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2.7 Appendix

A. Strict quasiconcavity

Consider a function f : A → R, where A is a convex set, A ⊆ Rn.30 Given a
real number a, if f(x) = a, the upper contour set is defined as {x ∈ A| f(x) ≥ a}
(the set of input bundles that can produce at least the amount a of output). The
function f(x) is called quasiconcave if its upper contour sets, for any constant
a, are convex sets. If all these sets are strictly convex, f(x) is called strictly
quasiconcave.

Average and marginal costs To show that (2.14) holds with n production
inputs, n = 1, 2,. . . , we derive the cost function of a firm with a neoclassical
production function, Y = F (X1, X2, . . . , Xn). Given a vector of strictly positive
input prices w = (w1, . . . , wn) >> 0, the firm faces the problem of finding a cost-
minimizing way to produce a given positive output level Ȳ within the range of
F. The problem is

min
n∑
i=1

wiXi s.t. F (X1, . . . , Xn) = Ȳ and Xi ≥ 0, i = 1, 2, . . . , n.

An interior solution, X∗ = (X∗1 , . . . , X
∗
n), to this problem satisfies the first-order

conditions λF ′i (X
∗) = wi, where λ is the Lagrange multiplier, i = 1, . . . , n.31 Since

F is neoclassical and thereby strictly quasiconcave in the interior of Rn+, the first-
order conditions are not only necessary but also suffi cient for the vector X∗ to be
a solution, andX∗ will be unique32 so that we can write it as a function, X∗(Ȳ ) =
(X∗1 (Ȳ ), . . . , X∗n(Ȳ )). This gives rise to the cost function C(Ȳ ) =

∑n
i=1wiX

∗
i (Ȳ ).

So average cost is C(Ȳ )/Ȳ . We find marginal cost to be

C ′(Ȳ ) =
n∑
i=1

wiX
∗′
i (Ȳ ) = λ

n∑
i=1

F ′i (X
∗)X∗′i (Ȳ ) = λ,

where the third equality comes from the first-order conditions, and the last equal-
ity is due to the constraint F (X∗(Ȳ )) = Ȳ , which, by taking the total derivative
on both sides, gives

∑n
i=1 F

′
i (X

∗)X∗′i (Ȳ ) = 1. Consequently, the ratio of average
to marginal costs is

C(Ȳ )/Ȳ

C ′(Ȳ )
=

∑n
i=1wiX

∗
i (Ȳ )

λȲ
=

∑n
i=1 F

′
i (X

∗)X∗i (Ȳ )

F (X∗)
,

30Recall that a set S is said to be convex if x, y ∈ S and λ ∈ [0, 1] implies λx+ (1− λ)y ∈ S.
31Since in this section we use a bit of vector notation, we exceptionally mark first-order partial

derivatives by a prime in order to clearly distinguish from the elements of a vector (so we write
F ′i instead of our usual Fi).
32See Sydsaeter et al. (2008), pp. 74, 75, and 125.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



2.7. Appendix 57

which in analogy with (2.13) is the elasticity of scale at the point X∗. This proves
(2.14).

Suffi cient conditions for strict quasiconcavity The claim (iii) in Section
2.1.3 was that a continuously differentiable two-factor production function F (K,L)
with CRS, satisfying FK > 0, FL > 0, and FKK < 0, FLL < 0, will automatically
also be strictly quasi-concave in the interior of R2 and thus neoclassical.
To prove this, consider a function of two variables, z = f(x, y), that is twice

continuously differentiable with f1 ≡ ∂z/∂x > 0 and f2 ≡ ∂z/∂y > 0, everywhere.
Then the equation f(x, y) = a, where a is a constant, defines an isoquant,
y = g(x), with slope g′(x) = −f1(x, y)/f2(x, y). Substitute g(x) for y in this
equation and take the derivative w.r.t. x. By straightforward calculation we find

g′′(x) = −f
2
1 f22 − 2f1f2f21 + f 2

2 f11

f 3
2

(2.53)

If the numerator is negative, then g′′(x) > 0; that is, the isoquant is strictly
convex to the origin. And if this holds for all (x, y), then f is strictly quasi-
concave in the interior of R2. A suffi cient condition for a negative numerator is
that f11 < 0, f22 < 0 and f21 ≥ 0. All these conditions, including the last three
are satisfied by the given function F. Indeed, FK , FL, FKK , and FLL have the
required signs. And when F has CRS, F is homogeneous of degree 1 and thereby
FKL > 0, see Appendix B. Hereby claim (iii) in Section 2.1.3 is proved.

B. Homogeneous production functions

The claim (iv) in Section 2.1.3 was that a two-factor production function with
CRS, satisfying FK > 0, FL > 0, and FKK < 0, FLL < 0, has always FKL > 0,
i.e., there is direct complementarity between K and L. This assertion is implied
by the following observations on homogeneous functions.
Let Y = F (K, L) be a twice continuously differentiable production function

with FK > 0 and FL > 0 everywhere. Assume F is homogeneous of degree h > 0,
that is, for all possible (K,L) and all λ > 0, F (λK, λL) = λhF (K,L). According
to Euler’s theorem (see Math Tools) we then have:

CLAIM 1 For all (K, L), where K > 0 and L > 0,

KFK(K,L) + LFL(K,L) = hF (K,L). (2.54)

Euler’s theorem also implies the inverse:

CLAIM 2 If (2.54) is satisfied for all (K, L), where K > 0 and L > 0, then
F (K,L) is homogeneous of degree h.
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Partial differentiation w.r.t. K and L, respectively, gives, after ordering,

KFKK + LFLK = (h− 1)FK (2.55)

KFKL + LFLL = (h− 1)FL. (2.56)

In (2.55) we can substitute FLK = FKL (by Young’s theorem). In view of Claim
2 this shows:

CLAIM 3 The marginal products, FK and FL, considered as functions of K and
L, are homogeneous of degree h− 1.

We see also that when h ≥ 1 and K and L are positive, then

FKK < 0 implies FKL > 0, (2.57)

FLL < 0 implies FKL > 0. (2.58)

For h = 1 this establishes the direct complementarity result, (iv) in Section 2.1.3,
to be proved. A by-product of the derivation is that also when a neoclassical
production function is homogeneous of degree h > 1 (which implies IRS), does
direct complementarity between K and L hold.

Remark. The terminology around complementarity and substitutability may eas-
ily lead to confusion. In spite of K and L exhibiting direct complementarity when
FKL > 0, K and L are still substitutes in the sense that cost minimization for a
given output level implies that a rise in the price of one factor results in higher
demand for the other factor.

The claim (v) in Section 2.1.3 was the following. Suppose we face a CRS
production function, Y = F (K,L), that has positive marginal products, FK and
FL, everywhere and isoquants, K = g(L), satisfying the condition g′′(L) > 0
everywhere (i.e., F is strictly quasi-concave). Then the partial second derivatives
must satisfy the neoclassical conditions:

FKK < 0, FLL < 0. (2.59)

The proof is as follows. The first inequality in (2.59) follows from (2.53) combined
with (2.55). Indeed, for h = 1, (2.55) and (2.56) imply FKK = −FLKL/K
= −FKLL/K and FKL = −FLLL/K, i.e., FKK = FLL(L/K)2 (or, in the notation
of Appendix A, f22 = f11(x/y)2), which combined with (2.53) gives the conclusion
FKK < 0, when g′′ > 0. The second inequality in (2.59) can be verified in a similar
way.
Note also that for h = 1 the equations (2.55) and (2.56) entail

KFKK = −LFLK and KFKL = −LFLL, (2.60)
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respectively. By dividing the left- and right-hand sides of the first of these equa-
tions with those of the second we conclude that FKKFLL = F 2

KL in the CRS case.
We see also from (2.60) that, under CRS, the implications in (2.57) and (2.58)
can be turned round.
Finally, we asserted in § 2.1.1 that when the neoclassical production function

Y = F (K, L) is homogeneous of degree h, then the marginal rate of substitution
between the production factors depends only on the factor proportion k ≡ K/L.
Indeed,

MRSKL(K,L) =
FL(K,L)

FK(K,L)
=
Lh−1FL(k, 1)

Lh−1FK(k, 1)
=
FL(k, 1)

FK(k, 1)
≡ mrs(k), (2.61)

where k ≡ K/L. The result (2.61) follows even if we only assume F (K,L) is
homothetic. When F (K,L) is homothetic, by definition we can write F (K, L) ≡
ϕ(G(K,L)), where G is homogeneous of degree 1 and ϕ is an increasing function.
In view of this, we get

MRSKL(K,L) =
ϕ′GL(K,L)

ϕ′GK(K,L)
=
GL(k, 1)

GK(k, 1)
,

where the last equality is implied by Claim 3 for h = 1.

C. The Inada conditions combined with CRS

We consider a neoclassical production function, Y = F (K,L), exhibiting CRS.
Defining k ≡ K/L, we can then write Y = LF (k, 1) ≡ Lf(k), where f(0) ≥
0, f ′ > 0, and f ′′ < 0.

Essential inputs In Section 2.1.2 we claimed that the upper Inada condition
forMPL together with CRS implies that without capital there will be no output:

F (0, L) = 0 for any L > 0.

In other words: in this case capital is an essential input. To prove this claim, let
K > 0 be fixed and let L → ∞. Then k → 0, implying, by (2.16) and (2.18),
that FL(K,L) = f(k)− f ′(k)k → f(0). But from the upper Inada condition for
MPL we also have that L→∞ implies FL(K,L)→ 0. It follows that

the upper Inada condition for MPL implies f(0) = 0. (2.62)

Since under CRS, for any L > 0, F (0, L) = LF (0, 1) ≡ Lf(0), we have hereby
shown our claim.
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Similarly, we can show that the upper Inada condition for MPK together
with CRS implies that labor is an essential input. Consider the output-capital
ratio x ≡ Y/K. When F has CRS, we get x = F (1, `) ≡ g(`), where ` ≡ L/K,
g′ > 0, and g′′ < 0. Thus, by symmetry with the previous argument, we find that
under CRS, the upper Inada condition for MPK implies g(0) = 0. Since under
CRS F (K, 0) = KF (1, 0) ≡ Kg(0), we conclude that the upper Inada condition
for MPK together with CRS implies

F (K, 0) = 0 for any K > 0,

that is, without labor, no output.

Suffi cient conditions for output going to infinity when either input goes
to infinity Here our first claim is that when F exhibits CRS and satisfies the
upper Inada condition for MPL and the lower Inada condition for MPK, then

lim
L→∞

F (K,L) =∞ for any K > 0.

To prove this, note that Y can be written Y = Kf(k)/k, since K/k = L. Here,

lim
k→0

f(k) = f(0) = 0,

by continuity and (2.62), presupposing the upper Inada condition for MPL.
Thus, for any given K > 0,

lim
L→∞

F (K,L) = K lim
L→∞

f(k)

k
= K lim

k→0

f(k)− f(0)

k
= K lim

k→0
f ′(k) =∞,

by the lower Inada condition for MPK. This verifies the claim.
Our second claim is symmetric with this and says: when F exhibits CRS and

satisfies the upper Inada condition for MPK and the lower Inada condition for
MPL, then

lim
K→∞

F (K,L) =∞ for any L > 0.

The proof is analogue. So, in combination, the four Inada conditions imply, under
CRS, that output has no upper bound when either input goes to infinity.

D. Concave neoclassical production functions

Two claims made in Section 2.4 are proved here.

CLAIM 1 When a neoclassical production function F (K,L) is concave, it has
non-increasing returns to scale everywhere.
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Proof. We consider a concave neoclassical production function, F . Let x =
(x1, x2) = (K,L). Then we can write F (K,L) as F (x). By concavity, for all pairs
x0,x ∈ R2

+, we have F (x0) − F (x) ≤
∑2

i=1 F
′
i (x)(x0

i − xi). In particular, for
x0 = (0, 0), since F (x0) = F (0, 0) = 0, we have

−F (x) ≤ −
2∑
i=1

F ′i (x)xi. (2.63)

Suppose x ∈R2
++. Then F (x) > 0 in view of F being neoclassical so that FK > 0

and FL > 0. From (2.63) we now find the elasticity of scale to be

2∑
i=1

F ′i (x)xi/F (x) ≤ 1. (2.64)

In view of (2.13) and (2.12), this implies non-increasing returns to scale every-
where. �
CLAIM 2 When a neoclassical production function F (K,L) is strictly concave,
it has decreasing returns to scale everywhere.

Proof. The argument is analogue to that above, but in view of strict concavity
the inequalities in (2.63) and (2.64) become strict. This implies that F has DRS
everywhere. �

2.8 Exercises

2.1
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