
Chapter 9

The intertemporal
consumption-saving problem in
discrete and continuous time

In the next two chapters we shall discuss − and apply − the continuous-time ver-
sion of the basic representative agent model, the Ramsey model. As a preparation
for this, the present chapter gives an account of the transition from discrete time
to continuous time analysis and of the application of optimal control theory to
formalize and solve the household’s consumption/saving problem in continuous
time.

There are many fields in economics where a setup in continuous time is prefer-
able to one in discrete time. One reason is that continuous time formulations
expose the important distinction in dynamic theory between stock and flows in
a much clearer way. A second reason is that continuous time opens up for appli-
cation of the mathematical apparatus of differential equations; this apparatus is
more powerful than the corresponding apparatus of difference equations. Simi-
larly, optimal control theory is more developed and potent in its continuous time
version than in its discrete time version, considered in Chapter 8. In addition,
many formulas in continuous time are simpler than the corresponding ones in
discrete time (cf. the growth formulas in Appendix A).

As a vehicle for comparing continuous time modeling with discrete time mod-
eling we consider a standard household consumption/saving problem. How does
the household assess the choice between consumption today and consumption in
the future? In contrast to the preceding chapters we allow for an arbitrary num-
ber of periods within the time horizon of the household. The period length may
thus be much shorter than in the previous models. This opens up for capturing
additional aspects of economic behavior and for undertaking the transition to

343



344
CHAPTER 9. THE INTERTEMPORAL CONSUMPTION-

SAVING PROBLEM IN DISCRETE AND CONTINUOUS TIME

continuous time in a smooth way.
We first specify the market environment in which the optimizing household

operates.

9.1 Market conditions

In the Diamond OLG model no loan market was active and wealth effects on
consumption or saving through changes in the interest rate were absent. It is
different in a setup where agents live for many periods and realistically have a
hump-shaped income profile through life. This motivates a look at the financial
market and more refined notions related to intertemporal choice.

A perfect loan market Consider a given household or, more generally, a
given contractor. Suppose the contractor at a given date t wants to take a loan or
provide loans to others at the going interest rate, it, measured in money terms. So
two contractors are involved, a borrower and a lender. Let the market conditions
satisfy the following four criteria:

(a) the contractors face the same interest rate whether borrowing or lending
(that is, monitoring, administration, and other transaction costs are ab-
sent);

(b) there are many contractors on each side and none of them believe to be able
to influence the interest rate (the contractors are price takers in the loan
market);

(c) there are no borrowing restrictions other than the requirement on the part
of the borrower to comply with her financial commitments;

(d) the lender faces no default risk (the borrower can somehow cost-less be
forced to repay the debt with interest on the conditions specified in the
contract).

A loan market satisfying these idealized conditions is called a perfect loan
market. In such a market,

1. various payment streams can be subject to comparison in a simple way; if
they have the same present value (PV for short), they are equivalent;

2. any payment stream can be converted into another one with the same
present value;
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9.1. Market conditions 345

3. payment streams can be compared with the value of stocks.

Consider a payment stream {xt}T−1
t=0 over T periods, where xt is the payment

in currency at the end of period t. Period t runs from time t to time t + 1 for t
= 0, 1, ..., T − 1. We ignore uncertainty and so it is the interest rate on a riskless
loan from time t to time t + 1. Then the present value, PV0, as seen from the
beginning of period 0, of the payment stream is defined as1

PV0 =
x0

1 + i0
+

x1

(1 + i0)(1 + i1)
+ · · ·+ xT−1

(1 + i0)(1 + i1) · · · (1 + iT−1)
. (9.1)

If Ms. Jones is entitled to the income stream {xt}T−1
t=0 and at time 0 wishes

to buy a durable consumption good of value PV0, she can borrow this amount
and use a part of the income stream {xt}T−1

t=0 to repay the debt with interest over
the periods t = 0, 1, 2, ..., T − 1. In general, when Jones wishes to have a time
profile on the payment stream different from the income stream, she can attain
this through appropriate transactions in the loan market, leaving her with any
stream of payments of the same present value as the given income stream.

Real versus nominal rate of return In this chapter we maintain the as-
sumption of perfect competition in all markets, i.e., households take all prices as
given from the markets. In the absence of uncertainty, the various assets (real
capital, stocks, loans etc.) in which households invest give the same rate of return
in equilibrium. The good which is traded in the loan market can be interpreted
as a (riskless) bond. The borrower issues bonds and the lender buys them. In
this chapter all bonds are assumed to be short-term, i.e., one-period bonds. For
every unit of account borrowed at the end of period t−1, the borrower pays back
with certainty (1 + short-term interest rate) units of account at the end of period
t. If a borrower wishes to maintain debt through several periods, new bonds are
issued at the end of the current period and the obtained loans are spent rolling
over the older loans at the going market interest rate. For the lender, who lends
in several periods, this is equivalent to offering a variable-rate demand deposit
like in a bank.2

Our analysis will be in real terms, that is, inflation-corrected terms. In prin-
ciple the unit of account is a fixed bundle of consumption goods. In the simple
macroeconomic models to be studied in this and most subsequent chapters, such

1We use “present value” as synonymous with “present discounted value”. As usual our
timing convention is such that PV0 denotes the time-0 value of the payment stream, including
the discounted value of the payment (or dividend) indexed by 0.

2Unless otherwise specified, this chapter uses terms like “loan market”and “bond market”
interchangeably. As uncertainty is ignored, this is legitimate.
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a bundle is reduced to one consumption good. The models simply assume there
is only one consumption good in the economy. In fact, there will only be one
produced good, “the”output good, which can be used for both consumption and
capital investment. Whether our unit of account is seen as the consumption good
or the output good is thus immaterial.
The real (net) rate of return on an investment is the rate of return in units

of the output good. More precisely, the real rate of return in period t, rt, is the
(proportionate) rate at which the real value of an investment, made at the end
of period t− 1, has grown after one period.
The link between this rate of return and the more commonplace concept of a

nominal rate of return is the following. Imagine that at the end of period t − 1
you make a bank deposit of value Vt euro. The real value of the deposit when
you invest is then Vt/Pt−1, where Pt−1 is the price in euro of the output good at
the end of period t− 1. If the nominal short-term interest rate is it, the deposit is
worth Vt+1 = Vt(1 + it) euro at the end of period t. By definition of rt, the factor
by which the deposit in real terms has expanded is

1 + rt =
Vt+1/Pt
Vt/Pt−1

=
Vt+1/Vt
Pt/Pt−1

=
1 + it
1 + πt

, (9.2)

where πt ≡ (Pt − Pt−1)/Pt−1 is the inflation rate in period t. So the real (net)
rate of return on the investment is rt = (it − πt)/(1 + πt) ≈ it − πt for it and πt
“small”. The number 1 + rt is called the real interest factor and measures the
rate at which current units of output can be traded for units of output one period
later.
In the remainder of this chapter we will think in terms of real values and

completely ignore monetary aspects of the economy.

9.2 Maximizing discounted utility in discrete time

As mentioned, the consumption/saving problem faced by the household is as-
sumed to involve only one consumption good. The composition of consumption
in each period is not part of the problem. What remains is the question how to
distribute consumption over time.

The intertemporal utility function

A plan for consumption in the periods 0, 1, ..., T − 1 is denoted {ct}T−1
t=0 , where ct

is the consumption in period t. We say the plan has time horizon T. Period 0
(“the initial period”) need not refer to the “birth”of the household but is just
an arbitrary period within the lifetime of the household.
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9.2. Maximizing discounted utility in discrete time 347

We assume the preferences of the household can be represented by a time-
separable intertemporal utility function with a constant utility discount rate and
no utility from leisure. The latter assumption implies that the labor supply
of the household in each period is inelastic. The time-separability itself just
means that the intertemporal utility function is additive, i.e., U(c0, c1,. . . , cT−1)
= u(0)(c0) + u(1)(c1)+ . . . +u(T−1)(cT−1), where u(t)(ct) is the utility contribution
from period-t consumption, t = 0, 1,. . . , T − 1. In addition we assume geometric
utility discounting, meaning that utility obtained t periods ahead is converted
into a present equivalent by multiplying by the discount factor (1 + ρ)−t, where
ρ is a constant utility discount rate. So u(t)(ct) = u(ct)(1 + ρ)−t, where u(c)
is a time-independent period utility function. Together, these two assumptions
amount to

U(c0, c1, · · · , cT−1) = u(c0) +
u(c1)

1 + ρ
+ . . . +

u(cT−1)

(1 + ρ)T−1
=

T−1∑
t=0

u(ct)

(1 + ρ)t
. (9.3)

The period utility function is assumed to satisfy u′(c) > 0 and u′′(c) < 0. As
explained in Box 9.1, only linear positive transformations of the period utility
function are admissible.
As (9.3) indicates, the number 1+ρ tells how many units of utility in the next

period the household insists on “in return”for a decrease of one unit of utility in
the current period. So, a ρ > 0 will reflect that if the chosen level of consumption
is the same in two periods, then the individual always appreciates a marginal
unit of consumption higher if it arrives in the earlier period. This explains why
ρ is named the rate of time preference or, even more to the point, the rate of
impatience. The utility discount factor, 1/(1 + ρ)t, indicates how many units of
utility the household is at most willing to give up in period 0 to get one additional
unit of utility in period t.3

It is generally believed that human beings are impatient and that ρ should
therefore be assumed positive.4 There is, however, a growing body of evidence
suggesting that the utility discount rate is typically not constant, but declining
with the time distance from the current period to the future periods within the
horizon. This phenomenon is referred to as “present bias”or, with a more tech-
nical term, “hyperbolic discounting”. Macroeconomics often, as a first approach,

3Multiplying through in (9.3) by (1 + ρ)−1 would make the objective function appear in a
way similar to (9.1) in the sense that also the first term in the sum becomes discounted. At the
same time the ranking of all possible alternative consumption paths would remain unaffected.
For ease of notation, however, we use the form (9.3) which is more standard. Economically,
there is no difference.

4If uncertainty were included in the model, (1 + ρ)−1 might be interpreted as (roughly)
reflecting the probability of surviving to the next period. In this perspective, ρ > 0 is definitely
a plausible assumption.
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ignores the problem and assumes a constant ρ to keep things simple. We will
generally follow this practice.
For many issues the size of ρ is immaterial. Except when needed, we shall

therefore not impose any other constraint on ρ than the definitional requirement
in discrete time that ρ > −1.

Box 9.1. Admissible transformations of the period utility function

When preferences, as assumed here, can be represented by discounted utility, the
concept of utility appears at two levels. The function U in (9.3) is defined on
the set of alternative feasible consumption paths and corresponds to an ordinary
utility function in general microeconomic theory. That is, U will express the
same ranking between alternative consumption paths as any increasing transfor-
mation of U . The period utility function, u, defined on the consumption in
a single period, is a less general concept, requiring that reference to “utility
units”is legitimate. That is, the size of the difference in terms of period utility
between two outcomes has significance for choices. Indeed, the essence of the
discounted utility hypothesis is that we have, for example,

u(c0)− u(c′0) > 0.95
[
u(c′1)− u(c1)

]
⇔ (c0, c1) � (c′0, c

′
1),

meaning that the household, having a utility discount factor 1/(1 + ρ) = 0.95,
strictly prefers consuming (c0, c1) to (c′0, c

′
1) in the first two periods, if and only

if the utility differences satisfy the indicated inequality. (The notation x � y
means that x is strictly preferred to y.)

Only a linear positive transformation of the utility function u, that is,
v(c) = au(c) + b, where a > 0, leaves the ranking of all possible alternative
consumption paths, {ct}T−1

t=0 , unchanged. This is because a linear positive
transformation does not affect the ratios of marginal utilities (the marginal
rates of substitution across time).

The saving problem in discrete time

Suppose the household considered has income from two sources: work and fi-
nancial wealth. Let at denote the real value of (net) financial wealth held by
the household at the beginning of period t (a for “assets”). We treat at as pre-
determined at time t and in this respect similar to a variable-interest deposit with
a bank. The initial financial wealth, a0, is thus given, independently of what in
interest rate is formed in the loan market. And a0 can be positive as well as
negative (in the latter case the household is initially in debt).

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



9.2. Maximizing discounted utility in discrete time 349

The labor income of the household in period t is denoted wt ≥ 0 and may
follow a typical life-cycle pattern, first rising, then more or less stationary, and
finally vanishing due to retirement. Thus, in contrast to previous chapters where
wt denoted the real wage per unit of labor, here a broader interpretation of wt
is allowed. Whatever the time profile of the amount of labor delivered by the
household through life, in this chapter, where the focus is on individual saving,
we regard this time profile, as well as the hourly wage as exogenous. The present
interpretation of wt will coincide with the one in the other chapters if we imagine
that the household in each period delivers one unit of labor.
To avoid corner solutions we impose the No Fast Assumption limc→0 u

′(c) =
∞. Since uncertainty is by assumption ruled out, the problem is to choose a plan
(c0, c1,. . . , cT−1) so as to maximize

U =

T−1∑
t=0

u(ct)(1 + ρ)−t s.t. (9.4)

ct ≥ 0, (9.5)

at+1 = (1 + rt)at + wt − ct, a0 given, (9.6)

aT ≥ 0, (9.7)

where rt is the interest rate. The control region (9.5) reflects the definitional
non-negativity of the control variable, consumption. The dynamic equation (9.6)
is an accounting relation telling how financial wealth moves over time. Indeed,
income in period t is rtat +wt and saving is then rtat +wt− ct. Since saving is by
definition the same as the increase in financial wealth, at+1− at, we obtain (9.6).
Finally, the terminal condition (9.7) is a solvency requirement that no financial
debt be left over at the terminal date, T . We shall refer to this decision problem
as the standard discounted utility maximization problem without uncertainty.

Solving the problem

To solve the problem, let us use the substitution method.5 From (9.6) we have ct
= (1 + rt)at + wt − at+1, for t = 0, 1,. . . , T − 1. Substituting this into (9.4), we
obtain a function of a1, a2,. . . , aT . Since u′ > 0, saturation is impossible and so an
optimal solution cannot have aT > 0. Hence we can put aT = 0 and the problem
is reduced to an essentially unconstrained problem of maximizing a function Ũ
w.r.t. a1, a2,. . . , aT−1. Thereby we indirectly choose c0, c1,. . . , cT−2. Given aT−1,
consumption in the last period is trivially given as

cT−1 = (1 + rT−1)aT−1 + wT−1,

5Alternative methods include the Maximum Principle as described in the previous chapter
or Dynamic Programming as described in Math Tools.
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ensuring
aT = 0, (9.8)

the terminal optimality condition, necessary when u′(c) > 0 for all c ≥ 0 (satu-
ration impossible).
To obtain first-order conditions we put the partial derivatives of Ũ w.r.t. at+1,

t = 0, 1,. . . , T − 2, equal to 0:

∂Ũ

∂at+1

= (1 + ρ)−t
[
u′(ct) · (−1) + (1 + ρ)−1u′(ct+1)(1 + rt+1)

]
= 0.

Reordering gives the Euler equations describing the trade-off between consump-
tion in two succeeding periods,

u′(ct) = (1 + ρ)−1u′(ct+1)(1 + rt+1), t = 0, 1, 2, ..., T − 2. (9.9)

One of the implications of this condition is that

ρ S rt+1 causes u′(ct) T u′(ct+1), i.e., ct S ct+1 (9.10)

in the optimal plan (due to u′′ < 0). Absent uncertainty the optimal plan entails
either increasing, constant, or decreasing consumption over time depending on
whether the rate of time preference is below, equal to, or above the rate of return
on saving.

Interpretation The interpretation of (9.9) is as follows. Let the consumption
path (c0, c1,. . . , cT−1) be our “reference path”. Imagine an alternative path which
coincides with the reference path except for the periods t and t + 1. If it is
possible to obtain a higher total discounted utility than in the reference path
by varying ct and ct+1 within the constraints (9.5), (9.6), and (9.7), at the same
time as consumption in the other periods is kept unchanged, then the reference
path cannot be optimal. That is, “local optimality”is a necessary condition for
“global optimality”. So the optimal plan must be such that the current utility
loss by decreasing consumption ct by one unit equals the discounted expected
utility gain next period by having 1 + rt+1 extra units available for consumption,
namely the gross return on saving one more unit in the current period.
A more concrete interpretation, avoiding the notion of “utility units”, is ob-

tained by rewriting (9.9) as

u′(ct)

(1 + ρ)−1u′(ct+1)
= 1 + rt+1. (9.11)

The left-hand side indicates the marginal rate of substitution, MRS, of period-
(t+1) consumption for period-t consumption, namely the increase in period-(t+1)
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consumption needed to compensate for a one-unit marginal decrease in period-t
consumption:

MRSt+1,t = −dct+1

dct
|U=Ū =

u′(ct)

(1 + ρ)−1u′(ct+1)
. (9.12)

And the right-hand side of (9.11) indicates the marginal rate of transformation,
MRT, which is the rate at which the loan market allows the household to shift
consumption from period t to period t+ 1.
So, in an optimal plan MRS must equal MRT. This has implications for the

time profile of optimal consumption as indicated by the relationship in (9.10).
The Euler equations, (9.9), can also be seen in a comparative perspective. Con-
sider two alternative values of rt+1. The higher interest rate will induce a negative
substitution effect on current consumption, ct. There is also an income effect,
however, and this goes in the opposite direction. The higher interest rate makes
the present value of a given consumption plan lower. This allows more consump-
tion in all periods for a given total wealth. Moreover, there is generally a third
effect of the rise in the interest rate, a wealth effect. As indicated by the in-
tertemporal budget constraint in (9.20) below, total wealth includes the present
value of expected future after-tax labor earnings and this present value depends
negatively on the interest rate, cf. (9.15) below.
From the formula (9.12) we see one of the reasons that the assumption of a

constant utility discount rate is convenient (but also restrictive). The marginal
rate of substitution between consumption this period and consumption next pe-
riod is independent of the level of consumption as long as this level is the same
in the two periods.
The formula for MRS between consumption this period and consumption two

periods ahead is

MRSt+2,t = −dct+2

dct
|U=Ū =

u′(ct)

(1 + ρ)−2u′(ct+2)
.

This displays one of the reasons that the time-separability of the intertemporal
utility function is a strong assumption. It implies that the trade-off between
consumption this period and consumption two periods ahead is independent of
consumption in the interim.

Deriving the consumption function when utility is CRRA The first-
order conditions (9.9) tell us about the relative consumption levels over time,
not the absolute level. The latter is determined by the condition that initial
consumption, c0, must be highest possible, given that the first-order conditions
and the constraints (9.6) and (9.7) must be satisfied.
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To find an explicit solution we have to specify the period utility function. As
an example we choose the CRRA function u(c) = c1−θ/(1 − θ), where θ > 0.6

Moreover we simplify by assuming rt = r, a constant > −1. Then the Euler
equations take the form (ct+1/ct)

θ = (1 + r)(1 + ρ)−1 so that

ct+1

ct
=

(
1 + r

1 + ρ

)1/θ

≡ γ, (9.13)

and thereby ct = γtc0, t = 0, 1,. . . , T − 1. Substituting into the accounting equa-
tion (9.6), we thus have at+1 = (1 + r)at + wt − γtc0. By backward substitution
we find the solution of this difference equation to be

at = (1 + r)t

[
a0 +

t−1∑
i=0

(1 + r)−(i+1)(wi − γic0)

]
.

Optimality requires that the left-hand side of this equation vanishes for t = T .
So we can solve for c0 :

c0 =
1 + r∑T−1

i=0

(
γ

1+r

)i
[
a0 +

T−1∑
i=0

(1 + r)−(i+1)wi

]
=

1 + r∑T−1
i=0

(
γ

1+r

)i (a0 + h0), (9.14)

where we have inserted the human wealth of the household (present value of
expected lifetime labor income) as seen from time zero:

h0 =
T−1∑
i=0

(1 + r)−(i+1)wi. (9.15)

Thus (9.14) says that initial consumption is proportional to initial total wealth,
the sum of financial wealth and human wealth at time 0. To allow for positive
consumption we need a0 + h0 > 0.
In (9.14) γ is not one of the original parameters, but a derived parameter. To

express the consumption function only in terms of the original parameters, not
that, by (9.14), the propensity to consume out of total wealth depends on:

T−1∑
i=0

(
γ

1 + r

)i
=

{
1−( γ

1+r )
T

1− γ
1+r

when γ 6= 1 + r,

T when γ = 1 + r,
(9.16)

6In later sections of this chapter we let the time horizon of the decision maker go to infinity.
To ease convergence of an infinite sum of discounted utilities, it is an advantage not to have to
bother with additive constants in the period utilities and therefore we write the CRRA function
as c1−θ/(1− θ) instead of the form, (c1−θ − 1)/(1− θ), introduced in Chapter 3. As implied by
Box 9.1, the two forms represent the same preferences.
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where the result for γ 6= 1 + r follows from the formula for the sum of a finite
geometric series. Inserting this together with (9.13) into (9.14), we end up with
the expression

c0 =


(1+r)[1−(1+ρ)−1/θ(1+r)(1−θ)/θ]

1−(1+ρ)−T/θ(1+r)(1−θ)T/θ (a0 + h0) when
(

1+r
1+ρ

)1/θ

6= 1 + r,

1+r
T

(a0 + h0) when
(

1+r
1+ρ

)1/θ

= 1 + r.
(9.17)

This, together with (9.14), thus says:

Result 1 : Consumption is proportional to total wealth, and the factor of
proportionality, often called the marginal propensity to consume out of wealth,
depends on the interest rate r, the time horizon T, and the preference parame-
ters ρ and θ, that is, the impatience rate and the strength of the preference for
consumption smoothing, respectively.

For the subsequent periods we have from (9.13) that

ct = c0

((
1 + r

1 + ρ

)1/θ
)t

, t = 1, . . . , T − 1. (9.18)

EXAMPLE 1 Consider the special case θ = 1 (i.e., u(c) = ln c) together with
ρ > 0. The upper case in (9.17) is here the relevant one and period-0 consumption
will be

c0 =
(1 + r)(1− (1 + ρ)−1)

1− (1 + ρ)−T
(a0 + h0) for θ = 1.

We see that c0 → (1 + r)ρ(1 + ρ)−1(a0 +h0) for T →∞, assuming the right-hand
side of (9.15) converges for T →∞.
We have assumed that payment for consumption occurs at the end of the

period at the price 1 per consumption unit. To compare with the corresponding
result in continuous time with continuous compounding (see Section 9.4), we
might want to have initial consumption in the same present value terms as a0

and h0. That is, we consider c̃0 ≡ c0(1 + r)−1 = ρ(1 + ρ)−1(a0 + h0) for T →∞.
�
So far the expression (9.17) is only a candidate consumption function. But

in view of strict concavity of the objective function, (9.17) is indeed the unique
optimal solution when a0 + h0 > 0.
The conclusion from (9.17) and (9.18) is that consumers look beyond current

income. More precisely:

Result 2 : Under the idealized conditions assumed, including a perfect loan
market and perfect foresight, and given the marginal propensity to consume out
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of total wealth shown in (9.17), the time profile of consumption is determined
by the total wealth and the interest rate (relative to impatience corrected for
the preference for consumption smoothing). The time profile of income does not
matter because consumption can be smoothed over time by drawing on the loan
market.

EXAMPLE 2 Consider the special case ρ = r > 0. Again the upper case in (9.17)
is the relevant one and period-0 consumption will be

c0 =
r

1− (1 + r)−T
(a0 + h0).

We see that c0 → r(a0 + h0) for T → ∞, assuming the right-hand side of (9.15)
converges for T → ∞. So, with an infinite time horizon current consumption
equals the interest on total current wealth. By consuming this the individual
or household maintains total wealth intact. This consumption function provides
an interpretation of Milton Friedman’s permanent income hypothesis. Friedman
defined “permanent income”as “the amount a consumer unit could consume (or
believes it could) while maintaining its wealth intact” (Friedman, 1957). The
key point of Friedman’s theory was the idea that a random change in current
income only affects current consumption to the extent that it affects “perma-
nent income”. Replacing Friedman’s awkward term “permanent income”by the
straightforward “total wealth”, this feature is a general aspect of all consump-
tion functions considered in this chapter. In contrast to this chapter, however,
Friedman emphasized credit market imperfections and thought of a “subjective
income discount rate”of as much as 33% per year. His interpretation of the em-
pirics was that households adopt a much shorter “horizon”than the remainder
of their expected lifetimes (Friedman, 1963, Carroll 2001). �

If the real interest rate varies over time, the discount factor (1 + r)−(i+1) for
a payment made at the end of period i is replaced by Πi

j=0(1 + rj)
−1.

Alternative approach based on the intertemporal budget constraint

There is another approach to the household’s saving problem. With its choice of
consumption plan the household must act in conformity with its intertemporal
budget constraint (IBC for short). The present value of the consumption plan
(c1, ..., cT−1), as seen from time zero, is

PV (c0, c1, ..., cT−1) ≡
T−1∑
t=0

ct
Πt
τ=0(1 + rτ )

. (9.19)
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This value cannot exceed the household’s total initial wealth, a0 + h0. So the
household’s intertemporal budget constraint is

T−1∑
t=0

ct
Πt
τ=0(1 + rτ )

≤ a0 + h0. (9.20)

In this setting the household’s problem is to choose its consumption plan so as
to maximize U in (9.4) subject to this budget constraint.
This way of stating the problem is equivalent to the approach above based

on the dynamic budget condition (9.6) and the solvency condition (9.7). Indeed,
given the accounting equation (9.6), the consumption plan of the household will
satisfy the intertemporal budget constraint (9.20) if and only if it satisfies the
solvency condition (9.7). And there will be strict equality in the intertemporal
budget constraint if and only if there is strict equality in the solvency condition
(the proof is similar to that of a similar claim relating to the government sector
in Chapter 6.2).
Moreover, since in our specific saving problem saturation is impossible, an

optimal solution must imply strict equality in (9.20). So it is straightforward to
apply the substitution method also within the IBC approach. Alternatively one
can introduce the Lagrange function associated with the problem of maximizing
U =

∑T−1
t=0 (1 + ρ)−tu(ct) s.t. (9.20) with strict equality.

Infinite time horizon In the Ramsey model of the next chapter the idea is
used that households may have an infinite time horizon. One interpretation of
this is that parents care about their children’s future welfare and leave bequests
accordingly. This gives rise to a series of intergenerational links. The household
is then seen as a family dynasty with a time horizon beyond the lifetime of
the current members of the family. Barro’s bequest model in Chapter 7 is an
application of this idea. Given a suffi ciently large rate of time preference, it is
ensured that the sum of achievable discounted utilities over an infinite horizon is
bounded from above.
One could say, of course, that infinity is a long time. The sun will eventually,

in some billion years, burn out and life on earth become extinct. Nonetheless,
there are several reasons that an infinite time horizon may provide a convenient
substitute for finite but remote horizons. First, in many cases the solution to
an optimization problem for T “large” is in a major part of the time horizon
close to the solution for T →∞.7 Second, an infinite time horizon tends to ease
aggregation because at any future point in time, remaining time is still infinite.
Third, an infinite time horizon may be a convenient notion when in any given

7The turnpike proposition in Chapter 8 exemplifies this.
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period there is a always a positive probability that there will be a next period to
be concerned about. This probability may be low, but this can be reflected in a
high effective utility discount rate. This idea will be applied in chapters 12 and
13.
We may perform the transition to infinite horizon by letting T →∞ in the ob-

jective function, (9.4) and the intertemporal budget constraint, (9.20). On might
think that, in analogy of (9.8) for the case of finite T, the terminal optimality
condition for the case of infinite horizon is limT→∞ aT = 0. This is generally not
so, however. The reason is that with infinite horizon there is no final date where
all debt must be settled. The terminal optimality condition in the present prob-
lem is simply that the intertemporal budget constraint should hold with strict
equality.
As with finite time horizon, the saving problem with infinite time horizon

may alternatively be framed in terms of a series of dynamic period-by-period
budget identities, in the form (9.6), together with the borrowing limit known as
the No-Ponzi-Game condition:

lim
t→∞

atΠ
t−1
i=0(1 + ri)

−1 ≥ 0.

As we saw in Section 6.5.2 of Chapter 6, such a “flow”formulation of the prob-
lem is equivalent to the formulation based on the intertemporal budget constraint.
We also recall from Chapter 6 that the name Ponzi refers to a guy, Charles Ponzi,
who in Boston in the 1920s temporarily became very rich by a loan arrangement
based on the chain letter principle. The fact that debts grow without bounds is
irrelevant for the lender if the borrower can always find new lenders and use their
outlay to pay off old lenders with the contracted interest. In the real world, en-
deavours to establish this sort of financial eternity machine sooner or later break
down because the flow of new lenders dries up. Such financial arrangements,
in everyday speech known as pyramid companies, are universally illegal.8 It is
exactly such arrangements the No-Ponzi-Game condition precludes.
The terminal optimality condition, known as a transversality condition, can

be shown9 to be
lim
t→∞

(1 + ρ)−(t−1)u′(ct−1)at = 0.

8A related Danish instance, though on a modest scale, could be read in the Danish newpaper
Politiken on the 21st of August 1992. “A twenty-year-old female student from Tylstrup in
Northern Jutland is charged with fraud. In an ad she offered to tell the reader, for 200 DKK,
how to make easy money. Some hundred people responded and received the reply: do like me”.
A more serious present day example is the Wall Street stockbroker, Bernard Madoff, who

admitted a Ponzi scheme that is considered to be the largest financial fraud in U.S. history. In
2009 Madoff was sentenced to 150 years in prison. Other examples of large-scale Ponzi games
appeared in Albania 1995-97 and Ukraine 2008.

9The proof is similar to that given in Chapter 8, Appendix C.
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9.3 Transition to continuous time analysis

In the discrete time framework the run of time is divided into successive periods
of equal length, taken as the time-unit. Let us here index the periods by i =
0, 1, 2, .... Thus financial wealth accumulates according to

ai+1 − ai = si, a0 given,

where si is (net) saving in period i.

Multiple compounding per year

With time flowing continuously, we let a(t) refer to financial wealth at time t.
Similarly, a(t + ∆t) refers to financial wealth at time t + ∆t. To begin with, let
∆t equal one time unit. Then a(i∆t) equals a(i) and is of the same value as ai.
Consider the forward first difference in a, ∆a(t) ≡ a(t+∆t)−a(t). It makes sense
to consider this change in a in relation to the length of the time interval involved,
that is, to consider the ratio ∆a(t)/∆t. As long as ∆t = 1, with t = i∆t we have
∆a(t)/∆t = (ai+1 − ai)/1 = ai+1 − ai.
Now, keep the time unit unchanged, but let the length of the time interval

[t, t+ ∆t) approach zero, i.e., let ∆t→ 0. When a is a differentiable function of
t, we have

lim
∆t→0

∆a(t)

∆t
= lim

∆t→0

a(t+ ∆t)− a(t)

∆t
=
da(t)

dt
,

where da(t)/dt, often written ȧ(t), is known as the derivative of a at the point t.
Wealth accumulation in continuous time can then be written

ȧ(t) = s(t), a(0) = a0 given, (9.21)

where s(t) is the saving flow (saving intensity) at time t. For ∆t “small”we have
the approximation ∆a(t) ≈ ȧ(t)∆t = s(t)∆t. In particular, for ∆t = 1 we have
∆a(t) = a(t+ 1)− a(t) ≈ s(t).
As time unit choose one year. Going back to discrete time, if wealth grows at

a constant rate g per year, then after i periods of length one year, with annual
compounding, we have

ai = a0(1 + g)i, i = 0, 1, 2, ... . (9.22)

If instead compounding (adding saving to the principal) occurs n times a year,
then after i periods of length 1/n year and a growth rate of g/n per such period,
we have

ai = a0(1 +
g

n
)i. (9.23)
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With t still denoting time measured in years passed since date 0, we have i = nt
periods. Substituting into (9.23) gives

a(t) = ant = a0(1 +
g

n
)nt = a0

[
(1 +

1

m
)m
]gt

, where m ≡ n

g
.

We keep g and t fixed, but let n → ∞. Thus m → ∞. In the limit there is
continuous compounding and we get

a(t) = a0e
gt, (9.24)

where e is a mathematical constant called the base of the natural logarithm and
defined as e ≡ limm→∞(1 + 1/m)m ' 2.7182818285....
The formula (9.24) is the continuous-time analogue to the discrete time for-

mula (9.22) with annual compounding. A geometric growth factor is replaced by
an exponential growth factor, egt, and this growth factor is valid for any t in the
time interval (−τ 1, τ 2) for which the growth rate of a equals the constant g (τ 1

and τ 2 being some positive real numbers).
We can also view the formulas (9.22) and (9.24) as the solutions to a difference

equation and a differential equation, respectively. Thus, (9.22) is the solution to
the linear difference equation ai+1 = (1 + g)ai, given the initial value a0. And
(9.24) is the solution to the linear differential equation ȧ(t) = ga(t), given the
initial condition a(0) = a0. Now consider a time-dependent growth rate, g(t), a
continuous function of t. The corresponding differential equation is ȧ(t) = g(t)a(t)
and it has the solution

a(t) = a(0)e
∫ t
0 g(τ)dτ , (9.25)

where the exponent,
∫ t

0
g(τ)dτ , is the definite integral of the function g(τ) from 0

to t. The result (9.25) is called the accumulation formula in continuous time and
the factor e

∫ t
0 g(τ)dτ is called the growth factor or the accumulation factor.10

Compound interest and discounting in continuous time

Let r(t) denote the short-term real interest rate in continuous time at time t.
To clarify what is meant by this, consider a deposit of V (t) euro in a bank at
time t. If the general price level in the economy at time t is P (t) euro, the real
value of the deposit is a(t) = V (t)/P (t) at time t. By definition the real rate of
return on the deposit in continuous time (with continuous compounding) at time
t is the (proportionate) instantaneous rate at which the real value of the deposit
expands per time unit when there is no withdrawal from the account. Thus, if

10Sometimes the accumulation factor with time-dependent growth rate is written in a different
way, see Appendix B.
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the instantaneous nominal interest rate is i(t), we have V̇ (t)/V (t) = i(t) and so,
by the fraction rule in continuous time (cf. Appendix A),

r(t) =
ȧ(t)

a(t)
=
V̇ (t)

V (t)
− Ṗ (t)

P (t)
= i(t)− π(t), (9.26)

where π(t) ≡ Ṗ (t)/P (t) is the instantaneous inflation rate. In contrast to the
corresponding formula in discrete time, this formula is exact. Sometimes i(t) and
r(t) are referred to as the nominal and real force of interest.
Calculating the terminal value of the deposit at time t1 > t0, given its value at

time t0 and assuming no withdrawal in the time interval [t0, t1], the accumulation
formula (9.25) immediately yields

a(t1) = a(t0)e
∫ t1
t0
r(t)dt.

When calculating present values in continuous time, we use compound dis-
counting. We reverse the accumulation formula and go from the compounded or
terminal value to the present value, a(t0). Similarly, given a consumption plan
(c(t))t1t=t0 , the present value of this plan as seen from time t0 is

PV =

∫ t1

t0

c(t) e−rtdt, (9.27)

presupposing a constant interest rate, r. Instead of the geometric discount factor,
1/(1+r)t, from discrete time analysis, we have here an exponential discount factor,
1/(ert) = e−rt, and instead of a sum, an integral. When the interest rate varies
over time, (9.27) is replaced by

PV =

∫ t1

t0

c(t) e
−
∫ t
t0
r(τ)dτ

dt.

In (9.27) c(t) is discounted by e−rt ≈ (1 + r)−t for r “small”. This might not
seem analogue to the discrete-time discounting in (9.19) where it is ct−1 that is
discounted by (1 + r)−t, assuming a constant interest rate. When taking into
account the timing convention that payment for ct−1 in period t − 1 occurs at
the end of the period (= time t), there is no discrepancy, however, since the
continuous-time analogue to this payment is c(t).

The range for particular parameter values

The allowed range for parameters may change when we go from discrete time to
continuous time with continuous compounding. For example, the usual equation
for aggregate capital accumulation in continuous time is

K̇(t) = I(t)− δK(t), K(0) = K0 given, (9.28)
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where K(t) is the capital stock, I(t) is the gross investment at time t and δ ≥ 0
is the (physical) capital depreciation rate. Unlike in discrete time, here δ > 1 is
conceptually allowed. Indeed, suppose for simplicity that I(t) = 0 for all t ≥ 0;
then (9.28) gives K(t) = K0e

−δt. This formula is meaningful for any δ ≥ 0.
Usually, the time unit used in continuous time macro models is one year (or, in
business cycle theory, rather a quarter of a year) and then a realistic value of δ
is of course < 1 (say, between 0.05 and 0.10). However, if the time unit applied
to the model is large (think of a Diamond-style OLG model), say 30 years, then
δ > 1 may fit better, empirically, if the model is converted into continuous time
with the same time unit. Suppose, for example, that physical capital has a half-
life of 10 years. With 30 years as our time unit, inserting into the formula 1/2
= e−δ/3 gives δ = (ln 2) · 3 ' 2.
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good is
1 and thus constant. More generally, if we let the relative price of the capital
good in terms of the consumption good at time t be p(t) and allow ṗ(t) 6= 0, then
we have to distinguish between the physical depreciation of capital, δ, and the
economic depreciation, that is, the loss in economic value of a machine per time
unit. The economic depreciation will be d(t) = p(t)δ− ṗ(t), namely the economic
value of the physical wear and tear (and technological obsolescence, say) minus
the capital gain (positive or negative) on the machine.
Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates of
return and discount rates in general.

Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make
a clear distinction between stocks (say wealth) and flows (say consumption or
saving). Recall, a stock variable is a variable measured as a quantity at a given
point in time. The variables a(t) and K(t) considered above are stock variables.
A flow variable is a variable measured as quantity per time unit at a given point
in time. The variables s(t), K̇(t) and I(t) are flow variables.
One can not add a stock and a flow, because they have different denomina-

tions. What is meant by this? The elementary measurement units in economics
are quantity units (so many machines of a certain kind or so many liters of oil
or so many units of payment, for instance) and time units (months, quarters,
years). On the basis of these elementary units we can form composite mea-
surement units. Thus, the capital stock, K, has the denomination “quantity of
machines”, whereas investment, I, has the denomination “quantity of machines
per time unit”or, shorter, “quantity/time”. A growth rate or interest rate has
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Figure 9.1: With ∆t small the integral of s(t) from t0 to t0 + ∆t ≈ the hatched area.

the denomination “(quantity/time)/quantity”= “time−1”. If we change our time
unit, say from quarters to years, the value of a flow variable as well as a growth
rate is changed, in this case quadrupled (presupposing annual compounding).
In continuous time analysis expressions like K(t) + I(t) or K(t) + K̇(t) are

thus illegitimate. But one can write K(t + ∆t) ≈ K(t) + (I(t) − δK(t))∆t, or
K̇(t)∆t ≈ (I(t) − δK(t))∆t. In the same way, suppose a bath tub at time t
contains 50 liters of water and that the tap pours 1

2
liter per second into the

tub for some time. Then a sum like 50 ` + 1
2
(`/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount
would be 50 ` + 1

2
· 60 ((`/sec)×sec) = 80 `. In analogy, economic flow variables

in continuous time should be seen as intensities defined for every t in the time
interval considered, say the time interval [0, T ) or perhaps [0, ∞). For example,
when we say that I(t) is “investment” at time t, this is really a short-hand
for “investment intensity” at time t. The actual investment in a time interval
[t0, t0 + ∆t) , i.e., the invested amount during this time interval, is the integral,∫ t0+∆t

t0
I(t)dt ≈ I(t0)∆t. Similarly, the flow of individual saving, s(t), should be

interpreted as the saving intensity (or saving density), at time t. The actual saving
in a time interval [t0, t0 + ∆t) , i.e., the saved (or accumulated) amount during
this time interval, is the integral,

∫ t0+∆t

t0
s(t)dt. If ∆t is “small”, this integral is

approximately equal to the product s(t0) ·∆t, cf. the hatched area in Fig. 9.1.
The notation commonly used in discrete time analysis blurs the distinction

between stocks and flows. Expressions like ai+1 = ai + si, without further com-
ment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are added.
In fact, however, it is wealth at the beginning of period i and the saved amount
during period i that are added: ai+1 = ai + si · ∆t. The tacit condition is that
the period length, ∆t, is the time unit, so that ∆t = 1. But suppose that, for
example in a business cycle model, the period length is one quarter, but the time
unit is one year. Then saving in quarter i is si = (ai+1 − ai) · 4 per year.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



362
CHAPTER 9. THE INTERTEMPORAL CONSUMPTION-

SAVING PROBLEM IN DISCRETE AND CONTINUOUS TIME

The choice between discrete and continuous time formulation

In empirical economics, data typically come in discrete time form and data for
flow variables typically refer to periods of constant length. One could argue that
this discrete form of the data speaks for discrete time rather than continuous
time modelling. And the fact that economic actors often think, decide, and plan
in period terms, may seem a good reason for putting at least microeconomic
analysis in period terms. Nonetheless real time is continuous. Moreover, as for
instance Allen (1967) argued, it can hardly be said that the mass of economic
actors think and decide with the same time distance between successive decisions
and actions. In macroeconomics we consider the sum of the actions. In this
perspective the continuous time approach has the advantage of allowing variation
within the usually artificial periods in which the data are chopped up. In addition,
centralized asset markets equilibrate very fast and respond almost immediately
to new information. For such markets a formulation in continuous time seems a
good approximation.
There is also a risk that a discrete time model may generate artificial oscil-

lations over time. Suppose the “true”model of some mechanism is given by the
differential equation

ẋ = αx, α < −1. (9.29)

The solution is x(t) = x(0)eαt which converges in a monotonic way toward 0 for
t → ∞. However, the analyst takes a discrete time approach and sets up the
seemingly “corresponding”discrete time model

xt+1 − xt = αxt.

This yields the difference equation xt+1 = (1+α)xt, where 1+α < 0. The solution
is xt = (1+α)tx0, t = 0, 1, 2, . . . . As (1+α)t is positive when t is even and negative
when t is odd, oscillations arise (together with divergence if α < −2) in spite of
the “true”model generating monotonous convergence towards the steady state
x∗ = 0.
This potential problem can always be avoided, however, by choosing a suffi -

ciently short period length in the discrete time model. The solution to a differen-
tial equation can always be obtained as the limit of the solution to a corresponding
difference equation for the period length approaching zero. In the case of (9.29),
the approximating difference equation is xi+1 = (1 + α∆t)xi, where ∆t is the
period length, i = t/∆t, and xi = x(i∆t). By choosing ∆t small enough, the
solution comes arbitrarily close to the solution of (9.29). It is generally more
diffi cult to go in the opposite direction and find a differential equation that ap-
proximates a given difference equation. But the problem is solved as soon as a
differential equation has been found that has the initial difference equation as an
approximating difference equation.
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From the point of view of the economic contents, the choice between discrete
time and continuous time may be a matter of taste. Yet, everything else equal, the
clearer distinction between stocks and flows in continuous time than in discrete
time speaks for the former. From the point of view of mathematical convenience,
the continuous time formulation, which has worked so well in the natural sciences,
is preferable. At least this is so in the absence of uncertainty. For problems where
uncertainty is important, discrete time formulations are easier to work with unless
one is familiar with stochastic calculus.11

9.4 Maximizing discounted utility in continuous
time

9.4.1 The saving problem in continuous time

In continuous time the analogue to the intertemporal utility function, (9.3), is

U0 =
∫ T

0
u(c(t))e−ρtdt. (9.30)

In this context it is common to name the utility flow, u, the instantaneous utility
function. We still assume that u′ > 0 and u′′ < 0. The analogue in continuous
time to the intertemporal budget constraint (9.20) is∫ T

0
c(t)e−

∫ t
0
r(τ)dτdt ≤ a0 + h0, (9.31)

where, as before, a0 is the historically given initial financial wealth, while h0 is
the given human wealth,

h0 =
∫ T

0
w(t)e−

∫ t
0
r(τ)dτdt. (9.32)

The household’s problem is then to choose a consumption plan (c(t))T
t=0
so as

to maximize discounted utility, U0, subject to the budget constraint (9.31).

Infinite time horizon Transition to infinite horizon is performed by letting
T → ∞ in (9.30), (9.31), and (9.32). In the limit the household’s, or dynasty’s,
problem becomes one of choosing a plan, (c(t))∞t=0, which maximizes

U0 =

∫ ∞
0

u(c(t))e−ρtdt s.t. (9.33)∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ a0 + h0, (IBC)

11In the latter case, the arguments by Nobel laureate Robert C. Merton in favor of a contin-
uous time formulation are worth consideration.
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where h0 emerges by letting T in (9.32) approach ∞. With an infinite horizon
there may exist technically feasible paths along which the integrals in (9.30),
(9.31), and (9.32) go to ∞ for T → ∞. In that case maximization is not well-
defined. However, the assumptions we are going to make when working with
infinite horizon will guarantee that the integrals converge as T →∞ (or at least
that some feasible paths have −∞ < U0 < ∞, while the remainder have U0

= −∞ and are thus clearly inferior). The essence of the matter is that the rate
of time preference, ρ, must be assumed suffi ciently high.
Generally we define a person as solvent if she is able to meet her financial

obligations as they fall due. Each person is considered “small” relative to the
economy as a whole. As long as all agents in an economy with a perfect loan
market remain “small”, they will in general equilibrium remain solvent if and
only if their gross debt does not exceed their gross assets. The “gross assets”
should be understood as including the present value of the expected future labor
income. Considering the net debt d0 ≡ gross debt − gross assets, the solvency
requirement becomes

d0 ≤
∫ ∞

0

(w(t)− c(t))e−
∫ t
0 r(τ)dτdt,

where the right-hand side of the inequality is the present value of the expected
future primary saving.12 By the definition in (9.32), we see that this requirement
is identical to the intertemporal budget constraint (IBC) which consequently
expresses solvency.

The budget constraint in flow terms

The method which is particularly apt for solving intertemporal decision problems
in continuous time is based on the mathematical discipline optimal control theory.
To apply the method, we have to convert the household’s budget constraint from
the present-value formulation considered above into flow terms.
By mere accounting, in every short time interval (t, t + ∆t) the household’s

consumption plus saving equals the household’s total income, that is,

(c(t) + ȧ(t))∆t = (r(t)a(t) + w(t))∆t.

Here, ȧ(t) ≡ da(t)/dt is the increase per time unit in financial wealth, and thereby
the saving intensity, at time t (assuming no robbery). If we divide through by
∆t and rearrange, we get for all t ≥ 0

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given. (9.34)

12By primary saving is meant the difference between current earned income and current
consumption, where earned income means income before interest transfers.
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This equation in itself is just a dynamic budget identity. It tells how much
and in which direction the financial wealth is changing due to the difference
between current income and current consumption. The equation per se does
not impose any restriction on consumption over time. If this equation were the
only “restriction”, one could increase consumption indefinitely by incurring an
increasing debt without limits. It is not until we add the requirement of solvency
that we get a constraint. When T < ∞, the relevant solvency requirement is
a(T ) ≥ 0 (that is, no debt is left over at the terminal date). This is equivalent to
satisfying the intertemporal budget constraint (9.31).
When T =∞, the relevant solvency requirement is the No-Ponzi-Game con-

dition
lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

This condition says that the present value of debts, measured as −a(t), infinitely
far out in the future, is not permitted to be positive. We have the following
equivalency:

PROPOSITION 1 (equivalence of NPG condition and intertemporal budget con-
straint) Let the time horizon be infinite and assume that the integral (9.32)
remains finite for T →∞. Then, given the accounting relation (9.34), we have:
(i) the requirement (NPG) is satisfied if and only if the intertemporal budget
constraint, (IBC), is satisfied; and
(ii) there is strict equality in (NPG) if and only if there is strict equality in (IBC).

Proof. See Appendix C.

The condition (NPG) does not preclude that the household, or family dynasty,
can remain in debt. This would also be an unnatural requirement as the dynasty
is infinitely-lived. The condition does imply, however, that there is an upper
bound for the speed whereby debt can increase in the long term. The NPG
condition says that in the long term, debts are not allowed to grow at a rate as
high as (or higher than) the interest rate.
To understand the implication, consider the case with a constant interest rate

r > 0. Assume that the household at time t has net debt d(t) > 0, i.e., a(t)
≡ −d(t) < 0. If d(t) were persistently growing at a rate equal to or greater than
the interest rate, (NPG) would be violated.13 Equivalently, one can interpret
(NPG) as an assertion that lenders will only issue loans if the borrowers in the
long run cover their interest payments by other means than by taking up new
loans. In this way, it is avoided that ḋ(t) ≥ rd(t) in the long run. In brief, the
borrowers are not allowed to run a Ponzi Game.
13Starting from a given initial positive debt, d0, when ḋ(t)/d(t) ≥ r > 0, we have d(t) ≥ d0ert

so that d(t)e−rt ≥ d0 > 0 for all t ≥ 0. Consequently, a(t)e−rt = −d(t)e−rt ≤ −d0 < 0 for
all t ≥ 0, that is, lim t→∞a(t)e−rt < 0, which violates (NPG).
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9.4.2 Solving the saving problem

The household’s consumption/saving problem is one of choosing a path for the
control variable c(t) so as to maximize a criterion function, in the form of an in-
tegral, subject to constraints that include a first-order differential equation where
the control variable enters, namely (9.34). Choosing a time path for the con-
trol variable, this equation determines the evolution of the state variable, a(t).
Optimal control theory, which in Chapter 8 was applied to a related discrete
time problem, offers a well-suited apparatus for solving this kind of optimization
problems. We will make use of a special case of Pontryagin’s Maximum Principle
(the basic tool of optimal control theory) in its continuous time version. We shall
consider both the finite and the infinite horizon case. The only regularity con-
dition required is that the exogenous variables, here r(t) and w(t), are piecewise
continuous and that the control variable, here c(t), is piecewise continuous and
take values within some given set C ⊂ R, called the control region.
For T <∞ the problem is: choose a plan (c(t))Tt=0 that maximizes

U0 =

∫ T

0

u(c(t))e−ρtdt s.t. (9.35)

c(t) ≥ 0, (control region) (9.36)

ȧ(t) = r(t)a(t) + w(t)− c(t), a(0) = a0 given, (9.37)

a(T ) ≥ 0. (9.38)

With an infinite time horizon, T in (9.35) is interpreted as∞ and the solvency
condition (9.38) is replaced by

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

Let I denote the time interval [0, T ] if T < ∞ and the time interval [0,∞)
if T = ∞. If c(t) and the corresponding evolution of a(t) fulfil (9.36) and (9.37)
for all t ∈ I as well as the relevant solvency condition, we call (a(t), c(t))Tt=0 an
admissible path. If a given admissible path (a(t), c(t))Tt=0 solves the problem, it is
referred to as an optimal path.14 We assume that w(t) > 0 for all t. No condition
on the impatience parameter ρ is imposed (in this chapter).

First-order conditions

The solution procedure for this problem is as follows:15

14The term “path”, sometimes “trajectory”, is common in the natural sciences for a solution
to a differential equation because one may think of this solution as the path of a particle moving
in two- or three-dimensional space.
15The four-step solution procedure below is applicable to a large class of dynamic optimization

problems in continuous time, see Math tools.
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1. We set up the current-value Hamiltonian function (often just called the
current-value Hamiltonian):

H(a, c, λ, t) ≡ u(c) + λ(ra+ w − c),

where λ is the adjoint variable (also called the co-state variable) associated
with the dynamic constraint (9.37).16 That is, λ is an auxiliary variable
which is a function of t and is analogous to the Lagrange multiplier in
static optimization.

2. At every point in time, we maximize the Hamiltonian w.r.t. the control
variable. Focusing on an interior optimal path,17 we calculate

∂H

∂c
= u′(c)− λ = 0.

For every t ∈ I we thus have the condition

u′(c(t)) = λ(t). (9.39)

3. We calculate the partial derivative of H with respect to the state variable
and put it equal to minus the time derivative of λ plus the discount rate
(as it appears in the integrand of the criterion function) multiplied by λ :

∂H

∂a
= λr = −λ̇+ ρλ.

This says that, for all t ∈ I, the adjoint variable λ should fulfil the differ-
ential equation

λ̇(t) = (ρ− r(t))λ(t). (9.40)

4. We now apply the Maximum Principle which applied to this problem says:
an interior optimal path (a(t), c(t))Tt=0 will satisfy that there exits a contin-
uous function λ = λ(t) such that for all t ∈ I, (9.39) and (9.40) hold along
the path, and the transversality condition,

a(T )λ(T ) = 0, if T <∞, and
lim
t→∞

a(t)λ(t)e−ρt = 0, if T =∞, (TVC)

is satisfied.
16The explicit dating of the time-dependent variables a, c, and λ is omitted where not needed

for clarity.
17A path, (at, ct)

T
t=0, is an interior path if for no t ∈ [0, T ) , (at, ct) is at a boundary point of

the set of admissible values. In the present case where at is not constrained, except at t = T,
(at, ct)

T
t=0, is an interior path if ct > 0 for all t ∈ [0, T ) .
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Let us provide some interpretation of these optimality conditions. Overall,
the Maximum Principle characterizes an optimal path as a path that for every
t maximizes the Hamiltonian associated with the problem. The intuition is that
the Hamiltonian weighs the direct contribution of the marginal unit of the con-
trol variable to the criterion function in the “right”way relative to the indirect
contribution, which comes from the generated change in the state variable (here
financial wealth); “right”means in accordance with the opportunities offered by
the rate of return vis-a-vis the time preference rate, ρ. The optimality condition
(9.39) can be seen as a MC = MB condition in utility terms: on the margin
one unit of account (here the consumption good) must be equally valuable in its
two uses: consumption and wealth accumulation. Together with the optimality
condition (9.40) this signifies that the adjoint variable λ can be interpreted as
the shadow price (measured in units of current utility) of financial wealth along
the optimal path.18

Reordering the differential equation (9.40) gives

rλ+ λ̇

λ
= ρ. (9.41)

This can be interpreted as a no-arbitrage condition. The left-hand side gives the
actual rate of return, measured in utility units, on the marginal unit of saving.
Indeed, rλ can be seen as a dividend and λ̇ as a capital gain. The right-hand side
is the required rate of return in utility units, ρ. Along an optimal path the two
must coincide. The household is willing to save the marginal unit of income only
up to the point where the actual return on saving equals the required return.
We may alternatively write the no-arbitrage condition as

r = ρ− λ̇

λ
. (9.42)

On the left-hand-side appears the actual real rate of return on saving and on
the right-hand-side the required real rate of return. The intuition behind this
condition can be seen in the following way. Suppose Mr. Jones makes a deposit
of V utility units in a “bank”that offers a proportionate rate of expansion of the
utility value of the deposit equal to i (assuming no withdrawal occurs), i.e.,

V̇

V
= i.

18Recall, a shadow price (measured in some unit of account) of a good is, from the point of
view of the buyer, the maximum number of units of account that the optimizing buyer is willing
to offer for one extra unit of the good.
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This is the actual utility rate of return, a kind of “nominal interest rate”. To
calculate the corresponding “real interest rate”let the “nominal price”of a con-
sumption good be λ utility units. Dividing the number of invested utility units,
V, by λ, we get the real value, m = V/λ, of the deposit at time t. The actual real
rate of return on the deposit is therefore

r =
ṁ

m
=
V̇

V
− λ̇

λ
= i− λ̇

λ
. (9.43)

Mr. Jones is just willing to save the marginal unit of income if this actual
real rate of return on saving equals the required real rate, that is, the right-hand
side of (9.42); in turn this necessitates that the “nominal interest rate”, i, in
(9.43) equals the required nominal rate, ρ. The formula (9.43) is analogue to the
discrete-time formula (9.2) except that the unit of account in (9.43) is current
utility while in (9.2) it is currency.
The transversality condition (TVC) is a terminal optimality condition. We

could, for the case T <∞, have expressed it on the equivalent form

a(T )λ(T )e−ρT = 0,

since e−ρT > 0 always. This form has the advantage of being “parallel” to the
transversality condition for the case T = ∞. More importantly, the transversal-
ity condition has affi nity with the principle of complementary slackness in linear
and nonlinear programming. Let us spell out in general terms. Consider the case
T <∞. Interpret the solvency condition a(T ) ≥ 0 as just an example of a general
terminal constraint a(T ) ≥ aT , where a(T ) is the terminal value of some general
state variable with a nonnegative shadow price λ(T ); besides, aT is an arbitrary
real number. Continuing this line of thought, interpret (9.35) as an abstract cri-
terion function and c(t) as an abstract control variable with control region R and
with the property that a higher value of c(t) makes ȧ(t) smaller. Then “comple-
mentary slackness”is the principle that given the terminal constraint a(T ) ≥ aT ,
the terminal optimality condition must be (a(T ) −aT )λ(T ) = 0. The intuition
is that if the shadow price λ(T ) > 0 (a “slackness”), then optimality requires
a(T ) = aT . Indeed, in this case a(T ) > aT has an avoidable positive opportunity
cost. On the other hand, if a(T ) > aT is optimal (another “slackness”), then the
shadow price must be nil, i.e., λ(T ) = 0. There is “complementary slackness”in
the sense that at most one of the weak inequalities a(T ) ≥ aT and λ(T ) ≥ 0 can
be strict in optimum.
Anyway, returning to the household’s saving problem, the transversality con-

dition becomes more concrete if we insert (9.39). For the case T < ∞, we then
have

a(T )u′(c(T ))e−ρT = 0. (9.44)
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Since u′(c(T ))e−ρT is always positive, an optimal plan obviouslymust satisfy a(T )
= aT = 0. The reason is that, given the solvency requirement a(T ) ≥ 0, the only
alternative to a(T ) = 0 is a(T ) > 0. But this would imply that the level of the
consumption path could be raised, and U0 thereby be increased, by allowing a
decrease in a(T ) without violating the solvency requirement.
Now, write the solvency requirement as a(T )e−ρT ≥ 0 and let T →∞. Then

in the limit the solvency requirement takes the form of (NPG) above (replace T
by t), and (9.44) is replaced by

lim
T→∞

a(T )u′(c(T ))e−ρT = 0. (9.45)

This says the same as (TVC) above. Intuitively, a plan that violates this condition
by having “>”instead “=”indicates scope for improvement and thus cannot be
optimal. There would be “purchasing power left for eternity”. This purchasing
power could be transferred to consumption on earth at an earlier date.
Generally, care must be taken when extending a necessary transversality con-

dition from a finite to an infinite horizon. But for the present problem, the
extension is valid. To see this, note that by Proposition 1, strict inequality in
the (NPG) condition is (by Proposition1) equivalent to strict inequality in the in-
tertemporal budget constraint (IBC). Such a path can always be improved upon
by raising c(t) a little in some time interval without decreasing c(t) in any other
time interval and without violating the (NPG) and (IBC). Hence, an optimal
plan must have strict equality in both NPG and IBC. This amounts to requiring
that none of these two conditions is “over-satisfied”. And this requirement can
be shown to be equivalent to the condition (TVC) above. Indeed:

PROPOSITION 2 (the household’s necessary transversality condition with in-
finite time horizon) Let T → ∞ in the criterion function (9.35) and assume
the human wealth integral (9.32) converges (and thereby remains bounded) for
T → ∞. Provided the adjoint variable, λ(t), satisfies the first-order conditions
(9.39) and (9.40), (TVC) holds if and only if (NPG) holds with strict equality.

Proof. See Appendix D.

In view of this proposition, we can write the transversality condition for T →
∞ as the NPG condition with strict equality:

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ = 0. (TVC’)

In view of the equivalence of the NPG condition with strict equality and the IBC
with strict equality, established in Proposition 1, the transversality condition for
T →∞ can also be written∫ ∞

0

c(t)e−
∫ t
0 r(τ)dτdt = a0 + h0. (IBC’)
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The current-value Hamiltonian versus the present-value Hamiltonian
The prefix “current-value” is used to distinguish the current-value Hamiltonian
from what is known as the present-value Hamiltonian. The latter is defined as
Ĥ ≡ He−ρt with λe−ρt substituted by µ, which is the associated (discounted)
adjoint variable. The solution procedure is similar except that step 3 is replaced
by ∂Ĥ/∂a = −µ̇ and λ(t)e−ρt in the transversality condition is replaced by µ(t).
The two methods are equivalent (and if the discount rate is nil, the formulas for
the optimality conditions coincide). But for many economic problems the current-
value Hamiltonian has the advantage that it makes both the calculations and the
interpretation slightly simpler. The adjoint variable, λ(t), which as mentioned
acts as a shadow price of the state variable, becomes a current price along with
the other prices in the problem, w(t) and r(t). This is in contrast to µ(t) which
is a discounted price.

9.4.3 The Keynes-Ramsey rule

The first-order conditions have interesting implications. Differentiate both sides
of (9.39) w.r.t. t to get u′′(c)ċ = λ̇. This equation can be written u′′(c)ċ/u′(c) =
λ̇/λ by drawing on (9.39) again. Applying (9.40) now gives

ċ(t)

c(t)
=

1

θ(c(t))
(r(t)− ρ), (9.46)

where θ(c) is the (absolute) elasticity of marginal utility w.r.t. consumption,

θ(c) ≡ − c

u′(c)
u′′(c) > 0. (9.47)

As in discrete time, θ(c) indicates the strength of the consumer’s preference for
consumption smoothing. The inverse of θ(c) measures the instantaneous in-
tertemporal elasticity of substitution in consumption, which in turn indicates the
willingness to accept variation in consumption over time when the interest rate
changes, see Appendix F.
The result (9.46) says that an optimal consumption plan is characterized in

the following way. The household will completely smooth − i.e., even out −
consumption over time if the rate of time preference equals the real interest rate.
The household will choose an upward-sloping time path for consumption if and
only if the rate of time preference is less than the real interest rate. In this case
the household will have to accept a relatively low level of current consumption
with the purpose of enjoying higher consumption in the future. The higher the
real interest rate relative to the rate of time preference, the more favorable is
it to defer consumption − everything else equal. The proviso is important. In-
deed, in addition to the negative substitution effect on current consumption of a
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Figure 9.2: Optimal consumption paths for a low and a high constant θ, given a constant
r > ρ.

higher interest rate there is a positive income effect due to the present value of
a given intertemporal consumption plan being reduced by a higher interest rate
(see (IBC)). On top of this comes a negative wealth effect due to a higher interest
rate causing a lower present value of expected future labor earnings (again see
(IBC)). The special case of a CRRA utility function provides a convenient agenda
for sorting these details out, see Example 1 in Section 9.5.

By (9.46) we also see that the greater the elasticity of marginal utility (that
is, the greater the curvature of the utility function), the greater the incentive to
smooth consumption for a given value of r(t) − ρ. The reason for this is that a
strong curvature means that the marginal utility will drop sharply if consumption
increases, and will rise sharply if consumption decreases. Fig. 9.2 illustrates this
in the CRRA case where θ(c) = θ, a positive constant. For a given constant
r > ρ, the consumption path chosen when θ is high has lower slope, but starts
from a higher level, than when θ is low.

The condition (9.46), which holds for all t within the time horizon whether this
is finite or infinite, is referred to as the Keynes-Ramsey rule. The name springs
from the English mathematician Frank Ramsey who derived the rule in 1928,
while his mentor, John Maynard Keynes, suggested a simple and intuitive way
of presenting it. The rule is the continuous-time counterpart to the consumption
Euler equation in discrete time.

The Keynes-Ramsey rule reflects the general microeconomic principle that
the consumer equates the marginal rate of substitution between any two goods to
the corresponding price ratio. In the present context the principle is applied to a
situation where the “two goods”refer to the same consumption good delivered at
two different dates. In Section 9.2 we used the principle to interpret the optimal
saving behavior in discrete time. How can the principle be translated into a
continuous time setting?
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Local optimality in continuous time* Let (t, t+∆t) and (t+∆t, t+2∆t) be
two short successive time intervals. The marginal rate of substitution,MRSt+∆t,t,
of consumption in the second time interval for consumption in the first, is19

MRSt+∆t,t ≡ −
dc(t+ ∆t)

dc(t)
|U=Ū =

u′(c(t))

e−ρ∆tu′(c(t+ ∆t))
, (9.48)

approximately. On the other hand, by saving −∆c(t) more per time unit (where
∆c(t) < 0) in the short time interval (t, t+∆t), one can, via the market, transform
−∆c(t) ·∆t units of consumption in this time interval into

∆c(t+ ∆t) ·∆t ≈ −∆c(t)∆t e
∫ t+∆t
t r(τ)dτ (9.49)

units of consumption in the time interval (t+ ∆t, t+ 2∆t). The marginal rate of
transformation is therefore

MRTt+∆t,t ≡ −dc(t+ ∆t)

dc(t)
|U=Ū ≈

= e
∫ t+∆t
t r(τ)dτ .

In the optimal plan we must have MRSt+∆t,t = MRTt+∆t,t which gives

u′(c(t))

e−ρ∆tu′(c(t+ ∆t))
= e

∫ t+∆t
t r(τ)dτ , (9.50)

approximately. When ∆t = 1 and ρ and r(t) are small, this relation can be
approximated by (9.11) from discrete time (generally, by a first-order Taylor
approximation, we have ex ≈ 1 + x, when x is close to 0).
Taking logs on both sides of (9.50), dividing through by ∆t, inserting (9.49),

and letting ∆t→ 0, we get (see Appendix E)

ρ− u′′(c(t))

u′(c(t))
ċ(t) = r(t). (9.51)

With the definition of θ(c) in (9.47), this is exactly the same as the Keynes-
Ramsey rule (9.46) which, therefore, is merely an expression of the general op-
timality condition MRS = MRT. When ċ(t) > 0, the household is willing to
sacrifice some consumption today for more consumption tomorrow only if it is
compensated by an interest rate suffi ciently above ρ. Naturally, the required com-
pensation is higher, the faster marginal utility declines with rising consumption,
i.e., the larger is (−u′′/u′)ċ already. Indeed, a higher ct in the future than today
implies a lower marginal utility of consumption in the future than of consumption
today. Saving of the marginal unit of income today is thus only warranted if the
rate of return is suffi ciently above ρ, and this is what (9.51) indicates.

19The underlying analytical steps can be found in Appendix E.
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9.4.4 Mangasarian’s suffi cient conditions

For dynamic optimization problems with one state variable, the Maximum Prin-
ciple delivers a set of first-order conditions and suggests a terminal optimality
condition, the transversality condition. The first-order conditions are necessary
conditions for an interior path to be optimal, while, with infinite horizon, the
necessity of the suggested transversality condition in principle requires a verifica-
tion in each case; in the present case the verification is implied by Proposition 2.
So, up to this point we have only shown that if the consumption/saving problem
has an interior solution, then this solution satisfies the Keynes-Ramsey rule and
a transversality condition, (TVC’).
But are these conditions also suffi cient? The answer is yes in the present case.

This follows from Mangasarian’s suffi ciency theorem (see Math tools) which, ap-
plied to the present problem, tells us that if the Hamiltonian is jointly concave
in (a, c) for every t within the time horizon, then the listed first-order conditions,
together with the transversality condition, are also suffi cient. Because the in-
stantaneous utility function (the first term in the Hamiltonian) is here strictly
concave in c and the second term is linear in (a, c), the Hamiltonian is jointly
concave in (a, c).

To sum up: if we have found a path satisfying the Keynes-Ramsey rule and
(TVC’), we have a candidate solution. Applying the Mangasarian theorem, we
check whether our candidate is an optimal solution. In the present case it is. In
fact the strict concavity of the Hamiltonian with respect to the control variable
in this problem ensures that the optimal solution is unique (Exercise 9.?).

9.5 The consumption function

We have not yet fully solved the saving problem. The Keynes-Ramsey rule gives
only the optimal rate of change of consumption over time. It says nothing about
the level of consumption at any given time. In order to determine, for instance,
the level c(0), we implicate the solvency condition which limits the amount the
household can borrow in the long term. Among the infinitely many consumption
paths satisfying the Keynes-Ramsey rule, the household will choose the “highest”
one that also fulfils the solvency requirement (NPG). Thus, the household acts
so that strict equality in (NPG) obtains. As we saw in Proposition 2, this is
equivalent to the transversality condition being satisfied.
To avoid misunderstanding: The examples below should not be interpreted

such that for any evolution of wages and interest rates there exists a solution to
the household’s maximization problem with infinite horizon. There is generally
no guarantee that integrals converge and thus have an upper bound for T →∞.
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The evolution of wages and interest rates which prevails in general equilibrium
is not arbitrary, however. It is determined by the requirement of equilibrium.
In turn, of course existence of an equilibrium imposes restrictions on the utility
discount rate relative to the potential growth in instantaneous utility. We shall
return to these aspects in the next chapter.

EXAMPLE 1 (constant elasticity of marginal utility; infinite time horizon). In
the problem in Section 9.4.2 with T =∞, we consider the case where the elasticity
of marginal utility θ(c), as defined in (9.47), is a constant θ > 0. From Appendix
A of Chapter 3 we know that this requirement implies that up to a positive linear
transformation the utility function must be of the form:

u(c) =

{
c1−θ

1−θ , when θ > 0, θ 6= 1,

ln c, when θ = 1.
(9.52)

This is our familiar CRRA utility function. In this case the Keynes-Ramsey rule
implies ċ(t) = θ−1(r(t)− ρ)c(t). Solving this linear differential equation yields

c(t) = c(0)e
1
θ

∫ t
0 (r(τ)−ρ)dτ , (9.53)

cf. the general accumulation formula, (9.25).
We know from Proposition 2 that the transversality condition is equivalent

to the NPG condition being satisfied with strict equality, and from Proposition 1
we know that this condition is equivalent to the intertemporal budget constraint
being satisfied with strict equality, i.e.,∫ ∞

0

c(t)e−
∫ t
0 r(τ)dτdt = a0 + h0, (IBC’)

where h0 is the human wealth,

h0 =

∫ ∞
0

w(t)e−
∫ t

0
r(τ)dτdt. (9.54)

This result can be used to determine c(0).20 Substituting (9.53) into (IBC’) gives

c(0)

∫ ∞
0

e
∫ t
0 [ 1
θ

(r(τ)−ρ)−r(τ)]dτdt = a0 + h0.

The consumption function is thus

c(0) = β0(a0 + h0), where

β0 ≡
1∫∞

0
e
∫ t
0 [ 1
θ

(r(τ)−ρ)−r(τ)]dτdt
=

1∫∞
0
e

1
θ

∫ t
0 [(1−θ)r(τ)−ρ]dτdt

(9.55)

20The method also applies if instead of T =∞, we have T <∞.
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is the marginal propensity to consume out of wealth. We have here assumed
that these improper integrals over an infinite horizon are bounded from above for
all admissible paths. We see that consumption is proportional to total wealth.
The factor of proportionality, often called the marginal propensity to consume
out of wealth, depends on the expected future interest rates and on the preference
parameters ρ and θ, that is, the impatience rate and the strength of the preference
for consumption smoothing, respectively.

Generally, an increase in the interest rate level, for given total wealth, a0 +h0,
can effect c(0) both positively and negatively.21 On the one hand, such an increase
makes future consumption cheaper in present value terms. This change in the
trade-off between current and future consumption entails a negative substitution
effect on c(0). On the other hand, the increase in the interest rates decreases the
present value of a given consumption plan, allowing for higher consumption both
today and in the future, for given total wealth, cf. (IBC’). This entails a positive
pure income effect on consumption today as consumption is a normal good. If θ
< 1 (small curvature of the utility function), the substitution effect will dominate
the pure income effect, and if θ > 1 (large curvature), the reverse will hold. This
is because the larger is θ, the stronger is the propensity to smooth consumption
over time.

In the intermediate case θ = 1 (the logarithmic case) we get from (9.55) that
β0 = ρ, hence

c(0) = ρ(a0 + h0). (9.56)

In this special case the marginal propensity to consume is time independent and
equal to the rate of time preference. For a given total wealth, a0 + h0, current
consumption is thus independent of the expected path of the interest rate. That
is, in the logarithmic case the substitution and pure income effects on current
consumption exactly offset each other. Yet, on top of this comes the negative
wealth effect on current consumption of an increase in the interest rate level.
The present value of future wage incomes becomes lower (similarly with expected
future dividends on shares and future rents in the housing market in a more
general setup). Because of this, h0 (and so a0 + h0) becomes lower, which adds
to the negative substitution effect. Thus, even in the logarithmic case, and a
fortiori when θ < 1, the total effect of an increase in the interest rate level is
unambiguously negative on c(0).

21By an increase in the interest rate level we mean an upward shift in the time-profile of the
interest rate. That is, there is at least one time interval within [0,∞) where the interest rate is
higher than in the original situation and no time interval within [0,∞) where the interest rate
is lower.
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If, for example, r(t) = r and w(t) = w (positive constants), we get

β0 = [(θ − 1)r + ρ]/θ,

a0 + h0 = a0 + w/r.

When θ = 1, the negative effect of a higher r on h0 is decisive. When θ < 1,
a higher r reduces both β0 and h0, hence the total effect on c(0) is even “more
negative”. When θ > 1, a higher r implies a higher β0 which more or less offsets
the lower h0, so that the total effect on c(0) becomes ambiguous. As referred to
in Chapter 3, available empirical studies generally suggest a value of θ somewhat
above 1. �
A remark on fixed-rate loans and positive net debt is appropriate here. Sup-

pose a0 < 0 and assume that this net debt is not in the form of a variable-rate
loan (as hitherto assumed), but for instance a fixed-rate mortgage loan. Then
a rise in the interest rate level implies a lowering of the present value of the
debt and thereby raises financial wealth and possibly total wealth. If so, the rise
in the interest rate level implies a positive wealth effect on current consumption,
thereby “joining”the positive pure income effect in counterbalancing the negative
substitution effect.

EXAMPLE 2 (constant absolute semi-elasticity of marginal utility; infinite time
horizon). In the problem in Section 9.4.2 with T = ∞, we consider the case
where the sensitivity of marginal utility, measured by the absolute value of the
semi-elasticity of marginal utility, −u′′(c)/u′(c) ≈ −(∆u′/u′)/∆c, is a positive
constant, α. The utility function must then, up to a positive linear transformation,
be of the form,

u(c) = −α−1e−αc, α > 0. (9.57)

This is known as the CARA utility function (where the name CARA comes from
“Constant Absolute Risk Aversion”). The Keynes-Ramsey rule now becomes
ċ(t) = α−1(r(t)− ρ).When the interest rate is a constant r > 0, we find, through
(IBC’) and partial integration, c(0) = r(a0 + h0) − (r − ρ)/(αr), presupposing
r ≥ ρ and a0 + h0 > (r − ρ)/(ar2).
This hypothesis of a “constant absolute variability aversion”implies that the

degree of relative variability aversion is θ(c) = αc and thus greater, the larger is
c. The CARA function is popular in the theory of behavior under uncertainty.
One of the theorems of expected utility theory is that the degree of absolute risk
aversion, −u′′(c)/u′(c), is proportional to the risk premium which the economic
agent will require to be willing to exchange a specified amount of consumption
received with certainty for an uncertain amount having the same mean value.
Empirically this risk premium seems to be a decreasing function of the level of
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consumption. Therefore the CARA function is generally considered less realistic
than the CRRA function of the previous example. �
EXAMPLE 3 (logarithmic utility; finite time horizon; retirement). We consider
a life-cycle saving problem. A worker enters the labor market at time 0 with
a financial wealth of 0, has finite lifetime T (assumed known), retires at time
t1 ∈ (0, T ] , and does not wish to pass on bequests. For simplicity we assume that
rt = r > 0 for all t ∈ [0, T ] and labor income is w(t) = w > 0 for t ∈ [0, t1], while
w(t) = 0 for t > t1. The decision problem is

max
(c(t))T

t=0

U0 =

∫ T

0

(ln c(t))e−ρtdt s.t.

c(t) ≥ 0,

ȧ(t) = ra(t) + w(t)− c(t), a(0) = 0,

a(T ) ≥ 0.

The Keynes-Ramsey rule becomes ċt/ct = r − ρ. A solution to the problem
will thus fulfil

c(t) = c(0)e(r−ρ)t. (9.58)

Inserting this into the differential equation for a, we get a first-order linear dif-
ferential equation the solution of which (for a(0) = 0) can be reduced to

a(t) = ert
[
w

r
(1− e−rz)− c0

ρ
(1− e−ρt)

]
, (9.59)

where z = t if t ≤ t1, and z = t1 if t > t1. We need to determine c(0). The
transversality condition implies a(T ) = 0. Having t = T , z = t1 and aT = 0 in
(9.59), we get

c(0) = (ρw/r)(1− e−rt1)/(1− e−ρT ). (9.60)

Substituting this into (9.58) gives the optimal consumption plan.22

If r = ρ, consumption is constant over time at the level given by (9.60). If, in
addition, t1 < T , this consumption level is less than the wage income per year up
to t1 (in order to save for retirement); in the last years the level of consumption
is maintained although there is no wage income; the retired person uses up both
the return on financial wealth and this wealth itself. �
The examples illustrate the importance of forward-looking expectations, here

expectations about future wage income and interest rates. The expectations
affect c(0) both through their impact on the marginal propensity to consume

22For t1 = T and T → ∞ we get in the limit c(0) = ρw/r ≡ ρh0, which is also what (9.55)
gives when a(0) = 0 and θ = 1.
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(cf. β0 in Example 1) and through their impact on the present value of expected
future labor income (or of expected future dividends on shares or imputed rental
income on owner-occupied houses in a more general setup).23

9.6 Concluding remarks

(incomplete)
...
The examples above − and the consumption theory in this chapter in gen-

eral − should only be seen as a first, crude approximation to actual consump-
tion/saving behavior. Real world factors such as uncertainty and narrow credit
constraints (absence of perfect loan and insurance markets) also affect the behav-
ior. When these factors are included, current income and expected income in the
near future tend to become important co-determinants of current consumption,
at least for a large fraction of the population with little financial wealth. We
return to this in connection with short- and medium-run macro models later in
this book.

9.7 Literature notes

(incomplete)
In Chapter 6, where the borrower was a “large”agent with fiscal and mon-

etary policy mandates, namely the public sector, satisfying the intertemporal
budget constraint was a necessary condition for solvency (when the interest rate
exceeds the growth rate of income), but not a suffi cient condition. When the
modelled borrowers are “small”private agents as in this chapter, the situation
is different. Neoclassical models with perfect markets then usually contain equi-
librium mechanisms such that the agents’compliance with their intertemporal
budget constraint is suffi cient for lenders’willingness and ability to supply the
demanded finance. See ...
Present-bias and time-inconsistency. Strots (1956). Laibson, QJE 1997: 1,

αβ, αβ2, ...
Loewenstein and Thaler (1989) survey the evidence suggesting that the utility

discount rate is generally not constant, but declining with the time distance from
the current period to the future periods within the horizon. This is known as
hyperbolic discounting.

23There exist cases where, due to new information, a shift in expectations occurs so that
a discontinuity in a responding endogenous variable results. How to deal with such cases is
treated in Chapter 11.
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The assumptions regarding the underlying intertemporal preferences which
allow them to be represented by the present value of period utilities discounted
at a constant rate are dealt with by Koopmans (1960), Fishburn and Rubinstein
(1982), and − in summary form − by Heal (1998).
Borovika, WP 2013, Recursive preferences, separation of risk aversion and

IES.
Deaton, A., Understanding Consumption, OUP 1992.
On continuous-time finance, see for instance Merton (1990).
Goldberg (1958).
Allen (1967).
To Math Tools: Rigorous and more general presentations of the Maximum

Principle in continuous time applied in economic analysis are available in, e.g.,
Seierstad and Sydsæter (1987), Sydsæter et al. (2008) and Seierstad and Sydsæter
(Optimization Letters, 2009, 3, 507-12).

9.8 Appendix

A. Growth arithmetic in continuous time

Let the variables z, x, and y be differentiable functions of time t. Suppose z(t),
x(t), and y(t) are positive for all t. Then:

PRODUCT RULE z(t) = x(t)y(t)⇒ ż(t)/z(t) = ẋ(t)/x(t) + ẏ(t)/y(t).

Proof. Taking logs on both sides of the equation z(t) = x(t)y(t) gives ln z(t) =
lnx(t)+ln y(t). Differentiation w.r.t. t, using the chain rule, gives the conclusion.
�

The procedure applied in this proof is called logarithmic differentiation w.r.t.
t.

FRACTION RULE z(t) = x(t)/y(t)⇒ ż(t)/z(t) = ẋ(t)/x(t)− ẏ(t)/y(t).

The proof is similar.

POWER FUNCTION RULE z(t) = x(t)α ⇒ ż(t)/z(t) = αẋ(t)/x(t).

The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time
the analogue formulas are only approximately true and the approximation can
be quite bad unless the growth rates of x and y are small, cf. Appendix A to
Chapter 4.
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B. Average growth and interest rates

Sometimes in the literature the accumulation formula in continuous time,

a(t) = a(0)e
∫ t
0 g(τ)dτ ,

is expressed in terms of the arithmetic average, also called the arithmetic mean,
of the growth rates in the time interval [0, t]. This average is defined as ḡ0,t

= (1/t)
∫ t

0
g(τ)dτ . So we can write

a(t) = a(0)eḡ0,tt, (9.61)

which has form similar to (9.24). Similarly, let r̄0,t denote the arithmetic average
of the (short-term) interest rates from time 0 to time t, i.e., r̄0,t = (1/t)

∫ t
0
r(τ)dτ .

Then we can write the present value of the consumption stream (c(t))Tt=0 as PV
=
∫ T

0
c(t)e−r̄0,ttdt.

The arithmetic average growth rate, ḡ0,t, coincides with the average compound
growth rate from time 0 to time t, that is, the number g satisfying

a(t) = a(0)egt, (9.62)

for the same a(0) and a(t) as in (9.61).
There is no similar concordance within discrete time modeling. To see this,

suppose that the period-by-period observations, a0, a1 . . . , an, are available. Let
ĝ0,n be the average compound growth rate from period 0 to period n, that is,
the number x satisfying an = a0(1 + x)n. We find 1 + ĝ0,n = 1 + x = (an/a0)1/n.
This compound growth factor is the geometric mean, mg, of the period-by-period
growth factors since

mg ≡
(
a1

a0

a2

a1

. . .
an
an−1

)1/n

= (
an
a0

)1/n.

The arithmetic mean, Ma, of the period-by-period growth factors is

ma ≡
1

n

(
a1

a0

+
a2

a1

+ · · ·+ an
an−1

)
≥ mg, (9.63)

where strict inequality holds unless all the n growth factors are identical. Indeed,
when the growth factors are not identical, we have, by Jensen’s inequality,

ϕ(

n∑
i=1

wixi) >

n∑
i=1

wiϕ(xi),
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when ϕ is strictly concave and
∑n

i=1 wi = 1, wi ≥ 0, i = 1, 2, . . . , n. So, by (9.63),

lnma = ln
n∑
i=1

1

n

ai
ai−1

>
n∑
i=1

1

n
ln

ai
ai−1

=
1

n

n∑
i=1

ln
ai
ai−1

= lnmg,

since ln is a strictly concave function. This inequality implies ma > mg since ln

is also an increasing function. Consequently, unless the period-by-period growth
rate is a constant, multiplying the initial value a0 with the arithmetic mean of
the growth factors results in a number larger than an.

Discrete versus continuous compounding Suppose the period length is
one year so that the given observations, a0, a1 . . . , an, are annual data. There
are two alternative ways of calculating an average compound growth rate (often
just called the “average growth rate”) for the data. We may apply the geometric
growth formula,

an = a0(1 +G)n, (9.64)

which is natural if the compounding behind the data is discrete and occurs annu-
ally. If the compounding is much more frequent, it is in principle better to apply
the exponential growth formula,

an = a0e
gn, (9.65)

corresponding to continuous compounding. Unless an = a0, the resulting g will
be smaller than the average compound growth rate G calculated from a geometric
growth formula (discrete time) for the same data. Indeed,

g =
ln an

a0

n
= ln(1 +G) / G

for G “small”, where “/”means “close to”(by a first-order Taylor approximation
about G = 0) but “less than”except if G = 0. The intuitive reason for “less than”
is that a given growth force is more powerful when compounding is continuous.
To put it differently: rewriting (1 + G)n into exponential form gives (1 + G)n

= (eln(1+G))n = egn < eGn, as ln(1 +G) < G for all G 6= 0.
Anyway, the difference betweenG and g is usually unimportant. If for example

G refers to the annual GDP growth rate, it will be a small number, and the
difference between G and g immaterial. For example, to G = 0.040 corresponds g
≈ 0.039. Even if G = 0.10, the corresponding g is 0.0953. But if G stands for the
inflation rate and there is high inflation, the difference between G and g will be
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substantial. During hyperinflation the monthly inflation rate may be, say, G =
100%, but the corresponding g will be only 69%.24

C. Proof of Proposition 1 (about equivalence between the No-Ponzi-
Game condition and the intertemporal budget constraint)

We consider the book-keeping relation

ȧ(t) = r(t)a(t) + w(t)− c(t), (9.66)

where a(0) = a0 (given), and the solvency requirement

lim
t→∞

a(t)e−
∫ t
0 r(τ)dτ ≥ 0. (NPG)

Technical remark. The expression in (NPG) should be understood to include
the possibility that a(t)e−

∫ t
0 r(τ)dτ → ∞ for t → ∞. Moreover, if full generality

were aimed at, we should allow for infinitely fluctuating paths in both the (NPG)
and (TVC) and therefore replace “limt→∞” by “lim inft→∞”, i.e., the limit in-
ferior. The limit inferior for t → ∞ of a function f(t) on [0,∞) is defined as
limt→∞ inf {f(s)| s ≥ t}.25 As noted in Appendix E of the previous chapter, how-
ever, undamped infinitely fluctuating paths never turn up in “normal”economic
optimization problems, whether in discrete or continuous time. Hence, we apply
the simpler concept “lim”rather than “lim inf”. �
On the background of (9.66), Proposition 1 in the text claimed that (NPG)

is equivalent to the intertemporal budget constraint,∫ ∞
0

c(t)e−
∫ t
0 r(τ)dτdt ≤ h0 + a0, (IBC)

being satisfied, where h0 is defined as in (9.54) and is assumed to be a finite
number. In addition, Proposition 1 in Section 9.4 claimed that there is strict
equality in (IBC) if and only there is strict equality in (NPG). A plain proof goes
as follows.

Proof. Isolate c(t) in (9.66) and multiply through by e−
∫ t

0
r(τ)dτ to obtain

c(t)e−
∫ t

0
r(τ)dτ = w(t)e−

∫ t
0
r(τ)dτ − (ȧ(t)− r(t)a(t))e−

∫ t
0
r(τ)dτ .

24Apart from the discrete compounding instead of continuous compounding, a geometric
growth factor is equivalent to a “corresponding” exponential growth factor. Indeed, we can
rewrite the growth factor (1+g)t, t = 0, 1, 2, . . . , into exponential form since (1+g)t = (eln(1+g))t

= e[ln(1+g)]t. Moreover, if g is “small”, we have e[ln(1+g)]t ≈ egt.
25By “inf” is meant infimum of the set, that is, the largest number less than or equal to all

numbers in the set.
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Integrate from 0 to T > 0 to get
∫ T

0
c(t)e−

∫ t
0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt−

∫ T

0

ȧ(t)e−
∫ t

0
r(τ)dτdt+

∫ T

0

r(t)a(t)e−
∫ t

0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt−

([
a(t)e−

∫ t
0
r(τ)dτ

]T
0

−
∫ T

0

a(t)e−
∫ t

0
r(τ)dτ (−r(t))dt

)

+

∫ T

0

r(t)a(t)e−
∫ t

0
r(τ)dτdt

=

∫ T

0

w(t)e−
∫ t

0
r(τ)dτdt− (a(T )e−

∫ T
0 r(τ)dτ − a(0)),

where the second equality follows from integration by parts. If we let T →∞ and
use the definition of h0 and the initial condition a(0) = a0, we get (IBC) if and
only if (NPG) holds. It follows that when (NPG) is satisfied with strict equality,
so is (IBC), and vice versa. �
An alternative proof is obtained by using the general solution to a linear

inhomogeneous first-order differential equation and then let T → ∞. Since this
is a more generally applicable approach, we will show how it works and use it
for Claim 1 below (an extended version of Proposition 1) and for the proof of
Proposition 2 in the text. Claim 1 will for example prove useful in Exercise 9.1
and in the next chapter.

CLAIM 1 Let f(t) and g(t) be given continuous functions of time, t. Consider
the differential equation

ẋ(t) = g(t)x(t) + f(t), (9.67)

with x(t0) = xt0 , a given initial value. Then the inequality

lim
t→∞

x(t)e
−
∫ t
t0
g(s)ds ≥ 0 (9.68)

is equivalent to

−
∫ ∞
t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ ≤ xt0 . (9.69)

Moreover, if and only if (9.68) is satisfied with strict equality, then (9.69) is
satisfied with strict equality.

Proof. The linear differential equation, (9.67), has the solution

x(t) = x(t0)e
∫ t
t0
g(s)ds

+

∫ t

t0

f(τ)e
∫ t
τ g(s)dsdτ . (9.70)
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Multiplying through by e−
∫ t
t0
g(s)ds yields

x(t)e
−
∫ t
t0
g(s)ds

= x(t0) +

∫ t

t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ .

By letting t→∞, it can be seen that if and only if (9.68) is true, we have

x(t0) +

∫ ∞
t0

f(τ)e
−
∫ τ
t0
g(s)ds

dτ ≥ 0.

Since x(t0) = xt0 , this is the same as (9.69). We also see that if and only if (9.68)
holds with strict equality, then (9.69) also holds with strict equality. �
COROLLARY Let n be a given constant and let

ht0 ≡
∫ ∞
t0

w(τ)e
−
∫ τ
t0

(r(s)−n)ds
dτ , (9.71)

which we assume is a finite number. Then, given

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t), where a(t0) = at0 , (9.72)

it holds that

lim
t→∞

a(t)e
−
∫ t
t0

(r(s)−n)ds ≥ 0⇔
∫ ∞
t0

c(τ)e
−
∫ τ
t0

(r(s)−n)ds
dτ ≤ at0 + ht0 , (9.73)

where a strict equality on the left-hand side of “⇔”implies a strict equality on
the right-hand side, and vice versa.

Proof. In (9.67), (9.68) and (9.69), let x(t) = a(t), g(t) = r(t) − n and f(t) =
w(t)− c(t). Then the conclusion follows from Claim 1. �

By setting t0 = 0 in the corollary and replacing τ by t and n by 0, we have
hereby provided an alternative proof of Proposition 1.

D. Proof of Proposition 2 (about the transversality condition with an
infinite time horizon)

In the differential equation (9.67) we let x(t) = λ(t), g(t) = −(r(t) − ρ), and
f(t) = 0. This gives the linear differential equation λ̇(t) = (ρ − r(t))λ(t), which
is identical to the first-order condition (9.40) in Section 9.4. The solution is

λ(t) = λ(t0)e
−
∫ t
t0

(r(s)−ρ)ds
.
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Substituting this into (TVC) in Section 9.4 yields

λ(t0) lim
t→∞

a(t)e
−
∫ t
t0

(r(s)−n)ds
= 0. (9.74)

From the first-order condition (9.39) in Section 9.4 we have λ(t0) = u′(c(t0)) > 0
so that λ(t0) in (9.74) can be ignored. Thus, (TVC) in Section 9.4 is equivalent
to the condition that (NPG) in that section is satisfied with strict equality (let
t0 = 0 = n). This proves Proposition 2 in the text. �

E. Intertemporal consumption smoothing

We claimed in Section 9.4 that equation (9.48) gives approximately the marginal
rate of substitution of consumption in the time interval (t + ∆t, t + 2∆t) for
consumption in (t, t+∆t). This can be seen in the following way. To save notation
we shall write our time-dependent variables as ct, rt, etc., even though they are
continuous functions of time. The contribution from the two time intervals to the
criterion function is∫ t+2∆t

t

u(cτ )e
−ρτdτ ≈ e−ρt

(∫ t+∆t

t

u(ct)e
−ρ(τ−t)dτ +

∫ t+2∆t

t+∆t

u(ct+∆t)e
−ρ(τ−t)dτ

)
= e−ρt

(
u(ct)

[
e−ρ(τ−t)

−ρ

]t+∆t

t

+ u(ct+∆t)

[
e−ρ(τ−t)

−ρ

]t+2∆t

t+∆t

)

=
e−ρt(1− e−ρ∆t)

ρ

[
u(ct) + u(ct+∆t)e

−ρ∆t
]
.

Requiring unchanged utility integral U0 = Ū0 is thus approximately the same as
requiring ∆[u(ct) + u(ct+∆t)e

−ρ∆t] = 0, which by carrying through the differenti-
ation and rearranging gives (9.48).
The instantaneous local optimality condition, equation (9.51), can be inter-

preted on the basis of (9.50). Take logs on both sides of (9.50) to get

lnu′(ct) + ρ∆t− lnu′(ct+∆t) =

∫ t+∆t

t

rτdτ .

Dividing by ∆t, substituting (9.49), and letting ∆t→ 0 we get

ρ− lim
∆t→0

lnu′(ct+∆t)− lnu′(ct)

∆t
= lim

∆t→0

Rt+∆t −Rt

∆t
, (9.75)

where Rt is the antiderivative of rt. By the definition of a time derivative, (9.75)
can be written

ρ− d lnu′(ct)

dt
=
dRt

dt
.
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Carrying out the differentiation, we get

ρ− 1

u′(ct)
u′′(ct)ċt = rt,

which was to be shown.

F. Elasticity of intertemporal substitution in continuous time

The relationship between the elasticity of marginal utility and the concept of
instantaneous elasticity of intertemporal substitution in consumption can be ex-
posed in the following way: consider an indifference curve for consumption in the
non-overlapping time intervals (t, t+∆t) and (s, s+∆t). The indifference curve is
depicted in Fig. 9.3. The consumption path outside the two time intervals is kept
unchanged. At a given point (ct∆t, cs∆t) on the indifference curve, the marginal
rate of substitution of s-consumption for t-consumption, MRSst, is given by the
absolute slope of the tangent to the indifference curve at that point. In view of
u′′(c) < 0, MRSst is rising along the curve when ct decreases (and thereby cs
increases).
Conversely, we can consider the ratio cs/ct as a function of MRSst along the

given indifference curve. The elasticity of this consumption ratio w.r.t. MRSst
as we move along the given indifference curve then indicates the elasticity of
substitution between consumption in the time interval (t, t+∆t) and consumption
in the time interval (s, s+∆t). Denoting this elasticity by σ(ct, cs), we thus have:

σ(ct, cs) =
MRSst
cs/ct

d(cs/ct)

dMRSst
≈

∆(cs/ct)
cs/ct

∆MRSst
MRSst

.

At an optimum point, MRSst equals the ratio of the discounted prices of
good t and good s. Thus, the elasticity of substitution can be interpreted as
approximately equal to the percentage increase in the ratio of the chosen goods,
cs/ct, generated by a one percentage increase in the inverse price ratio, holding
the utility level and the amount of other goods unchanged. If s = t+ ∆t and the
interest rate from date t to date s is r, then (with continuous compounding) this
price ratio is er∆t, cf. (9.50). Inserting MRSst from (9.48) with t + ∆t replaced
by s, we get

σ(ct, cs) =
u′(ct)/[e

−ρ(s−t)u′(cs)]

cs/ct

d(cs/ct)

d{u′(ct)/[e−ρ(s−t)u′(cs)]}

=
u′(ct)/u

′(cs)

cs/ct

d(cs/ct)

d(u′(ct)/u′(cs))
, (9.76)
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Figure 9.3: Substitution of s-consumption for t-consumption as MRSst increases to
MRS

′
st.

since the factor e−ρ(t−s) cancels out.
We now interpret the d’s in (9.76) as differentials (recall, the differential of a

differentiable function y = f(x) is denoted dy and defined as dy = f ′(x)dx where
dx is some arbitrary real number). Calculating the differentials we get

σ(ct, cs) ≈
u′(ct)/u

′(cs)

cs/ct

(ctdcs − csdct)/c2
t

[u′(cs)u′′(ct)dct − u′(ct)u′′(cs)dcs]/u′(cs)2
.

Hence, for s→ t we get cs → ct and

σ(ct, cs)→
ct(dcs − dct)/c2

t

u′(ct)u′′(ct)(dct − dcs)/u′(ct)2
= − u′(ct)

ctu′′(ct)
≡ σ̃(ct).

This limiting value is known as the instantaneous elasticity of intertemporal sub-
stitution of consumption. It reflects the opposite of the preference for consump-
tion smoothing. Indeed, we see that σ̃(ct) = 1/θ(ct), where θ(ct) is the elasticity
of marginal utility at the consumption level c(t).

9.9 Exercises

9.1 We look at a household (or dynasty) with infinite time horizon. The house-
hold’s labor supply is inelastic and grows at the constant rate n > 0. The house-
hold has a constant rate of time preference ρ > n and the individual instantaneous
utility function is u(c) = c1−θ/(1 − θ), where θ is a positive constant. There is
no uncertainty. The household maximizes the integral of per capita utility dis-
counted at the rate ρ − n. Set up the household’s optimization problem. Show
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that the optimal consumption plan satisfies

c(0) = β0(a0 + h0), where

β0 =
1∫ ∞

0
e
∫ t
0

(
(1−θ)r(τ)−ρ

θ
+n)dτ

dt
, and

h0 =

∫ ∞
0

w(t)e−
∫ t
0 (r(τ)−n)dτdt,

where w(t) is the real wage per unit of labor and otherwise the same notation as
in this chapter is used. Hint: apply the corollary to Claim 1 in Appendix C and
the method of Example 1 in Section 9.5. As to h0, start by considering

H0 ≡ h0L0 =

∫ ∞
0

w(t)Lte
−
∫ t
0 (r(τ)−n)dτdt

and apply that L(t) = L0e
nt.
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