Economic Growth Note on Exercise III.6a)
04.03.2016

We read:

> Hint 2. Consider the ratio $x(t) \equiv A_{i}(t) / A_{w}(t)$, a measure of (better to say: a reverse measure of) country i 's lag relative to the frontier; express the growth rate of x in terms of x, ξ_{i}, and g; this should give you a linear first-order differential equation with constant coefficients; then apply the brief math manual in the appendix.

Question received from a student: How can we derive the growth rate of x in terms of x, ξ_{i}, and g ? Since this first step is important for the remainder of III. 6 and even for III. 7 , here is my answer.

Recall the rule that the growth rate (in continuous time) of a ratio is the growth rate of the numerator minus the growth rate of the denominator, a rule which we get by "take logs and time derivatives" (Jones, App. A.1.4, or LN, Ch. 3, App. A). Indeed,
$x(t) \equiv A_{i}(t) / A_{w}(t)$ implies $\ln x(t)=\ln A_{i}(t)-\ln A_{w}(t)$. Now take the derivative w.r.t. time on both sides to get:

$$
\begin{aligned}
\frac{\dot{x}}{x} & =\frac{\dot{A}_{i}}{A_{i}}-\frac{\dot{A}_{w}}{A_{w}} \quad \text { (this is a manifestation of the ratio rule) } \\
& =\xi_{i} \frac{A_{w}}{A_{i}}-g=\xi_{i} x^{-1}-g \Rightarrow \\
\dot{x} & =\xi_{i}-g x
\end{aligned}
$$

which is a linear differential equation in x.

