

Figure 12.1: Phase diagram for the Arrow model.

Before determining the slope of the $\tilde{c}=0$ locus, it is convenient to consider the steady state, $\left(\tilde{k}^{*}, \tilde{c}^{*}\right)$.

Steady state

In a steady state \tilde{c} and \tilde{k} are constant so that the growth rate of C as well as K equals $\dot{A} / A+n$, i.e.,

$$
\frac{\dot{C}}{C}=\frac{\dot{K}}{K}=\frac{\dot{A}}{A}+n=\lambda \frac{\dot{K}}{K}+n
$$

Solving gives

$$
\frac{\dot{C}}{C}=\frac{\dot{K}}{K}=\frac{n}{1-\lambda} .
$$

Thence, in a steady state

$$
\begin{align*}
g_{c} & =\frac{\dot{C}}{C}-n=\frac{n}{1-\lambda}-n=\frac{\lambda n}{1-\lambda} \equiv g_{c}^{*}, \quad \text { and } \tag{12.15}\\
\frac{\dot{A}}{A} & =\lambda \frac{\dot{K}}{K}=\frac{\lambda n}{1-\lambda}=g_{c}^{*} . \tag{12.16}
\end{align*}
$$

The steady-state values of r and \tilde{k}, respectively, will therefore satisfy, by (12.11),

$$
\begin{equation*}
r^{*}=f^{\prime}\left(\tilde{k}^{*}\right)-\delta=\rho+\theta g_{c}^{*}=\rho+\theta \frac{\lambda n}{1-\lambda} \tag{12.17}
\end{equation*}
$$

[^0]To ensure existence of a steady state we assume that the private marginal product of capital is sufficiently sensitive to capital per unit of effective labor, from now called the "capital intensity":

$$
\begin{equation*}
\lim _{\tilde{k} \rightarrow 0} f^{\prime}(\tilde{k})>\delta+\rho+\theta \frac{\lambda n}{1-\lambda}>\lim _{\tilde{k} \rightarrow \infty} f^{\prime}(\tilde{k}) \tag{A1}
\end{equation*}
$$

The transversality condition of the representative household is that $\lim _{t \rightarrow \infty}$ $a_{t} e^{-\int_{0}^{t}\left(r_{s}-n\right) d s}=0$, where a_{t} is per capita financial wealth. In general equilibrium $a_{t}=k_{t} \equiv \tilde{k}_{t} A_{t}$, where A_{t} in steady state grows according to (12.16). Thus, in steady state the transversality condition can be written

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \tilde{k}^{*} e^{\left(g_{c}^{*}-r^{*}+n\right) t}=0 \tag{TVC}
\end{equation*}
$$

For this to hold, we need

$$
\begin{equation*}
r^{*}>g_{c}^{*}+n=\frac{n}{1-\lambda}, \tag{12.18}
\end{equation*}
$$

by (12.15). In view of (12.17), this is equivalent to

$$
\begin{equation*}
\rho-n>(1-\theta) \frac{\lambda n}{1-\lambda}, \tag{A2}
\end{equation*}
$$

which we assume satisfied.
As to the slope of the $\tilde{c}=0$ locus we have, from (12.14),

$$
\begin{equation*}
c^{\prime}(\tilde{k})=f^{\prime}(\tilde{k})-\delta-\frac{1}{\lambda}\left(\tilde{k} \frac{f^{\prime \prime}(\tilde{k})}{\theta}+g_{c}\right)>f^{\prime}(\tilde{k})-\delta-\frac{1}{\lambda} g_{c}, \tag{12.19}
\end{equation*}
$$

since $f^{\prime \prime}<0$. At least in a small neighborhood of the steady state we can sign the right-hand side of this expression. Indeed,
$f^{\prime}\left(\tilde{k}^{*}\right)-\delta-\frac{1}{\lambda} g_{c}^{*}=\rho+\theta g_{c}^{*}-\frac{1}{\lambda} g_{c}^{*}=\rho+\theta \frac{\lambda n}{1-\lambda}-\frac{n}{1-\lambda}=\rho-n-(1-\theta) \frac{\lambda n}{1-\lambda}>0$,
by (12.15) and (A2). So, combining with (12.19), we conclude that $c^{\prime}\left(\tilde{k}^{*}\right)>0$. By continuity, in a small neighborhood of the steady state, $c^{\prime}(\tilde{k}) \approx c^{\prime}\left(\tilde{k}^{*}\right)>0$. Therefore, close to the steady state, the $\tilde{c}=0$ locus is positively sloped, as indicated in Figure 12.1.

Still, we have to check the following question: In a neighborhood of the steady state, which is steeper, the $\dot{\tilde{c}}=0$ locus or the $\tilde{k}=0$ locus? The slope of the latter is $f^{\prime}(\tilde{k})-\delta-n /(1-\lambda)$, from (12.13). At the steady state this slope is

$$
f^{\prime}\left(\tilde{k}^{*}\right)-\delta-\frac{1}{\lambda} g_{c}^{*} \in\left(0, c^{\prime}\left(\tilde{k}^{*}\right)\right)
$$

[^1]
[^0]: © Groth, Lecture notes in Economic Growth, (mimeo) 2016.

[^1]: (c) Groth, Lecture notes in Economic Growth, (mimeo) 2016.

