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where β ≡ (1 + ρ)−1. The function x = g(c1, c2) ≡ (c1−θ
1 + βc1−θ

2 )1/(1−θ) is
homogeneous of degree one and the function G(x) ≡ (1/(1 − θ))x1−θ − (1 +
β)/(1− θ) is an increasing function, given θ > 0, θ 6= 1. Case 2: θ = 1. Here we
start from U(c1, c2) = ln c1 + β ln c2. This can be written

U(c1, c2) = (1 + β) ln
[
(c1c

β
2 )1/(1+β)

]
,

where x = g(c1, c2) = (c1c
β
2 )1/(1+β) is homogeneous of degree one and G(x) ≡

(1 + β) lnx is an increasing function. �

D. General formulas for the elasticity of factor substitution

We here prove (4.30) and (4.31). Given the neoclassical production function
F (K,L), the slope of the isoquant F (K,L) = Ȳ at the point (K̄, L̄) is

dK

dL |Y=Ȳ
= −MRS = −FL(K̄, L̄)

FK(K̄, L̄)
. (4.40)

We consider this slope as a function of the value of k ≡ K/L as we move along
the isoquant. The derivative of this function is

−dMRS

dk |Y=Ȳ
= −dMRS

dL |Y=Ȳ

dL

dk |Y=Ȳ

= −(FL)2FKK − 2FKFLFKL + (FK)2FLL
F 3
K

dL

dk |Y=Ȳ
(4.41)

by (??) of Chapter 2. In view of L ≡ K/k we have

dL

dk |Y=Ȳ
=
k dK
dk |Y=Ȳ

−K

k2
=
k dK
dL |Y=Ȳ

dL
dk |Y=Ȳ

−K

k2
=
−kMRS dL

dk |Y=Ȳ
−K

k2
.

From this we find
dL

dk |Y=Ȳ
= − K

(k +MRS)k
,

to be substituted into (4.41). Finally, we substitute the inverse of (4.41) together
with (4.40) into the definition of the elasticity of factor substitution:

σ(K,L) ≡ MRS

k

dk

dMRS |Y=Ȳ

= −FL/FK
k

(k + FL/FK)k

K

F 3
K

[(FL)2FKK − 2FKFLFKL + (FK)2FLL]

= − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
,
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which is the same as (4.30).
Under CRS, this reduces to

σ(K,L) = − FKFLF (K,L)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
(from (??) with h = 1)

= − FKFLF (K,L)

KLFKL [−(FL)2L/K − 2FKFL − (FK)2K/L]
(from (??))

=
FKFLF (K,L)

FKL(FLL+ FKK)2
=

FKFL
FKLF (K,L)

, (using (??) with h = 1)

which proves the first part of (4.31). The second part is an implication of rewriting
the formula in terms of the production in intensive form.

E. Properties of the CES production function

The generalized CES production function is

Y = A
[
αKβ + (1− α)Lβ

] γ
β , (4.42)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0, γ > 0. If γ < 1, there is DRS, if γ = 1, CRS, and if γ > 1, IRS. The
elasticity of substitution is always σ = 1/(1 − β). Throughout below, k means
K/L.

The limiting functional forms We claimed in the text that, for fixed K > 0
and L > 0, (4.42) implies:

lim
β→0

Y = A(KαL1−α)γ = ALγkαγ, (*)

lim
β→−∞

Y = Amin(Kγ, Lγ) = ALγ min(kγ, 1). (**)

Proof. Let q ≡ Y/(ALγ). Then q = (αkβ + 1− α)γ/β so that

ln q =
γ ln(αkβ + 1− α)

β
≡ m(β)

β
, (4.43)

where

m′(β) =
γαkβ ln k

αkβ + 1− α =
γα ln k

α + (1− α)k−β
. (4.44)

Hence, by L’Hôpital’s rule for “0/0”,

lim
β→0

ln q = lim
β→0

m′(β)

1
= γα ln k = ln kγα,
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so that limβ→0 q = kγα, which proves (*). As to (**), note that

lim
β→−∞

kβ = lim
β→−∞

1

k−β
→


0 for k > 1,
1 for k = 1,
∞ for k < 1.

Hence, by (4.43),

lim
β→−∞

ln q =

{
0 for k ≥ 1,

limβ→−∞
m′(β)

1
= γ ln k = ln kγ for k < 1,

where the result for k < 1 is based on L’Hôpital’s rule for “∞/-∞”. Consequently,

lim
β→−∞

q =

{
1 for k ≥ 1,
kγ for k < 1,

which proves (**). �

Properties of the isoquants of the CES function The absolute value of
the slope of an isoquant for (4.42) in the (L,K) plane is

MRSKL =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β →
{

0 for k → 0,
∞ for k →∞. (*)

This holds whether β < 0 or 0 < β < 1.
Concerning the asymptotes and terminal points, if any, of the isoquant Y = Ȳ

we have from (4.42) Ȳ β/γ = A
[
αKβ + (1− α)Lβ

]
. Hence,

K =

(
Ȳ

β
γ

Aα
− 1− α

α
Lβ

) 1
β

,

L =

(
Ȳ

β
γ

A(1− α)
− α

1− αK
β

) 1
β

.

From these two equations follows, when β < 0 (i.e., 0 < σ < 1), that

K → (Aα)−
1
β Ȳ

1
γ for L→∞,

L → [A(1− α)]−
1
β Ȳ

1
γ for K →∞.

When instead β > 0 (i.e., σ > 1), the same limiting formulas obtain for L → 0
and K → 0, respectively.
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Properties of the CES function on intensive form Given γ = 1, i.e., CRS,
we have y ≡ Y/L = A(αkβ + 1− α)1/β from (4.42). Then

dy

dk
= A

1

β
(αkβ + 1− α)

1
β
−1αβkβ−1 = Aα

[
α + (1− α)k−β

] 1−β
β .

Hence, when β < 0 (i.e., 0 < σ < 1),

y =
A

(akβ + 1− α)−1/β
→
{

0 for k → 0,
A(1− α)1/β for k →∞.

dy

dk
=

Aα

[α + (1− α)k−β](β−1)/β
→
{
Aα1/β for k → 0,

0 for k →∞.

If instead β > 0 (i.e., σ > 1),

y →
{
A(1− α)1/β for k → 0,
∞ for k →∞.

dy

dk
→

{
∞ for k → 0,

Aα1/β for k →∞.

The output-capital ratio is y/k = A
[
α + (1− α)k−β

] 1
β and has the same limiting

values as dy/dk, when β > 0.

Continuity at the boundary of R2
+ When 0 < β < 1, the right-hand side of

(4.42) is defined and continuous also on the boundary of R2
+. Indeed, we get

Y = F (K,L) = A
[
αKβ + (1− α)Lβ

] γ
β →

{
Aα

γ
βKγ for L→ 0,

A(1− α)
γ
βLγ for K → 0.

When β < 0, however, the right-hand side is not defined on the boundary. We
circumvent this problem by redefining the CES function in the following way
when β < 0:

Y = F (K,L) =

{
A
[
αKβ + (1− α)Lβ

] γ
β when K > 0 and L > 0,

0 when either K or L equals 0.
(4.45)

We now show that continuity holds in the extended domain. When K > 0 and
L > 0, we have

Y
β
γ = A

β
γ
[
αKβ + (1− α)Lβ

]
≡ A

β
γG(K,L). (4.46)
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Let β < 0 and (K,L) → (0, 0). Then, G(K,L) → ∞, and so Y β/γ → ∞. Since
β/γ < 0, this implies Y → 0 = F (0, 0), where the equality follows from the
definition in (4.45). Next, consider a fixed L > 0 and rewrite (4.46) as

Y
1
γ = A

1
γ
[
αKβ + (1− α)Lβ

] 1
β = A

1
γL(αkβ + 1− α)

1
β

=
A

1
γL

(akβ + 1− α)−1/β
→ 0 for k → 0,

when β < 0. Since 1/γ > 0, this implies Y → 0 = F (0, L), from (4.45). Finally,
consider a fixed K > 0 and let L/K → 0. Then, by an analogue argument we get
Y → 0 = F (K, 0), (4.45). So continuity is maintained in the extended domain.

4.10 Exercises

4.1 (the aggregate saving rate in steady state)

a) In a well-behaved Diamond OLG model let n be the rate of population
growth and k∗ the steady state capital-labor ratio (until further notice, we
ignore technological progress). Derive a formula for the long-run aggregate
net saving rate, SN/Y, in terms of n and k∗. Hint: use that for a closed
economy SN = Kt+1 −Kt.

b) In the Solow growth model without technological change a similar relation
holds, but with a different interpretation of the causality. Explain.

c) Compare your result in a) with the formula for SN/Y in steady state one
gets in any model with the same CRS-production function and no techno-
logical change. Comment.

d) Assume that n = 0. What does the formula from a) tell you about the level
of net aggregate savings in this case? Give the intuition behind the result in
terms of the aggregate saving by any generation in two consecutive periods.
One might think that people’s rate of impatience (in Diamond’s model the
rate of time preference ρ) affect SN/Y in steady state. Does it in this case?
Why or why not?

e) Suppose there is Harrod-neutral technological progress at the constant rate
g > 0. Derive a formula for the aggregate net saving rate in the long run in
a well-behaved Diamond model in this case.

f) Answer d) with “from a)”replaced by “from e)”. Comment.
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g) Consider the statement: “In Diamond’s OLG model any generation saves
as much when young as it dissaves when old.”True or false? Why?

4.2 (increasing returns to scale and balanced growth)
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