
Chapter 4

Skill-biased technical change.

Balanced growth theorems

This chapter is both an alternative and a supplement to the pages 60-64

in Acemoglu, where the concepts of neutral technical change and balanced

growth, including Uzawa’s theorem, are discussed.

Since “neutral” technical change should be seen in relation to “biased”

technical change, Section 1 below introduces the concept of “biased” tech-

nical change. Like regarding neutral technical change, also regarding biased

technical change there exist three different definitions, Hicks’, Harrod’s, and

what the literature has dubbed “Solow’s”. Below we concentrate on Hick’s

definition − with an application to the role of technical change for the evo-
lution of the skill premium. So the focus is on the production factors skilled

and unskilled labor rather than capital and labor. While regarding capital

and labor it is Harrod’s classifications that are most used in macroeconomics,

regarding skilled and unskilled labor it is Hicks’.

The remaining sections discuss the concept of balanced growth and present

three fundamental propositions about balanced growth. In view of the gen-

erality of the propositions, they have a broad field of application. Our propo-

sitions 1 and 2 are slight extensions of part 1 and 2, respectively, of what

Acemoglu calls Uzawa’s Theorem I (Acemoglu, 2009, p. 60). Our Proposi-

tion 3 essentially corresponds to what Acemoglu calls Uzawa’s Theorem II

(Acemoglu, 2009, p. 63).
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CHAPTER 4. SKILL-BIASED TECHNICAL CHANGE.

BALANCED GROWTH THEOREMS

4.1 The rising skill premium

4.1.1 Skill-biased technical change in the sense of Hicks:

An example

Let aggregate output be produced through a differentiable three-factor pro-

duction function ̃ :

 = ̃ (1 2 )

where is capital input, 1 is input of unskilled labor (also called blue-collar

labor below), and 2 is input of skilled labor. Suppose technological change

is such that the production function can be rewritten

̃ (1 2 ) =  ((1 2 )) (4.1)

where the “nested” function (1 2 ) represents input of a “human cap-

ital” aggregate. Let  be CRS-neoclassical w.r.t.  and  and let 

be CRS-neoclassical w.r.t. (1 2) Finally, let   0. So “technical

change” amounts to “technical progress”.

In equilibrium under perfect competition in the labor markets the relative

wage, often called the “skill premium”, will be

2

1
=

2

1
=

2

1
=

2(1 2 )

1(1 2 )
=

2(1 21 )

1(1 21 )
 (4.2)

where we have used Euler’s theorem (saying that if  is homogeneous of

degree one in its first two arguments, then the partial derivatives of  are

homogeneous of degree zero w.r.t. these arguments).

Time is continuous (nevertheless the time argument of a variable,  is in

this section written as a subscript ). Hicks’ definitions are now: If for all

21  0


³
2(121)

1(121)

´


2
1

constant
T 0 then technical change is⎧⎨⎩ skill-biased in the sense of Hicks,

skill-neutral in the sense of Hicks.

blue collar-biased in the sense of Hicks,

(4.3)

respectively.

In the US the skill premium (measured by the wage ratio for college

grads vis-a-vis high school grads) has had an upward trend since 1950 (see
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4.1. The rising skill premium 59

for instance Jones and Romer, 2010).1 If in the same period the relative

supply of skilled labor had been roughly constant, by (17.3) in combination

with (17.2), a possible explanation could be that technological change has

been skill-biased in the sense of Hicks. In reality, in the same period also the

relative supply of skilled labor has been rising (in fact even faster than the

skill premium). Since in spite of this the skill premium has risen, it suggests

that the extend of “skill-biasedness” has been even stronger.

Wemay alternatively put it this way. As the function is CRS-neoclassical

w.r.t. 1 and 2 we have 22  0 and 12  0 cf. Chapter 2. Hence, by

(17.2), a rising 21 without technical change would imply a declining skill

premium. That the opposite has happened must, within our simple model,

be due to (a) there has been technical change, and (b) technical change

has favoured skilled labor (which means that technical change has been skill-

biased in the sense of Hicks).

An additional aspect of the story is that skill-biasedness helps explain

the observed increase in the relative supply of skilled labor. If for a constant

relative supply of skilled labor, the skill premium is increasing, this increase

strengthens the incentive to go to college. Thereby the relative supply of

skilled labor (reflecting the fraction of skilled labor in the labor force) tends

to increase.

4.1.2 Capital-skill complementarity

An additional potential source of a rising skill premium is capital-skill com-

plementarity. Let the aggregate production function be

 = ̃ (1 2 ) =  (11 22) = (+11)
(22)

1− 0    1

where 1 and 2 are technical coefficients that may be rising over time.

In this production function capital and unskilled labor are perfectly substi-

tutable (the partial elasticity of factor substitution between them is +∞) On
the other hand there is direct complementarity between capital and skilled

labor, i.e., 2(2)  0

Under perfect competition the skill premium is

2

1
=

2

2
=
( +11)

(1− )(22)
−2

( +11)−11(22)1−
(4.4)

=
1− 



µ
 +11

22

¶
2

1


1On the other hand, over the years 1915 - 1950 the skill premium had a downward

trend (Jones and Romer, 2010).
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Here, if technical change is absent (1 and 2 constant), a rising capital

stock will, for fixed 1 and 2 raise the skill premium.

A more realistic scenario is, however, a situation with an approximately

constant real interest rate, cf. Kaldor’s stylized facts. We have, again by

perfect competition,




= ( +11)

−1(22)
1− = 

µ
 +11

22

¶−1
=  +  (4.5)

where  is the real interest rate at time  and  is the (constant) capital

depreciation rate. For  =  a constant, (17.5) gives

 +11

22
=

µ
 + 



¶− 1
1−
≡  (4.6)

a constant. In this case, (17.4) shows that capital-skill complementarity is

not sufficient for a rising skill premium. A rising skill premium requires that

technical change brings about a rising 21. So again an observed rising

skill premium, along with a more or less constant real interest rate, suggests

that technical change is skill-biased.

We may rewrite (4.6) as



22
= − 11

22


where the conjecture is that 11(22) → 0 for  → ∞ The analysis

suggests the following story. Skill-biased technical progress generates rising

productivity as well as a rising skill premium. The latter induces more and

more people to go to college. The rising level of education in the labor force

raises productivity further. This is a basis for further capital accumulation,

continuing to replace unskilled labor, and so on.

In particular since the early 1980s the skill premium has been sharply

increasing in the US (see Acemoglu, p. 498). This is also the period where

ICT technologies took off.

4.2 Balanced growth and constancy of key ra-

tios

The focus now shifts to homogeneous labor vis-a-vis capital.

We shall state general definitions of the concepts of “steady state” and

“balanced growth”, concepts that are related but not identical. With respect
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4.2. Balanced growth and constancy of key ratios 61

to “balanced growth” this implies a minor deviation from the way Acemoglu

briefly defines it informally on his page 57. The main purpose of the present

chapter is to lay bare the connections between these two concepts as well

as their relation to the hypothesis of Harrod-neutral technical progress and

Kaldor’s stylized facts.

4.2.1 The concepts of steady state and balanced growth

A basic equation in many one-sector growth models for a closed economy in

continuous time is

̇ =  −  =  −  −  ≡  −  (4.7)

where  is aggregate capital,  aggregate gross investment,  aggregate

output,  aggregate consumption,  aggregate gross saving (≡  −), and

 ≥ 0 is a constant physical capital depreciation rate.
Usually, in the theoretical literature on dynamic models, a steady state is

defined in the following way:

Definition 3 A steady state of a dynamic model is a stationary solution to

the fundamental differential equation(s) of the model.

Or briefly: a steady state is a stationary point of a dynamic process.

Let us take the Solow growth model as an example. Here gross saving

equals  where  is a constant, 0    1 Aggregate output is given by a

neoclassical production function,  with CRS and Harrod-neutral technical

progress:  =  () =  (̃ 1) ≡ (̃) where  is the labor

force,  is the level of technology, and ̃ ≡ () is the (effective) capital

intensity. Moreover,  0  0 and  00  0 Solow assumes () = (0) and

() = (0), where  ≥ 0 and  ≥ 0 are the constant growth rates of the
labor force and technology, respectively. By log-differentiating ̃ w.r.t. 2

we end up with the fundamental differential equation (“law of motion”) of

the Solow model: ·
̃ = (̃)− ( +  + )̃ (4.8)

Thus, in the Solow model, a (non-trivial) steady state is a ̃∗  0 such that,

if ̃ = ̃∗ then
·
̃ = 0 In passing we note that, by (4.8), such a ̃∗ must

satisfy the equation (̃∗)̃∗ = ( +  + ) and in view of  00  0 it is

unique if it exists.

The most common definition in the literature of balanced growth for an

aggregate economy is the following:

2Or by directly using the fraction rule, see Appendix A to Chapter 3.
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Definition 4 A balanced growth path is a path ()∞=0 along which the
quantities  and  are positive and grow at constant rates (not necessarily

positive and not necessarily the same).

Acemoglu, however, defines (Acemoglu, 2009, p. 57) balanced growth

in the following way: “balanced growth refers to an allocation where output

grows at a constant rate and capital-output ratio, the interest rate, and factor

shares remain constant”. My problem with this definition is that it mixes

growth of aggregate quantities with income distribution aspects (interest rate

and factor income shares). And it is not made clear what is meant by the

output-capital ratio if the relative price of capital goods is changing over

time. So I stick to the definition above which is quite standard and is known

to function well in many different contexts.

Note that in the Solow model (as well as in many other models) we have

that if the economy is in a steady state, ̃ = ̃∗ then the economy features
balanced growth. Indeed, a steady state of the Solow model implies by

definition that ̃ ≡ () is constant. Hence  must grow at the same

constant rate as  namely  +  In addition,  = (̃∗) in a steady
state, showing that also  must grow at the constant rate  +  And so

must then  = (1 − ) So in a steady state of the Solow model the path

followed by ()∞=0 is a balanced growth path.
As we shall see in the next section, in the Solow model (and many other

models) the reverse also holds: if the economy features balanced growth,

then it is in a steady state. But this equivalence between steady state and

balanced growth does not hold in all models.

4.2.2 A general result about balanced growth

An interesting fact is that, given the dynamic resource constraint (4.7), we

have always that if there is balanced growth with positive gross saving, then

the ratios  and  are constant (by “always” is meant: indepen-

dently of how saving is determined and of how the labor force and technology

evolve). And also the other way round: as long as gross saving is positive,

constancy of the  and  ratios is enough to ensure balanced growth.

So balanced growth and constancy of key ratios are essentially equivalent.

This is a very practical general observation. And since Acemoglu does not

state any balanced growth theorem at this general level, we shall do it here,

together with a proof. Letting  denote the growth rate of the (positively

valued) variable  i.e.,  ≡ ̇ we claim:

Proposition 1 (the balanced growth equivalence theorem). Let ()∞=0
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4.2. Balanced growth and constancy of key ratios 63

be a path along which ,  and  ≡  −  are positive for all  ≥ 0
Then, given the accumulation equation (4.7), the following holds:

(i) if there is balanced growth, then  =  =   and the ratios 

and  are constant;

(ii) if  and  are constant, then  and  grow at the same

constant rate, i.e., not only is there balanced growth, but the growth

rates of  and  are the same.

Proof Consider a path ()∞=0 along which ,  and  ≡  − 

are positive for all  ≥ 0 (i) Assume there is balanced growth. Then, by

definition,     and  are constant. Hence, by (4.7), we have that  =

 +  is constant, implying

 =   (*)

Further, since  =  + 

 =
̇


=

̇


+

̇


= 




+ 




= 




+ 




(by (*))

= 



+ 

 − 


=




( − ) +   (**)

Now, let us provisionally assume that  6=   Then (**) gives




=

 − 

 − 
 (***)

which is a constant since    and  are constant. Constancy of 

requires that  =   hence, by (***),  = 1 i.e.,  =  In view

of  =  + , however, this outcome contradicts the given condition that

  0 Hence, our provisional assumption and its implication, (***), are

falsified. Instead we have  = . By (**), this implies  =  =   but

now without the condition  = 1 being implied. It follows that  and

 are constant.

(ii) Suppose  and  are constant. Then  =  = , so that

 is a constant. We now show that this implies that  is constant.

Indeed, from (4.7),  = 1− so that also  is constant. It follows

that  =  =   so that  is constant. By (4.7),




=

̇ + 


=  + 

so that  is constant. This, together with constancy of  and 

implies that also  and  are constant. ¤
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Remark. It is part (i) of the proposition which requires the assumption   0

for all  ≥ 0 If  = 0 we would have  = − and  ≡  −  =  hence

 =  for all  ≥ 0 Then there would be balanced growth if the common
value of  and  had a constant growth rate. This growth rate, however,

could easily differ from that of Suppose  = 1−  =  and  = 

( and  constants). Then we would have  =  = −+(1−) which
could easily be strictly positive and thereby different from  = − ≤ 0 so
that (i) no longer holds. ¤

The nice feature is that this proposition holds for any model for which

the simple dynamic resource constraint (4.7) is valid. No assumptions about

for example CRS and other technology aspects or about market form are

involved. Note also that Proposition 1 suggests a link from balanced growth

to steady state. And such a link is present in for instance the Solow model.

Indeed, by (i) of Proposition 1, balanced growth implies constancy of 

which in the Solow model implies that (̃)̃ is constant. In turn, the latter

is only possible if ̃ is constant, that is, if the economy is in steady state.

There exist cases, however, where this equivalence does not hold (some

open economy models and some models with embodied technological change,

see Groth et al., 2010). Therefore, it is recommendable always to maintain

a distinction between the terms steady state and balanced growth.

4.3 The crucial role of Harrod-neutrality

Proposition 1 suggests that if one accepts Kaldor’s stylized facts (see Chapter

1) as a characterization of the past century’s growth experience, and if one

wants a model consistent with them, one should construct the model such

that it can generate balanced growth. For a model to be capable of generating

balanced growth, however, technological progress must be of the Harrod-

neutral type (i.e., be labor-augmenting), at least in a neighborhood of the

balanced growth path. For a fairly general context (but of course not as

general as that of Proposition 1), this was shown already by Uzawa (1961).

We now present a modernized version of Uzawa’s contribution.

Let the aggregate production function be

 () = ̃ (() () )   0 (4.9)

where  is a constant that depends on measurement units. The only tech-

nology assumption needed is that ̃ has CRS w.r.t. the first two arguments

(̃ need not be neoclassical for example). As a representation of technical
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progress, we assume ̃  0 for all  ≥ 0 (i.e., as time proceeds, un-

changed inputs result in more and more output). We also assume that the

labor force evolves according to

() = (0) (4.10)

where  is a constant. Further, non-consumed output is invested and so (4.7)

is the dynamic resource constraint of the economy.

Proposition 2 (Uzawa’s balanced growth theorem) Let  = ( () () ())∞=0,
where 0  ()   () for all  ≥ 0 be a path satisfying the capital accumu-
lation equation (4.7), given the CRS-production function (4.9) and the labor

force path in (4.10). Then:

(i) a necessary condition for this path to be a balanced growth path is that

along the path it holds that

 () = ̃ (() () ) = ̃ (() ()() 0) (4.11)

where () =  with  ≡  − ;

(ii) for any   0 such that there is a    +  +  with the property

that the production function ̃ in (4.9) allows an output-capital ratio

equal to  at  = 0 (i.e., ̃ (1 ̃−1 0) =  for some real number ̃  0),

a sufficient condition for the path P to be a balanced growth path with

output-capital ratio , is that the technology can be written as in (4.11)

with () = .

Proof (i)3 Suppose the path ( ()() ())∞=0 is a balanced growth path.
By definition,  and  are then constant, so that () = (0) and

 () =  (0)  We then have

 ()−  =  (0) = ̃ ((0) (0) 0) = ̃ (()− ()− 0) (*)

where we have used (4.9) with  = 0 In view of the precondition that ()

≡  ()−()  0 we know from (i) of Proposition 1, that  is constant

so that  =  . By CRS, (*) then implies

 () = ̃ (() − () − 0) = ̃ (() ( −)() 0)

We see that (4.11) holds for () =  with  ≡  − 

3This part draws upon Schlicht (2006), who generalized a proof in Wan (1971, p. 59)

for the special case of a constant saving rate.
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(ii) Suppose (4.11) holds with () =  Let   0 be given such that

there is a    + +  with the property that

̃ (1 ̃−1 0) =  (**)

for some constant ̃  0 Our strategy is to prove the claim in (ii) by con-

struction of a path  = ( ()() ())∞=0 which satisfies it. We let 
be such that the saving-income ratio is a constant  ≡ ( +  + ), i.e.,

 ()−() ≡ () =  () for all  ≥ 0 Inserting this, together with  () =
(̃())()(), where (̃()) ≡ ̃ (̃() 1 0) and ̃() ≡ ()(()())

into (4.7), we get the Solow equation (4.8). Hence ̃() is constant if and

only if ̃() satisfies the equation (̃())̃() = ( +  + ) ≡  By (**)

and the definition of  the required value of ̃() is ̃ which is thus the

steady-state for the constructed Solow equation. Letting (0) satisfy (0)

= ̃(0) where  = (0) we thus have ̃(0) = (0)((0)(0)) = ̃ So

that the initial value of ̃() equals the steady state value. It now follows

that ̃() = ̃ for all  ≥ 0 and so  ()() = (̃())̃() = (̃)̃ = 

for all  ≥ 0 In addition, () = (1− ) () so that () () is constant

along the path  By (ii) of Proposition 1 now follows that the path  is a

balanced growth path, as was to be proved. ¤

The form (4.11) indicates that along a balanced growth path, technical

progress must be purely “labor augmenting”, that is, Harrod-neutral. It is in

this case convenient to define a new CRS function, by  (() ()())

≡ ̃ (() ()() 0) Then (i) of the proposition implies that at least along

the balanced growth path, we can rewrite the production function this way:

 () = ̃ (() (0)() ) =  (() ()()) (4.12)

where (0) =  () = (0) with  ≡  − 

It is important to recognize that the occurrence of Harrod-neutrality says

nothing about what the source of technological progress is. Harrod-neutrality

should not be interpreted as indicating that the technological progress em-

anates specifically from the labor input. Harrod-neutrality only means that

technical innovations predominantly are such that not only do labor and cap-

ital in combination become more productive, but this happens to manifest

itself at the aggregate level in the form (4.12).4

What is the intuition behind the Uzawa result that for balanced growth to

be possible, technical progress must have the purely labor-augmenting form?

4For a CRS Cobb-Douglas production function with technological progress, Harrod-

neutrality is present whenever the output elasticity w.r.t capital (often denoted ) is

constant over time.
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First, notice that there is an asymmetry between capital and labor. Capital

is an accumulated amount of non-consumed output. In contrast, in simple

macro models labor is a non-produced production factor which (at least in

the context of (4.10)) grows in an exogenous way. Second, because of CRS,

the original formulation, (4.9), of the production function implies that

1 = ̃ (
()

 ()

()

 ()
 ) (4.13)

Now, since capital is accumulated non-consumed output, it tends to inherit

the trend in output such that () () must be constant along a balanced

growth path (this is what Proposition 1 is about). Labor does not inherit the

trend in output; indeed, the ratio () () is free to adjust as time proceeds.

When there is technical progress (̃  0) along a balanced growth path,

this progress must manifest itself in the form of a changing () () in (13.5)

as  proceeds, precisely because () () must be constant along the path.

In the “normal” case where ̃  0 the needed change in () () is a

fall (i.e., a rise in  ()()) This is what (13.5) shows. Indeed, the fall in

() () must exactly offset the effect on ̃ of the rising  when there is a

fixed capital-output ratio.5 It follows that along the balanced growth path,

 ()() is an increasing implicit function of  If we denote this function

() we end up with (4.12) with specified properties ( and ).

The generality of Uzawa’s theorem is noteworthy. The theorem assumes

CRS, but does not presuppose that the technology is neoclassical, not to

speak of satisfying the Inada conditions.6 And the theorem holds for exoge-

nous as well as endogenous technological progress. It is also worth mentioning

that the proof of the sufficiency part of the theorem is constructive. It pro-

vides a method to construct a hypothetical balanced growth path (BGP from

now).7

A simple implication of the Uzawa theorem is the following. Interpreting

the () in (4.11) as the “level of technology”, we have:

COROLLARY Along a BGP with positive gross saving and the technology

level, () growing at the rate  output grows at the rate + while labor

productivity,  ≡  and consumption per unit of labor,  ≡  grow

at the rate 

5This way of presenting the intuition behind the Uzawa result draws upon Jones and

Scrimgeour (2008).
6Many accounts of the Uzawa theorem, including Jones and Scrimgeour (2008), presume

a neoclassical production function, but the theorem is much more general.
7Part (ii) of Proposition 2 is left out in Acemoglu’s book.
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Proof That  =  +  follows from (i) of Proposition 2. As to the growth

rate of labor productivity we have

 =
 (0) 

(0)
= (0)( −) = (0)

Finally, by Proposition 1, along a BGP with   0  must grow at the same

rate as  ¤
We shall now consider the implication of Harrod-neutrality for the income

shares of capital and labor when the technology is neoclassical and markets

are perfectly competitive.

4.4 Harrod-neutrality and the functional in-

come distribution

There is one facet of Kaldor’s stylized facts we have so far not related to

Harrod-neutral technical progress, namely the long-run “approximate” con-

stancy of both the income share of labor,  and the rate of return to

capital. At least with neoclassical technology, profit maximizing firms, and

perfect competition in the output and factor markets, these properties are

inherent in the combination of constant returns to scale, balanced growth,

and the assumption that the relative price of capital goods (relative to con-

sumption goods) is constant over time. The latter condition holds in models

where the capital good is nothing but non-consumed output, cf. (4.7).8

To see this, we start out from a neoclassical CRS production function

with Harrod-neutral technological progress,

 () =  (() ()()) (4.14)

With () denoting the real wage at time  in equilibrium under perfect

competition the labor income share will be

()()

 ()
=

 ()

()
()

 ()
=

2(() ()())()()

 ()
 (4.15)

In this simple model, without natural resources, (gross) capital income equals

non-labor income,  () − ()() Hence, if () denotes the (net) rate of

return to capital at time , then

() =
 ()− ()()− ()

()
 (4.16)

8The reader may think of the “corn economy” example in Acemoglu, p. 28.
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Denoting the (gross) capital income share by () we can write this ()

(in equilibrium) in three ways:

() ≡  ()− ()()

 ()
=
(() + )()

 ()


() =
 (() ()())− 2(() ()())()()

 ()
=

1(() ()())()

 ()


() =

 ()

()
()

 ()
 (4.17)

where the first row comes from (4.16), the second from (4.14) and (4.15), the

third from the second together with Euler’s theorem.9 Comparing the first

and the last row, we see that in equilibrium

 ()

()
= () + 

In this condition we recognize one of the first-order conditions in the rep-

resentative firm’s profit maximization problem under perfect competition,

since () +  can be seen as the firm’s required gross rate of return.10

In the absence of uncertainty, the equilibrium real interest rate in the

bond market must equal the rate of return on capital, () And () +  can

then be seen as the firm’s cost of disposal over capital per unit of capital per

time unit, consisting of interest cost plus capital depreciation.

Proposition 3 (factor income shares and rate of return under balanced

growth) Let the path (()  () ())∞=0 be a BGP in a competitive economy
with the production function (4.14) and with positive saving. Then, along the

BGP, the () in (4.17) is a constant,  ∈ (0 1). The labor income share
will be 1− and the (net) rate of return on capital will be  = −  where

 is the constant output-capital ratio along the BGP.

Proof By CRS we have  () =  (() ()()) = ()() (̃() 1)

≡ ()()(̃()) In view of part (i) of Proposition 2, by balanced growth,

 ()() is some constant, . Since  ()() = (̃())̃() and  00  0
this implies ̃() constant, say equal to ̃∗ But  ()() =  0(̃()) which

9From Euler’s theorem, 1 + 2 =  () when  is homogeneous of degree

one
10With natural resources, say land, entering the set of production factors, the formula,

(4.16), for the rate of return to capital should be modified by subtracting land rents from

the numerator.
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then equals the constant  0(̃∗) along the BGP. It then follows from (4.17)

that () =  0(̃∗) ≡  Moreover, 0    1 where 0   follows from

 0  0 and   1 from the fact that  =  = (̃∗)̃∗   0(̃∗) in view
of  00  0 and (0) ≥ 0 Then, by the first equality in (4.17), ()() ()
= 1− () = 1− . Finally, by (4.16), the (net) rate of return on capital is

 = (1− ()() ()) ()()−  =  −  ¤

This proposition is of interest by displaying a link from balanced growth

to constancy of factor income shares and the rate of return, that is, some

of the “stylized facts” claimed by Kaldor. Note, however, that although the

proposition implies constancy of the income shares and the rate of return,

it does not determine them, except in terms of  and  But both  and,

generally,  are endogenous and depend on ̃∗11 which will generally be
unknown as long as we have not specified a theory of saving. This takes us

to theories of aggregate saving, for example the simple Ramsey model, cf.

Chapter 8 in Acemoglu’s book.

4.5 What if technological change is embod-

ied?

In our presentation of technological progress above we have implicitly as-

sumed that all technological change is disembodied. And the way the propo-

sitions 1, 2, and 3, are formulated assume this.

As noted in Chapter 2, disembodied technological change occurs when new

technical knowledge advances the combined productivity of capital and labor

independently of whether the workers operate old or new machines. Consider

again the aggregate dynamic resource constraint (4.7) and the production

function (4.9):

̇() = ()− () (4.18)

 () = ̃ (() () ) ̃   0 (4.19)

Here  ()−() is aggregate gross investment, () For a given level of ()
the resulting amount of new capital goods per time unit (̇()+()), mea-

sured in efficiency units, is independent of when this investment occurs. It is

thereby not affected by technological progress. Similarly, the interpretation

of ̃  0 in (4.19) is that the higher technology level obtained as time

proceeds results in higher productivity of all capital and labor. Thus also

11As to  there is of course a trivial exception, namely the case where the production

function is Cobb-Douglas and  therefore is a given parameter.
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firms that have only old capital equipment benefit from recent advances in

technical knowledge. No new investment is needed to take advantage of the

recent technological and organizational developments.12

In contrast, we say that technological change is embodied, if taking ad-

vantage of new technical knowledge requires construction of new investment

goods. The newest technology is incorporated in the design of newly pro-

duced equipment; and this equipment will not participate in subsequent

technological progress. Whatever the source of new technical knowledge,

investment becomes an important bearer of the productivity increases which

this new knowledge makes possible. Without new investment, the potential

productivity increases remain potential instead of being realized.

As also noted in Chapter 2, we may represent embodied technological

progress (also called investment-specific technological change) by writing cap-

ital accumulation in the following way,

̇() = ()()− () (4.20)

where () is gross investment at time  and () measures the “quality”

(productivity) of newly produced investment goods. The increasing level of

technology implies increasing () so that a given level of investment gives

rise to a greater and greater additions to the capital stock,  measured

in efficiency units. As in our aggregate framework,  capital goods can be

produced at the same minimum cost as one consumption good, we have · =
1 where  is the equilibrium price of capital goods in terms of consumption

goods. So embodied technological progress is likely to result in a steady

decline in the relative price of capital equipment, a prediction confirmed by

the data (see, e.g., Greenwood et al., 1997).

This raises the question how the propositions 1, 2, and 3 fare in the case

of embodied technological progress. The answer is that a generalized version

of Proposition 1 goes through. Essentially, we only need to replace (4.7) by

(13.13) and interpret  in Proposition 1 as the value of the capital stock,

i.e., we have to replace  by ̃ = 

But the concept of Harrod-neutrality no longer fits the situation with-

out further elaboration. Hence to obtain analogies to Proposition 2 and

Proposition 3 is a more complicated matter. Suffice it to say that with em-

bodied technological progress, the class of production functions that are con-

sistent with balanced growth is smaller than with disembodied technological

progress.

12In the standard versions of the Solow model and the Ramsey model it is assumed that

all technological progress has this form - for no other reason than that this is by far the

simplest case to analyze.
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4.6 Concluding remarks

In the Solow model as well as in many other models with disembodied techno-

logical progress, a steady state and a balanced growth path imply each other.

Indeed, they are in that model, as well as many others, two sides of the same

process. There exist exceptions, however, that is, cases where steady state

and a balanced growth are not equivalent (some open economy models and

some models with embodied technical change). So the two concepts should

be held apart.13

Note that the definition of balanced growth refers to aggregate variables.

At the same time as there is balanced growth at the aggregate level, structural

change may occur. That is, a changing sectorial composition of the economy

is under certain conditions compatible with balanced growth (in a generalized

sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,

2001, and Acemoglu, 2009, Chapter 20).

In view of the key importance of Harrod-neutrality, a natural question is:

has growth theory uncovered any endogenous tendency for technical progress

to converge to Harrod-neutrality? Fortunately, in his Chapter 15 Acemoglu

outlines a theory about a mechanism entailing such a tendency, the theory of

“directed technical change”. Jones (2005) suggests an alternative mechanism.
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Chapter 5

Growth accounting and the

concept of TFP: Some warnings

5.1 Introduction

This chapter discusses the concepts of Total Factor Productivity, TFP, and

TFP growth, and ends up with three warnings regarding uncritical use of

them.

First, however, we should provide a precise definition of the TFP level

which is in fact a tricky concept. Unfortunately, Acemoglu (p. 78) does

not make a clear distinction between TFP level and TFP growth. Moreover,

Acemoglu’s point of departure (p. 77) assumes a priori that the way the pro-

duction function is time-dependent can be represented by a one-dimensional

index, () The TFP concept and the applicability of growth accounting

are, however, not limited to this case.

For convenience, we treat time as continuous (although the timing of the

variables is indicated merely by a subscript).1

5.2 TFP level and TFP growth

Let  denote aggregate output (value added in fixed prices) at time  in a

sector or the economy as a whole. Suppose  is determined by the function

 =  (  ) (5.1)

1I thank Niklas Brønager for useful discussions related to this chapter.
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where is an aggregate input of physical capital and an index of quality-

adjusted labor input.2 The “quality-adjustment” of the input of labor (man-

hours per year) aims at taking educational level and work experience into

account. In fact, both output and the two inputs are aggregates of het-

erogeneous elements. The involved conceptual and measurement difficulties

are huge and there are different opinions in the growth accounting literature

about how to best deal with them. Here we ignore these problems. The

third argument in (5.1) is time,  indicating that the production function

 (·  ·  ) is time-dependent. Thus “shifts in the production function”, due
to changes in efficiency and technology (“technical change” for short), can

be taken into account. We treat time as continuous and assume that  is

a neoclassical production function. When the partial derivative of  w.r.t.

the third argument is positive, i.e.,   0 technical change amounts

to technical progress. We consider the economy from a purely supply-side

perspective.3

We shall here concentrate on the fundamentals of TFP and TFP growth.

These can in principle be described without taking the heterogeneity and

changing quality of the labor input into account. Hence we shall from now

on ignore this aspect and simplifying assume that labor is homogeneous and

labor quality is constant. So (5.1) is reduced to the simpler case,

 =  (  ) (5.2)

where  is the number of man-hours per year. As to measurement of

, some adaptation of the perpetual inventory method
4 is typically used,

with some correction for under-estimated quality improvements of invest-

ment goods in national income accounting. The output measure is (or at

least should be) corrected correspondingly, also for under-estimated quality

improvements of consumption goods.

2Natural resources (land, oil wells, coal in the ground, etc.) constitute a third primary

production factor. The role of this factor is in growth accounting often subsumed under

.
3Sometimes in growth accounting the left-hand side variable,  in (5.2) is the gross

product rather than value added. Then non-durable intermediate inputs should be taken

into account as a third production factor and enter as an additional argument of ̃ in

(5.2). Since non-market production is difficult to measure, the government sector is usually

excluded from  in (5.2). Total Factor Productivity is by some authors called Multifactor

Productivity and abbreviated MFP.
4Cf. Section 2.2 in Chapter 2.
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5.2.1 TFP growth

The notion of Total Factor Productivity at time  TFP is intended to

indicate a level of productivity. Nevertheless there is a tendency in the

literature to evade a direct definition of this level and instead go straight

away to a decomposition of output growth. Let us start the same way here

but not forget to come back to the issue about what can be meant by the

level of TFP.

The growth rate of a variable  at time  will be denoted . We take

the total derivative w.r.t.  in (5.2) to get

̇ = (  )̇ + (  )̇ + (  ) · 1
Dividing through by  gives

 ≡ ̇


=
1



h
(  )̇ + (  )̇ + (  ) · 1

i
=

(  )


 +

(  )


 +

(  )



≡  +  +
(  )


 (5.3)

where  and  are shorthands for (  ) ≡ ()

 ()
and (  )

≡ ()

 ()
 respectively, that is, the partial output elasticities w.r.t. the

two production factors, evaluated at the factor combination ( ) at time

 Finally, (  ) ≡ , that is, the partial derivative w.r.t. the

third argument of the function  , evaluated at the point (  )

The equation (5.3) is the basic growth-accounting relation, showing how

the output growth rate can be decomposed into the “contribution” from

growth in each of the inputs and a residual. The TFP growth rate is defined

as the residual

TFP, ≡  − ( + ) =
(  )


 (5.4)

So the TFP growth rate is what is left when from the output growth rate is

subtracted the “contribution” from growth in the factor inputs weighted by

the output elasticities w.r.t. these inputs. This is sometimes interpreted as

reflecting that part of the output growth rate which is explained by technical

progress. One should be careful, however, not to identify a descriptive ac-

counting relationship with deeper causality. Without a complete model, at

most one can say that the TFP growth rate measures that fraction of output

growth that is not directly attributable to growth in the capital and labor

inputs. So:
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The TFP growth rate can be interpreted as reflecting the “direct

contribution” to current output growth from current technical

change (in a broad sense including learning by doing and organi-

zational improvement).

Let us consider how the actual measurement of TFP, can be carried out.

The output elasticities w.r.t. capital and labor,  and  will, under

perfect competition and absence of externalities and of increasing returns

to scale, equal the income shares of capital and labor, respectively. Time

series for these income shares and for  ,  and  hence also for  

and , can be obtained (directly or with some adaptation) from national

income accounts. This allows straightforward measurement of the residual,

TFP, 
5

The decomposition in (5.4) was introduced already by Solow (1957). Since

the TFP growth rate appears as a residual, it is sometimes called the Solow

residual. As a residual it may reflect the contribution of many things, some

wanted (current technical innovation in a broad sense including organiza-

tional improvement), others unwanted (such as varying capacity utilization,

omitted inputs, measurement errors, and aggregation bias).

5.2.2 The TFP level

Now let us consider the level of TFP, that “something” for which we have

calculated its growth rate without yet having defined what it really is. But

knowing the growth rate of TFP for all  in a certain time interval, we in fact

have a differential equation in the TFP level of the form () = ()()

namely:

(TFP) = TFP, ·TFP
The solution of this simple linear differential equation is6

TFP = TFP0
 
0
TFP,  (5.5)

For a given initial value TFP0  0 (which may be normalized to 1 if de-

sired), the time path of TFP is determined by the right-hand side of (5.5).

Consequently:

The TFP level at time  can interpreted as reflecting the cumula-

tive “direct contribution” to output since time 0 from cumulative

technical change since time 0.

5Of course, data are in discrete time. So to make actual calculations we have to translate

(5.4) into discrete time. The weights  and  can then be estimated by two-years

moving averages of the factor income shares as shown in Acemoglu (2009, p. 79).
6See Appendix B of Chapter 3 in these lecture notes or Appendix B to Acemoglu.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



5.3. The case of Hicks-neutrality* 79

Why do we say “direct contribution”? The reason is that the cumulative

technical change since time 0 may also have an indirect effect on output,

namely via affecting the output elasticities w.r.t. capital and labor,  and

 Through this channel cumulative technical change affects the role of

input growth for output growth. This possible indirect effect over time of

technical change is not included in the TFP concept.

To clarify the matter we will compare the TFP calculation under Hicks-

neutral technical change with that under other forms of technical change.

5.3 The case of Hicks-neutrality*

In the case of Hicks neutrality, by definition, technical change can be repre-

sented by the evolution of a one-dimensional variable,  and the production

function in (5.2) can be specified as

 =  (  ) =  ( ) (5.6)

Here the TFP level is at any time, , identical to the level of if we normalize

the initial values of both  and TFP to be the same, i.e., TFP0 = 0  0.

Indeed, calculating the TFP growth rate, (5.4), on the basis of (5.6) gives

TFP, =
(  )


=

̇ ( )

 ( )
=

̇



≡  (5.7)

where the second equality comes from the fact that  and  are kept fixed

when the partial derivative of  w.r.t.  is calculated. The formula (5.5) now

gives

TFP = 0 · 
 
0
, = 

The nice feature of Hicks neutrality is thus that we can write

TFP =
 (  )

 (  0)
=

 ( )

0 ( )
=  (5.8)

using the normalization 0 = 1 That is:

Under Hicks neutrality, current TFP appears as the ratio be-

tween the current output level and the hypothetical output level

that would have resulted from the current inputs of capital and

labor in case of no technical change since time 0.

So in the case of Hicks neutrality the economic meaning of the TFP level

is straightforward. The reason is that under Hicks neutrality the output

elasticities w.r.t. capital and labor,  and  are independent of technical

change.
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5.4 The case of absence of Hicks-neutrality*

The above very intuitive interpretation of TFP is only valid under Hicks-

neutral technical change. Neither under general technical change nor even

under Harrod- or Solow-neutral technical change (unless the production func-

tion is Cobb-Douglas so that both Harrod and Solow neutrality imply Hicks-

neutrality), will current TFP appear as the ratio between the current output

level and the hypothetical output level that would have resulted from the

current inputs of capital and labor in case of no technical change since time

0.

To see this, let us return to the general time-dependent production func-

tion in (5.2). Let  denote the ratio between the current output level at

time  and the hypothetical output level,  (  0) that would have ob-

tained with the current inputs of capital and labor in case of no change in

the technology since time 0, i.e.,

 ≡  (  )

 (  0)
 (5.9)

So  can be seen as a factor of joint-productivity growth from time 0 to

time  evaluated at the time- input combination.

If this  should always indicate the level of TFP at time , the growth

rate of  should equal the growth rate of TFP. Generally, it does not,

however. Indeed, defining ( ) ≡  (  0) by the rule for the time

derivative of fractions7, we have

 ≡ ̃ (  )

 (  )
− ( )

( )

=
1



h
(  )̇ + (  )̇ + (  ) · 1

i
− 1

( )

h
( )̇ +( )̇

i
= (  ) + (  ) +

(  )


−((  0) + (  0)) (5.10)

= ((  )− (  0))  + ((  )− (  0)) + TFP,

6= TFP, generally,

where TFP, is given in (5.4). Unless the partial output elasticities w.r.t.

capital and labor, respectively, are unaffected by technical change, the con-

clusion is that TFP will differ from our  defined in (5.9). So:

7See Appendix A to Chapter 3 of these lecture notes.
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In the absence of Hicks neutrality, current TFP does not gener-

ally appear as the ratio between the current output level and the

hypothetical output level that would have resulted from the cur-

rent inputs of capital and labor in case of no technical change

since time 0.

A closer look at  vs. TFP

As  in (5.9) is the time- output arising from the time- inputs relative to

the fictional time-0 output from the same inputs, we consider  along with

TFP as two alternative joint-productivity indices. From (5.10) we see that

TFP, =  −((  )− (  0)) −((  )−(  0))

So the growth rate of TFP equals the growth rate of the joint-productivity

index  corrected for the cumulative impact of technical change since time 0

on the direct contribution to time- output growth from time- input growth.

This impact comes about when the output elasticities w.r.t. capital and la-

bor, respectively, are affected by technical change, that is, when (  )

6= (  0) and/or (  ) 6= (  0)

Under Hicks-neutral technical change there will be no correction because

the output elasticities are independent of technical change. In this case TFP

coincides with the index  In the absence of Hicks-neutrality the two indices

differ. This is why we in Section 2.2 characterized the TFP level as the

cumulative “direct contribution” to output since time 0 from cumulative

technical change, thus excluding the possible indirect contribution coming

about via the potential effect of technical change on the output elasticities

w.r.t. capital and labor and thereby on the contribution to output from input

growth.

Given that the joint-productivity index  is the more intuitive joint-

productivity measure, why is TFP the more popular measure? There are at

least two reasons for this. First, it can be shown that the TFP measure has

more convenient balanced growth properties. Second,  is more difficult to

measure. To see this we substitute (5.3) into (5.10) to get

 =  − ((  0) + (  0)) (5.11)

The relevant output elasticities, (  0)≡ (0)

 (0)
and (  0)

≡ (0)

 (0)
 are hypothetical constructs, referring to the technology as it

was at time 0, but with the factor combination observed at time , not at time

0. The nice thing about the Solow residual is that under the assumptions

of perfect competition and absence of externalities, it allows measurement
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by using data on prices and quantities alone, that is, without knowledge

of the production function. To evaluate  , however, we need estimates

of the hypothetical output elasticities, (  0) and (  0) This

requires knowledge about how the output elasticities depend on the factor

combination and time, respectively, that is, knowledge about the production

function.

Now to the warnings concerning application of the TFP measure.

5.5 Three warnings

Balanced growth at the aggregate level, hence Harrod neutrality, seems to

characterize the growth experience of the UK and US over at least a century

(Kongsamut et al., 2001; Attfield and Temple, 2010). At the same time

the aggregate elasticity of factor substitution is generally estimated to be

significantly less than one (see, e.g., Antras, 2004). This amounts to rejection

of the Cobb-Douglas specification of the aggregate production function and

so, at the aggregate level, Harrod neutrality rules out Hicks neutrality.

Warning 1 Since Hicks-neutrality is empirically doubtful at the aggre-

gate level, TFP can often not be identified with the simple intuitive joint-

productivity measure  defined in (5.9) above.

Warning 2 When Harrod neutrality obtains, relative TFP growth rates

across sectors or countries can be quite deceptive.

Suppose there are  countries and that country  has the aggregate pro-

duction function

 =  ()( )  = 1 2  

where  () is a neoclassical production function with CRS and  is the level

of labor-augmenting technology which, for simplicity, we assume shared by

all the countries (these are open and “close” to each other). So technical

progress is Harrod-neutral. Let the growth rate of  be a constant   0

Many models imply that ̃ ≡ () tends to a constant, ̃
∗
 , in the long

run, which we assume is also the case here. Then, for →∞  ≡ 

≡ ̃ where ̃ → ̃∗ and  ≡  ≡ ̃ where ̃ → ̃∗ =  ()(̃∗ );
here  () is the production function on intensive form. So in the long run 
and  tend to  = .
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Formula (5.4) then gives the TFP growth rate of country  in the long

run as

TFP =  − (∗ 
+ (1− ∗ )) =  −  − ∗ (

− )

=  − ∗  = (1− ∗ ) (5.12)

where ∗ is the output elasticity w.r.t. capital, 
()0(̃)̃ ()(̃) evaluated

at ̃ = ̃∗  Under labor-augmenting technical progress, the TFP growth rate
thus varies negatively with the output elasticity w.r.t. capital (the capital

income share under perfect competition). Owing to differences in product

and industry composition, the countries have different ∗ ’s. In view of (5.12),
for two different countries,  and  we get





→
⎧⎨⎩
∞ if ∗  ∗ 
1 if ∗ = ∗ 
0 if ∗  ∗ 

(5.13)

for  → ∞8 Thus, in spite of long-run growth in the essential variable,

 being the same across the countries, their TFP growth rates are very

different. Countries with low ∗ ’s appear to be technologically very dynamic
and countries with high ∗ ’s appear to be lagging behind. It is all due to the
difference in  across countries; a higher  just means that a larger fraction

of  =  =  becomes “explained” by  in the growth accounting (5.12),

leaving a smaller residual. And the level of  has nothing to do with technical

progress.

We conclude that comparison of TFP levels across countries or time may

misrepresent the intuitive meaning of productivity and technical progress

when output elasticities w.r.t. capital differ and technical progress is Harrod-

neutral (even if technical progress were at the same time Hicks-neutral as is

the case with a Cobb-Douglas specification). It may be more reasonable to

just compare levels of  across countries and time.

Warning 3 Growth accounting is - as the name says - just about account-

ing and measurement. So do not confuse growth accounting with causality

in growth analysis. To talk about causality we need a theoretical model sup-

ported by the data. On the basis of such a model we can say that this or that

set of exogenous factors through the propagation mechanisms of the model

cause this or that phenomenon, including economic growth. In contrast, con-

sidering the growth accounting identity (5.3) in itself, none of the terms have

8If  is Cobb-Douglas with output elasticity w.r.t. capital equal to , the result

in (5.12) can be derived more directly by first defining  = 1− , then writing the

production function in the Hicks-neutral form (5.6), and finally use (5.7).
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priority over the others w.r.t. a causal role. And there are important omitted

variables. There are simple illustrations in Exercises III.1 and III.2.

In a complete model with exogenous technical progress, part of  will

be induced by this technical progress. If technical progress is endogenous

through learning by investing, as in Arrow (1962), there is mutual causa-

tion between  and technical progress. Yet another kind of model might

explain both technical progress and capital accumulation through R&D, cf.

the survey by Barro (1999).
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