sector, 20  So the country is likely to be in the situation

described as case 2. As a result, economic growth may never get started.

The basic problem here is, however, not of an economic nature in a narrow

sense, but rather of an institutional character. Taxation on the natural re-

source and use of the tax revenue for public investment in growth promoting

factors (infrastructure, health care, education, R&D) or directly in the sector
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with high learning potential can from an economic point of view circumvent

the curse to a blessing. It is not the natural resources as such, but rather

barriers of a political character, conflicts of interest among groups and social

classes, even civil war over the right to exploit the resources, or dominance

by foreign superpowers, that may be the obstacles to a sound economic de-

velopment (Mehlum et al., 2002). An additional potential obstacle is related

to the possible response of a country’s real exchange rate, and therefore its

competitiveness, to a new discovery of natural resources in a country.12

Summing up: Discovery of a valuable mineral in the ground in a country

with weak institutions may, through corruption etc. have adverse effects on

resource allocation and economic growth in the country. But: “Resources

should be a blessing, not a curse. They can be, but it will not happen on its

own. And it will not happen easily” (Stiglitz, 2012, p. 2).

13.5 Robustness issues and scale effects

First some words about terminology.

13.5.1 On terminology

How terms like “endogenous growth” and “semi-endogenous growth” are de-

fined varies in the literature. Recalling the notation  ≡  and  ≡ ̇

in this course we use the definitions:

Endogenous growth is present if there is a positive long-run per capita

growth rate (i.e.,   0) and the source of this is some internal mecha-

nism in the model (so that exogenous technology growth is not needed).

Fully-endogenous growth (sometimes called strictly endogenous growth) is

present if there is a positive long-run per capita growth rate and this

occurs without the support by growth in any exogenous factor (for

example exogenous growth in the labor force).

An example: the Romer version of the model of learning by investing

features fully endogenous growth. The technical reason for this is the as-

sumption that the learning parameter,  is such that there are constant

returns to capital at the aggregate level. We get   0 constant, and, in a

Ramsey set-up, results like   0 and   0, that is, preference

12Ploeg (2011) provides a survey over different theories related to the resource curse

problem. See also Ploeg and Venables (2012) and Stiglitz (2012).
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parameters matter for long-run growth. This suggests, at least at the theoret-

ical level, that taxes and subsidies, by affecting incentives, may have effects

on long-run growth (cf. Chapter 12). On the other hand, a fully-endogenous

growth model need not have this implication. We saw an example of this in

Section 13.1, where the “law of motion” of technology makes up a subsystem

that is independent of the remainder of the economic system.

In any case, fully-endogenous growth is technologically possible if and

only if there are non-diminishing returns (at least asymptotically) to the

producible inputs in the growth-generating sector(s), also called the “growth

engine”. The growth engine in an endogenous growth model is defined as

the set of input-producing sectors or activities using their own output as

input. This set may consist of only one sector such as the manufacturing

sector in the simple AK model, the educational sector in the Lucas (1988)

model, or the R&D sector in the Romer (1990) model. A model is capable

of generating fully-endogenous growth if the growth engine has CRS w.r.t.

producible inputs.

No argument like the replication argument for CRS w.r.t. the rival in-

puts exists regarding CRS w.r.t. the producible inputs. This is one of the

reasons that also another kind of endogenous growth is often considered in

the literature. This takes us to “semi-endogenous growth”.

Semi-endogenous growth is present if growth is endogenous but a posi-

tive long-run per capita growth rate can not be sustained without the

support by growth in some exogenous factor (for example exogenous

growth in the labor force).

For example, the Arrow model of learning by investing features semi-

endogenous growth. The technical reason for this is the assumption that

the learning parameter,  is less than 1 which implies diminishing marginal

returns to capital at the aggregate level. Along a BGP we get

 =  =  =


1− 
 (13.31)

If and only if   0 can a positive constant  be maintained forever. When

the learning mechanism is assisted by population growth, it is strong enough

to over time endogenously maintain a constant average productivity of cap-

ital. The key role of population growth derives from the fact that at the

aggregate level there are increasing returns to scale w.r.t. capital and labor.

For the increasing returns to be sufficiently exploited to generate exponen-

tial growth, population growth is needed.13 Note that in this case 

13Of course the model shifts from featuring “semi-” to featuring “fully-endogenous”

growth if the model is extended with an internal mechanism determining the population
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= 0 =  that is, preference parameters do not matter for long-run

growth (only for the level of the growth path). This suggests that taxes and

subsidies do not have long-run growth effects. Yet, in Arrow’s model and

similar semi-endogenous growth models economic policy can have important

long-run level effects.

Strangely enough, some textbooks (for example Barro and Sala-i-Martin,

2004) do not call much attention to the distinction between fully-endogenous

growth and semi-endogenous growth. Rather, they tend to use the term

endogenous growth as synonymous with what we here call fully-endogenous

growth. But there is certainly no reason to rule out apriori the parameter

cases corresponding to semi-endogenous growth.

In the Acemoglu textbook (Acemoglu, 2009, p. 448) “semi-endogenous

growth” is defined or characterized as endogenous growth where the long-

run per capita growth rate of the economy “does not respond to taxes or

other policies”. As an implication, endogenous growth which is not semi-

endogenous is in Acemoglu’s text implicitly defined as endogenous growth

where the long-run per capita growth rate of the economy does respond to

taxes or other policies.

We have defined the distinction between “semi-endogenous growth” and

“fully-endogenous growth” in a different way. In our terminology, this dis-

tinction does not coincide with the distinction between policy-dependent

and policy-invariant growth. Indeed, in our terminology positive per capita

growth may rest on an “exogenous source” in the sense of deriving from

exogenous technical progress and yet the long-run per capita growth rate

may be policy-dependent. In Chapter 16 we will see an example in connec-

tion with the Dasgupta-Heal-Solow-Stiglitz model, also known as the DHSS

model.

There also exist models that according to our definition feature semi-

endogenous growth and yet the long-run per capita growth rate is policy-

dependent (Cozzi, 1997; Sorger, 2010). Similarly, there exist models that

according to our definition feature fully-endogenous growth and yet the long-

run per capita growth rate is policy-invariant (Section 13.1.2 above shows

an example).

A word of warning before proceeding. The distinction between an ex-

ogenous or endogenous per capita growth rate is only meaningful within a

given meta-theoretical framework. It is always possible to make the meta-

theoretical framework so “broad” that the per capita growth rate must be

considered endogenous within this framework. From the perspective of so-

ciety as a whole we can imagine many different political and institutional

growth rate. Jones (2003) provides such a model.
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structures − as witnessed by long-run historical evolution − some of which
clearly are less conducive to economic growth than others.

13.5.2 Robustness of simple endogenous growth mod-

els

The series of learning-based growth models considered above illustrate the

fact that endogenous growth models with exogenous population typically

exist in two varieties or cases. One is the fully-endogenous growth case where

a particular value is imposed on a key parameter. This value is such that

there are constant returns (at least asymptotically) to producible inputs in

the growth engine of the economy.14 In the “corresponding” semi-endogenous

growth case, the key parameter is allowed to take any value in an open

interval. The endpoint of this interval appears as the “knife-edge” value

assumed in the fully-endogenous growth case.

Although the two varieties build on qualitatively the same mathematical

model of a certain growth mechanism (say, learning by doing or research and

development), the long-run results turn out to be very sensitive to which

of the two cases is assumed. In the fully-endogenous growth case a posi-

tive per-capita growth rate is maintained forever without support of growth

in any exogenous factor. In the semi-endogenous growth case, the growth

process needs “support” by some growing exogenous factor in order for sus-

tained growth to be possible. The established terminology is somewhat se-

ductive here. “Fully endogenous” sounds as something going much deeper

than “semi-endogenous”. But nothing of that sort should be implied. It is

just a matter of different parameter values.

As Solow (1997, pp. 7-8) emphasizes in connection with learning-by-

investing models (with constant population), the Romer case with  = 1 is a

very special case, indeed an “extreme case, not something intermediate”. A

value of  slightly above 1 leads to explosive growth: infinite output in finite

time even when  = 0.15 And a value of  slightly below 1 leads to growth

petering out in the long run even when  = 0.

Whereas the strength of the semi-endogenous growth case is its theo-

retical and empirical robustness, the convenience of the fully-endogenous

14Suppose our CRS aggregate production function is  = +1−   0  

0 0    1 we have  ≡  = +, where  ≡ We then get  = +−1

→  for  → ∞ that is, the output-capital ratio converges to a positive constant when

the capital-labor ratio goes to infinity. We then say that asymptotically there are CRS

w.r.t. the producible inputs, here just  In this kind of “asymptotic” AK models the

force of diminishing returns to capital ultimately becomes negligible.
15A demonstration is in Appendix B.
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growth case is that it has much simpler dynamics. Then the question arises

to what extent a fully-endogenous growth model can be seen as a useful ap-

proximation to its semi-endogenous growth “counterpart”. Imagine that we

contemplate applying the fully-endogenous growth case as a basis for making

forecasts or for policy evaluation in a situation where the “true” case is the

semi-endogenous growth case. Then we would like to know: Are the impulse-

response functions generated by a shock in the fully-endogenous growth case

an acceptable approximation to those generated by the same shock in the

corresponding semi-endogenous growth case for a sufficiently long time hori-

zon to be of interest?16 The answer is “yes” if the critical parameter has a

value “close” to the knife edge value and “no” otherwise. How close it need

be, depends on circumstances. My own tentative impression is that usually

it is “closer” than what the empirical evidence warrants.

Even if a single growth-generating mechanism, like learning by doing,

does not in itself seem strong enough to generate a reduced-form AK model

(the fully-endogenous growth case), there might exist complementary factors

and mechanisms that in total could generate something close to a reduced-

form AK model. The time-series test by, for instance, Jones (1995b) and

Romero-Avila (2006), however, reject this.17

Comment on “growth petering out” when  = 0 The above-mentioned

“petering out” of long-run growth in the semi-endogenous case when  = 0

takes different forms in different models. When exponential growth cannot

be sustained in a model, sometimes it remains true that  →∞ for →∞,
and sometimes instead complete stagnation results. In the present context,

where we focus on learning, it is the source of learning that matters. Sup-

pose that, as in the simple Arrow version (  1) of learning-by-investing

in Section 13.2.1 above (and in Chapter 12), learning is associated with net

investment, then  = 0 will lead to complete stagnation in the sense that

there is an upper bound on  that is never transcended. The productivity-

driving factor, net investment, dries out. Even if there is an incentive to

maintain the capital stock, this does not require positive net investment and

so learning tends to stop. The productivity-driving factor, net investment,

dries out.

When learning is associated with gross investment, however, learning

continues because even when net investment is vanishing, gross investment

remains positive because there is generally an incentive to maintain the cap-

16Obviously, the ultimate effects of the shock tend to be very different in the two models.
17There is a longstanding discussion about this and similar time-series econometric is-

sues, see the course website under Supplementary Material.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



232

CHAPTER 13. PERSPECTIVES ON LEARNING BY DOING

AND LEARNING BY INVESTING

ital stock. Thereby sustained learning is generated. In turn, this tends to

induce more investment than needed to replace wear and tear and so cap-

ital accumulates, although at a declining rate. The diminishing marginal

returns to capital are countervailed by the rising productivity of investment

goods due to learning. We get permanent though diminishing growth, that

is,  →∞ for →∞ at the same time as  → 0 but   0 remains true.

Arithmetic growth,  = 0 +  with   0 is an example. More generally,

as mentioned in Section 13.3.3, quasi-arithmetic growth tends to arise.

It is similar in the learning-by-doing examples of sections 13.1 and 13.4,

where learning is simply associated with producing. Learning continues even

if the capital stock is just upheld.

Another issue is whether there exist factors that in spite of  = 0 (or,

to be more precise, in spite of  → 0 as projected by the United Nations

to happen within a century from now (United Nations, 2013)) may replace

the growth-supporting role of population growth under semi-endogenous pa-

rameter conditions like   1. In Section 10.5 of Chapter 10 we indicated

scepticism that human capital accumulation would be able to do that. But

both urbanization and the evolution of information and communication tech-

nologies seem likely for a long time to at least help in that direction.

13.5.3 Weak and strong scale effects

Romer’s learning-by-investing hypothesis (where the learning parameter equals

1) implies a problematic (strong) scale effect. When embedded in a Ramsey

set-up, the model generates a time path along which

 =  =  =
1


(1(1 )−  − )

From this follows not only standard results for fully-endogenous growth mod-

els, such as



 0




 0

but also18




=
1


12(1 )  0 (13.32)

This is because in this model the rate of return, 1(1 )−  depends (posi-

tively) on  Interpreting the size (“scale”) of the economy as measured by

18Here we use that a neoclassical production function  () with CRS satisfies the

“direct complementarity condition” 12  0
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the size,  of the labor force, we call such an effect a scale effect. To distin-

guish it from another kind of scale effect, it is useful to name it a scale effect

on growth or a strong scale effect.

Scale effects can be of a less dramatic form. In this case we speak of a

scale effect on levels or a weak scale effect. This form arises when the learning

parameter is less than 1. We thus see from (13.31) that in Arrow’s model

of learning-by-investing the steady state growth rate is independent of the

size of the economy. Consequently, in Arrow’s model there is no strong scale

effect. There is, however, a (positive) scale effect on levels in the sense that

along a steady state growth path,



0
 0 (13.33)

This says the following. Suppose we consider two closed economies char-

acterized by the same parameters, including the same 19 The economies

differ only w.r.t. initial size of the labor force. Suppose both economies are

in steady state. Then, according to (13.33), the economy with the larger

labor force has, for all  larger output per unit of labor. The background is

the positive relationship between the labor efficiency index,  and aggregate

cumulative (net) investment,

 = 
 

which is due to learning and knowledge spillovers across firms. Thus, a given

level of per capita investment increases labor productivity more in a larger

economy (where ̇ will be larger) than in a smaller economy.

More generally, the fundamental background is that technical knowledge

is a non-rival good − its use by one firm does not (in itself) limit the amount
of knowledge available to other firms.20 In a large economic system, say an

integrated set of open economies, more people benefit from a given increase

in knowledge than in a small economic system. At the same time the per

capita cost of creating the increase in knowledge is less in the large system

than in the small system.

To prove (13.33), note that along a steady state path

 ≡ ̃ = ̃∗ = (̃∗) = (̃∗)
  (13.34)

where

 ≡ ̃ = ̃∗ = ̃∗
 

19Remember that in contrast to the Romer model, Arrow’s model allows   0
20By patent protection, secrecy, and copyright some aspects of technical knowledge are

sometimes partially and temporarily excludable, but that is another matter. Excludability

is ignored in our simple learning-by-doing and learning-by-investing models.
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Solving this equation for  gives

 = (̃
∗)

1(1−) = (̃∗0
)1(1−)

Substituting this into (13.34), we get

 = (̃∗)(̃∗0
)(1−) (13.35)

from which follows



0
=



1− 
(̃∗)(̃∗)(1−)[(1−)]−10 =



1− 



0
 0 (13.36)

since ̃∗ is independent of 0 This confirms (13.33). The scale effect on 
also gives scope for higher per capita consumption the higher is 0

The scale effect on levels displayed by (13.36) is increasing in the learn-

ing parameter  everything else equal. When  = 1 the scale effect is so

powerful that it is transformed into a scale effect on the growth rate.

13.5.4 Discussion

Are there good theoretical and/or empirical reasons to believe in the existence

of (positive) scale effects on levels or perhaps even on growth in the long run?

Let us start with some theoretical considerations.

Theoretical aspects

From the point of view of theory, we should recognize the likelihood that

offsetting forces are in play. On the one hand, there is the problem of limited

natural resources. For a given level of technology, if there are CRS w.r.t.

capital, labor, and land (or other natural resources), there are diminishing

returns to capital and labor taken together. In this Malthusian perspective,

an increased scale (increased population) results, everything else equal, in

lower rather than higher per capita output, that is, a negative scale effect

should be expected.

On the other hand, there is the anti-Mathusian view that repeated im-

provements in technology tend to overcome, or rather more than overcome,

this Malthusian force, if appropriate socio-economic conditions are present.

Here the theory of endogenous technical change comes in by telling us that

a large population may be good for technical progress if the institutions in

society are growth-friendly. A larger population breeds more ideas, the more

so the better its education is; a larger population also promotes division of la-

bor and larger markets. This helps the creation of new technologies or, from
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the perspective of an open economy, it helps the local adoption of already

existing technologies outside the country. In a less spectacular way it helps

by furthering day-by-day productivity increases due to learning by doing and

learning by watching. The non-rival character of technical knowledge is an

important feature behind all this. It implies that output per capita depends

on the total stock of ideas, not on the stock per person. This implies −
everything else equal − an advantage of scale.
In the models considered so far in this course, natural resources and the

environment have been more or less ignored. Here only a few remarks about

this limitation. The approach we have followed is intended to clarify certain

mechanisms − in abstraction from numerous things. The models in focus

have primarily been about aspects of an industrialized economy. Yet the

natural environment is always a precondition. A tendency to positive scale

effects on levels may be more or less counteracted by congestion and aggra-

vated environmental problems ultimately caused by increased population and

a population density above some threshold.

What can we say from an empirical point of view?

Empirical aspects

First of all we should remember that in view of cross-border diffusion of ideas

and technology, a positive scale effect (whether weak or strong) should not be

seen as a prediction about individual countries, but rather as pertaining to

larger regions, nowadays probably the total industrialized part of the world.

So cross-country regression analysis is not the right framework for testing

for scale effects, whether on levels or the growth rate. The relevant scale

variable is not the size of the country, but the size of a larger region to which

the country belongs, perhaps the whole world; and multivariate time series

analysis seems the most relevant approach.

Since in the last century there has been no clear upward trend in per

capita growth rates in spite of a growing world population (and also a growing

population in the industrialized part of the world separately), most econo-

mists do not believe in strong scale effects. But on the issue of weak scale

effects the opinion is definitely more divided.

Considering the very-long run history of population and per capita income

of different regions of the world, there clearly exists evidence in favour of

scale effects (Kremer, 1993). Whether advantages of scale are present also

in a contemporary context is more debated. Recent econometric studies

supporting the hypothesis of positive scale effects on levels include Antweiler

and Trefler (2002) and Alcalá and Ciccone (2004). Finally, considering the

economic growth in China and India since the 1980s, we must acknowledge
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that this impressive performance at least does not speak against the existence

of positive scale effects on levels.

Acemoglu seems to find positive scale effects on levels plausible at the

theoretical level (pp. 113-114). At the same time, however, later in his book

he seems somewhat skeptical as to the existence of empirical support for this.

Indeed, with regard to the fact that R&D-based theoretical growth models

tend to generate at least weak scale effects, Acemoglu claims: “It is not clear

whether data support these types of scale effects” (Acemoglu, 2009, p. 448).

My personal view on the matter is that we should, of course, recognize

that offsetting forces, coming from our finite natural environment, are in play

and that a lot of uncertainty is involved. Nevertheless it seems likely that at

least up to a certain point there are positive scale effects on levels.

Policy implications If this holds true, it supports the view that inter-

national economic integration is generally a good idea. The concern about

congestion and environmental problems, in particular global warming, should

probably, however, preclude recommending governments and the United Na-

tions to try to promote population growth.

Moreover, it is important to remember the distinction between the global

and the local level. The  in the formula (13.31) refers to a much larger

region than a single country; we may refer to this region as “the set of

knowledge-producing countries in the world”. No recommendation of higher

population growth in a single country is implied by this theoretical formula.

When discussing economic policy from the perspective of a single country, all

aspects of relevance in the given local context should be incorporated. For a

developing country with limited infrastructure and weak educational system,

family-planning programs and similar may in many cases make sense from

both a social and a productivity point of view (cf. Dasgupta, 1995).

13.6 Appendix

A. Balanced growth in the embodied technical change model with

investment-specific learning

In this appendix the results (13.16), (13.17), (13.18), and (13.19) are derived.
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The model is:

 = 1− 0    1 (13.37)

 =  −  (13.38)

̇ =  −  (13.39)

 =

µZ 

−∞


¶

 0   ≤ ̄ (13.40)

 = 0
  ≥ 0 (13.41)

Consider a BGP. By definition,  and  then grow at constant rates, not

necessarily positive. With  =  constant and 0    1 (13.37) gives

 =  =  + (1− ) (13.42)

a constant. By (13.39),  =  

−  showing that  is constant along

a BGP. Hence,

 +  =   (13.43)

and so also  must be constant. From (13.40) follows that  = −1
Taking logs in this equation and differentiating w.r.t.  gives

̇


= −1


 +  = 0

in view of constancy of  Substituting into (13.43) yields (1 + ) =  

which combined with (13.42) gives

 =
(1− )(1 + )

1− (1 + )


which is (13.16). In view of  =  =  = ( + ) = (1 + ) the

results (13.17), (13.18), and (13.19) immediately follow.

B. Big bang a hair’s breadth from the AK

Here we shall prove the statement in Section 13.5.2: a hair’s breadth from

the AK assumption the technology is so productive as to generate infinite

output in finite time.

The simple AK model as well as reduced-form AK models end up in an

aggregate production function

 = 
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We ask the question: what happens if the exponent on  is not exactly 1,

but slightly above. For simplicity, let  = 1 and consider

 =   = 1 +   ' 0

Our claim is that if   1 a constant saving rate,  will generate infinite 

and  in finite time.

We embed the technology in a Solow-style model with  =  = 0 and

get:

̇ ≡ 


=  0    1 (0) = 0  0 given (13.44)

We see that not only is ̇  0 for all  ≥ 0 but ̇ is increasing over time

since  is increasing. So, for sure,  →∞ but how fast?

One way of answering this question exploits the fact that ̇ =  is

a Bernouilli equation and can be solved by considering the transformation

 = 1− as we do in Chapter 7 and Exercise III.3. Closely related to

that method is the approach below, which may have the advantage of being

somewhat more transparent and intuitive.

To find out, note that (13.44) is a separable differential equation which

implies

− = 

By integration, Z
− =

Z
+ C ⇒

−+1

1− 
= + C (13.45)

where C is some constant, determined by the initial condition(0) = 0 For

 = 0 (13.45) gives C = −+1
0 (1−) Consequently, the solution  = ()

satisfies
0

1−

− 1 −
()1−

− 1 =  (13.46)

As  increases, the left-hand side of this equation follows suit since ()

increases and   1 There is a ̄  ∞ such that when  → ̄ from below,

() →∞ Indeed, by (13.46) we see that such a ̄ must be the solution to

the equation

lim
()→∞

µ
0

1−

− 1 −
()1−

− 1
¶
= ̄
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Since

lim
()→∞

µ
0

1−

− 1 −
()1−

− 1
¶
=

0
1−

− 1 

we find

̄ =
1



0
1−

− 1 

To get an idea about the implied order of magnitude, let the time unit be

one year and  = 01 00 = 1−
0 = 2 and  = 105 Then ̄ = 400 years.

So the Big Bang ( =∞) would occur in 400 years from now if  = 105

As Solow remarks (Solow 1994), this arrival to the Land of Cockaigne

would imply the “end of scarcity”, a very optimistic perspective.

In a discrete time setup we get an analogue conclusion. With airframe

construction in mind let us imagine that the learning parameter  is slightly

above 1. Then we must accept the implication that it takes only a finite

number of labor hours to produce an infinite number of airframes. This is

because, given the (direct) labor input required to produce the ’th in a

sequence of identical airframes is proportional to − the total labor input
required to produce the first  airframes is proportional to 11 +12 +13

+  + 1 Now, the infinite series
P∞

=1 1
 converges if   1 As a

consequence only a finite amount of labor is needed to produce an infinite

number of airframes. “This seems to contradict the whole idea of scarcity”,

Solow observes (Solow 1997, p. 8).
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