
Chapter 9

Human capital, learning
technology, and the Mincer
equation

We start with an overview of different approaches to the modeling of human
capital formation in macroeconomics. Next we go into detail with one of
these approaches, the life-cycle approach. In Section 9.3 a simple model of
the choice of schooling length is considered. Finally, Section 9.4 presents the
theory behind the empirical relationship named the Mincer equation.1 In
this connection it is emphasized that the Mincer equation should be seen as
an equilibrium relationship for relative wages at a given point in time rather
than as a production function for human capital.

9.1 Macroeconomic approaches to human cap-
ital

We define human capital as the stock of productive skills embodied in an
individual. Human capital is thus a production factor, while by human wealth
is meant the present value of expected future labor income (usually after tax).
Increases in the stock of human capital occurs through formal education

and on-the-job-training. By contributing to the maintenance of life and well-
being, also health care is of importance for the stock of human capital and
the incentive to invest in human capital.
Since human capital is embodied in individuals and can only be used one

place at a time, it is a rival and excludable good. Human capital is thus

1After Mincer (1958, 1974).
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very different from technical knowledge. We think of technical knowledge as
a list of instructions about how different inputs can be combined to produce
a certain output. A principle of chemical engineering is an example of a piece
of technical knowledge. In contrast to human capital, technical knowledge
is a non-rival and only partially excludable good. Competence in applying
technical knowledge is one of the skills that to a larger or smaller extent is
part of human capital.

9.1.1 Modelling human capital

In the macroeconomic literature there are different theoretical approaches to
the modelling of human capital. Broadly speaking we may distinguish these
approaches along two “dimensions”: 1) What characteristics of human capi-
tal are emphasized? 2) What characteristics of the decision maker investing
in human capital are emphasized? Combining these two “dimensions”, we
get Table 1.

Table 1. Macroeconomic approaches to the modelling of human capital.
The character of human capital (hc):

The character of the Is hc treated as essentially different
decision maker from physical capital?

No Yes
Solow-type rule-of-thumb households Mankiw et al. (1992)

Infinitely-lived family “dynasties” Barro&Sala-i-Martin (2004) Lucas (1988)
(the representative agent approach) Dalgaard&Kreiner (2001)
Finitely-lived individuals going through Ben-Porath (1967)
a life cycle (the life cycle approach) Heijdra&Romp (2009)

My personal opinion is that for most issues the approach in the lower-
right corner of Table 1 is preferable, that is, the approach treating human
capital as a distinct capital good in a life cycle perspective. The viewpoint
is:
First, by being embodied in a person and being lost upon death of this

person, human capital is very different from physical capital. In addition,
investment in human capital is irreversible (can not be recovered). Human
capital is also distinct in view of the limited extend to which it can be used
as a collateral, at least in non-slave societies. Financing an investment in
physical capital, a house for example, by credit is comparatively easy because
the house can serve as a collateral. A creditor can not gain title to a person,
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however. At most a creditor can gain title to a part of that person’s future
earnings in excess of a certain level required for a “normal”or “minimum”
standard of living.
Second, educational investment is closely related to life expectancy and

the life cycle of human beings: school - work - retirement. So a life cycle per-
spective seems the natural approach. Fortunately, convenient macroeconomic
frameworks incorporating life cycle aspects exist in the form of overlapping
generations models (for example Diamond’s OLG model or Blanchard’s con-
tinuous time OLG model).

9.1.2 Human capital and the effi ciency of labor

Generally we tend to think of human capital as a combination of different
skills. Macroeconomics, however, often tries (justified or not) to boil down
the notion of human capital to a one-dimensional entity. So let us imagine
that the current stock of human capital in society is measured by the one-
dimensional index H. With L denoting the size of the labor force, we define
h ≡ H/L. So, h is the average stock of human capital in the labor force.
Further, let the “quality” (or “effi ciency”) of this stock in production be
denoted q (under certain conditions this quality might be proxied by the
average real wage per man-hour). Then it is reasonable to link q and h by
some increasing quality function

q = q(h), where q(0) ≥ 0, q′ > 0. (9.1)

Consider an aggregate production function, F̃ , giving output per time
unit at time t as

Y = F̃ (K, q(h)L, t),
∂F̃

∂t
> 0, (9.2)

where K is input of physical capital. The third argument of F̃ is time, t,
indicating that the production function is time-dependent due to technical
progress.
Generally the macroeconomic analyst would prefer a measure of human

capital such that the quality of human capital is proportional to the stock
of human capital, allowing us to write q(h) = h by normalizing the factor of
proportionality to be 1. The main reason is that an expedient variable rep-
resenting human capital in a model requires that the analyst can decompose
the real wage per working hour multiplicatively into two factors, the real
wage per unit of human capital per working hour and the stock of human
capital, h. That is, an expedient human capital concept requires that we can
write

w = ŵ · h, (9.3)
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where ŵ is the real wage per unit of human capital per working hour. Indeed,
if we have

Y = F̃ (K,hL, t), (9.4)

then, under perfect competition, we can write

w =
∂Y

∂L
= F̃2(K,hL, t)h = ŵ · h.

Under disembodied Harrod-neutral technical progress, (9.4) would take
the form

Y = F̃ (K,hL, t) = F (K,AhL) ≡ F (K,EL), (9.5)

where E ≡ A · h is the “effective”labor input. The proportionality between
E and h will under perfect competition allow us to write

w =
∂Y

∂L
= F̃2(K,EL, t)E = wE · E = wE · A · h = ŵ · h.

So with the introduction of the technology level, A, an additional decomposi-
tion, ŵ = wE ·A comes in, while the original decomposition in (9.3) remains
valid.
Whether or not the desired proportionality q(h) = h can be obtained

depends on how we model the formation of the “stuff” h. Empirically it
turns out that treating the formation of human capital as similar to that of
physical capital does not lead to the desired proportionality.

Treating the formation of human capital as similar to formation of
physical capital

Consider a model where human capital is formed in a way similar to physi-
cal capital. The Mankiw-Romer-Weil (1992) extension of the Solow growth
model with human capital is a case in point. Non-consumed aggregate output
is split into one part generating additional physical capital one-to-one, while
the other part is assumed to generate additional human capital one-to-one.
Then for a closed economy in continuous time we can write:

Y = C + IK + IH ,

K̇ = IK − δKK, δK > 0,

Ḣ = IH − δHH, δH > 0, (9.6)

where IK and IH denote gross investment in physical and human capital, re-
spectively. This approach essentially assumes that human capital is produced
by the same technology as consumption and investment goods.
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Suppose the huge practical measurement problems concerning IH have
been somehow overcome. Then from long time series for IH an index for Ht

can be constructed by the perpetual inventory method in a way similar to the
way an index for Kt is constructed from long time series for IK . Indeed, in
discrete time, with 0 < δH < 1, we get, by backward substitution,

Ht+1 = IH,t + (1− δH)Ht = IH,t + (1− δH) [IH,t−1 + (1− δH)Ht−1]

=

T∑
i=0

(1− δH)iIH,t−i + (1− δH)T+1Ht−T . (9.7)

From the time series for IH , an estimate of δH , and a rough conjecture about
the initial value, Ht−T , we can calculate Ht+1. The result will not be very
sensitive to the conjectured value of Ht−T since for large T the last term in
(9.7) becomes very small.
In principle there need not be anything wrong with this approach. A

snag arises, however, if, without further notice, the approach is combined
with an explicit or implicit postulate that q(h) is proportional to the “stuff”,
h, brought into being in the way described by (9.6). The snag is that the
empirical evidence does not support this when the formation of human cap-
ital is modelled as in (9.6). This is an unintended by-product of the cross-
country regression analysis by Mankiw, Romer, and Weil (1992), based on
the approach in equation (9.6). One of their conclusions is that the following
production function for a country’s GDP is an acceptable approximation:

Y = BK1/3H1/3L1/3, (9.8)

where B stands for the total factor productivity of the country and is gen-
erally growing over time.2 Applying that H = hL, we can write (9.8) this
way:

Y = BK1/3(hL)1/3L1/3 = K1/3(Ah1/2L)2/3,

where A = B3/2. That is, we end up with the form Y = F (K,Aq(h)L) where
q(h) = h1/2, not q(h) = h. We should thus not expect the real wage to rise
in proportion to h, when h is considered as some “stuff” formed in a way
similar to the way physical capital is formed. (A further point is that writing
a production function as in (9.8), i.e., with H and L as two separate inputs,
may lead to confusion. The tangible input is L, and in this L, a certain

2The way Mankiw-Romer-Weil measure IH is indirect and questionable. In addition,
the way they let their measure enter the regression equation has been criticized for con-
founding the effects of the human capital stock and human capital investment, cf. Gemmel
(1996) and Sianesi and Van Reenen (2003). It will take us too far to go into detail with
these problems here.
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“normal”or average h is embodied. In effect, varying L should immediately
also imply variation of H ≡ hL.)
Before proceeding, a terminological point is in place. Why do we call q(h)

in (9.2) a “quality”function rather than simply a “productivity”function?
The reason is the following. With perfect competition and CRS, in equilib-
rium the real wage per man-hour would bew = ∂Y/∂L= F ′2(K,Aq(h)L)Aq(h)

=
[
f(k̃)− k̃f ′(k̃)

]
Aq(h), where k̃ ≡ K/(Aq(h)L). So, with a converging k̃,

the long-run growth rate of the real wage would in continuous time tend to
be

gw = gA + gq.

In this context we are inclined to identify “labor productivity”with Aq(h)
rather than just q(h) and “growth in labor productivity”with gA + gq rather
than just gq. So a distinct name for q seems appropriate and an often used
name is “quality”.
The conclusion so far is that specifying human capital formation as in

(9.6) does not generally lead to a linear quality function. To obtain the
desired linearity we have to specify the formation of human capital in a way
different from the equation (9.6). This dissociation with the approach (9.6)
applies, of course, also to its equivalent form on a per capita basis,

ḣ = (
Ḣ

H
− n)h =

IH
L
− (δH + n)h. (9.9)

(In the derivation of (9.9) we have first calculated the growth rate of h ≡
H/L, then inserted (9.6), and finally multiplied through by h.)

9.2 A life-cycle perspective on human capital

In the life-cycle approach to human capital formation we perceive h as the
human capital embodied in a single individual and lost upon death of this
individual. We study how h evolves over the lifetime of the individual as a
result of both educational investment (say time spent in school) and work
experience. In this way the life-cycle approach recognizes that human capi-
tal is different from physical capital. By seeing human capital formation as
the result of individual learning, the life-cycle approach opens up for distin-
guishing between the production technologies for human and physical capital.
Thereby the life-cycle approach offers a better chance for obtaining the linear
relationship, q(h) = h.
Let the human capital of an individual of “age”τ (beyond childhood) be

denoted hτ . Let the total time available per time unit for study, work, and
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leisure be normalized to 1. Let sτ denote the fraction of time the individual
spends in school at age τ . This allows the individual to go to school only part-
time and spend the remainder of non-leisure time working. If `τ denotes the
fraction of time spent at work, we have

0 ≤ sτ + `τ ≤ 1.

The fraction of time used as leisure (or child rearing, say) at age τ is 1−sτ−`τ .
If full retirement occurs at age τ̄ , we have sτ = `τ = 0 for τ ≥ τ̄ .
We measure age in the same time units as calendar time. It seems natural

to assume that the increase in hτ per unit of time (age) generally depends
on four variables: current time in school, current time at work (resulting
in work experience), human capital already obtained, and current calendar
time itself, that is,

ḣτ ≡
dhτ
dτ

= G(sτ , `τ , hτ , t), h0 ≥ 0 given. (9.10)

The function G can be seen as a production function for human capital −
in brief a learning technology. The first argument of G reflects the role of
formal education. Empirically, the primary input in formal education is the
time spent by the students studying; this time is not used in work or leisure
and it thereby gives rise to an opportunity cost of studying.3 The second
argument of G takes learning through work experience into account and
the third argument allows for the already obtained level of human capital to
affect the strength of the influence from given sτ and `τ (the sign of this effect
is theoretically ambiguous). Finally, the fourth argument, current calendar
time allows for changes over time in the learning technology (organization of
the learning process).
Consider an individual “born” (as a youngster) at date v ≤ t (v for

vintage). If still alive at time t, the age of this individual is τ ≡ t − v. The
obtained stock of human capital at age τ will be

hτ = h0 +

∫ τ

0

G(sx, `x, hx, v + x)dx.

A basic supposition in the life-cycle approach is that it is possible to specify
the function G such that a person’s time-t human capital embodies a time-t
labor productivity proportional to this amount of human capital and thereby,
under perfect competition, a real wage proportional to this human capital.

3We may perceive the costs associated with teachers’time and educational buildings
and equipment as being either quantitatively negligible or implicit in the function symbol
G.
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Below we consider four specifications of the learning technology that one
may encounter in the literature.

EXAMPLE 1 In a path-breaking model by the Israeli economist Ben-Porath
(1967) the learning technology is specified this way:

ḣτ = g(sτhτ )− δhτ , g′ > 0, g′′ < 0, δ > 0, h0 > 0. (9.11)

Here time spent in school is more effi cient in building human capital the more
human capital the individual has already. Work experience does not add to
human capital formation. The parameter δ enters to reflect obsolescence (due
to technical change) of skills learnt in school. �

EXAMPLE 2 Growiec (2010) and Growiec and Groth (2015) consider the
aggregate implications of a learning technology specified this way:

ḣτ = (λsτ + ξ`τ )hτ , λ > 0, ξ ≥ 0, h0 > 0. (9.12)

Here λ measures the effi ciency of schooling and ξ the effi ciency of work ex-
perience. The effects of schooling and (if ξ > 0) work experience are here
assumed proportional to the level of human capital already obtained by the
individual (a strong assumption which may be questioned).4 The linear dif-
ferential equation (9.12) allows an explicit solution,

hτ = h0e
∫ τ
0 (λsx+ξ`x)dx, (9.13)

a formula valid as long as the person is alive. This result has some affi nity
with the familiar “Mincer equation”, to be considered below.5 �

EXAMPLE 3 Here we consider an individual with exogenous and constant
leisure. Hence time available for study and work is constant and conveniently
normalized to 1 (as if there were no leisure at all). Moreover, in the beginning
of life beyond childhood the individual goes to school full-time in S time units
(years) and thereafter works full-time until death (no retirement). Thus

sτ =

{
1 for 0 ≤ τ < S,
0 for τ ≥ S.

(9.14)

We further simplify by ignoring the effect of work experience (or we may say
that work experience just offsets obsolescence of skills learnt in school). The
learning technology is specified as

ḣτ = ητ η−1sτ , η > 0, h0 ≥ 0, (9.15)

4Lucas (1988) builds on the case ξ = 0.
5In case ξ = 0 and sx = constant = 1, while τ = S = schooling length, (9.13) reduces

to h = h0e
λS . This looks like a simple version of the “Mincer equation”.
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If η < 1, it becomes more diffi cult to learn more the longer you have already
been to school. If η > 1, it becomes easier to learn more the longer you have
already been under education.
The specification (9.14) implies that throughout working life the individ-

ual has constant human capital equal to h0 + Sη. Indeed, integrating (9.15),
we have for t ≥ S and until time of death,

hτ = h0 +

∫ τ

0

ḣxdx = h0 +

∫ S

0

ηxη−1dx = h0 + xη|S0 = h0 + Sη. (9.16)

So the parameter η measures the elasticity of human capital w.r.t. the num-
ber of years in school. As briefly commented on in the concluding section,
there is some empirical support for the power function specification in (9.16)
and even the hypothesis η = 1 may not be rejected. �

In Example 1 there is no explicit solution for the level of human capital.
Then the solution can be characterized by phase diagram analysis (as in
Acemoglu, §10.3). In the examples 2 and 3 we can find an explicit solution
for the level of human capital. In this case the term “learning technology”is
used not only in connection with the original differential form as in (9.10), but
also for the integrated form, as in (9.13) and (9.16), respectively. Sometimes
the integrated form, like (9.16), is called a schooling technology.

EXAMPLE 4 Here we still assume the setup in (9.14) of Example 3, includ-
ing the absence of both after-school learning and gradual depreciation. But
the right-hand side of (9.15) is generalized to ϕ(τ)sτ , where ϕ(τ) is some
positively valued function of age. Then we end up with human capital after
leaving school equal to some increasing function of S :

h = h(S), where h(0) ≥ 0, h′ > 0. (9.17)

In cross-section or time series analysis it may be relevant to extend this
by writing h = ah(S), a > 0. The parameter a could then reflect quality
of schooling. In the next section we shall focus on the form (9.17) where
the quality-of-schooling parameter a can be seen as implicit in the function
h. �

Before proceeding, let us briefly comment on the problem of aggregation
over the different members of the labor force at a given point in time. In
the aggregate framework of Section 9.1 multiplicity of skill types and job
types is ignored. Human capital is treated as a one-dimensional and additive
production factor. In production functions like (9.4) only aggregate human
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capital, H, matters. So output is thought to be the same whether the in-
put is 2 million workers, each with one unit of human capital, or 1 million
workers, each with 2 units of human capital. In human capital theory this
questionable assumption is called the perfect substitutability assumption or
the effi ciency unit assumption (Sattinger, 1980). If we are willing to impose
this assumption, going from micro to macro is conceptually simple. With h
denoting individual human capital and f(h) being the density function at a
given point in time (so that

∫∞
0
f(h)dh = 1), we find average human capital

in the labor force at that point in time to be h̄ =
∫∞

0
hf(h)dh and aggregate

human capital as H = h̄L, where L is the size of the labor force. To build a
theory of the evolution over time of the density function, f(h), is, however,
a complicated matter. Within as well as across the different cohorts there
is heterogeneity regarding both schooling and retirement. And the fertility
and mortality patterns are changing over time.
If we want to open up for a distinction between different types of jobs

and different types of labor, say, skilled and unskilled labor, we may replace
the production function (9.4) with

Y = F̃ (K,h1L1, h2L2, t), (9.18)

where L1 and L2 indicate man-hours delivered by the two types of workers,
respectively, and h1 and h2 are the given embodied human capital levels
(measured in effi ciency units for each of the two kinds of jobs), respectively.
This could be the basis for studying skill-biased technical change.
Whether or not the aggregate human capital, H, is a useful concept or

not in connection with production can be seen as a question about whether
or not we can rewrite a production function like (9.18) as Y = F (K,H, t),
where H = h1L1 + h2L2. We can if the two types of labor are perfectly
substitutable, otherwise not. Perfect substitutability in this context means
that the marginal rate of substitution between the two kinds of labor in
(9.18) is a constant, i.e.,

MRS ≡ −dL1

dL2 |Y=Ȳ ,K=K̄

=
∂Y/∂L2

∂Y/∂L1

= a constant. (9.19)

This is satisfied if we can rewrite the production function such that Y =
F (K,H, t), where H = h1L1 + h2L2. Indeed, in this case we get MRS =
FHh2/(FHh1) = h2/h1, a constant.

9.3 Choosing length of education

First some simplifying demographic assumptions. We assume, realistically,
that expected lifetime of an individual is finite while the age at death is
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stochastic (uncertain) ex ante. We further assume, unrealistically, that in-
dependently of the already obtained age, the probability of surviving x more
time units (years) is

P (X > x) = e−mx,

where X is remaining lifetime, a stochastic variable, while m > 0 is the mor-
tality rate which is thus taken to be independent of age (and also independent
of calendar time). Under this assumption, the “crude death rate”, that is,
the number of deaths per year divided by the size of population at the begin-
ning of the year, will be approximately equal to m. Moreover, the mortality
rate, m, will for an arbitrary person indicate the approximate probability of
dying within one year “from now”.6

Consider an individual’s educational planning as seen from time of “birth”
(entering life beyond childhood). Let the time of birth be denoted v. Suppose
schooling is a full-time activity and that the individual plans to attend school
in the first S years of life and after that work “full time”until death (“no
retirement”). Let `t−v(S) denote the planned supply of labor (hours per year)
to the labor market at age t − v in the future. As `t−v(S) depends on the
stochastic age, T, at death, `t−v(S) is itself a stochastic variable with two
possible outcomes:

`t−v(S) =

{
0 when t ≤ v + S or t > v + T,
` when v + S < t ≤ v + T,

where ` > 0 is an exogenous constant (“full-time”working).
The combination of age-independent mortality rate and no retirement is

sometimes called the “perpetual youth”assumption.

9.3.1 Human wealth

Let wt(S) denote the real wage received per working hour delivered at time
t by a person who after S years in school works ` hours per year until death.
This allows us to write the present value as seen from time v of expected
lifetime earnings, i.e., the human wealth, for a person “born”at time v as

6If T denotes the uncertain age at death (a stochastic variable), the mortality
rate (or “hazard rate” of death) at the age τ , denoted m(τ), is defined as m(τ)
= lim∆τ→0

1
∆τ P (T ≤ τ + ∆τ | T > τ) .

In the present model this is assumed equal to a constant,m. The unconditional probabil-
ity of not reaching age τ is P (T ≤ τ) = 1−e−mτ ≡ F (τ). Hence the density function is f(τ)
= F ′(τ) = me−mτ and P (τ < T ≤ τ + ∆τ) ≈ me−mτ∆τ . So, for τ = 0, P (0 < T ≤ ∆τ)
≈ m∆τ = m if ∆τ = 1. Life expectancy is E(T ) =

∫∞
0
τme−mτdτ = 1/m. All this is like

in the “perpetual-youth”overlapping generations model by Blanchard (1985).
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HW (v, S) =

0 + Ev

(∫ v+T

v+S

wt(S)`e−r(t−v)dt

)
= Ev

(∫ ∞
v+S

wt(S)`t−v(S)e−r(t−v)dt

)
=

∫ ∞
v+S

Ev(wt(S)`t−v(S)e−r(t−v))dt =

∫ ∞
v+S

wt(S)e−r(t−v)Ev(`t−v(S))dt,(9.20)

as in this context the integration operator
∫∞
v+S

(·)dt acts like a discrete-time
summation operator,

∑∞
t=v . The rate of discount for potential future labor

income conditional on being alive at the moment concerned is denoted r.7

We get

HW (v, S) =

∫ ∞
v+S

wt(S)e−r(t−v) (` · P (T > t− v) + 0 · P (T ≤ t− v))dt

=

∫ ∞
v+S

wt(S)e−r(t−v)`e−m(t−v)dt

=

∫ ∞
v+S

wt(S)`e−(r+m)(t−v)dt. (9.21)

In writing the present value of the expected stream of labor income this
way, we have assumed that:

A1 The discount rate, r, is constant over time.

A2 There is no educational fee.

We now introduce two additional assumptions:

A3 Labor effi ciency (human capital) of a person with S years of schooling
is h(S), so that

wt(S) = ŵth(S), h′ > 0,

where ŵt is the real wage per unit of human capital per working hour
at time t.8

7This rate is related to the opportunity cost of going to school instead of working and
depends on conditions in the credit market. Under the idealized assumption A5 below,
r = the risk-free interest rate.

8Cf. Example 4 of Section 9.2.
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A4 Owing to Harrod-neutral technical progress at a constant rate g ∈
[0, r +m) ≥ 0, the evolution of ŵt is given by ŵt = ŵ0e

gt. So technical
progress makes a given h more and more productive (there is comple-
mentarity between the technology level and human capital as in (9.5)
above).

Given A3 and A4, we get from (9.21) the expected “lifetime earnings”
conditional on a schooling level S :

HW (v, S) = h(S)`

∫ ∞
v+S

ŵ0e
gte−(r+m)(t−v)dt (9.22)

= ŵ0e
gvh(S)`

∫ ∞
v+S

e[g−(r+m)](t−v)dt (since egt = egveg(t−v))

= ŵ0e
gvh(S)`

(
e[g−(r+m)](t−ν)

g − (r +m)

∣∣∣∣∞
ν+S

)
= ŵ0e

gνh(S)`
e[g−(r+m)]S

r +m− g .

Below we chose measurement units such that the “normal”working time
per year is 1 rather than `.
The result in (9.22) provides a convenient formula for human wealth as

seen from time of “birth”, v. To say something reasonable about the choice
of S, we need to specify the set of possibilities for the individual. These
possibilities depend on the market environment. In particular, we need to
specify how students make a living while studying.

9.3.2 Financing education

Assuming the students are born with no financial wealth and themselves have
to finance their costs of living, they have to borrow while studying. Later in
life, when they receive an income, they repay the loans with interest.
In this context we shall introduce the simplifying assumption:

A5 There is a perfect credit and life annuity market.

Financial intermediaries will be unwilling to offer the students loans at the
going risk-free interest rate. Indeed, a creditor faces the risk that the student
fails in the studies, never achieves the hoped job, or dies before having paid off
the debt including the compound interest. The financial intermediaries may,
however, be willing to offer student loans in the form of contracts stipulating
later repayment with an interest rate above the risk-free rate and with the
agreement that if the debtor dies before the principal has been paid back
with interest, the debtor’s estate is held free of any obligations.
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Given the described constant mortality rate and given existence of a per-
fect credit and life insurance market, it can be shown that the equilibrium
interest rate on this kind of student loans is what is known as the “actuarial
rate”. This rate equals the risk-free interest rate plus the mortality rate,
m.9 The relevant discount rate, r, in (9.20) will under these circumstances
coincide with the risk-free interest rate. So we let this rate be denoted r and
write the actuarial rate as r +m.
If the individual later in life, after having paid off the debt and obtained

a positive net financial position, places the savings on life annuity accounts
in life insurance companies, the actuarial rate, r + m, will also be the equi-
librium rate of return received (until death) on these deposits. At death the
liability of the insurance company is cancelled which means that the deposit
is transferred to the insurance company in return for the high annuity pay-
outs while the depositor was alive. The advantage of saving in life annuities
(at least for people without a bequest motive) is that life annuities imply a
transfer of income from after time of death to before time of death by offering
a higher rate of return than risk-free bonds, but only until the depositor dies.

9.3.3 Maximizing human wealth

Suppose that neither the educational process itself nor the resulting stock of
human capital enter the utility function. That is, assume

A6 There is no “joy of going to school” and no “joy of being a learned
person”.

In the perspective of this assumption, human capital is only an investment
good, not also a durable consumption good.10 If moreover there is no utility
from leisure, the educational decision can be separated from whatever plan
for the time path of consumption and saving through life the individual may
decide; this is known as the Separation Theorem.11 Under the described
circumstances, the only incentive for acquiring human capital is to increase
the human wealth HW (ν, S) given in (9.22).

9See Yaari (1965). This result presupposes that the insurance companies have negligible
administration costs.
Owing to asymmetric information and related credit market imperfections, in real world

situations such loan contracts are rare; this is one of the reasons for public sector interven-
tion in the provision of loans to students. These credit market imperfections are ignored
by the present model, but are briefly dealt with in for instance Acemoglu (2009), pp.
761-764.
10For a broader conception of human capital, see for instance Sen (1997).
11See, e.g., Acemoglu (2009), Ch. 10.1.
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By the assumptions A1, A2, . . . , A6, we have hereby reduced the problem
of choosing schooling length to the unconstrained static problem of maximiz-
ing HW (ν, S) with respect to S. An interior solution to this problem satisfies
the first-order condition:

∂HW

∂S
(v, S) =

ŵ0

r +m− g
[
h′(S)e[g−(r+m)]S − h(S)e[g−(r+m)]S(r +m− g)

]
= HW (v, S)

[
h′(S)

h(S)
− (r +m− g)

]
= 0, (9.23)

from which follows
h′(S)

h(S)
= r +m− g ≡ r̃. (9.24)

This may be called the schooling first-order condition, and r̃ can be seen
as the “required rate of return”in units of human capital. In the optimal plan
the actual rate of return in units of human capital equals r̃, which in turn
equals the risk-free interest rate adjusted for (a) the approximate probability
of dying within a year from “now”, 1− e−m ≈ m; and (b) wage growth due
to technical progress. The trade-off faced by the individual is the following:
increasing S by one year results in a higher level of human capital (higher
future earning power) but postpones by one year the time when earning an
income begins. The effective interest cost (opportunity cost) is diminished by
g, reflecting the fact that next year the real wage per unit of human capital
is 100·g percent higher than in the current year.
The intuition behind the first-order condition (9.24) may be easier to

grasp if we put g on the left-hand-side and multiply by ŵt in the numerator
as well as the denominator. Then the condition looks like a standard no-
arbitrage condition:

ŵth
′(S) + ŵtgh(S)

ŵth(S)
= r +m. (9.25)

On the left-hand side we have the rate of return (in units of consumption)
obtained by “investing”one more year in education. In the numerator we
have the direct increase in wage income by increasing S by one unit plus
the gain arising from the fact that human capital, h(S), has higher earnings
capacity one year later due to technical progress. In the denominator we
have the educational investment made by letting the obtained human capital,
h(S), “stay”one more year in school instead of at the labor market. Indeed,
ŵth(S) is the size of that investment in the sense of the opportunity cost of
staying in school one more year.
On the right-hand side of (9.25) appears the rate of return, r + m, that

could be obtained by the alternative strategy, which is to leave school already
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after S years and then use next years’s labor income to pay off study loans.
This alternative would give the rate of return r +m.
The first-order condition (9.24) has thus similarity with a no-arbitrage

equation in financial markets. (As is usual, our interpretation treats marginal
changes as if they were discrete.)
Now, suppose S = S∗ > 0 is a unique value of S satisfying (9.24). Then a

suffi cient (but not necessary) condition for S∗ to be the unique optimal length
of education for the individual is that h′′ ≤ 0 at S = S∗ (see Appendix A).
If individuals are alike in the sense of having the same innate abilities and
facing the same schooling technology h(·), they will all choose S∗.

EXAMPLE 5 Suppose h(S) = Sη, η > 0, as in Example 3, but with h0 = 0.
Then the first-order condition (9.24) gives a unique solution S∗ = η/(r+m−
g); and the second-order condition (9.32) holds for all η > 0. More sharply
decreasing returns to schooling (smaller η) shortens the optimal time spent
in school as does of course a higher effective discount rate, r +m− g.
Consider two countries, one rich (industrialized) and one poor (agricul-

tural). With one year as the time unit, let the parameter values be as in the
first four columns in the table below. The resulting optimal S for each of the
countries is given in the last column.

η r m g S∗

rich country 0.6 0.06 0.01 0.02 12.0
poor country 0.6 0.12 0.02 0.00 4.3

The difference in S∗ is due to r and m being higher and g lower in the poor
country. �

9.4 What the Mincer equation is and is not

In this section we consider the issue whether the exponential form,

h(S) = h(0)eλS, λ > 0, (9.26)

is a plausible specification of the production function for human capital. This
specification is quite popular in the literature, and in Acemoglu (2009) it is
used in connection with “levels accounting”in his Chapter 3, pp. 96-99 and
is treated also theoretically in his Chapter 10.2. The form (9.26) can be seen
as a special case of equation (9.13) from Example 2 above, namely the case
ξ = 0 in combination with equation (9.14) from Example 3.
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There exists a presumption in the macroeconomic literature that the fa-
mous Mincer equation provides an empirical foundation for the exponen-
tial form (9.26). The Mincer equation is the following semi-loglinear cross-
sectional relationship at a given point in time, t:

logwt(S) = logwt(0) + λS, λ > 0, (9.27)

where, as in Section 9.3, wt(S) is the real wage per working hour delivered
at time t by a person with S years’schooling level, cf. Figure 9.1. Such a
semi-loglinear relationship is well documented in the empirical literature and
was first discovered by the American economist Jacob Mincer (Mincer 1958,
1974).
But does it provide evidence for any particular form for the production

function for human capital? No! First, as briefly commented in the con-
cluding section, there seems to be little empirical support for an exponential
production function. Second, as we shall now see, the microeconomic theory,
proposed by Mincer (1958) as an explanation of the observed semi-loglinear
relationship (9.27), has nothing to do with a specific production function for
human capital.12

Explaining the Mincer equation

In Mincer’s theory behind the observed exponential relationship called the
Mincer equation, there is no role at all for any specific schooling technology,
h(·), leading to a unique solution, S∗. The point of departure is that there
is heterogeneity in the jobs offered to people (different educational levels not
being perfectly substitutable). Assuming people are ex ante alike, they end
up ex post choosing different educational levels. This outcome arises through
the competitive equilibrium forces of supply and demand in the job markets.
Imagine, first, a case where all individuals have in fact chosen the same

educational level, S∗, because they are ex ante alike and all face the same
arbitrary human capital production function, h(S), satisfying (9.32). Then
jobs that require other educational levels will go unfilled and so the job mar-
kets will not clear. The forces of excess demand and excess supply will then
tend to generate an educational wage profile different from the one presumed
in (9.22), that is, different from ŵth(S). Sooner or later an equilibrium edu-
cational wage profile tends to arise such that people are indifferent as to how
much schooling they choose, thereby allowing market clearing. This requires

12The above Example 5 follows a short note by Jones (2007) entitled “A simple Mincerian
approach to endogenizing schooling”. The term “Mincerian approach” should here be
interpreted in a very broad sense as more or less synonymous with “life-cycle approach”
rather than be associated with a particular choice regarding the form of h(S).
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Figure 9.1: The semi-log schooling-wage relationship for fixed t. Different coun-
tries. Source: Krueger and Lindahl (2001).
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a wage profile, wt(S), such that a marginal condition analogue to (9.24) holds
for all S for which there is a positive amount of labor traded in equilibrium,
say all S ∈

[
0, S̄

]
:

dwt(S)/dS

wt(S)
= r +m− g ≡ r̃ for all S ∈

[
0, S̄

]
. (9.28)

It is here assumed, in the spirit of assumption A4 above, that technical
progress implies that wt(S) for fixed S grows at the rate g, i.e., wt(S) =
w0(S)egt, for all S ∈

[
0, S̄

]
. The equation (9.28) is a linear differential equa-

tion for wt w.r.t. S, defined in the interval 0 ≤ S ≤ S̄, while t is fixed. And
the function wt(S) is the so far unknown solution to this differential equa-
tion. That is, we have a differential equation of the form dx(S)/dS = r̃x(S),
where the unknown function, x(S), is a function of schooling length rather
than calendar time. The solution is x(S) = x(0)er̃S. Replacing the function
x(·) with the function wt(·), we thus have the solution

wt(S) = wt(0)er̃S. (9.29)

Note that in the previous section, in the context of (9.24), we required
the proportionate marginal return to schooling to equal r̃ only for a specific
S, i.e.,

d(ŵth(S))/dS

ŵth(S)
=
h′(S)

h(S)
= r +m− g ≡ r̃ for S = S∗. (9.30)

This is no more than a first-order condition assumed to hold at some point,
S∗. It will generally not be a differential equation the solution of which gives a
Mincerian exponential relationship. A differential equation requires a deriv-
ative relationship to hold not only at one point, but in an interval for the
independent variable (S in (9.28)). Indeed, in (9.28) we require the propor-
tionate marginal return to schooling to equal r̃ in a whole interval of schooling
levels. Otherwise, with heterogeneity in the jobs offered, there could not be
equilibrium.13

Returning to (9.29), by taking logs on both sides and substituting r̃ by
λ, we get (9.27), which is the Mincer equation in semi-loglinear form.
As mentioned, empirically, the Mincer equation does surprisingly well in

cross-section regression analysis, cf. Figure 9.1.14 Note that (9.29) also yields
a theory of how the “Mincerian slope”, λ, in (9.26) is determined, namely as

13It seems that Acemoglu (2009, p. 362) makes the logical error of identifying a first-
order condition, (9.30), with a differential equation, (9.28).
14The slopes are in the interval (0.05, 0.15).

c© Groth, Lecture notes in Economic Growth, (mimeo) 2016.



174
CHAPTER 9. HUMAN CAPITAL, LEARNING TECHNOLOGY,

AND THE MINCER EQUATION

the mortality- and growth-corrected real interest rate, r̃. The evidence for
this part of the theory is more scarce.

Given the equilibrium educational wage profile, wt(S), the human wealth
of an individual “born”at time 0 can be written

HW0 =

∫ ∞
S

wt(0)er̃Se−(r+m)tdt = er̃S
∫ ∞
S

w0(0)eḡte−(r+m)tdt

= w0(0)er̃S
∫ ∞
S

e[g−(r+m)]tdt = w0(0)er̃S
[
e[g−(r+m)]t

g − (r +m)

]∞
S

=
w0(0)

r +m− g , (9.31)

since r̃ ≡ r+m−g. In equilibrium the human wealth of the individual is thus
independent of S (within an interval) according to the Mincerian theory. This
is due to “compensating wage differentials”, that is, the adjustment of the
S-dependent wage levels so as to compensate for the S-dependent differences
in length of work life after schooling. Indeed, the essence of Mincer’s theory
is that if one level of schooling implies a higher human wealth than the other
levels of schooling, the number of individuals choosing that level of schooling
will rise until the associated wage has been brought down so as to be in
line with the human wealth associated with the other levels of schooling. Of
course, such adjustment processes must in practice be quite time consuming
and can only be approximative. Moreover, who among the ex ante similar
individuals ends up with what schooling level is indeterminate in this setup.

In this context, the original schooling technology, h(·), for human capital
formation has lost any importance. It does not enter human wealth in a long-
run equilibrium in this disaggregate model where human wealth is simply
given by (9.31). In this equilibrium people have different S’s and the received
wage of an individual per unit of work has no relationship with the human
capital production function, h(·), by which we started in this section.
Although there thus exists a microeconomic theory behind a Mincerian

relationship, this theory gives us a relationship for relative wages in a cross-
section at a given point in time. It leaves open what an intertemporal pro-
duction function for human capital, relating educational investment, S, to a
resulting level, h, of labor effi ciency, looks like. Besides, the Mincerian slope,
r̃, is a market price, not an aspect of schooling technology.

We have up to now been silent about the fact that our simple framework
in Section 9.3 does not fully embrace the case of strong convexity implied by
an exponential specification of h(S). Appendix B briefly comments.
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9.5 Empirics relating to h(S)

The empirical macroeconomic literature typically measures S as the average
number of years of schooling in the working-age population, taken for instance
from the Barro and Lee (2001) data set.15

In their cross-country regression analysis de la Fuente and Domenech
(2006) find a relationship essentially like that in Example 3 with η = 1. The
authors find that the elasticity of GDP w.r.t. average years in school in the
labor force is at least 0.60.
Similarly, the cross-country study, based on calibration, by Bills and

Klenow (2000) as well as the time series study by Cervelatti and Sunde
(2010) favor the hypothesis of diminishing returns to schooling. According
to this, the linear term, r̃S, in the exponent in (9.26) should be replaced by
a strictly concave function of S. These findings are in accordance with the
results by Psacharopoulus (1994). They give empirical reasons for scepticism
towards the linearity in h assumed in Example 2 of Section 9.2.
For S > 0, the power function in Example 5 can be written h = Sη = eη lnS

and is thus in better harmony with the data than the exponential function
(9.26). A parameter indicating the quality of schooling may be added: h =
aeη lnS, where a > 0 may be a function of the teacher-pupil ratio, teaching
materials per student etc. See Caselli (2005).

9.6 Concluding remarks

Our formulation of the schooling length decision problem in Section 9.3 con-
tained several simplifications such that we ended up with a static maximiza-
tion problem in Section 9.3.3. More general setups lead to truly dynamic
human capital accumulation problems.
This chapter considered human capital as a productivity-enhancing fac-

tor. There is a partly complementary perspective on human capital, often
named the Nelson-Phelps hypothesis about the key role of human capital
for technology adoption and technological catching up. An increase in hu-
man capital leads to an increase in the technology absorption capability of a
nation.
A simple way of formalizing this idea is obtained by recognizing that it

is not obvious that technical knowledge and human capital should enter the
production function in the simple multiplicative way, Y = F (K,AhL), as

15This means that complicated aggregation issues, arising from cohort heterogeneity
and from the fact that individual human capital is lost upon death, are bypassed. For
discussion, see Growiec and Groth (2015).
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assumed in (9.5) above. The complementarity between A and h may take
another form, perhaps better reflecting that workers with high skill level can
use more advanced technology than workers with low skill level:

Y = F̃ (K,hL, t) = F (K,min(h/η(A), 1)AL), η′(A) > 0,

where η(A) is the level of human capital required to fully exploit the current
technology level, A. If actual h < η(A), only the fraction h/η(A) of A is
utilized. Similar ideas are sketched in Jones and Vollrath (2013, Ch. 6.1)
and Acemoglu (2009, Ch. 10.8). See also Exercise V.3.
Models based on the life-cycle approach to human capital typically con-

clude that education is productivity enhancing, i.e., more education has a
positive level effect on income per capita but can only temporarily raise the
per capita growth rate. Education is not a factor which in itself can explain
sustained per capita growth. A more plausible main driving factor behind
growth rather seems to be technological innovations. A higher level of per
capita human capital may raise the speed of innovations, however. These
themes are taken up in the next chapter (and in Exercise V.7 and V.8).

9.7 Appendix

Appendix A

Suppose S = S∗ > 0 satisfies the first-order condition (9.24). To check the
second-order condition, we consider

∂2HW

∂S2
(v, S∗)

=
∂HW

∂S
(v, S∗)

[
h′(S∗)

h(S∗)
− (r +m− g)

]
+HW (v, S∗)

h(S∗)h′′(S∗)− h′(S∗)2

h(S∗)2

= HW (v, S∗)

S∗

h′(S∗)h
′′(S∗)− S∗

h(S∗)h
′(S∗)

S∗h(S∗)
h′(S∗), (9.32)

since the first term on the right-hand side in the second row vanishes due to
(9.24) being satisfied at S = S∗. The second-order condition, ∂2HW/∂S2 < 0
at S = S∗ holds if and only if the elasticity of h w.r.t. S exceeds that of h′

w.r.t. S at S = S∗. A suffi cient but not necessary condition for this is that
h′′ ≤ 0. Anyway, since HW (v, S) is a continuous function of S, if there is
a unique S∗ > 0 satisfying (9.24), and if ∂2HW/∂S2 < 0 holds for this S∗,
then this S∗ is the unique optimal length of education for the individual.
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Appendix B

As alluded to at the end of Section 9.4, the strong convexity implied by
the exponential specification h(S) = h(0)eλS does not fit entirely well with
the model in Section 9.3 based on the “perpetual youth”assumption of age-
independent mortality and no retirement. The problem is that when h(S)
= h(0)eλS, the “perpetual youth”setup implies that the first-order condition
(9.24) holds for all S; moreover, we get ∂2HW/∂S2 = 0 for all S.
This problem reflects a limitation of the “perpetual youth”setup, where

there is no conclusive upper bound for anyone’s lifetime. It is not an argument
for apriori rejection of the exponential specification.
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