
Chapter 16

Natural resources and

economic growth

In this course, up to now, the relationship between economic growth and the

earth’s finite natural resources has been touched upon in connection with: the

discussion of returns to scale (Chapter 2), the transition from a pre-industrial

to an industrial economy (in Chapter 7), the environmental problem of global

warming (Chapter 8), and the resource curse (in Chapter 13.4.3). In a more

systematic way the present chapter reviews how natural resources, including

the environment, relate to economic growth.

The contents are:

• Classification of means of production.
• The notion of sustainable development.
• Renewable natural resources.
• Non-renewable natural resources and exogenous technology growth.
• Non-renewable natural resources and endogenous technology growth.
• Natural resources and the issue of limits to economic growth.
The first two sections aim at establishing a common terminology for the

discussion.

16.1 Classification of means of production

We distinguish between different categories of production factors. First two

broad categories:

281



282

CHAPTER 16. NATURAL RESOURCES AND ECONOMIC

GROWTH

1. Producible means of production, also called man-made inputs.

2. Non-producible means of production.

The first category includes:

1.1 Physical inputs like processed raw materials, other intermediate goods,

machines, and buildings.

1.2 Human inputs of a produced character in the form of technical knowl-

edge (available in books, USB sticks etc.) and human capital.

The second category includes:

2.1 Human inputs of a non-produced character, sometimes called “raw la-

bor”.1

2.2 Natural resources. By definition in limited supply on this earth.

Natural resources can be sub-divided into:

2.2.1 Renewable resources, that is, natural resources the stock of which can

be replenished by a natural self-regeneration process. Hence, if the

resource is not over-exploited, it can be sustained in a more or less

constant amount. Examples: ground water, fertile soil, fish in the sea,

clean air, national parks.

2.2.2 Non-renewable resources, that is, natural resources which have no nat-

ural regeneration process (at least not within a relevant time scale).

The stock of a non-renewable resource is thus depletable. Examples:

fossil fuels, many non-energy minerals, virgin wilderness and endan-

gered species.

The climate change problem due to “greenhouse gasses” can be seen as

belonging to somewhere between category 2.2.1 or 2.2.2 in that the quality

of the atmosphere has a natural self-regeneration ability, but the speed of

regeneration is very low.

Given the scarcity of natural resources and the pollution problems caused

by economic activity, key issues are:

1Outside a slave society, biological reproduction is usually not considered as part of the

economic sphere of society even though formation and maintainance of raw labor requires

child rearing, health, food etc. and is thus conditioned on economic circumstances.
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a. Is sustainable development possible?

b. Is sustainable economic growth (in a per capita welfare sense) possible?

c. How should a better “thermometer” for the evolution of the economy

than measurement of GNP be designed?

But first: what does “sustainable” and “sustainability” really mean”?

16.2 The notion of sustainable development

The basic idea in the notion of sustainable development is to emphasize

intergenerational responsibility. The Brundtland Commission (1987) defined

sustainable development as “development that meets the needs of present

generations without compromising the ability of future generations to meet

theirs”.

In more standard economic terms we may define sustainable economic

development as a time path along which per capita “welfare” (somehow mea-

sured) remains non-decreasing across generations forever. An aspect of this is

that current economic activities should not impose significant economic risks

on future generations. The “forever” in the definition can not, of course, be

taken literally, but as equivalent to “for a very long time horizon”. We know

that the sun will eventually (in some billion years) burn out and consequently

life on earth will become extinct.

Our definition emphasizes welfare, which should be understood in a broad

sense, that is, as more or less synonymous with “quality of life”, “living condi-

tions”, or “well-being” (the term used in Smulders, 1995). What may matter

is thus not only the per capita amount of marketable consumption goods,

but also fundamental aspects like health, life expectancy, and enjoyment of

services from the ecological system: capability to lead a worthwhile life.

To make this more specific, consider preferences as represented by the

period utility function of a “typical individual”. Suppose two variables enter

as arguments, namely consumption,  of a marketable produced good and

some measure,  of the quality of services from the eco-system. Suppose

further that the period utility function is of CES form:2

( ) =
£
 + (1− )

¤1
 0    1   1 (16.1)

The parameter  is called the substitution parameter. The elasticity of substi-

tution between the two goods is  = 1(1−)  0 a constant. When  → 1

2CES stands for Constant Elasticity of Substitution.
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(from below), the two goods become perfect substitutes (in that  → ∞).
The smaller is  the less substitutable are the two goods. When   0 we

have   1 and as  → −∞ the indifference curves become near to right

angled.3 According to many environmental economists, there are good rea-

sons to believe that   1, since water, basic foodstuff, clean air, absence of

catastrophic climate change, etc. are difficult to replace by produced goods

and services. In this case there is a limit to the extent to which a rising ,

obtainable through a rising per capita income, can compensate for falling 

At the same time the techniques by which the consumption good is cur-

rently produced may be “dirty” and thereby cause a falling . An obvious

policy response is the introduction of pollution taxes that give an incentive

for firms (or households) to replace these techniques (or goods) with cleaner

ones. For certain forms of pollution (e.g., sulfur dioxide, SO2 in the air) there

is evidence of an inverted U-curve relationship between the degree of pollu-

tion and the level of economic development measured by GDP per capita −
the environmental Kuznets curve.4

So an important element in sustainable economic development is that the

economic activity of current generations does not spoil the environmental

conditions for future generations. Living up to this requirement necessitates

economic and environmental strategies consistent with the planet’s endow-

ments. This means recognizing the role of environmental constraints for eco-

nomic development. A complicating factor is that specific abatement policies

vis-a-vis particular environmental problems may face resistance from interest

groups, thus raising political-economics issues.

As defined, a criterion for sustainable economic development to be present

is that per capita welfare remains non-decreasing across generations. A sub-

category of this is sustainable economic growth which is present if per capita

welfare is growing across generations. Here we speak of growth in a welfare

sense, not in a physical sense. Permanent exponential per capita output

3By L’Hôpital’s rule for “0/0” it follows that, for fixed  and 

lim
→0 6=0

£
 + (1− )

¤1
= 1−

So the Cobb-Douglas function, which has elasticity of substitution between the goods equal

to 1, is an intermediate case, corresponding to  = 0. More technical details in Appendix

A, albeit from the perspective of production rather than preferences.
4See, e.g., Grossman and Krueger (1995). Others (e.g., Perman and Stern, 2003) claim

that when paying more serious attention to the statistical properties of the data, the

environmental Kuznets curve is generally rejected. Important examples of pollutants ac-

companied by absence of an environmental Kuznets curve include waste storage, reduction

of biodiversity, and emission of CO2 to the atmosphere. A very serious problem with the

latter is that emissions from a single country is spread all over the globe.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



16.2. The notion of sustainable development 285

growth in a physical sense is of course not possible with limited natural re-

sources (matter or energy). The issue about sustainable growth is whether,

by combining the natural resources with man-made inputs (knowledge, hu-

man capital, and physical capital), an output stream of increasing quality,

and therefore increasing economic value, can be maintained. In modern times

capabilities of many digital electronic devices provide conspicuous examples

of exponential growth in quality (or efficiency). Think of processing speed,

memory capacity, and efficiency of electronic sensors. What is known as

Moore’s Law is the rule of thumb that there is a doubling of the efficiency

of microprocessors within every 18 months. The evolution of the internet

has provided much faster and widened dissemination of information and fine

arts.

Of course there are intrinsic difficulties associated with measuring sustain-

ability in terms of well-being. There now exists a large theoretical and applied

literature dealing with these issues. A variety of extensions and modifications

of the standard national income accounting GNP has been developed under

the heading Green NNP (green net national product). An essential feature

in the measurement of Green NNP is that from the conventional GDP (which

essentially just measures the level of economic activity) is subtracted the de-

preciation of not only the physical capital but also the environmental assets.

The latter depreciate due to pollution, overburdening of renewable natural

resources, and depletion of reserves of non-renewable natural resources.5 In

some approaches the focus is on whether a comprehensive measure of wealth

is maintained over time. Along with reproducible assets and natural assets

(including the damage to the atmosphere from “greenhouse gasses”), Arrow

et al. (2012) include health, human capital, and “knowledge capital” in their

measure of “wealth”. They apply this measure in a study of the United

States, China, Brazil, India, and Venezuela over the period 1995-2000. They

find that all five countries over this period satisfy the sustainability criterion

of non-decreasing wealth in this broad sense. Indeed the wealth measure

referred to is found to be growing in all five countries − in the terminol-

ogy of the field positive “genuine saving” has taken place.6 Note that it is

sustainability that is claimed, not optimality.

5The depreciation of these environmental and natural assets is evaluated in terms of

the social planner’s shadow prices. See, e.g., Heal (1998), Weitzman (2001, 2003), and

Stiglitz et al. (2010).
6Of course, many measurement uncertainties and disputable issues of weighting are

involved; brief discussions, and questioning, of the study are contained in Solow (2012),

Hamilton (2012), and Smulders (2012). Regarding Denmark 1990-2009, a study by Lind

and Schou (2013), along lines somewhat similar to those of Arrow et al. (2012), also

suggests sustainability to hold.
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In the next two sections we will go more into detail with the challenge

to sustainability and growth coming from renewable and non-renewable re-

sources, respectively. We shall primarily deal with the issues from the point

of view of technical feasibility of non-decreasing, and possibly rising, per-

capita consumption. Concerning questions about appropriate institutional

regulation the reader is referred to the specialized literature.

We begin with renewable resources.

16.3 Renewable resources

A useful analytical tool is the following simple model of the stock dynamics

associated with a renewable resource.

Let  ≥ 0 denote the stock of the renewable resource at time  (so in this
chapter  is not our symbol for saving). Then we may write

̇ ≡ 


=  − = ()− 0  0 given, (16.2)

where  is the self-regeneration of the resource per time unit and  ≥ 0
is the resource extraction (and use) per time unit at time . If for instance

the stock refers to the number of fish in the sea, the flow  represents the

number of fish caught per time unit. And if, in a pollution context, the stock

refers to “cleanness” of the air in cities,  measures, say, the emission of

sulfur dioxide, SO2, per time unit. The self-regenerated amount per time

unit depends on the available stock through the function () known as a

self-regeneration function.7

Let us briefly consider the example where  stands for the size of a fish

population in the sea. Then the self-regeneration function will have a bell-

shape as illustrated in the upper panel of Figure 16.1. Essentially, the self-

regeneration ability is due to the flow of solar energy continuously entering

the the eco-system of the earth. This flow of solar energy is constant and

beyond human control.

The size of the stock at the lower intersection of the () curve with the

horizontal axis is (0) ≥ 0 Below this level, even with  = 0 there are too

few female fish to generate offspring, and the population necessarily shrinks

and eventually reaches zero. We may call (0) the minimum sustainable

stock.

At the other intersection of the () curve with the horizontal axis, ̄(0)

represents the maximum sustainable stock. The eco-system cannot support

7The equation (16.2) also covers the case where  represents the stock of a non-

renewable resource if we impose () ≡ 0 i.e., there is no self-regeneration.
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Figure 16.1: The self-generation function (upper panel) and stock dynamics for a

given  = ̄ ∈ (0 ] (lower panel).
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further growth in the fish population. The reason may be food scarcity,

spreading of diseases because of high population density, and easiness for

predators to catch the considered fish species and themselves expand. Pop-

ular mathematical specifications of (·) include the logistic function ()

= (1− ) where   0   0 and the quasi-logistic function () =

(1− )( − 1) where also   0 In both cases ̄(0) =  but (0)

equals 0 in the first case and  in the second.

The value indicated on the vertical axis in the upper panel, equals

max (). This value is thus the maximum sustainable yield per time unit.

This yield is sustainable from time 0, provided the fish population is at time

0 at least of size  = argmax () which is that value of  where ()

= The size,   of the fish population is consistent with maintaining

the harvest  per time unit forever in a steady state.

The lower panel in Figure 16.1 illustrates the dynamics in the ( ̇)

plane, given a fixed rate of resource extraction  = ̄ ∈ (0 ]. The

arrows indicate the direction of movement in this plane. In the long run, if

 = ̄ for all  the stock will settle down at the size ̄(̄) The stippled

curve in the upper panel indicates ()− ̄ which is the same as ̇ in the

lower panel when  = ̄. The stippled curve in the lower panel indicates the

dynamics in case  = . In this case the steady-state stock, ̄( ) =

 , is unstable. Indeed, a small negative shock to the stock will not lead

to a gradual return but to a self-reinforcing reduction of the stock as long as

the extraction  = is maintained.

Note that  is an ecological maximum and not necessarily in any

sense an economic optimum. Indeed, since the search and extraction costs

may be a decreasing function of the fish density in the sea, hence of the

stock of fish, it may be worthwhile to increase the stock beyond  , thus

settling for a smaller harvest per time unit. Moreover, a fishing industry

cost-benefit analysis may consider maximization of the discounted expected

aggregate profits per time unit, taking into account the expected evolution

of the market price of fish, the cost function, and the dynamic relationship

(16.2).

In addition to its importance for regeneration, the stock,  may have

amenity value and thus enter the instantaneous utility function. Then again

some conservation of the stock over and above  may be motivated.
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A dynamic model with a renewable resource and focus on technical

feasibility Consider a simple model consisting of (16.2) together with

 =  (   )  ≥ 0
̇ =  −  −   ≥ 0 0  0 given,

 = 0
  ≥ 0 0  0 given, (16.3)

where  is aggregate output and  , and  are inputs of capital, la-

bor, and a renewable resource, respectively, per time unit at time  Let the

aggregate production function,  be neoclassical8 with constant returns to

scale w.r.t.   and  The assumption  ≥ 0 represents exogenous
technical progress. Further,  is aggregate consumption (≡  where 
is per capita consumption) and  denotes a constant rate of capital depreci-

ation. There is no distinction between employment and population, . The

population growth rate,  is assumed constant.

Is sustainable economic development in this setting technically feasible?

By definition, the answer will be yes if non-decreasing per capita consumption

can be sustained forever. From economic history we know of examples of

“tragedy of the commons”, like over-grazing of unregulated common land. As

our discussion is about technical feasibility, we assume this kind of problem

is avoided by appropriate institutions.

Suppose the use of the renewable resource is kept constant at a sustainable

level ̄ ∈ (0 ). To begin with, suppose  = 0 so that  =  for all

 ≥ 0 Assume that at  = ̄ the system is “productive” in the sense that

lim
→0

( ̄ 0)    lim
→∞

( ̄ 0) (A1)

This condition is satisfied in Figure 16.2 where the value ̄ has the property

 (̄  ̄ 0) = ̄ Given the circumstances, this value is the least upper

bound for a sustainable capital stock in the sense that

if  ≥ ̄ we have ̇  0 for any   0;

if 0    ̄ we have ̇ = 0 for  =  ( ̄ 0)−   0

For such a  illustrated in Figure 16.2, a constant  =  ( ̄ 0) is main-

tained forever which implies non-decreasing per-capita income,  ≡ ,

forever. So, in spite of the limited availability of the natural resource, a non-

decreasing level of consumption is technically feasible even without technical

progress. A forever growing level of consumption will, of course, require

sufficient technical progress capable of substituting for the natural resource.

8That is, marginal productivities of the production factors are positive, but diminishing,

and the upper contour sets are strictly convex.
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Figure 16.2: Sustainable consumption in the case of  = 0 and no technical progress

( and ̄ fixed).

Now consider the case   0 and assume CRS w.r.t.   and  In

view of CRS, we have

1 =  (








̄


 ) (16.4)

Along a balanced growth path with positive gross saving (if it exists) we

know that and must be constant, cf. the balanced growth equiva-

lence theorem of Chapter 4. Maintaining  (= ()()) constant

along such a path, requires that  is constant and thereby that  grows

at the rate  But then ̄ will be declining over time. To compensate

for this in (16.4), sufficient technical progress is necessary. This necessity of

course is present, a fortiori, for sustained growth in per-capita consumption

to occur.

As technical progress in the far future is by its very nature uncertain and

unpredictable, there can be no guarantee for sustained per capita growth if

there is sustained population growth.

Pollution As hinted at above, the concern that certain production meth-

ods involve pollution is commonly incorporated into economic analysis by

subsuming environmental quality into the general notion of renewable re-

sources. In that context  in (16.2) and Figure 16.1 will represent the “level

of environmental quality” and  will be the amount of dirty emissions per

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



16.4. Non-renewable resources: The DHSS model 291

time unit. Since the level of the environmental quality is likely to be an

argument in both the utility function and the production function, again

some limitation of the “extraction” (the pollution flow) is motivated. Pol-

lution taxes may help to encourage abatement activities and make technical

innovations towards cleaner production methods more profitable.

16.4 Non-renewable resources: The DHSSmodel

Whereas extraction and use of renewable resources can be sustained at a

more or less constant level (if not too high), the situation is different with

non-renewable resources. They have no natural regeneration process (at least

not within a relevant time scale) and so continued extraction per time unit

of these resources will inevitably have to decline and approach zero in the

long run.

To get an idea of the implications, we will consider the Dasgupta-Heal-

Solow-Stiglitz model (DHSS model) from the 1970s.9 The production side of

the model is described by:

 =  (   )  ≥ 0 (16.5)

̇ =  −  −   ≥ 0 0  0 given, (16.6)

̇ = − ≡ − 0  0 given, (16.7)

 = 0
  ≥ 0 (16.8)

The new element is the replacement of (16.2) with (16.7), where  is the

stock of the non-renewable resource (e.g., oil reserves), and  is the depletion

rate. Since we must have  ≥ 0 for all  there is a finite upper bound on
cumulative resource extraction:Z ∞

0

 ≤ 0 (16.9)

Since the resource is non-renewable, no re-generation function appears in

(16.7). Uncertainty is ignored and the extraction activity involves no costs.10

As before, there is no distinction between employment and population, .

The model was formulated as a response to the pessimistic Malthusian

views expressed in the book The Limits to Growth written by MIT ecolo-

gists Meadows et al. (1972).11 Stiglitz, and fellow economists, asked the

9See, e.g., Stiglitz, 1974.
10This simplified description of resource extraction is the reason that it is common

to classify the model as a one-sector model, notwithstanding there are two productive

activities in the economy, manufacturing and resource extraction.
11An up-date came in 2004, see Meadows at al. (2004).
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question: what are the technological conditions needed to avoid falling per

capita consumption in the long run in spite of the inevitable decline in the

use of non-renewable resources? The answer is that there are three ways in

which this decline in resource use may be counterbalanced:

1. input substitution;

2. resource-augmenting technical progress;

3. increasing returns to scale.

Let us consider each of them in turn (although in practice the three

mechanisms tend to be intertwined).

16.4.1 Input substitution

By input substitution is here meant the gradual replacement of the input of

the exhaustible natural resource by man-made input, capital. Substitution

of fossil fuel energy by solar, wind, tidal and wave energy resources is an

example. Similarly, more abundant lower-grade non-renewable resources can

substitute for scarce higher-grade non-renewable resources - and this will

happen when the scarcity price of these has become sufficiently high. A

rise in the price of a mineral makes a synthetic substitute cost-efficient or

lead to increased recycling of the mineral. Finally, the composition of final

output can change toward goods with less material content. Overall, capital

accumulation can be seen as the key background factor for such substitution

processes (though also the arrival of new technical knowledge may be involved

- we come back to this).

Whether capital accumulation can do the job depends crucially on the

degree of substitutability between  and  To see this, let the produc-

tion function  be a three-factor CES production function. Suppressing the

explicit dating of the variables when not needed for clarity, we have.

 =
¡
1

 + 2
 + 3


¢1

 1 2 3  0 1+2+3 = 1   1  6= 0
(16.10)

We omit the the time index on    and  when not needed for clarity.

The important parameter is  the substitution parameter. Let  denote the

cost to the firm per unit of the resource flow and let ̂ be the cost per unit of

capital (generally, ̂ = +  where  is the real rate of interest). Then ̂

is the relative factor price, which may be expected to increase as the resource

becomes more scarce. The elasticity of substitution between  and  can be

measured by [()(̂)] (̂ )() evaluated along an isoquant
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curve, i.e., the percentage rise in the - ratio that a cost-minimizing firm

will choose in response to a one-percent rise in the relative factor price, ̂

Since we consider a CES production function, this elasticity is a constant 

= 1(1 − )  0 Indeed, the three-factor CES production function has the

property that the elasticity of substitution between any pair of the three

production factors is the same.

First, suppose   1 i.e., 0    1 Then, for fixed  and   →¡
1

 + 2

¢1

 0 when → 0 In this case of high substitutability the

resource is seen to be inessential in the sense that it is not necessary for a

positive output. That is, from a production perspective, conservation of the

resource is not vital.

Suppose instead   1 i.e.,   0 Although increasing when decreases,

output per unit of the resource flow is then bounded from above. Conse-

quently, the finiteness of the resource inevitably implies doomsday sooner or

later if input substitution is the only salvage mechanism. To see this, keeping

 and  fixed, we get




=  (−)1 =

∙
1(




) + 2(




) + 3

¸1
→ 3

1 for → 0

(16.11)

since   0 Even if  and  are increasing, lim→0  = lim→0()
= 

1
3 · 0 = 0 Thus, when substitutability is low, the resource is essential

in the sense that output is nil in the absence of the resource.

What about the intermediate case  = 1? Although (16.10) is not de-

fined for  = 0 using L’Hôpital’s rule (as for the two-factor function, cf.

Appendix), it can be shown that
¡
1

 + 2
 + 3


¢1 → 123

for  → 0 In the limit a three-factor Cobb-Douglas function thus appears.

This function has  = 1 corresponding to  = 0 in the formula  = 1(1−)
The circumstances giving rise to the resource being essential thus include the

Cobb-Douglas case  = 1

The interesting aspect of the Cobb-Douglas case is that it is the only

case where the resource is essential while at the same time output per unit

of the resource is unbounded from above (since  = 123−1 → ∞
for → 0).12 Under these circumstances it was considered an open question

whether non-decreasing per capita consumption could be sustained. There-

fore the Cobb-Douglas case was studied intensively. For example, Solow

(1974) showed that if  =  = 0, then a necessary and sufficient condition

that a constant positive level of consumption can be sustained is that 1  3

12To avoid misunderstanding: by “Cobb-Douglas case” we refer to any function where

 enters in a “Cobb-Douglas fashion”, i.e., any function like  = ̃ ()1−33 
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This condition in itself seems fairly realistic, since, empirically, 1 is many

times the size of 3 (Nordhaus and Tobin, 1972, Neumayer 2000). Solow

added the observation that under competitive conditions, the highest sus-

tainable level of consumption is obtained when investment in capital exactly

equals the resource rent,  ·  This result was generalized in Hartwick
(1977) and became known as Hartwick’s rule. If there is population growth

(  0) however, not even the Cobb-Douglas case allows sustainable per

capita consumption unless there is sufficient technical progress, as equation

(16.15) below will tell us.

Neumayer (2000) reports that the empirical evidence on the elasticity of

substitution between capital and energy is inconclusive. Ecological econo-

mists tend to claim the poor substitution case to be much more realistic

than the optimistic Cobb-Douglas case, not to speak of the case   1 This

invites considering the role of technical progress.

16.4.2 Technical progress

Solow (1974) and Stiglitz (1974) analyzed the theoretical possibility that

resource-augmenting technological change can overcome the declining use of

non-renewable resources that must be expected in the future. The focus is

not only on whether a non-decreasing consumption level can be maintained,

but also on the possibility of sustained per capita growth in consumption.

New production techniques may raise the efficiency of resource use. For

example, Dasgupta (1993) reports that during the period 1900 to the 1960s,

the quantity of coal required to generate a kilowatt-hour of electricity fell

from nearly seven pounds to less than one pound.13 Further, technological

developments make extraction of lower quality ores cost-effective and make

more durable forms of energy economical. On this background we incorporate

resource-augmenting technical progress at the rate 3 and also allow labor-

augmenting technical progress at the rate 2 So the CES production function

now reads

 =
³
1


 + 2(2)

 + 3(3)

´1

 (16.12)

where 2 = 2 and 3 = 3 considering 2 ≥ 0 and 3  0 as exogenous
constants. If the (proportionate) rate of decline of  is kept smaller than

3 then the “effective resource” input is no longer decreasing over time. As

a consequence, even if   1 (the poor substitution case), the finiteness of

nature need not be an insurmountable obstacle to non-decreasing per capita

consumption.

13For a historical account of energy technology, see Smil (1994).
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Actually, a technology with   1 needs a considerable amount of resource-

augmenting technical progress to obtain compliance with the empirical fact

that the income share of natural resources has not been rising (Jones, 2002).

When   1 market forces tend to increase the income share of the factor

that is becoming relatively more scarce. Empirically,  and  have

increased systematically. However, with a sufficiently increasing 3, the in-

come share  need not increase in spite of   1 Compliance with

Kaldor’s “stylized facts” (more or less constant growth rates of  and

 and stationarity of the output-capital ratio, the income share of labor,

and the rate of return on capital) can be maintained with moderate labor-

augmenting technical change (2 growing over time). The motivation for not

allowing a rising 1 and replacing  in (16.12) by 1 is that this would be

at odds with Kaldor’s “stylized facts”, in particular the absence of a trend

in the rate of return to capital.

With 3  2 +  we end up with conditions allowing a balanced growth

path (BGP for short), which we in the present context, with an essential

resource, define as a path along which the quantities     and  are

positive and change at constant proportionate rates (some or all of which

may be negative). Given (16.12), it can be shown that along a BGP with

positive gross saving, (2) is constant and so  = 2 (hence also 
= 2)

14 There is thus scope for a positive  if 0  2  3 − 

Of course, one thing is that such a combination of assumptions allows for

an upward trend in per capita consumption - which is what we have seen

since the industrial revolution. Another thing is: will the needed assump-

tions be satisfied for a long time in the future? Since we have considered

exogenous technical change, there is so far no hint from theory. But, even

taking endogenous technical change into account, there will be many uncer-

tainties about what kind of technological changes will come through in the

future and how fast.

Balanced growth in the Cobb-Douglas case

The described results go through in a more straightforward way in the Cobb-

Douglas case. So let us consider this. A convenience is that capital-augmenting,

labor-augmenting, and resource-augmenting technical progress become indis-

tinguishable and can thus be merged into one technology variable, the total

factor productivity  :

 = 
1
 2

 3
  1 2 3  0 1 + 2 + 3 = 1 (16.13)

14See Appendix B.
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where we assume that  is growing at some constant rate   0. This,

together with (16.6) - (16.8), is now the model under examination.

Log-differentiating w.r.t. time in (16.13) yields the growth-accounting

relation

 =  + 1 + 2+ 3 (16.14)

In Appendix B it is shown that along a BGP with positive gross saving the

following holds:

(i)  =  =  ≡  + ;

(ii)  =  ≡ ̇ ≡ − ≡ −̄ = constant  0;
(iii) nothing of the resource is left unutilized forever.

With constant depletion rate,  denoted ̄ along the BGP, (16.14)

thus implies

 =  =
1

1− 1
( − 3− 3̄) (16.15)

since 1 + 2 − 1 = −3
Absent the need for input of limited natural resources, we would have

3 = 0 and so  = (1−1) But with 3  0 the non-renewable resource

is essential and implies a drag on per capita growth equal to 3(+̄)(1−1).
We get   0 if and only if   3( + ̄) (where, the constant depletion

rate, ̄ can in principle, from a social point of view, be chosen very small if

we want a strict conservation policy).

It is noteworthy that in spite of per-capita growth being due to exoge-

nous technical progress, (16.15) shows that there is scope for policy affecting

the long-run per-capita growth rate to the extent that policy can affect the

depletion rate  in the opposite direction.15

“Sustained growth” in  and  should not be understood in a narrow

physical sense. As alluded to earlier, we have to understand  broadly

as “produced means of production” of rising quality and falling material

intensity; similarly,  must be seen as a composite of consumer “goods”

with declining material intensity over time (see, e.g., Fagnart and Germain,

2011). This accords with the empirical fact that as income rises, the share

of consumption expenditures devoted to agricultural and industrial products

declines and the share devoted to services, hobbies, sports, and amusement

increases. Although “economic development” is perhaps a more appropri-

ate term (suggesting qualitative and structural change), we retain standard

terminology and speak of “economic growth”.

In any event, simple aggregate models like the present one should be

seen as no more than a frame of reference, a tool for thought experiments.

15Cf. Section 13.5.1 of Chapter 13.
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At best such models might have some validity as an approximate summary

description of a certain period of time. One should be aware that an economy

in which the ratio of capital to resource input grows without limit might

well enter a phase where technological relations (including the elasticity of

factor substitution) will be very different from now. For example, along any

economic development path, the aggregate input of non-renewable resources

must in the long run asymptotically approach zero. From a physical point of

view, however, there must be some minimum amount of the resource below

which it can not fulfil its role as a productive input. Thus, strictly speaking,

sustainability requires that in the “very long run”, non-renewable resources

become inessential.

A backstop technology We end this sub-section by a remark on a rather

different way of modeling resource-augmenting technical change. Dasgupta

and Heal (1974) present a model of resource-augmenting technical change,

considering it not as a smooth gradual process, but as something arriving in a

discrete once-for-all manner with economy-wide consequences. The authors

envision a future major discovery of, say, how to harness a lasting energy

source such that a hitherto essential resource like fossil fuel becomes inessen-

tial. The contour of such a backstop technology might be currently known, but

its practical applicability still awaits a technological breakthrough. The time

until the arrival of this breakthrough is uncertain and may well be long. In

Dasgupta, Heal and Majumdar (1977) and Dasgupta, Heal and Pand (1980)

the idea is pursued further, by incorporating costly R&D. The likelihood of

the technological breakthrough to appear in a given time interval depends

positively on the accumulated R&D as well as the current R&D. It is shown

that under certain conditions an index reflecting the probability that the

resource becomes unimportant acts like an addition to the utility discount

rate and that R&D expenditure begins to decline after some time. This is an

interesting example of an early study of endogenous technological change.16

16.4.3 Increasing returns to scale

The third circumstance that might help overcoming the finiteness of nature

is increasing returns to scale. For the CES function with poor substitution

(  1), however, increasing returns to scale, though helping, are not by

themselves sufficient to avoid doomsday. For details, see, e.g., Groth (2007).

16A similar problem has been investigated by Kamien and Schwartz (1978) and Just et

al. (2005), using somewhat different approaches.
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16.4.4 Summary on the DHSS model

Apart from a few remarks by Stiglitz, the focus of the fathers of the DHSS

model is on constant returns to scale; and, as in the simple Solow and Ram-

sey growth models, only exogenous technical progress is considered. For our

purposes we may summarize the DHSS results in the following way. Non-

renewable resources do not really matter seriously if the elasticity of substi-

tution between them and man-made inputs is above one. If not, however,

then:

(a) absent technical progress, if  = 1 sustainable per capita consump-

tion requires 1  3 and  = 0 = ; otherwise, declining per capita

consumption is inevitable and this is definitely the prospect, if   1;

(b) on the other hand, if there is enough resource-augmenting and labor-

augmenting technical progress, non-decreasing per capita consumption

and even growing per capita consumption may be sustained;

(c) population growth, implying more mouths to feed from limited nat-

ural resources, exacerbates the drag on growth implied by a declining

resource input; indeed, as seen from (16.15), the drag on growth is

3(+ )(1− 1) along a BGP

16.4.5 An extended DHSS model

The above discussion of sustainable economic development in the presence

of non-renewable resources was carried out on the basis of the original DHSS

model with only capital, labor, and a non-renewable resource as inputs.

In practice the issues of input substitution and technological change are

to a large extent interweaved into the question of substitutability of non-

renewable with renewable resources. A more natural point of departure for

the discussion may therefore be an extended DHSS model of the form:

 =  (    )  ≥ 0
̇ =  −  −   ≥ 0 0  0 given,

̇ = ()− 0  0 given,

̇ = − 0  0 given,Z ∞

0

 ≤ 0

where  is input of the renewable resource and  the corresponding stock,

while  is input of the non-renewable resource to which corresponds the
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stock . Only the non-renewable resource is subject to the constraint of a

finite upper bound on cumulative resource extraction.

Within such a framework a more or less gradual transition from use of

non-renewable energy forms to renewable energy forms (hydro-power, wind

energy, solar energy, biomass, and geothermal energy), likely speeded up

learning by doing as well as R&D, can be studied (see for instance Tahvonen

and Salo, 2001).

16.5 Endogenous technical change

The obvious next step is to examine how endogenizing technical change may

throw new light on the issues relating to non-renewable resources, in partic-

ular the visions (b) and (c). Because of the non-rival character of techni-

cal knowledge, endogenizing knowledge creation may have profound impli-

cations, in particular concerning point (c). Indeed, the relationship between

population growth and economic growth may be circumvented when endoge-

nous creation of ideas (implying a form of increasing returns to scale) is

considered.

16.5.1 A two-sector R&D-based model

We shall look at the economy from the perspective of a fictional social plan-

ner who cares about finding a resource allocation so as to maximize the

intertemporal utility function of a representative household subject to tech-

nical feasibility as given from the initial technology and initial resources.

In addition to cost-free resource extraction, there are two “production”

sectors, the manufacturing sector and the R&D sector. In the manufacturing

sector the aggregate production function is

 = 



 





 

      0 +  +  +  = 1 (16.16)

where is output of manufacturing goods, while , , and  are inputs

of capital, labor, a non-renewable resource, and land (a renewable resource),

respectively, per time unit at time  The amount of land is an exogenous

constant. Total factor productivity is 
 where the variable  is assumed

proportional to the stock of technical knowledge accumulated through R&D

investment. Due to this proportionality we can simply identify  with the

stock of knowledge at time .

Aggregate manufacturing output is used for consumption,  investment,

 in physical capital, and investment,  in R&D,

 +  +  = 
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Accumulation of capital occurs according to

̇ =  −  =  − −  −   ≥ 0 0  0 given,

(16.17)

where  is the (exogenous) rate of depreciation (decay) of capital.

In the R&D sector additions to the stock of technical knowledge are cre-

ated through R&D investment,  :

̇ =  −   ≥ 0 0  0 given (16.18)

We allow for a positive depreciation rate,  to take into account the possi-

bility that as technology advances, old knowledge becomes obsolete and then

over time gradually becomes useless in production.

Extraction of the non-renewable resource is again given by

̇ = − ≡ − 0  0 given, (16.19)

where  is the stock of the non-renewable resource (e.g., oil reserves) and

 is the depletion rate. Since we must have  ≥ 0 for all  there is a finite
upper bound on cumulative resource extraction:Z ∞

0

 ≤ 0 (16.20)

Finally, population (= labor force) grows according to

 = 0
  ≥ 0 0  0 given.

Uncertainty is ignored and the extraction activity involves no costs.

We see that the setup is elementarily related to the simple lab-equipment

model (Chapter 14) since by investing part of the manufacturing output

new knowledge is directly generated without intervention by researchers and

similar.17 Note also that there are no intertemporal knowledge-spillovers.

16.5.2 Analysis

We now skip the explicit dating of the variables where not needed for clarity.

The model has three state variables, the stock,  of physical capital, the

stock,  of non-renewable resources, and the stock,  of technical knowl-

edge. To simplify the dynamics, we will concentrate on the special case

17An interpretation is that part of the activity in the manufacturing sector is directly

R&D activity using the same technology (production function) as is used in the production

of consumption goods and capital goods.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



16.5. Endogenous technical change 301

 

  

 

  

  

  

Figure 16.3: Initial complete specialization followed by balanced growth.

 =  =  In this case, as we shall see, after an initial adjustment pe-

riod, the economy behaves in many respects similarly to a reduced-form AK

model.

Let us first consider efficient paths, i.e., paths such that aggregate con-

sumption can not be increased in some time interval without being decreased

in another time interval. The net marginal productivities of  and  are

equal if and only if −  =  −  i.e., if and only if

 = 

The initial stocks, 0 and 0 are historically given. Suppose 00  

as in Figure 16.3. Then, initially, the net marginal productivity of capital is

larger than that of knowledge, i.e., capital is relatively scarce. An efficient

economy will therefore for a while invest only in capital, i.e., there will be a

phase where  = 0 This phase of complete specialization lasts until  =

 a state reached in finite time, say at time ̄, cf. the figure. Hereafter,

there is investment in both assets so that their ratio remains equal to the

efficient ratio  forever. Similarly, if initially 00   then there will

be a phase of complete specialization in R&D, and after a finite time interval

the efficient ratio  =  is achieved and maintained forever.
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For   ̄ it is thus as if there were only one kind of capital, which we

may call “broad capital” and define as ̃ =  +  = ( + ) Indeed,

substitution of  =  and  = ̃(+ ) into (16.16) gives

 =


(+ )+
̃+ ≡ ̃̃ ̃ ≡ +  (16.21)

so that ̃+  +   1 Further, adding (16.18) and (16.17) gives

·
̃ = ̇+ ̇ =  − − ̃ (16.22)

where  is per capita consumption.

We now proceed with a model based on broad capital, using (16.21),

(16.22) and the usual resource depletion equation (16.19). Essentially, this

model amounts to an extended DHSS model allowing increasing returns to

scale, thereby offering a simple framework for studying endogenous growth

with essential non-renewable resources.

We shall focus on questions like:

1 Is sustainable development (possibly even growth) possible within the

model?

2 Can the utilitarian principle of discounted utility maximizing possibly

clash with a requirement of sustainability? If so, under what condi-

tions?

3 How can environmental policy be designed so as to enhance the prospects

of sustainable development or even sustainable economic growth?

Balanced growth

Log-differentiating (16.21) w.r.t.  gives the “growth-accounting equation”

 = ̃̃ + +  (16.23)

Hence, along a BGP we get

(1− ̃) +  = (̃+  − 1) (16.24)

Since   0 it follows immediately that:

Result (i) A BGP has   0 if and only if

(̃+  − 1)  0 or ̃  1 (16.25)
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Proof. Since   0 (*) implies (1 − ̃)  (̃ +  − 1) Hence, if
  0 either ̃  1 or (̃ ≤ 1 and (̃ +  − 1)  0) This proves “only

if”. The “if” part is more involved but follows from Proposition 2 in Groth

(2004). ¤

Result (i) tells us that endogenous growth is theoretically possible, if there

are either increasing returns to the capital-cum-labor input combined with

population growth or increasing returns to capital (broad capital) itself. At

least one of these conditions is required in order for capital accumulation to

offset the effects of the inescapable waning of resource use over time. Based

on Nordhaus (1992),  ≈ 02  ≈ 06  ≈ 01 and  ≈ 01 seem reasonable.
Given these numbers,

(i) semi-endogenous growth requires (++−1)  0 hence   020;

(ii) fully endogenous growth requires +   1 hence   080

We have defined fully endogenous growth to be present if the long-run

growth rate in per capita output is positive without the support of growth in

any exogenous factor. Result (i) shows that only if ̃  1 is fully endogenous

growth possible. Although the case ̃  1 has potentially explosive effects

on the economy, if ̃ is not too much above 1, these effects can be held back

by the strain on the economy imposed by the declining resource input.

In some sense this is “good news”: fully endogenous steady growth is the-

oretically possible and no knife-edge assumption is needed. As we have seen

in earlier chapters, in the conventional framework without non-renewable re-

sources, fully endogenous growth requires constant returns to the producible

input(s) in the growth engine. In our one-sector model the growth engine

is the manufacturing sector itself, and without the essential non-renewable

resource, fully endogenous growth would require the knife-edge condition

̃ = 1 (̃ being above 1 is excluded in this case, because it would lead to

explosive growth in a setting without some countervailing factor). When

non-renewable resources are an essential input in the growth engine, a drag

on the growth potential is imposed. To be able to offset this drag, fully

endogenous growth requires increasing returns to capital.

The “bad news” is, however, that even in combination with essential non-

renewable resources, an assumption of increasing returns to capital seems too

strong and too optimistic. A technology having ̃ just slightly above 1 can

sustain any per capita growth rate − there is no upper bound on .
18 This

appears overly optimistic.

This leaves us with semi-endogenous growth as the only plausible form

of endogenous growth (as long as  is not endogenous). Indeed, Result (i)

18This is shown in Groth (2004).
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indicates that semi-endogenous growth corresponds to the case 1−  ̃ ≤ 1
In this case sustained positive per capita growth driven by some internal

mechanism is possible, but only if supported by   0 that is, by growth in

an exogenous factor, here population size.

Growth policy and conservation

Result (i) is only about whether the technology as such allows a positive per

capita growth rate or not. What about the size of the growth rate? Can

the growth rate temporarily or perhaps permanently be affected by economic

policy? The simple growth-accounting relation (16.24) immediately shows:

Result (ii) Along a BGP, policies that decrease (increase) the depletion

rate  (and only such policies) will increase (decrease) the per capita

growth rate (here we presuppose ̃  1 the plausible case).

This observation is of particular interest in view of the fact that chang-

ing the perspective from exogenous to endogenous technical progress implies

bringing a source of numerous market failures to light. On the face of it,

the result seems to run against common sense. Does high growth not im-

ply fast depletion (high )? Indeed, the answer is affirmative, but with the

addition that exactly because of the fast depletion such high growth will

only be temporary − it carries the seeds to its own obliteration. For faster
sustained growth there must be sustained slower depletion. The reason for

this is that with protracted depletion, the rate of decline in resource input

becomes smaller. Hence, so does the drag on growth caused by this decline.

As a statement about policy and long-run growth, (ii) is a surprisingly

succinct conclusion. It can be clarified in the following way. For policy to

affect long-run growth, it must affect a linear differential equation linked to

the basic goods sector in the model. In the present framework the resource

depletion relation,

̇ = −
is such an equation. In balanced growth  = − ≡ − is constant,
so that the proportionate rate of decline in  must comply with, indeed be

equal to, that of  Through the growth accounting relation (16.23), given 

this fixes  and ̃ (equal in balanced growth), hence also  =  − .

The conventional wisdom in the endogenous growth literature is that

interest income taxes impede economic growth and investment subsidies pro-

mote economic growth. Interestingly, this need not be so when non-renewable

resources are an essential input in the growth engine (which is here the man-

ufacturing sector itself). At least, starting from a Cobb-Douglas aggregate
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production function as in (16.16), it can be shown that only those policies

that interfere with the depletion rate  in the long run (like a profits tax on

resource-extracting companies or a time-dependent tax on resource use) can

affect long-run growth. It is noteworthy that this long-run policy result holds

whether   0 or not and whether growth is exogenous, semi-endogenous

or fully endogenous.19 The general conclusion is that with non-renewable

resources entering the growth-generating sector in an essential way, conven-

tional policy tools receive a different role and there is a role for new tools

(affecting long-run growth through affecting the depletion rate).20

Introducing preferences

To be more specific we introduce household preferences and a social planner.

The resulting resource allocation will coincide with that of a decentralized

competitive economy if agents have perfect foresight and the government has

introduced appropriate subsidies and taxes. As in Stiglitz (1974a), let the

utilitarian social planner choose a path ( )
∞
=0 so as to optimize

0 =

Z ∞

0


1−

1− 


−   0 (16.26)

subject to the constraints given by technology, i.e., (16.21), (16.22), and

(16.19), and initial conditions. The parameter   0 is the (absolute) elas-

ticity of marginal utility of consumption (reflecting the strength of the desire

for consumption smoothing) and  is a constant rate of time preference.21

Using the Maximum Principle, the first-order conditions for this problem

lead to, first, the social planner’s Keynes-Ramsey rule,

 =
1


(


̃
−  − ) =

1


(̃



̃
−  − ) (16.27)

second, the social planner’s Hotelling rule,

()


=




(


̃
− ) = 




(̃



̃
− ) (16.28)

The Keynes-Ramsey rule says: as long as the net return on investment in

capital is higher than the rate of time preference, one should let current  be

19This is a reminder that the distinction between fully endogenous growth and semi-

endogenous growth is not the same as the distinction between policy-dependent and policy-

invariant growth.
20These aspects are further explored in Groth and Schou (2006).
21For simplicity we have here ignored (as does Stiglitz) that also environmental quality

should enter the utility function.
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low enough to allow positive net saving (investment) and thereby higher con-

sumption in the future. The Hotelling rule is a no-arbitrage condition saying

that the return (“capital gain”) on leaving the marginal unit of the resource

in the ground must equal the return on extracting and using it in produc-

tion and then investing the proceeds in the alternative asset (reproducible

capital).22

After the initial phase of complete specialization described above, we

have, due to the proportionality between and ̃ that  =  =

̃ = ̃̃ Notice that the Hotelling rule is independent of prefer-

ences; any path that is efficient must satisfy the Hotelling rule (as well as

the exhaustion condition lim→∞ () = 0).

Using the Cobb-Douglas specification, we may rewrite the Hotelling rule

as  −  = ̃̃ −  Along a BGP  =  =  +  and  = − so
that the Hotelling rule combined with the Ramsey rule gives

(1− ) +  = −  (16.29)

This linear equation in  and  combined with the growth-accounting

relationship (16.24) constitutes a linear two-equation system in the growth

rate and the depletion rate. The determinant of this system is  ≡ 1− ̃−
+ We assume   0 which seems realistic and is in any case necessary

(and sufficient) for stability.23 Then

 =
(̃+  +  − 1)− 


 and (16.30)

 =
[(̃+  − 1) − ]+ (1− ̃)


 (16.31)

To ensure boundedness from above of the utility integral (16.26) we need

the parameter restriction −   (1− ) which we assume satisfied for 
as given in (16.30).

Interesting implications are:

22After Hotelling (1931), who considered the rule in a market economy. Assuming

perfect competition, the real resource price is  =  and the real rate of interest is

 =  − . Then the rule takes the form ̇ = . If there are extraction costs at

rate ( ) then the rule takes the form ̇ −  =  , where  is the price of

the unextracted resource (whereas  =  + ).

It is another matter that the rise in resource prices and the predicted decline in resource

use have not yet shown up in the data (Krautkraemer 1998, Smil 2003); this may be due

to better extraction technology and discovery of new deposits. But in the long run, if

non-renewable resources are essential, this tendency inevitably will be reversed.
23As argued above, ̃  1 seems plausible. Generally,  is estimated to be greater than

one (see, e.g., Attanasio and Weber 1995); hence   0 The stability result as well as

other findings reported here are documented in Groth and Schou (2002).
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Result (iii) If there is impatience (  0), then even when a non-negative

 is technically feasible (i.e., (16.25) satisfied), a negative  can be

optimal and stable.

Result (iv) Population growth is good for economic growth. In its absence,

when   0 we get   0 along an optimal BGP; if  = 0  = 0

when  = 0.

Result (v) There is never a scale effect on the growth rate.

Result (iii) reflects that utility discounting and consumption smoothing

weaken the “growth incentive”.

Result (iv) is completely contrary to the conventional (Malthusian) view

and the learning from the DHSS model. The point is that two offsetting

forces are in play. On the one hand, higher  means more mouths to feed

and thus implies a drag on per capita growth (Malthus). On the other hand,

a growing labour force is exactly what is needed in order to exploit the

benefits of increasing returns to scale (anti-Malthus). And at least in the

present framework this dominates the first effect. This feature might seem

to be contradicted by the empirical finding that there is no robust correlation

between  and population growth in cross-country regressions (Barro and

Sala-i-Martin 2004, Ch. 12). However, the proper unit of observation in this

context is not the individual country. Indeed, in an internationalized world

with technology diffusion a positive association between  and  as in (16.30)

should not be seen as a prediction about individual countries, but rather as

pertaining to larger regions, perhaps the global economy. In any event, the

second part of Result (iv) is a dismal part − in view of the projected long-run
stationarity of world population (United Nations 2005).

A somewhat surprising result appears if we imagine (unrealistically) that

̃ is sufficiently above one to make  a negative number. If population

growth is absent,   0 is in fact needed for   0 along a BGP However,

  0 implies instability. Hence this would be a case of an instable BGP

with fully endogenous growth.24

As to Result (v), it is noteworthy that the absence of a scale effect on

growth holds for any value of ̃ including ̃ = 125

24Thus, if we do not require   0 in the first place, (iv) could be reformulated as:

existence of a stable optimal BGP with   0 requires   0. This is not to say that

reducing  from positive to zero renders an otherwise stable BGP instable. Stability-

instability is governed solely by the sign of  Given   0 letting  decrease from a level

above the critical value, (̃+  +  − 1) given from (16.30), to a level below, changes

 from positive to negative, i.e., growth comes to an end.
25More commonplace observations are that increased impatience leads to faster depletion
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A pertinent question is: are the above results just an artifact of the very

simplified reduced-form AK-style set-up applied here? The answer turns out

to be no. For models with a distinct research technology and intertemporal

knowledge spillovers, this is shown in Groth (2007).

16.6 Natural resources and the issue of limits

to economic growth

Two distinguished professors were asked by a journalist: Are there limits to

economic growth?

The answers received were:26

Clearly YES:

• A finite planet!
• The amount of cement, oil, steel, and water that we can use is limited!

Clearly NO:

• Human creativity has no bounds!
• The quality of wine, TV transmission of concerts, computer games, and
medical treatment knows no limits!

An aim of this chapter has been to bring to mind that it would be strange

if there were no limits to growth. So a better question is:

What determines the limits to economic growth?

The answer suggested is that these limits are determined by the capability

of the economic system to substitute limited natural resources by man-made

goods the variety and quality of which are expanded by creation of new ideas.

In this endeavour frontier countries, first the U.K. and Europe, next the

United States, have succeeded at a high rate for two and a half century. To

what extent this will continue in the future nobody knows. Some economists,

e.g. Gordon (2012), argue there is an enduring tendency to slowing down of

innovation and economic growth (the low-hanging fruits have been taken).

and lower growth (in the plausible case ̃  1) Further, in the log-utility case ( = 1) the

depletion rate  equals the effective rate of impatience, − .
26Inspired by Sterner (2008).
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Others, e.g. Brynjolfsson and McAfee (2014), disagree. They reason that the

potentials of information technology and digital communication are on the

verge of the point of ubiquity and flexible application. For these authors the

prospect is “The Second Machine Age” (the title of their book), by which

they mean a new innovative epoch where smart machines and new ideas are

combined and recombined - with pervasive influence on society.

16.7 Bibliographic notes

It is not always recognized that the research of the 1970s on macro implica-

tions of essential natural resources in limited supply already laid the ground-

work for a theory of endogenous and policy-dependent growth with natural

resources. Actually, by extending the DHSS model, Suzuki (1976), Robson

(1980) and Takayama (1980) studied how endogenous innovation may affect

the prospect of overcoming the finiteness of natural resources.

Suzuki’s (1976) article contains an additional model, involving a resource

externality. Interpreting the externality as a “greenhouse effect”, Sinclair

(1992, 1994) and Groth and Schou (2006) pursue this issue further. In the

latter paper a configuration similar to the model in Section 16.5 is stud-

ied. The source of increasing returns to scale is not intentional creation of

knowledge, however, but learning as a by-product of investing as in Arrow

(1962a) and Romer (1986). Empirically, the evidence furnished by, e.g., Hall

(1990) and Caballero and Lyons (1992) suggests that there are quantitatively

significant increasing returns to scale w.r.t. capital and labour or external

effects in US and European manufacturing. Similarly, Antweiler and Trefler

(2002) examine trade data for goods-producing sectors and find evidence for

increasing returns to scale.

Concerning Result (i), note that if some irreducibly exogenous element

in the technological development is allowed in the model by replacing the

constant  in (16.21) by  where  ≥ 0, then (16.25) is replaced by  +

(̃+−1)  0 or ̃  1 Both Stiglitz (1974a, p. 131) and Withagen (1990,

p. 391) ignore implicitly the possibility ̃  1 Hence, from the outset they

preclude fully endogenous growth.

16.8 Appendix

16.8.1 A. The CES function

The CES (Constant Elasticity of Substitution) function is used in consumer

theory as a specification of preferences and in production theory as a specifi-
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cation of a production function. Here we consider it as a production function.

It can be shown27 that if a neoclassical production function with CRS has

a constant elasticity of (factor) substitution different from one, it must be of

the form

 = 
£
 + (1− )

¤ 1
  (16.32)

where   and  are parameters satisfying   0, 0    1 and   1

 6= 0 This function has been used intensively in empirical studies and

is called a CES production function. For a given choice of measurement

units, the parameter  reflects efficiency and is thus called the efficiency

parameter. The parameters  and  are called the distribution parameter

and the substitution parameter, respectively. The restriction   1 ensures

that the isoquants are strictly convex to the origin. Note that if   0

the right-hand side of (16.32) is not defined when either  or  (or both)

equal 0 We can circumvent this problem by extending the domain of the

CES function and assign the function value 0 to these points when   0.

Continuity is maintained in the extended domain.

By taking partial derivatives in (16.32) and substituting back we get




= 

µ




¶1−
and




= (1− )

µ




¶1−
 (16.33)

where  = 
£
+ (1− )−

¤ 1
 and  = 

£
 + 1− 

¤ 1
  The mar-

ginal rate of substitution of  for  therefore is

 =



=
1− 


1−  0

Consequently,



=
1− 


(1− )−

where the inverse of the right-hand side is the value of  Substitut-

ing these expressions into the general definition of the elasticity of substitution

between capital and labor, evaluated at the point ()

̃() =




()

 |=̄ =
()




 |=̄

 (16.34)

gives

̃() =
1

1− 
≡  (16.35)

27See, e.g., Arrow et al. (1961).

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



16.8. Appendix 311

confirming the constancy of the elasticity of substitution, given (16.33). Since

  1   0 always A higher substitution parameter,  results in a higher

elasticity of substitution,  And  ≶ 1 for  ≶ 0 respectively.
Since  = 0 is not allowed in (16.32), at first sight we cannot get  = 1

from this formula. Yet,  = 1 can be introduced as the limiting case of (16.32)

when  → 0 which turns out to be the Cobb-Douglas function. Indeed, one

can show28 that, for fixed  and 


£
 + (1− )

¤ 1
 → 1− for  → 0

By a similar procedure as above we find that a Cobb-Douglas function always

has elasticity of substitution equal to 1; this is exactly the value taken by 

in (16.35) when  = 0. In addition, the Cobb-Douglas function is the only

production function that has unit elasticity of substitution everywhere.

Another interesting limiting case of the CES function appears when, for

fixed  and  we let  → −∞ so that  → 0 We get


£
 + (1− )

¤ 1
 → min() for  →−∞ (16.36)

So in this case the CES function approaches a Leontief production function,

the isoquants of which form a right angle, cf. Figure 16.4. In the limit there

is no possibility of substitution between capital and labor. In accordance

with this the elasticity of substitution calculated from (16.35) approaches

zero when  goes to −∞

Finally, let us consider the “opposite” transition. For fixed  and  we

let the substitution parameter rise towards 1 and get


£
 + (1− )

¤ 1
 →  [ + (1− )]  for  → 1

Here the elasticity of substitution calculated from (16.35) tends to ∞ and

the isoquants tend to straight lines with slope −(1 − ) In the limit,

the production function thus becomes linear and capital and labor become

perfect substitutes.

Figure 16.4 depicts isoquants for alternative CES production functions

and their limiting cases. In the Cobb-Douglas case,  = 1 the horizontal

and vertical asymptotes of the isoquant coincide with the coordinate axes.

When   1 the horizontal and vertical asymptotes of the isoquant belong

to the interior of the positive quadrant. This implies that both capital and

labor are essential inputs. When   1 the isoquant terminates in points

28For proofs of this and the further claims below, see Appendix E of Chapter 4 in Groth

(2014).
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Figure 16.4: Isoquants for the CES production function for alternative values of

 = 1(1− ).

on the coordinate axes. Then neither capital, nor labor are essential inputs.

Empirically there is not complete agreement about the “normal” size of the

elasticity of factor substitution for industrialized economies. The elasticity

also differs across the production sectors. A recent thorough econometric

study (Antràs, 2004) of U.S. data indicate the aggregate elasticity of substi-

tution to be in the interval (05 10).

The CES production function in intensive form

Dividing through by  on both sides of (16.32), we obtain the CES production

function in intensive form,

 ≡ 


= ( + 1− )

1
  (16.37)

where  ≡ . The marginal productivity of capital can be written

 =



= 

£
+ (1− )−

¤ 1−
 = 

³


´1−


which of course equals  in (16.33). We see that the CES function

violates either the lower or the upper Inada condition for , depending

on the sign of  Indeed, when   0 (i.e.,   1) then for  → 0 both 

and  approach an upper bound equal to 1 ∞ thus violating the

lower Inada condition for  (see the right-hand panel of Figure 2.3 in

Chapter 2). It is also noteworthy that in this case, for  →∞,  approaches

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



16.8. Appendix 313

y

k  

y  

0 (0 1)   

1/A   

k  
0 ( 1)    

1/A 

1/(1 )A   

1/(1 )A   

Figure 16.5: The CES production function for   1 (left panel) and   1 (right

panel).

an upper bound equal to (1 − )1  ∞. These features reflect the low
degree of substitutability when   0

When instead   0 there is a high degree of substitutability (  1).

Then, for  →∞ both  and  → 1  0 thus violating the upper

Inada condition for  (see the right-hand panel of Figure 16.5). It is

also noteworthy that for  → 0,  approaches a positive lower bound equal

to (1− )1  0. Thus, in this case capital is not essential. At the same

time  → ∞ for  → 0 (so the lower Inada condition for the marginal

productivity of capital holds).

The marginal productivity of labor is

 =



= (1− )( + 1− )(1−) ≡ ()

from (16.33).

Since (16.32) is symmetric in and  we get a series of symmetric results

by considering output per unit of capital as ≡  = 
£
+ (1− )()

¤1


In total, therefore, when there is low substitutability (  0) for fixed input

of either of the production factors, there is an upper bound for how much

an unlimited input of the other production factor can increase output. And

when there is high substitutability (  0) there is no such bound and an

unlimited input of either production factor take output to infinity.

The Cobb-Douglas case, i.e., the limiting case for  → 0 constitutes in

several respects an intermediate case in that all four Inada conditions are

satisfied and we have  → 0 for  → 0 and  →∞ for  →∞
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Generalizations

The CES production function considered above has CRS. By adding an elas-

ticity of scale parameter, , we get the generalized form

 = 
£
 + (1− )

¤ 
    0 (16.38)

In this form the CES function is homogeneous of degree  For 0    1

there are DRS, for  = 1 CRS, and for   1 IRS. If  6= 1 it may be

convenient to consider  ≡  1 = 1
£
 + (1− )

¤1
and  ≡ 

= 1( + 1− )1

The elasticity of substitution between  and  is  = 1(1−) whatever
the value of  So including the limiting cases as well as non-constant returns

to scale in the “family” of production functions with constant elasticity of

substitution, we have the simple classification displayed in Table 16.1.

Table 16.1 The family of production functions

with constant elasticity of substitution.

 = 0 0    1  = 1   1

Leontief CES Cobb-Douglas CES

Note that only for  ≤ 1 is (16.38) a neoclassical production function.
This is because, when   1 the conditions   0 and   0 do not

hold everywhere.

We may generalize further by assuming there are  inputs, in the amounts

1 2   Then the CES production function takes the form

 = 
£
11

 + 22
 + 


¤ 
    0 for all 

X


 = 1   0

(16.39)

In analogy with (16.34), for an -factor production function the partial elas-

ticity of substitution between factor  and factor  is defined as

 =




()

 |=̄


where it is understood that not only the output level but also all ,  6= , ,

are kept constant. Note that  =  In the CES case considered in (16.39),

all the partial elasticities of substitution take the same value, 1(1− )
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16.8.2 B. Balanced growth with an essential non-renewable

resource

The production side of the DHSS model with CES production function is

described by:

 = ̃ (   ) ̃  ≥ 0 (16.40)

̇ =  −  −   ≥ 0 0  0 given, (16.41)

̇ = − ≡ − 0  0 given, (16.42)

 = 0
  ≥ 0 (16.43)Z ∞

0

 ≤ 0 (16.44)

We will assume that the non-renewable resource is essential, i.e.,

 = 0 implies  = 0 (16.45)

From now we omit the dating of the time-dependent variables where not

needed for clarity. Recall that in the context of an essential non-renewable

resource, we define a balanced growth path (BGP for short) as a path along

which the quantities     and  are positive and change at constant

proportionate rates (some or all of which may be negative).

Lemma 1 Along a BGP the following holds: (a)  =   0; (b) (0) =

−(0) and
lim
→∞

 = 0 (16.46)

Proof Consider a BGP. (a) From (16.42),  = −; differentiating with
respect to time gives

̇ = −( − ) = 0

by definition of a BGP. Hence,  =  since   0 by definition. For any

constant  we have
R∞
0

 =
R∞
0

0
 If  ≥ 0 (16.44) would thus be

violated. Hence,   0 (b) With  = 0 in (16.42), we get ̇00 = −00
=  the last equality following from (a). Hence, 0 = −0 Finally, the
solution to (16.42) can be written  = 0

 Then, since  is a negative

constant,  → 0 for →∞ ¤
Define

 ≡ 


  ≡ 


 and  ≡ 


 (16.47)

We may write (16.42) as

 =  − −  (16.48)
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Similarly, by (16.42),

 ≡ − (16.49)

Lemma 2 Along a BGP,  =  = −  0 is constant and  = . If gross

saving is positive in some time interval, we have along the BGP in addition

that  =  , both constant, and that  and  are constant.

Proof Consider a BGP. Since  is constant by definition of a BGP,  must

also be constant in view of (16.49). Then, by Lemma 1,  =  = − is
constant and   0. Differentiating in (16.48) with respect to  gives ̇
= ̇ − ̇ = ( − ) −( − ) = 0 since  is constant along a BGP.

Dividing through by  which is positive along a BGP, and reordering gives

 −  = ( − )



 (16.50)

But this is a contradiction unless  = ; indeed, if  6=   then  − 
6=  −  at the same time as  =  → 0 if     and 

=  →∞ if     both cases being incompatible with (16.50) and the

presumed constancy of     and   hence constancy of both  − and
 −   So  =  along a BGP. Suppose gross saving is positive in some

time interval and that at the same time  6=  =   then (16.50) implies

 ≡ 1, i.e.,  =  for all  or gross saving = 0 for all  a contradiction.

Hence,  =  =   It follows by (16.47) that  and  are constant. ¤
Consider the case where the production function is neoclassical with CRS,

and technical progress is labor- and resource-augmenting:

 =  ( 2 3) (16.51)

2 = 2, 2 ≥ 0 3 = 3 3 ≥ 0

Let ̂ ≡ 2 and ̂ ≡ 3 Let   ̂ and ̂ denote the output elasticities

w.r.t.  ̂ and ̂ i.e.,

 ≡ 






 ̂ ≡

2





(2)
 ̂ ≡

3





(3)


Differentiating in (16.51) w.r.t.  and dividing through by  (as in growth-

accounting), we then have

 ≡ ̇


=  + ̂(2 + ) + ̂(3 + )

=  + ̂(2 + ) + (1−  − ̂)(3 + ) (16.52)
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the last equality being implied by the CRS property in (16.51).

Suppose the economy follows a BGP with positive gross saving. Then,

by Lemma 2,  =  and  = −  0 Hence, (16.52) can be written

(1− )( − (3 − )) = ̂(2 + − (3 − )) (16.53)

Consider the special case where  is CES:

 =
³
1


 + 2(2)

 + 3(3)

´1

 1 2 3  0
X


 = 1   1

(16.54)

As we know from Appendix A, for  = 0 the CES formula can be interpreted

as the Cobb-Douglas formula (16.13). Applying (16.33) from Appendix A,

the output elasticities w.r.t.  ̂ and ̂ are

 = 1

µ




¶−
 ̂ = 2

µ


2

¶−
 and ̂ = 3

µ


3

¶−


(16.55)

respectively.

Lemma 3 Let  ≡  and  ≡  Given (16.43) and (16.54), along a

BGP with positive gross saving,  and ̂ are constant, and  =  = 2

In turn, such a BGP exists if and only if

 = 3 − (2 + )  0 (16.56)

Proof Consider a BGPwith positive gross saving. By Lemma 2, 0   = −
is constant and  ≡  is constant, hence so is  The left hand side of

(16.53) is thus constant and so must the right-hand side therefore be. Suppose

that, contrary to (16.56),  6= 3−(2+). Then constancy of the right-hand
of (16.53) requires that ̂ is constant. In turn, by (16.55), this requires that

(2) ≡ 2 is constant. Consequently,  = 2 =  where the second

equality is implied by the claim in Lemma 2 that along a BGP with positive

gross saving in some time interval,  =   As  is constant, it follows

that  =  ≡  + = 2+ Inserting this into (16.52) and rearranging,

we get

(1−  − ̂)(2 + ) = (1−  − ̂)(3 − )

where the last equality follows from  = −. Isolating  gives the equality
in (16.56). Thereby, our assumption  6= 3 − (2 + ) leads to a contradic-

tion. Hence, given (16.43) and (16.54), if a BGP with positive gross saving

exists, then  = 3 − (2 + )  0. This shows the necessity of (16.56).
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The sufficiency of (16.56) follows by construction, starting by fixing  and

thereby − in accordance with (16.56) and moving “backward”, showing
consistency with (16.52) for  =  = 2 + . ¤
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