
Chapter 1

Introduction to economic

growth

This introductory lecture note is a refresher on basic concepts.

Section 1.1 defines Economic Growth as a field of economics. In Section

1.2 formulas for calculation of compound average growth rates in discrete and

continuous time are presented. Section 1.3 briefly presents two sets of what

is by many considered as “stylized facts” about economic growth. Finally,

Section 1.4 discusses, in an informal way, the different concepts of cross-

country income convergence. In his introductory Chapter 1, §1.5, Acemoglu1

briefly touches upon these concepts.

1.1 The field

Economic growth analysis is the study of what factors and mechanisms deter-

mine the time path of productivity (a simple index of productivity is output

per unit of labor). The focus is on

• productivity levels and

• productivity growth.

1.1.1 Economic growth theory

Economic growth theory endogenizes productivity growth via considering

human capital accumulation (formal education as well as learning-by-doing)

1Throughout these lecture notes, “Acemoglu” refers to Daron Acemoglu, Introduction

to Modern Economic Growth, Princeton University Press: Oxford, 2009.
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2 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

and endogenous research and development. Also the conditioning role of

geography and juridical, political, and cultural institutions is taken into ac-

count.

For practical reasons, economic growth theory is often stated in terms of

national income and product account variables like per capita GDP. Yet the

term “economic growth” may be interpreted as referring to something deeper.

We could think of “economic growth” as the widening of the opportunities

of human beings to lead a freer and more worthwhile life (cf. Sen, ....).

To make our complex economic environment accessible for theoretical

analysis we use economic models. What is an economic model? It is a way

of organizing one’s thoughts about the economic functioning of a society. A

more specific answer is to define an economic model as a conceptual struc-

ture based on a set of mathematically formulated assumptions which have

an economic interpretation and from which empirically testable predictions

can be derived. In particular, an economic growth model is an economic

model concerned with productivity issues. The union of connected and non-

contradictory models dealing with economic growth and the propositions

derived from these models constitute economic growth theory. Occasionally,

intense controversies about the validity of alternative growth theories take

place.

The terms “New Growth Theory” and “endogenous growth theory” re-

fer to theory and models which attempt at explaining sustained per capita

growth as an outcome of internal mechanisms in the model rather than just

a reflection of exogenous technical progress as in “Old Growth Theory”.

Among the themes addressed in this course are:

• How is the world income distribution evolving?
• Why do living standards differ so much across countries and regions?
Why are some countries 50 times richer than others?

• Why do per capita growth rates differ over long periods?
• What are the roles of human capital and technology innovation in eco-
nomic growth? Getting the questions right.

• Catching-up and increased speed of communication and technology dif-
fusion.

• Economic growth, natural resources, and the environment (including
the climate). What are the limits to growth?

• Policies to ignite and sustain productivity growth.
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1.1. The field 3

• The prospects of growth in the future.

The course concentrates on mechanisms behind the evolution of produc-

tivity in the industrialized world. We study these mechanisms as integral

parts of dynamic models.

The exam is a test of the extent to which the student has acquired under-

standing of these models, is able to evaluate them, from both a theoretical

and empirical perspective, and is able to use them to analyze specific eco-

nomic questions. The course is calculus intensive.

1.1.2 Some long-run data

Let  denote real GDP (per year) and let  be population size. Then 

is GDP per capita. Further, let  denote the average (compound) growth

rate of  per year since 1870 and let  denote the average (compound)

growth rate of  per year since 1870. Table 1.1 gives these growth rates

for four countries. (But we should not forget that data from before WWII

should be taken with a grain of salt).

 
Denmark 2,67 1,87

UK 1,96 1,46

USA 3,40 1,89

Japan 3,54 2,54

Table 1.1: Average annual growth rate of GDP and GDP per capita in percent,

1870—2006. Discrete compounding. Source: Maddison, A: The World Economy:

Historical Statistics, 2006, Table 1b, 1c and 5c.

Figure 1.1 displays the time path of annual GDP and GDP per capita in

Denmark 1870-2006 along with regression lines estimated by OLS (logarith-

mic scale on the vertical axis). Figure 1.2 displays the time path of GDP per

capita in UK, USA, and Japan 1870-2006. In both figures the average annual

growth rates are reported. In spite of being based on exactly the same data

as Table 1.1, the numbers are slightly different. Indeed, the numbers in the

figures are slightly lower than those in the table. The reason is that discrete

compounding is used in Table 1.1 while continuous compounding is used in

the two figures. These two alternative methods of calculation are explained

in the next section.
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4 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

Figure 1.1: GDP and GDP per capita (1990 International Geary-Khamis dollars)

in Denmark, 1870-2006. Source: Maddison, A. (2009). Statistics on World Popu-

lation, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

1.2 Calculation of the average growth rate

1.2.1 Discrete compounding

Let  denote aggregate labor productivity, i.e.,  ≡  where  is employ-

ment. The average growth rate of  from period 0 to period  with discrete

compounding, is that  which satisfies

 = 0(1 +)  = 1 2  , or (1.1)

1 + = (


0
)1 i.e.,

 = (


0
)1 − 1 (1.2)

“Compounding” means adding the one-period “net return” to the “principal”

before adding next period’s “net return” (like with interest on interest, also

called “compound interest”). The growth factor 1 +  will generally be

less than the arithmetic average of the period-by-period growth factors. To
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1.2. Calculation of the average growth rate 5

Figure 1.2: GDP per capita (1990 International Geary-Khamis dollars) in UK,

USA and Japan, 1870-2006. Source: Maddison, A. (2009). Statistics on World

Population, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

underline this difference, 1 + is sometimes called the “compound average

growth factor” or the “geometric average growth factor” and  itself then

called the “compound average growth rate” or the “geometric average growth

rate”

Using a pocket calculator, the following steps in the calculation of  may

be convenient. Take logs on both sides of (1.1) to get

ln


0
=  ln(1 +) ⇒

ln(1 +) =
ln 

0


⇒ (1.3)

 = antilog(
ln 

0


)− 1. (1.4)

Note that  in the formulas (1.2) and (1.4) equals the number of periods

minus 1.
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6 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

1.2.2 Continuous compounding

The average growth rate of , with continuous compounding, is that  which

satisfies

 = 0
 (1.5)

where  denotes the Euler number, i.e., the base of the natural logarithm.2

Solving for  gives

 =
ln 

0


=
ln  − ln 0


 (1.6)

The first formula in (1.6) is convenient for calculation with a pocket calcula-

tor, whereas the second formula is perhaps closer to intuition. Another name

for  is the “exponential average growth rate”.

Again, for discrete time data the  in the formula equals the number of

periods minus 1.

Comparing with (1.3) we see that  = ln(1 +)   for  6= 0 Yet, by
a first-order Taylor approximation of ln(1 +) about  = 0 we have

 = ln(1 +) ≈  for  “small”. (1.7)

For a given data set the  calculated from (1.2) will be slightly above the

 calculated from (1.6), cf. the mentioned difference between the growth rates

in Table 1.1 and those in Figure 1.1 and Figure 1.2. The reason is that a given

growth force is more powerful when compounding is continuous rather than

discrete. Anyway, the difference between  and  is usually unimportant.

If for example  refers to the annual GDP growth rate, it will be a small

number, and the difference between  and  immaterial. For example, to

 = 0040 corresponds  ≈ 0039 Even if  = 010, the corresponding  is

00953. But if  stands for the inflation rate and there is high inflation, the

difference between  and  will be substantial. During hyperinflation the

monthly inflation rate may be, say,  = 100%, but the corresponding  will

be only 69%.

Which method, discrete or continuous compounding, is preferable? To

some extent it is a matter of taste or convenience. In period analysis discrete

compounding is most common and in continuous time analysis continuous

compounding is most common.

For calculation with a pocket calculator the continuous compounding for-

mula, (1.6), is slightly easier to use than the discrete compounding formulas,

whether (1.2) or (1.4).

2Unless otherwise specified, whenever we write ln or log  the natural logarithm is

understood.
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1.3. Some stylized facts of economic growth 7

To avoid too much sensitiveness to the initial and terminal observations,

which may involve measurement error or depend on the state of the business

cycle, one can use an OLS approach to the trend coefficient,  in the following

regression:

ln = + + 

This is in fact what is done in Fig. 1.1.

1.2.3 Doubling time

How long time does it take for  to double if the growth rate with discrete

compounding is ? Knowing  we rewrite the formula (1.3):

 =
ln 

0

ln(1 +)
=

ln 2

ln(1 +)
≈ 06931

ln(1 +)


With  = 00187 cf. Table 1.1, we find

 ≈ 374 years,
meaning that productivity doubles every 374 years.

How long time does it take for  to double if the growth rate with con-

tinuous compounding is ? The answer is based on rewriting the formula

(1.6):

 =
ln 

0


=
ln 2


≈ 06931




Maintaining the value 00187 also for  we find

 ≈ 06931
00187

≈ 371 years.

Again, with a pocket calculator the continuous compounding formula is

slightly easier to use. With a lower  say  = 001 we find doubling time

equal to 691 years. With  = 007 (think of China since the early 1980’s),

doubling time is about 10 years! Owing to the compounding, exponential

growth is extremely powerful.

1.3 Some stylized facts of economic growth

1.3.1 The Kuznets facts

A well-known characteristic of modern economic growth is structural change:

unbalanced sectorial growth. There is a massive reallocation of labor from
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8 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

 

Figure 1.3: The Kuznets facts. Source: Kongsamut et al., Beyond Balanced

Growth, Review of Economic Studies, vol. 68, Oct. 2001, 869-82.

agriculture into industry (manufacturing, construction, and mining) and fur-

ther into services (including transport and communication). The shares of

total consumption expenditure going to these three sectors have moved sim-

ilarly. Differences in the demand elasticities with respect to income seem the

main explanation. These observations are often referred to as the Kuznets

facts (after Simon Kuznets, 1901-85, see, e.g., Kuznets 1957).

The two graphs in Figure 1.3 illustrate the Kuznets facts.
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1.3. Some stylized facts of economic growth 9

1.3.2 Kaldor’s stylized facts

Surprisingly, in spite of the Kuznets facts, the evolution at the aggregate level

in developed countries is by many economists seen as roughly described by

what is called Kaldor’s “stylized facts” (after the Hungarian-British econo-

mist Nicholas Kaldor, 1908-1986, see, e.g., Kaldor 1957, 1961)3:

1. Real output per man-hour grows at a more or less constant rate

over fairly long periods of time. (Of course, there are short-run fluctuations

superposed around this trend.)

2. The stock of physical capital per man-hour grows at a more or less

constant rate over fairly long periods of time.

3. The ratio of output to capital shows no systematic trend.

4. The rate of return to capital shows no systematic trend.

5. The income shares of labor and capital (in the national account-

ing sense, i.e., including land and other natural resources), respectively, are

nearly constant.

6. The growth rate of output per man-hour differs substantially across

countries.

These claimed regularities do certainly not fit all developed countries

equally well. Although Solow’s growth model (Solow, 1956) can be seen as the

first successful attempt at building a model consistent with Kaldor’s “stylized

facts”, Solow once remarked about them: “There is no doubt that they are

stylized, though it is possible to question whether they are facts” (Solow,

1970). Yet, for instance the study by Attfield and Temple (2010) of US and

UK data since the Second World War concludes with support for Kaldor’s

“facts”. Recently, several empiricists4 have questioned “fact” 5, however,

referring to the inadequacy of the methods which standard national income

accounting applies to separate the income of entrepreneurs, sole proprietors,

and unincorporated businesses into labor and capital income. It is claimed

that these methods obscure a tendency in recent decades of the labor income

share to fall.

The sixth Kaldor fact is, of course, generally accepted as a well docu-

mented observation (a nice summary is contained in Pritchett, 1997).

Kaldor also proposed hypotheses about the links between growth in the

different sectors (see, e.g., Kaldor 1967):

a. Productivity growth in the manufacturing and construction sec-

tors is enhanced by output growth in these sectors (this is also known as

Verdoorn’s Law). Increasing returns to scale and learning by doing are the

main factors behind this.

3Kaldor presented his six regularities as “a stylised view of the facts”.
4E.g., Gollin (2002), Elsby et al. (2013), and Karabarbounis and Neiman (2014).
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10 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

b. Productivity growth in agriculture and services is enhanced by out-

put growth in the manufacturing and construction sectors.

Kongsamut et al. (2001) and Foellmi and Zweimüller (2008) offer theoret-

ical explanations of why the Kuznets facts and the Kaldor facts can coexist.

1.4 Concepts of income convergence

The two most popular across-country income convergence concepts are “

convergence” and “ convergence”.

1.4.1  convergence vs.  convergence

Definition 1 We say that  convergence occurs for a given selection of coun-

tries if there is a tendency for the poor (those with low income per capita or

low output per worker) to subsequently grow faster than the rich.

By “grow faster” is meant that the growth rate of per capita income (or

per worker output) is systematically higher.

In many contexts, a more appropriate convergence concept is the follow-

ing:

Definition 2 We say that  convergence, with respect to a given measure of

dispersion, occurs for a given collection of countries if this measure of disper-

sion, applied to income per capita or output per worker across the countries,

declines systematically over time. On the other hand,  divergence occurs, if

the dispersion increases systematically over time.

The reason that  convergence must be considered the more appropri-

ate concept is the following. In the end, it is the question of increasing

or decreasing dispersion across countries that we are interested in. From a

superficial point of view one might think that  convergence implies decreas-

ing dispersion and vice versa, so that  convergence and  convergence are

more or less equivalent concepts. But since the world is not deterministic,

but stochastic, this is not true. Indeed,  convergence is only a necessary,

not a sufficient condition for  convergence. This is because over time some

reshuffling among the countries is always taking place, and this implies that

there will always be some extreme countries (those initially far away from

the mean) that move closer to the mean, thus creating a negative correla-

tion between initial level and subsequent growth, in spite of equally many
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1.4. Concepts of income convergence 11

countries moving from a middle position toward one of the extremes.5 In

this way  convergence may be observed at the same time as there is no 

convergence; the mere presence of random measurement errors implies a bias

in this direction because a growth rate depends negatively on the initial mea-

surement and positively on the later measurement. In fact,  convergence

may be consistent with  divergence (for a formal proof of this claim, see

Barro and Sala-i-Martin, 2004, pp. 50-51 and 462 ff.; see also Valdés, 1999,

p. 49-50, and Romer, 2001, p. 32-34).

Hence, it is wrong to conclude from  convergence (poor countries tend

to grow faster than rich ones) to  convergence (reduced dispersion of per

capita income) without any further investigation. The mistake is called “re-

gression towards the mean” or “Galton’s fallacy”. Francis Galton was an

anthropologist (and a cousin of Darwin), who in the late nineteenth century

observed that tall fathers tended to have not as tall sons and small fathers

tended to have taller sons. From this he falsely concluded that there was

a tendency to averaging out of the differences in height in the population.

Indeed, being a true aristocrat, Galton found this tendency pitiable. But

since his conclusion was mistaken, he did not really have to worry.

Since  convergence comes closer to what we are ultimately looking for,

from now, when we speak of just “income convergence”,  convergence is

understood.

In the above definitions of  convergence and  convergence, respectively,

we were vague as to what kind of selection of countries is considered. In

principle we would like it to be a representative sample of the “population”

of countries that we are interested in. The population could be all countries

in the world. Or it could be the countries that a century ago had obtained a

certain level of development.

One should be aware that historical GDP data are constructed retrospec-

tively. Long time series data have only been constructed for those countries

that became relatively rich during the after-WWII period. Thus, if we as our

sample select the countries for which long data series exist, what is known as

selection bias is involved which generates a spurious convergence. A country

which was poor a century ago will only appear in the sample if it grew rapidly

over the next 100 years. A country which was relatively rich a century ago

will appear in the sample unconditionally. This selection bias problem was

5As an intuitive analogy, think of the ordinal rankings of the sports teams in a league.

The dispersion of rankings is constant by definition. Yet, no doubt there will allways be

some tendency for weak teams to rebound toward the mean and of champions to revert

to mediocrity. (This example is taken from the first edition of Barro and Sala-i-Martin,

Economic Growth, 1995; I do not know why, but the example was deleted in the second

edition from 2004.)
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12 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

pointed out by DeLong (1988) in a criticism of widespread false interpreta-

tions of Maddison’s long data series (Maddison 1982).

1.4.2 Measures of dispersion

Our next problem is: what measure of dispersion is to be used as a useful

descriptive statistics for  convergence? Here there are different possibilities.

To be precise about this we need some notation. Let

 ≡ 


 and

 ≡ 




where  = real GDP,  = employment, and  = population. If the focus

is on living standards,  is the relevant variable.6 But if the focus is on

(labor) productivity, it is  that is relevant. Since most growth models

focus on  rather than  let os take  as our example.

One might think that the standard deviation of  could be a relevant

measure of dispersion when discussing whether  convergence is present or

not. The standard deviation of  across  countries in a given year is

 ≡
vuut1



X
=1

( − ̄)2 (1.8)

where

̄ ≡
P

 


 (1.9)

i.e., ̄ is the average output per worker. However, if this measure were used,

it would be hard to find any group of countries for which there is income

convergence. This is because  tends to grow over time for most countries,

and then there is an inherent tendency for the variance also to grow; hence

also the square root of the variance,  tends to grow. Indeed, suppose that

for all countries,  is doubled from time 1 to time 2 Then, automatically,

 is also doubled. But hardly anyone would interpret this as an increase in

the income inequality across the countries.

Hence, it is more adequate to look at the standard deviation of relative

income levels:

̄ ≡
s
1



X


(


̄
− 1)2 (1.10)

6Or perhaps better,  where  ≡  ≡  − − Here,  denotes net

interest payments on foreign debt and  denotes net labor income of foreign workers in

the country.
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1.4. Concepts of income convergence 13

This measure is the same as what is called the coefficient of variation, 

usually defined as

 ≡ 

̄
 (1.11)

that is, the standard deviation of  standardized by the mean. That the two

measures are identical can be seen in this way:



̄
≡

q
1


P
( − ̄)2

̄
=

s
1



X


(
 − ̄

̄
)2 =

s
1



X


(


̄
− 1)2 ≡ ̄

The point is that the coefficient of variation is “scale free”, which the standard

deviation itself is not.

Instead of the coefficient of variation, another scale free measure is often

used, namely the standard deviation of ln , i.e.,

ln  ≡
s
1



X


(ln  − ln ∗)2 (1.12)

where

ln ∗ ≡
P

 ln 


 (1.13)

Note that ∗ is the geometric average, i.e., ∗ ≡ 
√
12 · · ·  Now, by a

first-order Taylor approximation of ln  around  = ̄, we have

ln  ≈ ln ̄ + 1
̄
( − ̄)

Hence, as a very rough approximation we have ln  ≈ ̄ =  though

this approximation can be quite poor (cf. Dalgaard and Vastrup, 2001).

It may be possible, however, to defend the use of ln  in its own right to

the extent that  tends to be approximately lognormally distributed across

countries.

Yet another possible measure of income dispersion across countries is the

Gini index (see for example Cowell, 1995).

1.4.3 Weighting by size of population

Another important issue is whether the applied dispersion measure is based

on a weighting of the countries by size of population. For the world as a

whole, when no weighting by size of population is used, then there is a slight

tendency to income divergence according to the ln  criterion (Acemoglu,
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14 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

2009, p. 4), where  is per capita income (≡ ). As seen by Fig. 4 below,

this tendency is not so clear according to the  criterion. Anyway, when

there is weighting by size of population, then in the last twenty years there

has been a tendency to income convergence at the global level (Sala-i-Martin

2006; Acemoglu, 2009, p. 6). With weighting by size of population (1.12) is

modified to

ln  ≡
sX



(ln  − ln ∗)2

where

 =



and ln ∗ ≡

X


 ln 

1.4.4 Unconditional vs. conditional convergence

Yet another distinction in the study of income convergence is that between

unconditional (or absolute) and conditional convergence. We say that a

large heterogeneous group of countries (say the countries in the world) show

unconditional income convergence if income convergence occurs for the whole

group without conditioning on specific characteristics of the countries. If

income convergence occurs only for a subgroup of the countries, namely those

countries that in advance share the same “structural characteristics”, then

we say there is conditional income convergence. As noted earlier, when we

speak of just income “convergence”, income “ convergence” is understood.

If in a given context there might be doubt, one should of course be explicit

and speak of unconditional or conditional  convergence. Similarly, if the

focus for some reason is on  convergence, we should distinguish between

unconditional and conditional  convergence.

What the precise meaning of “structural characteristics” is, will depend

on what model of the countries the researcher has in mind. According to

the Solow model, a set of relevant “structural characteristics” are: the aggre-

gate production function, the initial level of technology, the rate of technical

progress, the capital depreciation rate, the saving rate, and the population

growth rate. But the Solow model, as well as its extension with human cap-

ital (Mankiw et al., 1992), is a model of a closed economy with exogenous

technical progress. The model deals with “within-country” convergence in

the sense that the model predicts that a closed economy being initially be-

low or above its steady state path, will over time converge towards its steady

state path. It is far from obvious that this kind of model is a good model

of cross-country convergence in a globalized world where capital mobility

and to some extent also labor mobility are important and some countries are
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Figure 1.4: Standard deviation of GDP per capita and per worker across 12 EU

countries, 1950-1998.

pushing the technological frontier further out, while others try to imitate and

catch up.

1.4.5 A bird’s-eye view of the data

In the following no serious econometrics is attempted. We use the term

“trend” in an admittedly loose sense.

Figure 1.4 shows the time profile for the standard deviation of  itself for

12 EU countries, whereas Figure 1.5 and Figure 1.6 show the time profile

of the standard deviation of log  and the time profile of the coefficient of

variation, respectively. Comparing the upward trend in Figure 1.4 with the

downward trend in the two other figures, we have an illustration of the fact

that the movement of the standard deviation of  itself does not capture

income convergence. To put it another way: although there seems to be

conditional income convergence with respect to the two scale-free measures,

Figure 1.4 shows that this tendency to convergence is not so strong as to

produce a narrowing of the absolute distance between the EU countries.7

7Unfortunately, sometimes misleading graphs or texts to graphs about across-country
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Figure 1.7 shows the time path of the coefficient of variation across 121

countries in the world, 22 OECD countries and 12 EU countries, respectively.

We see the lack of unconditional income convergence, but the presence of con-

ditional income convergence. One should not over-interpret the observation

of convergence for the 22 OECD countries over the period 1950-1990. It is

likely that this observation suffer from the selection bias problem mentioned

in Section 1.4.1. A country that was poor in 1950 will typically have become

a member of OECD only if it grew relatively fast afterwards.

1.4.6 Other convergence concepts

Of course, just considering the time profile of the first and second moments

of a distribution may sometimes be a poor characterization of the evolution

of the distribution. For example, there are signs that the distribution has

polarized into twin peaks of rich and poor countries (Quah, 1996a; Jones,

income convergence are published. In the collection of exercises, Chapter 1, you are asked

to discuss some examples of this.
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1997). Related to this observation is the notion of club convergence. If in-

come convergence occurs only among a subgroup of the countries that to

some extent share the same initial conditions, then we say there is club-

convergence. This concept is relevant in a setting where there are multiple

steady states toward which countries can converge. At least at the theoret-

ical level multiple steady states can easily arise in overlapping generations

models. Then the initial condition for a given country matters for which of

these steady states this country is heading to. Similarly, we may say that

conditional club-convergence is present, if income convergence occurs only

for a subgroup of the countries, namely countries sharing similar structural

characteristics (this may to some extent be true for the OECD countries)

and, within an interval, similar initial conditions.

Instead of focusing on income convergence, one could study TFP conver-

gence at aggregate or industry level.8 Sometimes the less demanding concept

of growth rate convergence is the focus.

The above considerations are only of a very elementary nature and are

only about descriptive statistics. The reader is referred to the large existing

literature on concepts and econometric methods of relevance for character-

8See, for instance, Bernard and Jones 1996a and 1996b.
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izing the evolution of world income distribution (see Quah, 1996b, 1996c,

1997, and for a survey, see Islam 2003).
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Chapter 2

Review of technology and
factor shares of income

The aim of this chapter is, first, to introduce the terminology concerning
firms’technology and technological change used in the lectures and exercises
of this course. At a few points I deviate somewhat from definitions in Ace-
moglu’s book. Section 1.3 can be used as a formula manual for the case of
CRS.
Second, the chapter contains a brief discussion of the notions of a repre-

sentative firm and an aggregate production function. The distinction between
long-run versus short-run production functions is also commented on. The
last sections introduce the concept of elasticity of substitution between cap-
ital and labour and its role for the direction of movement over time of the
income shares of capital and labor under perfect competition.
Regarding the distinction between discrete and continuous time analysis,

most of the definitions contained in this chapter are applicable to both.

2.1 The production technology

Consider a two-factor production function given by

Y = F (K,L), (2.1)

where Y is output (value added) per time unit, K is capital input per time
unit, and L is labor input per time unit (K ≥ 0, L ≥ 0). We may think of
(2.1) as describing the output of a firm, a sector, or the economy as a whole.
It is in any case a very simplified description, ignoring the heterogeneity of
output, capital, and labor. Yet, for many macroeconomic questions it may
be a useful first approach. Note that in (2.1) not only Y but also K and L
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represent flows, that is, quantities per unit of time. If the time unit is one
year, we think of K as measured in machine hours per year. Similarly, we
think of L as measured in labor hours per year. Unless otherwise specified, it
is understood that the rate of utilization of the production factors is constant
over time and normalized to one for each production factor. As explained
in Chapter 1, we can then use the same symbol, K, for the flow of capital
services as for the stock of capital. Similarly with L.

2.1.1 A neoclassical production function

By definition, K and L are non-negative. It is generally understood that a
production function, Y = F (K,L), is continuous and that F (0, 0) = 0 (no in-
put, no output). Sometimes, when specific functional forms are used to repre-
sent a production function, that function may not be defined at points where
K = 0 or L = 0 or both. In such a case we adopt the convention that the do-
main of the function is understood extended to include such boundary points
whenever it is possible to assign function values to them such that continuity
is maintained. For instance the function F (K,L) = αL + βKL/(K + L),
where α > 0 and β > 0, is not defined at (K,L) = (0, 0). But by assigning
the function value 0 to the point (0, 0), we maintain both continuity and the
“no input, no output”property.
We call the production function neoclassical if for all (K,L), with K > 0

and L > 0, the following additional conditions are satisfied:

(a) F (K,L) has continuous first- and second-order partial derivatives sat-
isfying:

FK > 0, FL > 0, (2.2)

FKK < 0, FLL < 0. (2.3)

(b) F (K,L) is strictly quasiconcave (i.e., the level curves, also called iso-
quants, are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous
substitution possibilities between K and L and the marginal productivities
are positive, but diminishing in own factor. Thus, for a given number of ma-
chines, adding one more unit of labor, adds to output, but less so, the higher
is already the labor input. And (b) says that every isoquant, F (K,L) = Ȳ ,
has a strictly convex form qualitatively similar to that shown in Figure 2.1.1

1For any fixed Ȳ ≥ 0, the associated isoquant is the level set
{(K,L) ∈ R+| F (K,L) = Ȳ

}
.
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When we speak of for example FL as the marginal productivity of labor, it
is because the “pure” partial derivative, ∂Y/∂L = FL, has the denomina-
tion of a productivity (output units/yr)/(man-yrs/yr). It is quite common,
however, to refer to FL as the marginal product of labor. Then a unit mar-
ginal increase in the labor input is understood: ∆Y ≈ (∂Y/∂L)∆L = ∂Y/∂L
when ∆L = 1. Similarly, FK can be interpreted as the marginal productiv-
ity of capital or as the marginal product of capital. In the latter case it is
understood that ∆K = 1, so that ∆Y ≈ (∂Y/∂K)∆K = ∂Y/∂K.

The definition of a neoclassical production function can be extended to
the case of n inputs. Let the input quantities be X1, X2, . . . , Xn and consider
a production function Y = F (X1, X2, . . . , Xn). Then F is called neoclassical if
all the marginal productivities are positive, but diminishing, and F is strictly
quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix
A).
Returning to the two-factor case, since F (K,L) presumably depends on

the level of technical knowledge and this level depends on time, t, we might
want to replace (2.1) by

Yt = F t(Kt, Lt), (2.4)

where the superscript on F indicates that the production function may shift
over time, due to changes in technology. We then say that F t(·) is a neoclas-
sical production function if it satisfies the conditions (a) and (b) for all pairs
(Kt, Lt). Technological progress can then be said to occur when, for Kt and
Lt held constant, output increases with t.
For convenience, to begin with we skip the explicit reference to time and

level of technology.

The marginal rate of substitution Given a neoclassical production
function F, we consider the isoquant defined by F (K,L) = Ȳ , where Ȳ
is a positive constant. The marginal rate of substitution, MRSKL, of K for
L at the point (K,L) is defined as the absolute slope of the isoquant at that
point, cf. Figure 2.1. The equation F (K,L) = Ȳ defines K as an implicit
function of L. By implicit differentiation we find FK(K,L)dK/dL +FL(K,L)
= 0, from which follows

MRSKL ≡ −
dK

dL |Y=Ȳ
=
FL(K,L)

FK(K,L)
> 0. (2.5)

That is, MRSKL measures the amount of K that can be saved (approxi-
mately) by applying an extra unit of labor. In turn, this equals the ratio
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Figure 2.1: MRSKL as the absolute slope of the isoquant.

of the marginal productivities of labor and capital, respectively.2 Since F
is neoclassical, by definition F is strictly quasi-concave and so the marginal
rate of substitution is diminishing as substitution proceeds, i.e., as the labor
input is further increased along a given isoquant. Notice that this feature
characterizes the marginal rate of substitution for any neoclassical production
function, whatever the returns to scale (see below).
When we want to draw attention to the dependency of the marginal rate of

substitution on the factor combination considered, we write MRSKL(K,L).
Sometimes in the literature, the marginal rate of substitution between two
production factors, K and L, is called the technical rate of substitution (or
the technical rate of transformation) in order to distinguish from a consumer’s
marginal rate of substitution between two consumption goods.
As is well-known from microeconomics, a firm that minimizes production

costs for a given output level and given factor prices, will choose a factor com-
bination such that MRSKL equals the ratio of the factor prices. If F (K,L)
is homogeneous of degree q, then the marginal rate of substitution depends
only on the factor proportion and is thus the same at any point on the ray
K = (K̄/L̄)L. That is, in this case the expansion path is a straight line.

The Inada conditions A continuously differentiable production function
is said to satisfy the Inada conditions3 if

lim
K→0

FK(K,L) = ∞, lim
K→∞

FK(K,L) = 0, (2.6)

lim
L→0

FL(K,L) = ∞, lim
L→∞

FL(K,L) = 0. (2.7)

2The subscript
∣∣Y = Ȳ in (2.5) indicates that we are moving along a given isoquant,

F (K,L) = Ȳ . Expressions like, e.g., FL(K,L) or F2(K,L) mean the partial derivative of
F w.r.t. the second argument, evaluated at the point (K,L).

3After the Japanese economist Ken-Ichi Inada, 1925-2002.
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In this case, the marginal productivity of either production factor has no
upper bound when the input of the factor becomes infinitely small. And the
marginal productivity is gradually vanishing when the input of the factor
increases without bound. Actually, (2.6) and (2.7) express four conditions,
which it is preferable to consider separately and label one by one. In (2.6) we
have two Inada conditions for MPK (the marginal productivity of capital),
the first being a lower, the second an upper Inada condition for MPK. And
in (2.7) we have two Inada conditions for MPL (the marginal productivity
of labor), the first being a lower, the second an upper Inada condition for
MPL. In the literature, when a sentence like “the Inada conditions are
assumed”appears, it is sometimes not made clear which, and how many, of
the four are meant. Unless it is evident from the context, it is better to be
explicit about what is meant.
The definition of a neoclassical production function we gave above is quite

common in macroeconomic journal articles and convenient because of its
flexibility. There are textbooks that define a neoclassical production function
more narrowly by including the Inada conditions as a requirement for calling
the production function neoclassical. In contrast, in this course, when in a
given context we need one or another Inada condition, we state it explicitly
as an additional assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by
the same factor? There may be different answers to this question, depending
on circumstances. We consider a production function F (K,L) where K > 0
and L > 0. Then F is said to have constant returns to scale (CRS for short)
if it is homogeneous of degree one, i.e., if for all (K,L) and all λ > 0,

F (λK, λL) = λF (K,L).

As all inputs are scaled up or down by some factor > 1, output is scaled up
or down by the same factor.4 The assumption of CRS is often defended by
the replication argument. Before discussing this argument, lets us define the
two alternative “pure”cases.
The production function F (K,L) is said to have increasing returns to

scale (IRS for short) if, for all (K,L) and all λ > 1,

F (λK, λL) > λF (K,L).

4In their definition of a neoclassical production function some textbooks add constant
returns to scale as a requirement besides (a) and (b). This course follows the alternative
terminology where, if in a given context an assumption of constant returns to scale is
needed, this is stated as an additional assumption.
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That is, IRS is present if, when all inputs are scaled up by some factor >
1, output is scaled up by more than this factor. The existence of gains by
specialization and division of labor, synergy effects, etc. sometimes speak in
support of this assumption, at least up to a certain level of production. The
assumption is also called the economies of scale assumption.
Another possibility is decreasing returns to scale (DRS). This is said to

occur when for all (K,L) and all λ > 1,

F (λK, λL) < λF (K,L).

That is, DRS is present if, when all inputs are scaled up by some factor,
output is scaled up by less than this factor. This assumption is also called
the diseconomies of scale assumption. The underlying hypothesis may be
that control and coordination problems confine the expansion of size. Or,
considering the “replication argument”below, DRS may simply reflect that
behind the scene there is an additional production factor, for example land
or a irreplaceable quality of management, which is tacitly held fixed, when
the factors of production are varied.

EXAMPLE 1 The production function

Y = AKαLβ, A > 0, 0 < α < 1, 0 < β < 1, (2.8)

where A, α, and β are given parameters, is called a Cobb-Douglas production
function. The parameter A depends on the choice of measurement units;
for a given such choice it reflects “effi ciency”, also called the “total factor
productivity”. As an exercise the reader may verify that (2.8) satisfies (a) and
(b) above and is therefore a neoclassical production function. The function
is homogeneous of degree α + β. If α + β = 1, there are CRS. If α + β < 1,
there are DRS, and if α + β > 1, there are IRS. Note that α and β must
be less than 1 in order not to violate the diminishing marginal productivity
condition. �
EXAMPLE 2 The production function

Y = min(AK,BL), A > 0, B > 0, (2.9)

where A and B are given parameters, is called a Leontief production function
or a fixed-coeffi cients production function; A and B are called the technical
coeffi cients. The function is not neoclassical, since the conditions (a) and (b)
are not satisfied. Indeed, with this production function the production fac-
tors are not substitutable at all. This case is also known as the case of perfect
complementarity between the production factors. The interpretation is that
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already installed production equipment requires a fixed number of workers to
operate it. The inverse of the parameters A and B indicate the required cap-
ital input per unit of output and the required labor input per unit of output,
respectively. Extended to many inputs, this type of production function is
often used in multi-sector input-output models (also called Leontief models).
In aggregate analysis neoclassical production functions, allowing substitution
between capital and labor, are more popular than Leontief functions. But
sometimes the latter are preferred, in particular in short-run analysis with
focus on the use of already installed equipment where the substitution pos-
sibilities are limited.5 As (2.9) reads, the function has CRS. A generalized
form of the Leontief function is Y = min(AKγ, BLγ), where γ > 0. When
γ < 1, there are DRS, and when γ > 1, there are IRS. �

The replication argument The assumption of CRS is widely used in
macroeconomics. The model builder may appeal to the replication argument.
This is the argument saying that by doubling all the inputs, we should always
be able to double the output, since we are just “replicating”what we are
already doing. Suppose we want to double the production of cars. We may
then build another factory identical to the one we already have, man it with
identical workers and deploy the same material inputs. Then it is reasonable
to assume output is doubled.
In this context it is important that the CRS assumption is about tech-

nology in the sense of functions linking outputs to inputs. Limits to the
availability of input resources is an entirely different matter. The fact that
for example managerial talent may be in limited supply does not preclude the
thought experiment that if a firm could double all its inputs, including the
number of talented managers, then the output level could also be doubled.
The replication argument presupposes, first, that all the relevant inputs

are explicit as arguments in the production function; second, that these are
changed equiproportionately. This, however, exhibits the weakness of the
replication argument as a defence for assuming CRS of our present production
function, F (·). One could easily make the case that besides capital and labor,
also land is a necessary input and should appear as a separate argument.6

If an industrial firm decides to duplicate what it has been doing, it needs a
piece of land to build another plant like the first. Then, on the basis of the
replication argument we should in fact expect DRS w.r.t. capital and labor
alone. In manufacturing and services, empirically, this and other possible

5Cf. Section 2.4.
6We think of “capital” as producible means of production, whereas “land” refers to

non-producible natural resources, including for example building sites.
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sources for departure from CRS may be minor and so many macroeconomists
feel comfortable enough with assuming CRS w.r.t. K and L alone, at least
as a first approximation. This approximation is, however, less applicable to
poor countries, where natural resources may be a quantitatively important
production factor.
There is a further problem with the replication argument. Strictly speak-

ing, the CRS claim is that by changing all the inputs equiproportionately
by any positive factor, λ, which does not have to be an integer, the firm
should be able to get output changed by the same factor. Hence, the replica-
tion argument requires that indivisibilities are negligible, which is certainly
not always the case. In fact, the replication argument is more an argument
against DRS than for CRS in particular. The argument does not rule out
IRS due to synergy effects as size is increased.
Sometimes the replication line of reasoning is given a more subtle form.

This builds on a useful local measure of returns to scale, named the elasticity
of scale.

The elasticity of scale* To allow for indivisibilities and mixed cases (for
example IRS at low levels of production and CRS or DRS at higher levels),
we need a local measure of returns to scale. One defines the elasticity of
scale, η(K,L), of F at the point (K,L), where F (K,L) > 0, as

η(K,L) =
λ

F (K,L)

dF (λK, λL)

dλ
≈ ∆F (λK, λL)/F (K,L)

∆λ/λ
, evaluated at λ = 1.

(2.10)
So the elasticity of scale at a point (K,L) indicates the (approximate) per-
centage increase in output when both inputs are increased by 1 percent. We
say that

if η(K,L)


> 1, then there are locally IRS,
= 1, then there are locally CRS,
< 1, then there are locally DRS.

(2.11)

The production function may have the same elasticity of scale everywhere.
This is the case if and only if the production function is homogeneous. If F
is homogeneous of degree h, then η(K,L) = h and h is called the elasticity
of scale parameter.
Note that the elasticity of scale at a point (K,L) will always equal the

sum of the partial output elasticities at that point:

η(K,L) =
FK(K,L)K

F (K,L)
+
FL(K,L)L

F (K,L)
. (2.12)

This follows from the definition in (2.10) by taking into account that

c© Groth, Lecture notes in Economic Growth, (mimeo) 2016.



2.1. The production technology 31

Figure 2.2: Locally CRS at optimal plant size.

dF (λK, λL)

dλ
= FK(λK, λL)K + FL(λK, λL)L

= FK(K,L)K + FL(K,L)L, when evaluated at λ = 1.

Figure 2.2 illustrates a popular case from introductory economics, an
average cost curve which from the perspective of the individual firm (or plant)
is U-shaped: at low levels of output there are falling average costs (thus IRS),
at higher levels rising average costs (thus DRS).7 Given the input prices, wK
and wL, and a specified output level, Ȳ , we know that the cost minimizing
factor combination (K̄, L̄) is such that FL(K̄, L̄)/FK(K̄, L̄) = wL/wK . It is
shown in Appendix A that the elasticity of scale at (K̄, L̄) will satisfy:

η(K̄, L̄) =
LAC(Ȳ )

LMC(Ȳ )
, (2.13)

where LAC(Ȳ ) is average costs (the minimum unit cost associated with
producing Ȳ ) and LMC(Ȳ ) is marginal costs at the output level Ȳ . The
L in LAC and LMC stands for “long-run”, indicating that both capital and
labor are considered variable production factors within the period considered.
At the optimal plant size, Y ∗, there is equality between LAC and LMC,
implying a unit elasticity of scale, that is, locally we have CRS. That the long-
run average costs are here portrayed as rising for Ȳ > Y ∗, is not essential
for the argument but may reflect either that coordination diffi culties are
inevitable or that some additional production factor, say the building site of
the plant, is tacitly held fixed.
Anyway, we have here a more subtle replication argument for CRS w.r.t.

K and L at the aggregate level. Even though technologies may differ across
plants, the surviving plants in a competitive market will have the same aver-
age costs at the optimal plant size. In the medium and long run, changes in

7By a “firm”is generally meant the company as a whole. A company may have several
“manufacturing plants”placed at different locations.
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aggregate output will take place primarily by entry and exit of optimal-size
plants. Then, with a large number of relatively small plants, each produc-
ing at approximately constant unit costs for small output variations, we can
without substantial error assume constant returns to scale at the aggregate
level. So the argument goes. Notice, however, that even in this form the
replication argument is not entirely convincing since the question of indivis-
ibility remains. The optimal plant size may be large relative to the market
− and is in fact so in many industries. Besides, in this case also the perfect
competition premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed. Notwithstand-
ing the theoretical and empirical ambiguities, the assumption of CRS w.r.t.
capital and labor has a prominent role in macroeconomics. In many con-
texts it is regarded as an acceptable approximation and a convenient simple
background for studying the question at hand.
Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-
hand side of (2.13) equals unity);

(ii) if production factors are paid according to their marginal productivi-
ties, factor payments exactly exhaust total output so that pure profits
are neither positive nor negative (so the right-hand side of (2.12) equals
unity);

(iii) a production function known to exhibit CRS and satisfy property (a)
from the definition of a neoclassical production function above, will au-
tomatically satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always
FKL > 0, i.e., it exhibits “direct complementarity” between K and
L;

(v) a two-factor production function known to have CRS and to be twice
continuously differentiable with positive marginal productivity of each
factor everywhere in such a way that all isoquants are strictly convex to
the origin, must have diminishing marginal productivities everywhere.8

8Proofs of these claims can be found in intermediate microeconomics textbooks and in
the Appendix to Chapter 2 of my Lecture Notes in Macroeconomics.
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A principal implication of the CRS assumption is that it allows a re-
duction of dimensionality. Considering a neoclassical production function,
Y = F (K,L) with L > 0, we can under CRS write F (K,L) = LF (K/L, 1)
≡ Lf(k), where k ≡ K/L is called the capital-labor ratio (sometimes the cap-
ital intensity) and f(k) is the production function in intensive form (some-
times named the per capita production function). Thus output per unit of
labor depends only on the capital intensity:

y ≡ Y

L
= f(k).

When the original production function F is neoclassical, under CRS the
expression for the marginal productivity of capital simplifies:

FK(K,L) =
∂Y

∂K
=
∂ [Lf(k)]

∂K
= Lf ′(k)

∂k

∂K
= f ′(k). (2.14)

And the marginal productivity of labor can be written

FL(K,L) =
∂Y

∂L
=
∂ [Lf(k)]

∂L
= f(k) + Lf ′(k)

∂k

∂L
= f(k) + Lf ′(k)K(−L−2) = f(k)− f ′(k)k. (2.15)

A neoclassical CRS production function in intensive form always has a posi-
tive first derivative and a negative second derivative, i.e., f ′ > 0 and f ′′ < 0.
The property f ′ > 0 follows from (2.14) and (2.2). And the property f ′′ < 0
follows from (2.3) combined with

FKK(K,L) =
∂f ′(k)

∂K
= f ′′(k)

∂k

∂K
= f ′′(k)

1

L
.

For a neoclassical production function with CRS, we also have

f(k)− f ′(k)k > 0 for all k > 0, (2.16)

in view of f(0) ≥ 0 and f ′′ < 0. Moreover,

lim
k→0

[f(k)− f ′(k)k] = f(0). (2.17)

Indeed, from the mean value theorem9 we know that for any k > 0 there
exists a number a ∈ (0, 1) such that f ′(ak) = (f(k) − f(0))/k. For this a
we thus have f(k) − f ′(ak)k = f(0) < f(k) − f ′(k)k, where the inequality

9This theorem says that if f is continuous in [α, β] and differentiable in (α, β), then
there exists at least one point γ in (α, β) such that f ′(γ) = (f(β)− f(α))/(β − α).
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follows from f ′(ak) > f ′(k), by f ′′ < 0. In view of f(0) ≥ 0, this establishes
(2.16). And from f(k) > f(k) − f ′(k)k > f(0) and continuity of f (so that
limk→0+ f(k) = f(0)) follows (2.17).
Under CRS the Inada conditions for MPK can be written

lim
k→0

f ′(k) =∞, lim
k→∞

f ′(k) = 0. (2.18)

In this case standard parlance is just to say that “f satisfies the Inada con-
ditions”.
An input which must be positive for positive output to arise is called an

essential input ; an input which is not essential is called an inessential input.
The second part of (2.18), representing the upper Inada condition for MPK
under CRS, has the implication that labor is an essential input; but capital
need not be, as the production function f(k) = a+ bk/(1 + k), a > 0, b > 0,
illustrates. Similarly, under CRS the upper Inada condition forMPL implies
that capital is an essential input. These claims are proved in Appendix C.
Combining these results, when both the upper Inada conditions hold and
CRS obtain, then both capital and labor are essential inputs.10

Figure 2.3 is drawn to provide an intuitive understanding of a neoclassical
CRS production function and at the same time illustrate that the lower Inada
conditions are more questionable than the upper Inada conditions. The left
panel of Figure 2.3 shows output per unit of labor for a CRS neoclassical pro-
duction function satisfying the Inada conditions for MPK. The f(k) in the
diagram could for instance represent the Cobb-Douglas function in Example
1 with β = 1−α, i.e., f(k) = Akα. The right panel of Figure 2.3 shows a non-
neoclassical case where only two alternative Leontief techniques are available,
technique 1: y = min(A1k,B1), and technique 2: y = min(A2k,B2). In the
exposed case it is assumed that B2 > B1 and A2 < A1 (if A2 ≥ A1 at the
same time as B2 > B1, technique 1 would not be effi cient, because the same
output could be obtained with less input of at least one of the factors by
shifting to technique 2). If the available K and L are such that k < B1/A1

or k > B2/A2, some of either L or K, respectively, is idle. If, however, the
availableK and L are such that B1/A1 < k < B2/A2, it is effi cient to combine
the two techniques and use the fraction µ of K and L in technique 1 and the
remainder in technique 2, where µ = (B2/A2 − k)/(B2/A2 −B1/A1). In this
way we get the “labor productivity curve”OPQR (the envelope of the two
techniques) in Figure 2.3. Note that for k → 0, MPK stays equal to A1 <∞,
whereas for all k > B2/A2, MPK = 0. A similar feature remains true, when
we consider many, say n, alternative effi cient Leontief techniques available.

10Given a Cobb-Douglas production function, both production factors are essential
whether we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neo-
classical technology with Inada conditions for MPK satisfied; the graphical repre-
sentation of MPK and MPL at k = k0 as f ′(k0) and f(k0)−f ′(k0)k0 are indicated.
Right: a combination of two effi cient Leontief techniques.

Assuming these techniques cover a considerable range w.r.t. the B/A ratios,
we get a labor productivity curve looking more like that of a neoclassical CRS
production function. On the one hand, this gives some intuition of what lies
behind the assumption of a neoclassical CRS production function. On the
other hand, it remains true that for all k > Bn/An, MPK = 0,11 whereas
for k → 0, MPK stays equal to A1 < ∞, thus questioning the lower Inada
condition.

The implausibility of the lower Inada conditions is also underlined if we
look at their implication in combination with the more reasonable upper
Inada conditions. Indeed, the four Inada conditions taken together imply,
under CRS, that output has no upper bound when either input goes to
infinity for fixed amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often
take into account the existence of technological change. When technological
change occurs, the production function becomes time-dependent. Over time
the production factors tend to become more productive: more output for
given inputs. To put it differently: the isoquants move inward. When this is
the case, we say that the technological change displays technological progress.

11Here we assume the techniques are numbered according to ranking with respect to the
size of B.
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Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by
(2.4). Empirical studies often specialize (2.4) by assuming that technological
change take a form known as factor-augmenting technological change:

Yt = F (AtKt, BtLt), (2.19)

where F is a (time-independent) neoclassical production function, Yt, Kt,
and Lt are output, capital, and labor input, respectively, at time t, while At
and Bt are time-dependent “effi ciencies” of capital and labor, respectively,
reflecting technological change.
In macroeconomics an even more specific form is often assumed, namely

the form of Harrod-neutral technological change.12 This amounts to assuming
that At in (2.19) is a constant (which we can then normalize to one). So only
Bt, which is then conveniently denoted Tt, is changing over time, and we have

Yt = F (Kt, TtLt). (2.20)

The effi ciency of labor, Tt, is then said to indicate the technology level. Al-
though one can imagine natural disasters implying a fall in Tt, generally
Tt tends to rise over time and then we say that (2.20) represents Harrod-
neutral technological progress. An alternative name often used for this is
labor-augmenting technological progress. The names “factor-augmenting”
and, as here, “labor-augmenting” have become standard and we shall use
them when convenient, although they may easily be misunderstood. To say
that a change in Tt is labor-augmenting might be understood as meaning
that more labor is required to reach a given output level for given capital.
In fact, the opposite is the case, namely that Tt has risen so that less labor
input is required. The idea is that the technological change affects the output
level as if the labor input had been increased exactly by the factor by which
T was increased, and nothing else had happened. (We might be tempted to
say that (2.20) reflects “labor saving” technological change. But also this
can be misunderstood. Indeed, keeping L unchanged in response to a rise
in T implies that the same output level requires less capital and thus the
technological change is “capital saving”.)
If the function F in (2.20) is homogeneous of degree one (so that the

technology exhibits CRS w.r.t. capital and labor), we may write

ỹt ≡
Yt
TtLt

= F (
Kt

TtLt
, 1) = F (k̃t, 1) ≡ f(k̃t), f ′ > 0, f ′′ < 0.

12After the English economist Roy F. Harrod, 1900-1978.
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where k̃t ≡ Kt/(TtLt) ≡ kt/Tt (habitually called the “effective” capital in-
tensity or, if there is no risk of confusion, just the capital intensity). In
rough accordance with a general trend in aggregate productivity data for
industrialized countries we often assume that T grows at a constant rate, g,
so that in discrete time Tt = T0(1 + g)t and in continuous time Tt = T0e

gt,
where g > 0. The popularity in macroeconomics of the hypothesis of labor-
augmenting technological progress derives from its consistency with Kaldor’s
“stylized facts”, cf. Chapter 4.
There exists two alternative concepts of neutral technological progress.

Hicks-neutral technological progress is said to occur if technological develop-
ment is such that the production function can be written in the form

Yt = TtF (Kt, Lt), (2.21)

where, again, F is a (time-independent) neoclassical production function,
while Tt is the growing technology level.13 The assumption of Hicks-neutrality
has been used more in microeconomics and partial equilibrium analysis than
in macroeconomics. If F has CRS, we can write (2.21) as Yt = F (TtKt, TtLt).
Comparing with (2.19), we see that in this case Hicks-neutrality is equivalent
to At = Bt in (2.19), whereby technological change is said to be equally
factor-augmenting.
Finally, in a symmetric analogy with (2.20), what is known as capital-

augmenting technological progress is present when

Yt = F (TtKt, Lt). (2.22)

Here technological change acts as if the capital input were augmented. For
some reason this form is sometimes called Solow-neutral technological progress.14

This association of (2.22) to Solow’s name is misleading, however. In his fa-
mous growth model,15 Solow assumed Harrod-neutral technological progress.
And in another famous contribution, Solow generalized the concept of Harrod-
neutrality to the case of embodied technological change and capital of different
vintages, see below.
It is easily shown (Exercise I.9) that the Cobb-Douglas production func-

tion (2.8) (with time-independent output elasticities w.r.t. K and L) satisfies
all three neutrality criteria at the same time, if it satisfies one of them (which
it does if technological change does not affect α and β). It can also be shown
that within the class of neoclassical CRS production functions the Cobb-
Douglas function is the only one with this property (see Exercise ??).

13After the English economist and Nobel Prize laureate John R. Hicks, 1904-1989.
14After the American economist and Nobel Prize laureate Robert Solow (1924-).
15Solow (1956).
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Note that the neutrality concepts do not say anything about the source
of technological progress, only about the quantitative form in which it ma-
terializes. For instance, the occurrence of Harrod-neutrality should not be
interpreted as indicating that the technological change emanates specifically
from the labor input in some sense. Harrod-neutrality only means that tech-
nological innovations predominantly are such that not only do labor and
capital in combination become more productive, but this happens to man-
ifest itself in the form (2.20), that is, as if an improvement in the quality
of the labor input had occurred. (Even when improvement in the quality
of the labor input is on the agenda, the result may be a reorganization of
the production process ending up in a higher Bt along with, or instead of, a
higher At in the expression (2.19).)

Rival versus nonrival goods

When a production function (or more generally a production possibility set)
is specified, a given level of technical knowledge is presumed. As this level
changes over time, the production function changes. In (2.4) this dependency
on the level of knowledge was represented indirectly by the time dependency
of the production function. Sometimes it is useful to let the knowledge de-
pendency be explicit by perceiving knowledge as an additional production
factor and write, for instance,

Yt = F (Xt, Tt), (2.23)

where Tt is now an index of the amount of knowledge, while Xt is a vector
of ordinary inputs like raw materials, machines, labor etc. In this context
the distinction between rival and nonrival inputs or more generally the dis-
tinction between rival and nonrival goods is important. A good is rival if
its character is such that one agent’s use of it inhibits other agents’use of
it at the same time. A pencil is thus rival. Many production inputs like
raw materials, machines, labor etc. have this property. They are elements of
the vector Xt. By contrast, however, technical knowledge is a nonrival good.
An arbitrary number of factories can simultaneously use the same piece of
technical knowledge in the sense of a list of instructions about how different
inputs can be combined to produce a certain output. An engineering principle
or a farmaceutical formula are examples. (Note that the distinction rival-
nonrival is different from the distinction excludable-nonexcludable. A good
is excludable if other agents, firms or households, can be excluded from using
it. Other firms can thus be excluded from commercial use of a certain piece of
technical knowledge if it is patented. The existence of a patent concerns the
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legal status of a piece of knowledge and does not interfere with its economic
character as a nonrival input.).
What the replication argument really says is that by, conceptually, dou-

bling all the rival inputs, we should always be able to double the output,
since we just “replicate”what we are already doing. This is then an argu-
ment for (at least) CRS w.r.t. the elements of Xt in (2.23). The point is that
because of its nonrivalry, we do not need to increase the stock of knowledge.
Now let us imagine that the stock of knowledge is doubled at the same time
as the rival inputs are doubled. Then more than a doubling of output should
occur. In this sense we may speak of IRS w.r.t. the rival inputs and T taken
together.
Before proceeding, we briefly comment on how the capital stock, Kt,

is typically measured. While data on gross investment, It, is available in
national income and product accounts, data on Kt usually is not. One ap-
proach to the measurement of Kt is the perpetual inventory method which
builds upon the accounting relationship

Kt = It−1 + (1− δ)Kt−1. (2.24)

Assuming a constant capital depreciation rate δ, backward substitution gives

Kt = It−1+(1−δ) [It−2 + (1− δ)Kt−2] = . . . =
N∑
i=1

(1−δ)i−1It−i+(1−δ)NKt−N .

(2.25)
Based on a long time series for I and an estimate of δ, one can insert these
observed values in the formula and calculate Kt, starting from a rough con-
jecture about the initial value Kt−N . The result will not be very sensitive to
this conjecture since for large N the last term in (2.25) becomes very small.

Embodied vs. disembodied technological progress

There exists an additional taxonomy of technological change. We say that
technological change is embodied, if taking advantage of new technical knowl-
edge requires construction of new investment goods. The new technology is
incorporated in the design of newly produced equipment, but this equipment
will not participate in subsequent technological progress. An example: only
the most recent vintage of a computer series incorporates the most recent
advance in information technology. Then investment goods produced later
(investment goods of a later “vintage”) have higher productivity than in-
vestment goods produced earlier at the same resource cost. Thus investment
becomes an important driving force in productivity increases.
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We way formalize embodied technological progress by writing capital ac-
cumulation in the following way:

Kt+1 −Kt = qtIt − δKt, (2.26)

where It is gross investment in period t, i.e., It = Yt − Ct, and qt measures
the “quality”(productivity) of newly produced investment goods. The rising
level of technology implies rising q so that a given level of investment gives
rise to a greater and greater addition to the capital stock, K, measured
in effi ciency units. In aggregate models C and I are produced with the
same technology, the aggregate production function. From this together with
(2.26) follows that q capital goods can be produced at the same minimum
cost as one consumption good. Hence, the equilibrium price, p, of capital
goods in terms of the consumption good must equal the inverse of q, i.e.,
p = 1/q. The output-capital ratio in value terms is Y/(pK) = qY/K.
Note that even if technological change does not directly appear in the

production function, that is, even if for instance (2.20) is replaced by Yt
= F (Kt, Lt), the economy may experience a rising standard of living when q
is growing over time.
In contrast, disembodied technological change occurs when new technical

and organizational knowledge increases the combined productivity of the pro-
duction factors independently of when they were constructed or educated. If
theKt appearing in (2.20), (2.21), and (2.22) above refers to the total, histor-
ically accumulated capital stock as calculated by (2.25), then the evolution
of T in these expressions can be seen as representing disembodied technolog-
ical change. All vintages of the capital equipment benefit from a rise in the
technology level Tt. No new investment is needed to benefit.
Based on data for the U.S. 1950-1990, and taking quality improvements

into account, Greenwood et al. (1997) estimate that embodied technological
progress explains about 60% of the growth in output per man hour. So,
empirically, embodied technological progress seems to play a dominant role.
As this tends not to be fully incorporated in national income accounting at
fixed prices, there is a need to adjust the investment levels in (2.25) to better
take estimated quality improvements into account. Otherwise the resulting
K will not indicate the capital stock measured in effi ciency units.

2.3 The concepts of representative firm and
aggregate production function*

Many macroeconomic models make use of the simplifying notion of a rep-
resentative firm. By this is meant a fictional firm whose production “rep-
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resents” aggregate production (value added) in a sector or in society as a
whole.
Suppose there are n firms in the sector considered or in society as a

whole. Let F i be the production function for firm i so that Yi = F i(Ki, Li),
where Yi, Ki, and Li are output, capital input, and labor input, respectively,
i = 1, 2, . . . , n. Further, let Y = Σn

i=1Yi, K = Σn
i=1Ki, and L = Σn

i=1Li.
Ignoring technological change, suppose the aggregate variables are related
through some function, F ∗, such that we can write

Y = F ∗(K,L),

and such that the choices of a single firm facing this production function
coincide with the aggregate outcomes, Σn

i=1Yi, Σn
i=1Ki, and Σn

i=1Li, in the
original economy. Then F ∗(K,L) is called the aggregate production function
or the production function of the representative firm. It is as if aggregate
production is the result of the behavior of such a single firm.
A simple example where the aggregate production function is well-defined

is the following. Suppose that all firms have the same production function
so that Yi = F (Ki, Li), i = 1, 2, . . . , n. If in addition F has CRS, we have

Yi = F (Ki, Li) = LiF (ki, 1) ≡ Lif(ki),

where ki ≡ Ki/Li. Hence, facing given factor prices, cost-minimizing firms
will choose the same capital intensity ki = k for all i. From Ki = kLi then
follows

∑
iKi = k

∑
i Li so that k = K/L. Thence,

Y ≡
∑

Yi =
∑

Lif(ki) = f(k)
∑

Li = f(k)L = F (k, 1)L = F (K,L).

In this (trivial) case the aggregate production function is well-defined and
turns out to be exactly the same as the identical CRS production functions
of the individual firms. Moreover, given CRS and ki = k for all i, we have
∂Yi/∂Ki = f ′(ki) = f ′(k) = FK(K,L) for all i. So each firm’s marginal
productivity of capital is the same as the marginal productivity of capital on
the basis of the aggregate production function.
Allowing for the existence of different production functions at firm level,

we may define the aggregate production function as

F (K,L) = max
(K1,L1,...,Kn,Ln)≥0

F 1(K1, L1) + · · ·+ F n(Kn, Ln)

s.t.
∑
i

Ki ≤ K,
∑
i

Li ≤ L.

Allowing also for existence of different output goods, different capital
goods, and different types of labor makes the issue more intricate, of course.
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Yet, if firms are price taking profit maximizers and there are nonincreasing
returns to scale, we at least know that the aggregate outcome is as if, for
given prices, the firms jointly maximize aggregate profit on the basis of their
combined production technology (Mas-Colell et al., 1955). The problem is,
however, that the conditions needed for this to imply existence of an ag-
gregate production function which is well-behaved (in the sense of inheriting
simple qualitative properties from its constituent parts) are restrictive.
Nevertheless macroeconomics often treats aggregate output as a single ho-

mogeneous good and capital and labor as being two single and homogeneous
inputs. There was in the 1960s a heated debate about the problems involved
in this, with particular emphasis on the aggregation of different kinds of
equipment into one variable, the capital stock “K”. The debate is known
as the “Cambridge controversy”because the dispute was between a group of
economists from Cambridge University, UK, and a group from Massachusetts
Institute of Technology (MIT), which is located in Cambridge, USA. The for-
mer group questioned the theoretical robustness of several of the neoclassical
tenets, including the proposition that rising aggregate capital intensity tends
to be associated with a falling rate of interest. Starting at the disaggregate
level, an association of this sort is not a logical necessity because, with differ-
ent production functions across the industries, the relative prices of produced
inputs tend to change, when the interest rate changes. While acknowledging
the possibility of “paradoxical” relationships, the latter group maintained
that in a macroeconomic context they are likely to cause devastating prob-
lems only under exceptional circumstances. In the end this is a matter of
empirical assessment.16

To avoid complexity and because, for many important issues in growth
theory, there is today no well-tried alternative, we shall in this course most
of the time use aggregate constructs like “Y ”, “K”, and “L” as simplify-
ing devices, hopefully acceptable in a first approximation. There are cases,
however, where some disaggregation is pertinent. When for example the role
of imperfect competition is in focus, we shall be ready to disaggregate the
production side of the economy into several product lines, each producing its
own differentiated product. We shall also touch upon a type of growth models
where a key ingredient is the phenomenon of “creative destruction”meaning
that an incumbent technological leader is competed out by an entrant with
a qualitatively new technology.
Like the representative firm, the representative household and the aggre-

16In his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What
the ‘paradoxical’ comparative statics [of disaggregate capital theory] has taught us is
simply that modelling the world as having a single capital good is not a priori justified.
So be it.”
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gate consumption function are simplifying notions that should be applied
only when they do not get in the way of the issue to be studied. The im-
portance of budget constraints may make it even more diffi cult to aggregate
over households than over firms. Yet, if (and that is a big if) all households
have the same, constant marginal propensity to consume out of income, ag-
gregation is straightforward and the representative household is a meaningful
concept. On the other hand, if we aim at understanding, say, the interaction
between lending and borrowing households, perhaps via financial intermedi-
aries, the representative household is not a useful starting point. Similarly,
if the theme is conflicts of interests between firm owners and employees, the
existence of different types of households should be taken into account.

2.4 Long-run vs. short-run production func-
tions*

Is the substitutability between capital and labor the same “ex ante”and “ex
post”? By ex ante is meant “when plant and machinery are to be decided
upon”and by ex post is meant “after the equipment is designed and con-
structed”. In the standard neoclassical competitive setup, of for instance
the Solow or the Ramsey model, there is a presumption that also after the
construction and installation of the equipment in the firm, the ratio of the
factor inputs can be fully adjusted to a change in the relative factor price. In
practice, however, when some machinery has been constructed and installed,
its functioning will often require a more or less fixed number of machine op-
erators. What can be varied is just the degree of utilization of the machinery.
That is, after construction and installation of the machinery, the choice op-
portunities are no longer described by the neoclassical production function
but by a Leontief production function,

Y = min(AuK̄,BL), A > 0, B > 0, (2.27)

where K̄ is the size of the installed machinery (a fixed factor in the short
run) measured in effi ciency units, u is its utilization rate (0 ≤ u ≤ 1), and A
and B are given technical coeffi cients measuring effi ciency.
So in the short run the choice variables are u and L. In fact, essentially

only u is a choice variable since effi cient production trivially requires L =
AuK̄/B. Under “full capacity utilization”we have u = 1 (each machine is
used 24 hours per day seven days per week). “Capacity”is given as AK̄ per
week. Producing effi ciently at capacity requiresL = AK̄/B and the marginal
product by increasing labor input is here nil. But if demand, Y d, is less than
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capacity, satisfying this demand effi ciently requires u = Y d/(AK̄) < 1 and L
= Y d/B. As long as u < 1, the marginal productivity of labor is a constant,
B.
The various effi cient input proportions that are possible ex ante may be

approximately described by a neoclassical CRS production function. Let this
function on intensive form be denoted y = f(k).When investment is decided
upon and undertaken, there is thus a choice between alternative effi cient pairs
of the technical coeffi cients A and B in (2.27). These pairs satisfy

f(k) = Ak = B. (2.28)

So, for an increasing sequence of k’s, k1, k2,. . . , ki,. . . , the corresponding
pairs are (Ai, Bi) = (f(ki)/ki, f(ki)), i = 1, 2,. . . .17 We say that ex ante,
depending on the relative factor prices as they are “now”and are expected
to evolve in the future, a suitable technique, (Ai, Bi), is chosen from an
opportunity set described by the given neoclassical production function. But
ex post, i.e., when the equipment corresponding to this technique is installed,
the production opportunities are described by a Leontief production function
with (A,B) = (Ai, Bi).
In the picturesque language of Phelps (1963), technology is in this case

putty-clay. Ex ante the technology involves capital which is “putty” in the
sense of being in a malleable state which can be transformed into a range of
various machinery requiring capital-labor ratios of different magnitude. But
once the machinery is constructed, it enters a “hardened”state and becomes
”clay”. Then factor substitution is no longer possible; the capital-labor ra-
tio at full capacity utilization is fixed at the level k = Bi/Ai, as in (2.27).
Following the terminology of Johansen (1972), we say that a putty-clay tech-
nology involves a “long-run production function”which is neoclassical and a
“short-run production function”which is Leontief.
In contrast, the standard neoclassical setup assumes the same range of

substitutability between capital and labor ex ante and ex post. Then the
technology is called putty-putty. This term may also be used if ex post there
is at least some substitutability although less than ex ante. At the opposite
pole of putty-putty we may consider a technology which is clay-clay. Here
neither ex ante nor ex post is factor substitution possible. Table 2.1 gives an
overview of the alternative cases.

Table 2.1. Technologies classified according to

17The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as con-
structed this way from the neoclassical production function in the left-hand panel of the
figure.
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factor substitutability ex ante and ex post
Ex post substitution

Ex ante substitution possible impossible
possible putty-putty putty-clay
impossible clay-clay

The putty-clay case is generally considered the realistic case. As time
proceeds, technological progress occurs. To take this into account, we may
replace (2.28) and (2.27) by f(kt, t) = Atkt = Bt and Yt = min(AtutK̄t, BtLt),
respectively. If a new pair of Leontief coeffi cients, (At2 , Bt2), effi ciency-
dominates its predecessor (by satisfying At2 ≥ At1 and Bt2 ≥ Bt1 with at
least one strict equality), it may pay the firm to invest in the new technol-
ogy at the same time as some old machinery is scrapped. Real wages tend
to rise along with technological progress and the scrapping occurs because
the revenue from using the old machinery in production no longer covers the
associated labor costs.
The clay property ex-post of many technologies is important for short-run

analysis. It implies that there may be non-decreasing marginal productivity
of labor up to a certain point. It also implies that in its investment decision
the firm will have to take expected future technologies and future factor prices
into account. For many issues in long-run analysis the clay property ex-post
may be less important, since over time adjustment takes place through new
investment.

2.5 The neoclassical theory of factor income
shares

To begin with, we ignore technological progress and write aggregate output
as Y = F (K,L), where F is neoclassical with CRS. From Euler’s theorem
follows that F (K,L) = F1K + F2L = f ′(k)K + (f(k) − kf ′(k))L, where
k ≡ K/L. In equilibrium under perfect competition we have

Y = r̂K + wL,

where r̂ = r + δ = f ′(k) ≡ r̂(k) is the cost per unit of capital input and w
= f(k)−kf ′(k) ≡ w(k) is the real wage, i.e., the cost per unit of labor input.
We have r̂′(k) = f ′′(k) < 0 and w′(k) = −kf ′′(k) > 0.
The labor income share is

wL

Y
=
f(k)− kf ′(k)

f(k)
≡ w(k)

f(k)
≡ SL(k) =

wL

r̂K + wL
=

w/r̂
k

1 + w/r̂
k

, (2.29)
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where the function SL(·) is the income share of labor function, w/r̂ is the
factor price ratio, and (w/r̂)/k = w/(r̂k) is the factor income ratio. As r̂′(k)
= f ′′(k) < 0 and w′(k) = −kf ′′(k) > 0, the factor price ratio, w/r̂, is an
increasing function of k.
Suppose that capital tends to grow faster than labor so that k rises over

time. Unless the production function is Cobb-Douglas, this will under perfect
competition affect the labor income share. But apriori it is not obvious in
what direction. By (2.29) we see that the labor income share moves in
the same direction as the factor income ratio, (w/r̂)/k. The latter goes up
(down) depending on whether the percentage rise in the factor price ratio
w/r̂ is greater (smaller) than the percentage rise in k. So, if we let E`xg(x)
denote the elasticity of a function g(x) w.r.t. x, we can only say that

SL′(k) R 0 for E`k
w

r̂
R 1, (2.30)

respectively. In words: if the production function is such that the ratio of
the marginal productivities of the two production factors is strongly (weakly)
sensitive to the capital-labor ratio, then the labor income share rises (falls)
along with a rise in K/L.
Usually, however, the inverse elasticity is considered, namely E`w/r̂k (=

1/E`k wr̂ ). This elasticity indicates how sensitive the cost minimizing capital-
labor ratio, k, is to a given factor price ratio w/r̂. Under perfect competition
E`w/r̂k coincides with what is known as the elasticity of factor substitution
(for a general definition, see below). The latter is often denoted σ. In the
CRS case, σ will be a function of only k so that we can write E`w/r̂k = σ(k).
By (2.30), we therefore have

SL′(k) R 0 for σ(k) Q 1,

respectively.
The size of the elasticity of factor substitution is a property of the pro-

duction function, hence of the technology. In special cases the elasticity of
factor substitution is a constant, i.e., independent of k. For instance, if F is
Cobb-Douglas, i.e., Y = KαL1−α, 0 < α < 1, we have σ(k) ≡ 1, as shown
in Section 2.7. In this case variation in k does not change the labor income
share under perfect competition. Empirically there is not agreement about
the “normal” size of the elasticity of factor substitution for industrialized
economies, but the bulk of studies seems to conclude with σ(k) < 1 (see
below).

Adding Harrod-neutral technical progress We now add Harrod-neutral
technical progress. We write aggregate output as Y = F (K,TL), where F
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is neoclassical with CRS, and T = Tt = T0(1 + g)t. Then the labor income
share is

wL

Y
=

w/T

Y/(TL)
≡ w̃

ỹ
.

The above formulas still hold if we replace k by k̃ ≡ K/(TL) and w by w̃
≡ w/T. We get

SL′(k̃) R 0 for σ(k̃) Q 1,

respectively. We see that if σ(k̃) < 1 in the relevant range for k̃, then market
forces tend to increase the income share of the factor that is becoming rela-
tively more scarce, which is effi ciency-adjusted labor, TL, if k̃ is increasing.
And if instead σ(k̃) > 1 in the relevant range for k̃, then market forces tend
to decrease the income share of the factor that is becoming relatively more
scarce.
While k empirically is clearly growing, k̃ ≡ k/T is not necessarily so

because also T is increasing. Indeed, according to Kaldor’s “stylized facts”,
apart from short- and medium-term fluctuations, k̃ − and therefore also r̂
and the labor income share − tend to be more or less constant over time.
This can happen whatever the sign of σ(k̃∗) − 1, where k̃∗ is the long-run
value of the effective capital-labor ratio k̃. Given CRS and the production
function f, the elasticity of substitution between capital and labor does not
depend on whether g = 0 or g > 0, but only on the function f itself and the
level of K/(TL).
As alluded to earlier, there are empiricists who reject Kaldor’s “facts”

as a general tendency. For instance Piketty (2014) essentially claims that
in the very long run the effective capital-labor ratio k̃ has an upward trend,
temporarily braked by two world wars and the Great Depression in the 1930s.
If so, the sign of σ(k̃)− 1 becomes decisive for in what direction wL/Y will
move. Piketty interprets the econometric literature as favoring σ(k̃) > 1,
which means there should be downward pressure on wL/Y . This particular
source behind a falling wL/Y can be questioned, however. Indeed, σ(k̃) > 1
contradicts the more general empirical view referred to above.18

Immigration

Here is another example that illustrates the importance of the size of σ(k̃).
Consider an economy with perfect competition and a given aggregate capital
stock K and technology level T (entering the production function in the
labor-augmenting way as above). Suppose that for some reason, immigration,

18According to Summers (2014), Piketty’s interpretation relies on conflating gross and
net returns to capital.
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say, aggregate labor supply, L, shifts up and full employment is maintained
by the needed real wage adjustment. Given the present model, in what
direction will aggregate labor income wL = w̃(k̃)TL then change? The effect
of the larger L is to some extent offset by a lower w brought about by the
lower effective capital-labor ratio. Indeed, in view of dw̃/dk̃ = −k̃f ′′(k̃) > 0,
we have k̃ ↓ implies w ↓ for fixed T. So we cannot apriori sign the change in
wL. The following relationship can be shown (Exercise ??), however:

∂(wL)

∂L
= (1− α(k̃)

σ(k̃)
)w R 0 for α(k̃) Q σ(k̃), (2.31)

respectively, where a(k̃) ≡ k̃f ′(k̃)/f(k̃) is the output elasticity w.r.t. capital
which under perfect competition equals the gross capital income share. It
follows that the larger L will not be fully offset by the lower w as long as the
elasticity of factor substitution, σ(k̃), exceeds the gross capital income share,
α(k̃). This condition seems confirmed by most of the empirical evidence (see
Section 2.7).
The next section describes the concept of the elasticity of factor substitu-

tion at a more general setting. The subsequent section introduces the special
case known as the CES production function.

2.6 The elasticity of factor substitution*

We shall here discuss the concept of elasticity of factor substitution at a
more general level. Fig. 2.4 depicts an isoquant, F (K,L) = Ȳ , for a given
neoclassical production function, F (K,L), which need not have CRS. Let
MRS denote the marginal rate of substitution of K for L, i.e., MRS =
FL(K,L)/FK(K,L).19 At a given point (K,L) on the isoquant curve, MRS
is given by the absolute value of the slope of the tangent to the isoquant at
that point. This tangent coincides with that isocost line which, given the
factor prices, has minimal intercept with the vertical axis while at the same
time touching the isoquant. In view of F (·) being neoclassical, the isoquants
are by definition strictly convex to the origin. Consequently, MRS is rising
along the curve when L decreases and thereby K increases. Conversely, we
can let MRS be the independent variable and consider the corresponding
point on the indifference curve, and thereby the ratio K/L, as a function of
MRS. If we let MRS rise along the given isoquant, the corresponding value
of the ratio K/L will also rise.

19When there is no risk of confusion as to what is up and what is down, we use MRS
as a shorthand for the more precise expression MRSKL.
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Figure 2.4: Substitution of capital for labor as the marginal rate of substitution
increases from MRS to MRS′.

The elasticity of substitution between capital and labor is defined as the
elasticity of the ratio K/L with respect to MRS when we move along a
given isoquant, evaluated at the point (K,L). Let this elasticity be denoted
σ̃(K,L). Thus,

σ̃(K,L) =
MRS

K/L

d(K/L)

dMRS |Y=Ȳ
=

d(K/L)
K/L

dMRS
MRS |Y=Ȳ

. (2.32)

Although the elasticity of factor substitution is a characteristic of the tech-
nology as such and is here defined without reference to markets and factor
prices, it helps the intuition to refer to factor prices. At a cost-minimizing
point, MRS equals the factor price ratio w/r̂. Thus, the elasticity of fac-
tor substitution will under cost minimization coincide with the percentage
increase in the ratio of the cost-minimizing factor ratio induced by a one
percentage increase in the inverse factor price ratio, holding the output level
unchanged.20 The elasticity of factor substitution is thus a positive number
and reflects how sensitive the capital-labor ratioK/L is under cost minimiza-
tion to an increase in the factor price ratio w/r̂ for a given output level. The
less curvature the isoquant has, the greater is the elasticity of factor substitu-
tion. In an analogue way, in consumer theory one considers the elasticity of
substitution between two consumption goods or between consumption today
and consumption tomorrow. In that context the role of the given isoquant

20This characterization is equivalent to interpreting the elasticity of substitution as the
percentage decrease in the factor ratio (when moving along a given isoquant) induced by
a one-percentage increase in the corresponding factor price ratio.
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is taken over by an indifference curve. That is also the case when we con-
sider the intertemporal elasticity of substitution in labor supply, cf. the next
chapter.
Calculating the elasticity of substitution between K and L at the point

(K,L), we get

σ̃(K,L) = − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
, (2.33)

where all the derivatives are evaluated at the point (K,L). When F (K,L)
has CRS, the formula (2.33) simplifies to

σ̃(K,L) =
FK(K,L)FL(K,L)

FKL(K,L)F (K,L)
= −f

′(k) (f(k)− f ′(k)k)

f ′′(k)kf(k)
≡ σ(k), (2.34)

where k ≡ K/L.21 We see that under CRS, the elasticity of substitution
depends only on the capital-labor ratio k, not on the output level. We will
now consider the case where the elasticity of substitution is independent also
of the capital-labor ratio.

2.7 The CES production function

It can be shown22 that if a neoclassical production function with CRS has a
constant elasticity of factor substitution different from one, it must be of the
form

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (2.35)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0. This function has been used intensively in empirical studies and is
called a CES production function (CES for Constant Elasticity of Substitu-
tion). For a given choice of measurement units, the parameter A reflects
effi ciency (or what is known as total factor productivity) and is thus called
the effi ciency parameter. The parameters α and β are called the distribu-
tion parameter and the substitution parameter, respectively. The restriction
β < 1 ensures that the isoquants are strictly convex to the origin. Note that
if β < 0, the right-hand side of (16.32) is not defined when either K or L
(or both) equal 0.We can circumvent this problem by extending the domain
of the CES function and assign the function value 0 to these points when
β < 0. Continuity is maintained in the extended domain (see Appendix E).

21The formulas (2.33) and (2.34) are derived in Appendix D of Chapter 4 of Groth,
Lecture Notes in Macroeconomics..
22See, e.g., Arrow et al. (1961).
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By taking partial derivatives in (16.32) and substituting back we get

∂Y

∂K
= αAβ

(
Y

K

)1−β

and
∂Y

∂L
= (1− α)Aβ

(
Y

L

)1−β

, (2.36)

where Y/K = A
[
α + (1− α)k−β

] 1
β and Y/L = A

[
αkβ + 1− α

] 1
β . The mar-

ginal rate of substitution of K for L therefore is

MRS =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β > 0.

Consequently,
dMRS

dk
=

1− α
α

(1− β)k−β,

where the inverse of the right-hand side is the value of dk/dMRS. Substitut-
ing these expressions into (16.34) gives

σ̃(K,L) =
1

1− β ≡ σ, (2.37)

confirming the constancy of the elasticity of substitution. Since β < 1, σ > 0
always. A higher substitution parameter, β, results in a higher elasticity of
factor substitution, σ. And σ ≶ 1 for β ≶ 0, respectively.
Since β = 0 is not allowed in (16.32), at first sight we cannot get σ = 1

from this formula. Yet, σ = 1 can be introduced as the limiting case of (16.32)
when β → 0, which turns out to be the Cobb-Douglas function. Indeed, one
can show23 that, for fixed K and L,

A
[
αKβ + (1− α)Lβ

] 1
β → AKαL1−α, for β → 0.

By a similar procedure as above we find that a Cobb-Douglas function always
has elasticity of substitution equal to 1; this is exactly the value taken by
σ in (16.35) when β = 0. In addition, the Cobb-Douglas function is the
only production function that has unit elasticity of substitution whatever
the capital-labor ratio.
Another interesting limiting case of the CES function appears when, for

fixed K and L, we let β → −∞ so that σ → 0. We get

A
[
αKβ + (1− α)Lβ

] 1
β → Amin(K,L), for β → −∞. (2.38)

23For proofs of this and the further claims below, see Appendix E of Chapter 4 of Groth,
Lecture Notes in Macroeconomics.
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So in this case the CES function approaches a Leontief production function,
the isoquants of which form a right angle, cf. Fig. 2.5. In the limit there is no
possibility of substitution between capital and labor. In accordance with this
the elasticity of substitution calculated from (16.35) approaches zero when β
goes to −∞.
Finally, let us consider the “opposite”transition. For fixed K and L we

let the substitution parameter rise towards 1 and get

A
[
αKβ + (1− α)Lβ

] 1
β → A [αK + (1− α)L] , for β → 1.

Here the elasticity of substitution calculated from (16.35) tends to ∞ and
the isoquants tend to straight lines with slope −(1 − α)/α. In the limit,
the production function thus becomes linear and capital and labor become
perfect substitutes.
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K

Figure 2.5: Isoquants for the CES function for alternative values of σ (A = 1.5,
Ȳ = 2, and α = 0.42).

Fig. 2.5 depicts isoquants for alternative CES production functions and
their limiting cases. In the Cobb-Douglas case, σ = 1, the horizontal and
vertical asymptotes of the isoquant coincide with the coordinate axes. When
σ < 1, the horizontal and vertical asymptotes of the isoquant belong to the
interior of the positive quadrant. This implies that both capital and labor
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are essential inputs. When σ > 1, the isoquant terminates in points on
the coordinate axes. Then neither capital, nor labor are essential inputs.
Empirically there is not complete agreement about the “normal”size of the
elasticity of factor substitution for industrialized economies. The elasticity
also differs across the production sectors. A thorough econometric study
(Antràs, 2004) of U.S. data indicate the aggregate elasticity of substitution
to be in the interval (0.5, 1.0). The survey by Chirinko (2008) concludes with
the interval (0.4, 0.6). Starting from micro data, a recent study by Oberfield
and Raval (2014) finds that the elasticity of factor substitution for the US
manufacturing sector as a whole has been stable since 1970 at about 0.7.

The CES production function in intensive form

Dividing through by L on both sides of (16.32), we obtain the CES production
function in intensive form,

y ≡ Y

L
= A(αkβ + 1− α)

1
β , (2.39)

where k ≡ K/L. The marginal productivity of capital can be written

MPK =
dy

dk
= αA

[
α + (1− α)k−β

] 1−β
β = αAβ

(y
k

)1−β
,

which of course equals ∂Y/∂K in (16.33). We see that the CES function
violates either the lower or the upper Inada condition for MPK, depending
on the sign of β. Indeed, when β < 0 (i.e., σ < 1), then for k → 0 both y/k
and dy/dk approach an upper bound equal to Aα1/β < ∞, thus violating
the lower Inada condition for MPK (see the right-hand panel of Fig. 2.3).
It is also noteworthy that in this case, for k → ∞, y approaches an upper
bound equal to A(1 − α)1/β < ∞. These features reflect the low degree of
substitutability when β < 0.
When instead β > 0, there is a high degree of substitutability (σ > 1).

Then, for k →∞ both y/k and dy/dk → Aα1/β > 0, thus violating the upper
Inada condition forMPK (see right panel of Fig. 2.6). It is also noteworthy
that for k → 0, y approaches a positive lower bound equal to A(1−α)1/β > 0.
Thus, in this case capital is not essential. At the same time dy/dk →∞ for
k → 0 (so the lower Inada condition for the marginal productivity of capital
holds). Details are in Appendix E.
The marginal productivity of labor is

MPL =
∂Y

∂L
= (1− α)Aβy1−β = (1− α)A(αkβ + 1− α)(1−β)/β ≡ w(k),
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from (16.33).
Since (16.32) is symmetric inK and L, we get a series of symmetric results

by considering output per unit of capital as x≡ Y/K = A
[
α + (1− α)(L/K)β

]1/β
.

In total, therefore, when there is low substitutability (β < 0), for fixed input
of either of the production factors, there is an upper bound for how much
an unlimited input of the other production factor can increase output. And
when there is high substitutability (β > 0), there is no such bound and an
unlimited input of either production factor take output to infinity.
The Cobb-Douglas case, i.e., the limiting case for β → 0, constitutes in

several respects an intermediate case in that all four Inada conditions are
satisfied and we have y → 0 for k → 0, and y →∞ for k →∞.
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Figure 2.6: The CES production function in intensive form, σ = 1/(1− β), β < 1.

Generalizations

The CES production function considered above has CRS. By adding an elas-
ticity of scale parameter, γ, we get the generalized form

Y = A
[
αKβ + (1− α)Lβ

] γ
β , γ > 0. (2.40)

In this form the CES function is homogeneous of degree γ. For 0 < γ < 1,
there are DRS, for γ = 1 CRS, and for γ > 1 IRS. If γ 6= 1, it may be
convenient to consider Q ≡ Y 1/γ = A1/γ

[
αKβ + (1− α)Lβ

]1/β
and q ≡ Q/L

= A1/γ(αkβ + 1− α)1/β.
The elasticity of substitution between K and L is σ = 1/(1−β) whatever

the value of γ. So including the limiting cases as well as non-constant returns
to scale in the “family”of production functions with constant elasticity of
substitution, we have the simple classification displayed in Table 2.2.
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Table 2.2 The family of production functions
with constant elasticity of substitution.

σ = 0 0 < σ < 1 σ = 1 σ > 1
Leontief CES Cobb-Douglas CES

Note that only for γ ≤ 1 is (16.38) a neoclassical production function.
This is because, when γ > 1, the conditions FKK < 0 and FNN < 0 do not
hold everywhere.
We may generalize further by assuming there are n inputs, in the amounts

X1, X2, ..., Xn. Then the CES production function takes the form

Y = A
[
α1X1

β + α2X2
β + ...αnXn

β
] γ
β , αi > 0 for all i,

∑
i

αi = 1, γ > 0.

(2.41)
In analogy with (16.34), for an n-factor production function the partial elas-
ticity of substitution between factor i and factor j is defined as

σij =
MRSij
Xi/Xj

d(Xi/Xj)

dMRSij |Y=Ȳ

,

where it is understood that not only the output level but also all Xk, k 6= i, j,
are kept constant. Note that σji = σij. In the CES case considered in (16.39),
all the partial elasticities of substitution take the same value, 1/(1− β).

2.8 Literature notes

As to the question of the empirical validity of the constant returns to scale
assumption, Malinvaud (1998) offers an account of the econometric diffi cul-
ties associated with estimating production functions. Studies by Basu (1996)
and Basu and Fernald (1997) suggest returns to scale are about constant or
decreasing. Studies by Hall (1990), Caballero and Lyons (1992), Harris and
Lau (1992), Antweiler and Treffl er (2002), and Harrison (2003) suggest there
are quantitatively significant increasing returns, either internal or external.
On this background it is not surprising that the case of IRS (at least at in-
dustry level), together with market forms different from perfect competition,
has in recent years received more attention in macroeconomics and in the
theory of economic growth.
Macroeconomists’use of the value-laden term “technological progress”in

connection with technological change may seem suspect. But the term should
be interpreted as merely a label for certain types of shifts of isoquants in an
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abstract universe. At a more concrete and disaggregate level analysts of
course make use of more refined notions about technological change, recog-
nizing for example not only benefits of new technologies, but also the risks,
including risk of fundamental mistakes (think of the introduction and later
abandonment of asbestos in the construction industry).
Informative history of technology is contained in Ruttan (2001) and Smil

(2003). For more general economic history, see, e.g., Clark (2008) and Pers-
son (2010). Forecasts of technological development in the next decades are
contained in, for instance, Brynjolfsson and McAfee (2014).
Embodied technological progress, sometimes called investment-specific

technological progress, is explored in, for instance, Solow (1960), Greenwood
et al. (1997), and Groth and Wendner (2014). Hulten (2001) surveys the
literature and issues related to measurement of the direct contribution of
capital accumulation and technological change, respectively, to productivity
growth.
Conditions ensuring that a representative household is admitted and the

concept of Gorman preferences are discussed in Acemoglu (2009). Another
useful source, also concerning the conditions for the representative firm to be
a meaningful notion, is Mas-Colell et al. (1995). For general discussions of the
limitations of representative agent approaches, see Kirman (1992) and Galle-
gati and Kirman (1999). Reviews of the “Cambridge Controversy”are con-
tained in Mas-Colell (1989) and Felipe and Fisher (2003). The last-mentioned
authors find the conditions required for the well-behavedness of these con-
structs so stringent that it is diffi cult to believe that actual economies are
in any sense close to satisfy them. For a less distrustful view, see for in-
stance Ferguson (1969), Johansen (1972), Malinvaud (1998), Jorgenson et al.
(2005), and Jones (2005).
It is often assumed that capital depreciation can be described as geomet-

ric (in continuous time exponential) evaporation of the capital stock. This
formula is popular in macroeconomics, more so because of its simplicity than
its realism. An introduction to more general approaches to depreciation is
contained in, e.g., Nickell (1978).
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Chapter 3

Continuous time analysis

Because dynamic analysis is generally easier in continuous time, growth mod-

els are often stated in continuous time. This chapter gives an account of the

conceptual aspects of continuous time analysis. Appendix A considers sim-

ple growth arithmetic in continuous time. And Appendix B provides solution

formulas for linear first-order differential equations.

3.1 The transition from discrete time to con-

tinuous time

We start from a discrete time framework. The run of time is divided into

successive periods of equal length, taken as the time-unit. Let us here index

the periods by  = 0 1 2 . Thus financial wealth accumulates according to

+1 −  =  0 given,

where  is (net) saving in period 

3.1.1 Multiple compounding per year

With time flowing continuously, we let () refer to financial wealth at time

 Similarly, (+∆) refers to financial wealth at time +∆ To begin with,

let ∆ equal one time unit. Then (∆) equals () and is of the same value

as  Consider the forward first difference in  ∆() ≡ (+∆)− () It

makes sense to consider this change in  in relation to the length of the time

interval involved, that is, to consider the ratio ∆()∆ As long as ∆ = 1

with  = ∆ we have ∆()∆ = (+1 − )1 = +1 −  Now, keep

the time unit unchanged, but let the length of the time interval [ +∆)

59
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approach zero, i.e., let ∆ → 0. When  is a differentiable function of , we

have

lim
∆→0

∆()

∆
= lim

∆→0
(+∆)− ()

∆
=

()




where () often written ̇() is known as the derivative of (·) at the
point  Wealth accumulation in continuous time can then be written

̇() = () (0) = 0 given, (3.1)

where () is the saving flow at time . For ∆ “small” we have the approx-

imation ∆() ≈ ̇()∆ = ()∆ In particular, for ∆ = 1 we have ∆()

= (+ 1)− () ≈ ()

As time unit choose one year. Going back to discrete time, if wealth

grows at a constant rate   0 per year, then after  periods of length one

year, with annual compounding, we have

 = 0(1 + )  = 0 1 2  . (3.2)

If instead compounding (adding saving to the principal) occurs  times a

year, then after  periods of length 1 year and a growth rate of  per

such period,

 = 0(1 +



) (3.3)

With  still denoting time measured in years passed since date 0, we have

 =  periods. Substituting into (3.3) gives

() =  = 0(1 +



) = 0

∙
(1 +

1


)
¸

 where  ≡ 




We keep  and  fixed, but let  → ∞ Thus  → ∞ Then, in the limit

there is continuous compounding and it can be shown that

() = 0
 (3.4)

where  is a mathematical constant called the base of the natural logarithm

and defined as  ≡ lim→∞(1 + 1) ' 2.7182818285....
The formula (3.4) is the continuous-time analogue to the discrete time

formula (3.2) with annual compounding. A geometric growth factor is re-

placed by an exponential growth factor,  and this growth factor is valid

for any  in the time interval (− 1  2) for which the growth rate of  equals
the constant  (1 and  2 being some positive real numbers).

We can also view the formulas (3.2) and (3.4) as the solutions to a differ-

ence equation and a differential equation, respectively. Thus, (3.2) is the so-

lution to the linear difference equation +1 = (1+), given the initial value
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0 And (3.4) is the solution to the linear differential equation ̇() = ()

given the initial condition (0) = 0 Now consider a time-dependent growth

rate, () The corresponding differential equation is ̇() = ()() and it

has the solution

() = (0)
 
0
()  (3.5)

where the exponent,
R 
0
() , is the definite integral of the function ()

from 0 to  The result (3.5) is called the basic accumulation formula in

continuous time and the factor 
 
0
() is called the growth factor or the

accumulation factor.

3.1.2 Compound interest and discounting

Let () denote the short-term real interest rate in continuous time at time .

To clarify what is meant by this, consider a deposit of  () euro on a drawing

account in a bank at time . If the general price level in the economy at time

 is  () euro, the real value of the deposit is () =  () () at time 

By definition the real rate of return on the deposit in continuous time (with

continuous compounding) at time  is the (proportionate) instantaneous rate

at which the real value of the deposit expands per time unit when there is

no withdrawal from the account. Thus, if the instantaneous nominal interest

rate is () we have ̇ () () = () and so, by the fraction rule in continuous

time (cf. Appendix A),

() =
̇()

()
=

̇ ()

 ()
− ̇ ()

 ()
= ()− () (3.6)

where () ≡ ̇ () () is the instantaneous inflation rate. In contrast to the

corresponding formula in discrete time, this formula is exact. Sometimes ()

and () are referred to as the nominal and real interest intensity, respectively,

or the nominal and real force of interest.

Calculating the terminal value of the deposit at time 1  0 given its

value at time 0 and assuming no withdrawal in the time interval [0 1], the

accumulation formula (3.5) immediately yields

(1) = (0)
 1
0

()

When calculating present values in continuous time analysis, we use com-

pound discounting. We reverse the accumulation formula and go from the

compounded or terminal value to the present value (0). Similarly, given a

consumption plan, (())1=0, the present value of this plan as seen from time
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0 is

 =

Z 1

0

() − (3.7)

presupposing a constant interest rate. Instead of the geometric discount

factor, 1(1 + ) from discrete time analysis, we have here an exponential

discount factor, 1() = − and instead of a sum, an integral. When the
interest rate varies over time, (3.7) is replaced by

 =

Z 1

0

() 
−  

0
()



In (3.7) () is discounted by − ≈ (1 + )− for  “small”. This might
not seem analogue to the discrete-time discounting in (??) where it is −1
that is discounted by (1 + )− assuming a constant interest rate. When
taking into account the timing convention that payment for −1 in period
 − 1 occurs at the end of the period (= time ) there is no discrepancy,

however, since the continuous-time analogue to this payment is ().

3.2 The allowed range for parameter values

The allowed range for parameters may change when we go from discrete time

to continuous time with continuous compounding. For example, the usual

equation for aggregate capital accumulation in continuous time is

̇() = ()− () (0) = 0 given, (3.8)

where () is the capital stock, () is the gross investment at time  and

 ≥ 0 is the (physical) capital depreciation rate. Unlike in discrete time, here
  1 is conceptually allowed. Indeed, suppose for simplicity that () = 0

for all  ≥ 0; then (3.8) gives () = 0
−. This formula is meaningful for

any  ≥ 0 Usually, the time unit used in continuous time macro models is
one year (or, in business cycle theory, rather a quarter of a year) and then a

realistic value of  is of course  1 (say, between 0.05 and 0.10). However, if

the time unit applied to the model is large (think of a Diamond-style OLG

model), say 30 years, then   1 may fit better, empirically, if the model

is converted into continuous time with the same time unit. Suppose, for

example, that physical capital has a half-life of 10 years. With 30 years as

our time unit, inserting into the formula 12 = −3 gives  = (ln 2) · 3 ' 2
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good

is 1 and thus constant. More generally, if we let the relative price of the
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capital good in terms of the consumption good at time  be () and allow

̇() 6= 0 then we have to distinguish between the physical depreciation

of capital,  and the economic depreciation, that is, the loss in economic

value of a machine per time unit. The economic depreciation will be () =

() − ̇() namely the economic value of the physical wear and tear (and

technological obsolescence, say) minus the capital gain (positive or negative)

on the machine.

Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates

of return and discount rates in general.

3.3 Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make

a clear distinction between stocks (say wealth) and flows (say consumption

or saving). Recall, a stock variable is a variable measured as a quantity at a

given point in time. The variables () and () considered above are stock

variables. A flow variable is a variable measured as quantity per time unit

at a given point in time. The variables () ̇() and () are flow variables.

One can not add a stock and a flow, because they have different de-

nominations. What is meant by this? The elementary measurement units

in economics are quantity units (so many machines of a certain kind or so

many liters of oil or so many units of payment, for instance) and time units

(months, quarters, years). On the basis of these elementary units we can form

composite measurement units. Thus, the capital stock,  has the denomi-

nation “quantity of machines”, whereas investment,  has the denomination

“quantity of machines per time unit” or, shorter, “quantity/time”. A growth

rate or interest rate has the denomination “(quantity/time)/quantity” =

“time−1”. If we change our time unit, say from quarters to years, the value

of a flow variable as well as a growth rate is changed, in this case quadrupled

(presupposing annual compounding).

In continuous time analysis expressions like()+() or()+̇() are

thus illegitimate. But one can write (+∆) ≈ ()+(()−())∆ or

̇()∆ ≈ (()− ())∆ In the same way, suppose a bath tub at time 

contains 50 liters of water and that the tap pours 1
2
liter per second into the

tub for some time. Then a sum like 50  + 1
2
(/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount

would be 50  + 1
2
· 60 ((/sec)×sec) = 80 . In analogy, economic flow

variables in continuous time should be seen as intensities defined for every

 in the time interval considered, say the time interval [0,  ) or perhaps
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Figure 3.1: With ∆ “small” the integral of () from 0 to 0+∆ is ≈ the hatched
area.

[0, ∞). For example, when we say that () is “investment” at time ,

this is really a short-hand for “investment intensity” at time . The actual

investment in a time interval [0 0 +∆)  i.e., the invested amount during

this time interval, is the integral,
R 0+∆

0
() ≈ (0)∆ Similarly, the flow

of individual saving, () should be interpreted as the saving intensity at

time  The actual saving in a time interval [0 0 +∆)  i.e., the saved (or

accumulated) amount during this time interval, is the integral,
R 0+∆

0
()

If ∆ is “small”, this integral is approximately equal to the product (0) ·∆,

cf. the hatched area in Figure 3.1.

The notation commonly used in discrete time analysis blurs the distinc-

tion between stocks and flows. Expressions like +1 = + without further

comment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are

added. In fact, however, it is wealth at the beginning of period  and the

saved amount during period  that are added: +1 =  +  ·∆. The tacit

condition is that the period length, ∆ is the time unit, so that ∆ = 1.

But suppose that, for example in a business cycle model, the period length

is one quarter, but the time unit is one year. Then saving in quarter  is 
= (+1 − ) · 4 per year.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



3.4. The choice between discrete and continuous time formulation 65

3.4 The choice between discrete and contin-

uous time formulation

In empirical economics, data typically come in discrete time form and data

for flow variables typically refer to periods of constant length. One could

argue that this discrete form of the data speaks for discrete time rather than

continuous time modelling. And the fact that economic actors often think

and plan in period terms, may seem a good reason for putting at least mi-

croeconomic analysis in period terms. Nonetheless real time is continuous.

And, as for instance Allen (1967) argued, it can hardly be said that the

mass of economic actors think and plan with one and the same period. In

macroeconomics we consider the sum of the actions. In this perspective the

continuous time approach has the advantage of allowing variation within the

usually artificial periods in which the data are chopped up. And centralized

asset markets equilibrate very fast and respond immediately to new infor-

mation. For such markets a formulation in continuous time seems a better

approximation.

There is also a risk that a discrete time model may generate artificial

oscillations over time. Suppose the “true” model of some mechanism is given

by the differential equation

̇ =    −1 (3.9)

The solution is () = (0) which converges in a monotonic way toward 0

for →∞ However, the analyst takes a discrete time approach and sets up

the seemingly “corresponding” discrete time model

+1 −  = 

This yields the difference equation +1 = (1 + ), where 1 +   0 The

solution is  = (1 + )0  = 0 1 2     As (1 + ) is positive when  is

even and negative when  is odd, oscillations arise (together with divergence

if   −2) in spite of the “true” model generating monotonous convergence
towards the steady state ∗ = 0.
It should be added, however, that this potential problem can always be

avoided within discrete time models by choosing a sufficiently short period

length. Indeed, the solution to a differential equation can always be ob-

tained as the limit of the solution to a corresponding difference equation for

the period length approaching zero. In the case of (3.9) the approximating

difference equation is +1 = (1 + ∆) where ∆ is the period length,

 = ∆, and  = (∆) By choosing ∆ small enough, the solution comes
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arbitrarily close to the solution of (3.9). It is generally more difficult to go

in the opposite direction and find a differential equation that approximates

a given difference equation. But the problem is solved as soon as a differ-

ential equation has been found that has the initial difference equation as an

approximating difference equation.

From the point of view of the economic contents, the choice between

discrete time and continuous time may be a matter of taste. Yet, everything

else equal, the clearer distinction between stocks and flows in continuous

time than in discrete time speaks for the former. From the point of view

of mathematical convenience, the continuous time formulation, which has

worked so well in the natural sciences, is preferable. At least this is so in

the absence of uncertainty. For problems where uncertainty is important,

discrete time formulations are easier to work with unless one is familiar with

stochastic calculus.

3.5 Appendix A: Growth arithmetic in con-

tinuous time

Let the variables   and  be differentiable functions of time  Suppose

() () and () are positive for all  Then:

PRODUCT RULE () = ()()⇒ ̇()

()
=

̇()

()
+

̇()

()


Proof. Taking logs on both sides of the equation () = ()() gives ln ()

= ln() + ln (). Differentiation w.r.t. , using the chain rule, gives the

conclusion. ¤

The procedure applied in this proof is called logarithmic differentiation

w.r.t. 

FRACTION RULE () =
()

()
⇒ ̇()

()
=

̇()

()
− ̇()

()


The proof is similar.

POWER FUNCTION RULE () = () ⇒ ̇()

()
= 

̇()

()


The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time

the analogue formulas are only approximately true and the approximation

can be quite bad unless the growth rates of  and  are small.
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3.6 Appendix B: Solution formulas for linear

differential equations of first order

For a general differential equation of first order, ̇() = (() ) with

(0) = 0 and where  is a continuous function, we have, at least for 

in an interval (−+) for some   0

() = 0 +

Z 

0

(() ) (*)

To get a confirmation, calculate ̇() from (*).

For the special case of a linear differential equation of first order, ̇() +

()() = () we can specify the solution. Three sub-cases of rising com-

plexity are:

1. ̇() + () =  with  6= 0 and initial condition (0) = 0 Solution:

() = (0 − ∗)−(−0) + ∗ where ∗ =





If  = 0 we get, directly from (*), the solution () = 0 + 1

2. ̇() + () = () with initial condition (0) = 0  Solution:

() = 0
−(−0) + −(−0)

Z 

0

()(−0)

Special case: () =  with  6= − and initial condition (0) = 0 

Solution:

() = 0
−(−0)+−(−0)

Z 

0

(+)(−0) = (0−


+ 
)−(−0)+



+ 
(−0)

3. ̇() + ()() = () with initial condition (0) = 0  Solution:

() = 0
−  

0
()

+ 
−  

0
()

Z 

0

()
 
0
()



1Some non-linear differential equations can be transformed into this simple case. For

simplicity let 0 = 0 Consider the equation ̇() = ()  0  0 given,  6= 0  6= 1

(a Bernoulli equation). To find the solution for () let () ≡ ()1− Then, ̇()
= (1 − )()− ̇() = (1 − )()−() = (1 − ) The solution for this is ()

= 0 + (1 − ) where 0 = 
1−
0  Thereby the solution for () is () = ()1(1−)

=
³

1−
0 + (1− )

´1(1−)
 which is defined for   −1−0 ((1− )
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Special case: () = 0 Solution:

() = 0
−  

0
()



Even more special case: () = 0 and () =  a constant. Solution:

() = 0
−(−0)

Remark 1 For 0 = 0 most of the formulas will look simpler.

Remark 2 To check whether a suggested solution is a solution, calculate

the time derivative of the suggested solution and add an arbitrary constant.

By appropriate adjustment of the constant, the final result should be a repli-

cation of the original differential equation together with its initial condition.
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Chapter 4

Skill-biased technical change.

Balanced growth theorems

This chapter is both an alternative and a supplement to the pages 60-64

in Acemoglu, where the concepts of neutral technical change and balanced

growth, including Uzawa’s theorem, are discussed.

Since “neutral” technical change should be seen in relation to “biased”

technical change, Section 1 below introduces the concept of “biased” tech-

nical change. Also concerning biased technical change do three different

definitions, Hicks’, Harrod’s, and what the literature has dubbed “Solow’s”.

Below we concentrate on Hick’s definition − with an application to how tech-
nical change affects the evolution of the skill premium. So the focus is on the

production factors skilled and unskilled labor rather than capital and labor.

While regarding capital and labor it is Harrod’s classifications that are most

used in macroeconomics, regarding skilled and unskilled labor it is Hicks’.

The remaining sections discuss the concept of balanced growth and present

three fundamental propositions about balanced growth. In view of the gen-

erality of the propositions, they have a broad field of application. Our propo-

sitions 1 and 2 are slight extensions of part 1 and 2, respectively, of what

Acemoglu calls Uzawa’s Theorem I (Acemoglu, 2009, p. 60). Our Proposi-

tion 3 essentially corresponds to what Acemoglu calls Uzawa’s Theorem II

(Acemoglu, 2009, p. 63).

69



70

CHAPTER 4. SKILL-BIASED TECHNICAL CHANGE.

BALANCED GROWTH THEOREMS

4.1 The rising skill premium

4.1.1 Skill-biased technical change in the sense of Hicks:

An example

Let aggregate output be produced through a differentiable three-factor pro-

duction function ̃ :

 = ̃ (1 2 )

where is capital input, 1 is input of unskilled labor (also called blue-collar

labor below), and 2 is input of skilled labor. Suppose technological change

is such that the production function can be rewritten

̃ (1 2 ) =  ((1 2 )) (4.1)

where the “nested” function (1 2 ) represents input of a “human cap-

ital” aggregate. Let  be CRS-neoclassical w.r.t.  and  and let 

be CRS-neoclassical w.r.t. (1 2) Finally, let   0. So “technical

change” amounts to “technical progress”.

In equilibrium under perfect competition in the labor markets the relative

wage, often called the “skill premium”, will be

2

1
=

2

1
=

2

1
=

2(1 2 )

1(1 2 )
=

2(1 21 )

1(1 21 )
 (4.2)

where we have used Euler’s theorem (saying that if  is homogeneous of

degree one in its first two arguments, then the partial derivatives of  are

homogeneous of degree zero w.r.t. these arguments).

Time is continuous (nevertheless the time argument of a variable,  is in

this section written as a subscript ). Hicks’ definitions are now: If for all

21  0


³
2(121)

1(121)

´


2
1

constant
T 0 then technical change is⎧⎨⎩ skill-biased in the sense of Hicks,

skill-neutral in the sense of Hicks.

blue collar-biased in the sense of Hicks,

(4.3)

respectively.

In the US the skill premium (measured by the wage ratio for college

grads vis-a-vis high school grads) has had an upward trend since 1950 (see
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for instance Jones and Romer, 2010).1 If in the same period the relative

supply of skilled labor had been roughly constant, by (4.3) in combination

with (4.2), a possible explanation could be that technological change has

been skill-biased in the sense of Hicks. In reality, in the same period also the

relative supply of skilled labor has been rising (in fact even faster than the

skill premium). Since in spite of this the skill premium has risen, it suggests

that the extend of “skill-biasedness” has been even stronger.

Wemay alternatively put it this way. As the function is CRS-neoclassical

w.r.t. 1 and 2 we have 22  0 and 12  0 cf. Chapter 2. Hence, by

(4.2), a rising 21 without technical change would imply a declining skill

premium. That the opposite has happened must, within our simple model,

be due to (a) there has been technical change, and (b) technical change

has favoured skilled labor (which means that technical change has been skill-

biased in the sense of Hicks).

An additional aspect of the story is that skill-biasedness helps explain

the observed increase in the relative supply of skilled labor. If for a constant

relative supply of skilled labor, the skill premium is increasing, this increase

strengthens the incentive to go to college. Thereby the relative supply of

skilled labor (reflecting the fraction of skilled labor in the labor force) tends

to increase.

4.1.2 Capital-skill complementarity

An additional potential source of a rising skill premium is capital-skill com-

plementarity. Let the aggregate production function be

 = ̃ (1 2 ) =  (11 22) = (+11)
(22)

1− 0    1

where 1 and 2 are technical coefficients that may be rising over time.

In this production function capital and unskilled labor are perfectly substi-

tutable (the partial elasticity of factor substitution between them is +∞) On
the other hand there is direct complementarity between capital and skilled

labor, i.e., 2(2)  0

Under perfect competition the skill premium is

2

1
=

2

2
=
( +11)

(1− )(22)
−2

( +11)−11(22)1−
(4.4)

=
1− 



µ
 +11

22

¶
2

1


1On the other hand, over the years 1915 - 1950 the skill premium had a downward

trend (Jones and Romer, 2010).
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Here, if technical change is absent (1 and 2 constant), a rising capital

stock will, for fixed 1 and 2 raise the skill premium.

A more realistic scenario is, however, a situation with an approximately

constant real interest rate, cf. Kaldor’s stylized facts. We have, again by

perfect competition,




= ( +11)

−1(22)
1− = 

µ
 +11

22

¶−1
=  +  (4.5)

where  is the real interest rate at time  and  is the (constant) capital

depreciation rate. For  =  a constant, (4.5) gives

 +11

22
=

µ
 + 



¶− 1
1−
≡  (4.6)

a constant. In this case, (4.4) shows that capital-skill complementarity is

not sufficient for a rising skill premium. A rising skill premium requires that

technical change brings about a rising 21. So again an observed rising

skill premium, along with a more or less constant real interest rate, suggests

that technical change is skill-biased.

We may rewrite (4.6) as



22
= − 11

22


where the conjecture is that 11(22) → 0 for  → ∞ The analysis

suggests the following story. Skill-biased technical progress generates rising

productivity as well as a rising skill premium. The latter induces more and

more people to go to college. The rising level of education in the labor force

raises productivity further. This is a basis for further capital accumulation,

continuing to replace unskilled labor, and so on.

In particular since the early 1980s the skill premium has been sharply

increasing in the US (see Acemoglu, p. 498). This is also the period where

ICT technologies took off.

4.2 Balanced growth and constancy of key ra-

tios

The focus now shifts to homogeneous labor vis-a-vis capital.

We shall state general definitions of the concepts of “steady state” and

“balanced growth”, concepts that are related but not identical. With respect
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to “balanced growth” this implies a minor deviation from the way Acemoglu

briefly defines it informally on his page 57. The main purpose of the present

chapter is to lay bare the connections between these two concepts as well

as their relation to the hypothesis of Harrod-neutral technical progress and

Kaldor’s stylized facts.

4.2.1 The concepts of steady state and balanced growth

A basic equation in many one-sector growth models for a closed economy in

continuous time is

̇ =  −  =  −  −  ≡  −  (4.7)

where  is aggregate capital,  aggregate gross investment,  aggregate

output,  aggregate consumption,  aggregate gross saving (≡  −), and

 ≥ 0 is a constant physical capital depreciation rate.
Usually, in the theoretical literature on dynamic models, a steady state is

defined in the following way:

Definition 3 A steady state of a dynamic model is a stationary solution to

the fundamental differential equation(s) of the model.

Or briefly: a steady state is a stationary point of a dynamic process.

Let us take the Solow growth model as an example. Here gross saving

equals  where  is a constant, 0    1 Aggregate output is given by a

neoclassical production function,  with CRS and Harrod-neutral technical

progress:  =  () =  (̃ 1) ≡ (̃) where  is the labor

force,  is the level of technology, and ̃ ≡ () is the (effective) capital

intensity. Moreover,  0  0 and  00  0 Solow assumes () = (0) and

() = (0), where  and  ≥ 0 are the constant growth rates of the labor
force and technology, respectively. By log-differentiating ̃ w.r.t. 2 we end

up with the fundamental differential equation (“law of motion”) of the Solow

model: ·
̃ = (̃)− ( +  + )̃ (4.8)

Thus, in the Solow model, a (non-trivial) steady state is a ̃∗  0 such that,

if ̃ = ̃∗ then
·
̃ = 0 In passing we note that, by (4.8), such a ̃∗ must

satisfy the equation (̃∗)̃∗ = ( +  + ) and in view of  00  0 it is

unique and globally asymptotically stable if it exists. A sufficient condition

2Or by directly using the fraction rule, see Appendix A to Chapter 3.
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for its existence is that  +  +   0 and  satisfies the Inada conditions

lim̃→0 
0(̃) =∞ and lim̃→∞  0(̃) = 0

The most common definition in the literature of balanced growth for an

aggregate economy is the following:

Definition 4 A balanced growth path is a path ()∞=0 along which the
quantities  and  are positive and grow at constant rates (not necessarily

positive and not necessarily the same).

Acemoglu, however, defines (Acemoglu, 2009, p. 57) balanced growth

in the following way: “balanced growth refers to an allocation where output

grows at a constant rate and capital-output ratio, the interest rate, and factor

shares remain constant”. My problem with this definition is that it mixes

growth of aggregate quantities with income distribution aspects (interest rate

and factor income shares). And it is not made clear what is meant by the

output-capital ratio if the relative price of capital goods is changing over

time. So I stick to the definition above which is quite standard and is known

to function well in many different contexts.

Note that in the Solow model (as well as in many other models) we have

that if the economy is in a steady state, ̃ = ̃∗ then the economy features
balanced growth. Indeed, a steady state of the Solow model implies by

definition that ̃ ≡ () is constant. Hence  must grow at the same

constant rate as  namely  +  In addition,  = (̃∗) in a steady
state, showing that also  must grow at the constant rate  +  And so

must then  = (1 − ) So in a steady state of the Solow model the path

followed by ()∞=0 is a balanced growth path.
As we shall see in the next section, in the Solow model (and many other

models) the reverse also holds: if the economy features balanced growth,

then it is in a steady state. But this equivalence between steady state and

balanced growth does not hold in all models.

4.2.2 A general result about balanced growth

An interesting fact is that, given the dynamic resource constraint (4.7), we

have always that if there is balanced growth with positive gross saving, then

the ratios  and  are constant (by “always” is meant: independently

of how saving is determined and how the labor force and technology evolve).

And also the other way round: as long as gross saving is positive, constancy of

the  and  ratios is enough to ensure balanced growth. So balanced

growth and constancy of certain key ratios are essentially equivalent.

This is a very practical general observation. And since Acemoglu does not

state any balanced growth theorem at this general level, we shall do it here,
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together with a proof. Letting  denote the growth rate of the (positively

valued) variable  i.e.,  ≡ ̇ we claim:

Proposition 1 (the balanced growth equivalence theorem). Let ()∞=0
be a path along which ,  and  ≡  −  are positive for all  ≥ 0
Then, given the accumulation equation (4.7), the following holds:

(i) if there is balanced growth, then  =  =   and the ratios 

and  are constant;

(ii) if  and  are constant, then  and  grow at the same

constant rate, i.e., not only is there balanced growth, but the growth

rates of  and  are the same.

Proof Consider a path ()∞=0 along which ,  and  ≡  − 

are positive for all  ≥ 0 (i) Assume there is balanced growth. Then, by

definition,     and  are constant. Hence, by (4.7), we have that  =

 +  is constant, implying

 =   (*)

Further, since  =  + 

 =
̇


=

̇


+

̇


= 




+ 




= 




+ 




(by (*))

= 



+ 

 − 


=




( − ) +   (**)

Now, let us provisionally assume that  6=   Then (**) gives




=

 − 

 − 
 (***)

which is a constant since    and  are constant. Constancy of 

requires that  =   hence, by (***),  = 1 i.e.,  =  In view

of  =  + , however, this outcome contradicts the given condition that

  0 Hence, our provisional assumption and its implication, (***), are

falsified. Instead we have  = . By (**), this implies  =  =   but

now without the condition  = 1 being implied. It follows that  and

 are constant.

(ii) Suppose  and  are constant. Then  =  = , so that

 is a constant. We now show that this implies that  is constant.

Indeed, from (4.7),  = 1− so that also  is constant. It follows

that  =  =   so that  is constant. By (4.7),




=

̇ + 


=  + 
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so that  is constant. This, together with constancy of  and 

implies that also  and  are constant. ¤

Remark. It is part (i) of the proposition which requires the assumption   0

for all  ≥ 0 If  = 0 we would have  = − and  ≡  −  =  hence

 =  for all  ≥ 0 Then there would be balanced growth if the common
value of  and  had a constant growth rate. This growth rate, however,

could easily differ from that of Suppose  = 1−  =  and  = 

( and  constants). Then we would have  =  = −+(1−) which
could easily be strictly positive and thereby different from  = − ≤ 0 so
that (i) no longer holds. ¤

The nice feature is that this proposition holds for any model for which

the simple dynamic resource constraint (4.7) is valid. No assumptions about

for example CRS and other technology aspects or about market form are

involved. Note also that Proposition 1 suggests a link from balanced growth

to steady state. And such a link is present in for instance the Solow model.

Indeed, by (i) of Proposition 1, balanced growth implies constancy of 

which in the Solow model implies that (̃)̃ is constant. In turn, the latter

is only possible if ̃ is constant, that is, if the economy is in steady state.

There exist cases, however, where this equivalence does not hold (some

open economy models and some models with embodied technological change,

see Groth et al., 2010). Therefore, it is recommendable always to maintain

a distinction between the terms steady state and balanced growth.

4.3 The crucial role of Harrod-neutrality

Proposition 1 suggests that if one accepts Kaldor’s stylized facts (see Chapter

1) as a characterization of the past century’s growth experience, and if one

wants a model consistent with them, one should construct the model such

that it can generate balanced growth. For a model to be capable of generating

balanced growth, however, technological progress must be of the Harrod-

neutral type (i.e., be labor-augmenting), at least in a neighborhood of the

balanced growth path. For a fairly general context (but of course not as

general as that of Proposition 1), this was shown already by Uzawa (1961).

We now present a modernized version of Uzawa’s contribution.

Let the aggregate production function be

 () = ̃ (() () )   0 (4.9)

where  is a constant that depends on measurement units. The only tech-

nology assumption needed is that ̃ has CRS w.r.t. the first two arguments
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(̃ need not be neoclassical for example). As a representation of technical

progress, we assume ̃  0 for all  ≥ 0 (i.e., as time proceeds, un-

changed inputs result in more and more output). We also assume that the

labor force evolves according to

() = (0) (4.10)

where  is a constant. Further, non-consumed output is invested and so (4.7)

is the dynamic resource constraint of the economy.

Proposition 2 (Uzawa’s balanced growth theorem) Let  = ( () () ())∞=0,
where 0  ()   () for all  ≥ 0 be a path satisfying the capital accumu-
lation equation (4.7), given the CRS-production function (4.9) and the labor

force path in (4.10). Then:

(i) a necessary condition for this path to be a balanced growth path is that

along the path it holds that

 () = ̃ (() () ) = ̃ (() ()() 0) (4.11)

where () =  with  ≡  − ;

(ii) for any   0 such that there is a    +  +  with the property that

the production function ̃ in (4.9) allows an output-capital ratio equal

to  at  = 0 (i.e., ̃ (1 ̃−1 0) =  for some real number ̃  0), a

sufficient condition for ̃ to be compatible with a balanced growth path

with output-capital ratio , is that ̃ can be written as in (4.11) with

() = .

Proof (i)3 Suppose the path ( ()() ())∞=0 is a balanced growth path.
By definition,  and  are then constant, so that () = (0) and

 () =  (0)  We then have

 ()−  =  (0) = ̃ ((0) (0) 0) = ̃ (()− ()− 0) (*)

where we have used (4.9) with  = 0 In view of the precondition that ()

≡  ()−()  0 we know from (i) of Proposition 1, that  is constant

so that  =  . By CRS, (*) then implies

 () = ̃ (() − () − 0) = ̃ (() ( −)() 0)

3This part draws upon Schlicht (2006), who generalized a proof in Wan (1971, p. 59)

for the special case of a constant saving rate.
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We see that (4.11) holds for () =  with  ≡  − 

(ii) Suppose (4.11) holds with () =  Let  ≥ 0 be given such that
there is a    + +   0 with the property that

̃ (1 ̃−1 0) =  (**)

for some constant ̃  0 Our strategy is to prove the claim in (ii) by con-

struction of a path  = ( ()() ())∞=0 which satisfies it. We let  be

such that the saving-income ratio is a constant  ≡ (++) ∈ (0 1), i.e.,
 ()−() ≡ () =  () for all  ≥ 0 Inserting this, together with  () =
(̃())()(), where (̃()) ≡ ̃ (̃() 1 0) and ̃() ≡ ()(()())

into (4.7), rearranging gives the Solow equation (4.8). Hence ̃() is con-

stant if and only if ̃() satisfies the equation (̃())̃() = ( +  + )

≡  By (**) and the definition of  the required value of ̃() is ̃ which

is consequently the unique steady state for the constructed Solow equa-

tion. Letting (0) satisfy (0) = ̃(0) where  = (0) we thus have

̃(0) = (0)((0)(0)) = ̃ So that the initial value of ̃() equals the

steady state value. It follows that ̃() = ̃ for all  ≥ 0 and so  ()()
= (̃())̃() = (̃)̃ =  for all  ≥ 0 In addition, () = (1− ) ()

so that () () is constant along the path  As both  and  are

thus constant along the path  by (ii) of Proposition 1 follows that  is a

balanced growth path, as was to be proved. ¤

The form (4.11) indicates that along a balanced growth path, technical

progress must be purely “labor augmenting”, that is, Harrod-neutral. It is in

this case convenient to define a new CRS function, by  (() ()())

≡ ̃ (() ()() 0) Then (i) of the proposition implies that at least along

the balanced growth path, we can rewrite the production function this way:

 () = ̃ (() (0)() ) =  (() ()()) (4.12)

where (0) =  and () = (0) with  ≡  − 

It is important to recognize that the occurrence of Harrod-neutrality says

nothing about what the source of technological progress is. Harrod-neutrality

should not be interpreted as indicating that the technological progress em-

anates specifically from the labor input. Harrod-neutrality only means that

technical innovations predominantly are such that not only do labor and cap-

ital in combination become more productive, but this happens to manifest

itself at the aggregate level in the form (4.12).4

4For a CRS Cobb-Douglas production function with technological progress, Harrod-

neutrality is present whenever the output elasticity w.r.t capital (often denoted ) is

constant over time.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



4.3. The crucial role of Harrod-neutrality 79

What is the intuition behind the Uzawa result that for balanced growth to

be possible, technical progress must have the purely labor-augmenting form?

First, notice that there is an asymmetry between capital and labor. Capital

is an accumulated amount of non-consumed output. In contrast, in simple

macro models labor is a non-produced production factor which (at least in

the context of (4.10)) grows in an exogenous way. Second, because of CRS,

the original formulation, (4.9), of the production function implies that

1 = ̃ (
()

 ()

()

 ()
 ) (4.13)

Now, since capital is accumulated non-consumed output, it tends to inherit

the trend in output such that () () must be constant along a balanced

growth path (this is what Proposition 1 is about). Labor does not inherit the

trend in output; indeed, the ratio () () is free to adjust as time proceeds.

When there is technical progress (̃  0) along a balanced growth path,

this progress must manifest itself in the form of a changing () () in (13.5)

as  proceeds, precisely because () () must be constant along the path.

In the “normal” case where ̃  0 the needed change in () () is a

fall (i.e., a rise in  ()()) This is what (13.5) shows. Indeed, the fall in

() () must exactly offset the effect on ̃ of the rising  when there is a

fixed capital-output ratio.5 It follows that along the balanced growth path,

 ()() is an increasing implicit function of  If we denote this function

() we end up with (4.12) with specified properties (given by  and ).

The generality of Uzawa’s theorem is noteworthy. The theorem assumes

CRS, but does not presuppose that the technology is neoclassical, not to

speak of satisfying the Inada conditions.6 And the theorem holds for exoge-

nous as well as endogenous technological progress. It is also worth mentioning

that the proof of the sufficiency part of the theorem is constructive. It pro-

vides a method to construct a hypothetical balanced growth path (BGP from

now).7

A simple implication of the Uzawa theorem is the following. Interpreting

the () in (4.11) as the “level of technology”, we have:

COROLLARY Along a BGP with positive gross saving and the technology

level, () growing at the rate  ≥ 0 output grows at the rate  +  while

labor productivity,  ≡  and consumption per unit of labor,  ≡ 

grow at the rate 

5This way of presenting the intuition behind the Uzawa result draws upon Jones and

Scrimgeour (2008).
6Many accounts of the Uzawa theorem, including Jones and Scrimgeour (2008), presume

a neoclassical production function, but the theorem is much more general.
7Part (ii) of Proposition 2 is left out in Acemoglu’s book.
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Proof That  =  +  follows from (i) of Proposition 2. As to the growth

rate of labor productivity we have

 =
 (0) 

(0)
= (0)( −) = (0)

Finally, by Proposition 1, along a BGP with   0  ≡  must grow at

the same rate as  ¤
We shall now consider the implication of Harrod-neutrality for the income

shares of capital and labor when the technology is neoclassical and markets

are perfectly competitive.

4.4 Harrod-neutrality and the functional in-

come distribution

There is one facet of Kaldor’s stylized facts we have so far not related to

Harrod-neutral technical progress, namely the long-run “approximate” con-

stancy of both the income share of labor,  and the rate of return to

capital. At least with neoclassical technology, profit maximizing firms, and

perfect competition in the output and factor markets, these properties are

inherent in the combination of constant returns to scale, balanced growth,

and the assumption that the relative price of capital goods (relative to con-

sumption goods) is constant over time. The latter condition holds in models

where the capital good is nothing but non-consumed output, cf. (4.7).8

To see this, we start out from a neoclassical CRS production function

with Harrod-neutral technological progress,

 () =  (() ()()) (4.14)

With () denoting the real wage at time  in equilibrium under perfect

competition the labor income share will be

()()

 ()
=

 ()

()
()

 ()
=

2(() ()())()()

 ()
 (4.15)

In this simple model, without natural resources, (gross) capital income equals

non-labor income,  () − ()() Hence, if () denotes the (net) rate of

return to capital at time , then

() =
 ()− ()()− ()

()
 (4.16)

8The reader may think of the “corn economy” example in Acemoglu, p. 28.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



4.4. Harrod-neutrality and the functional income distribution 81

Denoting the (gross) capital income share by () we can write this ()

(in equilibrium) in three ways:

() ≡  ()− ()()

 ()
=
(() + )()

 ()


() =
 (() ()())− 2(() ()())()()

 ()
=

1(() ()())()

 ()


() =

 ()

()
()

 ()
 (4.17)

where the first row comes from (4.16), the second from (4.14) and (4.15), the

third from the second together with Euler’s theorem.9 Comparing the first

and the last row, we see that in equilibrium

 ()

()
= () + 

In this condition we recognize one of the first-order conditions in the rep-

resentative firm’s profit maximization problem under perfect competition,

since () +  can be seen as the firm’s required gross rate of return.10

In the absence of uncertainty, the equilibrium real interest rate in the

bond market must equal the rate of return on capital, () And () +  can

then be seen as the firm’s cost of disposal over capital per unit of capital per

time unit, consisting of interest cost plus capital depreciation.

Proposition 3 (factor income shares and rate of return under balanced

growth) Let the path (()  () ())∞=0 be a BGP in a competitive economy
with the production function (4.14) and with positive saving. Then, along the

BGP, the () in (4.17) is a constant,  ∈ (0 1). The labor income share
will be 1− and the (net) rate of return on capital will be  = −  where

 is the constant output-capital ratio along the BGP.

Proof By CRS we have  () =  (() ()()) = ()() (̃() 1)

≡ ()()(̃()) In view of part (i) of Proposition 2, by balanced growth,

 ()() is some constant, . Since  ()() = (̃())̃() and  00  0
this implies ̃() constant, say equal to ̃∗ But  ()() =  0(̃()) which

9From Euler’s theorem, 1 + 2 =  () when  is homogeneous of degree

one
10With natural resources, say land, entering the set of production factors, the formula,

(4.16), for the rate of return to capital should be modified by subtracting land rents from

the numerator.
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then equals the constant  0(̃∗) along the BGP. It then follows from (4.17)

that () =  0(̃∗) ≡  Moreover, 0    1 where 0   follows from

 0  0 and   1 from the fact that  =  = (̃∗)̃∗   0(̃∗) in view
of  00  0 and (0) ≥ 0 Then, by the first equality in (4.17), ()() ()
= 1− () = 1− . Finally, by (4.16), the (net) rate of return on capital is

 = (1− ()() ()) ()()−  =  −  ¤

This proposition is of interest by displaying a link from balanced growth

to constancy of factor income shares and the rate of return, that is, some

of the “stylized facts” claimed by Kaldor. Note, however, that although the

proposition implies constancy of the income shares and the rate of return,

it does not determine them, except in terms of  and  But both  and,

generally,  are endogenous and depend on ̃∗11 which will generally be
unknown as long as we have not specified a theory of saving. This takes us

to theories of aggregate saving, for example the simple Ramsey model, cf.

Chapter 8 in Acemoglu’s book.

4.5 What if technological change is embod-

ied?

In our presentation of technological progress above we have implicitly as-

sumed that all technological change is disembodied. And the way the propo-

sitions 1, 2, and 3, are formulated assume this.

As noted in Chapter 2, disembodied technological change occurs when new

technical knowledge advances the combined productivity of capital and labor

independently of whether the workers operate old or new machines. Consider

again the aggregate dynamic resource constraint (4.7) and the production

function (4.9):

̇() = ()− () (4.18)

 () = ̃ (() () ) ̃   0 (4.19)

Here  ()−() is aggregate gross investment, () For a given level of ()
the resulting amount of new capital goods per time unit (̇()+()), mea-

sured in efficiency units, is independent of when this investment occurs. It is

thereby not affected by technological progress. Similarly, the interpretation

of ̃  0 in (4.19) is that the higher technology level obtained as time

proceeds results in higher productivity of all capital and labor. Thus also

11As to  there is of course a trivial exception, namely the case where the production

function is Cobb-Douglas and  therefore is a given parameter.
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firms that have only old capital equipment benefit from recent advances in

technical knowledge. No new investment is needed to take advantage of the

recent technological and organizational developments.12

In contrast, we say that technological change is embodied, if taking ad-

vantage of new technical knowledge requires construction of new investment

goods. The newest technology is incorporated in the design of newly pro-

duced equipment; and this equipment will not participate in subsequent

technological progress. Whatever the source of new technical knowledge,

investment becomes an important bearer of the productivity increases which

this new knowledge makes possible. Without new investment, the potential

productivity increases remain potential instead of being realized.

As also noted in Chapter 2, we may represent embodied technological

progress by writing capital accumulation in the following way,

̇() = ()()− () (4.20)

where () is gross investment at time  and () measures the “quality”

(productivity) of newly produced investment goods. The increasing level of

technology implies increasing () so that a given level of investment gives

rise to a greater and greater additions to the capital stock,  measured

in efficiency units. As in our aggregate framework,  capital goods can be

produced at the same minimum cost as one consumption good, we have · =
1 where  is the equilibrium price of capital goods in terms of consumption

goods. So embodied technological progress is likely to result in a steady

decline in the relative price of capital equipment, a prediction confirmed by

the data (see, e.g., Greenwood et al., 1997).

This raises the question how the propositions 1, 2, and 3 fare in the case

of embodied technological progress. The answer is that a generalized version

of Proposition 1 goes through. Essentially, we only need to replace (4.7) by

(13.13) and interpret  in Proposition 1 as the value of the capital stock,

i.e., we have to replace  by ̃ = 

But the concept of Harrod-neutrality no longer fits the situation with-

out further elaboration. Hence to obtain analogies to Proposition 2 and

Proposition 3 is a more complicated matter. Suffice it to say that with em-

bodied technological progress, the class of production functions that are con-

sistent with balanced growth is smaller than with disembodied technological

progress.

12In the standard versions of the Solow model and the Ramsey model it is assumed that

all technological progress has this form - for no other reason than that this is by far the

simplest case to analyze.
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4.6 Concluding remarks

In the Solow model as well as in many other models with disembodied techno-

logical progress, a steady state and a balanced growth path imply each other.

Indeed, they are in that model, as well as many others, two sides of the same

process. There exist exceptions, however, that is, cases where steady state

and a balanced growth are not equivalent (some open economy models and

some models with embodied technical change). So the two concepts should

be held apart.13

Note that the definition of balanced growth refers to aggregate variables.

At the same time as there is balanced growth at the aggregate level, structural

change may occur. That is, a changing sectorial composition of the economy

is under certain conditions compatible with balanced growth (in a generalized

sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,

2001, and Acemoglu, 2009, Chapter 20).

In view of the key importance of Harrod-neutrality, a natural question is:

has growth theory uncovered any endogenous tendency for technical progress

to converge to Harrod-neutrality? Fortunately, in his Chapter 15 Acemoglu

outlines a theory about a mechanism entailing such a tendency, the theory of

“directed technical change”. Jones (2005) suggests an alternative mechanism.
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Chapter 5

Growth accounting and the
concept of TFP: Some
limitations

5.1 Introduction

This chapter addresses the concepts of Total Factor Productivity, TFP, and
TFP growth.1 We underline the distinction between descriptive accounting
and causal analysis. The chapter ends up with a warning regarding careless
use of the concept of TFP growth in cross-country comparisons − and a
suggested alternative approach.
For convenience, we treat time as continuous (although the timing of the

variables is indicated merely by a subscript).

5.2 TFP growth and TFP level

Let Yt denote aggregate output, in the sense of value added in fixed prices,
at time t in a sector or the economy as a whole. Suppose Yt is determined
via the function

Yt = F (Kt, Ht, t), (5.1)

where Kt is an index of the physical capital input and Ht an index of quality-
adjusted labor input. Natural resources (land, oil wells, coal in the ground,
etc.) constitute a third primary production factor. The role of this factor is
in growth accounting often subsumed under K.

1I thank Niklas Brønager for useful discussions.
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The “quality-adjustment”of the input of labor (man-hours per year) aims
at taking different levels of education and work experience into account. The
heterogeneity of both types of input, and of output as well, implies huge
measurement and conceptual diffi culties. Here we ignore these problems. The
third argument in (5.1) is time, t, indicating that the production function
F (· , · , t) is time-dependent. This is to open up for “shifts in the production
function”, due to new technology. We assume F is a neoclassical production
function. When the partial derivative of F w.r.t. the third argument is
positive, i.e., ∂F/∂t > 0, technical change amounts to technical progress.2

To simplify, we shall here address TFP and TFP growth without taking
the heterogeneity of the labor input into account. So we just count delivered
work hours per time unit. Then (5.1) is reduced to the simpler case,

Yt = F (Kt, Lt, t), (5.2)

where Lt is the number of man-hours per year. As to measurement of
Kt, some adaptation of the perpetual inventory method3 is typically used,
with some correction for under-estimated quality improvements of invest-
ment goods in national income accounting. Similarly, the output measure is
(or at least should be) corrected for under-estimated quality improvements
of consumption goods.
The notion of Total Factor Productivity at time t, TFPt, is intended

to indicate the level of productivity of the joint input (Kt, Lt). Generally,
productivity of a given input is defined as the output per time unit divided by
this input per time unit. So, considering (5.2), (average) labor productivity
is simply Yt/Lt. The concept of Total Factor Productivity is more complex,
however, because it does not refer to a single input, but to a combination of
several distinct inputs, in the present case two. And these distinct inputs may
over time change their quantitative interrelationship, here the ratio Kt/Lt.
It is then not obvious what can be meant by the “productivity”of the vector
(Kt, Lt).
It is common in the literature to circumvent the problem of a direct

definition of the PTF level and instead go straight away to a decomposition
of output growth and on this basis define TFP growth. This is the approach
we also follow here.

2Sometimes in growth accounting the left-hand side variable, Y, in (5.2) is the gross
product rather than value added. Then non-durable intermediate inputs should be taken
into account as a third production factor and enter as an additional argument of F̃ in
(5.2). Since non-market production is diffi cult to measure, the government sector is of-
ten excluded from Y in (5.2). An alternative name in the literature for “total factor
productivity”is “multifactor productivity”, abbreviated MFP.

3Cf. Section 2.2 in Chapter 2.
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5.2.1 TFP growth

Let the growth rate of a variable Z at time t be written gZt (could also be
written with a comma, as gZ,t, but to save notation, we skip the comma
unless needed for clarity). Take the total derivative w.r.t. t in (5.2) to get

Ẏt = FK(Kt, Lt, t)K̇t + FL(Kt, Lt, t)L̇t + Ft(Kt, Lt, t) · 1.

Dividing through by Yt gives

gY t ≡
Ẏt
Yt

=
1

Yt

[
FK(Kt, Lt, t)K̇t + FL(Kt, Lt, t)L̇t + Ft(Kt, Lt, t) · 1

]
=

KtFK(Kt, Lt, t)

Yt
gKt +

LtFL(Kt, Lt, t)

Yt
gLt +

Ft(Kt, Lt, t)

Yt

≡ εKtgKt + εLtgLt +
Ft(Kt, Lt, t)

Yt
, (5.3)

where εKt and εLt are shorthands for εK(Kt, Lt, t) ≡ KtFK(Kt,Lt,t)
F (Kt,Lt,t)

and εL(Kt, Lt, t)

≡ LtFL(Kt,Lt,t)
F (Kt,Lt,t)

, respectively, that is, the partial output elasticities w.r.t. the
two production factors, evaluated at the factor combination (Kt, Lt) at time
t. Finally, Ft(Kt, Lt, t) ≡ ∂F/∂t, that is, the partial derivative w.r.t. the
third argument of the function F , evaluated at the point (Kt, Lt, t).
The equation (5.3) is the basic growth-accounting relation, showing how

the output growth rate can be decomposed into the “contribution” from
growth in each of the inputs and a residual, Ft(Kt, Lt, t)/Yt, which is not
directly measurable. The equation was introduced already by Solow (1957),
and the residual became known as the Solow residual. We have:

Solow residual ≡ gY t − (εKtgKt + εLtgLt) =
Ft(Kt, Lt, t)

Yt
, (5.4)

The Solow residual thus indicates what is left when from the output growth
rate is subtracted the contribution from growth in the factor inputs weighted
by the output elasticities w.r.t. these inputs. In brief:

The Solow residual at time t reveals that part of time-t output
growth which is not attributable to time-t growth in the factor
inputs.

How can the Solow residual be calculated on the basis of empirical data?
The output elasticities w.r.t. capital and labor, εKt and εLt, will, under
perfect competition and absence of externalities in equilibrium equal the
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income shares of capital and labor, respectively. Time series for these income
shares and for Y , K, and L, hence also for gY t, gKt, and gLt, can be obtained
(directly or with some adaptation) from national income accounts. This
allows an indirect measurement of the residual in (5.4). Of course, data are
in discrete time. So to make the calculations in practice, we have to translate
(5.4) into discrete time. The weights εKt and εLt can then be quantified as
two-years moving averages of the output elasticities w.r.t. capital and labor,
respectively, and thus approximated by the respective factor income shares.4

It is not uncommon to identify the TFP growth rate with the Solow
residual. This is unfortunate since, being a residual, the calculated Solow
residual may reflect the contribution of many things. Some of these are what
we want to measure, like effects of current technical innovation in a broad
sense including organizational improvement. But, as Solow himself was quick
to point out, the calculated Solow residual may also reflect the influence of
other factors like absence of perfect competition, varying capacity utilization,
labor hoarding during downturns, measurement errors, and aggregation bias.
Nevertheless, let us assume we have been able to control for these other

factors by extraction of the business cycle elements in the data.5 So we are
ready to replace “Solow residual”in (5.4) with TFP growth rate and write

gTFPt = gY t − (εKtgKt + εLtgLt) =
Ft(Kt, Lt, t)

Yt
. (5.5)

Interpretation:

The TFP growth rate at time t reveals the contribution to time-
t output growth from time-t technical change (in a broad sense
including learning by doing and organizational improvement).

Let yt denote output per unit of labor, i.e., Yt ≡ ytLt, and let kt denote
capital per unit of labor, i.e., Kt ≡ ktLt. Then, gY t = gyt + gLt and gKt
= gkt + gLt. Under constant returns to scale (CRS), we have εLt = 1 − εKt.
Hence, under CRS, (5.5) can be written

gTFPt = gyt + gLt − (εKt(gkt + gLt) + (1− εKt)gLt)
= gyt − εKtgkt. (5.6)

Under CRS, the TFP growth rate at time t thus reveals, under CRS, that
part of time-t labor productivity growth which is not attributable to time-t
growth in the capital-labor ratio. Interpretation:

4See, e.g., Acemoglu (2009, p. 79).
5Solow (1957) adjusted his capital data by assuming that idle capital as a fraction of

total capital was the same as the rate of unemployment.
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Under CRS, the TFP growth rate at time t reveals the contri-
bution to time-t labor productivity growth from time-t technical
change (in a broad sense including learning by doing and organi-
zational improvement).

So far we have only addressed the instantaneous Solow residual and the
instantaneous TFP growth rate. To get measures of interest for growth
analysis, one needs to consider these things over long time intervals, prefer-
ably more than a decade. We come back to this aspect at the end of the next
sub-section.

5.2.2 The TFP level

Let us see what can be said about the level of TFP, that “something” for
which we have calculated a growth rate without having defined what it ac-
tually is.6

Suppose we know the instantaneous growth rate, g(t), of a variable, x(t),
over the time interval [0, T ] , i.e.,

dx(t)/dt

x(t)
= g(t) for t ∈ [0, T ] . (5.7)

This makes up a simple linear differential equation in x, usually written in
the form dx(t)/dt = g(t)x(t). For a given initial value, x(0), the solution is

x(t) = x(0)e
∫ t
0 g(τ)dτ . (5.8)

This formula applies to TFP as well. Suppose we for all t in the interval
[0, T ] have calculated the growth rate of TFP. Then, in (5.7) we can replace
x(t) by TFPt and g(t) by gTFPt . Applying the solution formula (5.8), we get

TFPt = TFP0e
∫ t
0 gTFPτdτ . (5.9)

For a given initial value TFP0 > 0, the level of TFP at any time t within
the given time interval [0, T ] is determined by the right-hand side of (5.9).
Considering discrete time and interpreting gTFPτ as one-period growth rates,
we similarly have

TFPt = TFP0(1 + gTFP0)(1 + gTFP1) . . . (1 + gTFPt−1). (5.10)

These two formulas at least give us an overall growth factor for TFP from
time 0 to time t:

6It happens that authors make no clear terminological distinction between TFP level
and TFP growth, denoting both just “TFP”. That is bound to cause confusion.
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The TFP level at time t relative to that at time 0 reveals the
cumulative “direct contribution” to output growth since time 0
from technical change since time 0.

Why do we say “direct contribution”? The reason is that the cumulative
technical change since time 0 may also have an indirect effect on output
growth, namely via affecting the output elasticities w.r.t. capital and labor,
εKt and εLt. Through this channel cumulative technical change affects the
weights attached to the growth of inputs before the residual is obtained.
This possible indirect effect over time of technical change is not included in
the concept of TFP growth.
Anyway, suppose we are interested in the average annual TFP growth

rate calculated on data for, say, T years. Then we may normalize TFP0 to
equal 1 and on the basis of (5.10) calculate TFPt. Next, we look for a ḡTFP
satisfying the equation

TFPt = 1 · (1 + ḡTFP)T .

The solution for ḡTFP is

ḡTFP = antilog
(

logTFPT
T

)
− 1.

This is the annual compound TFP growth rate from year 0 to year T, using
discrete compounding. If we want the annual compound TFP growth rate
from year 0 to year T, using continuous compounding, we consider (5.9) with
t = T , and solve the equation

TFPT = 1 · eĝTFP ·T ,

which gives

ĝTFP =
logTFPT

T
.

Because continuous compounding is more powerful, for a given terminal value
of TFP, we will get ĝTFP < ḡTFP (whenever ḡTFP 6= 0), but the difference will
be negligible (since log(1 + x) / x for x “small”, where “/”means “close
to”, but “less than”unless x = 0).
Jones and Vollrath (2013, p. 47) present growth accounting results for the

US 1948-2010, exposing, among other things, the “productivity slowdown”
that occurred after 1973. Growth accounting results for Denmark and other
countries, 1981-2006, are reported in De økonomiske Råd (2010).
Before proceeding, we note that some analysts take a quick approach

to growth accounting and assume beforehand that the output elasticities
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εKt and εLt are constant over time apart from small random disturbances.
This could be because the economy is assumed to be in steady state or
the aggregate production is assumed to be Cobb-Douglas, usually with the
addition of CRS. In the latter case, yt = Btk

α
t , 0 < α < 1, and (5.6) gives

gTFPt = gyt − αgkt = gBt. Then, under balanced growth with gyt = gkt = g,
we have

gTFPt = (1− α)g for all t. (5.11)

Besides exposing a simple way of measuring TFP growth (under certain
conditions), this formula may serve as a prelude to the following reminder
about how not to interpret growth accounting.

5.2.3 Accounting versus causality

Sometimes people interpret growth accounting as telling how much of out-
put growth is explained by technical change and how much is explained by
the contribution from factor growth. Such an identification of a descrip-
tive accounting relationship with deeper causality is misleading. Without a
complete dynamic model it makes no sense to talk about “explanation”and
“causality”.
The result (5.11) illustrates this. On the one hand, one finds from growth

accounting a TFP growth rate equal to (1−α)g, while the remainder, αg, of
labor productivity growth is attributed to growth in the capital-labor ratio.
On the other hand, if for instance a Solow growth model is the theoretical
framework within which the variables are assumed generated, then g will be
the exogenous rate of labor-aumenting technical progress which determines
both gTFPt and gkt = αg. Here the TFP growth rate understates the “con-
tribution”of technical change to productivity growth by a factor 1−α. The
whole of gy is determined − explained − by the assumed rate, g, of exogenous
technical progress. If g were nil, we would have gkt = 0 as well as gTFPt = 0.

Or suppose the theoretical framework within which the variables are as-
sumed generated is the Arrow model of learning by investing.7 Then it is the
interaction between endogenous learning and endogenous investment that ex-
plains both gkt, g, and gTFPt . There is no one-way causal link involved. There
is a mutual relationship between learning and investment, one presupposes
the other. It is like “which comes first, the chicken or the egg?”.
Let us now return to the intricate question what TFP actually measures

in economic terms. We start with a convenient special case.

7Arrow (1962). The model is outlined in Chapter 12 below.

c© Groth, Lecture notes in Economic Growth, (mimeo) 2016.



94
CHAPTER 5. GROWTH ACCOUNTING AND THE CONCEPT

OF TFP: SOME WARNINGS

5.3 The case of Hicks-neutrality*

In the case of Hicks neutrality, by definition, technical change can be repre-
sented by the evolution of a one-dimensional variable, Bt, and the production
function in (5.2) can be specified as

Yt = F (Kt, Lt, t) = BtF̄ (Kt, Lt). (5.12)

Here the TFP level is at any time, t, identical to the level of Bt if we normalize
the initial values of both B and TFP to be the same, i.e., TFP0 = B0 > 0.
Indeed, calculating the TFP growth rate implied by (5.12) gives

gTFPt =
Ft(Kt, Lt, t)

Yt
=
ḂtF̄ (Kt, Lt)

BtF̄ (Kt, Lt)
=
Ḃt

Bt

≡ gBt, (5.13)

where the second equality comes from the fact that Kt and Lt are kept fixed
when the partial derivative of F w.r.t. t is calculated. The formula (5.9) now
gives

TFPt = B0 · e
∫ t
0 gBτdτ = Bt.

The convenient feature of Hicks neutrality is thus that we can write

TFPt =
F (Kt, Lt, t)

F (Kt, Lt, 0)
=
BtF̄ (Kt, Lt)

B0F̄ (Kt, Lt)
= Bt, (5.14)

using the normalization B0 = 1. That is:

Under Hicks neutrality, TFP t appears as the ratio between the
current output level and the hypothetical output level that would
have resulted from the current inputs of capital and labor in case
of no technical change since time 0.

So in the case of Hicks neutrality the economic meaning of the TFP level
is straightforward. The reason is that under Hicks neutrality the output
elasticities w.r.t. capital and labor, εKt and εLt, are independent of technical
change. Moreover, the relationship also holds the opposite way: if the output
elasticities w.r.t. capital and labor, εKt and εLt, are independent of technical
change, then technical change is Hicks neutral.
We now turn to diffi culties regarding interpretation of TFP that arise in

the general case.
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5.4 Absence of Hicks-neutrality*

The above straightforward economic interpretation of TFP only holds under
Hicks-neutral technical change. Neither under general technical change nor
even under Harrod- or Solow-neutral technical change, will the current TFP
level appear as the ratio between the current output level and the hypothet-
ical output level that would have resulted from the current inputs of capital
and labor in case of no technical change since time 0. This is so unless the
production function is Cobb-Douglas in which case both Harrod and Solow
neutrality imply Hicks-neutrality.
To see this, let us return to the general time-dependent production func-

tion in (5.2). Let Xt denote the ratio between the current output level at
time t and the hypothetical output level, F (Kt, Lt, 0), that would have ob-
tained with the current inputs of capital and labor in case of no change in
the technology since time 0, i.e.,

Xt ≡
F (Kt, Lt, t)

F (Kt, Lt, 0)
. (5.15)

So Xt can be seen as a factor of “joint-productivity”growth from time 0 to
time t evaluated at the time-t input combination.
If this Xt should always indicate the level of TFP at time t, the growth

rate of Xt should equal the growth rate of TFP. Generally, it does not,
however. Indeed, defining G(Kt, Lt) ≡ F (Kt, Lt, 0), by the rule for the time
derivative of fractions,8 we have

gX,t ≡ dF (Kt, Lt, t)/dt

F (Kt, Lt, t)
− dG(Kt, Lt)/dt

G(Kt, Lt)

=
1

Yt

[
FK(Kt, Lt, t)K̇t + FL(Kt, Lt, t)L̇t + Ft(Kt, Lt, t) · 1

]
− 1

G(Kt, Lt)

[
GK(Kt, Lt)K̇t +GL(Kt, Lt)L̇t

]
= εK(Kt, Lt, t)gKt + εL(Kt, Lt, t)gLt +

Ft(Kt, Lt, t)

Yt
−(εK(Kt, Lt, 0)gKt + εL(Kt, Lt, 0)gLt) (5.16)

= (εK(Kt, Lt, t)− εK(Kt, Lt, 0)) gKt

+(εL(Kt, Lt, t)− εL(Kt, Lt, 0))gLt + gTFPt

6= gTFPt generally,

where gTFPt is given in (5.5). We see that:

8See Appendix A to Chapter 3.
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The time-t growth rate of the joint-productivity index X equals
the time-t TFP growth rate plus the cumulative impact of techni-
cal change since time 0 on the direct contribution to time-t output
growth from time-t input growth.

Unless the partial output elasticities w.r.t. capital and labor, respectively,
are unaffected by technical change, the conclusion is that TFPt tend to differ
from our Xt defined in (5.15). So:

In the absence of Hicks neutrality, current TFP does not gener-
ally appear as the ratio between the current output level and the
hypothetical output level that would have resulted from the cur-
rent inputs of capital and labor in case of no technical change
since time 0.

Consider the difference between gX,t and gTFPt :

gX,t −gTFPt = (εK(Kt, Lt, t)− εK(Kt, Lt, 0)) gKt+(εL(Kt, Lt, t)−εL(Kt, Lt, 0))gLt.

Under CRS, the coeffi cients to the growth rates inK and L will be of the same
absolute value but have opposite sign. This is an implication of εK(Kt, Lt, ·)+
εL(Kt, Lt, ·) = 1 under CRS. Since usually gKt exceeds gLt considerably, the
difference between gX,t and gTFPt may be substantial.
Balanced growth at the aggregate level, hence Harrod neutrality, seems

to characterize the growth experience of the UK and US over at least a
century (Kongsamut et al., 2001; Attfield and Temple, 2010). At the same
time the aggregate elasticity of factor substitution is generally estimated to
be significantly less than one (cf. Chapter 2.7). This amounts to rejection of
the Cobb-Douglas specification of the aggregate production function. So, at
the aggregate level, Harrod neutrality rules out Hicks neutrality.
Since at least at the aggregate level Hicks-neutrality is empirically doubt-

ful, the level of TFP can usually not be identified with the intuitive joint-
productivity measure Xt, defined in (5.15) above. Then, to my knowledge
there is no simple economic interpretation of what the TFP level actually
measures.

A closer look at Xt vs. TFPt

The fact that in the absence of Hicks-neutrality, TFP and the index X differ
is the reason that we in Section 2.2 characterized the time-t TFP level rel-
ative to the time-0 level as the cumulative “direct contribution”on output
growth since time 0 from cumulative technical change, thus excluding the
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possible indirect contribution coming about via the potential effect of tech-
nical change on the output elasticities w.r.t. capital and labor and thereby
on the contribution to output from input growth.
Given that the joint-productivity index X is the more intuitive joint-

productivity measure, why is TFP the more popular measure? There are at
least two reasons for this. First, it can be shown that the TFP measure has
more convenient balanced growth properties. Second, X is more diffi cult to
measure. To see the reason for this, we substitute (5.3) into (5.16) to get

gXt = gY t − (εK(Kt, Lt, 0)gKt + εL(Kt, Lt, 0)gLt). (5.17)

The relevant output elasticities, εK(Kt, Lt, 0)≡ KtFK(Kt,Lt,0)
F (Kt,Lt,0)

and εL(Kt, Lt, 0)

≡ LtFL(Kt,Lt,0)
F (Kt,Lt,0)

, are hypothetical constructs, referring to the technology as it
was at time 0, but with the factor combination observed at time t, not at time
0. The nice thing about the Solow residual is that under the assumptions
of perfect competition and absence of externalities, it allows measurement
by using data on prices and quantities alone, that is, without knowledge
of the production function. To evaluate gX , however, we need estimates
of the hypothetical output elasticities, εK(Kt, Lt, 0) and εL(Kt, Lt, 0). This
requires knowledge about how the output elasticities depend on the factor
combination and time, respectively, that is, knowledge about the production
function.

5.5 A warning regarding cross-country TFP
growth comparisons

When Harrod neutrality applies, relative TFP growth rates across sectors
or countries can be quite deceptive. Consider a group of n countries that
share some structural characteristics. Country i has the aggregate production
function

Yit = F (i)(Kit, AtLit) i = 1, 2, ..., n,

where F (i) is a neoclassical production function with CRS, and At is the level
of labor-augmenting technology which we assume shared by all the countries
(these are open and “close”to each other). Technical progress is thus Harrod-
neutral. Let the growth rate of A be a constant g > 0.
Define k̃it ≡ Kit/(AtLit) ≡ kit/At and ỹit ≡ Yit/(AtLit) ≡ yit/At. Suppose

the countries feature (within-country) convergence, i.e.,

k̃it → k̃∗i and ỹit → ỹ∗i = f (i)(k̃∗i ) for t→∞,
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where f (i) is the production function in intensive form. Since kit ≡ k̃itAt and
yit ≡ ỹitAt, we thus have

gki → gA (= g) and gyi → gA for t→∞.

So in the long run gki and gyi tend to the constant g.
Formula (5.6) then gives the TFP growth rate of country i in the long

run as
gTFPi = gyi − α∗i gki = (1− α∗i )g, (5.18)

where α∗i is the output elasticity w.r.t. capital, f
(i)′(k̃i)k̃i/f

(i)(k̃i), evaluated
at k̃i = k̃∗i . Under labor-augmenting technical progress, the TFP growth rate
thus varies negatively with the output elasticity w.r.t. capital (the capital
income share under perfect competition). Owing to differences in product
and industry composition, the countries have different α∗i’s. In view of (5.18),
for two different countries, i and j, we therefore get

TFPi
TFPj

→


∞ if α∗i < α∗j ,
1 if α∗i = α∗j ,
0 if α∗i > α∗j ,

(5.19)

for t→∞.9
In spite of long-run growth in the essential variable, y, being the same

across the countries, their TFP growth rates are very different. Countries
with low α∗ appear to be technologically very dynamic and countries with
high α∗ appear to be lagging behind. The explanation is simply that a higher
α∗ means that a larger fraction of gy = gk = g becomes driven by (“explained
by”) gk in the growth accounting (5.18), leaving a smaller residual. But it is
the exogenous technology growth rate g that drives both gk and gTFP. The
level of α∗ is just the long-run output elasticity w.r.t. capital and reflects
neither technological dynamism nor its opposite. Notwithstanding the coun-
tries’different α∗, their long-run growth rates of per capita consumption will
be the same, namely g. Moreover, if the economies can be described, for
instance, by a Solow model with the same s, δ, and n (standard notation)
across the countries, and the ratio s/(δ + g + n) happens to equal 1, then
even the level of per capita consumption in the countries will in the long run
be the same growth rate. Nevertheless there will be persistent differences in
their TFP growth rates, and (5.19) remains true.
We conclude that comparison of TFP growth rates across countries may

misrepresent the intuitive meaning of productivity and technical progress
9If F is Cobb-Douglas with output elasticity w.r.t. capital equal to αi, the key re-

sult, (5.18), can be derived more directly by first defining Bt = A1−αi
t , then writing the

production function in the Hicks-neutral form (5.12), and finally use (5.13).
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when output elasticities w.r.t. capital differ and technical progress is Harrod-
neutral (even if technical progress were at the same time Hicks-neutral as is
the case with a Cobb-Douglas specification).
On this background let us briefly consider a different decomposition than

the one made in standard growth accounting. Under CRS, equation (5.10)
holds. Subtracting εKtgyt on both sides, dividing through by 1 − εKt, and
rearranging gives

gyt =
εKt

1− εKt
g k
y
t +

1

1− εKt
gTFPt. (5.20)

This says that increases in the capital-output ratio as well as TFP contribute
to growth in labor productivity via the “multipliers”εKt/(1−εKt) and 1/(1−
εKt), respectively. This may speak for focusing on gTFPt/(1 − εKt) rather
than gTFPt it self. A growth path along which the capital-output ratio is
constant (as it tends to be in the long run according to Kaldor’s ‘stylized
facts”) will feature labor productivity growth equal to the TFP growth rate
multiplied by the inverse of the output elasticity w.r.t. labor (since, under
CRS, 1− εKt = εLt).

10

Thus, in the comparison of the n countries above, where in the long run
the capital-output ratios are indeed constant (k̃∗i /f(k̃∗i ) is constant), it makes
sense to focus on

gTFPi
1− α∗it

= gyt −
εKt

1− εKt
g k
y
t =

1

1− εKt
gyt −

εKt
1− εKt

gkt. (5.21)

This measure of the contribution of technical change ends up in the long run
equal to the rate of Harrod-neutral technical progress, g, cf. (5.18).11

Since this “corrected TFP growth rate” in many models, including the
one considered above, ultimately becomes identical to the labor productivity
growth rate in the long run, it is not unreasonable in simple international
comparisons to just compare levels and growth rates of Y/L across countries.

Remark on levels accounting

In growth accounting we consider productivity of a single country at different
points in time. Another discipline is named levels accounting, where one
compares productivity across different countries at a single point in time.
See Caselli (2005), Acemoglu (2009, Chapter 3.5), and Jones and Vollrath
(2013, Chapter 3).

10The labor productivity growth rate along a path along which the capital-output ratio
is constant has occationally been called the Harrod-productivity growth rate.
11To focus on this, or a similar, measure was suggested by ....... .
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5.6 Summing up

Growth accounting is − as the name indicates − a descriptive way of present-
ing growth data. So we should not confuse growth accounting with causality
in growth analysis. To talk about causality we need a theoretical model sup-
ported by the data. On the basis of such a model we can say that this or that
set of exogenous factors through the propagation mechanisms of the model
cause this or that phenomenon, including economic growth.
In a complete model with exogenous technical progress, gkt will be in-

duced by this technical progress. If technical progress is endogenous through
learning by investing, as in Arrow (1962), there is mutual causation between
gkt and technical progress. Yet other kinds of models explain both techni-
cal progress and capital accumulation through R&D, cf. Barro (1999) and
Fernald and Jones (2014).
When technical change is not Hicks-neutral, the level of TFP can at best

be approximated by the intuitive joint-productivity measure Xt, defined in
(5.15) above. The approximation may not be good. And in absence of Hicks-
neutrality, there seems to exist no simple economic interpretation of what the
TFP level actually measures.
We also observed that relative TFP growth rates across sectors or coun-

tries can be quite deceptive when output elasticities w.r.t. capital differ. It
may be more reasonable to compare the “corrected TFP growth rate”de-
fined in (5.21) above or just compare levels and growth rates of Y/L across
countries.
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Chapter 6

Transitional dynamics.
Barro-style growth regressions

In this chapter we discuss three issues, all of which are related to the transi-
tional dynamics of a growth model:

• Do poor countries necessarily tend to approach their steady state from
below?

• How fast (or rather how slow) are the transitional dynamics in a growth
model?

• What exactly is the theoretical foundation for a Barro-style growth
regression analysis?

The Solow growth model may serve as the analytical point of departure
for the first two issues and to some extent also for the third.

6.1 Point of departure: the Solow model

As is well-known, the fundamental differential equation for the Solow model
is

·
k̃(t) = sf(k̃(t))− (δ + g + n)k̃(t), k̃(0) = k̃0 > 0, (6.1)

where k̃(t) ≡ K(t)/(A(t)L(t)), f(k̃(t)) ≡ F (k̃(t), 1), A(t) = A0e
gt, and

L(t) = L0e
nt (standard notation). The production function F is neoclassical

with CRS and the parameters satisfy 0 < s < 1 and δ+g+n > 0. The produc-
tion function on intensive form, f, therefore satisfies f(0) ≥ 0, f ′ > 0, f ′′ < 0,
and

lim
k̃→0

f ′(k̃) >
δ + g + n

s
> lim

k̃→∞
f ′(k̃). (A1)
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k̃∗ k̃0

ỹ∗

(δ + g + n)k̃

f
(
k̃
)

sf
(
k̃
)

k̃

ỹ

Figure 6.1: Phase diagram 1 (capital essential).

Then there exists a unique non-trivial steady state, k̃∗ > 0, that is, a unique
positive solution to the equation

sf(k̃∗) = (δ + g + n)k̃∗. (6.2)

Furthermore, given an arbitrary k̃0 > 0, we have for all t ≥ 0,

·
k̃(t) T 0 for k̃(t) S k̃∗, (6.3)

respectively. The steady state, k̃∗, is thus globally asymptotically stable in
the sense that for all k̃0 > 0, limt→∞ k̃(t) = k∗, and this convergence is
monotonic (in the sense that k̃(t) − k̃∗ does not change sign during the
adjustment process).
Figure 6.1 illustrates the dynamics as seen from the perspective of (6.1):

k̃ is rising (falling) when saving per unit of effective labor, AL, is greater
(less) than the amount needed to maintain the effective capital-labor ratio
constant in spite of capital depreciation, more labor and better technology.
Figure 6.2 illustrates the dynamics emerging when we rewrite (6.1) this

way:
·
k̃(t) = s

(
f(k̃(t))− δ + g + n

s
k̃(t)

)
T 0 for k̃(t) S k̃∗.

In Figure 6.3 yet another illustration is exhibited, based on rewriting (6.1)
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k̃∗ k̃0

ỹ∗

(δ + g + n)
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(
k̃
)

k̃

ỹ

Figure 6.2: Phase diagram 2.

k̃0 k̃∗

δ + g + n

s
f(k̃)

k̃

gk̃

k̃

S
K

Figure 6.3: Phase diagram 3.
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this way:
·
k̃(t)

k̃(t)
= s

f(k̃(t))

k̃(t)
− (δ + g + n),

where sf(k̃(t))/k̃(t) is gross saving per unit of capital, S(t)/K(t) ≡ (Y (t)−
C(t))/K(t).
From now on the dating of the variables is suppressed unless needed for

clarity.

6.2 Do poor countries tend to approach their
steady state from below?

From some textbooks (for instance Barro and Sala-i-Martin, 2004) one gets
the impression that poor countries tend to approach their steady state from
below. But this is not what the Penn World Table data seems to indicate.
And from a theoretical point of view the size of k̃0 relative to k̃∗ is certainly
ambiguous, whether the country is rich or poor. To see this, consider a poor
country with initial effective capital intensity

k̃0 ≡
K0

A0L0

.

Here K0/L0 will typically be small for a poor country (the country has not
yet accumulated much capital relative to its fast-growing population). The
technology level, A0, however, also tends to be small for a poor country.
Hence, whether we should expect k̃0 < k̃∗ or k̃0 > k̃∗ is not obvious apriori.
Or equivalently: whether we should expect that a poor country’s GDP at an
arbitrary point in time grows at a rate higher or lower than the country’s
steady-state growth rate, g + n, is not obvious apriori.
While Figure 6.3 illustrates the case where the inequality k̃0 < k̃∗ holds,

Figure 6.1 and 6.2 illustrate the opposite case. There exists some empirical
evidence indicating that poor countries tend to approach their steady state
from above. Indeed, Cho and Graham (1996) find that “on average, countries
with a lower income per adult are above their steady-state positions, while
countries with a higher income are below their steady-state positions”.
The prejudice that poor countries apriori should tend to approach their

steady state from below seems to come from a confusion of conditional and
unconditional β convergence. The Solow model predicts - and data supports
- that within a group of countries with similar structural characteristics (ap-
proximately the same f, A0, g, s, n, and δ), the initially poorer countries will
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grow faster than the richer countries. This is because the poorer countries
(small y(0) = f(k̃0)A0) will be the countries with relatively small initial
capital-labor ratio, k0. As all the countries in the group have approximately
the same A0, the poorer countries thus have k̃0 ≡ k0/A0 relatively small, i.e.,
k̃0 < k̃∗. From y ≡ Y/L ≡ ỹA = f(k̃)A follows that the growth rate in
output per worker of these poor countries tends to exceed g. Indeed, we have
generally (for instance in the Solow model as well as the Ramsey model)

ẏ

y
=

·
ỹ

ỹ
+ g =

f ′(k̃)
·
k̃

f(k̃)
+ g T g for

·
k̃ T 0, i.e., for k̃ S k̃∗.

So, within the group, the poor countries tend to approach the steady state,
k̃∗, from below.
The countries in the world as a whole, however, differ a lot w.r.t. their

structural characteristics, including their A0. Unconditional β convergence is
definitely rejected by the data. Then there is no reason to expect the poorer
countries to have k̃0 < k̃∗ rather than k̃0 > k̃∗. Indeed, according to the
mentioned study by Cho and Graham (1996), it turns out that the data for
the relatively poor countries favors the latter inequality rather than the first.

6.3 Within-country convergence speed and ad-
justment time

Our next issue is: How fast (or rather how slow) are the transitional dynamics
in a growth model? To put it another way: according to a given growth model
with convergence, how fast does the economy approach its steady state? The
answer turns out to be: not very fast - to say the least. This is a rather
general conclusion and is confirmed by the empirics: adjustment processes
in a growth context are quite time consuming.
In Acemoglu (2009) we meet the concept of speed of convergence at p.

54 (under an alternative name, rate of adjustment) and p. 81 (in connection
with Barro-style growth regressions). Here we shall go more into detail with
the issue of speed of convergence.
Again the Solow model is our frame of reference. We search for a formula

for the speed of convergence of k̃(t) and y(t)/y∗(t) in a closed economy de-
scribed by the Solow model. So our analysis is concerned with within-country
convergence: how fast do variables such as k̃ and y approach their steady
state paths in a closed economy? The key adjustment mechanism is linked
to diminishing returns to capital (falling marginal productivity of capital)
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in the process of capital accumulation. The problem of cross-country con-
vergence (which is what “β convergence” and “σ convergence” are about)
is in principle more complex because also such mechanisms as technological
catching-up and cross-country factor movements are involved.

6.3.1 Convergence speed for k̃(t)

The ratio of
·
k̃(t) to (k̃(t)− k̃∗) 6= 0 can be written

·
k̃(t)

k̃(t)− k̃∗
=
d(k̃(t)− k̃∗)/dt

k̃(t)− k̃∗
, (6.4)

since dk̃∗/dt = 0. We define the instantaneous speed of convergence at time

t as the (proportionate) rate of decline of the distance
∣∣∣k̃(t)− k̃∗

∣∣∣ at time t
and we denote it SOCt(k̃).1 Thus,

SOCt(k̃) ≡ −
d
(∣∣∣k̃(t)− k̃∗

∣∣∣) /dt∣∣∣k̃(t)− k̃∗
∣∣∣ = −d(k̃(t)− k̃∗)/dt

k̃(t)− k̃∗
(6.5)

per time unit, where the equality sign is valid for monotonic convergence.
Generally, SOCt(k̃) depends on both the absolute size of the difference k̃

− k̃∗ at time t and its sign. But if the difference is already “small”, SOCt(k̃)
will be “almost”constant for increasing t and we can find an approximate

measure for it. Let the function ϕ(k̃) be defined by
·
k̃ = sf(k̃)−mk̃ ≡ ϕ(k̃),

where m ≡ δ+ g+n. A first-order Taylor approximation of ϕ(k̃) around k̃ =
k̃∗ gives

ϕ(k̃) ≈ ϕ(k̃∗) + ϕ′(k̃∗)(k̃ − k̃∗) = 0 + (sf ′(k̃∗)−m)(k̃ − k̃∗).

For k̃ in a small neighborhood of the steady state, k̃∗, we thus have
·
k̃ = ϕ(k̃) ≈ (sf ′(k̃∗)−m)(k̃ − k̃∗)

= (
sf ′(k̃∗)

m
− 1)m(k̃ − k̃∗)

= (
k̃∗f

′
(k̃∗)

f(k̃∗)
− 1)m(k̃ − k̃∗) (from (6.2))

≡ (ε(k̃∗)− 1)m(k̃ − k̃∗) (from (6.6)),

1Synonyms for speed of convergence are rate of convergence, rate of adjustment or
adjustment speed.
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where ε(k̃∗) is the output elasticity w.r.t. capital, evaluated in the steady
state. So

K

Y

∂Y

∂K
=

k̃

f(k̃)
f ′(k̃) ≡ ε(k̃), (6.6)

where 0 < ε(k̃) < 1 for all k̃ > 0.

Applying the definition (6.5) and the identity m ≡ δ+ g+ n, we now get

SOCt(k̃) = −d(k̃(t)− k̃∗)/dt
k̃(t)− k̃∗

=
−
·
k̃(t)

k̃(t)− k̃∗
≈ (1−ε(k̃∗))(δ+g+n) ≡ β(k̃∗) > 0.

(6.7)
This result tells us how fast, approximately, the economy approaches its
steady state if it starts “close”to it. If, for example, β(k̃∗) = 0.02 per year,
then 2 percent of the gap between k̃(t) and k̃∗ vanishes per year. We also see
that everything else equal, a higher output elasticity w.r.t. capital implies a
lower speed of convergence.

In the limit, for
∣∣∣k̃ − k̃∗∣∣∣ → 0, the instantaneous speed of convergence

coincides with what is called the asymptotic speed of convergence, defined as

SOC∗(k̃) ≡ lim
|k̃−k̃∗|→0

SOCt(k̃) = β(k̃∗). (6.8)

Multiplying through by −(k̃(t)− k̃∗), the equation (6.7) takes the form of
a homogeneous linear differential equation (with constant coeffi cient), ẋ(t) =
βx(t), the solution of which is x(t) = x(0)eβt.With x(t) = k̃(t)− k̃∗ and “=”
replaced by “≈”, we get in the present case

k̃(t)− k̃∗ ≈ (k̃(0)− k̃∗)e−β(k̃∗)t → 0 for t→∞. (6.9)

This is the approximative time path for the gap between k̃(t) and k̃∗ and
shows how the gap becomes smaller and smaller at the rate β(k̃∗).
One of the reasons that the speed of convergence is important is that it

indicates what weight should be placed on transitional dynamics of a growth
model relative to the steady-state behavior. The speed of convergence mat-
ters for instance for the evaluation of growth-promoting policies. In growth
models with diminishing marginal productivity of production factors, suc-
cessful growth-promoting policies have transitory growth effects and perma-
nent level effects. Slower convergence implies that the full benefits are slower
to arrive.
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6.3.2 Convergence speed for log k̃(t)*

We have found an approximate expression for the convergence speed of k̃.
Since models in empirical analysis and applied theory are often based on log-
linearization, we might ask what the speed of convergence of log k̃ is. The
answer is: approximately the same and asymptotically exactly the same as
that of k̃ itself! Let us see why.
A first-order Taylor approximation of log k̃(t) around k̃ = k̃∗ gives

log k̃(t) ≈ log k̃∗ +
1

k̃∗
(k̃(t)− k̃∗). (6.10)

By definition

SOCt(log k̃) = −d(log k̃(t)− log k̃∗)/dt

log k̃(t)− log k̃∗
= − dk̃(t)/dt

k̃(t)(log k̃(t)− log k̃∗)

≈ − dk̃(t)/dt

k̃(t) k̃(t)−k̃∗
k̃∗

=
k̃∗

k̃(t)
SOCt(k̃)→ SOC∗(k̃) = β(k̃∗)(6.11)

for k̃(t) → k̃∗,

where in the second line we have used, first, the approximation (6.10), second,
the definition in (6.7), and third, the definition in (6.8).
So, at least in a neighborhood of the steady state, the instantaneous rate

of decline of the logarithmic distance of k̃ to the steady-state value of k̃
approximates the instantaneous rate of decline of the distance of k̃ itself to
its steady-state value. The asymptotic speed of convergence of log k̃ coincides
with that of k̃ itself and is exactly β(k̃∗).
In the Cobb-Douglas case (where ε(k̃∗) is a constant, say α) it is possible

to find an explicit solution to the Solow model, see Acemoglu (2009, p. 53)
and Exercise II.2. It turns out that the instantaneous speed of convergence in
a finite distance from the steady state is a constant and equals the asymptotic
speed of convergence, (1− α)(δ + g + n).

6.3.3 Convergence speed for y(t)/y∗(t)*

The variable which we are interested in is usually not so much k̃ in itself,
but rather labor productivity, y(t) ≡ ỹ(t)A(t). In the interesting case where
g > 0, labor productivity does not converge towards a constant. We therefore
focus on the ratio y(t)/y∗(t), where y∗(t) denotes the hypothetical value of
labor productivity at time t, conditional on the economy being on its steady-
state path, i.e.,

y∗(t) ≡ ỹ∗A(t). (6.12)
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We have
y(t)

y∗(t)
≡ ỹ(t)A(t)

ỹ∗A(t)
=
ỹ(t)

ỹ∗
. (6.13)

As ỹ(t)→ ỹ∗ for t→∞, the ratio y(t)/y∗(t) converges towards 1 for t→∞.
Taking logs on both sides of (6.13), we get

log
y(t)

y∗(t)
= log

ỹ(t)

ỹ∗
= log ỹ(t)− log ỹ∗

≈ log ỹ∗ +
1

ỹ∗
(ỹ(t)− y∗)− log ỹ∗ (first-order Taylor approx. of log ỹ )

=
1

f(k̃∗)
(f(k̃(t))− f(k̃∗))

≈ 1

f(k̃∗)
(f(k̃∗) + f ′(k̃∗)(k̃(t)− k̃∗)− f(k̃∗)) (first-order approx. of f(k̃))

=
k̃∗f ′(k̃∗)

f(k̃∗)

k̃(t)− k̃∗

k̃∗
≡ ε(k̃∗)

k̃(t)− k̃∗

k̃∗

≈ ε(k̃∗)(log k̃(t)− log k̃∗) (by (6.10)). (6.14)

Multiplying through by −(log k̃(t)− log k̃∗) in (6.11) and carrying out the
differentiation w.r.t. time, we find an approximate expression for the growth
rate of k̃,

dk̃(t)/dt

k̃(t)
≡ gk̃(t) ≈ −

k̃∗

k̃(t)
SOCt(k̃)(log k̃(t)− log k̃∗)

→ −β(k̃∗)(log k̃(t)− log k̃∗) for k̃(t)→ k̃∗, (6.15)

where the convergence follows from the last part of (6.11). We now calculate
the time derivative on both sides of (6.14) to get

d(log
y(t)

y∗(t)
)/dt = d(log

ỹ(t)

ỹ∗
)/dt =

dỹ(t)/dt

ỹ(t)
≡ gỹ(t)

≈ ε(k̃∗)gk̃(t) ≈ −ε(k̃∗)β(k̃∗)(log k̃(t)− log k̃∗). (6.16)

from (6.15). Dividing through by − log(y(t)/y∗(t)) in this expression, taking
(6.14) into account, gives

−
d(log y(t)

y∗(t))/dt

log y(t)
y∗(t)

= −
d(log y(t)

y∗(t) − log 1)/dt

log y(t)
y∗(t) − log 1

≡ SOCt(log
y

y∗
) ≈ β(k̃∗), (6.17)

in view of log 1 = 0. So the logarithmic distance of y from its value on the
steady-state path at time t has approximately the same rate of decline as the
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logarithmic distance of k̃ from k̃’s value on the steady-state path at time t.
The asymptotic speed of convergence for log y(t)/y∗(t) is exactly the same
as that for k̃, namely β(k̃∗).
What about the speed of convergence of y(t)/y∗(t) itself? Here the same

principle as in (6.11) applies. The asymptotic speed of convergence for
log(y(t)/y∗(t)) is the same as that for y(t)/y∗(t) (and vice versa), namely
β(k̃∗).
With one year as our time unit, standard parameter values are: g = 0.02,

n = 0.01, δ = 0.05, and ε(k̃∗) = 1/3.We then get β(k̃∗) = (1−ε(k̃∗))(δ+g+n)
= 0.053 per year. In the empirical Chapter 11 of Barro and Sala-i-Martin
(2004), it is argued that a lower value of β(k̃∗), say 0.02 per year, fits the data
better. This requires ε(k̃∗) = 0.75. Such a high value of ε(k̃∗) (≈ the income
share of capital) may seem diffi cult to defend. But if we reinterpret K in
the Solow model so as to include human capital (skills embodied in human
beings and acquired through education and learning by doing), a value of
ε(k̃∗) at that level may not be far out.

6.3.4 Adjustment time

Let τω be the time that it takes for the fraction ω ∈ (0, 1) of the initial gap
between k̃ and k̃∗ to be eliminated, i.e., τω satisfies the equation∣∣∣k̃(τω)− k̃∗

∣∣∣∣∣∣k̃(0)− k̃∗
∣∣∣ =

k̃(τω)− k̃∗

k̃(0)− k̃∗
= 1− ω, (6.18)

where 1 − ω is the fraction of the initial gap still remaining at time τω. In
(6.18) we have applied that sign(k̃(t) − k̃∗) = sign(k̃(0) − k̃∗) in view of
monotonic convergence.
By (6.9), we have

k̃(τω)− k̃∗ ≈ (k̃(0)− k̃∗)e−β(k̃∗)τω .

In view of (6.18), this implies

1− ω ≈ e−β(k̃∗)τω .

Taking logs on both sides and solving for τω gives

τω ≈ −
log(1− ω)

β(k̃∗)
. (6.19)
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This is the approximate adjustment time required for k̃ to eliminate the
fraction ω of the initial distance of k̃ to its steady-state value, k̃∗, when the
adjustment speed (speed of convergence) is β(k̃∗).
Often we consider the half-life of the adjustment, that is, the time it

takes for half of the initial gap to be eliminated. To find the half-life of the
adjustment of k̃, we put ω = 1

2
in (6.19). Again we use one year as our time

unit. With the parameter values from Section 6.3.3, we have β(k̃∗) = 0.053
per year and thus

τ 1
2
≈ −

log 1
2

0.053
≈ 0.69

0.053
= 13, 1 years.

As noted above, Barro and Sala-i-Martin (2004) estimate the asymptotic
speed of convergence to be β(k̃∗) = 0.02 per year. With this value, the
half-life is approximately

τ 1
2
≈ −

log 1
2

0.02
≈ 0.69

0.02
= 34.7 years.

And the time needed to eliminate three quarters of the initial distance to
steady state, τ 3/4, will then be about 70 years (= 2 ·35 years, since 1−3/4 =
1
2
· 1

2
).
Among empirical analysts there is not general agreement about the size of

β(k̃∗). Some authors, for example Islam (1995), using a panel data approach,
find speeds of convergence considerably larger, between 0.05 and 0.09. Mc-
Quinne and Whelan (2007) get similar results. There is a growing realization
that the speed of convergence differs across periods and groups of countries.
Perhaps an empirically reasonable range is 0.02 < β(k̃∗) < 0.09. Correspond-
ingly, a reasonable range for the half-life of the adjustment will be 7.6 years
< τ 1

2
< 34.7 years.

Most of the empirical studies of convergence use a variety of cross-country
regression analysis of the kind described in the next section. Yet the theoret-
ical frame of reference is often the Solow model - or its extension with human
capital (Mankiw et al., 1992). These models are closed economy models with
exogenous technical progress and deal with “within-country”convergence. It
is not obvious that they constitute an appropriate framework for studying
cross-country convergence in a globalized world where capital mobility and to
some extent also labor mobility are important and where some countries are
pushing the technological frontier further out, while others try to imitate and
catch up. At least one should be aware that the empirical estimates obtained
may reflect mechanisms in addition to the falling marginal productivity of
capital in the process of capital accumulation.
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6.4 Barro-style growth regressions*

Barro-style growth regression analysis, which became very popular in the
1990s, draws upon transitional dynamics aspects (including the speed of con-
vergence) as well as steady state aspects of neoclassical growth theory (for
instance the Solow model or the Ramsey model).
Chapter 3.2 in Acemoglu (2009) presents Barro’s growth regression equa-

tions in an unconventional form, see Acemoglu’s equations (3.12), (3.13), and
(3.14). The left-hand side appears as if it is just the growth rate of y (output
per unit of labor) from one year to the next. But the true left-hand side of a
Barro equation is the average compound annual growth rate of y over many
years. Moreover, since Acemoglu’s text is very brief about the formal links
to the underlying neoclassical theory of transitional dynamics, we will spell
the details out here.
Most of the preparatory work has already been done above. The point of

departure is a neoclassical one-sector growth model for a closed economy:

·
k̃(t) = s(k̃(t))f(k̃(t))− (δ + g + n)k(t), k̃(0) = k̃0 > 0, given, (6.20)

where k̃(t) ≡ K(t)/(A(t)L(t)), A(t) = A0e
gt, and L(t) = L0e

nt as above.
The Solow model is the special case where the saving-income ratio, s(k̃(t)),
is a constant s ∈ (0, 1).
It is assumed that the model, (6.20), generates monotonic convergence,

i.e., k̃(t) → k̃∗ > 0 for t → ∞. Applying again a first-order Taylor approxi-
mation, as in Section 3.1, and taking into account that s(k̃) now may depend
on k̃, as for instance it generally does in the Ramsey model, we find the
asymptotic speed of convergence for k̃ to be

SOC∗(k̃) = (1− ε(k̃∗)− η(k̃∗))(δ + g + n) ≡ β(k̃∗) > 0, (*)

where η(k̃∗) ≡ k̃∗s′(k̃∗)/s(k̃∗) is the elasticity of the saving-income ratio w.r.t.
the effective capital intensity, evaluated at k̃ = k̃∗. (In case of the Ramsey
model, one can alternatively use the fact that SOC∗(k̃) equals the absolute
value of the negative eigenvalue of the Jacobian matrix associated with the
dynamic system of the model, evaluated in the steady state. For a fully
specified Ramsey model this eigenvalue can be numerically calculated by an
appropriate computer algorithm; in the Cobb-Douglas case there exists even
an explicit algebraic formula for the eigenvalue, see Barro and Sala-i-Martin,
2004). In a neighborhood of the steady state, the previous formulas remain
valid with β(k̃∗) defined as in (*). The asymptotic speed of convergence of for
example y(t)/y∗(t) is thus β(k̃∗) as given in (*). For notational convenience,
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we will just denote it β, interpreted as a derived parameter, i.e.,

β = (1− ε(k̃∗)− η(k̃∗))(δ + g + n) ≡ β(k̃∗). (6.21)

In case of the Solow model, η(k̃∗) = 0 and we are back in Section 3.
In view of y(t) ≡ ỹ(t)A(t), we have gy(t) = gỹ(t) + g. By (6.16) and the

definition of β,

gy(t) ≈ g − ε(k̃∗)β(log k̃(t)− log k̃∗) ≈ g − β(log y(t)− log y∗(t)), (6.22)

where the last approximation comes from (6.14). This generalizes Acemoglu’s
Equation (3.10) (recall that Acemoglu concentrates on the Solow model and
that his k∗ is the same as our k̃∗).
With the horizontal axis representing time, Figure 6.4 gives an illustration

of these transitional dynamics. As gy(t) = d log y(t)/dt and g = d log y∗(t)/dt,
(6.22) is equivalent to

d(log y(t)− log y∗(t))

dt
≈ −β(log y(t)− log y∗(t)). (6.23)

So again we have a simple differential equation of the form ẋ(t) = βx(t), the
solution of which is x(t) = x(0)eβt. The solution of (6.23) is thus

log y(t)− log y∗(t) ≈ (log y(0)− log y∗(0))e−βt.

As y∗(t) = y∗(0)egt, this can be written

log y(t) ≈ log y∗(0) + gt+ (log y(0)− log y∗(0))e−βt. (6.24)

The solid curve in Figure 6.4 depicts the evolution of log y(t) in the case
where k̃0 < k̃∗ (note that log y∗(0) = log f(k̃∗) + logA0). The dotted curve
exemplifies the case where k̃0 > k̃∗. The figure illustrates per capita income
convergence: low initial income is associated with a high subsequent growth
rate which, however, diminishes along with the diminishing logarithmic dis-
tance of per capita income to its level on the steady state path.
For convenience, we will from now on treat (6.24) as an equality. Sub-

tracting log y(0) on both sides, we get

log y(t)− log y(0) = log y∗(0)− log y(0) + gt+ (log y(0)− log y∗(0))e−βt

= gt− (1− e−βt)(log y(0)− log y∗(0)).

Dividing through by t > 0 gives

log y(t)− log y(0)

t
= g − 1− e−βt

t
(log y(0)− log y∗(0)). (6.25)
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Figure 6.4: Evolution of log y(t). Solid curve: the case k̃0 < k̃∗. Dotted curve: the
case k̃0 > k̃∗. Stippled line: the steady-state path.

On the left-hand side appears the average compound annual growth rate of
y from period 0 to period t, which we will denote ḡy(0, t). On the right-hand
side appears the initial distance of log y to its hypothetical level along the
steady state path. The coeffi cient, −(1− e−βt)/t, to this distance is negative
and approaches zero for t → ∞. Thus (6.25) is a translation into growth
form of the convergence of log yt towards the steady-state path, log y∗t , in the
theoretical model without shocks. Rearranging the right-hand side, we get

ḡy(0, t) = g +
1− e−βt

t
log y∗(0)− 1− e−βt

t
log y(0) ≡ b0 + b1 log y(0),

where both the constant b0 ≡ g +
[
(1− e−βt)/t

]
log y∗(0) and the coeffi cient

b1 ≡ −(1 − e−βt)/t are determined by “structural characteristics”. Indeed,
β is determined by δ, g, n, ε(k̃∗), and η(k̃∗) through (6.21), and y∗(0) is de-
termined by A0 and f(k̃∗) through (6.12), where, in turn, k̃∗ is determined
by the steady state condition s(k̃∗)f(k̃∗) = (δ + g + n)k̃∗, s(k̃∗) being the
saving-income ratio in the steady state.
With data for N countries, i = 1, 2,. . . , N, a test of the unconditional

convergence hypothesis may be based on the regression equation

ḡyi(0, t) = b0 + b1 log yi(0) + εi, εi ∼ N(0, σ2
ε), (6.26)

where εi is the error term. This can be seen as a Barro growth regression
equation in its simplest form. For countries in the entire world, the theoret-
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ical hypothesis b1 < 0 is clearly not supported (or, to use the language of
statistics, the null hypothesis, b1 = 0, is not rejected).2

Allowing for the considered countries having different structural charac-
teristics, the Barro growth regression equation takes the form

ḡyi(0, t) = b0
i + b1 log yi(0) + εi, b1 < 0, εi ∼ N(0, σ2

ε). (6.27)

In this “fixed effects” form, the equation has been applied for a test of the
conditional convergence hypothesis, b1 < 0, often supporting this hypothesis.
That is, within groups of countries with similar characteristics (like, e.g., the
OECD countries), there is a tendency to convergence.
From the estimate of b1 the implied estimate of the asymptotic speed of

convergence, β, is readily obtained through the formula b1 ≡ (1 − e−βt)/t.
Even β, and therefore also the slope, b1, does depend, theoretically, on
country-specific structural characteristics. But the sensitivity on these do
not generally seem large enough to blur the analysis based on (6.27) which
abstracts from this dependency.
With the aim of testing hypotheses about growth determinants, Barro

(1991) and Barro and Sala-i-Martin (1992, 2004) decompose b0
i so as to reflect

the role of a set of potentially causal measurable variables,

b0
i = α0 + α1xi1 + α2xi2 + . . . + αmxim,

where the α’s are the coeffi cients and the x’s are the potentially causal vari-
ables.3 These variables could be measurable Solow-type parameters among
those appearing in (6.20) or a broader set of determinants, including for in-
stance the educational level in the labor force, and institutional variables like
rule of law and democracy. Some studies include the initial within-country
inequality in income or wealth among the x’s and extend the theoretical
framework correspondingly.4

From an econometric point of view there are several problematic features
in regressions of Barro’s form (also called the β convergence approach). These
problems are discussed in Acemoglu pp. 82-85.

2Cf. Acemoglu, p. 16. For the OECD countries, however, b1 is definitely found to be
negative (cf. Acemoglu, p. 17).

3Note that our α vector is called β in Acemoglu, pp. 83-84. So Acemoglu’s β is to be
distinquished from our β which denotes the asymptotic speed of convergence.

4See, e.g., Alesina and Rodrik (1994) and Perotti (1996), who argue for a negative
relationship between inequality and growth. Forbes (2000), however, rejects that there
should be a robust negative correlation between the two.
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Chapter 7

Why the Malthusian era must
come to an end

This chapter presents the population-breeds-ideas model by Michael Kremer
(Kremer, 1993). The point of the model is to show that under certain con-
ditions, the cumulative and nonrival character of technical knowledge makes
it almost inevitable that the Malthusian regime of stagnating income per
capita, close to subsistence minimum, will sooner or later in the historical
evolution be surpassed.
This topic relates to Section 8.2 of Jones and Vollrath (2013). Section 4.2

of Acemoglu (2009) briefly discuss two special cases of the Kremer model.

7.1 The general model

Suppose a pre-industrial economy can be described by:

Yt = Aσt L
α
t Z

1−α, σ > 0, 0 < α < 1, (7.1)

Ȧt = λAεtLt, λ > 0, A0 > 0 given, (7.2)

Lt =
Yt
ȳ
, ȳ > 0, (7.3)

where Y is aggregate output, A the level of technical knowledge, L the labor
force (= population), Z the amount of land (fixed), and ȳ subsistence mini-
mum. By this is not meant some point almost at starvation, but an income
level suffi cient for food, clothing, shelter etc. to the worker, including family
and offspring, thereby enabling reproduction of the labor force.
Both Z and ȳ are considered as constant parameters. Time is continuous

and it is understood that a kind of Malthusian population mechanism (see
below) is operative behind the scene.
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The exclusion of capital from the aggregate production function, (7.1),
reflects the presumption that capital (tools etc.) is quantitatively of minor
importance in a pre-industrial economy. In accordance with the replication
argument, the production function has CRS w.r.t. the rival inputs, labor and
land. The factor Aσt measures total factor productivity. As the right-hand
side of (7.2) is positive, the technology level, At, is rising over time (although
far back in time very very slowly). The increase in At per time unit is seen
to be an increasing function of the size of the population. This reflects the
hypothesis that population breeds ideas; these are nonrival and enter the
pool of technical knowledge available for society as a whole. Indeed, the
use of an idea by one agent does not preclude others’use of the same idea.
Dividing through by L in (7.1) we see that y ≡ Yt/Lt = Aσt (Z/Lt)

1−α. The
nonrival character is displayed by labor productivity being dependent on the
total stock of knowledge, not on this stock per worker. In contrast, labor
productivity depends on land per worker.
The rate per capita by which population breeds ideas is λAε. In case ε > 0,

this rate is an increasing function of the already existing level of technical
knowledge. This case reflects the hypothesis that the larger is the stock of
ideas the easier do new ideas arise (perhaps by combination of existing ideas).
The opposite case, ε < 0, is the one where “the easiest ideas are found first”
or “the low-hanging fruits are picked first”.
Equation (7.3) is a shortcut description of a Malthusian population mech-

anism. Suppose the true mechanism is

L̇t = β(yt − ȳ)Lt T 0 for yt T ȳ, (7.4)

where β > 0 is the speed of adjustment, yt is per capita income, and ȳ >
0 is subsistence minimum. A rise in yt above ȳ will lead to increases in
Lt through earlier marriage, higher fertility, and lower mortality. Thereby
downward pressure on Yt/Lt is generated, perhaps pushing yt below ȳ.When
this happens, population will be decreasing for a while and so return towards
its sustainable level, Yt/ȳ. Equation (7.3) treats this mechanism as if the
population instantaneously adjusts to its sustainable level (i.e., as if β →∞).
The model hereby gives a long-run picture, ignoring the Malthusian ups and
downs in population and per capita income about the subsistence minimum.
The important feature is that the technology level, and thereby Yt, as well
as the sustainable population will be rising over time. This speeds up the
arrival of new ideas and so Yt is raised even faster although per-capita income
remains at its long-run level, ȳ.1

For simplicity, we now normalize the constant Z to be 1.
1Extending the model with the institution of private ownership and competitive mar-

kets, the absence of a growing standard of living corresponds to the doctrine from classical
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7.2 Law of motion

The dynamics of the model can be reduced to one differential equation, the
law of motion of technical knowledge. By (7.3) and (7.1), Lt = Yt/ȳ =
Aσt L

α
t /ȳ. Consequently L

1−α
t = Aσt /ȳ so that

Lt = ȳ
1

α−1A
σ

1−α
t . (7.5)

Substituting this into (7.2) gives the law of motion of technical knowledge:

Ȧt = λȳ
1

α−1A
ε+ σ

1−α
t ≡ λ̂Aµt , (7.6)

where we have defined λ̂ ≡ λȳ1/(α−1) and µ ≡ ε + σ/(1− α). As will appear
in the remainder, the “feedback parameter”µ is of key importance for the
dynamics. We immediately see that if µ = 1, the differential equation (7.6)
is linear, while otherwise it is nonlinear.
The case µ = 1 :When µ = 1, there will be a constant growth rate gA = λ̂

in technical knowledge. By (7.5), this results in a constant population growth
rate gL = [σ/(1− α)] λ̂, which is also the growth rate of output in view of
(7.3). By the definition of λ̂ in (7.6), we see that, as expected, the population
and output growth rate is an increasing function of the creativity parameter
λ and a decreasing function of the subsistence minimum.2

In this case the economy never leaves the Malthusian regime of a more or
less constant standard of living close to existence minimum. Takeoff never
occurs.
The case µ 6= 1. Then (7.6) can be written

Ȧt = λ̂Aµt , (7.7)

which is a nonlinear differential equation in A.3 Let x ≡ A1−µ. Then

ẋt = (1− µ)A−µt λ̂Aµt = (1− µ)λ̂, (7.8)

economics called the iron law of wages. This is the theory (from Malthus and Ricardo)
that scarce natural resources and the pressure from population growth causes real wages
to remain at subsistende level. There may occationally occur a technological improvement,
which leads to a transitory real wage increase, triggering of an increase in population which
ultimately brings down wages.
These classical economists did not recognize any tendency to sustained technical progress

and therefore missed the immanent tendency to sustained population growth at the pre-
industrial stage of economic development. Karl Marx was the first among the classical
economists to really see and emphasize sustained technical progress.

2If σ = 1 − α as in Acemoglu’s analysis, µ = 1 requires ε = 0, and in this case L and
Y grow at the same rate as knowledge.

3The differential equation, (7.7), is a special case of what is known as the Bernoulli
equation. In spite of being a non-linear differential equation, the Bernoulli equation always
has an explicit solution.
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a constant. To find xt from this, we only need simple integration:

xt = x0 +

∫ t

0

ẋτdτ = x0 + (1− µ)λ̂t.

As A = x
1

1−µ and x0 = A1−µ
0 , this implies

At = x
1

1−µ
t =

[
A1−µ

0 + (1− µ)λ̂t
] 1
1−µ

=
1[

A1−µ
0 − (µ− 1)λ̂t

] 1
µ−1

. (7.9)

There are now two sub-cases, µ > 1 and µ < 1. The latter sub-case leads
to permanent but decelerating growth in knowledge and population and the
Malthusian regime is never transcended (see Exercise III.3). The former
sub-case is the interesting one.

7.3 The inevitable ending of the Malthusian
regime when µ > 1

Assume µ > 1. In this case the result (7.9) implies that the Malthusian
regime must come to an end.
Although to begin with, At may grow extremely slowly, the growth in At

will be accelerating because of the positive feedback (visible in (7.2)) from
both rising population and rising At. Indeed, since µ > 1, the denominator
in (7.9) will be decreasing over time and approach zero in finite time, namely
as t approaches the finite value t∗ = A1−µ

0 /((µ − 1)λ̂). As an implication,
according to (7.9), At goes towards infinity in finite time. The stylized
graph in Fig. 7.1 illustrates. The evolution of technical knowledge becomes
explosive as t approaches t∗.
It follows from (7.5) and (7.1) that explosive growth in A implies explosive

growth in L and Y, respectively. The acceleration in the evolution of Y will
sooner or later make Y rise fast enough so that the Malthusian population
mechanism (which for biological reasons has to be slow) can not catch up.
Then, what was in the Malthusian regime only a transitory excess of yt over
ȳ, will at some t = t̂ < t∗ become a permanent excess and take the form of
sustained growth in yt.
We may think of this post-Malthusian phase as describing pre-industrial

Britain. Technological innovations speeded up, helped by market-friendly
institutions, intellectual property rights, and deliberate and systematic ap-
plication of science and engineering. This lead to the takeoff known as the
industrial revolution.
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Figure 7.1: Accelerating growth in A when the feedback parameter µ exceeds one.

Note that Fig. 7.1 illustrates only what the process (7.7), with µ > 1, im-
plies as long as it rules, namely that knowledge goes towards infinity in finite
time. The process necessarily ceases to rule long before time t∗ is reached,
however. This is because the process presupposes that the Malthusian pop-
ulation mechanism keeps track with output growth so as to maintain (7.3)
which at some point before t∗ becomes impossible because of the acceleration
in the latter.

In a neighborhood of this point the takeoffwill occur, featuring sustained
growth in output per capita. According to equation (7.4), the takeoff should
also feature a permanently rising population growth rate. As economic his-
tory has testified, however, along with the rising standard of living the de-
mographics changed radically (in the U.K. during the 19th century). The
demographic transition took place with fertility declining faster than mor-
tality. This results in completely different dynamics, hence the model as it
stands no longer fits.4 As to the demographic transition as such, explanations
suggested by economists include: higher real wages mean higher opportunity
costs of raising children instead of producing; reduced use of child labor;
the trade-off between “quality”(educational level) of the offspring and their
“quantity”(Becker, Galor)5; skill-biased technical change; and improved con-
traception technology.

4Kremer (1993), however, also includes an extended model taking some of these changed
dynamics into account.

5See Acemoglu, Section 21.2.
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7.4 Closing remarks

The population-breeds-ideas model is about dynamics in the Malthusian
regime of the pre-industrial epoch. The story told by the model is the follow-
ing. When the feedback parameter, µ, is above one, the Malthusian regime
has to come to an end because the battle between scarcity of land (or nat-
ural resources more generally) and technological progress (absent natural
catastrophes) will inevitably be won by the latter. The reason is the cumu-
lative and nonrival character of technical knowledge. This nonrivalry implies
economies of scale. Moreover, the stock of knowledge is growing endoge-
nously. This knowledge growth generates output growth and, through the
demographic mechanism (7.3), growth in the stock of people, which implies
a positive feedback to the growth of knowledge and so on. On top of this,
if ε > 0, knowledge growth has a direct positive feedback on itself through
(7.2). When the total positive feedback is strong enough (µ > 1), it generates
an explosive process.6

On the basis of demographers’estimates of the growth in global popu-
lation over most of human history, Kremer (1993) finds empirical support
for µ > 1. Indeed, in the opposite case, µ ≤ 1, there would not have been
a rising world population growth rate since one million years B.C. to the
industrial revolution. The data in Kremer (1993, p. 682) indicates that the
world population growth rate has been more or less proportional to the size
of population until recently.

Final remark. Compared with Kremer’s version of the model, we have
allowed σ 6= 1, but at the same time introduced a simplification relative to
Kremer’s setup. Kremer starts from a slightly more general ideas-formation
equation, namely Ȧt = λAεtL

ψ
t with ψ > 0, while in our (7.2) we have assumed

ψ = 1. If ψ > 1, the ideas-creating brains reinforce one another. This only
fortifies the acceleration in knowledge creation and thereby “supports” the
case µ > 1.7 If on the other hand 0 < ψ < 1, the idea-creating brains partly
offset one another, for instance by simultaneously coming up with more or
less the same ideas (the case of “overlap”). This generalization does not
change the qualitative results. By assuming that the number of new ideas
per time unit is proportional to the stock of brains, we have chosen to focus
on an intermediate case in order to avoid secondary factors blurring the main
mechanism.

6In the appendix the explosion result is considered in a general mathematical context.
7Kremer’s calibration suggests ψ ≈ 6/5.

c© Groth, Lecture notes in Economic Growth, (mimeo) 2016.



7.5. Appendix 125

7.5 Appendix

A. The mathematical background

Mathematically, the background for the explosion result is that the solution
to a first-order differential equation of the form ẋ(t) = α + bx(t)c, c > 1,
b 6= 0, x(0) = x0 given, is always explosive. Indeed, the solution, x = x(t),
will have the property that x(t) → ±∞ for t → t∗ for some t∗ > 0 where t∗

depends on the initial conditions; and thereby the solution is defined only on
a bounded time interval which depends on the initial condition.
Take the differential equation ẋ(t) = 1 + x(t)2, x(0) = 0,as an example.

As is well-known, the solution is x(t) = tan t = sin t/ cos t, defined for t ∈
(−π/2, π/2).

B. Comparison with the two special cases considered in Acemoglu
(2009)

At pp. 113-14 Acemoglu presents two versions of this framework, both of
which assume σ = 1 − α. This assumption is arbitrary; it is included as a
special case in our formulation above. As to the other parameter relating to
the role of knowledge, ε, Acemuglu assumes ε = 0 in his first version of the
framework. This leads to constant population growth but a forever stagnat-
ing standard of living (Acemoglu, p. 113). In his second version, Acemoglu
assumes ε = 1. This leads to many centuries of slow but (weakly) accelerating
population growth and then ultimately a “takeoff”with sustained rise in the
standard of living, to be followed by the “demographic transition”(outside
the model). This latter outcome arises for a much larger set of parameter
values than ε = 1 and is therefore theoretically more robust than appears in
Acemoglu’s exposition.
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Chapter 9

Human capital, learning
technology, and the Mincer
equation

We start with an overview of different approaches to the modeling of human
capital formation in macroeconomics. Next we go into detail with one of
these approaches, the life-cycle approach. In Section 9.3 a simple model of
the choice of schooling length is considered. Finally, Section 9.4 presents the
theory behind the empirical relationship named the Mincer equation.1 In
this connection it is emphasized that the Mincer equation should be seen as
an equilibrium relationship for relative wages at a given point in time rather
than as a production function for human capital.

9.1 Macroeconomic approaches to human cap-
ital

We define human capital as the stock of productive skills embodied in an
individual. Human capital is thus a production factor, while by human wealth
is meant the present value of expected future labor income (usually after tax).
Increases in the stock of human capital occurs through formal education

and on-the-job-training. By contributing to the maintenance of life and well-
being, also health care is of importance for the stock of human capital and
the incentive to invest in human capital.
Since human capital is embodied in individuals and can only be used one

place at a time, it is a rival and excludable good. Human capital is thus

1After Mincer (1958, 1974).
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very different from technical knowledge. We think of technical knowledge as
a list of instructions about how different inputs can be combined to produce
a certain output. A principle of chemical engineering is an example of a piece
of technical knowledge. In contrast to human capital, technical knowledge
is a non-rival and only partially excludable good. Competence in applying
technical knowledge is one of the skills that to a larger or smaller extent is
part of human capital.

9.1.1 Modelling human capital

In the macroeconomic literature there are different theoretical approaches to
the modelling of human capital. Broadly speaking we may distinguish these
approaches along two “dimensions”: 1) What characteristics of human capi-
tal are emphasized? 2) What characteristics of the decision maker investing
in human capital are emphasized? Combining these two “dimensions”, we
get Table 1.

Table 1. Macroeconomic approaches to the modelling of human capital.
The character of human capital (hc):

The character of the Is hc treated as essentially different
decision maker from physical capital?

No Yes
Solow-type rule-of-thumb households Mankiw et al. (1992)

Infinitely-lived family “dynasties” Barro&Sala-i-Martin (2004) Lucas (1988)
(the representative agent approach) Dalgaard&Kreiner (2001)
Finitely-lived individuals going through Ben-Porath (1967)
a life cycle (the life cycle approach) Heijdra&Romp (2009)

My personal opinion is that for most issues the approach in the lower-
right corner of Table 1 is preferable, that is, the approach treating human
capital as a distinct capital good in a life cycle perspective. The viewpoint
is:
First, by being embodied in a person and being lost upon death of this

person, human capital is very different from physical capital. In addition,
investment in human capital is irreversible (can not be recovered). Human
capital is also distinct in view of the limited extend to which it can be used
as a collateral, at least in non-slave societies. Financing an investment in
physical capital, a house for example, by credit is comparatively easy because
the house can serve as a collateral. A creditor can not gain title to a person,
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however. At most a creditor can gain title to a part of that person’s future
earnings in excess of a certain level required for a “normal”or “minimum”
standard of living.
Second, educational investment is closely related to life expectancy and

the life cycle of human beings: school - work - retirement. So a life cycle per-
spective seems the natural approach. Fortunately, convenient macroeconomic
frameworks incorporating life cycle aspects exist in the form of overlapping
generations models (for example Diamond’s OLG model or Blanchard’s con-
tinuous time OLG model).

9.1.2 Human capital and the effi ciency of labor

Generally we tend to think of human capital as a combination of different
skills. Macroeconomics, however, often tries (justified or not) to boil down
the notion of human capital to a one-dimensional entity. So let us imagine
that the current stock of human capital in society is measured by the one-
dimensional index H. With L denoting the size of the labor force, we define
h ≡ H/L. So, h is the average stock of human capital in the labor force.
Further, let the “quality” (or “effi ciency”) of this stock in production be
denoted q (under certain conditions this quality might be proxied by the
average real wage per man-hour). Then it is reasonable to link q and h by
some increasing quality function

q = q(h), where q(0) ≥ 0, q′ > 0. (9.1)

Consider an aggregate production function, F̃ , giving output per time
unit at time t as

Y = F̃ (K, q(h)L, t),
∂F̃

∂t
> 0, (9.2)

where K is input of physical capital. The third argument of F̃ is time, t,
indicating that the production function is time-dependent due to technical
progress.
Generally the macroeconomic analyst would prefer a measure of human

capital such that the quality of human capital is proportional to the stock
of human capital, allowing us to write q(h) = h by normalizing the factor of
proportionality to be 1. The main reason is that an expedient variable rep-
resenting human capital in a model requires that the analyst can decompose
the real wage per working hour multiplicatively into two factors, the real
wage per unit of human capital per working hour and the stock of human
capital, h. That is, an expedient human capital concept requires that we can
write

w = ŵ · h, (9.3)
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where ŵ is the real wage per unit of human capital per working hour. Indeed,
if we have

Y = F̃ (K,hL, t), (9.4)

then, under perfect competition, we can write

w =
∂Y

∂L
= F̃2(K,hL, t)h = ŵ · h.

Under disembodied Harrod-neutral technical progress, (9.4) would take
the form

Y = F̃ (K,hL, t) = F (K,AhL) ≡ F (K,EL), (9.5)

where E ≡ A · h is the “effective”labor input. The proportionality between
E and h will under perfect competition allow us to write

w =
∂Y

∂L
= F̃2(K,EL, t)E = wE · E = wE · A · h = ŵ · h.

So with the introduction of the technology level, A, an additional decomposi-
tion, ŵ = wE ·A comes in, while the original decomposition in (9.3) remains
valid.
Whether or not the desired proportionality q(h) = h can be obtained

depends on how we model the formation of the “stuff” h. Empirically it
turns out that treating the formation of human capital as similar to that of
physical capital does not lead to the desired proportionality.

Treating the formation of human capital as similar to formation of
physical capital

Consider a model where human capital is formed in a way similar to physi-
cal capital. The Mankiw-Romer-Weil (1992) extension of the Solow growth
model with human capital is a case in point. Non-consumed aggregate output
is split into one part generating additional physical capital one-to-one, while
the other part is assumed to generate additional human capital one-to-one.
Then for a closed economy in continuous time we can write:

Y = C + IK + IH ,

K̇ = IK − δKK, δK > 0,

Ḣ = IH − δHH, δH > 0, (9.6)

where IK and IH denote gross investment in physical and human capital, re-
spectively. This approach essentially assumes that human capital is produced
by the same technology as consumption and investment goods.
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Suppose the huge practical measurement problems concerning IH have
been somehow overcome. Then from long time series for IH an index for Ht

can be constructed by the perpetual inventory method in a way similar to the
way an index for Kt is constructed from long time series for IK . Indeed, in
discrete time, with 0 < δH < 1, we get, by backward substitution,

Ht+1 = IH,t + (1− δH)Ht = IH,t + (1− δH) [IH,t−1 + (1− δH)Ht−1]

=

T∑
i=0

(1− δH)iIH,t−i + (1− δH)T+1Ht−T . (9.7)

From the time series for IH , an estimate of δH , and a rough conjecture about
the initial value, Ht−T , we can calculate Ht+1. The result will not be very
sensitive to the conjectured value of Ht−T since for large T the last term in
(9.7) becomes very small.
In principle there need not be anything wrong with this approach. A

snag arises, however, if, without further notice, the approach is combined
with an explicit or implicit postulate that q(h) is proportional to the “stuff”,
h, brought into being in the way described by (9.6). The snag is that the
empirical evidence does not support this when the formation of human cap-
ital is modelled as in (9.6). This is an unintended by-product of the cross-
country regression analysis by Mankiw, Romer, and Weil (1992), based on
the approach in equation (9.6). One of their conclusions is that the following
production function for a country’s GDP is an acceptable approximation:

Y = BK1/3H1/3L1/3, (9.8)

where B stands for the total factor productivity of the country and is gen-
erally growing over time.2 Applying that H = hL, we can write (9.8) this
way:

Y = BK1/3(hL)1/3L1/3 = K1/3(Ah1/2L)2/3,

where A = B3/2. That is, we end up with the form Y = F (K,Aq(h)L) where
q(h) = h1/2, not q(h) = h. We should thus not expect the real wage to rise
in proportion to h, when h is considered as some “stuff” formed in a way
similar to the way physical capital is formed. (A further point is that writing
a production function as in (9.8), i.e., with H and L as two separate inputs,
may lead to confusion. The tangible input is L, and in this L, a certain

2The way Mankiw-Romer-Weil measure IH is indirect and questionable. In addition,
the way they let their measure enter the regression equation has been criticized for con-
founding the effects of the human capital stock and human capital investment, cf. Gemmel
(1996) and Sianesi and Van Reenen (2003). It will take us too far to go into detail with
these problems here.
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“normal”or average h is embodied. In effect, varying L should immediately
also imply variation of H ≡ hL.)
Before proceeding, a terminological point is in place. Why do we call q(h)

in (9.2) a “quality”function rather than simply a “productivity”function?
The reason is the following. With perfect competition and CRS, in equilib-
rium the real wage per man-hour would bew = ∂Y/∂L= F ′2(K,Aq(h)L)Aq(h)

=
[
f(k̃)− k̃f ′(k̃)

]
Aq(h), where k̃ ≡ K/(Aq(h)L). So, with a converging k̃,

the long-run growth rate of the real wage would in continuous time tend to
be

gw = gA + gq.

In this context we are inclined to identify “labor productivity”with Aq(h)
rather than just q(h) and “growth in labor productivity”with gA + gq rather
than just gq. So a distinct name for q seems appropriate and an often used
name is “quality”.
The conclusion so far is that specifying human capital formation as in

(9.6) does not generally lead to a linear quality function. To obtain the
desired linearity we have to specify the formation of human capital in a way
different from the equation (9.6). This dissociation with the approach (9.6)
applies, of course, also to its equivalent form on a per capita basis,

ḣ = (
Ḣ

H
− n)h =

IH
L
− (δH + n)h. (9.9)

(In the derivation of (9.9) we have first calculated the growth rate of h ≡
H/L, then inserted (9.6), and finally multiplied through by h.)

9.2 A life-cycle perspective on human capital

In the life-cycle approach to human capital formation we perceive h as the
human capital embodied in a single individual and lost upon death of this
individual. We study how h evolves over the lifetime of the individual as a
result of both educational investment (say time spent in school) and work
experience. In this way the life-cycle approach recognizes that human capi-
tal is different from physical capital. By seeing human capital formation as
the result of individual learning, the life-cycle approach opens up for distin-
guishing between the production technologies for human and physical capital.
Thereby the life-cycle approach offers a better chance for obtaining the linear
relationship, q(h) = h.
Let the human capital of an individual of “age”τ (beyond childhood) be

denoted hτ . Let the total time available per time unit for study, work, and
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leisure be normalized to 1. Let sτ denote the fraction of time the individual
spends in school at age τ . This allows the individual to go to school only part-
time and spend the remainder of non-leisure time working. If `τ denotes the
fraction of time spent at work, we have

0 ≤ sτ + `τ ≤ 1.

The fraction of time used as leisure (or child rearing, say) at age τ is 1−sτ−`τ .
If full retirement occurs at age τ̄ , we have sτ = `τ = 0 for τ ≥ τ̄ .
We measure age in the same time units as calendar time. It seems natural

to assume that the increase in hτ per unit of time (age) generally depends
on four variables: current time in school, current time at work (resulting
in work experience), human capital already obtained, and current calendar
time itself, that is,

ḣτ ≡
dhτ
dτ

= G(sτ , `τ , hτ , t), h0 ≥ 0 given. (9.10)

The function G can be seen as a production function for human capital −
in brief a learning technology. The first argument of G reflects the role of
formal education. Empirically, the primary input in formal education is the
time spent by the students studying; this time is not used in work or leisure
and it thereby gives rise to an opportunity cost of studying.3 The second
argument of G takes learning through work experience into account and
the third argument allows for the already obtained level of human capital to
affect the strength of the influence from given sτ and `τ (the sign of this effect
is theoretically ambiguous). Finally, the fourth argument, current calendar
time allows for changes over time in the learning technology (organization of
the learning process).
Consider an individual “born” (as a youngster) at date v ≤ t (v for

vintage). If still alive at time t, the age of this individual is τ ≡ t − v. The
obtained stock of human capital at age τ will be

hτ = h0 +

∫ τ

0

G(sx, `x, hx, v + x)dx.

A basic supposition in the life-cycle approach is that it is possible to specify
the function G such that a person’s time-t human capital embodies a time-t
labor productivity proportional to this amount of human capital and thereby,
under perfect competition, a real wage proportional to this human capital.

3We may perceive the costs associated with teachers’time and educational buildings
and equipment as being either quantitatively negligible or implicit in the function symbol
G.
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Below we consider four specifications of the learning technology that one
may encounter in the literature.

EXAMPLE 1 In a path-breaking model by the Israeli economist Ben-Porath
(1967) the learning technology is specified this way:

ḣτ = g(sτhτ )− δhτ , g′ > 0, g′′ < 0, δ > 0, h0 > 0. (9.11)

Here time spent in school is more effi cient in building human capital the more
human capital the individual has already. Work experience does not add to
human capital formation. The parameter δ enters to reflect obsolescence (due
to technical change) of skills learnt in school. �

EXAMPLE 2 Growiec (2010) and Growiec and Groth (2015) consider the
aggregate implications of a learning technology specified this way:

ḣτ = (λsτ + ξ`τ )hτ , λ > 0, ξ ≥ 0, h0 > 0. (9.12)

Here λ measures the effi ciency of schooling and ξ the effi ciency of work ex-
perience. The effects of schooling and (if ξ > 0) work experience are here
assumed proportional to the level of human capital already obtained by the
individual (a strong assumption which may be questioned).4 The linear dif-
ferential equation (9.12) allows an explicit solution,

hτ = h0e
∫ τ
0 (λsx+ξ`x)dx, (9.13)

a formula valid as long as the person is alive. This result has some affi nity
with the familiar “Mincer equation”, to be considered below.5 �

EXAMPLE 3 Here we consider an individual with exogenous and constant
leisure. Hence time available for study and work is constant and conveniently
normalized to 1 (as if there were no leisure at all). Moreover, in the beginning
of life beyond childhood the individual goes to school full-time in S time units
(years) and thereafter works full-time until death (no retirement). Thus

sτ =

{
1 for 0 ≤ τ < S,
0 for τ ≥ S.

(9.14)

We further simplify by ignoring the effect of work experience (or we may say
that work experience just offsets obsolescence of skills learnt in school). The
learning technology is specified as

ḣτ = ητ η−1sτ , η > 0, h0 ≥ 0, (9.15)

4Lucas (1988) builds on the case ξ = 0.
5In case ξ = 0 and sx = constant = 1, while τ = S = schooling length, (9.13) reduces

to h = h0e
λS . This looks like a simple version of the “Mincer equation”.
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If η < 1, it becomes more diffi cult to learn more the longer you have already
been to school. If η > 1, it becomes easier to learn more the longer you have
already been under education.
The specification (9.14) implies that throughout working life the individ-

ual has constant human capital equal to h0 + Sη. Indeed, integrating (9.15),
we have for t ≥ S and until time of death,

hτ = h0 +

∫ τ

0

ḣxdx = h0 +

∫ S

0

ηxη−1dx = h0 + xη|S0 = h0 + Sη. (9.16)

So the parameter η measures the elasticity of human capital w.r.t. the num-
ber of years in school. As briefly commented on in the concluding section,
there is some empirical support for the power function specification in (9.16)
and even the hypothesis η = 1 may not be rejected. �

In Example 1 there is no explicit solution for the level of human capital.
Then the solution can be characterized by phase diagram analysis (as in
Acemoglu, §10.3). In the examples 2 and 3 we can find an explicit solution
for the level of human capital. In this case the term “learning technology”is
used not only in connection with the original differential form as in (9.10), but
also for the integrated form, as in (9.13) and (9.16), respectively. Sometimes
the integrated form, like (9.16), is called a schooling technology.

EXAMPLE 4 Here we still assume the setup in (9.14) of Example 3, includ-
ing the absence of both after-school learning and gradual depreciation. But
the right-hand side of (9.15) is generalized to ϕ(τ)sτ , where ϕ(τ) is some
positively valued function of age. Then we end up with human capital after
leaving school equal to some increasing function of S :

h = h(S), where h(0) ≥ 0, h′ > 0. (9.17)

In cross-section or time series analysis it may be relevant to extend this
by writing h = ah(S), a > 0. The parameter a could then reflect quality
of schooling. In the next section we shall focus on the form (9.17) where
the quality-of-schooling parameter a can be seen as implicit in the function
h. �

Before proceeding, let us briefly comment on the problem of aggregation
over the different members of the labor force at a given point in time. In
the aggregate framework of Section 9.1 multiplicity of skill types and job
types is ignored. Human capital is treated as a one-dimensional and additive
production factor. In production functions like (9.4) only aggregate human
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capital, H, matters. So output is thought to be the same whether the in-
put is 2 million workers, each with one unit of human capital, or 1 million
workers, each with 2 units of human capital. In human capital theory this
questionable assumption is called the perfect substitutability assumption or
the effi ciency unit assumption (Sattinger, 1980). If we are willing to impose
this assumption, going from micro to macro is conceptually simple. With h
denoting individual human capital and f(h) being the density function at a
given point in time (so that

∫∞
0
f(h)dh = 1), we find average human capital

in the labor force at that point in time to be h̄ =
∫∞

0
hf(h)dh and aggregate

human capital as H = h̄L, where L is the size of the labor force. To build a
theory of the evolution over time of the density function, f(h), is, however,
a complicated matter. Within as well as across the different cohorts there
is heterogeneity regarding both schooling and retirement. And the fertility
and mortality patterns are changing over time.
If we want to open up for a distinction between different types of jobs

and different types of labor, say, skilled and unskilled labor, we may replace
the production function (9.4) with

Y = F̃ (K,h1L1, h2L2, t), (9.18)

where L1 and L2 indicate man-hours delivered by the two types of workers,
respectively, and h1 and h2 are the given embodied human capital levels
(measured in effi ciency units for each of the two kinds of jobs), respectively.
This could be the basis for studying skill-biased technical change.
Whether or not the aggregate human capital, H, is a useful concept or

not in connection with production can be seen as a question about whether
or not we can rewrite a production function like (9.18) as Y = F (K,H, t),
where H = h1L1 + h2L2. We can if the two types of labor are perfectly
substitutable, otherwise not. Perfect substitutability in this context means
that the marginal rate of substitution between the two kinds of labor in
(9.18) is a constant, i.e.,

MRS ≡ −dL1

dL2 |Y=Ȳ ,K=K̄

=
∂Y/∂L2

∂Y/∂L1

= a constant. (9.19)

This is satisfied if we can rewrite the production function such that Y =
F (K,H, t), where H = h1L1 + h2L2. Indeed, in this case we get MRS =
FHh2/(FHh1) = h2/h1, a constant.

9.3 Choosing length of education

First some simplifying demographic assumptions. We assume, realistically,
that expected lifetime of an individual is finite while the age at death is
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stochastic (uncertain) ex ante. We further assume, unrealistically, that in-
dependently of the already obtained age, the probability of surviving x more
time units (years) is

P (X > x) = e−mx,

where X is remaining lifetime, a stochastic variable, while m > 0 is the mor-
tality rate which is thus taken to be independent of age (and also independent
of calendar time). Under this assumption, the “crude death rate”, that is,
the number of deaths per year divided by the size of population at the begin-
ning of the year, will be approximately equal to m. Moreover, the mortality
rate, m, will for an arbitrary person indicate the approximate probability of
dying within one year “from now”.6

Consider an individual’s educational planning as seen from time of “birth”
(entering life beyond childhood). Let the time of birth be denoted v. Suppose
schooling is a full-time activity and that the individual plans to attend school
in the first S years of life and after that work “full time”until death (“no
retirement”). Let `t−v(S) denote the planned supply of labor (hours per year)
to the labor market at age t − v in the future. As `t−v(S) depends on the
stochastic age, T, at death, `t−v(S) is itself a stochastic variable with two
possible outcomes:

`t−v(S) =

{
0 when t ≤ v + S or t > v + T,
` when v + S < t ≤ v + T,

where ` > 0 is an exogenous constant (“full-time”working).
The combination of age-independent mortality rate and no retirement is

sometimes called the “perpetual youth”assumption.

9.3.1 Human wealth

Let wt(S) denote the real wage received per working hour delivered at time
t by a person who after S years in school works ` hours per year until death.
This allows us to write the present value as seen from time v of expected
lifetime earnings, i.e., the human wealth, for a person “born”at time v as

6If T denotes the uncertain age at death (a stochastic variable), the mortality
rate (or “hazard rate” of death) at the age τ , denoted m(τ), is defined as m(τ)
= lim∆τ→0

1
∆τ P (T ≤ τ + ∆τ | T > τ) .

In the present model this is assumed equal to a constant,m. The unconditional probabil-
ity of not reaching age τ is P (T ≤ τ) = 1−e−mτ ≡ F (τ). Hence the density function is f(τ)
= F ′(τ) = me−mτ and P (τ < T ≤ τ + ∆τ) ≈ me−mτ∆τ . So, for τ = 0, P (0 < T ≤ ∆τ)
≈ m∆τ = m if ∆τ = 1. Life expectancy is E(T ) =

∫∞
0
τme−mτdτ = 1/m. All this is like

in the “perpetual-youth”overlapping generations model by Blanchard (1985).
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HW (v, S) =

0 + Ev

(∫ v+T

v+S

wt(S)`e−r(t−v)dt

)
= Ev

(∫ ∞
v+S

wt(S)`t−v(S)e−r(t−v)dt

)
=

∫ ∞
v+S

Ev(wt(S)`t−v(S)e−r(t−v))dt =

∫ ∞
v+S

wt(S)e−r(t−v)Ev(`t−v(S))dt,(9.20)

as in this context the integration operator
∫∞
v+S

(·)dt acts like a discrete-time
summation operator,

∑∞
t=v . The rate of discount for potential future labor

income conditional on being alive at the moment concerned is denoted r.7

We get

HW (v, S) =

∫ ∞
v+S

wt(S)e−r(t−v) (` · P (T > t− v) + 0 · P (T ≤ t− v))dt

=

∫ ∞
v+S

wt(S)e−r(t−v)`e−m(t−v)dt

=

∫ ∞
v+S

wt(S)`e−(r+m)(t−v)dt. (9.21)

In writing the present value of the expected stream of labor income this
way, we have assumed that:

A1 The discount rate, r, is constant over time.

A2 There is no educational fee.

We now introduce two additional assumptions:

A3 Labor effi ciency (human capital) of a person with S years of schooling
is h(S), so that

wt(S) = ŵth(S), h′ > 0,

where ŵt is the real wage per unit of human capital per working hour
at time t.8

7This rate is related to the opportunity cost of going to school instead of working and
depends on conditions in the credit market. Under the idealized assumption A5 below,
r = the risk-free interest rate.

8Cf. Example 4 of Section 9.2.
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A4 Owing to Harrod-neutral technical progress at a constant rate g ∈
[0, r +m) ≥ 0, the evolution of ŵt is given by ŵt = ŵ0e

gt. So technical
progress makes a given h more and more productive (there is comple-
mentarity between the technology level and human capital as in (9.5)
above).

Given A3 and A4, we get from (9.21) the expected “lifetime earnings”
conditional on a schooling level S :

HW (v, S) = h(S)`

∫ ∞
v+S

ŵ0e
gte−(r+m)(t−v)dt (9.22)

= ŵ0e
gvh(S)`

∫ ∞
v+S

e[g−(r+m)](t−v)dt (since egt = egveg(t−v))

= ŵ0e
gvh(S)`

(
e[g−(r+m)](t−ν)

g − (r +m)

∣∣∣∣∞
ν+S

)
= ŵ0e

gνh(S)`
e[g−(r+m)]S

r +m− g .

Below we chose measurement units such that the “normal”working time
per year is 1 rather than `.
The result in (9.22) provides a convenient formula for human wealth as

seen from time of “birth”, v. To say something reasonable about the choice
of S, we need to specify the set of possibilities for the individual. These
possibilities depend on the market environment. In particular, we need to
specify how students make a living while studying.

9.3.2 Financing education

Assuming the students are born with no financial wealth and themselves have
to finance their costs of living, they have to borrow while studying. Later in
life, when they receive an income, they repay the loans with interest.
In this context we shall introduce the simplifying assumption:

A5 There is a perfect credit and life annuity market.

Financial intermediaries will be unwilling to offer the students loans at the
going risk-free interest rate. Indeed, a creditor faces the risk that the student
fails in the studies, never achieves the hoped job, or dies before having paid off
the debt including the compound interest. The financial intermediaries may,
however, be willing to offer student loans in the form of contracts stipulating
later repayment with an interest rate above the risk-free rate and with the
agreement that if the debtor dies before the principal has been paid back
with interest, the debtor’s estate is held free of any obligations.
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Given the described constant mortality rate and given existence of a per-
fect credit and life insurance market, it can be shown that the equilibrium
interest rate on this kind of student loans is what is known as the “actuarial
rate”. This rate equals the risk-free interest rate plus the mortality rate,
m.9 The relevant discount rate, r, in (9.20) will under these circumstances
coincide with the risk-free interest rate. So we let this rate be denoted r and
write the actuarial rate as r +m.
If the individual later in life, after having paid off the debt and obtained

a positive net financial position, places the savings on life annuity accounts
in life insurance companies, the actuarial rate, r + m, will also be the equi-
librium rate of return received (until death) on these deposits. At death the
liability of the insurance company is cancelled which means that the deposit
is transferred to the insurance company in return for the high annuity pay-
outs while the depositor was alive. The advantage of saving in life annuities
(at least for people without a bequest motive) is that life annuities imply a
transfer of income from after time of death to before time of death by offering
a higher rate of return than risk-free bonds, but only until the depositor dies.

9.3.3 Maximizing human wealth

Suppose that neither the educational process itself nor the resulting stock of
human capital enter the utility function. That is, assume

A6 There is no “joy of going to school” and no “joy of being a learned
person”.

In the perspective of this assumption, human capital is only an investment
good, not also a durable consumption good.10 If moreover there is no utility
from leisure, the educational decision can be separated from whatever plan
for the time path of consumption and saving through life the individual may
decide; this is known as the Separation Theorem.11 Under the described
circumstances, the only incentive for acquiring human capital is to increase
the human wealth HW (ν, S) given in (9.22).

9See Yaari (1965). This result presupposes that the insurance companies have negligible
administration costs.
Owing to asymmetric information and related credit market imperfections, in real world

situations such loan contracts are rare; this is one of the reasons for public sector interven-
tion in the provision of loans to students. These credit market imperfections are ignored
by the present model, but are briefly dealt with in for instance Acemoglu (2009), pp.
761-764.
10For a broader conception of human capital, see for instance Sen (1997).
11See, e.g., Acemoglu (2009), Ch. 10.1.
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By the assumptions A1, A2, . . . , A6, we have hereby reduced the problem
of choosing schooling length to the unconstrained static problem of maximiz-
ing HW (ν, S) with respect to S. An interior solution to this problem satisfies
the first-order condition:

∂HW

∂S
(v, S) =

ŵ0

r +m− g
[
h′(S)e[g−(r+m)]S − h(S)e[g−(r+m)]S(r +m− g)

]
= HW (v, S)

[
h′(S)

h(S)
− (r +m− g)

]
= 0, (9.23)

from which follows
h′(S)

h(S)
= r +m− g ≡ r̃. (9.24)

This may be called the schooling first-order condition, and r̃ can be seen
as the “required rate of return”in units of human capital. In the optimal plan
the actual rate of return in units of human capital equals r̃, which in turn
equals the risk-free interest rate adjusted for (a) the approximate probability
of dying within a year from “now”, 1− e−m ≈ m; and (b) wage growth due
to technical progress. The trade-off faced by the individual is the following:
increasing S by one year results in a higher level of human capital (higher
future earning power) but postpones by one year the time when earning an
income begins. The effective interest cost (opportunity cost) is diminished by
g, reflecting the fact that next year the real wage per unit of human capital
is 100·g percent higher than in the current year.
The intuition behind the first-order condition (9.24) may be easier to

grasp if we put g on the left-hand-side and multiply by ŵt in the numerator
as well as the denominator. Then the condition looks like a standard no-
arbitrage condition:

ŵth
′(S) + ŵtgh(S)

ŵth(S)
= r +m. (9.25)

On the left-hand side we have the rate of return (in units of consumption)
obtained by “investing”one more year in education. In the numerator we
have the direct increase in wage income by increasing S by one unit plus
the gain arising from the fact that human capital, h(S), has higher earnings
capacity one year later due to technical progress. In the denominator we
have the educational investment made by letting the obtained human capital,
h(S), “stay”one more year in school instead of at the labor market. Indeed,
ŵth(S) is the size of that investment in the sense of the opportunity cost of
staying in school one more year.
On the right-hand side of (9.25) appears the rate of return, r + m, that

could be obtained by the alternative strategy, which is to leave school already
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after S years and then use next years’s labor income to pay off study loans.
This alternative would give the rate of return r +m.
The first-order condition (9.24) has thus similarity with a no-arbitrage

equation in financial markets. (As is usual, our interpretation treats marginal
changes as if they were discrete.)
Now, suppose S = S∗ > 0 is a unique value of S satisfying (9.24). Then a

suffi cient (but not necessary) condition for S∗ to be the unique optimal length
of education for the individual is that h′′ ≤ 0 at S = S∗ (see Appendix A).
If individuals are alike in the sense of having the same innate abilities and
facing the same schooling technology h(·), they will all choose S∗.

EXAMPLE 5 Suppose h(S) = Sη, η > 0, as in Example 3, but with h0 = 0.
Then the first-order condition (9.24) gives a unique solution S∗ = η/(r+m−
g); and the second-order condition (9.32) holds for all η > 0. More sharply
decreasing returns to schooling (smaller η) shortens the optimal time spent
in school as does of course a higher effective discount rate, r +m− g.
Consider two countries, one rich (industrialized) and one poor (agricul-

tural). With one year as the time unit, let the parameter values be as in the
first four columns in the table below. The resulting optimal S for each of the
countries is given in the last column.

η r m g S∗

rich country 0.6 0.06 0.01 0.02 12.0
poor country 0.6 0.12 0.02 0.00 4.3

The difference in S∗ is due to r and m being higher and g lower in the poor
country. �

9.4 What the Mincer equation is and is not

In this section we consider the issue whether the exponential form,

h(S) = h(0)eλS, λ > 0, (9.26)

is a plausible specification of the production function for human capital. This
specification is quite popular in the literature, and in Acemoglu (2009) it is
used in connection with “levels accounting”in his Chapter 3, pp. 96-99 and
is treated also theoretically in his Chapter 10.2. The form (9.26) can be seen
as a special case of equation (9.13) from Example 2 above, namely the case
ξ = 0 in combination with equation (9.14) from Example 3.
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There exists a presumption in the macroeconomic literature that the fa-
mous Mincer equation provides an empirical foundation for the exponen-
tial form (9.26). The Mincer equation is the following semi-loglinear cross-
sectional relationship at a given point in time, t:

logwt(S) = logwt(0) + λS, λ > 0, (9.27)

where, as in Section 9.3, wt(S) is the real wage per working hour delivered
at time t by a person with S years’schooling level, cf. Figure 9.1. Such a
semi-loglinear relationship is well documented in the empirical literature and
was first discovered by the American economist Jacob Mincer (Mincer 1958,
1974).
But does it provide evidence for any particular form for the production

function for human capital? No! First, as briefly commented in the con-
cluding section, there seems to be little empirical support for an exponential
production function. Second, as we shall now see, the microeconomic theory,
proposed by Mincer (1958) as an explanation of the observed semi-loglinear
relationship (9.27), has nothing to do with a specific production function for
human capital.12

Explaining the Mincer equation

In Mincer’s theory behind the observed exponential relationship called the
Mincer equation, there is no role at all for any specific schooling technology,
h(·), leading to a unique solution, S∗. The point of departure is that there
is heterogeneity in the jobs offered to people (different educational levels not
being perfectly substitutable). Assuming people are ex ante alike, they end
up ex post choosing different educational levels. This outcome arises through
the competitive equilibrium forces of supply and demand in the job markets.
Imagine, first, a case where all individuals have in fact chosen the same

educational level, S∗, because they are ex ante alike and all face the same
arbitrary human capital production function, h(S), satisfying (9.32). Then
jobs that require other educational levels will go unfilled and so the job mar-
kets will not clear. The forces of excess demand and excess supply will then
tend to generate an educational wage profile different from the one presumed
in (9.22), that is, different from ŵth(S). Sooner or later an equilibrium edu-
cational wage profile tends to arise such that people are indifferent as to how
much schooling they choose, thereby allowing market clearing. This requires

12The above Example 5 follows a short note by Jones (2007) entitled “A simple Mincerian
approach to endogenizing schooling”. The term “Mincerian approach” should here be
interpreted in a very broad sense as more or less synonymous with “life-cycle approach”
rather than be associated with a particular choice regarding the form of h(S).
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Figure 9.1: The semi-log schooling-wage relationship for fixed t. Different coun-
tries. Source: Krueger and Lindahl (2001).
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a wage profile, wt(S), such that a marginal condition analogue to (9.24) holds
for all S for which there is a positive amount of labor traded in equilibrium,
say all S ∈

[
0, S̄

]
:

dwt(S)/dS

wt(S)
= r +m− g ≡ r̃ for all S ∈

[
0, S̄

]
. (9.28)

It is here assumed, in the spirit of assumption A4 above, that technical
progress implies that wt(S) for fixed S grows at the rate g, i.e., wt(S) =
w0(S)egt, for all S ∈

[
0, S̄

]
. The equation (9.28) is a linear differential equa-

tion for wt w.r.t. S, defined in the interval 0 ≤ S ≤ S̄, while t is fixed. And
the function wt(S) is the so far unknown solution to this differential equa-
tion. That is, we have a differential equation of the form dx(S)/dS = r̃x(S),
where the unknown function, x(S), is a function of schooling length rather
than calendar time. The solution is x(S) = x(0)er̃S. Replacing the function
x(·) with the function wt(·), we thus have the solution

wt(S) = wt(0)er̃S. (9.29)

Note that in the previous section, in the context of (9.24), we required
the proportionate marginal return to schooling to equal r̃ only for a specific
S, i.e.,

d(ŵth(S))/dS

ŵth(S)
=
h′(S)

h(S)
= r +m− g ≡ r̃ for S = S∗. (9.30)

This is no more than a first-order condition assumed to hold at some point,
S∗. It will generally not be a differential equation the solution of which gives a
Mincerian exponential relationship. A differential equation requires a deriv-
ative relationship to hold not only at one point, but in an interval for the
independent variable (S in (9.28)). Indeed, in (9.28) we require the propor-
tionate marginal return to schooling to equal r̃ in a whole interval of schooling
levels. Otherwise, with heterogeneity in the jobs offered, there could not be
equilibrium.13

Returning to (9.29), by taking logs on both sides and substituting r̃ by
λ, we get (9.27), which is the Mincer equation in semi-loglinear form.
As mentioned, empirically, the Mincer equation does surprisingly well in

cross-section regression analysis, cf. Figure 9.1.14 Note that (9.29) also yields
a theory of how the “Mincerian slope”, λ, in (9.26) is determined, namely as

13It seems that Acemoglu (2009, p. 362) makes the logical error of identifying a first-
order condition, (9.30), with a differential equation, (9.28).
14The slopes are in the interval (0.05, 0.15).
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the mortality- and growth-corrected real interest rate, r̃. The evidence for
this part of the theory is more scarce.

Given the equilibrium educational wage profile, wt(S), the human wealth
of an individual “born”at time 0 can be written

HW0 =

∫ ∞
S

wt(0)er̃Se−(r+m)tdt = er̃S
∫ ∞
S

w0(0)eḡte−(r+m)tdt

= w0(0)er̃S
∫ ∞
S

e[g−(r+m)]tdt = w0(0)er̃S
[
e[g−(r+m)]t

g − (r +m)

]∞
S

=
w0(0)

r +m− g , (9.31)

since r̃ ≡ r+m−g. In equilibrium the human wealth of the individual is thus
independent of S (within an interval) according to the Mincerian theory. This
is due to “compensating wage differentials”, that is, the adjustment of the
S-dependent wage levels so as to compensate for the S-dependent differences
in length of work life after schooling. Indeed, the essence of Mincer’s theory
is that if one level of schooling implies a higher human wealth than the other
levels of schooling, the number of individuals choosing that level of schooling
will rise until the associated wage has been brought down so as to be in
line with the human wealth associated with the other levels of schooling. Of
course, such adjustment processes must in practice be quite time consuming
and can only be approximative. Moreover, who among the ex ante similar
individuals ends up with what schooling level is indeterminate in this setup.

In this context, the original schooling technology, h(·), for human capital
formation has lost any importance. It does not enter human wealth in a long-
run equilibrium in this disaggregate model where human wealth is simply
given by (9.31). In this equilibrium people have different S’s and the received
wage of an individual per unit of work has no relationship with the human
capital production function, h(·), by which we started in this section.
Although there thus exists a microeconomic theory behind a Mincerian

relationship, this theory gives us a relationship for relative wages in a cross-
section at a given point in time. It leaves open what an intertemporal pro-
duction function for human capital, relating educational investment, S, to a
resulting level, h, of labor effi ciency, looks like. Besides, the Mincerian slope,
r̃, is a market price, not an aspect of schooling technology.

We have up to now been silent about the fact that our simple framework
in Section 9.3 does not fully embrace the case of strong convexity implied by
an exponential specification of h(S). Appendix B briefly comments.
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9.5 Empirics relating to h(S)

The empirical macroeconomic literature typically measures S as the average
number of years of schooling in the working-age population, taken for instance
from the Barro and Lee (2001) data set.15

In their cross-country regression analysis de la Fuente and Domenech
(2006) find a relationship essentially like that in Example 3 with η = 1. The
authors find that the elasticity of GDP w.r.t. average years in school in the
labor force is at least 0.60.
Similarly, the cross-country study, based on calibration, by Bills and

Klenow (2000) as well as the time series study by Cervelatti and Sunde
(2010) favor the hypothesis of diminishing returns to schooling. According
to this, the linear term, r̃S, in the exponent in (9.26) should be replaced by
a strictly concave function of S. These findings are in accordance with the
results by Psacharopoulus (1994). They give empirical reasons for scepticism
towards the linearity in h assumed in Example 2 of Section 9.2.
For S > 0, the power function in Example 5 can be written h = Sη = eη lnS

and is thus in better harmony with the data than the exponential function
(9.26). A parameter indicating the quality of schooling may be added: h =
aeη lnS, where a > 0 may be a function of the teacher-pupil ratio, teaching
materials per student etc. See Caselli (2005).

9.6 Concluding remarks

Our formulation of the schooling length decision problem in Section 9.3 con-
tained several simplifications such that we ended up with a static maximiza-
tion problem in Section 9.3.3. More general setups lead to truly dynamic
human capital accumulation problems.
This chapter considered human capital as a productivity-enhancing fac-

tor. There is a partly complementary perspective on human capital, often
named the Nelson-Phelps hypothesis about the key role of human capital
for technology adoption and technological catching up. An increase in hu-
man capital leads to an increase in the technology absorption capability of a
nation.
A simple way of formalizing this idea is obtained by recognizing that it

is not obvious that technical knowledge and human capital should enter the
production function in the simple multiplicative way, Y = F (K,AhL), as

15This means that complicated aggregation issues, arising from cohort heterogeneity
and from the fact that individual human capital is lost upon death, are bypassed. For
discussion, see Growiec and Groth (2015).
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assumed in (9.5) above. The complementarity between A and h may take
another form, perhaps better reflecting that workers with high skill level can
use more advanced technology than workers with low skill level:

Y = F̃ (K,hL, t) = F (K,min(h/η(A), 1)AL), η′(A) > 0,

where η(A) is the level of human capital required to fully exploit the current
technology level, A. If actual h < η(A), only the fraction h/η(A) of A is
utilized. Similar ideas are sketched in Jones and Vollrath (2013, Ch. 6.1)
and Acemoglu (2009, Ch. 10.8). See also Exercise V.3.
Models based on the life-cycle approach to human capital typically con-

clude that education is productivity enhancing, i.e., more education has a
positive level effect on income per capita but can only temporarily raise the
per capita growth rate. Education is not a factor which in itself can explain
sustained per capita growth. A more plausible main driving factor behind
growth rather seems to be technological innovations. A higher level of per
capita human capital may raise the speed of innovations, however. These
themes are taken up in the next chapter (and in Exercise V.7 and V.8).

9.7 Appendix

Appendix A

Suppose S = S∗ > 0 satisfies the first-order condition (9.24). To check the
second-order condition, we consider

∂2HW

∂S2
(v, S∗)

=
∂HW

∂S
(v, S∗)

[
h′(S∗)

h(S∗)
− (r +m− g)

]
+HW (v, S∗)

h(S∗)h′′(S∗)− h′(S∗)2

h(S∗)2

= HW (v, S∗)

S∗

h′(S∗)h
′′(S∗)− S∗

h(S∗)h
′(S∗)

S∗h(S∗)
h′(S∗), (9.32)

since the first term on the right-hand side in the second row vanishes due to
(9.24) being satisfied at S = S∗. The second-order condition, ∂2HW/∂S2 < 0
at S = S∗ holds if and only if the elasticity of h w.r.t. S exceeds that of h′

w.r.t. S at S = S∗. A suffi cient but not necessary condition for this is that
h′′ ≤ 0. Anyway, since HW (v, S) is a continuous function of S, if there is
a unique S∗ > 0 satisfying (9.24), and if ∂2HW/∂S2 < 0 holds for this S∗,
then this S∗ is the unique optimal length of education for the individual.
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Appendix B

As alluded to at the end of Section 9.4, the strong convexity implied by
the exponential specification h(S) = h(0)eλS does not fit entirely well with
the model in Section 9.3 based on the “perpetual youth”assumption of age-
independent mortality and no retirement. The problem is that when h(S)
= h(0)eλS, the “perpetual youth”setup implies that the first-order condition
(9.24) holds for all S; moreover, we get ∂2HW/∂S2 = 0 for all S.
This problem reflects a limitation of the “perpetual youth”setup, where

there is no conclusive upper bound for anyone’s lifetime. It is not an argument
for apriori rejection of the exponential specification.
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Chapter 11

AK and reduced-form AK
models. Consumption taxation

The simplest model featuring “fully-endogenous”exponential per capita growth
is what is known as the AK model. Jones and Vollrath (2013, Chapter 9, in-
troduce a “Solow-style”AK model. Acemoglu (2009, Chapter 11) discusses
AK and reduced-form AK models within a framework with Ramsey-style
households (i.e., a representative agent approach). The name “AK”refers to
a special feature of the aggregate production function, namely the absence
of diminishing returns to capital. A characteristic result from AK models is
that they have no transitional dynamics.
With the aim of synthesizing the formal characteristics of Ramsey-style

AK models, this lecture note gives a brief account of the common features
of AK models and reduced-form AK models (Section 11.1 and 11.2, respec-
tively). Finally, for later application we discuss in Section 11.3 conditions
under which consumption taxation is not distortionary. Notation is standard.

11.1 General equilibrium dynamics in the sim-
ple AK model

In the simple AK model we imagine a fully automatized economy where the
aggregate production function is

Y (t) = AK(t), A > 0 and constant, (11.1)

so that marginal productivity of capital is

∂Y (t)

∂K(t)
= A.
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There are thus constant returns to capital, not diminishing returns. And
labor is no longer a production factor. The model should be considered a
thought experiment, not a model of reality.
This section provides a detailed proof that when we embed the AK tech-

nology (11.1) in a Ramsey framework with perfect competition, the model
generates balanced growth from the beginning. So there will be no transi-
tional dynamics.
We consider a closed economy with perfect competition and no govern-

ment sector. The dynamic resource constraint for the economy is

K̇(t) = Y (t)−c(t)L(t)−δK(t) = AK(t)−c(t)L(t)−δK(t), K(0) > 0 given,
(11.2)

where L(t) is population size. With the aim of maximizing profit, the repre-
sentative firm demands capital services according to

Kd(t) =


∞ if r(t) + δ < A,

undetermined if r + δ = A,
0 if r(t) + δ > A.

(11.3)

So, in equilibrium (Kd(t) = K(t)), the interest rate is r(t) = A − δ ≡
r. With Ramsey households with rate of time preference, ρ, and constant
elasticity of marginal utility of consumption, θ, we thus find the equilibrium
growth rate of per capita consumption to be

ċ(t)

c(t)
=

1

θ
(r(t)− ρ) ≡ 1

θ
(A− δ − ρ) ≡ gc, (11.4)

a constant. To ensure positive growth we impose the parameter restriction

A− δ > ρ. (A1)

And to ensure boundedness of discounted utility (and thereby a possibility
of satisfying the transversality condition of the representative household), we
impose the additional parameter restriction:

ρ− n > (1− θ)gc. (A2)

Reordering gives
r = θgc + ρ > gc + n, (11.5)

where the equality is due to (16.27).
Solving the linear differential equation (16.27) gives

c(t) = c(0)egct, (11.6)
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where c(0) is unknown so far (because c is not a predetermined variable).
We shall find c(0) by appealing to the household’s transversality condition,

lim
t→∞

a(t)e−(r−n)t = 0, (TVC)

where a(t) is per capita financial wealth at time t. Recalling the No-Ponzi-
Game condition,

lim
t→∞

a(t)e−(r−n)t ≥ 0, (NPG)

we see that the transversality condition is equivalent to the No-Ponzi-Game
condition being not over-satisfied.
Defining k(t) ≡ K(t)/L(t), the dynamic resource constraint, (11.2), is in

per-capita terms

k̇(t) = (A− δ − n)k(t)− c(0)egct, k(0) > 0 given, (11.7)

where we have inserted (12.24). The solution to this linear differential equa-
tion is (cf. Appendix to Chapter 3)

k(t) =

(
k(0)− c(0)

r − n− gc

)
e(r−n)t +

c(0)

r − n− gc
egct, r ≡ A− δ. (11.8)

In our closed-economy framework with no public debt, a(t) = k(t). So the
question is: When will the time path (11.8) satisfy (TVC) with a(t) = k(t)?
To find out, we multiply by the discount factor e−(r−n)t on both sides of (11.8)
to get

k(t)e−(r−n)t = k(0)− c(0)

r − n− gc
+

c(0)

r − n− gc
e−(r−gc−n)t.

Thus, in view of the assumption (A2), (11.5) holds and thereby the last term
on the right-hand side vanishes for t→∞. Hence

lim
t→∞

k(t)e−(r−n)t = k(0)− c(0)

r − n− gc
.

From this we see that the representative household satisfies (TVC) if and
only if it chooses

c(0) = (r − n− gc)k(0). (11.9)

This is the equilibrium solution for the household’s chosen per capita con-
sumption at time t = 0. If the household instead had chosen c(0) < (r−n−
gc)k(0), then limt→∞ k(t)e−(r−n)t > 0 and so the household would not satisfy
(TVC) but instead be over-saving. And if it had chosen c(0)> (r−n−gc)k(0),

c© Groth, Lecture notes in Economic Growth, (mimeo) 2016.



198
CHAPTER 11. AK AND REDUCED-FORM AK

MODELS. CONSUMPTION TAXATION

then limt→∞ k(t)e−(r−n)t < 0 and so the household would be over-consuming
and violate (NPG) (hence also (TVC)).
Substituting the solution for c(0) into (11.8) gives the evolution of k(t)

in equilibrium,

k(t) =
c(0)

r − n− gc
egct = k(0)egct.

So from the beginning k grows at the same constant rate as c. Since per
capita output is y ≡ Y/L = Ak, the same is true for per capita output.
Hence, from start the system is in balanced growth (there is no transitional
dynamics).
The AK model features one of the simplest kinds of endogenous growth

one can think of. Exponential growth is endogenous in the model in the
sense that there is positive per capita growth in the long run, generated by
an internal mechanism in the model (not by exogenous technology growth).
The endogenously determined capital accumulation constitutes the mecha-
nism through which sustained per capita growth is generated and sustained.
It is because the net marginal productivity of capital is assumed constant
and, according to (A1), higher than the rate of impatience, ρ, that capital
accumulation itself is so powerful.

11.2 Reduced-form AK models

The models known as reduced-form AK models are a generalization of the
simple AK model considered above. In contrast to the simple AK model,
where only physical capital is an input, a reduced-form AK model assumes
a technology involving at least two different inputs. Yet it is possible that
in general equilibrium the aggregate production function ends up implying
proportionality between output and some measure of “broad capital”, i.e.,

Y (t) = BK̃(t),

where B is some endogenously determined positive constant, and K̃(t) is
“broad capital”. If in addition the real interest rate in general equilibrium
ends up being a constant, the model is called a reduced-form AK model. In the
simple AK model constancy of average productivity of capital is postulated
from the beginning. In the reduced-form AKmodels the average productivity
of capital becomes and remains endogenously constant over time.
An example is the “AK model with physical and human capital”in Ace-

moglu, Chapter 11.2. With Ramsey-style households and the formation of
human capital treated as similar to that of physical capital, Acemoglu finds
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that along the balanced growth path (obtained after an initial phase with full
specialization in either physical or human capital accumulation), we have1

Y (t) = F (K(t), h(t)L(t)) = f(k̂∗)h(t)L(t) = f(k̂∗)H(t), (11.10)

where we have defined

k̂ ≡ K

H
≡ K

hL
≡ k

h
.

We further define

K̃(t) ≡ K(t) +H(t) = “broad capital”.

Then

K̃(t) ≡ (
K(t)

H(t)
+ 1)H(t) = (k̂∗ + 1)H(t),

along the BGP. Isolating H(t) and inserting into (11.10) gives

Y (t) = f(k̂∗)
1

k̂∗ + 1
K̃(t) ≡ BK̃(t).

At an abstract level it is thus conceivable that “broad capital”, defined as
the sum of physical and human capital, can be meaningful. Empirically,
however, there exists no basis for believing this concept of “broad capital”
to be useful, cf. Exercises V.4 and V.5.
Anyway, a reduced-form AK model ends up with quite similar aggregate

relations as those in the simple AK model. Hence the solution procedure to
find the equilibrium path is quite similar to that in the simple AK model
above. Again there will be no transitional dynamics.2

The nice feature of AKmodels is that they provide very simple theoretical
examples of endogenous growth. The problematic feature is that they tend
to simplify the technology description too much. They constitute extreme
knife-edge cases, not something intermediate. This weakness also character-
izes so-called asymptotic AK models or asymptotic reduced-form AK models
(Exercise I.7 provides simple examples).

1The mentioned initial phase is left unnoticed in Acemoglu. In our notation k ≡ K/L

and k̂ ≡ K/H, while Acemoglu’s text has k ≡ K/H.
2See Chapter 12.3. See also Exercise VI.4.
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11.3 On consumption taxation

As a preparation for the discussion shortly in this course of fiscal policy in
relation to economic growth, we shall here try to clarify an aspect of con-
sumption taxation. This is the question: is a consumption tax distortionary
- always? never? sometimes?
The answer is the following.
1. Suppose labor supply is elastic (due to leisure entering the utility

function). Then a consumption tax (whether constant or time-dependent)
is generally distortionary, creating a wedge between the MRS between con-
sumption and leisure and labor’s marginal productivity. The tax reduces the
effective opportunity cost of leisure by reducing the amount of consumption
forgone by working one hour less. Indeed, the tax makes consumption goods
more expensive and so the amount of consumption that the agent can buy
for the hourly wage becomes smaller. The substitution effect on leisure of a
consumption tax is thus positive, while the income and wealth effects will be
negative. Generally, the net effect will not be zero, but it can be of any sign;
it may be small in absolute terms.
2. Suppose labor supply is inelastic (no trade-off between consumption

and leisure). Then, at least in the type of growth models we consider in this
course, a constant (time-independent) consumption tax acts as a lump-sum
tax and is thus non-distortionary. If the consumption tax is time-dependent,
however, a distortion of the intertemporal aspect of household decisions tends
to arise.
To understand answer 2, consider a Ramsey household with inelastic labor

supply. Suppose the household faces a time-varying consumption tax rate
τ t > 0. To obtain a consumption level per time unit equal to ct per capita,
the household has to spend

c̄t = (1 + τ t)ct

units of account (in real terms) per capita. Thus, spending c̄t per capita per
time unit results in the per capita consumption level

ct = (1 + τ t)
−1c̄t. (11.11)

In order to concentrate on the consumption tax as such, we assume the
tax revenue is simply given back as lump-sum transfers and that there are
no other government activities. Then, with a balanced government budget,
we have

xtLt = τ tctLt,
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where xt is the per capita lump-sum transfer, exogenous to the household,
and Lt is the size of the representative household.
Assuming CRRA utility with parameter θ > 0, the instantaneous per

capita utility can be written

u(ct) =
c1−θ
t − 1

1− θ =
(1 + τ t)

θ−1c̄1−θ
t − 1

1− θ .

In our standard notation the household’s intertemporal optimization prob-
lem, in continuous time, is then to choose (c̄t)

∞
t=0 so as to maximize

U0 =

∫ ∞
0

(1 + τ t)
θ−1c̄1−θ

t − 1

1− θ e−(ρ−n)tdt s.t.

c̄t ≥ 0,

ȧt = (rt − n)at + wt + xt − c̄t, a0 given,

lim
t→∞

ate
−
∫∞
0 (rs−n)ds ≥ 0.

From now, we let the timing of the variables be implicit unless needed for
clarity. The current-value Hamiltonian is

H =
(1 + τ)θ−1c̄1−θ − 1

1− θ + λ [(r − n)a+ w + x− c̄] ,

where λ is the co-state variable associated with financial per capita wealth,
a. An interior optimal solution will satisfy the first-order conditions

∂H

∂c̄
= (1 + τ)θ−1c̄−θ − λ = 0, so that (1 + τ)θ−1c̄−θ = λ, (11.12)

∂H

∂a
= λ(r − n) = −λ̇+ (ρ− n)λ, (11.13)

and a transversality condition which amounts to

lim
t→∞

ate
−
∫∞
0 (rs−n)ds = 0. (11.14)

We take logs in (11.12) to get

(θ − 1) log(1 + τ)− θ log c̄ = log λ.

Differentiating w.r.t. time, taking into account that τ = τ t, gives

(θ − 1)
τ̇

1 + τ
− θ

·
c̄

c̄
=
λ̇

λ
= ρ− r.

c© Groth, Lecture notes in Economic Growth, (mimeo) 2016.



202
CHAPTER 11. AK AND REDUCED-FORM AK

MODELS. CONSUMPTION TAXATION

By ordering, we find the growth rate of consumption spending,
·
c̄

c̄
=

1

θ

[
r + (θ − 1)

τ̇

1 + τ
− ρ
]
.

Using (11.11), this gives the growth rate of consumption,

ċ

c
=

·
c̄

c̄
− τ̇

1 + τ
=

1

θ

[
r + (θ − 1)

τ̇

1 + τ
− ρ
]
− τ̇

1 + τ
=

1

θ
(r − τ̇

1 + τ
− ρ).

Assuming firms maximize profit under perfect competition, in equilibrium
the real interest rate will satisfy

r =
∂Y

∂K
− δ. (11.15)

But the effective real interest rate, r̂, faced by the consuming household, is

r̂ = r − τ̇

1 + τ
Q r for τ̇ R 0,

respectively. If for example the consumption tax is increasing, then the effec-
tive real interest rate faced by the consumer is smaller than the market real
interest rate, given in (11.15), because saving implies postponing consump-
tion and future consumption is more expensive due to the higher consumption
tax rate.
The conclusion is that a time-varying consumption tax rate is distor-

tionary. It implies a wedge between the intertemporal rate of transformation
faced by the consumer, reflected by r̂, and the intertemporal rate of transfor-
mation available in the technology of society, indicated by r in (11.15). On
the other hand, if the consumption tax rate is constant, the consumption
tax is non-distortionary when there is no utility from leisure.

A remark on tax smoothing
In models with transitional dynamics it is often so that maintaining constant
tax rates is inconsistent with maintaining a balanced government budget. Is
the implication of this that we should recommend the government to let tax
rates be continually adjusted so as to maintain a forever balanced budget?
No! As the above example as well as business cycle theory suggest, maintain-
ing tax rates constant (“tax smoothing”), and thereby allowing government
deficits and surpluses to arise, will generally make more sense. In itself, a
budget deficit is not worrisome. It only becomes worrisome if it is not accom-
panied later by suffi cient budget surpluses to avoid an exploding government
debt/GDP ratio to arise. This requires that the tax rates taken together
have a level which in the long run matches the level of government expenses.
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Chapter 12

Learning by investing: two

versions

The learning-by-investing model, sometimes called the learning-by-doing model,

is one of the basic endogenous growth models. By basic is meant that the

model specifies not only the technological aspects of the economy but also

the market structure and the household sector, including household prefer-

ences. As in much other endogenous growth theory, the modeling of the

household sector follows Ramsey and assumes the existence of a representa-

tive infinitely-lived household. Since this results in a simple determination

of the long-run interest rate (the modified golden rule), the analyst can in a

first approach concentrate on the main issue, technological change, without

being detracted by aspects secondary to this issue.

In the present model learning from investment experience and diffusion

across firms of the resulting new technical knowledge (positive externalities)

play a key role.

There are two popular alternative versions of the model. The distinguish-

ing feature is whether the learning parameter (see below) is less than one or

equal to one. The first case corresponds to (a simplified version of) a model

by Nobel laureate Kenneth Arrow (1962). The second case has been drawn

attention to by Paul Romer (1986) who assumes that the learning parameter

equals one. These two contributions start out from a common framework

which we now present.1

1This lecture note also contains, in the appendix, a refresher on the concepts of a saddle

point and saddle point stability.
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CHAPTER 12. LEARNING BY INVESTING:

TWO VERSIONS

12.1 The common framework

We consider a closed economy with firms and households interacting under

conditions of perfect competition. Later, a government attempting to inter-

nalize the positive investment externality is introduced.

Let there be  firms in the economy ( “large”). Suppose they all have

the same neoclassical production function,  with CRS. Firm no.  faces the

technology

 =  ( )  = 1 2   (12.1)

where the economy-wide technology level  is an increasing function of so-

ciety’s previous experience, proxied by cumulative aggregate net investment:

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (12.2)

where  is aggregate net investment and  =
P


2

The idea is that investment − the production of capital goods − as an
unintended by-product results in experience or what we may call on-the-job

learning. Experience allows producers to recognize opportunities for process

and quality improvements. In this way knowledge is achieved about how to

use the new capital goods efficiently and how to produce them in a cost-

efficient way. This includes learning how to improve their design so that in

combination with labor they are more productive and better satisfy the needs

of the users. As formulated by Arrow:

“each newmachine produced and put into use is capable of chang-

ing the environment in which production takes place, so that

learning is taking place with continually new stimuli” (Arrow,

1962).3

The learning is assumed to benefit producers in many lines of produc-

tion in the economy: learning by doing, learning by watching, learning by

using. There are knowledge spillovers across firms and these spillovers are

2With arbitrary units of measurement for labor and output, the hypothesis is  =


    0 In (12.2) measurement units are chosen such that  = 1.
3Concerning empirical evidence of learning-by-doing and learning-by-investing, see

Chapter 13. The citation of Arrow indicates that it was rather experience from cumu-

lative gross investment he had in mind as the basis for learning. Yet the hypothesis in

(12.2) is the more popular one - seemingly for no better reason than that it leads to

simpler dynamics. Another way in which (12.2) deviates from Arrow’s original ideas is

by assuming that technical progress is disembodied rather than embodied, an important

distinction we defined in Chapter 2.2.
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reasonably fast relative to the time horizon relevant for growth theory. In

our macroeconomic approach both  and  are in fact assumed to be exactly

the same for all firms in the economy. That is, in this specification the firms

producing consumption-goods benefit from the learning just as much as the

firms producing capital-goods.

The parameter  indicates the elasticity of the general technology level,

 with respect to cumulative aggregate net investment and is named the

“learning parameter”. Whereas Arrow assumes   1 Romer focuses on the

case  = 1 The case of   1 is ruled out since it would lead to explosive

growth (infinite output in finite time) and is therefore not plausible.

12.1.1 The individual firm

In the simple Ramsey model we assumed that households directly own the

capital goods in the economy and rent them out to the firms. When dis-

cussing learning-by-investment, it somehow fits the intuition better if we

(realistically) assume that the firms generally own the capital goods they

use. They then finance their capital investment by issuing shares and bonds.

Households’ financial wealth then consists of these shares and bonds.

Consider firm  There is perfect competition in all markets. So the firm

is a price taker. Its problem is to choose a production and investment plan

which maximizes the present value,  of expected future cash-flows. Thus

the firm chooses ( )
∞
=0 to maximize

0 =

Z ∞

0

[ ( )−  − ] 
−  

0


subject to ̇ =  −  Here  and  are the real wage and gross

investment, respectively, at time ,  is the real interest rate at time  and

 ≥ 0 is the capital depreciation rate. Rising marginal capital installation
costs and other kinds of adjustment costs are assumed minor and can be

ignored. It can be shown that in this case the firm’s problem is equivalent

to maximization of current pure profits in every short time interval. So, as

hitherto, we can describe the firm as just solving a series of static profit

maximization problems.

We suppress the time index when not needed for clarity. At any date firm

 maximizes current pure profits, Π =  ( )− ( + ) −  This

leads to the first-order conditions for an interior solution:

Π = 1( )− ( + ) = 0 (12.3)

Π = 2( )−  = 0
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Behind (12.3) is the presumption that each firm is small relative to the econ-

omy as a whole, so that each firm’s investment has a negligible effect on

the economy-wide technology level . Since  is homogeneous of degree

one, by Euler’s theorem,4 the first-order partial derivatives, 1 and 2 are

homogeneous of degree 0. Thus, we can write (12.3) as

1( ) =  +  (12.4)

where  ≡ . Since  is neoclassical, 11  0 Therefore (12.4) deter-

mines  uniquely. From (12.4) follows that the chosen capital-labor ratio,

 will be the same for all firms, say ̄

12.1.2 The household

The representative household (or family dynasty) has  = 0
 members

each of which supplies one unit of labor inelastically per time unit,  ≥ 0.
The household has CRRA instantaneous utility with parameter   0 The

pure rate of time preference is a constant, . The flow budget identity in per

head terms is

̇ = ( − ) +  −  0 given,

where  is per head financial wealth. The NPG condition is

lim
→∞


−  

0
(−) ≥ 0

The resulting consumption-saving plan implies that per head consumption

follows the Keynes-Ramsey rule,

̇


=
1


( − )

and the transversality condition that the NPG condition is satisfied with

strict equality. In general equilibrium of our closed economy without natural

resources and government debt,  will equal 

4Recall that a function ( ) defined in a domain  is homogeneous of degree  if for

all ( ) in  ( ) = ( ) for all   0 If a differentiable function ( ) is

homogeneous of degree  then (i)  01( ) +  02( ) = ( ) and (ii) the first-order

partial derivatives,  01( ) and  02( ) are homogeneous of degree − 1.
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12.1.3 Equilibrium in factor markets

In equilibrium
P

 =  and
P

  =  where  and  are the avail-

able amounts of capital and labor, respectively (both pre-determined). SinceP
 =

P
  =

P
 ̄ = ̄ the chosen capital-labor ratio,  satisfies

 = ̄ =



≡   = 1 2   (12.5)

As a consequence we can use (12.4) to determine the equilibrium interest

rate:

 = 1( )−  (12.6)

That is, whereas in the firm’s first-order condition (12.4) causality goes from

 to  in (12.6) causality goes from  to  Note also that in our closed

economy with no natural resources and no government debt,  will equal 

The implied aggregate production function is

 =
X


 ≡
X


 =
X


 ( ) =
X


 () (by (12.1) and (12.5))

=  ()
X


 =  () =  () =  () (by (12.2)), (12.7)

where we have several times used that  is homogeneous of degree one.

12.2 The arrow case:   1

The Arrow case is the robust case where the learning parameter satisfies

0    1 The method for analyzing the Arrow case is analogue to that

used in the study of the Ramsey model with exogenous technical progress.

In particular, aggregate capital per unit of effective labor, ̃ ≡ () is a

key variable. Let ̃ ≡ () Then

̃ =
 ()


=  (̃ 1) ≡ (̃)  0  0  00  0 (12.8)

We can now write (12.6) as

 =  0(̃)−  (12.9)

where ̃ is pre-determined.
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12.2.1 Dynamics

From the definition ̃ ≡ () follows

·
̃

̃
=

̇


− ̇


− ̇


=

̇


− 

̇


−  (by (12.2))

= (1− )
 −  − 


−  = (1− )

̃ − ̃− ̃

̃
−  where ̃ ≡ 


≡ 




Multiplying through by ̃ we have

·
̃ = (1− )((̃)− ̃)− [(1− ) + ] ̃ (12.10)

In view of (12.9), the Keynes-Ramsey rule implies

 ≡ ̇


=
1


( − ) =

1



³
 0(̃)−  − 

´
 (12.11)

Defining ̃ ≡  now follows


̃

̃
=

̇


− ̇


=

̇


− 

̇


=

̇


− 

 − − 


=

̇


− 

̃
(̃ − ̃− ̃)

=
1


( 0(̃)−  − )− 

̃
(̃ − ̃− ̃)

Multiplying through by ̃ we have

·
̃ =

∙
1


( 0(̃)−  − )− 

̃
((̃)− ̃− ̃)

¸
̃ (12.12)

The two coupled differential equations, (12.10) and (12.12), determine

the evolution over time of the economy.

Phase diagram

Figure 12.1 depicts the phase diagram. The
·
̃ = 0 locus comes from (12.10),

which gives
·
̃ = 0 for ̃ = (̃)− ( + 

1− 
)̃ (12.13)

where we realistically may assume that  + (1 − )  0 As to the
·
̃ = 0

locus, we have

·
̃ = 0 for ̃ = (̃)− ̃ − ̃


( 0(̃)−  − )

= (̃)− ̃ − ̃


 ≡ (̃) (from (12.11)). (12.14)
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Figure 12.1: Phase diagram for the Arrow model.

Before determining the slope of the
·
̃ = 0 locus, it is convenient to consider

the steady state, (̃∗ ̃∗).

Steady state

In a steady state ̃ and ̃ are constant so that the growth rate of  as well

as  equals ̇+  i.e.,

̇


=

̇


=

̇


+  = 

̇


+ 

Solving gives

̇


=

̇


=



1− 


Thence, in a steady state

 =
̇


−  =



1− 
−  =



1− 
≡ ∗  and (12.15)

̇


= 

̇


=



1− 
= ∗  (12.16)

The steady-state values of  and ̃ respectively, will therefore satisfy, by

(12.11),

∗ =  0(̃∗)−  = + ∗ = + 


1− 
 (12.17)
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To ensure existence of a steady state we assume that the private marginal

product of capital is sufficiently sensitive to capital per unit of effective labor,

from now called the “capital intensity”:

lim
̃→0

 0(̃)   + + 


1− 
 lim

̃→∞
 0(̃) (A1)

The transversality condition of the representative household is that lim→∞


−  
0
(−) = 0 where  is per capita financial wealth. In general equi-

librium  =  ≡ ̃ where  in steady state grows according to (12.16).

Thus, in steady state the transversality condition can be written

lim
→∞

̃∗(
∗
−∗+) = 0 (TVC)

For this to hold, we need

∗  ∗ +  =


1− 
 (12.18)

by (12.15). In view of (12.17), this is equivalent to

−   (1− )


1− 
 (A2)

which we assume satisfied.

As to the slope of the
·
̃ = 0 locus we have, from (12.14),

0(̃) =  0(̃)−  − 1

(̃
 00(̃)


+ )   0(̃)−  − 1

 (12.19)

since  00  0 At least in a small neighborhood of the steady state we can

sign the right-hand side of this expression. Indeed,

 0(̃∗)−−1

∗ = +∗−

1


∗ = +



1− 
− 

1− 
= −−(1−) 

1− 
 0

(12.20)

by (12.15) and (A2). So, combining with (12.19), we conclude that 0(̃∗)  0
By continuity, in a small neighborhood of the steady state, 0(̃) ≈ 0(̃∗)  0

Therefore, close to the steady state, the
·
̃ = 0 locus is positively sloped, as

indicated in Figure 12.1.

Still, we have to check the following question: In a neighborhood of the

steady state, which is steeper, the
·
̃ = 0 locus or the

·
̃ = 0 locus? The slope

of the latter is  0(̃)−  − (1− ) from (12.13) At the steady state this

slope is

 0(̃∗)−  − 1

∗ ∈ (0 0(̃∗))
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in view of (12.20) and (12.19). The
·
̃ = 0 locus is thus steeper. So, the

·
̃ = 0

locus crosses the
·
̃ = 0 locus from below and can only cross once.

The assumption (A1) ensures existence of a ̃∗  0 satisfying (12.17). As
Figure 12.1 is drawn, a little more is implicitly assumed namely that there

exists a ̂  0 such that the private net marginal product of capital equals

the steady-state growth rate of output, i.e.,

 0(̂)−  = (
̇


)∗ = (

̇


)∗ +

̇


=



1− 
+  =



1− 
 (12.21)

where we have used (12.16). Thus, the tangent to the
·
̃ = 0 locus at ̃ = ̂

is horizontal and ̂  ̃∗ as indicated in the figure.
Note, however, that ̂ is not the golden-rule capital intensity. The latter

is the capital intensity, ̃ at which the social net marginal product of

capital equals the steady-state growth rate of output (see Appendix). If ̃
exists, it will be larger than ̂ as indicated in Figure 12.1. To see this, we

now derive a convenient expression for the social marginal product of capital.

From (12.7) we have




= 1(·) + 2(·)−1 =  0(̃) + 2(·)(−1) (by (12.8))

=  0(̃) + ( (·)− 1(·))−1 (by Euler’s theorem)

=  0(̃) + ((̃)−  0(̃))−1 (by (12.8) and (12.2))

=  0(̃) + ((̃)−1−  0(̃)) =  0(̃) + 
(̃)− ̃ 0(̃)

̃
  0(̃)

in view of ̃ = () = 1−−1 and (̃)̃− 0(̃)  0As expected, the
positive externality makes the social marginal product of capital larger than

the private one. Since we can also write  = (1− ) 0(̃) + (̃)̃

we see that  is (still) a decreasing function of ̃ since both  0(̃) and
(̃)̃ are decreasing in ̃ So the golden rule capital intensity, ̃ will be

that capital intensity which satisfies

 0(̃) + 
(̃)− ̃

0(̃)

̃
−  =

Ã
̇



!∗
=



1− 


To ensure there exists such a ̃ we strengthen the right-hand side inequal-

ity in (A1) by the assumption

lim
̃→∞

Ã
 0(̃) + 

(̃)− ̃ 0(̃)

̃

!
  +



1− 
 (A3)
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This, together with (A1) and 
00
 0, implies existence of a unique ̃, and

in view of our additional assumption (A2), we have 0  ̃∗  ̂  ̃ as

displayed in Figure 12.1.

Stability

The arrows in Figure 12.1 indicate the direction of movement, as determined

by (12.10) and (12.12)). We see that the steady state is a saddle point.

Moreover, the dynamic system is saddle-point stable.5 The dynamic system

has one pre-determined variable, ̃ and one jump variable, ̃ The saddle

path is not parallel to the jump variable axis. We claim that for a given

̃0  0 (i) the initial value of ̃0 will be the ordinate to the point where

the vertical line ̃ = ̃0 crosses the saddle path; (ii) over time the economy

will move along the saddle path towards the steady state. Indeed, this time

path is consistent with all conditions of general equilibrium, including the

transversality condition (TVC). And the path is the only technically feasible

path with this property. Indeed, all the divergent paths in Figure 12.1 can

be ruled out as equilibrium paths because they can be shown to violate the

transversality condition of the household.

In the long run  and  ≡ ≡ ̃= (̃∗) grow at the rate (1−)
which is positive if and only if   0 This is an example of endogenous growth

in the sense that the positive long-run per capita growth rate is generated

through an internal mechanism (learning) in the model (in contrast to exoge-

nous technology growth as in the Ramsey model with exogenous technical

progress).

12.2.2 Two types of endogenous growth

As also touched upon elsewhere in these lecture notes, it is useful to distin-

guish between two types of endogenous exponential growth. Fully endoge-

nous exponential growth occurs when the long-run growth rate of  is positive

without support from growth in any exogenous factor; the Romer case, to

be considered in the next section, provides an example. Semi-endogenous

exponential growth occurs if growth is endogenous but a positive per capita

growth rate can not be maintained in the long run without the support

from growth in some exogenous factor (for example exogenous growth in the

labor force). Clearly, in the Arrow version of learning by investing, exponen-

tial growth is “only” semi-endogenous. The technical reason for this is the

assumption that the learning parameter,  is below 1 which implies dimin-

ishing marginal returns to capital at the aggregate level. As a consequence,

5A formal definition is given in Appendix B.
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if and only if   0 do we have ̇  0 in the long run. In line with this,

∗  06

The key role of population growth derives from the fact that although

there are diminishing marginal returns to capital at the aggregate level, there

are increasing returns to scale w.r.t. capital and labor. For the increasing

returns to be exploited, growth in the labor force is needed. To put it dif-

ferently: when there are increasing returns to  and  together, growth in

the labor force not only counterbalances the falling marginal productivity of

aggregate capital (this counter-balancing role reflects the direct complemen-

tarity between  and ), but also upholds sustained productivity growth via

the learning mechanism.

Note that in the semi-endogenous growth case, ∗ = (1− )2  0

for   0 That is, a higher value of the learning parameter implies higher

per capita growth in the long run, when   0. Note also that ∗ = 0
= ∗ that is, in the semi-endogenous growth case, preference parameters
do not matter for the long-run per capita growth rate. As indicated by

(12.15), the long-run growth rate is tied down by the learning parameter,

 and the rate of population growth,  Like in the simple Ramsey model,

however, it can be shown that preference parameters matter for the level of

the growth path. For instance (12.17) shows that ̃∗  0 so that more

patience (lower ) imply a higher ̃∗ and thereby a higher  = (̃∗)

This suggests that although taxes and subsidies do not have long-run

growth effects, they can have level effects.

In this model there is clearly a motivation for government intervention

due to the positive externality of private investment. But details about the

design of government policy vis-a-vis this externality will in this lecture note

only be discussed in relation to the Romer case of  = 1, which is simpler

and to which we now return.

12.3 Romer’s limiting case:  = 1  = 0

We now consider the limiting case  = 1We should think of it as a thought

experiment because, by most observers, the value 1 is considered an unrealis-

tically high value for the learning parameter. Moreover, in combination with

  0 the value 1 will lead to a forever rising per capita growth rate which

does not accord the economic history of the industrialized world over more

6Note, however, that the model, and therefore (12.15), presupposes  ≥ 0 If   0 the

steady-state formulas in Section 12.2 are no longer valid. The formula in (12.16) would

for instance imply a decreasing level of technical knowledge, which, at least in a modern

economy, is implausible.
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than a century. To avoid a forever rising growth rate, we therefore introduce

the parameter restriction  = 0

The resulting model turns out to be extremely simple and at the same

time it gives striking results (both circumstances have probably contributed

to its popularity).

First, with  = 1 we get  =  and so the equilibrium interest rate is,

by (12.6),

 = 1()−  = 1(1 )−  ≡ ̄

where we have divided the two arguments of 1() by  ≡  and

again used Euler’s theorem. Note that the interest rate is constant “from the

beginning” and independent of the historically given initial value of  0.

The aggregate production function is now

 =  () =  (1 )  constant, (12.22)

and is thus linear in the aggregate capital stock.7 In this way the general neo-

classical presumption of diminishing returns to capital has been suspended

and replaced by exactly constant returns to capital. Thereby the Romer

model belongs to the class of reduced-form AK models, that is, models where

in general equilibrium the interest rate and the aggregate output-capital ratio

are necessarily constant over time whatever the initial conditions.

The method for analyzing an AK model is different from the one used for

a diminishing returns model as above.

12.3.1 Dynamics

The Keynes-Ramsey rule now takes the form

̇


=
1


(̄ − ) =

1


(1(1 )−  − ) ≡  (12.23)

which is also constant “from the beginning”. To ensure positive growth, we

assume

1(1 )−    (A1’)

And to ensure bounded intertemporal utility (and thereby a possibility of

satisfying the transversality condition of the representative household), it is

assumed that

  (1− ) and therefore    +  = ̄ (A2’)

7Acemoglu, p. 400, writes this as  = ̃()
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Figure 12.2: Illustration of the fact that for  given,  (1 )   1(1 )

Solving the linear differential equation (12.23) gives

 = 0
 (12.24)

where 0 is unknown so far (because  is not a predetermined variable). We

shall find 0 by applying the households’ transversality condition

lim
→∞


−̄ = lim

→∞


−̄ = 0 (TVC)

First, note that the dynamic resource constraint for the economy is

̇ =  − −  =  (1 ) − − 

or, in per-capita terms,

̇ = [ (1 )− ]  − 0
 (12.25)

In this equation it is important that  (1 ) −  −   0 To understand

this inequality, note that, by (A2’),  (1 ) −  −    (1 ) −  − ̄ =

 (1 ) − 1(1 ) = 2(1 )  0 where the first equality is due to ̄

= 1(1 )−  and the second is due to the fact that since  is homogeneous

of degree 1, we have, by Euler’s theorem,  (1 ) = 1(1 ) · 1 + 2(1 )

 1(1 )   in view of (A1’). The key property  (1 )− 1(1 )  0 is

illustrated in Figure 12.2.
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The solution of a general linear differential equation of the form ̇() +

() =  with  6= − is

() = ((0)− 

+ 
)− +



+ 
 (12.26)

Thus the solution to (12.25) is

 = (0 − 0

 (1 )−  − 
)( (1)−) +

0

 (1 )−  − 
 (12.27)

To check whether (TVC) is satisfied we consider


−̄ = (0 − 0

 (1 )−  − 
)( (1)−−̄) +

0

 (1 )−  − 
(−̄)

→ (0 − 0

 (1 )−  − 
)( (1)−−̄) for →∞

since ̄   by (A2’). But ̄ = 1(1 )−    (1 )−  and so (TVC) is

only satisfied if

0 = ( (1 )−  − )0 (12.28)

If 0 is less than this, there will be over-saving and (TVC) is violated (
−̄ →

∞ for  → ∞ since  = ). If 0 is higher than this, both the NPG and

(TVC) are violated (
−̄ → −∞ for →∞).

Inserting the solution for 0 into (12.27), we get

 =
0

 (1 )−  − 
 = 0



that is,  grows at the same constant rate as  “from the beginning” Since

 ≡  =  (1 ) the same is true for  Hence, from start the system is

in balanced growth (there is no transitional dynamics).

This is a case of fully endogenous growth in the sense that the long-run

growth rate of  is positive without the support by growth in any exogenous

factor. This outcome is due to the absence of diminishing returns to aggregate

capital, which is implied by the assumed high value of the learning parameter.

But the empirical foundation for this high value is weak, to say the least, cf.

Chapter 13. A further drawback of this special version of the learning model

is that the results are non-robust. With  slightly less than 1, we are back

in the Arrow case and growth peters out, since  = 0With  slightly above

1, it can be shown that growth becomes explosive: infinite output in finite

time!8

8See Appendix B in Chapter 13.
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The Romer case,  = 1 is thus a knife-edge case in a double sense. First,

it imposes a particular value for a parameter which apriori can take any value

within an interval. Second, the imposed value leads to non-robust results;

values in a hair’s breadth distance result in qualitatively different behavior

of the dynamic system.

Note that the causal structure in the long run in the diminishing returns

case is different than in the AK-case of Romer. In the diminishing returns

case the steady-state growth rate is determined first, as ∗ in (12.15), then
∗ is determined through the Keynes-Ramsey rule and, finally,  is de-

termined by the technology, given ∗ In contrast, the Romer case has 
and  directly given as  (1 ) and ̄ respectively. In turn, ̄ determines the

(constant) equilibrium growth rate through the Keynes-Ramsey rule

12.3.2 Economic policy in the Romer case

In the AK case, that is, the fully endogenous growth case, we have 

 0 and   0 Thus, preference parameters matter for the long-run

growth rate and not “only” for the level of the upward-sloping time path

of per capita output. This suggests that taxes and subsidies can have long-

run growth effects. In any case, in this model there is a motivation for

government intervention due to the positive externality of private investment.

This motivation is present whether   1 or  = 1 Here we concentrate on

the latter case, for no better reason than that it is simpler. We first find the

social planner’s solution.

The social planner

Recall that by a social planner we mean a fictional ”all-knowing and all-

powerful” decision maker who maximizes an objective function under no

other constraints than what follows from technology and initial resources.

The social planner faces the aggregate production function (12.22) or, in per

capita terms,  =  (1 ) The social planner’s problem is to choose ()
∞
=0

to maximize

0 =

Z ∞

0

1−

1− 
− s.t.

 ≥ 0

̇ =  (1 ) −  −  0  0 given, (12.29)

 ≥ 0 for all   0 (12.30)
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The current-value Hamiltonian is

(   ) =
1−

1− 
+  ( (1 ) − − ) 

where  =  is the adjoint variable associated with the state variable, which

is capital per unit of labor. Necessary first-order conditions for an interior

optimal solution are




= − −  = 0, i.e., − =  (12.31)




= ( (1 )− ) = −̇ +  (12.32)

We guess that also the transversality condition,

lim
→∞


− = 0 (12.33)

must be satisfied by an optimal solution.9 This guess will be of help in finding

a candidate solution. Having found a candidate solution, we shall invoke a

theorem on sufficient conditions to ensure that our candidate solution is

really an optimal solution.

Log-differentiating w.r.t.  in (12.31) and combining with (12.32) gives

the social planner’s Keynes-Ramsey rule,

̇


=
1


( (1 )−  − ) ≡   (12.34)

We see that    This is because the social planner internalizes the

economy-wide learning effect associated with capital investment, that is, the

social planner takes into account that the “social” marginal product of capital

is  =  (1 )  1(1 ) To ensure bounded intertemporal utility we

sharpen (A2’) to

  (1− )  (A2”)

To find the time path of , note that the dynamic resource constraint (12.29)

can be written

̇ = ( (1 )− ) − 0
 

in view of (12.34). By the general solution formula (12.26) this has the

solution

 = (0− 0

 (1 )−  − 
)( (1)−) +

0

 (1 )−  − 
  (12.35)

9The proviso implied by saying “guess” is due to the fact that optimal control theory

does not guarantee that this “standard” transversality condition is necessary for optimality

in all infinite horizon optimization problems.
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In view of (12.32), in an interior optimal solution the time path of the adjoint

variable  is

 = 0
−[( (1)−−]

where 0 = −0  0 by (12.31) Thus, the conjectured transversality condi-

tion (12.33) implies

lim
→∞


−( (1)−) = 0 (12.36)

where we have eliminated 0 To ensure that this is satisfied, we multiply 
from (12.35) by −( (1)−) to get


−( (1)−) = 0 − 0

 (1 )−  − 
+

0

 (1 )−  − 
[−( (1)−)]

→ 0 − 0

 (1 )−  − 
for →∞

since, by (A2”),    +  =  (1 ) −  in view of (12.34). Thus,

(12.36) is only satisfied if

0 = ( (1 )−  −  )0 (12.37)

Inserting this solution for 0 into (12.35), we get

 =
0

 (1 )−  − 
  = 0

 

that is,  grows at the same constant rate as  “from the beginning” Since 

≡  =  (1 ) the same is true for  Hence, our candidate for the social

planner’s solution is from start in balanced growth (there is no transitional

dynamics).

The next step is to check whether our candidate solution satisfies a set of

sufficient conditions for an optimal solution. Here we can use Mangasarian’s

theorem which, applied to a problem like this, with one control variable and

one state variable, says that the following conditions are sufficient:

(a) Concavity: The Hamiltonian is jointly concave in the control and state

variables, here  and .

(b) Non-negativity: There is for all  ≥ 0 a non-negativity constraint on
the state variable; and the co-state variable,  is non-negative for all

 ≥ 0.
(c) TVC: The candidate solution satisfies the transversality condition lim→∞


− = 0 where 

− is the discounted co-state variable.
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In the present case we see that the Hamiltonian is a sum of concave

functions and therefore is itself concave in ( ) Further, from (12.30) we see

that condition (b) is satisfied. Finally, our candidate solution is constructed

so as to satisfy condition (c). The conclusion is that our candidate solution

is an optimal solution. We call it the SP allocation.

Implementing the SP allocation in the market economy

Returning to the market economy, we assume there is a policy maker, say

the government, with only two activities. These are (i) paying an investment

subsidy,  to the firms so that their capital costs are reduced to

(1− )( + )

per unit of capital per time unit; (ii) financing this subsidy by a constant

consumption tax rate  

Let us first find the size of  needed to establish the SP allocation. Firm

 now chooses  such that





| fixed = 1() = (1− )( + )

By Euler’s theorem this implies

1() = (1− )( + ) for all 

so that in equilibrium we must have

1() = (1− )( + )

where  ≡  which is pre-determined from the supply side. Thus, the

equilibrium interest rate must satisfy

 =
1()

1− 
−  =

1(1 )

1− 
−  (12.38)

again using Euler’s theorem.

It follows that  should be chosen such that the “right”  arises. What is

the “right” ? It is that net rate of return which is implied by the production

technology at the aggregate level, namely − =  (1 )− If we can
obtain  =  (1 )− then there is no wedge between the intertemporal rate
of transformation faced by the consumer and that implied by the technology.

The required  thus satisfies

 =
1(1 )

1− 
−  =  (1 )− 
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so that

 = 1− 1(1 )

 (1 )
=

 (1 )− 1(1 )

 (1 )
=

2(1 )

 (1 )


In case  = 
 ()

1− 0    1  = 1. . .   this gives  = 1− 

It remains to find the required consumption tax rate   The tax rev-

enue will be  and if the government budget should be balanced at every

instant,10 the required tax revenue is

T = ( + ) = ( (1 )− 1(1 )) = 

Thus, with a balanced budget the required tax rate is

 =
T

=

 (1 )− 1(1 )


=

 (1 )− 1(1 )

 (1 )−  − 
 0 (12.39)

where we have used that the proportionality in (12.37) between  and 

holds for all  ≥ 0 Substituting (12.34) into (12.39), the solution for  can
be written

 =
 [ (1 )− 1(1 )]

( − 1)( (1 )− ) + 
=

2(1 )

( − 1)( (1 )− ) + 


The required tax rate on consumption is thus a constant. It therefore does

not distort the consumption/saving decision on the margin, cf. Chapter 11.

It follows that the allocation obtained by this subsidy-tax policy is the SP

allocation. A policy, here the policy ( ) which in a decentralized system

induces the SP allocation, is called a first-best policy.

12.4 Appendix

A. The golden-rule capital intensity in the Arrow case

In our discussion of the Arrow model in Section 12.2 (where 0    1)

we claimed that the golden-rule capital intensity, ̃ will be that effective

capital-labor ratio at which the social net marginal productivity of capital

equals the steady-state growth rate of output. In this respect the Arrow

model with endogenous technical progress is similar to the standard neoclas-

sical growth model with exogenous technical progress.

The claim corresponds to a very general theorem, valid also for models

with many capital goods and non-existence of an aggregate production func-

tion. This theorem says that the highest sustainable path for consumption

10We say “if” because in a growing economy there is scope for some persistent deficit

financing without threatening fiscal sustainability.
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per unit of labor in an economy will be that path which results from those

techniques which profit maximizing firms choose under perfect competition

when the real interest rate equals the steady-state growth rate of GNP (see

Gale and Rockwell, 1975).

To prove our claim, note that in steady state, (12.14) holds whereby

consumption per unit of labor (here the same as per capita consumption in

view of  = labor force = population) can be written

 ≡ ̃ =

∙
(̃)− ( + 

1− 
)̃

¸




=

∙
(̃)− ( + 

1− 
)̃

¸³
0


1− 

´
(by ∗ =



1− 
)

=

∙
(̃)− ( + 

1− 
)̃

¸³
(̃0)

1
1− 


1− 

´
(from ̃ =




 

=
1−





also for  = 0)

=

∙
(̃)− ( + 

1− 
)̃

¸
̃


1−0


1− 


1−  ≡ (̃)0


1− 


1− 

defining (̃) in the obvious way.

We look for that value of ̃ at which this steady-state path for  is at the

highest technically feasible level. The positive coefficient, 0


1− 

1− , is the

only time-dependent factor and can be ignored since it is exogenous. The

problem is thereby reduced to the static problem of maximizing (̃) with

respect to ̃  0 We find

0(̃) =

∙
 0(̃)− ( + 

1− 
)

¸
̃


1− +

∙
(̃)− ( + 

1− 
)̃

¸


1− 
̃


1−−1

=

"
 0(̃)− ( + 

1− 
) +

Ã
(̃)

̃
− ( + 

1− 
)

!


1− 

#
̃


1−

=

"
(1− ) 0(̃)− (1− ) − + 

(̃)

̃
− ( +



1− 
)

#
̃


1−

1− 

=

"
(1− ) 0(̃)−  + 

(̃)

̃
− 

1− 

#
̃


1−

1− 
≡ (̃)

̃


1−

1− 
 (12.40)

defining (̃) in the obvious way. The first-order condition for the problem,

0(̃) = 0 is equivalent to (̃) = 0 After ordering this gives

 0(̃) + 
(̃)− ̃ 0(̃)

̃
−  =



1− 
 (12.41)
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We see that

0(̃) R 0 for (̃) R 0
respectively. Moreover,

0(̃) = (1− ) 00(̃)− 
(̃)− ̃ 0(̃)

̃2
 0

in view of  00  0 and (̃)̃   0(̃) So a ̃  0 satisfying (̃) = 0 is the

unique maximizer of (̃) By (A1) and (A3) in Section 12.2 such a ̃ exists

and is thereby the same as the ̃ we were looking for.

The left-hand side of (12.41) equals the social marginal productivity of

capital and the right-hand side equals the steady-state growth rate of output.

At ̃ = ̃ it therefore holds that




−  =

Ã
̇



!∗


This confirms our claim in Section 12.2 about ̃.

Remark about the absence of a golden rule in the Romer model. In the

Romer model, which has constant  the golden rule is not a well-defined

concept for the following reason. Along any balanced growth path we have

from (12.29),

 ≡ ̇


=  (1 )−  − 


=  (1 )−  − 0

0


because  (= ) is by definition constant along a balanced growth path,

whereby also  must be constant. We see that  is decreasing linearly

from  (1 ) −  to − when 00 rises from nil to  (1 ) So choosing

among alternative technically feasible balanced growth paths is inevitably a

choice between starting with low consumption to get high growth forever or

starting with high consumption to get low growth forever. Given any 0  0

the alternative possible balanced growth paths will therefore sooner or later

cross each other in the ( ln ) plane. Hence, there exists no balanced growth

path which for all  ≥ 0 has  higher than along any other technically

feasible balanced growth path. So no golden rule path exists. This is a

general property of AK and reduced-form AK models.

B. Saddle-point stability

This appendix is a refresher on the concept of saddle-point stability, a concept

which perplexes many people.
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Consider a two-dimensional dynamic system (two coupled first-order dif-

ferential equations). Suppose the system has a steady state which is a saddle

point (which is the case if and only if the two eigenvalues of the associated

Jacobian matrix, evaluated at the steady state, are of opposite sign). Then,

so far, either presence or absence of saddle-point stability is possible. And

which of the two cases occur can not be diagnosed from the two differential

equations in isolation. One has to consider the boundary conditions. Here is

a complete definition of (local) saddle-point stability.

DEFINITION. A steady state of a two-dimensional dynamic system is

(locally) saddle-point stable if:

1. the steady state is a saddle point;

2. one of the two endogenous variables is predetermined while the other

is a jump variable;

3. the saddle path is not parallel to the jump variable axis; and

4. there is a boundary condition on the system such that the diverging

paths are ruled out as solutions.

Thus, to establish saddle-point stability, all four properties must be veri-

fied. If for instance point 1 and 2 hold, but, contrary to point 3, the saddle

path is parallel to the jump variable axis, then saddle-point stability does

not obtain. Indeed, given that the predetermined variable initially deviated

from its steady-state value, it would not be possible to find any initial value

of the jump variable such that the solution of the system would converge to

the steady state for →∞.
To say that the steady state is saddle-point stable is synonymous with

saying that the dynamic system is saddle-point stable.

For an -dimensional dynamic system ( coupled first-order differential

equations,  ≥ 2) the concepts of a saddle point and saddle-point stability
are defined via a generalization of point 1 to 4. As to point 1: A steady state

of an -dimensional dynamic system is called a saddle point if all eigenvalues

of the associated Jacobian matrix have non-zero real parts and at least two of

the eigenvalues, have real parts of opposite sign. As to point 2: The number

of predetermined variables in the system equals the number of eigenvalues

with negative real part (and the number of jump variables in the system

consequently equals the number of eigenvalues with positive real part). The

generalization of points 3 and 4 is more nerdy, so we refer to, for instance,

Hirsch and Smale, Differential equations, dynamic systems, and linear alge-

bra, Academic Press, 1974.
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Chapter 13

Perspectives on learning by

doing and learning by investing

By adding some theoretical and empirical perspectives to learning-by-doing

and learning-by-investing models of endogenous growth, this chapter is a

follow-up on Chapter 12. The contents are:

1. Learning by doing, learning by using, learning by watching

2. Empirics on learning by investing

3. Disembodied vs. embodied technical change*

4. Static comparative advantage vs. dynamics of learning by doing*

The growth rate of any time-dependent variable   0 is written  ≡ ̇

In this chapter the economy-wide technology level at time  is denoted 
rather than 

13.1 Learning by doing, learning by using,

learning by watching

The term learning by doing refers to the hypothesis that accumulated work

experience, including repetition of the same type of action, improves workers’

productivity and adds to technical knowledge. In connection with training

in applying new production equipment, sometimes the related term learning

by using is appropriate. In a broader context, the literature sometimes refers

to spillover effects as learning by watching.
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A specific form of learning by doing is called learning by investing and is

treated separately in Section 13. 2 and 13.3.

A learning-by-doing model typically combines an aggregate CRS produc-

tion function,

 =  ( ) (13.1)

with a learning function, for example,

̇ =  
    0 0   ≤ 1 (13.2)

where  is a learning parameter and  is a constant that, depending on the

value of  and the complete model in which (13.2) is embedded, is either an

unimportant constant that depends only on measuring units or a parameter

of importance for the productivity level or even the productivity growth

rate. In Section 13.4 below, on the resource curse problem, we consider a

two-sector model where each sector’s productivity growth is governed by such

a relationship.1

Another learning hypothesis is of the form

̇ =  
 


  0  0 given,   0  ≤ 1   0 (13.3)

Here both  and  are learning parameters, reflecting the elasticities of learn-

ing w.r.t. the technology level and labor hours, respectively. The higher the

number of human beings involved in production and the more time they

spend in production, the more experience is accumulated. Sub-optimal in-

gredients in the production processes are identified and eliminated. The

experience and knowledge arising in one firm or one sector is speedily dif-

fused to other firms and other sectors in the economy (knowledge spillovers

or learning by watching), and as a result the aggregate productivity level is

increased.2

Since hours spent,  is perhaps a better indicator for “new experience”

than output,  specification (13.3) may seem more appealing than specifi-

cation (13.2). So this section concentrates on (13.3).

If the labor force is growing  should be assumed strictly less than one,

because with  = 1 there would be a built-in tendency to forever faster

growth, which does not seem plausible. In fact,   0 can not be ruled

out; that would reflect that learning becomes more and more difficult (“the

easiest ideas are found first”). On the other hand, the case of “standing on

1In his Chapter 20, Section 20.4, on industrialization and structural change Acemoglu

considers a model with two sectors, an agrarian and a manufacturing sector, where in the

latter learning by doing in the form (13.2) with  = 1 plays an important role.
2Diffusion of proficiency also occurs via apprentice-master relationships.
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the shoulders” is also possible, that is, the case 0   ≤ 1, which is the case
where new learning becomes easier, the more is learnt already.

In “very-long-run” growth theory concerned with human development in

an economic history perspective, the  in (13.3) has been replaced simply

by the size of population in the relevant region (which may be considerably

larger than a single country). This is the “population breeds ideas” view,

cf. Kremer (1993). Anyway, many simple models consider the labor force

to be proportional to population size, and then it does not matter whether

we use the learning-by-doing interpretation or the population-breeds-ideas

interpretation.

The so-called Horndal effect (reported by Lundberg, 1961) was one of

the empirical observations motivating the learning-by-doing idea in growth

theory:

“The Horndal-iron works in Sweden had no new investment (and therefore

presumably no significant change in its methods of production) for a

period of 15 years, yet productivity (output per man-hour) rose on the

average close to 2 % per annum. We find again steadily increasing

performance which can only be imputed to learning from experience”

(here cited after Arrow, 1962).

Similar patterns of on-the-job productivity improvements have been ob-

served in ship-building, airframe construction, and chemical industries. On

the other hand, within a single production line there seems to be a tendency

for this kind of productivity increases to gradually peter out, which suggests

  0 in (13.3). We may call this phenomenon “diminishing returns in the

learning process”: the potential for new learning gradually evens out as more

and more learning has already taken place. But new products are continu-

ously invented and the accumulated knowledge is transmitted, more or less,

to the production of these new products that start on a “new learning curve”,

along which there is initially “a large amount to be learned”.3 This combi-

nation of qualitative innovation and continuous productivity improvement

through learning may at the aggregate level end up in a  ≥ 0 in (13.3).
In any case, whatever the sign of  at the aggregate level, with   1

this model is capable of generating sustained endogenous per capita growth

(without “growth explosion”) if the labor force is growing at a rate  

0. Indeed, as in Chapter 12, there are two cases that are consistent with

a balanced growth path (BGP for short) with positive per capita growth,

3A learning curve is a graph of estimated productivity (or its inverse, cf. Fig. 13.1 or

Fig. 13.2 below) as a function of cumulative output or of time passed since production of

the new product began at some plant.
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namely the case   1 combined with   0 and the case  = 1 combined

with  = 0

We will show this for a closed economy with  = 0
  ≥ 0 and with

capital accumulation according to

̇ =  −  =  −  −  0  0 given (13.4)

13.1.1 The case:   1 in (13.3)

Let us first consider the growth rate of  ≡  along a BGP. There are two

steps in the calculation of this growth rate.

Step 1. Given (13.4), from basic balanced growth theory (Chapter 4) we

know that along a BGP with positive gross saving, not only are, by definition,

 and  constant, but they are also the same, so that  is constant

over time. Owing to the CRS assumption, (13.1) implies that

1 =  (







) (13.5)

When  is constant,  ≡  must be constant, whereby

 =  =  −  (13.6)

a constant.

Step 2. Dividing through by  in (13.3), we get

 ≡ ̇


=  −1

 

 

Taking logs gives log  = log+(−1) log  + log And taking the time

derivative on both sides of this equation leads to

̇


= (− 1) +  (13.7)

In view of  being constant along a BGP, we have ̇ = 0 and so (13.7)

gives

 =


1− 


presupposing   1 Hence, by (13.6),

 =


1− 

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Under the assumption that   0 this per capita growth rate is positive,

whatever the sign of . Given  the growth rate is an increasing function

of both learning parameters. Since a positive per capita growth rate can in

the long run be maintained only if supported by   0 this is an example of

semi-endogenous exponential growth (as long as  is exogenous).

This model thus gives growth results somewhat similar to the results

in Arrow’s learning-by-investing model, cf. Chapter 12. In both models the

learning is an unintended by-product of the work process and construction of

investment goods, respectively. And both models assume that knowledge is

non-appropriable (non-exclusive) and that knowledge spillovers across firms

are fast (in the time perspective of growth theory). So there are positive

externalities which may motivate government intervention.

Methodological remark: Different approaches to the calculation

of long-run growth rates Within this semi-endogenous growth case, de-

pending on the situation, different approaches to the calculation of long-run

growth rates may be available. In Chapter 12, in the analysis of the Arrow

case   1 the point of departure in the calculation was the steady state

property of Arrow’s model that ̃ ≡ () is a constant. But this point of

departure presupposes that we have established a well-defined steady state

in the sense of a stationary point of a complete dynamic system (which in

the Arrow model consists of two first-order differential equations in ̃ and ̃

respectively), usually involving also a description of the household sector.

In the present case we are not in this situation because we have not

specified how the saving in (13.4) is determined. This explains why above

(as well as in Chapter 10) we have taken another approach to the calculation

of the long-run growth rate. We simply assume balanced growth and ask

what the growth rate must then be. If the technologies in the economy

are such that per capita growth in the long run can only be due to either

exogenous productivity growth or semi-endogenous productivity growth, this

approach is usually sufficient to determine a unique growth rate.

Note also, however, that this latter feature is in itself an interesting and

useful result (as exemplified in Chapter 10). It tells us what the growth

rate must be in the long run provided that the system converges to balanced

growth. The growth rate will be the same, independently of the market

structure and the specification of the household sector, that is, it will be the

same whether, for example, there is a Ramsey-style household sector or an

overlapping generations set-up.4 And at least in the first case the growth

4Specification of these things is needed if we want to study the transitional dynamics:

the adjustment processes outside balanced growth/steady state, including the question of
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rate will be the same whatever the size of the preference parameters (the

rate of time preference and the elasticity of marginal utility of consumption).

Moreover, only if economic policy affects the learning parameters or the pop-

ulation growth rate (two things that are often ruled out inherently by the

setup), will the long-run growth rate be affected. Still, economic policy can

temporarily affect economic growth and in this way affect the level of the

long-run growth path.

13.1.2 The case  = 1 in (13.3)

With  = 1 in (13.3), the above growth rate formulas are no longer valid.

But returning to (13.3), we have  = 

 . Then, unless  = 0 the growth

rate of  will tend to rise forever, since we have  = 

0

 → ∞ for

  0.

So we will assume  = 0 Then  = 0 for all  implying  = 

0 for

all . Since both  and 0 are exogenous, it is as if the rate of technical

progress,   were exogenous. Yet, technical progress is generated by an

internal mechanism. If the government by economic policy could affect  or

0 also  would be affected. In any case, under balanced growth, (13.5)

holds again and so  =  must be constant. This implies  =

 = 

0  0 Consequently, positive per capita growth can be maintained

forever without support of growth in any exogenous factor. So we consider

fully endogenous exponential growth.

As in the semi-endogenous growth case we can here determine the growth

rate along a BGP independently of how the household sector is described.

And preference parameters do not affect the growth rate. The fact that this

is so even in the fully-endogenous growth case is due to the “law of motion”

of technology making up a subsystem that is independent of the remainder of

the economic system. This is a special feature of the “growth engine” (13.3).

Although it is not a typical ingredient of endogenous growth models, this

growth engine can not be ruled out apriori. The simple alternative, (13.2), is

very different in that the endogenous aggregate output, , is involved. We

return to (13.2) in Section 13.4 below.

Before proceeding, a brief remark on the explosive case   1 in (13.2)

or (13.3) is in place. If we imagine   1 growth becomes explosive in

the extreme sense that output as well as productivity, hence also per capita

consumption, will tend to infinity in finite time. This is so even if  = 0

The argument is based on the mathematical fact that, given a differential

equation ̇ =  where   1 and 0  0 the solution  has the property

convergence to balanced growth/steady state.
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that there exists a 1  0 such that  → ∞ for  → 1. For details, see

Appendix B.

13.2 Disembodied learning by investing

In the above framework the work process is a source of learning whether it

takes place in the consumption or capital goods sector. This is learning by

doing in a broad sense. If the source of learning is specifically associated

with the construction of capital goods, the learning by doing is often said to

be of the form of learning by investing. Why in the headline of this section

we have added the qualification “disembodied”, will be made clear in Section

13.3. Another name for learning by investing is investment-specific learning

by doing.

The prevalent view in the empirical literature seems to be that learning

by investing is the most important form of learning by doing; ship-building

and airframe construction are prominent examples. To the extent that the

construction of capital equipment is based on more complex and involved

technologies than is the production of consumer goods, we are also, intu-

itively, inclined to expect that the greatest potential for productivity in-

creases through learning is in the investment goods sector.5

In the simplest version of the learning-by-investment hypothesis, (13.3)

above is replaced by

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (13.8)

where  is aggregate net investment. This is the hypothesis that the economy-

wide technology level  is an increasing function of society’s previous ex-

perience, proxied by cumulative aggregate net investment.6 The Arrow and

Romer models, as described in Chapter 12, correspond to the cases 0    1

and  = 1 respectively.

In this framework, where the “growth engine” depends on capital accu-

mulation, it is only in the Arrow case that we can calculate the per-capita

growth rate along a BGP without specifying anything about the household

sector.

5After the information-and-communication technology (ICT) revolution, where a lot of

technically advanced consumer goods have entered the scene, this traditional presumption

may be less compelling.
6Contrary to the dynamic learning-by-doing specification (13.3), there is here no good

reason for allowing   0
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13.2.1 The Arrow case:   1 and  ≥ 0
We may apply the same two steps as in Section 13.1.1. Step 1 is then an

exact replication of step 1 above. Step 2 turns out to be even simpler than

above, because (13.8) immediately gives log  =  log so that  =  ,

which substituted into (13.6) yields

 =  =  =  −  =  − 

From this follows, first,

 =


1− 
 (13.9)

and, second,

 =


1− 


Alternatively, we may in this case condense the two steps into one by

rewriting (13.5) in the form





=  (1




) =  (1−1
 )

by (13.8). Along the BGP, since  is constant, so must the second argu-

ment, −1
 , be. It follows that

(− 1) +  = 0

thus confirming (13.9).

Whatever the approach to the calculation, the per capita growth rate is

here tied down by the size of the learning parameter and the growth rate of

the labor force.

13.2.2 The Romer case:  = 1 and  = 0

In the Romer case, however, the growth rate along a BGP cannot be de-

termined until the saving behavior in the economy is modeled. Indeed, the

knife-edge case  = 1 opens up for many different per capita growth rates

under balanced growth. Which one is “selected” by the economy depends on

how the household sector is described.

For a Ramsey setup with  = 0 the last part of Chapter 12 showed how the

growth rate generated by the economy depends on the rate of time preference

and the elasticity of marginal utility of consumption of the representative

household. Growth is here fully-endogenous in the sense that a positive per

capita growth rate can be maintained forever without the support by growth

in any exogenous factor. Moreover, according to this model, economic policy

that internalizes the positive externality in the system can raise not only the

productivity level, but also the long-run productivity growth rate.
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Figure 13.1: Man-hours per vessel against cumulative number of vessels completed

to date in shipyard 1 and shipyard 2, respectively. Log-log paper. Source: Searle

(1945).

13.2.3 The size of the learning parameter

What is from an empirical point of view a plausible value for the learning

parameter, ? This question is important because quite different results

emerge depending on whether  is close to 1 or considerably lower (fully-

endogenous growth versus semi-endogenous growth). At the same time the

question is not easy to answer because  in the models is a parameter that is

meant to reflect the aggregate effect of the learning going on in single firms

and spreading across firms and industries.

Like Lucas (1993), we will consider the empirical studies of on-the-job

productivity increases in ship-building by Searle (1945) and Rapping (1965).

Both studies used data on the production of different types of cargo vessels

during the second world war. Figures 1 and 2 are taken from Lucas’ review

article, Lucas (1993), but the original source is Searle (1945). For the vessel

type called “Liberty Ships” Lucas cites the observation by Searle (1945):

“the reduction in man-hours per ship with each doubling of cumulative

output ranged from 12 to 24 percent.”
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Figure 13.2: Average man-hours (over ten shipyards) per vessel against calendar

time. Four different vessel types. Source: Searle (1945).

Let us try to connect this observation to the learning parameter  in

Arrow’s and Romer’s framework. We begin by considering firm  which

operates in the investment goods sector. We imagine that firm ’s equipment

is unchanged during the observation period (as is understood in the above

citation as well as the citation from Arrow (1962) in Section 13.1). Let firm

’s current output and employment be  and  respectively. The current

labor productivity is then  =  Let the firm’s cumulative output

be denoted  This cumulative output is a part of cumulative investment

in society. At the micro-level the learning-by-investing hypothesis is the

hypothesis that labor productivity is an increasing function of the firm’s

cumulative output, 

In figures 1 and 2 the dependent variable is not directly labor productivity,

but its inverse, namely the required man-hours per unit of output,  =

 = 1 Figure 13.1 suggests a log-linear relationship between this

variable and the cumulative output:

log = −  log (13.10)

That is, as cumulative output rises, the required man-hours per unit of output
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declines over time in this way:

 =








Equivalently, labor productivity rises over time in this way:

 =
1



= −


So, specifying the relationship by a power function, as in (13.8), makes sense.

Now, let  = 1 be a fixed point in time. Then, (13.10) becomes

log1 = −  log1 

Let 2 be the later point in time where cumulative output has been doubled.

Then at time 2 the required man-hours per unit of output has declined to

log2 = −  log2 = −  log(21)

Hence,

log1 − log2 = − log1 +  log(21) =  log 2 (13.11)

Lucas’ citation above from Searle amounts to a claim that

012 
1 −2

1

 024 (13.12)

By a first-order Taylor approximation we have log2 ≈ log1 + (2 −
1)1 . Hence, (1 −2)1 ≈ log1 − log2  Substituting this

into (13.12) gives, approximately,

012  log1 − log2  024

Combining this with (13.11) gives 012   log 2  024 so that

017 =
012

log 2
  

024

log 2
= 035

Rapping (1965) finds by a more rigorous econometric approach  to be

in the vicinity of 0.26 (still ship building). Arrow (1962) and Solow (1997)

refer to data on airframe building. This data roughly suggests  = 13

How can this be translated into a guess about the size of the “aggregate”

learning parameter  in (13.8)? This is a complicated question and the subse-

quent remarks are very tentative. First of all, the potential for both internal
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and external learning seems to vary a lot across different industries. Second,

the amount of spillovers can not simply be added to the  above, since they

are already partly included in the estimate of  Even theoretically, the role

of experience in different industries cannot simply be added up because to

some extent there is redundancy due to overlapping experience and some-

times the learning in other industries is of limited relevance. Given that we

are interested in an upper bound for  a “guestimate” is that the spillovers

matter for the final  at most the same as  from ship building so that 

≤ 27
On the basis of these casual considerations we claim that a  higher than

about 23 may be considered fairly implausible. This speaks for the Arrow

case of semi-endogenous exponential growth rather than the Romer case of

fully-endogenous exponential growth, at least as long as we think of learning

by investing as the sole source of productivity growth. Another point is

that to the extent learning is internal and at least temporarily appropriable,

we should expect at least some firms to internalize the phenomenon in its

optimizing behavior (Thornton and Thompson, 2001). Although the learning

is far from fully excludable, it takes time for others to discover and imitate

technical and organizational improvements. Many simple growth models

ignore this and treat all learning by doing and learning by investing as a 100

percent externality, which seems an exaggeration.

A further issue is to what extent learning by investing takes the form of

disembodied versus embodied technical change. This is the topic of the next

section.

13.3 Disembodied vs. embodied technical change

Arrow’s and Romer’s models build on the idea that the source of learning

is primarily experience in the investment goods sector. Both models assume

that the learning, via knowledge spillovers across firms, provides an engine

of productivity growth in essentially all sectors of the economy. And both

models (Arrow’s, however, only in its simplified version, which we considered

7For more elaborate studies of empirical aspects of learning by doing and learning by

investing, see Irwin and Klenow (1994), Jovanovic and Nyarko (1995), and Greenwood and

Jovanovic (2001). Caballero and Lyons (1992) find clear evidence of positive externalities

across US manufacturing industries. Studies finding that the quantitative importance of

spillovers is significantly smaller than required by the Romer case include Englander and

Mittelstadt (1988) and Benhabib and Jovanovic (1991). See also the surveys by Syverson

(2011) and Thompson (2012).

Although in this lecture note we focus on learning as an externality, there exists studies

focusing on internal learning by doing, see, e.g., Gunn and Johri, 2011.
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in Chapter 12, not in its original version) assume that a firm can benefit from

recent technical advances irrespective of whether it buys new equipment or

just uses old equipment. That is, the models assume that technical change

is disembodied.

13.3.1 Disembodied technical change

Disembodied technical change occurs when new technical knowledge advances

the combined productivity of capital and labor independently of whether the

workers operate old or new machines. Consider again (13.1) and (13.3).

When the  appearing in (13.1) refers to the total, historically accumu-

lated capital stock, then the interpretation is that the higher technology

level generated in (13.3) or (13.8) results in higher productivity of all labor,

independently of the vintage of the capital equipment with which this labor

is combined. Thus also firms with old capital equipment benefit from re-

cent advances in technical knowledge. No new investment is needed to take

advantage of the recent technological and organizational developments.

Examples of this kind of productivity increases include improvement in

management and work practices/organization and improvement in account-

ing.

13.3.2 Embodied technical change

In contrast, we say that technical change is embodied, if taking advantage of

new technical knowledge requires construction of new investment goods. The

newest technology is incorporated in the design of newly produced equipment;

and this equipment will not participate in subsequent technical progress. An

example: only the most recent vintage of a computer series incorporates the

most recent advance in information technology. Then investment goods pro-

duced later (investment goods of a later “vintage”) have higher productivity

than investment goods produced earlier at the same resource cost. Whatever

the source of new technical knowledge, investment becomes an important

bearer of the productivity increases which this new knowledge makes pos-

sible. Without new investment, the potential productivity increases remain

potential instead of being realized.8

One way to formally represent embodied technical progress is to write

8The concept of embodied technical change was introduced by Johansen (1959) and

Solow (1960). The notion of Solow-neutral technical change is related to embodied tech-

nical change and capital of different vintages.
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capital accumulation in the following way,

̇ =  −  (13.13)

where  is gross investment at time  and  measures the “quality” (produc-

tivity) of newly produced investment goods. The rising level of technology

implies rising  so that a given level of investment gives rise to a greater and

greater addition to the capital stock,  measured in efficiency units. Even

if technical change does not directly appear in the production function, that

is, even if for instance (13.1) is replaced by  =  ( ) the economy may

in this manner still experience a rising standard of living.

Figure 13.3: Relative price of equipment and quality-adjusted equipment

investment-to-GNP ratio. Source: Greenwood, Hercowitz, and Krusell (1997).

Embodied technical progress is likely to result in a steady decline in the

price of capital equipment relative to the price of consumption goods. This

prediction is confirmed by the data. Greenwood et al. (1997) find for the

U.S. that the relative price,  of capital equipment has been declining at

an average rate of 003 per year in the period 1950-1990, cf. the “Price”

curve in Figure 13.3.9 As the “Quantity” curve in Figure 13.3 shows, over

9The relative price index in Fig. 13.3 is based on the book by R. Gordon (1990), which

is an attempt to correct previous price indices for equipment by better taking into account

quality improvements in new equipment.
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the same period there has been a secular rise in the ratio of new equipment

investment (in efficiency units) to GNP; note that what in the figure is called

the “investment-to-GNP Ratio” is really “quality-adjusted investment-to-

GNP Ratio”,  not the usual investment-income ratio,  .

Moreover, the correlation between de-trended  and de-trended 

is −046 Greenwood et al. interpret this as evidence that technical advances
have made equipment less expensive, triggering increases in the accumulation

of equipment both in the short and the long run. The authors also estimate

that embodied technical change explains 60% of the growth in output per

man hour.

13.3.3 Embodied technical change and learning by in-

vesting

Whether technological progress is disembodied or embodied says nothing

about whether its source is exogenous or endogenous. Indeed, the increases

of  in (13.13) may be modeled as exogenous or endogenous. In the latter

case, a popular hypothesis is that the source is learning by investing. This

learning may take the form (13.8) above. In that case the experience that

matter for learning is cumulative net investment.

An alternative hypothesis is:

 =

µZ 

−∞


¶

 0   ≤ ̄ (13.14)

where  is gross investment at time  Here the experience that matter has

its basis in cumulative gross investment. An upper bound, ̄ for the learning

parameter is introduced to avoid explosive growth. The hypothesis (13.14)

seems closer to both intuition and the original ideas of Arrow:

“Each new machine produced and put into use is capable of

changing the environment in which production takes place, so

that learning is taking place with continually new stimuli” (Ar-

row, 1962).

Contrary to the integral based on net investment in (13.8), the integral

in the learning hypothesis (13.14) does not allow an immediate translation

into an expression in terms of the accumulated capital stock. Instead a new

state variable, cumulative gross investment, enter the system and opens up

for richer dynamics.
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We may combine (13.14) with an aggregate Cobb-Douglas production

function,

 = 
 

1−
  (13.15)

Then the upper bound for the learning parameter in (13.14) is ̄ = (1 −
).10

The case   (1− )

Suppose   (1 − ) Using (13.14) together with (13.13), (13.15), and

 =  −   one finds under balanced growth with  =  constant and

0    1

 =
(1− )(1 + )

1− (1 + )
 (13.16)

 =


1 + 
  (13.17)

 =
1

1 + 
  (13.18)

 =  =  −  =


1− (1 + )
 (13.19)

cf. Appendix A. We see that   0 if and only if   0 So exponential

growth is here semi-endogenous.

Let us assume there is perfect competition in all markets. Since  capital

goods can be produced at the same minimum cost as one consumption good,

the equilibrium price,  of capital goods in terms of the consumption good

must equal the inverse of  that is,  = 1 With the consumption good

being the numeraire, let the rental rate in the market for capital services be

denoted  and the real interest rate in the market for loans be denoted 

Ignoring uncertainty, we have the no-arbitrage condition

 − ( − ̇)


=  (13.20)

10An alternative to the specification of embodied learning by gross investment in (13.14)

is

 =

µZ 

−∞


¶̃
 0  ̃ ≤

−
̃

implying that it is cumulative quality-adjusted gross investment that matters, cf. Green-

wood and Jovanovic (2001). If combined with the production function (13.15) the appro-

priate upper bound on the learning parameter, ̃ is
−
̃ = 1− 
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where − ̇ is the true economic depreciation of the capital good per time

unit. Since  = 1 (13.17) and (13.16) indicate that along a BGP the

relative price of capital goods will be declining according to

 = − (1− )

1− (1 + )
 0

Note that    along the BGP. Is this a violation of Proposition 1 of

Chapter 4? No, that proposition presupposes that capital accumulation oc-

curs according to the standard equation (13.4), not (13.13). And although 
differs from   the output-capital ratio in value terms, () is constant

along the BGP. In fact, the BGP complies entirely with Kaldor’s stylized

facts if we interpret “capital” as the value of capital, .

The formulas (13.16) and (13.19) display that (1 + )  1 is needed

to avoid a forever rising growth rate if   0. This inequality is equivalent

to   (1 − ) and confirms that the upper bound, ̄ in (13.14) equals

(1−)With  = 13 this upper bound is 2 The bound is thus no longer
1 as in the simple learning-by-investing model of Section 13.2. The reason is

twofold, namely partly that now  is formed via cumulative gross investment

instead of net investment, partly that the role of  is to strengthen capital

formation rather than the efficiency of production factors in aggregate final

goods produce.

When  = 0 the system can no longer generate a constant positive per

capita growth rate (exponential growth). Groth et al. (2010) show, however,

that the system is capable of generating quasi-arithmetic growth. This class of

growth processes, which fill the whole range between exponential growth and

complete stagnation, was briefly commented on in Section 10.5 of Chapter

10.

The case  = (1− ) and  = 0∗

When  = (1 − ) we have (1 + ) = 1 and so the growth formulas

(13.16) and (13.19) no longer hold. But the way that (13.17) and (13.18)

are derived (see Appendix A) ensures that these two equations remain valid

along a BGP. Given  = (1− ) (13.17) can be written  = (1− ) 

which is equivalent to

 = 1−


along a BGP ( is some positive constant to be determined).

To see whether a BGP exists, note that (13.14) implies

 =
̇


= 

−1
  = 

−(1−)
  = −(1−)−

  = −(1−)−
 
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considering a BGP with  =  constant. Substituting (13.15) into this,

we get

 = −(1−)−
 

 
1− = −(1−)1− (13.21)

If  = 0, the right-hand side of (13.21) is constant and so is  = (1−)

by (13.17), and  =  = (1− ) by (13.19)

If   0 at the same time as  = (1−) however, there is a tendency

to a forever rising growth rate in , hence also in  and  . No BGP exists

in this case.

Returning to the case where a BGP exists, a striking feature revealed by

(13.21) is that the saving rate,  matters for the growth rate of  hence also

for the growth rate of  and  respectively, along a BGP. As in the Romer

case of the disembodied learning-by-investing model, the growth rates along

a BGP cannot be determined until the saving behavior in the economy is

modeled.

So the considered knife-edge case,  = (1 − ) combined with  = 0

opens up for many different per capita growth rates under balanced growth.

Which one is “selected” by the economy depends on how the household sec-

tor is described. In a Ramsey setup with  = 0 one can show that the

growth rate under balanced growth depends negatively on the rate of time

preference and the elasticity of marginal utility of consumption of the repre-

sentative household. And not only is growth in this case fully endogenous in

the sense that a positive per capita growth rate can be maintained forever

without the support by growth in any exogenous factor. An economic pol-

icy that subsidizes investment can generate not only a transitory rise in the

productivity growth rate, but also a permanently higher productivity growth

rate.

In contrast to the Romer (1986) model, cf. Section 13.2.2 above, we do

not here end up with a reduced-form AK model. Indeed, we end up with a

model with transitional dynamics, as a consequence of the presence of two

state variables,  and 

If instead   1(1+) we get a tendency to explosive growth − infinite
output in finite time − a not plausible scenario, cf. Appendix B.

13.4 Static comparative advantage vs. dy-

namics of learning by doing*

In this section we will briefly discuss a development economics perspective

of the above learning-based growth models.
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More specifically we will take a look at the possible “conflict” between

static comparative advantage and economic growth. The background to this

possible “conflict” is the dynamic externalities inherent in learning by doing

and learning by investing.11

13.4.1 A simple two-sector learning-by-doing model

We consider an isolated economy with two production sectors, sector 1 and

sector 2, each producing its specific consumption good. Labor is the only

input and aggregate labor supply  is constant. There are many small firms

in the two sectors. Aggregate output in the sectors are:

1 = 11 (13.22)

2 = 22 (13.23)

where

1 + 2 = 

There are sector-specific learning-by-doing externalities in the following form:

̇1 = 11 1 ≥ 0 (13.24)

̇2 = 22 2 ≥ 0 (13.25)

Although not visible in our aggregate formulation, there are substantial

knowledge spillovers across firms within the sectors. Across sectors, spillovers

are assumed negligible.

Assume firms maximize profits and that there is perfect competition in the

goods and labor markets. Then, prices are equal to the (constant) marginal

costs. Let the relative price of sector 2-goods in terms of sector-1 goods be

called  (i.e., we use sector-1 goods as numeraire). Let the hourly wage in

terms of sector-1 goods be  In general equilibrium with production in both

sectors we then have

1 = 2 = 

saying that the value of the (constant) marginal productivity of labor in each

sector equals the wage. Hence,


2

1
= 1 or  =

1

2
 (13.26)

saying that the relative price of the two goods is inversely proportional to

the relative labor productivities in the two sectors. The demand side, which

11Krugman (1987), Lucas (1988, Section 5).
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is not modelled here, will of course play a role for the final allocation of labor

to the two sectors.

Taking logs in (13.26) and differentiating w.r.t.  gives

̇


=

̇1

1
− ̇2

2
=

11

1
− 22

2
= 11 −22

using (13.24) and (13.25). Thus,

̇ = (11 −22)

Assume sector 2 (say some industrial activity) is more disposed to learning-

by-doing than sector 1 (say mining) so that 2  1 Consider for simplicity

the case where at time 0 there is symmetry in the sense that 10 = 20

Then, the relative price  of sector-2 goods in terms of sector-1 goods will,

at least initially, tend to diminish over time. The resulting substitution ef-

fect is likely to stimulate demand for sector-2 goods. Suppose this effect is

large enough to ensure that 2 = 22 never becomes lower than 112

that is, 22 ≥ 11 for all  Then the scenario with ̇ ≤ 0 is sustained
over time and the sector with highest growth potential remains a substantial

constituent of the economy. This implies sustained economic growth in the

aggregate economy.

Now, suppose the country considered is a rather backward, developing

country which until time 0 has been a closed economy (very high tariffs etc.).

Then the country decides to open up for free foreign trade. Let the relative

world market price of sector 2-goods be ̄ which we for simplicity assume is

constant At time 0 there are two alternative possibilities to consider:

Case 1: ̄ 
10
20

(world-market price of good 2 higher than the opportu-

nity cost of producing good 2). Then the country specializes fully in sector-2

goods. Since this is the sector with a high growth potential, economic growth

is stimulated. The relative productivity level 12 decreases so that the

scenario with ̄  12 remains. A virtuous circle of dynamics of learning

by doing is unfolded and high economic growth is sustained.

Case 2: ̄ 
10
20

(world-market price of good 2 lower than the opportunity

cost of producing good 2). Then the country specializes fully in sector-1

goods. Since this is the sector with a low growth potential, economic growth

is impeded or completely halted. The relative productivity level 12 does

not decrease. Hence, the scenario with ̄  12 sustains itself and persists.

Low or zero economic growth is sustained. The static comparative advantage

in sector-1 goods remains and the country is locked in low growth.

If instead ̄ is time-dependent, suppose
·
̄  0 (by similar arguments as

for the closed economy). Then the case 2 scenario is again self-sustaining.
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The point is that there may be circumstances (like in case 2), where

temporary protection for a backward country is growth promoting (this is a

specific kind of “infant industry” argument).

13.4.2 A more robust specification

The way (13.24) and (13.25) are formulated, we have

̇1

1
= 11 (13.27)

̇2

2
= 22 (13.28)

by (13.22) and (13.23). Thus, the model implies scale effects on growth, that

is, strong scale effects.

An alternative specification introduces limits to learning-by-doing in the

following way:

̇1 = 1
1
1  1  1

̇2 = 2
2
2  2  1

Then (13.27) and (13.28) are replaced by

̇1

1
= 1

1−1
1 1

1  (13.29)

̇2

2
= 2

2−1
2 2

2  (13.30)

Now the problematic strong scale effect has disappeared. At the same time,

since 1−1  0 and 2−1  0 (13.29) and (13.30) show that growth peters
out as long as the “diminishing returns” to learning-by-doing are not offset

by an increasing labor force or an additional source (outside the model) of

technical progress. If   0 we get sustained growth of the semi-endogenous

type as in the Arrow model of learning-by-investing.

Yet the analysis may still be a basis for an “infant industry” argument. If

the circumstances are like in case 2, temporary protection may help a back-

ward country to enter a higher long-run path of evolution. Stiglitz underlines

South Korea as an example:

What matters is dynamic comparative advantage, or comparative

advantage in the long run, which can be shaped. Forty years ago,

South Korea had a comparative advantage in growing rice. Had
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it stuck to that strength, it would not be the industrial giant that

it is today. It might be the world’s most efficient rice grower, but

it would still be poor (Stiglitz, 2012, p. 2).

This point is related to two different aspects of technical knowledge. On

the one hand, technical knowledge is a nonrival good and this non-rivalness

speaks for openness, thereby improving conditions for knowledge spillovers

and learning from other countries. On the other hand, the potential for

knowledge accumulation and internal learning by doing is different in dif-

ferent production sectors. And some sectors with a lot of internal learning

potential and economies of scale never gets started unless to begin with they

are protected from foreign competition.

13.4.3 Resource curse?

The analysis also suggests a mechanism that, along with others, may help

explaining what is known as the resource curse problem. This problem refers

to the paradox that being abundant in natural resources may sometimes seem

a curse for a country rather than a blessing. At least quite many empirical

studies have shown a negative correlation between resource abundance and

economic growth (see, e.g., Sachs and Warner 1995, Gylfason et al., 1999).

The mechanism behind this phenomenon could be the following. Consider

a mining country with an abundance of natural resources in the ground.

Empirically, growth in total factor productivity in mining activity is relatively

low. Interpreting this as reflecting a relatively low learning potential, the

mining sector may be represented by sector 1 above. Given the abundance

of natural resources, 10 is likely to be high relative to the productivity in

the manufacturing sector, 20  So the country is likely to be in the situation

described as case 2. As a result, economic growth may never get started.

The basic problem here is, however, not of an economic nature in a narrow

sense, but rather of an institutional character. Taxation on the natural re-

source and use of the tax revenue for public investment in growth promoting

factors (infrastructure, health care, education, R&D) or directly in the sector

with high learning potential can from an economic point of view circumvent

the curse to a blessing. It is not the natural resources as such, but rather

barriers of a political character, conflicts of interest among groups and social

classes, even civil war over the right to exploit the resources, or dominance

by foreign superpowers, that may be the obstacles to a sound economic de-

velopment (Mehlum et al., 2006). An additional potential obstacle is related

to the possible response of a country’s real exchange rate, and therefore its
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competitiveness, to a new discovery of natural resources in a country.12

Summing up: Discovery of a valuable mineral in the ground in a country

with weak institutions may, through corruption etc. have adverse effects on

resource allocation and economic growth in the country. But: “Resources

should be a blessing, not a curse. They can be, but it will not happen on its

own. And it will not happen easily” (Stiglitz, 2012, p. 2).

13.5 Appendix

A. Balanced growth in the embodied technical change model with

investment-specific learning

In this appendix the results (13.16), (13.17), (13.18), and (13.19) are derived.

The model is:

 = 1− 0    1 (13.31)

 =  −  (13.32)

̇ =  −  (13.33)

 =

µZ 

−∞


¶

 0   ≤ ̄ (13.34)

 = 0
  ≥ 0 (13.35)

Consider a BGP. By definition,  and  then grow at constant rates, not

necessarily positive. With  =  constant and 0    1 (13.31) gives

 =  =  + (1− ) (13.36)

a constant. By (13.33),  =  

−  showing that  is constant along

a BGP. Hence,

 +  =   (13.37)

and so also  must be constant. From (13.34) follows that  = −1
Taking logs in this equation and differentiating w.r.t.  gives

̇


= −1


 +  = 0

in view of constancy of  Substituting into (13.37) yields (1 + ) =  

which combined with (13.36) gives

 =
(1− )(1 + )

1− (1 + )


12Ploeg (2011) provides a survey over different theories related to the resource curse

problem. See also Ploeg and Venables (2012) and Stiglitz (2012).
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which is (13.16). In view of  =  =  = ( + ) = (1 + ) the

results (13.17), (13.18), and (13.19) immediately follow.

B. Big bang a hair’s breadth from the AK

Here we shall prove the statement in Section 13.5.2: a hair’s breadth from

the AK assumption the technology is so productive as to generate infinite

output in finite time.

The simple AK model as well as reduced-form AK models end up in an

aggregate production function

 = 

We ask the question: what happens if the exponent on  is not exactly 1,

but slightly above. For simplicity, let  = 1 and consider

 =   = 1 +   ' 0

Our claim is that if   1 a constant saving rate,  will generate infinite 

and  in finite time.

We embed the technology in a Solow-style model with  =  = 0 and

get:

̇ ≡ 


=  0    1 (0) = 0  0 given (13.38)

We see that not only is ̇  0 for all  ≥ 0 but ̇ is increasing over time

since  is increasing. So, for sure,  →∞ but how fast?

One way of answering this question exploits the fact that ̇ =  is

a Bernouilli equation and can be solved by considering the transformation

 = 1− as we do in Chapter 7 and Exercise III.3. Closely related to

that method is the approach below, which may have the advantage of being

somewhat more transparent and intuitive.

To find out, note that (13.38) is a separable differential equation which

implies

− = 

By integration, Z
− =

Z
+ C ⇒

−+1

1− 
= + C (13.39)
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where C is some constant, determined by the initial condition(0) = 0 For

 = 0 (13.39) gives C = −+1
0 (1−) Consequently, the solution  = ()

satisfies
0

1−

− 1 −
()1−

− 1 =  (13.40)

As  increases, the left-hand side of this equation follows suit since ()

increases and   1 There is a ̄  ∞ such that when  → ̄ from below,

() →∞ Indeed, by (13.40) we see that such a ̄ must be the solution to

the equation

lim
()→∞

µ
0

1−

− 1 −
()1−

− 1
¶
= ̄

Since

lim
()→∞

µ
0

1−

− 1 −
()1−

− 1
¶
=

0
1−

− 1 

we find

̄ =
1



0
1−

− 1 
To get an idea about the implied order of magnitude, let the time unit be

one year and  = 01 00 = 1−
0 = 2 and  = 105 Then ̄ = 400 years.

So the Big Bang ( =∞) would occur in 400 years from now if  = 105

As Solow remarks (Solow 1994), this arrival to the Land of Cockaigne

would imply the “end of scarcity”, a very optimistic perspective.

In a discrete time setup we get an analogue conclusion. With airframe

construction in mind let us imagine that the learning parameter  is slightly

above 1. Then we must accept the implication that it takes only a finite

number of labor hours to produce an infinite number of airframes. This is

because, given the (direct) labor input required to produce the ’th in a

sequence of identical airframes is proportional to − the total labor input
required to produce the first  airframes is proportional to 11 +12 +13

+  + 1 Now, the infinite series
P∞

=1 1
 converges if   1 As a

consequence only a finite amount of labor is needed to produce an infinite

number of airframes. “This seems to contradict the whole idea of scarcity”,

Solow observes (Solow 1997, p. 8).
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Chapter 16

Natural resources and

economic growth

In these lecture notes, up to now, the relationship between economic growth

and the earth’s finite natural resources has been briefly touched upon in con-

nection with: the discussion of returns to scale (Chapter 2), the transition

from a pre-industrial to an industrial economy (in Chapter 7), the environ-

mental problem of global warming (Chapter 8), and the resource curse (in

Chapter 13.4.3). In a more systematic way the present chapter reviews how

natural resources, including the environment, relate to economic growth.

The contents are:

• Classification of means of production.
• The notion of sustainable development.
• Renewable natural resources.
• Non-renewable natural resources and exogenous technology growth.
• Non-renewable natural resources and endogenous technology growth.
• Natural resources and the issue of limits to economic growth.
The first two sections aim at establishing a common terminology for the

discussion.

16.1 Classification of means of production

We distinguish between different categories of production factors. First two

broad categories:
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1. Producible means of production, also called man-made inputs.

2. Non-producible means of production.

The first category includes:

1.1 Physical inputs like processed raw materials, other intermediate goods,

machines, and buildings.

1.2 Human inputs of a produced character in the form of technical knowl-

edge (available in books, USB sticks etc.) and human capital.

The second category includes:

2.1 Human inputs of a non-produced character, sometimes called “raw la-

bor”.1

2.2 Natural resources. By definition in limited supply on this earth.

Natural resources can be sub-divided into:

2.2.1 Renewable resources, that is, natural resources the stock of which can

be replenished by a natural self-regeneration process. Hence, if the

resource is not over-exploited, it can in production as well as consump-

tion be sustained in a more or less constant amount per time unit.

Examples: ground water, fertile soil, fish in the sea, clean air, national

parks.

2.2.2 Non-renewable resources, that is, natural resources which have no nat-

ural regeneration process (at least not within a relevant time scale).

The stock of a non-renewable resource is thus depletable. Examples:

fossil fuels, many non-energy minerals, virgin wilderness and endan-

gered species.

The climate change problem due to “greenhouse gasses” can be seen as

belonging to somewhere between category 2.2.1 or 2.2.2 in that the quality

of the atmosphere has a natural self-regeneration ability, but the speed of

regeneration is very low. A very important facet of natural resources is that

they function as direct or indirect sources of energy. Think of animal power,

waterfalls, coal, oil, natural gas, biomass, wind, and geothermic energy in

modern times

Given the scarcity of natural resources and the pollution problems caused

by economic activity, key issues are:

1Outside a slave society, biological reproduction is usually not considered as part of the

economic sphere of society even though formation and maintainance of raw labor requires

child rearing, health, food etc. and is thus conditioned on economic circumstances.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



16.2. The notion of sustainable development 293

a. Is sustainable development possible?

b. Is sustainable economic growth (in a per capita welfare sense) possible?

c. How should a better “thermometer” for the evolution of the economy

than measurement of GNP be designed?

But first: what does “sustainable” and “sustainability” really mean”?

16.2 The notion of sustainable development

The basic idea in the notion of sustainable development is to emphasize

intergenerational responsibility. The Brundtland Commission (1987) defined

sustainable development as “development that meets the needs of present

generations without compromising the ability of future generations to meet

theirs”.

In more standard economic terms we may define sustainable economic

development as a time path along which per capita “welfare” (somehow mea-

sured) remains non-decreasing across generations forever. An aspect of this is

that current economic activities should not impose significant economic risks

on future generations. The “forever” in the definition can not, of course, be

taken literally, but as equivalent to “for a very long time horizon”. We know

that the sun will eventually (in some billion years) burn out and consequently

life on earth will become extinct.

Our definition emphasizes welfare, which should be understood in a broad

sense, that is, as more or less synonymous with “quality of life”, “living con-

ditions”, or “well-being” (the term used in Smulders, 1995). What may

matter is thus not only the per capita amount of marketable consumption

goods, but also fundamental aspects like health, life expectancy, and enjoy-

ment of services from the ecological system. In summary: capability to lead

a worthwhile life.

To make this more specific, consider preferences as represented by the

period utility function of a “typical individual”. Suppose two variables enter

as arguments, namely consumption,  of a marketable produced good and

some measure,  of the quality of services from the eco-system. Suppose

further that the period utility function is of constant-elasticity-of-substitution

(CES) form:

( ) =
£
 + (1− )

¤1
 0    1   1 (16.1)

The parameter  is called the substitution parameter. The elasticity of substi-

tution between the two goods is  = 1(1−)  0 a constant. When  → 1
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(from below), the two goods become perfect substitutes (in that  → ∞).
The smaller is  the less substitutable are the two goods. When   0 we

have   1 and as  → −∞ the indifference curves become near to right

angled.2 According to many environmental economists, there are good rea-

sons to believe that   1, since water, basic foodstuff, clean air, absence of

catastrophic climate change, etc. are difficult to replace by produced goods

and services. In this case there is a limit to the extent to which a rising ,

obtainable through a rising per capita income, can compensate for falling 

At the same time the techniques by which the consumption good is cur-

rently produced may be “dirty” and thereby cause a falling . An obvious

policy response is the introduction of pollution taxes that give an incentive

for firms (or households) to replace these techniques (or goods) with cleaner

ones. For certain forms of pollution (e.g., sulfur dioxide, SO2 in the air) there

is evidence of an inverted U-curve relationship between the degree of pollu-

tion and the level of economic development measured by GDP per capita −
the environmental Kuznets curve.3

So an important element in sustainable economic development is that the

economic activity of current generations does not spoil the environmental

conditions for future generations. Living up to this requirement necessitates

economic and environmental strategies consistent with the planet’s endow-

ments. This means recognizing the role of environmental constraints for eco-

nomic development. A complicating factor is that specific abatement policies

vis-a-vis particular environmental problems may face resistance from interest

groups, thus raising political-economics issues.

As defined, a criterion for sustainable economic development to be present

is that per capita welfare remains non-decreasing across generations. A sub-

category of this is sustainable economic growth which is present if per capita

welfare is growing across generations. Here we speak of growth in a welfare

sense, not in a physical sense. Permanent exponential per capita output

2By L’Hôpital’s rule for “0/0” it follows that, for fixed  and 

lim
→0 6=0

£
 + (1− )

¤1
= 1−

So the Cobb-Douglas function, which has elasticity of substitution between the goods equal

to 1, is an intermediate case, corresponding to  = 0. More technical details in Chapter

2, albeit from the perspective of production rather than preferences.
3See, e.g., Grossman and Krueger (1995). Others (e.g., Perman and Stern, 2003) claim

that when paying more serious attention to the statistical properties of the data, the

environmental Kuznets curve is generally rejected. Important examples of pollutants ac-

companied by absence of an environmental Kuznets curve include waste storage, reduction

of biodiversity, and emission of CO2 to the atmosphere. A very serious problem with the

latter is that emissions from a single country is spread all over the globe.
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growth in a physical sense is of course not possible with limited natural re-

sources (matter or energy). The issue about sustainable growth is whether,

by combining the natural resources with man-made inputs (knowledge, hu-

man capital, and physical capital), an output stream of increasing quality,

and therefore increasing economic value, can be maintained. In modern times

capabilities of many digital electronic devices provide conspicuous examples

of exponential growth in quality (or efficiency). Think of processing speed,

memory capacity, and efficiency of electronic sensors. What is known as

“Moore’s Law” is the rule of thumb that there is a doubling of the efficiency

of microprocessors within every two years. The evolution of the internet has

provided much faster and widened dissemination of information and fine arts.

Of course there are intrinsic difficulties associated with measuring sustain-

ability in terms of well-being. There now exists a large theoretical and applied

literature dealing with these issues. A variety of extensions and modifications

of the standard national income accounting GNP has been developed under

the heading Green NNP (green net national product). An essential feature

in the measurement of Green NNP is that from the conventional GDP (which

essentially just measures the level of economic activity) is subtracted the de-

preciation of not only the physical capital but also the environmental assets.

The latter depreciate due to pollution, overburdening of renewable natural

resources, and depletion of reserves of non-renewable natural resources.4 In

some approaches the focus is on whether a comprehensive measure of wealth

is maintained over time. Along with reproducible assets and natural assets

(including the damage to the atmosphere from “greenhouse gasses”), Arrow

et al. (2012) include health, human capital, and “knowledge capital” in their

measure of “wealth”. They apply this measure in a study of the United

States, China, Brazil, India, and Venezuela over the period 1995-2000. They

find that all five countries over this period satisfy the sustainability criterion

of non-decreasing wealth in this broad sense. Indeed the wealth measure

referred to is found to be growing in all five countries − in the terminol-

ogy of the field positive “genuine saving” has taken place.5 Note that it is

sustainability that is claimed, not optimality.

In the next two sections we will go more into detail with the challenge

4The depreciation of these environmental and natural assets is evaluated in terms of

the social planner’s shadow prices. See, e.g., Heal (1998), Weitzman (2001, 2003), and

Stiglitz et al. (2010).
5Of course, many measurement uncertainties and disputable issues of weighting are

involved; brief discussions, and questioning, of the study are contained in Solow (2012),

Hamilton (2012), and Smulders (2012). Regarding Denmark 1990-2009, a study by Lind

and Schou (2013), along lines somewhat similar to those of Arrow et al. (2012), also

suggests sustainability to hold.
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to sustainability and growth coming from renewable and non-renewable re-

sources, respectively. We shall primarily deal with the issues from the point

of view of technical feasibility of non-decreasing, and possibly rising, per-

capita consumption. Concerning questions about appropriate institutional

regulation the reader is referred to the specialized literature.

We begin with renewable resources.

16.3 Renewable resources

A useful analytical tool is the following simple model of the stock dynamics

associated with a renewable resource.

Let  ≥ 0 denote the stock of the renewable resource at time  (so in this
chapter  is not our symbol for saving). Then we may write

̇ ≡ 


=  − = ()− 0  0 given, (16.2)

where  is the self-regeneration of the resource per time unit and  ≥ 0
is the resource extraction (and use) per time unit at time . If for instance

the stock refers to the number of fish in the sea, the flow  represents the

number of fish caught per time unit. And if, in a pollution context, the stock

refers to “cleanness” of the air in cities,  measures, say, the emission of

sulfur dioxide, SO2, per time unit. The self-regenerated amount per time

unit depends on the available stock through the function () known as a

self-regeneration function.6

Let us briefly consider the example where  stands for the size of a fish

population in the sea. Then the self-regeneration function will have a bell-

shape as illustrated in the upper panel of Figure 16.1. Essentially, the self-

regeneration ability is due to the flow of solar energy continuously entering

the the eco-system of the earth. This flow of solar energy is constant and

beyond human control.

The size of the stock at the lower intersection of the () curve with the

horizontal axis is (0) ≥ 0 Below this level, even with  = 0 there are too

few female fish to generate offspring, and the population necessarily shrinks

and eventually reaches zero. We may call (0) the minimum sustainable

stock.

At the other intersection of the () curve with the horizontal axis, ̄(0)

represents the maximum sustainable stock. The eco-system cannot support

further growth in the fish population. The reason may be food scarcity,

6The equation (16.2) also covers the case where  represents the stock of a non-

renewable resource if we impose () ≡ 0 i.e., there is no self-regeneration.
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spreading of diseases because of high population density, and easiness for

predators to catch the considered fish species and themselves expand. Pop-

ular mathematical specifications of (·) include the logistic function ()

= (1− ) where   0   0 and the quasi-logistic function () =

(1− )( − 1) where also   0 In both cases ̄(0) =  but (0)

equals 0 in the first case and  in the second.

The value indicated on the vertical axis in the upper panel, equals

max (). This value is thus the maximum sustainable yield per time unit.

This yield is sustainable from time 0, provided the fish population is at time

0 at least of size  = argmax () which is that value of  where ()

= The size,   of the fish population is consistent with maintaining

the harvest  per time unit forever in a steady state.

The lower panel in Figure 16.1 illustrates the dynamics in the ( ̇)

plane, given a fixed rate of resource extraction  = ̄ ∈ (0 ]. The

arrows indicate the direction of movement in this plane. In the long run, if

 = ̄ for all  the stock will settle down at the size ̄(̄) The stippled

curve in the upper panel indicates ()− ̄ which is the same as ̇ in the

lower panel when  = ̄. The stippled curve in the lower panel indicates the

dynamics in case  = . In this case the steady-state stock, ̄( ) =

 , is unstable. Indeed, a small negative shock to the stock will not lead

to a gradual return but to a self-reinforcing reduction of the stock as long as

the extraction  = is maintained.

Note that  is an ecological maximum and not necessarily in any

sense an economic optimum. Indeed, since the search and extraction costs

may be a decreasing function of the fish density in the sea, hence of the

stock of fish, it may be worthwhile to increase the stock beyond  , thus

settling for a smaller harvest per time unit. Moreover, a fishing industry

cost-benefit analysis may consider maximization of the discounted expected

aggregate profits per time unit, taking into account the expected evolution

of the market price of fish, the cost function, and the dynamic relationship

(16.2).

In addition to its importance for regeneration, the stock,  may have

amenity value and thus enter the instantaneous utility function. Then again

some conservation of the stock over and above  may be motivated.

A dynamic model with a renewable resource and focus on technical

feasibility Consider a simple model consisting of (16.2) together with

 =  (   )  ≥ 0
̇ =  −  −   ≥ 0 0  0 given,

 = 0
  ≥ 0 0  0 given, (16.3)
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where  is aggregate output and  , and  are inputs of capital, la-

bor, and a renewable resource, respectively, per time unit at time  Let the

aggregate production function,  be neoclassical7 with constant returns to

scale w.r.t.   and  The assumption  ≥ 0 represents exogenous
technical progress. Further,  is aggregate consumption (≡  where 
is per capita consumption) and  denotes a constant rate of capital depreci-

ation. There is no distinction between employment and population, . The

population growth rate,  is assumed constant.

Is sustainable economic development in this setting technically feasible?

By definition, the answer will be yes if non-decreasing per capita consumption

can be sustained forever. From economic history we know of examples of

“tragedy of the commons”, like over-grazing of unregulated common land. As

our discussion is about technical feasibility, we assume this kind of problem

is avoided by appropriate institutions.

Suppose the use of the renewable resource is kept constant at a sustainable

level ̄ ∈ (0 ). To begin with, suppose  = 0 so that  =  for all

 ≥ 0 Assume that at  = ̄ the system is “productive” in the sense that

lim
→0

( ̄ 0)    lim
→∞

( ̄ 0) (A1)

This condition is satisfied in Figure 16.2 where the value ̄ has the property

 (̄  ̄ 0) = ̄ Given the circumstances, this value is the least upper

bound for a sustainable capital stock in the sense that

if  ≥ ̄ we have ̇  0 for any   0;

if 0    ̄ we have ̇ = 0 for  =  ( ̄ 0)−   0

For such a  illustrated in Figure 16.2, a constant  =  ( ̄ 0) is main-

tained forever which implies non-decreasing per-capita income,  ≡ ,

forever. So, in spite of the limited availability of the natural resource, a non-

decreasing level of consumption is technically feasible even without technical

progress. A forever growing level of consumption will, of course, require

sufficient technical progress capable of substituting for the natural resource.

Now consider the case   0 and assume CRS w.r.t.   and  In

view of CRS, we have

1 =  (








̄


 ) (16.4)

7That is, marginal productivities of the production factors are positive, but diminishing,

and the upper contour sets are strictly convex.
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Figure 16.2: Sustainable consumption in the case of  = 0 and no technical progress

( and ̄ fixed).

Along a balanced growth path with positive gross saving (if it exists) we

know that and must be constant, cf. the balanced growth equiva-

lence theorem of Chapter 4. Maintaining  (= ()()) constant

along such a path, requires that  is constant and thereby that  grows

at the rate  But then ̄ will be declining over time. To compensate

for this in (16.4), sufficient technical progress is necessary. This necessity of

course is present, a fortiori, for sustained growth in per-capita consumption

to occur.

As technical progress in the far future is by its very nature uncertain and

unpredictable, there can be no guarantee for sustained per capita growth if

there is sustained population growth.

Pollution As hinted at above, the concern that certain production meth-

ods involve pollution is commonly incorporated into economic analysis by

subsuming environmental quality into the general notion of renewable re-

sources. In that context  in (16.2) and Figure 16.1 will represent the “level

of environmental quality” and  will be the amount of dirty emissions per

time unit. Since the level of the environmental quality is likely to be an

argument in both the utility function and the production function, again

some limitation of the “extraction” (the pollution flow) is motivated. Pol-

lution taxes may help to encourage abatement activities and make technical
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innovations towards cleaner production methods more profitable.

16.4 Non-renewable resources: The DHSSmodel

Whereas extraction and use of renewable resources can be sustained at a

more or less constant level (if not too high), the situation is different with

non-renewable resources. They have no natural regeneration process (at least

not within a relevant time scale) and so continued extraction per time unit

of these resources will inevitably have to decline and approach zero in the

long run.

To get an idea of the implications, we will consider the Dasgupta-Heal-

Solow-Stiglitz model (DHSS model) from the 1970s.8 The production side of

the model is described by:

 =  (   )  ≥ 0 (16.5)

̇ =  −  −   ≥ 0 0  0 given, (16.6)

̇ = − ≡ − 0  0 given, (16.7)

 = 0
  ≥ 0 (16.8)

The new element is the replacement of (16.2) with (16.7), where  is the

stock of the non-renewable resource (e.g., oil reserves), and  is the depletion

rate. Since we must have  ≥ 0 for all  there is a finite upper bound on
cumulative resource extraction:Z ∞

0

 ≤ 0 (16.9)

Since the resource is non-renewable, no re-generation function appears in

(16.7). Uncertainty is ignored and the extraction activity involves no costs.9

As before, there is no distinction between employment and population, .

The model was formulated as a response to the pessimistic Malthusian

views expressed in the book The Limits to Growth written by MIT ecolo-

gists Meadows et al. (1972).10 Stiglitz, and fellow economists, asked the

question: what are the technological conditions needed to avoid falling per

capita consumption in the long run in spite of the inevitable decline in the

use of non-renewable resources? The answer is that there are three ways in

which this decline in resource use may be counterbalanced:

8See, e.g., Stiglitz, 1974.
9This simplified description of resource extraction is the reason that it is common

to classify the model as a one-sector model, notwithstanding there are two productive

activities in the economy, manufacturing and resource extraction.
10An up-date came in 2004, see Meadows at al. (2004).
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1. input substitution;

2. resource-augmenting technical progress;

3. increasing returns to scale.

Let us consider each of them in turn (although in practice the three

mechanisms tend to be intertwined).

16.4.1 Input substitution

By input substitution is here meant the gradual replacement of the input of

the exhaustible natural resource by man-made input, capital. Substitution

of fossil fuel energy by solar, wind, tidal and wave energy resources is an

example. Similarly, more abundant lower-grade non-renewable resources can

substitute for scarce higher-grade non-renewable resources - and this will

happen when the scarcity price of these has become sufficiently high. A

rise in the price of a mineral makes a synthetic substitute cost-efficient or

lead to increased recycling of the mineral. Finally, the composition of final

output can change toward goods with less material content. Overall, capital

accumulation can be seen as the key background factor for such substitution

processes (though also the arrival of new technical knowledge may be involved

- we come back to this).

Whether capital accumulation can do the job depends crucially on the

degree of substitutability between  and  To see this, let the produc-

tion function  be a three-factor CES production function. Suppressing the

explicit dating of the variables when not needed for clarity, we have.

 =
¡
1

 + 2
 + 3


¢1

 1 2 3  0 1+2+3 = 1   1  6= 0
(16.10)

We omit the the time index on    and  when not needed for clarity.

The important parameter is  the substitution parameter. Let  denote the

cost to the firm per unit of the resource flow and let ̂ be the cost per unit of

capital (generally, ̂ = +  where  is the real rate of interest). Then ̂

is the relative factor price, which may be expected to increase as the resource

becomes more scarce. The elasticity of substitution between  and  can be

measured by [()(̂)] (̂ )() evaluated along an isoquant

curve, i.e., the percentage rise in the - ratio that a cost-minimizing firm

will choose in response to a one-percent rise in the relative factor price, ̂

Since we consider a CES production function, this elasticity is a constant 

= 1(1− )  0 Indeed, the three-factor CES production function has the
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property that the elasticity of substitution between any pair of the three

production factors is the same.

First, suppose   1 i.e., 0    1 Then, for fixed  and   →¡
1

 + 2

¢1

 0 when → 0 In this case of high substitutability the

resource is seen to be inessential in the sense that it is not necessary for a

positive output. That is, from a production perspective, conservation of the

resource is not vital.

Suppose instead   1 i.e.,   0 Although increasing when decreases,

output per unit of the resource flow is then bounded from above. Conse-

quently, the finiteness of the resource inevitably implies doomsday sooner or

later if input substitution is the only salvage mechanism. To see this, keeping

 and  fixed, we get




=  (−)1 =

∙
1(




) + 2(




) + 3

¸1
→ 3

1 for → 0

(16.11)

since   0 Even if  and  are increasing, lim→0  = lim→0()
= 

1
3 · 0 = 0 Thus, when substitutability is low, the resource is essential

in the sense that output is nil in the absence of the resource.

What about the intermediate case  = 1? Although (16.10) is not defined

for  = 0 using L’Hôpital’s rule (as for the two-factor function, cf. Chapter

2), it can be shown that
¡
1

 + 2
 + 3


¢1 → 123 for  → 0

In the limit a three-factor Cobb-Douglas function thus appears. This function

has  = 1 corresponding to  = 0 in the formula  = 1(1 − ) The

circumstances giving rise to the resource being essential thus include the

Cobb-Douglas case  = 1

The interesting aspect of the Cobb-Douglas case is that it is the only

case where the resource is essential while at the same time output per unit

of the resource is unbounded from above (since  = 123−1 → ∞
for → 0).11 Under these circumstances it was considered an open question

whether non-decreasing per capita consumption could be sustained. There-

fore the Cobb-Douglas case was studied intensively. For example, Solow

(1974) showed that if  =  = 0, then a necessary and sufficient condition

that a constant positive level of consumption can be sustained is that 1  3

This condition in itself seems fairly realistic, since, empirically, 1 is many

times the size of 3 (Nordhaus and Tobin, 1972, Neumayer 2000). Solow

added the observation that under competitive conditions, the highest sus-

tainable level of consumption is obtained when investment in capital exactly

11To avoid misunderstanding: by “Cobb-Douglas case” we refer to any function where

 enters in a “Cobb-Douglas fashion”, i.e., any function like  = ̃ ()1−33 
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equals the resource rent,  ·  This result was generalized in Hartwick
(1977) and became known as Hartwick’s rule. If there is population growth

(  0) however, not even the Cobb-Douglas case allows sustainable per

capita consumption unless there is sufficient technical progress, as equation

(16.15) below will tell us.

Neumayer (2000) reports that the empirical evidence on the elasticity of

substitution between capital and energy is inconclusive. Ecological econo-

mists tend to claim the poor substitution case to be much more realistic

than the optimistic Cobb-Douglas case, not to speak of the case   1 This

invites considering the role of technical progress.

16.4.2 Technical progress

Solow (1974) and Stiglitz (1974) analyzed the theoretical possibility that

resource-augmenting technological change can overcome the declining use of

non-renewable resources that must be expected in the future. The focus is

not only on whether a non-decreasing consumption level can be maintained,

but also on the possibility of sustained per capita growth in consumption.

New production techniques may raise the efficiency of resource use. For

example, Dasgupta (1993) reports that during the period 1900 to the 1960s,

the quantity of coal required to generate a kilowatt-hour of electricity fell

from nearly seven pounds to less than one pound.12 Further, technological

developments make extraction of lower quality ores cost-effective and make

more durable forms of energy economical. On this background we incorporate

resource-augmenting technical progress at the rate 3 and also allow labor-

augmenting technical progress at the rate 2 So the CES production function

now reads

 =
³
1


 + 2(2)

 + 3(3)

´1

 (16.12)

where 2 = 2 and 3 = 3 considering 2 ≥ 0 and 3  0 as exogenous
constants. If the (proportionate) rate of decline of  is kept smaller than

3 then the “effective resource” input is no longer decreasing over time. As

a consequence, even if   1 (the poor substitution case), the finiteness of

nature need not be an insurmountable obstacle to non-decreasing per capita

consumption.

Actually, a technology with   1 needs a considerable amount of resource-

augmenting technical progress to obtain compliance with the empirical fact

that the income share of natural resources has not been rising (Jones, 2002).

When   1 market forces tend to increase the income share of the factor

12For a historical account of energy technology, see Smil (1994).
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that is becoming relatively more scarce. Empirically,  and  have

increased systematically. However, with a sufficiently increasing 3, the in-

come share  need not increase in spite of   1 Compliance with

Kaldor’s “stylized facts” (more or less constant growth rates of  and

 and stationarity of the output-capital ratio, the income share of labor,

and the rate of return on capital) can be maintained with moderate labor-

augmenting technical change (2 growing over time). The motivation for not

allowing a rising 1 and replacing  in (16.12) by 1 is that this would be

at odds with Kaldor’s “stylized facts”, in particular the absence of a trend

in the rate of return to capital.

With 3  2 +  we end up with conditions allowing a balanced growth

path (BGP for short), which we in the present context, with an essential

resource, define as a path along which the quantities     and  are

positive and change at constant proportionate rates (some or all of which

may be negative). Given (16.12), it can be shown that along a BGP with

positive gross saving, (2) is constant and so  = 2 (hence also 
= 2)

13 There is thus scope for a positive  if 0  2  3 − 

Of course, one thing is that such a combination of assumptions allows for

an upward trend in per capita consumption - which is what we have seen

since the industrial revolution. Another thing is: will the needed assump-

tions be satisfied for a long time in the future? Since we have considered

exogenous technical change, there is so far no hint from theory. But, even

taking endogenous technical change into account, there will be many uncer-

tainties about what kind of technological changes will come through in the

future and how fast.

Balanced growth in the Cobb-Douglas case

The described results go through in a more straightforward way in the Cobb-

Douglas case. So let us consider this. A convenience is that capital-augmenting,

labor-augmenting, and resource-augmenting technical progress become indis-

tinguishable and can thus be merged into one technology variable, the total

factor productivity  :

 = 
1
 2

 3
  1 2 3  0 1 + 2 + 3 = 1 (16.13)

where we assume that  is growing at some constant rate   0. This,

together with (16.6) - (16.8), is now the model under examination.

Log-differentiating w.r.t. time in (16.13) yields the growth-accounting

relation

 =  + 1 + 2+ 3 (16.14)

13See Appendix.
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In Appendix it is shown that along a BGP with positive gross saving the

following holds:

(i)  =  =  ≡  + ;

(ii)  =  ≡ ̇ ≡ − ≡ −̄ = constant  0;
(iii) nothing of the resource is left unutilized forever.

With constant depletion rate,  denoted ̄ along the BGP, (16.14)

thus implies

 =  =
1

1− 1
( − 3− 3̄) (16.15)

since 1 + 2 − 1 = −3
Absent the need for input of limited natural resources, we would have

3 = 0 and so  = (1−1) But with 3  0 the non-renewable resource

is essential and implies a drag on per capita growth equal to 3(+̄)(1−1).
We get   0 if and only if   3( + ̄) (where, the constant depletion

rate, ̄ can in principle, from a social point of view, be chosen very small if

we want a strict conservation policy).

It is noteworthy that in spite of per-capita growth being due to exogenous

technical progress, (16.15) shows that there is scope for policy affecting the

long-run per-capita growth rate. Indeed, a policy affecting the depletion rate

 in one direction will affect the growth rate in the opposite direction.

“Sustained growth” in  and  should not be understood in a narrow

physical sense. As alluded to earlier, we have to understand  broadly

as “produced means of production” of rising quality and falling material

intensity; similarly,  must be seen as a composite of consumer “goods”

with declining material intensity over time (see, e.g., Fagnart and Germain,

2011). This accords with the empirical fact that as income rises, the share

of consumption expenditures devoted to agricultural and industrial products

declines and the share devoted to services, hobbies, sports, and amusement

increases. Although “economic development” is perhaps a more appropri-

ate term (suggesting qualitative and structural change), we retain standard

terminology and speak of “economic growth”.

In any event, simple aggregate models like the present one should be

seen as no more than a frame of reference, a tool for thought experiments.

At best such models might have some validity as an approximate summary

description of a certain period of time. One should be aware that an economy

in which the ratio of capital to resource input grows without limit might

well enter a phase where technological relations (including the elasticity of

factor substitution) will be very different from now. For example, along any

economic development path, the aggregate input of non-renewable resources

must in the long run asymptotically approach zero. From a physical point of
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view, however, there must be some minimum amount of the resource below

which it can not fulfil its role as a productive input. Thus, strictly speaking,

sustainability requires that in the “very long run”, non-renewable resources

become inessential.

A backstop technology We end this sub-section by a remark on a rather

different way of modeling resource-augmenting technical change. Dasgupta

and Heal (1974) present a model of resource-augmenting technical change,

considering it not as a smooth gradual process, but as something arriving in a

discrete once-for-all manner with economy-wide consequences. The authors

envision a future major discovery of, say, how to harness a lasting energy

source such that a hitherto essential resource like fossil fuel becomes inessen-

tial. The contour of such a backstop technology might be currently known, but

its practical applicability still awaits a technological breakthrough. The time

until the arrival of this breakthrough is uncertain and may well be long. In

Dasgupta, Heal and Majumdar (1977) and Dasgupta, Heal and Pand (1980)

the idea is pursued further, by incorporating costly R&D. The likelihood of

the technological breakthrough to appear in a given time interval depends

positively on the accumulated R&D as well as the current R&D. It is shown

that under certain conditions an index reflecting the probability that the

resource becomes unimportant acts like an addition to the utility discount

rate and that R&D expenditure begins to decline after some time. This is an

interesting example of an early study of endogenous technological change.14

16.4.3 Increasing returns to scale

The third circumstance that might help overcoming the finiteness of nature

is increasing returns to scale. For the CES function with poor substitution

(  1), however, increasing returns to scale, though helping, are not by

themselves sufficient to avoid doomsday. For details, see, e.g., Groth (2007).

16.4.4 Summary on the DHSS model

Apart from a few remarks by Stiglitz, the focus of the fathers of the DHSS

model is on constant returns to scale; and, as in the simple Solow and Ram-

sey growth models, only exogenous technical progress is considered. For our

purposes we may summarize the DHSS results in the following way. Non-

renewable resources do not really matter seriously if the elasticity of substi-

14A similar problem has been investigated by Kamien and Schwartz (1978) and Just et

al. (2005), using somewhat different approaches.
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tution between them and man-made inputs is above one. If not, however,

then:

(a) absent technical progress, if  = 1 sustainable per capita consump-

tion requires 1  3 and  = 0 = ; otherwise, declining per capita

consumption is inevitable and this is definitely the prospect, if   1;

(b) on the other hand, if there is enough resource-augmenting and labor-

augmenting technical progress, non-decreasing per capita consumption

and even growing per capita consumption may be sustained;

(c) population growth, implying more mouths to feed from limited nat-

ural resources, exacerbates the drag on growth implied by a declining

resource input; indeed, as seen from (16.15), the drag on growth is

3(+ )(1− 1) along a BGP

The obvious next step is to examine how endogenizing technical change

may throw new light on the issues relating to non-renewable resources, in

particular the visions (b) and (c). Because of the non-rival character of

technical knowledge, endogenizing knowledge creation may have profound

implications, in particular concerning point (c). Indeed, the relationship

between population growth and economic growth may be circumvented when

endogenous creation of ideas (implying a form of increasing returns to scale)

is considered. This is taken up in Section 16.5.

16.4.5 An extended DHSS model

The above discussion of sustainable economic development in the presence

of non-renewable resources was carried out on the basis of the original DHSS

model with only capital, labor, and a non-renewable resource as inputs.

In practice the issues of input substitution and technological change are

to a large extent interweaved into the question of substitutability of non-

renewable with renewable resources. A more natural point of departure for

the discussion may therefore be an extended DHSS model of the form:

 =  (    )  ≥ 0
̇ =  −  −   ≥ 0 0  0 given,

̇ = ()− 0  0 given,

̇ = − 0  0 given,Z ∞

0

 ≤ 0
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where  is input of the renewable resource and  the corresponding stock,

while  is input of the non-renewable resource to which corresponds the

stock . Only the non-renewable resource is subject to the constraint of a

finite upper bound on cumulative resource extraction.

Within such a framework a more or less gradual transition from use of

non-renewable energy forms to renewable energy forms (hydro-power, wind

energy, solar energy, biomass, and geothermal energy), likely speeded up

learning by doing as well as R&D, can be studied (see for instance Tahvonen

and Salo, 2001).

16.5 A two-sector R&D-based model

We shall look at the economy from the perspective of a fictional social plan-

ner who cares about finding a resource allocation so as to maximize the

intertemporal utility function of a representative household subject to tech-

nical feasibility as given from the initial technology and initial resources.

16.5.1 The model

In addition to cost-free resource extraction, there are two “production” sec-

tors, the manufacturing sector and the R&D sector. In the manufacturing

sector the aggregate production function is

 = 



 





       0 +  +  +  = 1 (16.16)

where is output of manufacturing goods, while  , and  are inputs

of capital, labor, and a non-renewable resource, respectively, per time unit

at time  Total factor productivity is 
 where the variable  is assumed

proportional to the stock of technical knowledge accumulated through R&D

investment. Due to this proportionality we can simply identify  with the

stock of knowledge at time .

Aggregate manufacturing output is used for consumption,  investment,

 in physical capital, and investment,  in R&D,

 +  +  = 

Accumulation of capital occurs according to

̇ =  −  =  − −  −   ≥ 0 0  0 given,

(16.17)

where  is the (exogenous) rate of depreciation (decay) of capital.
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In the R&D sector additions to the stock of technical knowledge are cre-

ated through R&D investment,  :

̇ =  −   ≥ 0 0  0 given (16.18)

We allow for a positive depreciation rate,  to take into account the possi-

bility that as technology advances, old knowledge becomes obsolete and then

over time gradually becomes useless in production.

Extraction of the non-renewable resource is again given by

̇ = − ≡ − 0  0 given, (16.19)

where  is the stock of the non-renewable resource (e.g., oil reserves) and

 is the depletion rate. Since we must have  ≥ 0 for all  there is a finite
upper bound on cumulative resource extraction:Z ∞

0

 ≤ 0 (16.20)

Finally, population (= labor force) grows according to

 = 0
  ≥ 0 0  0 given.

Uncertainty is ignored and the extraction activity involves no costs.

This setup is elementarily related to what is known as “lab-equipment

models”. By investing a part of the manufacturing output, new knowledge

is directly generated without intervention by researchers and similar.15 Note

also that there are no intertemporal knowledge-spillovers.

16.5.2 Analysis

We now skip the explicit dating of the variables where not needed for clarity.

The model has three state variables, the stock,  of physical capital, the

stock,  of non-renewable resources, and the stock,  of technical knowl-

edge. To simplify the dynamics, we will concentrate on the special case

 =  =  In this case, as we shall see, after an initial adjustment pe-

riod, the economy behaves in many respects similarly to a reduced-form AK

model.

Let us first consider efficient paths, i.e., paths such that aggregate con-

sumption can not be increased in some time interval without being decreased

15An interpretation is that part of the activity in the manufacturing sector is directly

R&D activity using the same technology (production function) as is used in the production

of consumption goods and capital goods.
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Figure 16.3: Initial complete specialization followed by balanced growth.

in another time interval. The net marginal productivities of  and  are

equal if and only if −  =  −  i.e., if and only if

 = 

The initial stocks, 0 and 0 are historically given. Suppose 00  

as in Figure 16.3. Then, initially, the net marginal productivity of capital is

larger than that of knowledge, i.e., capital is relatively scarce. An efficient

economy will therefore for a while invest only in capital, i.e., there will be a

phase where  = 0 This phase of complete specialization lasts until  =

 a state reached in finite time, say at time ̄, cf. the figure. Hereafter,

there is investment in both assets so that their ratio remains equal to the

efficient ratio  forever. Similarly, if initially 00   then there will

be a phase of complete specialization in R&D, and after a finite time interval

the efficient ratio  =  is achieved and maintained forever.

For   ̄ at the aggregate level it is thus as if there were only one kind

of capital, which we may call “broad capital” and define as ̃ =  + 

= (+ ) Indeed, substitution of  =  and  = ̃(+) into

(16.16) gives

 =


(+ )+
̃+ ≡ ̃̃ ̃ ≡ +  (16.21)
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so that ̃+  +   1 Further, adding (16.18) and (16.17) gives

·
̃ = ̇+ ̇ =  − − ̃ (16.22)

where  is per capita consumption.

We now proceed with a model based on broad capital, using (16.21),

(16.22) and the usual resource depletion equation (16.19). Essentially, this

model amounts to an extended DHSS model allowing increasing returns to

scale, thereby offering a simple framework for studying endogenous growth

with essential non-renewable resources.

We shall focus on questions like:

1 Is sustainable development (possibly even growth) possible within the

model?

2 Can the utilitarian principle of discounted utility maximizing possibly

clash with a requirement of sustainability? If so, under what condi-

tions?

3 How can environmental policy be designed so as to enhance the prospects

of sustainable development or even sustainable economic growth?

Balanced growth

Log-differentiating (16.21) w.r.t.  gives the “growth-accounting equation”

 = ̃̃ + +  (16.23)

Hence, along a BGP we get

(1− ̃) +  = (̃+  − 1) (16.24)

Since   0 it follows immediately that:

Result (i) A BGP has   0 if and only if

(̃+  − 1)  0 or ̃  1 (16.25)

Proof. Since   0 (*) implies (1 − ̃)  (̃ +  − 1) Hence, if
  0 either ̃  1 or (̃ ≤ 1 and (̃ +  − 1)  0) This proves “only

if”. The “if” part is more involved but follows from Proposition 2 in Groth

(2004). ¤

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



16.5. A two-sector R&D-based model 313

Result (i) tells us that endogenous growth is theoretically possible, if there

are either increasing returns to the capital-cum-labor input combined with

population growth or increasing returns to capital (broad capital) itself. At

least one of these conditions is required in order for capital accumulation to

offset the effects of the inescapable waning of resource use over time. Based

on Nordhaus (1992),  ≈ 02  ≈ 06  ≈ 01 and  ≈ 01 seem reasonable.
Given these numbers,

(i) semi-endogenous growth requires (++−1)  0 hence   020;

(ii) fully endogenous growth requires +   1 hence   080

We have defined fully endogenous growth to be present if the long-run

growth rate in per capita output is positive without the support of growth in

any exogenous factor. Result (i) shows that only if ̃  1 is fully endogenous

growth possible. Although the case ̃  1 has potentially explosive effects

on the economy, if ̃ is not too much above 1, these effects can be held back

by the strain on the economy imposed by the declining resource input.

In some sense this is “good news”: fully endogenous steady growth is the-

oretically possible and no knife-edge assumption is needed. As we have seen

in earlier chapters, in the conventional framework without non-renewable re-

sources, fully endogenous growth requires constant returns to the producible

input(s) in the growth engine. In our one-sector model the growth engine

is the manufacturing sector itself, and without the essential non-renewable

resource, fully endogenous growth would require the knife-edge condition

̃ = 1 (̃ being above 1 is excluded in this case, because it would lead to

explosive growth in a setting without some countervailing factor). When

non-renewable resources are an essential input in the growth engine, a drag

on the growth potential is imposed. To be able to offset this drag, fully

endogenous growth requires increasing returns to capital.

The “bad news” is, however, that even in combination with essential non-

renewable resources, an assumption of increasing returns to capital seems too

strong and too optimistic. A technology having ̃ just slightly above 1 can

sustain any per capita growth rate − there is no upper bound on .
16 This

appears overly optimistic.

This leaves us with semi-endogenous growth as the only plausible form

of endogenous growth (as long as  is not endogenous). Indeed, Result (i)

indicates that semi-endogenous growth corresponds to the case 1−  ̃ ≤ 1
In this case sustained positive per capita growth driven by some internal

mechanism is possible, but only if supported by   0 that is, by growth in

an exogenous factor, here population size.

16This is shown in Groth (2004).
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Growth policy and conservation

Result (i) is only about whether the technology as such allows a positive per

capita growth rate or not. What about the size of the growth rate? Can

the growth rate temporarily or perhaps permanently be affected by economic

policy? The simple growth-accounting relation (16.24) immediately shows:

Result (ii) Along a BGP, policies that decrease (increase) the depletion

rate  (and only such policies) will increase (decrease) the per capita

growth rate (here we presuppose ̃  1 the plausible case).

This observation is of particular interest in view of the fact that chang-

ing the perspective from exogenous to endogenous technical progress implies

bringing a source of numerous market failures to light. On the face of it,

the result seems to run against common sense. Does high growth not im-

ply fast depletion (high )? Indeed, the answer is affirmative, but with the

addition that exactly because of the fast depletion such high growth will

only be temporary − it carries the seeds to its own obliteration. For faster
sustained growth there must be sustained slower depletion. The reason for

this is that with protracted depletion, the rate of decline in resource input

becomes smaller. Hence, so does the drag on growth caused by this decline.

As a statement about policy and long-run growth, (ii) is a surprisingly

succinct conclusion. It can be clarified in the following way. For policy to

affect long-run growth, it must affect a linear differential equation linked to

the basic goods sector in the model. In the present framework the resource

depletion relation,

̇ = −
is such an equation. In balanced growth  = − ≡ − is constant,
so that the proportionate rate of decline in  must comply with, indeed be

equal to, that of  Through the growth accounting relation (16.23), given 

this fixes  and ̃ (equal in balanced growth), hence also  =  − .

The conventional wisdom in the endogenous growth literature is that

interest income taxes impede economic growth and investment subsidies pro-

mote economic growth. Interestingly, this need not be so when non-renewable

resources are an essential input in the growth engine (which is here the man-

ufacturing sector itself). At least, starting from a Cobb-Douglas aggregate

production function as in (16.16), it can be shown that only those policies

that interfere with the depletion rate  in the long run (like a profits tax on

resource-extracting companies or a time-dependent tax on resource use) can

affect long-run growth. It is noteworthy that this long-run policy result holds

whether   0 or not and whether growth is exogenous, semi-endogenous
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or fully endogenous.17 The general conclusion is that with non-renewable

resources entering the growth-generating sector in an essential way, conven-

tional policy tools receive a different role and there is a role for new tools

(affecting long-run growth through affecting the depletion rate).18

Introducing preferences

To be more specific we introduce household preferences and a social planner.

The resulting resource allocation will coincide with that of a decentralized

competitive economy if agents have perfect foresight and the government has

introduced appropriate subsidies and taxes. As in Stiglitz (1974a), let the

utilitarian social planner choose a path ( )
∞
=0 so as to optimize

0 =

Z ∞

0


1−

1− 


−   0 (16.26)

subject to the constraints given by technology, i.e., (16.21), (16.22), and

(16.19), and initial conditions. The parameter   0 is the (absolute) elas-

ticity of marginal utility of consumption (reflecting the strength of the desire

for consumption smoothing) and  is a constant rate of time preference.19

Using the Maximum Principle, the first-order conditions for this problem

lead to, first, the social planner’s Keynes-Ramsey rule,

 =
1


(


̃
−  − ) =

1


(̃



̃
−  − ) (16.27)

second, the social planner’s Hotelling rule,

()


=




(


̃
− ) = 




(̃



̃
− ) (16.28)

The Keynes-Ramsey rule says: as long as the net return on investment in

capital is higher than the rate of time preference, one should let current  be

low enough to allow positive net saving (investment) and thereby higher con-

sumption in the future. The Hotelling rule is a no-arbitrage condition saying

that the return (“capital gain”) on leaving the marginal unit of the resource

17This is a reminder that the distinction between fully endogenous growth and semi-

endogenous growth is not the same as the distinction between policy-dependent and policy-

invariant growth.
18These aspects are further explored in Groth and Schou (2006).
19For simplicity we have here ignored (as does Stiglitz) that also environmental quality

should enter the utility function.
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in the ground must equal the return on extracting and using it in produc-

tion and then investing the proceeds in the alternative asset (reproducible

capital).20

After the initial phase of complete specialization described above, we

have, due to the proportionality between and ̃ that  =  =

̃ = ̃̃ Notice that the Hotelling rule is independent of prefer-

ences; any path that is efficient must satisfy the Hotelling rule (as well as

the exhaustion condition lim→∞ () = 0).

Using the Cobb-Douglas specification, we may rewrite the Hotelling rule

as  −  = ̃̃ −  Along a BGP  =  =  +  and  = − so
that the Hotelling rule combined with the Ramsey rule gives

(1− ) +  = −  (16.29)

This linear equation in  and  combined with the growth-accounting

relationship (16.24) constitutes a linear two-equation system in the growth

rate and the depletion rate. The determinant of this system is  ≡ 1− ̃−
+ We assume   0 which seems realistic and is in any case necessary

(and sufficient) for stability.21 Then

 =
(̃+  +  − 1)− 


 and (16.30)

 =
[(̃+  − 1) − ]+ (1− ̃)


 (16.31)

To ensure boundedness from above of the utility integral (16.26) we need

the parameter restriction −   (1− ) which we assume satisfied for 
as given in (16.30).

Interesting implications are:

Result (iii) If there is impatience (  0), then even when a non-negative

 is technically feasible (i.e., (16.25) satisfied), a negative  can be

optimal and stable.

20After Hotelling (1931), who considered the “rule” in a market economy. Assuming

perfect competition, the real resource price is  =  and the real rate of interest is

 =  − . Then the rule takes the form ̇ = . If there are extraction costs at

rate ( ) then the rule takes the form ̇ −  =  , where  is the price of

the unextracted resource (whereas  =  + ).

It is another matter that the rise in resource prices and the predicted decline in resource

use have not yet shown up in the data (Krautkraemer 1998, Smil 2003); this may be due

to better extraction technology and discovery of new deposits. But in the long run, if

non-renewable resources are essential, this tendency inevitably will be reversed.
21As argued above, ̃  1 seems plausible. Generally,  is estimated to be greater than

one (see, e.g., Attanasio and Weber 1995); hence   0 The stability result as well as

other findings reported here are documented in Groth and Schou (2002).
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Result (iv) Population growth is good for economic growth. In its absence,

when   0 we get   0 along an optimal BGP; if  = 0  = 0

when  = 0.

Result (v) There is never a scale effect on the growth rate.

Result (iii) reflects that utility discounting and consumption smoothing

weaken the “growth incentive”.

Result (iv) is completely contrary to the conventional (Malthusian) view

and the learning from the DHSS model. The point is that two offsetting

forces are in play. On the one hand, higher  means more mouths to feed

and thus implies a drag on per capita growth (Malthus). On the other hand,

a growing labour force is exactly what is needed in order to exploit the

benefits of increasing returns to scale (anti-Malthus). And at least in the

present framework this dominates the first effect. This feature might seem

to be contradicted by the empirical finding that there is no robust correlation

between  and population growth in cross-country regressions (Barro and

Sala-i-Martin 2004, Ch. 12). However, the proper unit of observation in this

context is not the individual country. Indeed, in an internationalized world

with technology diffusion a positive association between  and  as in (16.30)

should not be seen as a prediction about individual countries, but rather as

pertaining to larger regions, perhaps the global economy. In any event, the

second part of Result (iv) is a dismal part − in view of the projected long-run
stationarity of world population (United Nations 2005).

A somewhat surprising result appears if we imagine (unrealistically) that

̃ is sufficiently above one to make  a negative number. If population

growth is absent,   0 is in fact needed for   0 along a BGP However,

  0 implies instability. Hence this would be a case of an instable BGP

with fully endogenous growth.22

As to Result (v), it is noteworthy that the absence of a scale effect on

growth holds for any value of ̃ including ̃ = 123

A pertinent question is: are the above results just an artifact of the very

simplified reduced-form AK-style set-up applied here? The answer turns out

22Thus, if we do not require   0 in the first place, (iv) could be reformulated as:

existence of a stable optimal BGP with   0 requires   0. This is not to say that

reducing  from positive to zero renders an otherwise stable BGP instable. Stability-

instability is governed solely by the sign of  Given   0 letting  decrease from a level

above the critical value, (̃+  +  − 1) given from (16.30), to a level below, changes

 from positive to negative, i.e., growth comes to an end.
23More commonplace observations are that increased impatience leads to faster depletion

and lower growth (in the plausible case ̃  1) Further, in the log-utility case ( = 1) the

depletion rate  equals the effective rate of impatience, − .
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to be no. For models with a distinct research technology and intertemporal

knowledge spillovers, this is shown in Groth (2007).

16.6 Natural resources and the issue of limits

to economic growth

Two distinguished professors were asked by a journalist: Are there limits to

economic growth?

The answers received were:24

Clearly YES:

• A finite planet!
• The amount of cement, oil, steel, and water that we can use is limited!
Clearly NO:

• Human creativity has no bounds!
• The quality of wine, TV transmission of concerts, computer games, and
medical treatment knows no limits!

An aim of this chapter has been to bring to mind that it would be strange

if there were no limits to growth. So a better question is:

What determines the limits to economic growth?

The answer suggested is that these limits are determined by the capability

of the economic system to substitute limited natural resources by man-made

goods the variety and quality of which are expanded by creation of new ideas.

In this endeavour frontier countries, first the U.K. and Europe, next the

United States, have succeeded at a high rate for two and a half century. To

what extent this will continue in the future nobody knows. Some economists,

e.g. Gordon (2012), argue there is an enduring tendency to slowing down of

innovation and economic growth (the low-hanging fruits have been taken).

Others, e.g. Brynjolfsson and McAfee (2012, 2014), disagree. They reason

that the potentials of information technology and digital communication are

on the verge of the point of ubiquity and flexible application. For these

authors the prospect is “The Second Machine Age” (the title of their recent

book), by which they mean a new innovative epoch where smart machines

and new ideas are combined and recombined - with pervasive influence on

society.

24Inspired by Sterner (2008).
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16.7 Bibliographic notes concerning Section

16.5

It is not always recognized that the research of the 1970s on macro implica-

tions of essential natural resources in limited supply already laid the ground-

work for a theory of endogenous and policy-dependent growth with natural

resources. Actually, by extending the DHSS model, Suzuki (1976), Robson

(1980) and Takayama (1980) studied how endogenous innovation may affect

the prospect of overcoming the finiteness of natural resources.

Suzuki’s (1976) article contains an additional model, involving a resource

externality. Interpreting the externality as a “greenhouse effect”, Sinclair

(1992, 1994) and Groth and Schou (2006) pursue this issue further. In the

latter paper a configuration somewhat similar to the model in Section 16.5 is

studied. The source of increasing returns to scale is not intentional creation

of knowledge, however, but learning as a by-product of investing as in Arrow

(1962a) and Romer (1986). Empirically, the evidence furnished by, e.g., Hall

(1990) and Caballero and Lyons (1992) suggests that there are quantitatively

significant increasing returns to scale w.r.t. capital and labour or external

effects in US and European manufacturing. Similarly, Antweiler and Trefler

(2002) examine trade data for goods-producing sectors and find evidence for

increasing returns to scale.

Concerning Result (i) in Section 16.5, note that if some irreducibly ex-

ogenous element in the technological development is allowed in the model

by replacing the constant  in (16.21) by  where  ≥ 0, then (16.25) is
replaced by  +(̃+− 1)  0 or ̃  1 Both Stiglitz (1974a, p. 131) and

Withagen (1990, p. 391) ignore implicitly the possibility ̃  1 Hence, from

the outset they preclude fully endogenous growth.
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16.8 Appendix: Balanced growth with an es-

sential non-renewable resource

The production side of the DHSS model with CES production function is

described by:

 = ̃ (   ) ̃  ≥ 0 (16.32)

̇ =  −  −   ≥ 0 0  0 given, (16.33)

̇ = − ≡ − 0  0 given, (16.34)

 = 0
  ≥ 0 (16.35)Z ∞

0

 ≤ 0 (16.36)

We will assume that the non-renewable resource is essential, i.e.,

 = 0 implies  = 0 (16.37)

From now we omit the dating of the time-dependent variables where not

needed for clarity. Recall that in the context of an essential non-renewable

resource, we define a balanced growth path (BGP for short) as a path along

which the quantities     and  are positive and change at constant

proportionate rates (some or all of which may be negative).

Lemma 1 Along a BGP the following holds: (a)  =   0; (b) (0) =

−(0) and
lim
→∞

 = 0 (16.38)

Proof Consider a BGP. (a) From (16.34),  = −; differentiating with
respect to time gives

̇ = −( − ) = 0

by definition of a BGP. Hence,  =  since   0 by definition. For any

constant  we have
R∞
0

 =
R∞
0

0
 If  ≥ 0 (16.36) would thus be

violated. Hence,   0 (b) With  = 0 in (16.34), we get ̇00 = −00
=  the last equality following from (a). Hence, 0 = −0 Finally, the
solution to (16.34) can be written  = 0

 Then, since  is a negative

constant,  → 0 for →∞ ¤
Define

 ≡ 


  ≡ 


 and  ≡ 


 (16.39)

We may write (16.34) as

 =  − −  (16.40)
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Similarly, by (16.34),

 ≡ − (16.41)

Lemma 2 Along a BGP,  =  = −  0 is constant and  = . If gross

saving is positive in some time interval, we have along the BGP in addition

that  =  , both constant, and that  and  are constant.

Proof Consider a BGP. Since  is constant by definition of a BGP,  must

also be constant in view of (16.41). Then, by Lemma 1,  =  = − is
constant and   0. Differentiating in (16.40) with respect to  gives ̇
= ̇ − ̇ = ( − ) −( − ) = 0 since  is constant along a BGP.

Dividing through by  which is positive along a BGP, and reordering gives

 −  = ( − )



 (16.42)

But this is a contradiction unless  = ; indeed, if  6=   then  − 
6=  −  at the same time as  =  → 0 if     and 

=  →∞ if     both cases being incompatible with (16.42) and the

presumed constancy of    and   hence constancy of both  −  and
 −   So  =  along a BGP. Suppose gross saving is positive in some

time interval and that at the same time  6=  =   then (16.42) implies

 ≡ 1, i.e.,  =  for all  or gross saving = 0 for all  a contradiction.

Hence,  =  =   It follows by (16.39) that  and  are constant. ¤
Consider the case where the production function is neoclassical with CRS,

and technical progress is labor- and resource-augmenting:

 =  ( 2 3) (16.43)

2 = 2, 2 ≥ 0 3 = 3 3 ≥ 0

Let ̂ ≡ 2 and ̂ ≡ 3 Let  ̂ and ̂ denote the output elasticities

w.r.t.  ̂ and ̂ i.e.,

 ≡ 






 ̂ ≡

2





(2)
 ̂ ≡

3





(3)


Differentiating in (16.43) w.r.t.  and dividing through by  (as in growth-

accounting), we then have

 ≡ ̇


=  + ̂(2 + ) + ̂(3 + )

=  + ̂(2 + ) + (1−  − ̂)(3 + ) (16.44)
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the last equality being implied by the CRS property in (16.43).

Suppose the economy follows a BGP with positive gross saving. Then,

by Lemma 2,  =  and  = −  0 Hence, (16.44) can be written

(1− )( − (3 − )) = ̂(2 + − (3 − )) (16.45)

Consider the special case where  is CES:

 =
³
1


 + 2(2)

 + 3(3)

´1

 1 2 3  0
X


 = 1   1

(16.46)

As we know from Chapter 2 that, for  = 0 the CES formula can be inter-

preted as the Cobb-Douglas formula (16.13). Applying (??) from Chapter 2,

the output elasticities w.r.t.  ̂ and ̂ are

 = 1

µ




¶−
 ̂ = 2

µ


2

¶−
 and ̂ = 3

µ


3

¶−


(16.47)

respectively.

Lemma 3 Let  ≡  and  ≡  Given (16.35) and (16.46), along a

BGP with positive gross saving,  and ̂ are constant, and  =  = 2

In turn, such a BGP exists if and only if

 = 3 − (2 + )  0 (16.48)

Proof Consider a BGPwith positive gross saving. By Lemma 2, 0   = −
is constant and  ≡  is constant, hence so is   The left hand side of

(16.45) is thus constant and somust the right-hand side therefore be. Suppose

that, contrary to (16.48),  6= 3−(2+). Then constancy of the right-hand
of (16.45) requires that ̂ is constant. In turn, by (16.47), this requires that

(2) ≡ 2 is constant. Consequently,  = 2 =  where the second

equality is implied by the claim in Lemma 2 that along a BGP with positive

gross saving in some time interval,  =   As  is constant, it follows

that  =  ≡  + = 2+ Inserting this into (16.44) and rearranging,

we get

(1−  − ̂)(2 + ) = (1−  − ̂)(3 − )

where the last equality follows from  = −. Isolating  gives the equality
in (16.48). Thereby, our assumption  6= 3 − (2 + ) leads to a contradic-

tion. Hence, given (16.35) and (16.46), if a BGP with positive gross saving

exists, then  = 3 − (2 + )  0. This shows the necessity of (16.48).

The sufficiency of (16.48) follows by construction, starting by fixing  and

thereby − in accordance with (16.48) and moving “backward”, showing
consistency with (16.44) for  =  = 2 + . ¤
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Short Note 1. Economic Growth.

April 11, 2016. Christian Groth

Robustness issues and scale effects

This note adds some conceptual and empirical perspectives to the discussion in Chap-

ter 5 and 9 in Jones and Vollrath (2013).

1 Different growth patterns

Notation: Y = GDP, y ≡ Y/L, and gy ≡ ẏ/y; time is continuous.

Economic growth can take different forms. It can be exponential :

yt = y0e
gt, g > 0. (1)

Ignoring business cycle fluctuations this describes quite well what we have seen in indus-

trialized economies since the industrial revolution (with g ∈ (0.01, 0.02) on annual basis).
When growth is exponential, the growth rate, ẏ/y, is a positive constant, here equal to g.

Growth can alternatively take the form of arithmetic growth:

yt = y0 + αt, α > 0. (2)

Here ẏ = α, the momentum, is a positive constant. So, in spite of the growth rate, ẏ/y,

approaching zero for t going to infinity, we have yt →∞ for t→∞.

More generally, growth can take the form of quasi-arithmetic growth:

yt = y0(1 + αβt)1/β, α > 0, β > 0. (3)

In the special case β = 1 and y0 = 1, this is arithmetic growth. The parameter β is the

damping coeffi cient. The case of strict stagnation, yt = y0 for all t ≥ 0, can be interpreted
as the limiting case β →∞.1 On the other hand, in the limit, when β → 0 (no damping),

the growth path (3) becomes exponential growth, yt = y0e
αt.2

1To see this, use L’Hôpital’s rule for “∞/∞”on ln yt = ln y0 + 1
β ln (1 + αβt). The term stagnation

also covers the case of asymptotic stagnation where in spite of ẏ > 0 for all t ≥ 0, ẏ goes towards zero
fast enough so that there is an upper bound, ȳ, for yt, i.e., yt < ȳ for all t ≥ 0. For instance logistic
growth has this property. (Logistic growth is the growth path generated by the differential equation ẏt
= αyt(1− yt/ȳ), α > 0, 0 < y0 < ȳ.)

2To see this, use L’Hôpital’s rule for “0/0”on ln yt = ln y0 + 1
β ln (1 + αβt).

1



These alternative growth patterns can be generated for alternative parameter values

of essentially the same model, namely a model that leads to the differential equation

ẏt = αyβ0 yt
1−β, α > 0, β ≥ 0. (4)

In case β = 0, (4) is a linear differential equation that has the solution (1) with g = α,

which is exponential growth. In case β > 0, (4) is an autonomous Bernoulli equation that

has the solution (3), which is quasi-arithmetic growth.3 For alternative values of β between

0 and infinity, quasi-arithmetic growth covers the whole range between exponential growth

and strict stagnation. We rule out the case of β < 0 which would imply that the model

could only temporarily describe reality, because β < 0 leads to explosive growth: yt

approaching infinity in finite time (the “end of scarcity”).

Several prominent macroeconomists, e.g., Lawrence Summers, Robert Gordon, and our

own Charles Jones, predict that economic growth in the future will be lower than what

we have seen in the 20th century. One of the reasons emphasized by Jones and others

is the slowdown of population growth and thereby, everything else equal, dampening of

growth of the source of new ideas. Along this line, in a coming exercise you will be asked

to show what long-run growth pattern the horizontal innovations model with ϕ < 1 and

n = 0 implies.

2 The term “endogenous growth”and all that

How terms like “endogenous growth”and “semi-endogenous growth”are defined varies

in the literature. In this course we use the following definitions. A model features:

endogenous growth if yt →∞ for→∞, and the source of this evolution is some internal
mechanism in the model (rather than exogenous technology growth);

fully-endogenous growth if growth is endogenous in such way that yt → ∞ for → ∞
occurs even if there is no support by growth in any exogenous factor;4

3It is clear that with 0 < β < ∞, the solution formula (3) can not be extended, without bound,
backward in time. For t = −(αβ)−1 ≡ t̄, we get yt = 0, and thus, according to (4), yt = 0 for all
t ≤ t̄. This should not, however, be considered a necessarily problematic feature. A certain growth
regularity need not be applicable to all periods in history. It may apply only to specific historical epochs
characterized by a particular institutional environment.

4An alternative name for this case is strictly endogenous growth.

2



semi-endogenous growth if growth is endogenous in such way that yt → ∞ for → ∞
occurs only if the growth path is supported by growth in some exogenous factor

(for example exogenous growth in the labor force).

If in the above three cases, the weak growth criterion “yt →∞ for→∞”is replaced by
exponential growth, then we speak of endogenous, fully-endogenous, and semi-endogenous

exponential growth, respectively. If instead the weak growth criterion is replaced by,

for instance, arithmetic growth, we speak of endogenous, fully-endogenous, and semi-

endogenous arithmetic growth, respectively,

An example of fully endogenous exponential growth is the endogenous growth gener-

ated in the Romer case (ϕ = 1, n = 0) of the horizontal innovations model. An example

of semi-endogenous exponential growth is the Jones case (ϕ < 1, n > 0) of the horizontal

innovations model.

When Romer’s case is combined with Ramsey households, we get steady-state results

of the following kind: ∂g∗y/∂ρ < 0 and ∂g
∗
y/∂θ < 0 (standard notation). That is, preference

parameters matter for long-run growth. This suggests, at least at the theoretical level,

that taxes and subsidies, by affecting incentives, may have effects on long-run growth.

In any case, fully-endogenous exponential growth is technologically possible if and only

if there are non-diminishing returns (at least asymptotically) to the producible inputs in

the growth-generating sector(s), also called the growth engine. The growth engine in an

endogenous growth model is defined as the set of input-producing sectors or activities

using their own output as input. This set may consist of only one element, for instance

the R&D sector in the horizontal innovations model, the manufacturing sector in the

simple AK model, and the educational sector in the Lucas (1988) model. A model is

capable of generating fully-endogenous exponential growth if the growth engine has CRS

w.r.t. producible inputs.

No argument, however, like the replication argument for CRS w.r.t. the rival inputs ex-

ists regarding CRS w.r.t. the producible inputs. This theoretical limitation, combined with

strong empirically founded skepticism, motivated Jones to introduce his semi-endogenous

version of the horizontal innovations model (Jones1995a, 1995b), where ϕ < 1, n > 0. In

that version, in the long run

gy = gk = gc =
n

1− ϕ ≡ g∗y. (5)
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If a certain degree, ξ, of R&D overlap is added, 0 ≤ ξ < 1, we instead get g∗y = (1 −
ξ)n/(1− ϕ).5

So, in this case, if and only if n > 0, can a positive constant per capita growth rate be

maintained forever. Only when the R&D outcome is assisted by growth in the exogenous

source of ideas, population, is the growth engine strong enough to maintain exponential

growth. The key role of population growth derives from the fact that at the aggregate

level there are increasing returns to scale w.r.t. capital, labor, and knowledge. For the

increasing returns to be suffi ciently exploited to generate exponential growth, population

growth is needed. Note that if the Jones case is combined with Ramsey households, we

get ∂g∗y/∂ρ = 0 = ∂g∗y/∂θ, that is, preference parameters do not matter for long-run

growth (only for the level of the growth path, see Section 4 below). This suggests that

taxes and subsidies do not have long-run growth effects. Yet, in the Jones model and

similar semi-endogenous growth models, economic policy can have important permanent

level effects. Moreover, the only temporary growth effects can be quite durable because

the speed of convergence is low (see Jones, 1995a).

Strangely enough, some textbooks (for example Barro and Sala-i-Martin, 2004) do

not call much attention to the distinction between fully-endogenous growth and semi-

endogenous growth (and even less attention to the distinction between exponential growth

and weaker forms of growth). Rather, they tend to use the term “endogenous growth”

as synonymous with what we here call “fully-endogenous exponential growth”. But there

is certainly no reason to rule out apriori the parameter cases corresponding to semi-

endogenous growth.

In the Acemoglu textbook (Acemoglu, 2009, p. 448), “semi-endogenous growth” is

defined or characterized as endogenous growth where the long-run per capita growth

rate of the economy “does not respond to taxes or other policies”. As an implication,

endogenous growth which is not semi-endogenous is in Acemoglu’s text implicitly defined

as endogenous growth where the long-run per capita growth rate of the economy does

respond to taxes or other policies.

We have defined the distinction between “semi-endogenous growth”and “fully-endogenous

growth” in a different way. In our terminology, this distinction does not coincide with

the distinction between policy-dependent and policy-invariant growth. Indeed, in our ter-

5Of course the model shifts from featuring “semi-”to featuring “fully-endogenous”exponential growth
if the model is extended with an internal mechanism determining the population growth rate. Jones (2003)
takes steps towards such a model.

4



minology positive per capita growth may rest on an “exogenous source” in the sense of

deriving from exogenous technical progress and yet the long-run per capita growth rate

may be policy-dependent. In Chapter 16 of the lecture notes we will see an example in

connection with the Dasgupta-Heal-Solow-Stiglitz model, also known as the DHSS model.

There also exist models that according to our definition feature semi-endogenous

growth and yet the long-run per capita growth rate is policy-dependent (Cozzi, 1997;

Sorger, 2010). Similarly, there exist models that according to our definition feature fully-

endogenous exponential growth and yet the long-run per capita growth rate is policy-

invariant (some learning-by-doing models have this property).

Before proceeding, a word of warning. The distinction between “exogenous” and

“endogenous” growth is only meaningful within a given meta-theoretical framework. It

is always possible to make the meta-theoretical framework so broad that the per capita

growth rate must be considered endogenous within that framework. From the perspective

of society as a whole we can imagine many different political and institutional structures−
as witnessed by long-run historical evolution − some of which clearly are less conducive to
economic growth than others. From this broad point of view, growth is always endogenous.

3 Robustness of endogenous growth models

The horizontal innovations model illustrates the fact that endogenous growth models with

exogenous population typically exist in two varieties or cases. One is the fully-endogenous

growth case where a particular value is imposed on a key parameter in the growth engine.

This value is such that there are constant returns (at least asymptotically) to producible

inputs in the growth engine of the economy. In the “corresponding” semi-endogenous

growth case, the key parameter is allowed to take any value in an open interval. The

endpoint of this interval appears as the “knife-edge”value assumed in the fully-endogenous

growth case.

Although the two varieties build on qualitatively the same mathematical model of a

certain growth mechanism (say, research and development or learning by doing, to be

considered later in the course), the long-run results turn out to be very sensitive to which

of the two cases is assumed. In the fully-endogenous growth case a positive per-capita

growth rate is maintained forever without support of growth in any exogenous factor. In

the semi-endogenous growth case, the growth process needs “support”by some growing
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exogenous factor in order for sustained growth to be possible. The established terminology

is somewhat seductive here. “Fully endogenous”sounds as something going much deeper

than “semi-endogenous”. But nothing of that sort should be implied. It is just a matter

of different parameter values.

As Solow (1997, pp. 7-8) emphasizes in connection with learning-by-investing models

(with constant population), the knife-edge case assumed in the fully-endogenous growth

versions is a very special case, indeed an “extreme case, not something intermediate”.

A value slightly above the knife-edge value leads to explosive growth: infinite output in

finite time even when n = 0. And a value slightly below the knife-edge value leads to

growth petering out in the long run when n = 0.

Whereas the strength of the semi-endogenous growth case is its theoretical and empir-

ical robustness, the convenience of the fully-endogenous growth case is that it has much

simpler dynamics. Then the question arises to what extent a fully-endogenous growth

model can be seen as a useful approximation to its semi-endogenous growth “counter-

part”. Imagine that we contemplate applying the fully-endogenous growth case as a basis

for making forecasts or for policy evaluation in a situation where the “true”case is the

semi-endogenous growth case. Then we would like to know: Are the impulse-response

functions generated by a shock in the fully-endogenous growth case an acceptable ap-

proximation to those generated by the same shock in the corresponding semi-endogenous

growth case for a suffi ciently long time horizon to be of interest?6 The answer is “yes”

if the critical parameter has a value “close”to the knife edge value and “no”otherwise.

How close it need be, depends on circumstances. My own tentative impression is that

usually it is “closer”than what the empirical evidence warrants.

Even if a single growth-generating mechanism, like learning by doing, does not in

itself seem strong enough to generate a reduced-form AK model (the fully-endogenous

growth case), there might exist complementary factors and mechanisms that in total

could generate something close to a reduced-form AK model. The time-series test by, for

instance, Jones (1995b) and Romero-Avila (2006), however, reject this.7

Comment on “growth petering out”when n = 0 The above-mentioned “petering

out”of long-run growth in the semi-endogenous case when n = 0 takes different forms in

6Obviously, the ultimate effects of the shock tend to be very different in the two models.
7For an opposite view, see Kocherlakota and Yi (1997). There is a longstanding discussion about

these time-series econometric issues. See the course website under Supplementary Material.
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different models. When exponential growth cannot be sustained in a model, sometimes

it remains true that nevertheless y → ∞ for t → ∞, for instance in the form of quasi-

arithmetic growth, and sometimes instead asymptotic stagnation results.8

Another issue is whether there exist factors that in spite of n = 0 (or, to be more

precise, in spite of n decreasing, possibly to zero as projected by the United Nations

(2013) to happen within a century from now) may replace the growth-supporting role

of population growth under semi-endogenous parameter conditions like ϕ < 1. Both

urbanization and the evolution of digital information and communication technologies

seem likely for a long time to at least help in that direction.

4 Weak and strong scale effects

The distinction between weak and strong scale effects is important. In the Romer case

(ϕ = 1, n = 0) of the horizontal innovations model there a strong scale effect:

∂g∗y
∂L

> 0. (6)

Interpreting the size (“scale”) of the economy as measured by the size, L, of the labor

force, we call such an effect a strong scale effect, that is, “scale” has an effect on the

long-run growth rate. This kind of scale effect has clearly been rejected by the empirics,

cf. Jones and Vollrath (2013, p. 106).

Scale effects can be of a less dramatic form. In this case we speak of a weak scale effect

or a scale effect on levels. This form arises when ϕ is less than 1. We see from (5) that

in the Jones case (ϕ < 1, n > 0) of the horizontal innovations model, the steady state

growth rate is independent of the size of the economy. Consequently, in Jones’version

there is no strong scale effect. Yet there is a scale effect on levels unless ϕ = 0. If ϕ > 0,

the scale effect is positive in the sense that along a steady state growth path, (y∗t )
∞
t=0,

∂y∗t
∂L0

> 0, (7)

cf. Exercise VII.7.

The result (7) says the following. Suppose we consider two closed economies charac-

terized by the same parameters, including the same n > 0 and the same ϕ ∈ (0, 1). The
economies differ only w.r.t. initial size of the labor force. Suppose both economies are

8See Groth et al., 2010.

7



in steady state. Then, according to (7), the economy with the larger labor force has, for

all t, larger output per unit of labor. The background is the increasing returns to scale

w.r.t. capital, labor, and technical knowledge, which in turn is due to technical knowl-

edge being a non-rival good − its use by one firm does not (in itself) limit the amount

of knowledge available to other firms.9 In a large economic system, say an integrated

set of open economies, more people benefit from a given increase in knowledge than in a

small economic system. At the same time the per capita cost of creating the increase in

knowledge is less in the large system than in the small system.

The scale effect on levels displayed by (7) can be shown to be increasing in the para-

meter ϕ, which measures the elasticity of the economy-wide R&D productivity w.r.t. the

stock of knowledge. When ϕ → 1, the scale effect becomes more and more powerful. In

the limit it ends up as a scale effect on the growth rate, as in the Romer case.

5 Discussion

Are there good theoretical and/or empirical reasons to believe in the existence of (positive)

scale effects on levels or perhaps even on growth in the long run?

Let us start with some theoretical considerations.

5.1 Theoretical aspects

From the point of view of theory, we should recognize the likelihood that offsetting forces

are in play. On the one hand, there is the problem of limited natural resources. For

a given level of technology, if there are CRS w.r.t. capital, labor, and land (or other

natural resources), there are diminishing returns to capital and labor taken together. In

this Malthusian perspective, an increased scale (increased population) results, everything

else equal, in lower rather than higher per capita output, that is, a negative scale effect

should be expected.

On the other hand, there is the anti-Mathusian view that repeated improvements

in technology tend to overcome, or rather more than overcome, this Malthusian force,

if appropriate socio-economic conditions are present. Here the theory of endogenous

technical change comes in by telling us that a large population may be good for technical

9By patent protection, secrecy, and copyright some aspects of technical knowledge are sometimes
partially and temporarily excludable, but that is another matter.
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progress if the institutions in society are growth-friendly. A larger population breeds

more ideas, the more so the better its education is; a larger population also promotes

division of labor and larger markets. This helps the creation of new technologies or,

from the perspective of an open economy, it helps the local adoption of already existing

technologies outside the country. In a less spectacular way it helps by furthering day-

by-day productivity increases due to learning by doing and learning by watching. The

non-rival character of technical knowledge is an important feature behind all this. It

implies that output per capita depends on the total stock of ideas, not on the stock per

person. This implies − everything else equal − an advantage of scale.

In the models considered so far in this course, natural resources and the environment

have been more or less ignored. Here only a few remarks about this limitation. The

approach we have followed is intended to clarify certain mechanisms − in abstraction

from numerous things. The models in focus have primarily been about aspects of an

industrialized economy. Yet the natural environment is always a precondition. A ten-

dency to positive scale effects on levels may be more or less counteracted by congestion

and aggravated environmental problems ultimately caused by increased population and a

population density above some threshold.

What can we say from an empirical point of view?

5.2 Empirical aspects

First of all we should remember that in view of cross-border diffusion of ideas and tech-

nology, a positive scale effect (whether weak or strong) should not be seen as a prediction

about individual countries, but rather as pertaining to larger regions, nowadays probably

the total industrialized part of the world. So cross-country regression analysis is not the

right framework for testing for scale effects, whether on levels or the growth rate. The

relevant scale variable is not the size of the country, but the size of a larger region to which

the country belongs, perhaps the whole world; and multivariate time series analysis seems

the most relevant approach.

Since in the last century there has been no clear upward trend in per capita growth

rates in spite of a growing world population (and also a growing population in the in-

dustrialized part of the world separately), most economists do not believe in strong scale

effects. But on the issue of weak scale effects the opinion is definitely more divided.

Considering the very-long run history of population and per capita income of different
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regions of the world, there clearly exists evidence in favour of scale effects (Kremer, 1993).

Whether advantages of scale are present also in a contemporary context is more debated.

Recent econometric studies supporting the hypothesis of positive scale effects on levels

include Antweiler and Trefler (2002) and Alcalá and Ciccone (2004). Finally, considering

the economic growth in China and India since the 1980s, we must acknowledge that this

impressive performance at least does not speak against the existence of positive scale

effects on levels.

Acemoglu seems to find positive scale effects on levels plausible at the theoretical level

(pp. 113-114). At the same time, however, later in his book he seems somewhat skeptical

as to the existence of empirical support for this. Indeed, with regard to the fact that R&D-

based theoretical growth models tend to generate at least weak scale effects, Acemoglu

claims: “It is not clear whether data support these types of scale effects” (Acemoglu,

2009, p. 448).

My personal view on the matter is that we should, of course, recognize that offsetting

forces, coming from our finite natural environment, are in play and that a lot of uncertainty

is involved. Nevertheless it seems likely that at least up to a certain point there are positive

scale effects on levels.

5.3 Policy implications

If this holds true, it supports the view that international economic integration is generally

a good idea. The concern about congestion and environmental problems, in particular

global warming, should probably, however, preclude recommending governments and the

United Nations to try to promote population growth.

Moreover, it is important to remember the distinction between the global and the

local level. The n in the formula (5) refers to a much larger region than a single country;

we may refer to this region as “the set of knowledge-producing countries in the world”.

No recommendation of higher population growth in a single country is implied by this

theoretical formula. When discussing economic policy from the perspective of a single

country, all aspects of relevance in the given local context should be incorporated. For

a developing country with limited infrastructure and weak educational system, family-

planning programs and similar may in many cases make sense from both a social and a

productivity point of view (cf. Dasgupta, 1995).
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Short Note 2. Economic Growth.

May 6, 2016. Christian Groth

The Romer-Jones horizontal
innovations model

Below is a compact version of the Romer-Jones model of horizontal innovations in a

closed industrialized economy. In contrast to Jones and Vollrath, Ch. 5.1-2, we specify

the household sector to be of Ramsey type. There is no uncertainty and households have

perfect foresight. The text is not meant to be a substitute to Jones and Vollrath’s Ch.

5.1-2, but a complement to be read after Jones and Vollrath’s introduction has been read.

The aim is to give a systematic overview and to clarify some of the more technical issues.

Our notation is as in exercises VII.10 - VII.14, thereby only in a few respects deviating

from that in Jones and Vollrath.

1 The household sector

There is a fixed number of infinitely-lived households, all alike. Each household has L(t)

= L(0)ent members, n ≥ 0, and each member supplies inelastically one unit of labor per

time unit. We normalize the number of households to be one. Given θ > 0 and ρ > 0,

the representative household’s problem is to choose a plan (c(t))∞t=0 so as to

max U0 =

∫ ∞
0

c(t)1−θ

1− θ e
−(ρ−n)tdt s.t. (*)

c(t) ≥ 0,

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t), a(0) given,

lim
t→∞

a(t)e−
∫ t
0 (r(s)−n)ds ≥ 0. (NPG)

Here r(t) is the risk-free interest rate, and a(t) is per capita financial wealth, which can

be placed in “raw capital”or perpetual patents, as described below.

The solution to the problem (*) is given by the Keynes-Ramsey rule,

ċ(t)

c(t)
=

1

θ
(r(t)− ρ), (1)
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and the transversality condition,

lim
t→∞

a(t)e−
∫ t
0 (r(s)−n)ds = 0. (2)

This follows from applying Pontryagin’s Maximum Principle to the problem.

2 The production side of the economy

There are three production sectors:

Firms in Sector 1 produce final goods (consumption goods and “raw capital”goods) in

the amount Y (t) per time unit, under perfect competition. The final good is the

numeraire.

Firms in Sector 2 supply specialized capital goods, indexed by j = 1, 2, . . . , A(t). These

specialized capital goods are rented out to firms in Sector 1, under conditions of mo-

nopolistic competition and barriers to entry. Like Jones and Vollrath, we sometimes

refer to these specialized capital good services as “intermediate goods”.1

Firms in Sector 3 perform R&D to develop technical designs (“blueprints”) for new

specialized capital goods under conditions of perfect competition and free entry.

Labor is homogeneous, and also the labor market has perfect competition.

From now on, the explicit timing of the time-dependent variables is omitted unless

needed for clarity; ∀j means j = 1, 2, . . . , A. The basic assumptions and conditions at the

production side (technologies, behavior, use of Sector-1 output, no-arbitrage condition)

can be presented the following way.

Sector 1: Final goods. The representative firm:

Y = L1−αY

A∑
j=1

xαj , 0 < α < 1, (3)

∂Y

∂L
= (1− α)

Y

LY
= w, (FOC1)

∂Y

∂xj
= αL1−αY xα−1j = pj, ∀j, (FOC2)

1By definition, “intermediate goods” are non-human inputs that cannot be stored. Rental services
cannot be stored.
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Uses of Y :

Y = C + IK = cL+ K̇ + δK, δ ≥ 0, K(0) > 0 given. (4)

Sector 2: Specialized capital goods. Given the technical design j, firm j in Sector 2

can effortless transform xj units of “raw capital” into xj units of the specialized capital

good j simply by pressing a button on a computer. Price-setting and accounting profit:

pj =
1

α
(r + δ) ≡ p, ∀j, (5)

πj = (
1

α
− 1)(r + δ)xj ≡ (

1

α
− 1)(r + δ)x ≡ π, ∀j, (6)

Sector 3: All R&D labs in Sector 3 face the same linear “research technology”:

# viable inventions per time unit = η̄`A,

where `A is input of research labor, and η̄ is productivity in R&D, which the individual

R&D lab takes as given.2 Let PA denote the market value of the license to commercial

utilization of a patent, j, forever. In brief, we may refer to PA as the “market value of

a patent”, which in equilibrium turns out to be the same for all j, see below. Then the

single lab’s demand for research labor is

`A =


∞ if w < PAη̄,

undetermined if w = PAη̄,
0 if w > PAη̄.

(7)

This reflects that the value of the marginal product of research labor is PAη̄.

At the economy-wide level the accumulated stock of viable inventions, measured by

the level of A, is treated as a continuous and differentiable function of time so that we

can write the increase in A per time unit as

Ȧ ≡ dA(t)

dt
= η̄LA ≡ ηAϕL1−ξA , η > 0, ϕ ≤ 1, 0 ≤ ξ < 1, A(0) > 0 given, (8)

where LA ≡
∑
`A is aggregate employment in Sector 3. Each R&D lab is “small”and

therefore perceives, correctly, its contribution to aggregate Ȧ, hence to η̄, to be negligible.

While in (3) we consider j as a discrete variable taking values in {1, 2, . . . , A} , at the
aggregate level in (8) we “smooth out” the time path of A. This approximation seems

acceptable when A is “large”, and the increases in A per time unit are “small”relative

to the size of A.
2By “viable”we mean non-duplicated.
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3 General equilibrium

In general equilibrium with LA > 0 we have:

(Kd = ) Ax = K (= Ks), (9)

LY + LA = L, (10)

Y = Kα(ALY )1−α, (by (3) and (9)) (11)
1

α
(r + δ) =

∂Y

∂xj
= αL1−αY (

K

A
)α−1 = α

Y

K
=
∂Y

∂K
, (by (5), (FOC2), (9)) (12)

π = (1− α)α
Y

A
, (by (6), (12), and (9)) (13)

w = (1− α)
Y

LY
= PAη̄ = PAηA

ϕL−ξA , (by (FOC1), (7), and (8)) (14)

PAr = π + ṖA. (15)

The equation (15) is the no-arbitrage condition which the market value, PA, of a patent

must satisfy in equilibrium. Assuming absence of asset price bubbles, this condition is

equivalent to a statement saying that the market value of the patent equals the fundamen-

tal value of the patent.3 By fundamental value is meant the present value of the expected

future accounting profits from commercial utilization of the technical design in question.

That is,

PA(t) =

∫ ∞
t

π(s)e−
∫ s
t r(u)duds. (16)

Indeed, in view of no uncertainty and perfect foresight, we may consider the no-arbitrage

condition (15) as a differential equation for the function PA(t). The solution to this dif-

ferential equation, presupposing that there are no bubbles, is given in (16) (as derived

in Appendix A). The convenience of (16) is that, given the expected future profits and

interest rates, the formula directly tells us the market value of a patent. If, for instance,

π grows at a constant rate n, and r is constant, then (16) reduces to

PA(t) =

∫ ∞
t

π(t)en(s−t)e−r(s−t)ds = π(t)

∫ ∞
t

e−(r−n)(s−t)ds = π(t)
1

r − n. (17)

This present-value formula is, among other things, useful for intuitive interpretation

of the effects of a change in the interest rate in the economy (everything else equal: higher

r implies lower present value).

3Because accounting profits, π, per time unit is the same for all j, so is the market value PA.
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The size of per capita financial wealth is now given as

a(t) ≡ K(t) + PA(t)A(t)

L(t)
. (18)

4 National income accounting

At this stage some national income accounting may be useful. From the final use side we

have:

GNP = C + IK + IA = C + IK + wLA = C + K̇ + δK + PAȦ = Y + PAȦ,

where we have applied (4) and the fact that, from (8) and (14), we have, in equilibrium,

PAȦ = PAη̄LA = wLA (no pure profits in R&D).

From the production (value added) side we have:

value added in Sector 1 = Y − pAx,

value added in Sector 2 = pAx,

value added in Sector 3 = PAȦ.

So, total value added = GNP = Y + PAȦ.

From the income side:

GNP = wLY + (r + δ)K + Aπ + wLA = wLY + (r + δ)K + (1− α)αY + wLA

= (1− α)Y + α2Y + (1− a)αY + wLA =
(
1− α + α2 + α− α2

)
Y + wLA

= Y + wLA,

where, as noted above, wLA = PAȦ.

5 Balanced growth

Taking logs and then time derivatives in (11), we get

gY = αgK + (1− α)(gA + gLY ). (19)

Now assume balanced growth. Since we have here two endogenous state variables, the

capital stock, K, and the knowledge stock, A, we extend our definition from Lecture

5



Notes, Chapter 4, of a balanced growth path, BGP, to be a path along which gY , gC , gK ,

and gA are constant.4 From the balanced growth equivalence theorem of Lecture Notes,

Chapter 4, we know that, given the capital accumulation equation (4) and given that

IK > 0, a BGP will satisfy that

gY = gK = gC .

In view of gY = gK , (19) implies that along a BGP

gY = gA + gLY = constant. (20)

Since gA is constant along a BGP, so is gLY .

In addition to c ≡ C/L, we define y ≡ Y/L and k ≡ K/L. From now on we have to

distinguish between two alternative cases, the Romer case and the Jones case.

5.1 The Romer case: ϕ = 1, n = 0, and ξ = 0

Since here ϕ = 1, we have gA = ηLA. So, along the BGP, LA must be constant and so

must LY = L− LA since L is constant. Along the BGP, therefore,

gY = gy = gk = gc = gA = ηLA. (21)

To determine LA we need to take the household behavior, described in the Keynes-

Ramsey rule (1) and the transversality condition (2), into account. Isolating r in (1) along

a BGP immediately gives

r∗ = ρ+ θg∗A, (22)

using that gc = gA by (21); an asterisk signifies that a value in steady state or balanced

growth is considered. With this in mind, it can be shown (Exercise VII.14) that an

equilibrium path featuring balanced growth with active R&D has

0 < LA =
αηL− ρ
(θ + α)η

≡ L∗A, and (23)

0 < gA =
αηL− ρ
θ + α

≡ g∗A ≡ g∗c . (24)

This is the “fully-endogenous growth”case.

4Recall that, on the one hand, the immediate interpretation of our symbol A is that it makes up an
index for the most recently invented capital good type. On the other hand, we may also see A as an
index of the stock of technical knowledge in society. In that context we treat A as a continuous and
differentiable function of time.
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The result is derived under the pre-condition that the transversality condition of the

representative household is satisfied along the BGP and that LA is positive along the

path. Let us check what the necessary and suffi cient parameter conditions are for this to

hold.

It can be shown (Exercise VII.14) that the transversality condition (2) with n = 0, in

combination with (18), holds if and only if ρ > (1− θ)g∗A. By inserting (24) and isolating
ρ, this inequality is equivalent to

ρ >
(1− θ)αηL

1 + α
. (A1-R)

From (24) follows immediately that L∗A > 0 if and only if

ρ < αηL. (A2)

Note that the right-hand side of (A1-R) is always smaller than the right-hand side of

(A2) (since both θ and α are positive). Hence, (A1-R) and (A2) can hold at the same

time. To assume both (A1-R) and (A2) is equivalent to assuming

(1− θ)αηL
1 + α

< ρ < αηL. (**)

So for a BGP to be an equilibrium path in the Romer case, it is needed both that

households are not too patient (in which case (A1-R) would be violated), and that they

are not too impatient (in which case (A2) would be violated). On the one hand, being

“too patient”means that households tend to save so much that the interest rate in the

economy (implied by combining the result (24) with the Keynes-Ramsey rule along the

BGP) would be larger than the growth rate of labor income. Because of the infinite time

horizon of the households, this would imply that they had infinite human wealth, in which

case it is a paradox that they do not consume much more than they do. When (A1-R)

is violated, this paradox in unavoidable with Ramsey households. So general equilibrium

within the Ramsey framework is in that case impossible.5

On the other hand, the meaning of being “too impatient”, and thus violating (A2),

is more straightforward. It simply means that households are not willing to deliver the

saving needed to finance capital accumulation and R&D. Indeed, when ρ ≥ αηL, the

willingness to save is so low that in the long run the economy will be in a stationary state

5This reflects one of the limitations of the Ramsey framework.

7



with just enough saving to maintain the capital stock and no saving left to finance R&D

and net capital investment.6

It can be shown that the transitional dynamics of the model in the Romer case can be

reduced to a three-dimensional dynamic system in z1 ≡ Y/K, z2 ≡ C/K, and z3 ≡ LY .

Under the assumptions (A1-R) and (A2), the system has a unique steady state, z∗1 =

(ρ+θg∗A+δ)/α2, z∗2 = z∗1−g∗A−δ, and z∗3 = L∗Y , given in (23). In the steady state, y, k, c, and

A follow the BGP described above. At least under realistic parameter values, the dynamic

system can be shown to be saddle-point stable so that (z1(t), z2(t), z3(t)) → (z∗1 , z
∗
2 , z
∗
3)

for t → ∞ (Arnold, 2000). The transitional dynamics thus imply convergence towards

the steady state which also means convergence towards balanced growth. Assuming (**),

we thus know that, without recurrent disturbances, the system will in the long run be in

balanced growth with a per capita growth rate equal to g∗A given in (24).

Comments on the BGP solution in the Romer case Imposing both (A1-R) and

(A2), in brief (**), there is in the Romer case a meaningful solution to the model. The

solution features “fully endogenous”exponential growth. Exponential per capita growth

is generated by an internal mechanism, through which labor is allocated to R&D; and this

exponential per capita growth is maintained without support of growth in any exogenous

factor.

Among other things, one can make comparative static analysis on the result in (24).

For instance, we see that ∂g∗A/∂L = αη/(θ+α) > 0. The Romer case thus implies a scale

effect on growth, which is an empirically problematic feature.7 In Exercise VII.14 the

reader is asked to do further comparative static analysis on the result for g∗A.

5.2 The Jones case: ϕ < 1, n > 0, and ξ ∈ [0, 1)

In this case, the “semi-endogenous growth”case, we can immediately determine gA along

a BGP with LA > 0. We have

gA ≡
Ȧ

A
= ηAϕ−1L1−ξA .

6This stationary state is in a sense still a BGP but with gy = gk = gc = gA = 0. Note that when
ρ > αηL, the formulas (23) and (24) cease to hold. This should be no surprise. Indeed, a path with LA < 0
is obviously impossible; moreover, in the derivation of the two formulas we relied on the assumption that
LA > 0.

7If n > 0, the Romer case leads to a forever rising per capita growth rate, an implausible scenario.
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Since, by assumption, LA > 0, also gA > 0, and so we can take logs on both sides and

thereafter time derivatives, using the chain rule to get:

ġA
gA

= (ϕ− 1)gA + (1− ξ)gLA = 0

along a BGP where, by definition, gA must be constant. Hence

gA =
1− ξ
1− ϕgLA =

1− ξ
1− ϕn ≡ g∗A. (25)

The last equality comes from the fact that since along a BGP with LA > 0, gLA must be

a positive constant at the same time as we know from (20) that gLY is a constant along

a BGP. Then, if either gLA or gLY were smaller than n, the other would be larger than

n and sooner or later violate LY + LA = L. Hence, gLY = gLA = n. From (20) then also

follows that along a BGP,

gY = gK = gC = g∗A + n. (26)

The method of solving the model for sR ≡ LA/L along the BGP is somewhat different

from the method in the Romer case. To be able to pin down PA under balanced growth,

we first note that the no-arbitrage condition (15) can be written

PA =
π

r − gPA
. (27)

From (14) follows

gPA + ϕgA − ξgLA = gY − gLY . (28)

We know that along the BGP, gLY = n = gLA , so that (28) implies

gPA = gY − ϕgA − (1− ξ)n = g∗A + n− ϕg∗A − (1− ξ)n = n, (29)

where the second and third equalities build on (26) and (25). From the no-arbitrage

condition (27) then follows that under balanced growth,

PA =
π

r − n = (1− α)α
Y

(r − n)A
, (30)

the last equality following from (13).

By (12), r = α2Y/K − δ. Since under balanced growth, Y/K is a constant, so is r.

Hence, (30) shows that gπ = gPA = n under balanced growth. That is, the monopolies’

accounting profit grow at the rate of population growth, n. This relationship reflects that

a larger population growth rate means that the markets for the specialized intermediate

goods grow faster, which in view of increasing returns makes R&D more profitable.
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Now (14) gives

(1− α)
Y

LY
= PAη̄ = (1− α)α

Y

(r − n)A
η̄.

Cancelling out (1− α)Y and multiplying through by LA gives

LA
LY

= α
η̄LA

(r − n)A
= α

gA
r − n,

where the last equality follows from (8). As LA/LY = sR/(1− sR), we get from this,

sR =
1

1 + r−n
αg∗A

(31)

along a BGP with LA > 0.

This is not the final solution for sR since r is endogenous. But again, reordering

the Keynes-Ramsey rule gives, under balanced growth, r = ρ + θg∗A = r∗ as in (22).

Substituting this into (31) yields the solution for sR along the BGP:

sR =
1

1 + 1
α

(ρ−n
g∗A

+ θ)
=

1

1 + 1
α

( ρ−n
1−ξ
1−ϕn

+ θ)
≡ s∗R, (32)

the second equality coming from (25).

Like the Romer results, the Jones results are derived under the pre-condition that

the transversality condition of the representative household is satisfied along the BGP

and that LA (hence also gA) is positive. Let us check what the necessary and suffi cient

parameter conditions (over and above the basic conditions ϕ < 1, n > 0, and ξ ∈ [0, 1))

are for these conditions to hold.

First, as to the transversality condition (2), note that under balanced growth,

a(t) ≡ K(t) + PA(t)A(t)

L(t)
=
K(0)e(g

∗
A+n)t + PA(0)A(0)e(n+g

∗
A)t

L(0)ent
= a(0)eg

∗
At,

where the second equality follows from (26) and (29). Consequently, along a BGP

a(t)e−(r
∗−n)t = a(0)e−(r

∗−n−g∗A)t = a(0)e−(r
∗−n−g∗A)t → 0 if and only if r∗ > g∗A + n,

where r∗ = ρ+ θg∗A by (22) which also holds here. So (2) holds along the BGP if and only

if ρ + θg∗A > g∗A + n, that is, if and only if ρ − n > (1 − θ)g∗A. By (25), this inequality is
equivalent to

ρ > (1− θ)
(

1− ξ
1− ϕ + 1

)
n. (A1-J)
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Second, for gc = gA > 0 to be an outcome in balanced growth, we need r∗ > ρ. In

view of r∗ = ρ + θg∗A, this condition is equivalent to ρ + θg∗A > ρ, which is automatically

satisfied when n > 0, see (25).

We conclude that for a BGP to be an equilibrium path in the Jones case, it is just

needed that households are not too patient, in the sense of violating the parameter condi-

tion (A1-J). For 0 < θ < 1, the right-hand side of (A1-J) defines a positive lower bound

for the rate of impatience. For θ ≥ 1, the condition (A1-J) imposes only a mild constraint

in that it is satisfied whenever just ρ > 0 (θ > 1 even allows a negative ρ, although not

“too large”in absolute value).

So, given the basic conditions ϕ < 1, n > 0, and ξ ∈ [0, 1) , we need only to add the

assumption (A1-J) to ensure that in the Jones case there is a meaningful solution to the

model. It can be shown that the transitional dynamics in the Jones case can be reduced

to a four-dimensional dynamic system, that there is a unique steady state, equivalent to

a balanced growth path, and that the dynamic system is saddle-point stable. Assuming

(A1-J) we thus know that, without recurrent disturbances, the system will in the long

run end up in balanced growth with per capita growth rate equal to g∗A, given in (25).

Comments on the BGP solution in the Jones case From the result (25) we see

that exponential growth is in the Jones case not “fully endogenous” since it can only

be sustained if n > 0. In other words, exponential growth can only be sustained if the

growth engine receives an inflow of “energy”from growth in the labor force, an exogenous

source. In this sense the exponential growth in the Jones case is often referred to as

“semi-endogenous”. As mentioned in Short Note 1, p. 6, this terminology is somewhat

seductive. The “semi-endogenous”Jones model sounds as something less deep than the

“fully endogenous”Romer model. But nothing of that sort should be implied. It is just

a matter of different parameter values (in fact, a matter of a “knife-edge”case versus a

robust parameter case).

Before proceeding, note the striking simplicity of the result (25). The growth rate

in income per capita under balanced growth depends only on three parameters: the

growth rate of the labor force, n, the elasticity of research productivity with respect to

the stock of knowledge, A, and the degree of duplication, ξ, in economy-wide research.

Neither household preferences, represented by the parameters ρ and θ, nor for instance

an R&D subsidy that raises the share of labor allocated to R&D, affect g∗A. There will be

a temporarily higher growth rate of A, but in the long run gA will return to the same g∗A
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as before, namely that given in (25), cf. Jones and Vollrath, p. 109-110.

On the basis of the formula (32), long-run level effects on sR of different parameter

shifts can be studied (exercises VII.12 and VII.13). While for instance the preference

parameters ρ and θ do not here have long-run growth effects, they affect the share of

labor allocated to R&D. They thus have level effects on L∗A(t) = s∗RL(t) along a BGP.

As expected, both a rise in ρ and a rise in θ affect L∗A(t) negatively. The intuition is as

follows. A rise in impatience, ρ, implies reduced saving, hence less R&D can be financed

by the saving. We could also say that a rise in impatience means greater scarcity of

finance, which in turn tends to raise the interest rate. This implies lower present value of

expected future accounting profits to be obtained by an invention, cf. (16). In turn, this

means that R&D is less rewarding.

Likewise, a rise in θ (the desire for consumption smoothing) implies reduced saving in

the normal case where r > ρ, cf. the Keynes-Ramsey rule. The level effect on L∗A(t) of a

rise in θ has thus similarity with that of a rise in ρ.

The level effects on L∗A(t) will not affect gA in the long run, since (25) shows that g∗A
only depends on n and ϕ, not on sR. A higher sR will temporarily increase both the growth

rate of A and that of y. But the fact that ϕ < 1 (“diminishing returns to knowledge”in the

growth engine) makes it impossible to maintain the higher growth rate in A forever. The

growth rate will, after a possibly quite durable adjustment process8 return to the same g∗A
as before. But the level of the growth path will generally be permanently affected. This is

like in the Solow model or the original Ramsey model, where an increase in the propensity

to save raises the growth rate only temporarily due to the falling marginal productivity

of capital.

While level effects of shifts in sR on L∗A(t) are straightforward to analyze, level effects

on y∗(t) and c∗(t) are a bit more complicated. Indeed, a shift in sR has ambiguous effects

on both y∗(t) and c∗(t) along a BGP. If sR initially is “low”, a “small”increase in sR will

have a positive level effect on y via the productivity-enhancing effect of more knowledge

creation. But if sR is already quite large initially, LY will be small, which implies that

∂Y/∂LY is large. This large marginal productivity constitutes the opportunity cost of

increasing sR further and dominates the benefit of a higher sR, when sR > 1/(2− ϕ) (in

the case ξ = 0), cf. Exercise VII.7e).

8See Jones (1995).
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6 Economic policy

The presented version of the Romer-Jones model implies in the Romer case that under

laissez-faire, the decentralized market equilibrium unambiguously leads to too little R&D.

This is due to three circumstances: (a) the positive externality generated by the intertem-

poral knowledge spillover, represented by ϕ = 1; (b) the “surplus appropriability problem”

illustrated in Jones and Vollrath, p. 134; and (c) the demand-reducing monopoly pricing

over and above marginal cost of intermediates. All three circumstances contribute to too

little R&D. And there are no externalities going in the opposite direction. It can be shown

that in combination with a subsidy to R&D, a subsidy to purchases of specialized capital

good services can solve the problem, if these subsidies are financed by lump-sum taxes or

lump-sum-equivalent taxes like, in the present framework, a labor income tax (recall that

the model’s labor supply is inelastic).

In the Jones case, the “stepping-on-toes” effect (ξ > 0) is a negative externality

pointing in the opposite direction. And so is the intertemporal knowledge spillover if

ϕ < 0. The different calibrations made by Jones and coauthors use a positive value of

both ϕ and ξ. Even taking to some extent creative destruction into account, Jones and

Williams (1998) estimate the resource allocation to R&D in USA to be only a fourth of

the social optimum, given that discounted utility of the representative household is the

optimality criterion.

7 Concluding remarks

A weakness of the presented Romer-Jones model is the unrealistic feature that obsoles-

cence of specialized capital goods never occurs. The mentioned Jones and Williams (1998)

paper attempts to surmount that problem.

Another weakness is that there are two hidden arbitrary parameter links in the spec-

ification of the production function for final goods. One is related to the way the variety

index A enters the production function. The parameter reflecting “gains to variety”,

sometimes called the “gains to specialization”parameter, below denoted µ, is arbitrarily

identified with the output elasticity w.r.t. labor, 1−α. Another arbitrary parameter link
is that the elasticity of substitution between the different capital good types calculated

from the production function (3) is 1/(1 − α) and thus implies market power equal to

1/α, the monopoly markup. Thereby, effects of a rise in monopoly power can not be
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studied independently of a fall in the output elasticity w.r.t. capital, α. This arbitrary

parameter link has in the Romer case the implication that a rise in market power reduces

g∗c , an effect arising solely because the positive effect on growth of the rise in the markup

is blurred by a negative effect coming from a diminished output elasticity w.r.t. capital.

A specification of the production function free of these two arbitrary parameter links,

but maintaining power functions throughout, is the following:

Y = AµXαNY
1−α, 0 < α < 1, µ > 0,

whereX is a CES aggregate (with constant returns to scale) of quantities, xj, of specialized

capital goods:

X = A(
1

A

A∑
j=1

xj
ε)

1
ε , 0 < ε < 1.

Here the existing specialized capital goods exhibit an elasticity of substitution equal to

1/(1− ε), implying that the market power, or the monopoly markup, is given by 1/ε > 1.

Now gc∗ generally differs from g∗A and the formulas become more complicated. But a rise

in market power, 1/ε, can be shown to unambiguously raise g∗c . This is the opposite of

what we got above, where market power was arbitrarily linked to the output elasticity

w.r.t. capital, α. For details, see Alvarez-Pelaez and Groth (2005).

8 Appendix: Solving the no-arbitrage equation for
PA(t) in the absence of asset price bubbles

In Section 3 we claimed that in the absence of bubbles, the differential equation implied

by the no-arbitrage equation (15) has the solution

PA(t) =

∫ ∞
t

π(s)e−
∫ s
t r(u)duds. (*)

To prove this, we write the no-arbitrage equation on the standard form for a linear dif-

ferential equation:

ṖA(t)− r(t)PA(t) = −π(t).

The general solution to this (see Appendix B to Chapter 3 of Lecture Notes) is

PA(t) = PA(t0)e
∫ t
t0
r(u)du − e

∫ t
t0
r(u)du

∫ t

t0

π(s)e
−
∫ s
t0
r(u)du

ds.
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Multiplying through by e−
∫ t
t0
r(u)du gives

PA(t)e
−
∫ t
t0
r(u)du

= PA(t0)−
∫ t

t0

π(s)e
−
∫ s
t0
r(u)du

ds.

Rearranging and letting t→∞, we get

PA(t0) =

∫ ∞
t0

π(s)e
−
∫ s
t0
r(u)du

ds+ lim
t→∞

PA(t)e
−
∫ t
t0
r(u)du

. (33)

The first term on the right-hand side is the fundamental value of the patent, i.e., the

present value of the expected future accounting profits on using the patent commercially.

The second term on the right-hand side thus amounts to the difference between the market

value, PA(t0), of the patent and its fundamental value. By definition, this difference

represents a bubble. In the absence of bubbles, the difference is nil, and the market price,

PA(t0), coincides with the fundamental value. So (*) holds (in (33) replace t by T and t0
by t), as was to be shown.
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Short Note 3. Economic Growth.

May 9, 2016. Christian Groth

A Schumpeterian model of vertical innovations

This note presents the Schumpeterian model of vertical innovations from Chapter

5.3-4 of Jones and Vollrath (2013). The aim is to give a systematic presentation of the

model and to clarify some of the technical issues.1 The focus is on the core of the model,

namely the production, inventions, and financing aspects. This core can be combined

with alternative models of the household sector. In Section 5 we use the Ramsey-style

representative agent description of the household sector.

The new element in the Schumpeterian model compared with the horizontal innova-

tions model is the implication that innovations imply “creative destruction”− the process
through which existing businesses and technologies are competed out of the market by

new technologies.

We start with an overview of the production sectors.

1 Overview of the production sectors

The economy is closed and has population L = L0e
nt, n ≥ 0. Labor is homogeneous.

Each member of the population supplies one unit of labor per time unit. In contrast to

the horizontal innovations model, there is only one type of capital good. But over time,

better and better qualities − or “versions” in the terminology of Jones and Vollrath −
are invented.

There are three production sectors:

Firms in Sector 1 produce final goods (consumption goods and “raw capital”goods) in

the amount Y (t) per time unit, under perfect competition. The final good is the

numeraire.
1The model, as presented in Jones and Vollrath as well as here, is in some respects a simplified version

of the contribution by Aghion and Howitt (1992), e.g., by considering only one type of intermediate good.
In other respects it is an extension of that contribution, e.g., by considering durable capital goods and
allowing ϕ < 1 and n > 0.
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In Sector 2 there is at any point in time only one active firm, the incumbent monopolist.

This firm supplies the leading edge quality of the economy’s single kind of capital

good on a leasing basis to firms in Sector 1 under conditions of monopoly and

barriers to entry.

Firms in Sector 3, the R&D labs, perform R&D to develop technical designs (“blue-

prints”) for improved qualities of the capital good under conditions of perfect com-

petition and free entry.

The reason that the inputs from Sector 2 to Sector 1 are by Jones and Vollrath called

“intermediate goods” is that they are delivered on a leasing basis. In national-income

terminology this makes them “intermediate goods” (in the sense of non-human inputs

that cannot be stored). As to the raw capital goods produced in sector 1, it is easiest to

imagine that they are sold at the price 1 to either the incumbent sector-2 monopolist or to

households that then rent them out to the incumbent sector-2 monopolist at the capital

cost r + δ per unit of raw capital. To fix ideas, we choose the former interpretation.

There is a labor market and a market for risk-free loans. Both markets have perfect

competition. We denote the real wage wt and the risk-free real interest rate rt. There

is “ideosyncratic”uncertainty (to be defined below). The risk associated with R&D and

“creative destruction”can be diversified via the equity-share market because the economy

is “large”, and there are “many”R&D labs in the economy. All firms are profit maximizers.

Time is continuous.

2 The interaction between Sector 1 and Sector 2

2.1 Sector 1: Final goods

The representative firm in Sector 1 has the production function

Y (t) = xi(t)
α(AiLY (t))1−α, 0 < α < 1, (1)

where Y (t) is the produced quantity of final goods per time unit at time t, LY (t) is labor

input, and xi(t) is input of the currently superior version of the capital good, version i.

The version of the capital good that was in use from time t = 0 until a new innovation

occurred is indexed 0, the version associated with that new innovation is indexed 1, the

subsequent version is indexed 2 and so on up to the current version, i. Labor working
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with version i has effi ciency Ai. It is assumed that Ai evolves stepwise from innovation

to innovation:

Ai = (1 + γ)Ai−1, γ > 0.

Observe that γ is the relative increase in A per step, not the growth rate of A per time

unit. Not only may the number of steps per time unit be generally below one or generally

above one, but this number is stochastic (uncertain, governed by a probability distribu-

tion). This reflects that the length of the time interval between successive innovations is

stochastic.

The output of final goods is used partly for consumption, C(t) ≡ c(t)L(t), partly for

investment in raw capital, IK(t) :

Y (t) = C(t) + IK(t) = c(t)L(t) + K̇(t) + δK(t), δ ≥ 0, K(0) > 0 given, (2)

where K(t) is the stock of raw capital goods in the economy at time t and δ is the capital

depreciation rate.

From now on, the explicit dating of the time-dependent variables is omitted unless

needed for clarity. With the final good as numeraire we let pi denote the rental rate per

time unit for using one unit of the capital good in its current version i.

Maximizing profit under perfect competition leads to the FOCs:

∂Y

∂LY
= (1− α)

Y

LY
= w, (3)

∂Y

∂xi
= αxα−1

i A1−α
i L1−α

Y = pi. (4)

2.2 Sector 2: The currently superior version of the capital good

Let the owner of the exclusive and perpetual2 right to use technical design i commercially

be called firm i.Given the technical design i, firm i can effortless transform raw capital

goods into the specific version i simply by pressing a button on a computer, thereby

activating a computer code. The following linear transformation rule applies:

it takes xi > 0 units of raw capital to supply xi units of capital of version i.

The reason that the model assumes that the capital good in version i is rented out to

the users in Sector 1 is related to the IO problem known as the “durable-goods-monopoly
2Recall, patents are assumed to be perpetual − or at least durable enough so that they have not

expired before the next innovation turns up.
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problem”. Selling the capital good implies a transfer of ownership to a durable good and

thereby a risk that a second-hand market for the good arises. This could threaten the

market power of the monopolist.

The pure profit per time unit of firm i obtained by renting out xi units of the capital

good in version i can be written:

pi(xi)xi − (r + δ)xi − rPA ≡ πi − rPA,

where pi(xi) denotes the maximum price at which the amount xi can be rented out, r is

the risk-free real interest rate, δ is the capital depreciation rate (and so r+δ is the capital

cost per unit of raw capital held),3 PA is the market value of the right to use the technical

design i, and πi is the accounting profit in the sense of net revenue before subtraction of

the imputed interest cost, rPA. The latter is the opportunity cost of being in this business

rather than for instance offering loans in the loan market. This interest cost is a fixed cost

as long as the entrepreneur remains in the business. So, being in the business, maximizing

pure profit is equivalent to maximizing the accounting profit πi. The quantity xi (or the

price pi) is thus set so as to maximize

πi = pi(xi)xi − (r + δ)xi.

The profit maximizing pi (= pi(xi)) is such that marginal revenue, MR, equals marginal

cost, MC :

MR =
dTR

dxi
= pi(xi) + xip

′
i(xi) = pi (1 + E`xipi) = pi(1 + α− 1) = piα = MC = r + δ

⇒ pi =
1

α
(r + δ) ≡ p, (5)

where the third equality comes from (4). We observe that the profit maximizing price,

pi, is independent of what rung, i, on the quality ladder has been reached. Hence, we can

just denote it p.

Can we be sure that the current technology leader can avoid being undercut by the

previous incumbent when charging the monopoly price? No, only if the innovation is

drastic. By this is meant that the step size, γ, is large enough so that even if the previous

incumbent is ready to just charge the marginal cost, r+δ, then she is competed out by the

new firm i charging the monopoly price 1
α

(r + δ) for supplying the more effi cient version

of the capital good.

3Jones and Vollrath implicitly assume δ = 0 in Section 5.2-4, which is not in harmony with their
Section 5.1 and the rest of the book.
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To fix ideas, we simplifying assume that all innovations are drastic.4 The price set by

the monopolist is then the monopoly price and the accounting profit is

πi = (
1

α
− 1)(r + δ)xi. (6)

From now, for simplicity we will refer to this as just the “profit”of firm i.

2.3 Preliminary observations regarding equilibrium

Before going into detail with the R&D sector, it is convenient to combine some elements

from Sector 1 and 2 under the assumption of market clearing with perfectly flexible prices.

To supply xi version-i units of capital, the monopolist in Sector 2 needs xi units of

raw capital. So the demand for raw capital goods is Kd = xi. The supply of raw capital

goods is simply the currently available stock of raw capital, i.e., Ks = K. For an arbitrary

t, we thus have in equilibrium,

xi = K. (7)

Substituting this into (1) yields

Y = Kα(AiLY )1−α. (8)

This is the aggregate production function in Sector 1 in equilibrium at time t where

version i represents the leading-edge technology.

Starting with (4), we then have

∂Y

∂xi
= αxα−1

i (AiLY )1−α = αKα−1(AiLY )1−α = α
Y

K
=
∂Y

∂K
= p =

1

α
(r + δ),

where the second equality comes from (7), the third and fourth from (8), and the last

from (5) combined with (4). It follows that

r + δ = α2 Y

K
= α

∂Y

∂K
<
∂Y

∂K
=
∂Y

∂xi
. (9)

Reading this from the right to the left, we see that, in equilibrium, the marginal produc-

tivity of capital of the currently superior quality, ∂Y/∂xi, is above the cost, r+ δ, per unit

4If an innovation is nondrastic, then to discourage the incumbent from staying in the market, the new-
commer has to charge a suffi ciently low price, the limit price. Although this will be below the monopoly
price, it will still be above the marginal cost (which is the same as for the incumbent). The reason is
the higher effi ciency associated with the new technology. So, also in case of non-drastic innovations will
“creative”destruction take place.
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of raw capital, by a factor 1/α > 1. This is due to the monopoly pricing of the capital

input. Under perfect competition capital would be demanded up to the point where its

marginal productivity equals the competitive cost, r+ δ, per unit of capital. In contrast,

here capital is demanded only up to the point where its marginal productivity equals the

capital cost dictated by a capital goods supplier with market power.

Substituting (9) and (7) into (6) gives

πi = (
1

α
− 1)(r + δ)K =

1− α
α

α2Y = (1− α)αY ≡ π. (10)

3 Sector 3: R&D

The model assumes, naturally, that there is uncertainty in R&D. Let ti be the point

in time at which the current leading-edge technology was invented and let ti+1 be the

unknown future point in time where the next upward jump on the quality ladder takes

place. Then the length of the time interval (ti, ti+1) − the “waiting time”− is a stochastic
variable.

3.1 The “research technology”

The R&D process is modelled as an inhomogeneous Poisson process.

3.1.1 The single R&D lab

Consider a single R&D lab which is active in the time interval (ti, ti+1). By definition,

within this time interval the lab does not face the event of another lab “coming first”. Let

`A(t) denote the input of R&D labor per time unit at time t ∈ (ti, ti+1) and let arrival of

a “success”mean arrival of the event that the considered lab makes a “viable”invention

(by “viable”we mean “not duplicated”). The model then introduces four assumptions:

(i) The success arrival rate (per time unit) at time t is η̄(t)`A(t), where η̄(t) is an

economy-wide “research productivity”, which by the lab is perceived as exogenous.5

This means that the probability of success within a short time interval “from now”,

conditional on no other labs “coming first”, is approximately proportional to the length

5To get conformity with notation in the exercises, we have replaced the textbook’s µ̄ by η̄.
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of this time interval:

P (success |(t, t+ ∆t)) = η̄(t)`A(t)∆t+ o(∆t) ≈ η̄(t)`A(t)∆t, (11)

where o(∆t) is standard symbol for a function, the value of which declines faster than

its argument, here ∆t, when the latter approaches zero, that is, lim∆t→0 o(∆t)/∆t =

0. Thereby lim∆t→0 P (success|(t, t+ ∆t)) /∆t = η̄(t)`A(t). We may say: the difference

between P (success|(t, t+ ∆t)) and η̄(t)`A(t)∆t has “order of magnitude less than ∆t”.

(ii) There is stochastic independence across time within the time interval (ti, ti+1).

Digression on Poisson processes If η̄(t)`A(t) were a constant, equal to λ > 0, say,

then the R&D process would be a homogeneous Poisson process with arrival rate λ. With

T denoting the waiting time from time t and onward until a success arrives, then, again

conditional on no other labs “coming first”, the probability that T exceeds τ > 0 would be

P (T > τ) = e−λτ . Moreover, assuming the lab, in case of success, continues researching

for yet another quality improvement, the number, m, of success arrivals within a time

interval of length ∆t would follow a Poisson distribution, that is,

P (m = a |(t, t+ ∆t)) = e−λ∆t(λ∆t)a/a!, (*)

where a = 0, 1, 2, . . . , and a! ≡ a · (a− 1) · (a− 2) · · · · · 1, 0! = 1. The expectation of m is

λ∆t, and the variance is the same.

In the present model, however, both η̄(t) and `A(t) will generally be time dependent.

The R&D process is assumed to be an inhomogeneous Poisson process with arrival rate

λ(t) = η̄(t)`A(t). This means that the probability of the event m = a is as in (*) except

that λ∆t should be replaced by
∫ t+∆t

t
λ(s)ds. If ∆t is “small”, the expectation of m thus

equals ∫ t+∆t

t

λ(s)ds ≈ λ(t)∆t, (**)

and the same holds true for the variance. �

In accordance with (*) and (**), under the assumption that the lab continues its

research throughout the time interval (t, t+ ∆t), the expected number of success arrivals

is

E(m |η̄(t)`A(t), (t, t+ ∆t)) ≈ η̄(t)`A(t)∆t.
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In case η̄(t)`A(t) were a constant during the considered time interval, we could replace

the “≈”by “=”.

Before proceeding, a reservation seems appropriate. The assumption (ii) is a kind of

“no memory”assumption since it ignores learning over time within the lab. This seems

problematic. Indeed, R&D should be considered a cumulative process. The only excuse

for assumption (ii) is the need for simplicity in a first approach.

3.1.2 Aggregate R&D and the evolution of technology

The third assumption concerning R&D deals with the economy-wide R&D where many

labs are involved:

(iii) Research outcomes are stochastically independent across R&D labs.

Let LA(t) denote the aggregate input of research labor at time t, i.e., LA(t) ≡
∑
`A(t).

We then have

P (success |(t, t+ ∆t)) ≈ η̄(t)LA(t)∆t. (12)

Thus, with M(t) denoting the aggregate number of success arrivals in the time interval

(t, t+ 1), and letting our time unit be “small”, the following approximation holds for the

expected aggregate number of success arrivals over the time interval (t, t+ 1) is:

E(M(t) |η̄(t)LA(t), (t, t+ 1)) ≈ η̄(t)LA(t). (13)

Finally, the fourth assumption is about how economy-wide “research productivity”is

determined:

(iv) η̄(t) = ηAϕ−1
i LA(t)−ξ, η > 0, ϕ ≤ 1, 0 ≤ ξ < 1. Here ϕ − 1 is the elasticity of

research productivity w.r.t. the accumulated “stock of knowledge”at time t, measured

by Ai, and ξ is the degree of R&D overlap in the economy.6 There are “many”labs in the

economy, and the individual labs rightly perceive their influence on η̄(t) to be negligible.

The only uncertainty assumed present in the economy is the uncertainty related to

research outcomes in the individual labs. According to Assumption (iii) these research

6The motivation for choosing the exponent on A to be ϕ− 1 rather than just ϕ, as in the horizontal
innovations model, is that each innovation in the present model generates a rise in A that is proportionate
to A and thus becomes larger and larger.
We have replaced the textbook’s θ by η in order to reserve θ to denote a preference parameter when

specifying the household sector in the model. We have further replaced the textbook’s 1− λ by ξ.

8



outcomes are stochastically independent across labs.7 In economists’jargon, uncertainty

is thus “idiosyncratic”, allowing investors to reduce their risk by diversification, as we

shall see below.

Before detailing that aspect, some observations about the aggregate research outcome

per time unit are pertinent. Let A(t) indicate the labour effi ciency associated with the

leading-edge technology at time t. Thus, in the present situation A(t) = Ai. With M(t)

success arrivals in the time interval (t, t+ 1), we then have

A(t+ 1) = A(t)(1 + γ)M(t) ⇒

lnA(t+ 1) = lnA(t) +M(t) ln(1 + γ)⇒
A(t+ 1)− A(t)

A(t)
≈ lnA(t+ 1)− lnA(t) = M(t) ln(1 + γ)⇒

Et
A(t+ 1)− A(t)

A(t)
= Et(M(t)) ln(1 + γ) ≈ η̄(t)LA(t) ln(1 + γ), (14)

where Et is the expectation operator conditional on the current Poisson arrival rate

η̄(t)LA(t), and EtM(t) is a shorthand for the left-hand side of (13). Besides, “≈” in
the last line follows from the approximation in (13). (One should not here introduce γ as

an approximation to log(1 + γ) because that would require γ to be “small”which need

not be true here. Imagine for instance that the focus is on a series of “big”communica-

tion innovations: electrical telegraphs, telephone, cell phone, internet, Skype. The time

elapsed between the innovations may be many years, but each new innovation is “large”.)

3.2 The economics of R&D

3.2.1 Demand for R&D labor

As noted in Section 2.1, PA is the market value of the right to use the technical design

i corresponding to innovation i. In other words, PA is the market value of a successful

research outcome. Let us consider the situation from the point of view of an R&D lab

which is active in the time interval between innovation i− 1 and innovation i. The lab’s

demand for R&D labor is

`dA =


∞ if w < PAη̄,

undetermined if w = PAη̄,
0 if w > PAη̄.

(15)

7There are no economy-wide risk factors in the model (say earthquakes, economic recession, shocks to
terms of trade).
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Here PAη̄ can be viewed as the value of the expected payoff per worker per time unit =

value of “marginal product”of R&D labor = PA∂(η̄LA)/∂LA from (13). For the lab to

be willing to hire R&D workers, we must have w ≤ PA∂(η̄LA)/∂LA = PAη̄, if R&D firms

behave in a risk-neutral manner. As the next sub-section will argue, that is what they

will do.

3.2.2 The financing of R&D

There is a time lag of random length between a research lab’s outlay on R&D and the

arrival of a successful research outcome, an invention. During this period, which in prin-

ciple has no upper bound, the individual R&D lab is incurring sunk costs and has no

revenue at all. R&D is thus risky, and continuous refinancing is needed until the research

is successful.

However, since the uncertainty is “ideosyncratic”, and the economy is “large”and has

“many”R&D labs, the risk can be diversified. R&D labs as well as the monopolist in

Sector 2 can behave in a risk-neutral manner. In equilibrium all investors will receive a

rate of return equal to the risk-free interest rate.

The easiest approach to the financing issue is to assume that R&D labs finance their

current expense, wLA, by issuing equity shares that pay no dividend until success arrives.

A part of households’saving is via mutual funds (that are assumed to have no admin-

istration costs) channeled to the many different R&D labs. When success arrives, the

mutual funds collect a return which can take two alternative forms. Either the return

is in the form of a share of the sales price, PA, of the patent (which the successful lab

receives free of charge). Or the return is in the form of shares in the profit, π, if the

R&D lab decides itself to enter Sector 2 and supply the new version of the capital good

services as a monopolist. For simplicity we assume that the mutual funds manage the

total household saving and thus allocate only a part of it to R&D. The remaining part is

used to buy equity shares issued by the incumbent monopolist to finance the purchases

of raw capital goods in the market for these. Finally, the mutual funds pay out to their

risk-averse investors, the households, a rate of return equal to the risk-free rate of interest.

3.2.3 No-arbitrage condition regarding PA

How is under these (idealized) conditions the market value, PA(t), of a patent at time t

determined in equilibrium? In view of the risk-neutral behavior by the participants in the

10



financial markets, equilibrium requires that PA(t) satisfies the no-arbitrage condition

PA(t)r(t) = π(t) + ṖA(t)− η̄(t)LA(t)PA(t). (16)

Here ṖA(t) (≡ dPA(t)/dt) is the incumbent monopolist’s expected capital gain per time

unit conditional on the monopoly position remaining in place also in the next moment.

The alternative possible situation is that the monopoly position is lost due to the arrival

of an innovating firm with a more productive version of the capital good. In that case the

total value PA(t) is lost.

The whole right-hand side of (16) indicates the expected return per time unit on

holding the patent instead of selling it and investing in the loan market. To understand

this, consider a small time interval (t, t + ∆t). As seen from time t, two outcomes are

possible. Either the monopoly position, and hence PA(t), is lost. According to (12), the

probability of that event is approximately η̄(t)LA(t)∆t. Alternatively, the incumbent’s

monopoly remains in place over the time interval, in which case the total revenue is

(π(t) + ṖA(t))∆t. The probability of that event is approximately 1− η̄(t)LA(t)∆t.

Consequently, if z(t) denotes the total return per time unit on holding the patent

instead of selling it, the expected return over the time interval (t, t+∆t) is approximately

Et(z(t)∆t) ≈ η̄(t)LA(t)∆t(−PA(t)) + (1− η̄(t)LA(t)∆t)
[
π(t) + ṖA(t)

]
∆t

=
[
π(t) + ṖA(t)− η̄(t)LA(t)PA(t)

]
∆t− η̄(t)LA(t)

[
π(t) + ṖA(t)

]
(∆t)2.

Dividing through by ∆t, we get

Et(z(t)∆t)

∆t
= Et(z(t)) = π(t) + ṖA(t)− η̄(t)LA(t)PA(t)− η̄(t)LA(t)

[
π(t) + ṖA(t)

]
∆t

→ π(t) + ṖA(t)− η̄(t)LA(t)PA(t) for ∆t→ 0.

Thus, the right-hand side of (16) does indeed represent the expected return per time unit

on holding the patent instead of selling it. And the left-hand side of (16) is the return

obtained by selling the patent and investing in a safe loan market. Under risk neutrality,

for given expectations, the market price PA(t) adjusts so as to equalize the two sides of

(16).

The no-arbitrage condition (16) plays a key role in the determination of the risk-free

interest rate in general equilibrium, cf. point (v) of Lemma 1 below. Before proceeding,

for purposes of intuition, it may be useful to consider the no-arbitrage condition from

additional angles.
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We may rewrite the no-arbitrage condition (16) in “required rate of return”form:

π(t) + ṖA(t)

PA(t)
= r(t) + η̄(t)LA(t). (17)

Here, the instantaneous conditional rate of return per time unit on shares in the monopoly

firm is equalized to the “required rate of return”in the sense of the minimum expected

rate of return justifying staying in the Sector-2 business. This minimum rate of return is

the sum of the risk-free interest rate and a premium reflecting the risk that the monopoly

position expires within the next instant.

Yet another useful way of thinking about the no-arbitrage condition is in the form of

the present value of expected future accounting profits:

PA(t) =

∫ ∞
t

π(s)e−
∫ s
t (r(τ)+η̄(τ)LA(τ))dτds. (18)

The right-hand side here makes up the fundamental value of the patent at time t, given

the expected future risk-adjusted interest rates, r(τ) + η̄(τ)LA(τ). Indeed, (16) can be

considered a differential equation for the function PA(t). The solution to this differential

equation, presupposing that there are no bubbles, is (18) (the proof is similar to that in

the appendix of Short Note 2). The convenience of (18) is that, given the expected future

accounting profits and risk-adjusted interest rates, the formula directly tells us the market

value of the incumbent monopolist’s patent. If, for instance, π grows at a constant rate

gπ, and r and η̄LA are constant, then (18) can be written

PA(t) =

∫ ∞
t

π(t)egπ(s−t)e−(r+η̄LA)(s−t)ds = π(t)

∫ ∞
t

e−(r+η̄LA−gπ)(s−t)ds

= π(t)
1

r + η̄LA − gπ
. (19)

This present-value formula is useful for intuitive interpretation of effects of everything-

else-equal shifts in the interest rate, r, in the expected number of innovations per time

unit, η̄LA, and in the growth rate of the profit:

r ↑ ⇒ PA(t) ↓ due to stronger discounting,

η̄LA ↑ ⇒ PA(t) ↓ due to lower expected duration of monopoly,

gπ ↑ ⇒ PA(t) ↑ because investors like fast-growing dividends.

A final comment: We have throughout presumed that a new technological break-

through means that the monopoly position of the incumbent is lost. Could the incumbent
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not bid for the patent offered to the market by the successful R&D lab? Yes, it could.

But new potential entrepreneurs will always (in this model) be willing to bid more. The

incumbent faces the problem that the gain by investing in the new technology is partly

destroyed since she looses the existing profits earned. This point is known as Arrow’s

replacement effect (Arrow, 1962).

4 Equilibrium in the labor market

The labor market is competitive. There is an inelastic labor supply of size L = L0e
nt.

Equilibrium in the labor market thus requires that

LY + LA = L = L0e
nt.

In equilibrium with active R&D (LA > 0), we must have

w = PAη̄,

in view of (15). Since labor is homogeneous, the equilibrium wage, w, must also equal

marginal productivity of labor in Sector 1 at full employment:

w =
∂Y

∂LY
= (1− α)

Y

LY
.

Combining the two last equations gives

PAη̄ ≡ PAηA
ϕ−1L−ξA = (1− α)

Y

LY
. (20)

5 Balanced growth

In the non-stochastic Romer-Jones model of horizontal innovations with Ramsey house-

holds, cf. Short Note 2, we have, under certain parameter restrictions that in the long

run, the system converges to a BGP with the property that gy = gc = gk = gA = constant

> 0. In analogy with this, we may think of the present model as portraying a system

which, in a stochastic sense, in the long run approaches a path with the property that

the average growth rates of y, c, k, and A over long time horizons are both constant and

equal:

Egy = Egc = Egk = EgA = constant > 0. (21)
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The constancy of EgA means that on average there is exponential growth in input

quality. This corresponds to “Moore’s law”: the observation that, over the history of

computing hardware, the effi ciency of microprocessors has approximately doubled every

two years.8 Indeed, a constant doubling time is equivalent to exponential growth. But a

two years’doubling time is, of course, much faster exponential growth than what we see

anywhere regarding productivity at a more aggregate level.9

5.1 An approximating deterministic BGP

We now take a bird’s eye view and look at the long-run evolution as if the level of labor

effi ciency, A, evolves in a “smooth”deterministic way as a function of time and has actual

growth rate, gA ≡ dA(t)/dt, equal to the expected constant long-run growth rate, EgA.10

By (14) we see that this amounts to

gA = EgA = η̄(t)LA(t) ln(1 + γ) = ηA(t)ϕ−1LA(t)1−ξ ln(1 + γ) = constant > 0, (22)

where the last equality comes from Assumption (iv) (with Ai = A(t)) in Section 3.1.2

about how η̄(t) is determined.

When the evolution of A is “smooth”, so is that of y, c, and k. In the present context

we define an “approximating deterministic BGP”as a deterministic path along which

gy = gc = gk = gA, (23)

where gA is constant and satisfies (22). It is well-known that if ϕ = 1 and n > 0 or ϕ < 1

and n = 0, no deterministic BGP can exist (in the first case because the growth rates will

continue to be rising over time, in the latter case because the needed sustained growth

in LA to compensate for the declining Aϕ−1 will be absent). In the following lemma we

therefore only need consider the combinations ϕ = 1 together with n = 0 and ϕ < 1

together with n > 0.

LEMMA 1. Let ϕ ≤ 1, n ≥ 0, η > 0, 0 ≤ ξ < 1. Consider an approximating deterministic

BGP. Let the associated gA have the value g∗A > 0. It holds that:

8Gordon E. Moore was co-founder of the micro-electronics industry firm Intel in the late 1960s.
9Two years’doubling time is equivalent to a constant growth rate of 35 percent per year (g = (ln 2)/2

= 0.35).
10Given the time unit, say one year, and given the proportionate size, γ, of the step increases, this

“even out” of the growth path of A seems more acceptable, the “larger” is A (the denominator in the
calculation of the growth rate), and the more frequent are the step increases, cf. the law of large numbers.
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(i) If ϕ = 1 and n = 0, then LA(t) = LA, a positive constant, η̄ = η, and g∗A = ηL1−ξ
A ln(1+

γ).

(ii) If ϕ < 1 and n > 0, then gLY = gLA = n and g∗A = 1−ξ
1−ϕn.

(iii) η̄LA = g∗A/ ln(1 + γ).

(iv) gPA = gY = g∗A + n = gπ.

(v) r = αη̄LY − (1− ln(1 + γ))η̄LA + n.

Proof. (i) Apply (22). (ii) That gLY = gLA = n follows by the same reasoning as in Short

Note 2, Section 5.2. As to g∗A, “take logs and time derivatives”in (22) and then solve for

gA. (iii) In (22), let gA = g∗A, and solve for η̄LA. (iv) Multiplying through by LA in (20)

gives

PAη̄LA = (1− α)Y
LA
LY

, (24)

where, along the BGP, by (iii), η̄LA is constant, and, by (i) and (ii), so is LA/LY . Hence,

gPA = gY = gπ, where the last equality comes from (10). Moreover, Y = yL so that

gY = gy + n = g∗A + n, where the last equality follows from (23) in combination with

gA = g∗A. (v) From the no-arbitrage condition (16), we have along the BGP that r

= (π + ṖA)/PA − η̄LA = αη̄LY + g∗A + n− η̄LA, by (10), (20), (iii), and (iv). �

5.2 The representative household

To determine LA and gA along the BGP, we need more knowledge of the real interest rate,

which in turn requires taking household behavior into account.

As in connection with the horizontal innovations model in Short Note 2, we assume

a representative household with infinite horizon, rate of time preference equal to ρ, and

CRRA instantaneous utility with parameter θ > 0. The household’s per head consumption

will thus satisfy the Keynes-Ramsey rule

ċ(t)

c(t)
=

1

θ
(r(t)− ρ), (25)

and the per head financial wealth, a(t), of the household will satisfy the transversality

condition

lim
t→∞

a(t)e−
∫ t
0 (r(s)−n)ds = 0. (26)

Per head financial wealth is

a(t) ≡ K(t) + PA(t)

L(t)
=

(K(0) + PA(0))e(g∗A+n)t

L(0)ent
=

(K(0) + PA(0))eg
∗
At

L(0)
≡ a(0)eg

∗
At (27)
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along the BGP, in view of (23) and (iv) of Lemma 1.

Now to the final solution of the model, along the approximating deterministic BGP.

Here we have to distinguish between two alternative cases, the fully-endogenous growth

case versus the semi-endogenous growth case.

5.3 The fully-endogenous growth case: ϕ = 1 and n = 0

This is the case studied in the pioneering article by Aghion and Howitt (1992). For

simplicity we ignore the duplication externality and set ξ = 0 (as also Aghion and Howitt

do).

As in Short Note 2 on the horizontal innovations model, a first step in the analysis

is to pin down the relationship between the interest rate and the constant employment

in R&D along the approximating deterministic BGP, as this relationship is manifested at

the production side. From (v) of Lemma 1, with n = 0, we have along the BGP,

r = αηL− αηLA + (ln(1 + γ)− 1)ηLA, (by (i) and (iii) of Lemma 1) (28)

where, in addition to (v) and (i) from the lemma, we have used that LY + LA = L.

The second step in the analysis is to pin down a second relationship between the inter-

est rate and the constant employment in R&D, this time involving households’behavior.

Isolating r in (25) along a BGP immediately gives

r = ρ+ θg∗c = ρ+ θg∗A = ρ+ θηLA ln(1 + γ), (29)

where the second equality comes from (23) and the third from (iii) of Lemma 1; an asterisk

signifies that a value along the BGP is considered. Equalizing the right-hand sides of (28)

and (29) and rearranging gives

LA =
αηL− ρ

[(θ − 1) ln(1 + γ) + 1 + α] η
≡ L∗A. (30)

By (i) of Lemma 1, with ξ = 0, we finally get

g∗A = ηL∗A ln(1 + γ) =
(αηL− ρ) ln(1 + γ)

(θ − 1) ln(1 + γ) + 1 + α
. (31)

These results have been derived under the pre-condition that the transversality con-

dition of the representative household is satisfied along the BGP and that LA is positive.
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To ensure that the transversality condition (26) with n = 0, in combination with (27),

holds along the BGP, we need the assumption that ρ > (1 − θ)g∗A. Inserting (31), and
rearranging, gives the requirement

ρ >
(1− θ)αηL

1 + α
ln(1 + γ). (A1-f)

To ensure L∗A > 0, we assume

ρ < αηL and, if θ < 1, then 0 < γ ≤ e− 1. (A2)

Empirics generally find θ ≥ 1.

Imposing both (A1-f) and (A2) in present case where ϕ = 1 and n = 0 = ξ, there

is a meaningful BGP solution to the model. The solution features “fully endogenous”

exponential growth. This per capita growth is generated by an internal mechanism,

through which labor is allocated to R&D. And the exponential per capita growth is

maintained without support of growth in any exogenous factor.

Among other things, one can make comparative static analysis on the result in (31).

For instance, not surprisingly, ∂g∗A/∂ρ < 0, ∂g∗A/∂θ < 0, and ∂g∗A/∂η > 0, ∂g∗A/∂γ > 0.

We also see that ∂g∗A/∂L > 0. The “fully endogenous”growth case thus implies a scale

effect on growth, which is an empirically problematic feature.

5.4 The semi-endogenous growth case: ϕ < 1, n > 0, and ξ ∈ [0, 1)

The order in which we find g∗A and L
∗
A/L is now reversed. The growth rate of A along the

approximating deterministic BGP was found already in (ii) of Lemma 1, which displays

the standard semi-endogenous growth result emphasized by Jones. We repeat the result

here:

g∗A =
(1− ξ)n

1− ϕ > 0, (32)

as n > 0.

Contrary to the fully-endogenous growth case, here the relative step increase, γ, does

not affect the expected growth rate of A. This is due to Assumption (iv) in Section 3.1.2

about how the economy-wide research productivity, η̄, is determined. In view of the

exponent ϕ− 1 on Ai being negative when ϕ < 1, in Assumption (iv), a larger γ implies

that the upward jumps in A reduce the economy-wide research productivity, η̄, by more
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than otherwise. In the long run this means a larger expected waiting time before the next

technological breakthrough.

It remains to solve for the fraction of labor in research, sR ≡ LA/L, along the approx-

imating deterministic BGP. The solution for sR is important for the analysis of how the

level of y and c along the BGP depends on parameters and economic policy. From (v) of

Lemma 1,

r − n+ (1− ln(1 + γ))η̄LA = αη̄LY ⇒
r − n
αη̄LA

+
1− ln(1 + γ)

α
=
LY
LA
⇒

LA/L

LY /L
≡ sR

1− sR
=

1
r−n
αη̄LA

+ 1−ln(1+γ)
α

⇒

sR =
1

1 + r−n
αη̄LA

+ 1−ln(1+γ)
α

. (33)

This result is essentially the same as (5.33) in Jones and Vollrath, since they have

µ ≡ η̄LA and implicitly use the “approximation”γ ≈ ln(1 + γ) (which we have avoided

because γ may be “large”as argued at the end of Section 3.1). Anyway, the result is only

a step towards a solution because both µ ≡ η̄LA and r are endogenous variables in the

general equilibrium of the model. Fortunately, however, we have (iii) of Lemma 1, so that

(33) can be written

sR =
1

1 + ln(1 + γ) r−n
αg∗A

+ 1−ln(1+γ)
α

. (34)

Given our household description, along the approximating deterministic BGP, r must

equal ρ+ θg∗A, which, inserted into (34), gives the final solution for sR :

sR =
1

1 + 1
α

(
ln(1 + γ)(ρ−n

g∗A
+ θ − 1) + 1

) ≡ s∗R, (35)

where (32) can be inserted.

To ensure that the transversality condition (26), in combination with (27), holds along

the BGP, we need the same parameter restriction as in the “fully-endogenous growth”

case above and in the horizontal innovations model of Short Note 2, namely that

ρ− n > (1− θ)g∗A, (A1-s)

with g∗A given by (32). Moreover, with this parameter restriction we automatically have

ρ + θg∗A (= r∗) > ρ which, according to the Keynes-Ramsey rule, is needed for g∗c > 0 to
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be an outcome in balanced growth. In addition, given g∗A > 0, (A1-s) is equivalent to the

factor ((ρ− n)/g∗A + θ − 1) in (35) being positive.

On the basis of the formula (35), long-run level effects on s∗R of different parameter

shifts can be studied. The roles of the parameters ρ, θ, n, ϕ, and ξ are qualitatively

similar to their roles in the horizontal innovations model. A new feature compared with

the horizontal innovations model is the appearance of the relative step increase, γ, in the

formula − and with a negative effect on the equilibrium allocation of labor to R&D. The

explanation is related to that of the absence of an effect on g∗A from γ given above.

Like in the horizontal innovations model (cf. Exercise VII.7), level effects on y∗(t) and

c∗(t) of parameter shifts are a bit more complicated than the level effects on s∗R. Indeed,

a shift in sR has ambiguous effects on both y∗(t) and c∗(t) along a BGP.

6 Concluding remarks

In extended versions of the Schumpeterian model, there are many different types of capital

goods. Each of these types are produced in its own product line represented by a point

on a horizontal axis. For each of these points there is then a vertical “quality ladder”

along which the quality improvements of each capital good type take place, based on

new technical designs developed in corresponding specific subsets of R&D labs. Overall

labor effi ciency, A, then becomes an average of the leading-edge qualities in the different

product lines. As an implication of this “averaging” across many product lines, it is

common in the literature to completely “smooth out”the evolution of A and, appealing

to the law of large numbers, assume away any uncertainty at the aggregate level. Thereby,

a deterministic streamlined description of the economy, with gA = EgA at the aggregate

level, is upheld.

Obviously, the present model is in many respects very abstract. For instance, it does

not consider the mutual relationship between private R&D and the evolution of basic

science and higher education at universities.

Another limitation is the simplifying assumption that the innovator has perpetual

monopoly over the production and sale of the new version of the capital good. In practice,

by legislation, patents are of limited duration, 15-20 years. Moreover, it may be diffi cult

to codify exactly the technical aspects of innovations, hence not even within such a limited

period do patents give 100% effective protection. While the pharmaceutical industry rely
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quite much on patents, in many other branches innovative firms use other protection

strategies such as concealment of the new technical design. In ICT industries copyright

to new software plays a significant role. Still, whatever the protection strategy used,

imitators sooner or later find out how to make very close substitutes.

To better accommodate such facts, models have been developed where the duration

of monopoly power over the commercial use of an invention is limited and uncertain. For

instance, Barro and Sala-i-Martin (20014, Ch. 6.2) present a model with stochastic erosion

of the innovator’s monopoly power. The model exposes the policy dilemma regarding the

design of patents. Both static and dynamic distortions are involved. Compared with

perpetual monopoly, shorter duration of patents mitigates the static ineffi ciency problem

arising from prices above marginal cost. Shorter duration of patents also make it easier

and less expensive to build on previous discoveries. On the other hand, there is the

problem that shorter duration of patents may aggravate the dynamic distortion deriving

from the “surplus appropriability problem” illustrated in Jones and Vollrath, p. 134:

there may be too little private incentive to invest in R&D.

At the empirical level, Jones andWilliams (1998) estimate that R&D investment in the

U.S. economy is only about a fourth of the social optimum. So government intervention

seems motivated. But how should it be done? According to Paul Romer (2000) it may

be a better growth policy strategy to support education in science and engineering than

to support specific R&D activities.

There are many further aspects to take into account, e.g., spill-over effects of R&D and

intensional knowledge sharing, which we shall not consider here. A survey is contained in

Hall and Harhoff (2012). We end this Short Note by a citation from Wikipedia (07-05-

2015):

Legal scholars, economists, scientists, engineers, activists, policymakers, in-

dustries, and trade organizations have held differing views on patents and

engaged in contentious debates on the subject. Recent criticisms primarily

from the scientific community focus on the core tenet of the intended utility

of patents, as now some argue they are retarding innovation. Critical perspec-

tives emerged in the nineteenth century, and recent debates have discussed the

merits and faults of software patents, nanotechnology patents, and biological

patents. These debates are part of a larger discourse on intellectual property

protection which also reflects differing perspectives on copyright.
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