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Preface

This is a slight extension of my lecture notes in Economic Growth from 2015.

These notes have been used in recent years in the course Economic Growth

within the Master’s Program in Economics at the Department of Economics,

University of Copenhagen. Discovered typos and similar have been corrected.

In some of the chapters a terminal list of references is included, in some not.

The lecture notes contain many references to the textbook by Daron

Acemoglu, Introduction to Modern Economic Growth (Princeton University

Press, 2009). Parts of the lecture notes are alternative presentations of stuff

also covered in the Acemoglu book, while other parts can be seen as com-

plementary. Sections marked by an asterisk, *, can be skipped, at least in a

first reading.

For constructive criticism I thank Niklas Brønager, class instructor since

2012, and plenty of earlier students. No doubt, obscurities remain. Hence, I

very much welcome comments and suggestions of any kind relating to these

lecture notes.

February 2016

Christian Groth
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Chapter 1

Introduction to economic

growth

This introductory lecture note is a refresher on basic concepts.

Section 1.1 defines Economic Growth as a field of economics. In Section

1.2 formulas for calculation of compound average growth rates in discrete and

continuous time are presented. Section 1.3 briefly presents two sets of what

is by many considered as “stylized facts” about economic growth. Finally,

Section 1.4 discusses, in an informal way, the different concepts of cross-

country income convergence. In his introductory Chapter 1, §1.5, Acemoglu1

briefly touches upon these concepts.

1.1 The field

Economic growth analysis is the study of what factors and mechanisms deter-

mine the time path of productivity (a simple index of productivity is output

per unit of labor). The focus is on

• productivity levels and

• productivity growth.

1.1.1 Economic growth theory

Economic growth theory endogenizes productivity growth via considering

human capital accumulation (formal education as well as learning-by-doing)

1Throughout these lecture notes, “Acemoglu” refers to Daron Acemoglu, Introduction

to Modern Economic Growth, Princeton University Press: Oxford, 2009.
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2 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

and endogenous research and development. Also the conditioning role of

geography and juridical, political, and cultural institutions is taken into ac-

count.

For practical reasons, economic growth theory is often stated in terms of

national income and product account variables like per capita GDP. Yet the

term “economic growth” may be interpreted as referring to something deeper.

We could think of “economic growth” as the widening of the opportunities

of human beings to lead a freer and more worthwhile life (cf. Sen, ....).

To make our complex economic environment accessible for theoretical

analysis we use economic models. What is an economic model? It is a way

of organizing one’s thoughts about the economic functioning of a society. A

more specific answer is to define an economic model as a conceptual struc-

ture based on a set of mathematically formulated assumptions which have

an economic interpretation and from which empirically testable predictions

can be derived. In particular, an economic growth model is an economic

model concerned with productivity issues. The union of connected and non-

contradictory models dealing with economic growth and the propositions

derived from these models constitute economic growth theory. Occasionally,

intense controversies about the validity of alternative growth theories take

place.

The terms “New Growth Theory” and “endogenous growth theory” re-

fer to theory and models which attempt at explaining sustained per capita

growth as an outcome of internal mechanisms in the model rather than just

a reflection of exogenous technical progress as in “Old Growth Theory”.

Among the themes addressed in this course are:

• How is the world income distribution evolving?
• Why do living standards differ so much across countries and regions?
Why are some countries 50 times richer than others?

• Why do per capita growth rates differ over long periods?
• What are the roles of human capital and technology innovation in eco-
nomic growth? Getting the questions right.

• Catching-up and increased speed of communication and technology dif-
fusion.

• Economic growth, natural resources, and the environment (including
the climate). What are the limits to growth?

• Policies to ignite and sustain productivity growth.
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1.1. The field 3

• The prospects of growth in the future.

The course concentrates on mechanisms behind the evolution of produc-

tivity in the industrialized world. We study these mechanisms as integral

parts of dynamic models.

The exam is a test of the extent to which the student has acquired under-

standing of these models, is able to evaluate them, from both a theoretical

and empirical perspective, and is able to use them to analyze specific eco-

nomic questions. The course is calculus intensive.

1.1.2 Some long-run data

Let  denote real GDP (per year) and let  be population size. Then 

is GDP per capita. Further, let  denote the average (compound) growth

rate of  per year since 1870 and let  denote the average (compound)

growth rate of  per year since 1870. Table 1.1 gives these growth rates

for four countries. (But we should not forget that data from before WWII

should be taken with a grain of salt).

 
Denmark 2,67 1,87

UK 1,96 1,46

USA 3,40 1,89

Japan 3,54 2,54

Table 1.1: Average annual growth rate of GDP and GDP per capita in percent,

1870—2006. Discrete compounding. Source: Maddison, A: The World Economy:

Historical Statistics, 2006, Table 1b, 1c and 5c.

Figure 1.1 displays the time path of annual GDP and GDP per capita in

Denmark 1870-2006 along with regression lines estimated by OLS (logarith-

mic scale on the vertical axis). Figure 1.2 displays the time path of GDP per

capita in UK, USA, and Japan 1870-2006. In both figures the average annual

growth rates are reported. In spite of being based on exactly the same data

as Table 1.1, the numbers are slightly different. Indeed, the numbers in the

figures are slightly lower than those in the table. The reason is that discrete

compounding is used in Table 1.1 while continuous compounding is used in

the two figures. These two alternative methods of calculation are explained

in the next section.
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4 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

Figure 1.1: GDP and GDP per capita (1990 International Geary-Khamis dollars)

in Denmark, 1870-2006. Source: Maddison, A. (2009). Statistics on World Popu-

lation, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

1.2 Calculation of the average growth rate

1.2.1 Discrete compounding

Let  denote aggregate labor productivity, i.e.,  ≡  where  is employ-

ment. The average growth rate of  from period 0 to period  with discrete

compounding, is that  which satisfies

 = 0(1 +)  = 1 2  , or (1.1)

1 + = (


0
)1 i.e.,

 = (


0
)1 − 1 (1.2)

“Compounding” means adding the one-period “net return” to the “principal”

before adding next period’s “net return” (like with interest on interest, also

called “compound interest”). The growth factor 1 +  will generally be

less than the arithmetic average of the period-by-period growth factors. To
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1.2. Calculation of the average growth rate 5

Figure 1.2: GDP per capita (1990 International Geary-Khamis dollars) in UK,

USA and Japan, 1870-2006. Source: Maddison, A. (2009). Statistics on World

Population, GDP and Per Capita GDP, 1-2006 AD, www.ggdc.net/maddison.

underline this difference, 1 + is sometimes called the “compound average

growth factor” or the “geometric average growth factor” and  itself then

called the “compound average growth rate” or the “geometric average growth

rate”

Using a pocket calculator, the following steps in the calculation of  may

be convenient. Take logs on both sides of (1.1) to get

ln


0
=  ln(1 +) ⇒

ln(1 +) =
ln 

0


⇒ (1.3)

 = antilog(
ln 

0


)− 1. (1.4)

Note that  in the formulas (1.2) and (1.4) equals the number of periods

minus 1.
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6 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

1.2.2 Continuous compounding

The average growth rate of , with continuous compounding, is that  which

satisfies

 = 0
 (1.5)

where  denotes the Euler number, i.e., the base of the natural logarithm.2

Solving for  gives

 =
ln 

0


=
ln  − ln 0


 (1.6)

The first formula in (1.6) is convenient for calculation with a pocket calcula-

tor, whereas the second formula is perhaps closer to intuition. Another name

for  is the “exponential average growth rate”.

Again, for discrete time data the  in the formula equals the number of

periods minus 1.

Comparing with (1.3) we see that  = ln(1 +)   for  6= 0 Yet, by
a first-order Taylor approximation of ln(1 +) about  = 0 we have

 = ln(1 +) ≈  for  “small”. (1.7)

For a given data set the  calculated from (1.2) will be slightly above the

 calculated from (1.6), cf. the mentioned difference between the growth rates

in Table 1.1 and those in Figure 1.1 and Figure 1.2. The reason is that a given

growth force is more powerful when compounding is continuous rather than

discrete. Anyway, the difference between  and  is usually unimportant.

If for example  refers to the annual GDP growth rate, it will be a small

number, and the difference between  and  immaterial. For example, to

 = 0040 corresponds  ≈ 0039 Even if  = 010, the corresponding  is

00953. But if  stands for the inflation rate and there is high inflation, the

difference between  and  will be substantial. During hyperinflation the

monthly inflation rate may be, say,  = 100%, but the corresponding  will

be only 69%.

Which method, discrete or continuous compounding, is preferable? To

some extent it is a matter of taste or convenience. In period analysis discrete

compounding is most common and in continuous time analysis continuous

compounding is most common.

For calculation with a pocket calculator the continuous compounding for-

mula, (1.6), is slightly easier to use than the discrete compounding formulas,

whether (1.2) or (1.4).

2Unless otherwise specified, whenever we write ln or log  the natural logarithm is

understood.
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1.3. Some stylized facts of economic growth 7

To avoid too much sensitiveness to the initial and terminal observations,

which may involve measurement error or depend on the state of the business

cycle, one can use an OLS approach to the trend coefficient,  in the following

regression:

ln = + + 

This is in fact what is done in Fig. 1.1.

1.2.3 Doubling time

How long time does it take for  to double if the growth rate with discrete

compounding is ? Knowing  we rewrite the formula (1.3):

 =
ln 

0

ln(1 +)
=

ln 2

ln(1 +)
≈ 06931

ln(1 +)


With  = 00187 cf. Table 1.1, we find

 ≈ 374 years,
meaning that productivity doubles every 374 years.

How long time does it take for  to double if the growth rate with con-

tinuous compounding is ? The answer is based on rewriting the formula

(1.6):

 =
ln 

0


=
ln 2


≈ 06931




Maintaining the value 00187 also for  we find

 ≈ 06931
00187

≈ 371 years.

Again, with a pocket calculator the continuous compounding formula is

slightly easier to use. With a lower  say  = 001 we find doubling time

equal to 691 years. With  = 007 (think of China since the early 1980’s),

doubling time is about 10 years! Owing to the compounding, exponential

growth is extremely powerful.

1.3 Some stylized facts of economic growth

1.3.1 The Kuznets facts

A well-known characteristic of modern economic growth is structural change:

unbalanced sectorial growth. There is a massive reallocation of labor from
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8 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

 

Figure 1.3: The Kuznets facts. Source: Kongsamut et al., Beyond Balanced

Growth, Review of Economic Studies, vol. 68, Oct. 2001, 869-82.

agriculture into industry (manufacturing, construction, and mining) and fur-

ther into services (including transport and communication). The shares of

total consumption expenditure going to these three sectors have moved sim-

ilarly. Differences in the demand elasticities with respect to income seem the

main explanation. These observations are often referred to as the Kuznets

facts (after Simon Kuznets, 1901-85, see, e.g., Kuznets 1957).

The two graphs in Figure 1.3 illustrate the Kuznets facts.
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1.3. Some stylized facts of economic growth 9

1.3.2 Kaldor’s stylized facts

Surprisingly, in spite of the Kuznets facts, the evolution at the aggregate level

in developed countries is by many economists seen as roughly described by

what is called Kaldor’s “stylized facts” (after the Hungarian-British econo-

mist Nicholas Kaldor, 1908-1986, see, e.g., Kaldor 1957, 1961)3:

1. Real output per man-hour grows at a more or less constant rate

over fairly long periods of time. (Of course, there are short-run fluctuations

superposed around this trend.)

2. The stock of physical capital per man-hour grows at a more or less

constant rate over fairly long periods of time.

3. The ratio of output to capital shows no systematic trend.

4. The rate of return to capital shows no systematic trend.

5. The income shares of labor and capital (in the national account-

ing sense, i.e., including land and other natural resources), respectively, are

nearly constant.

6. The growth rate of output per man-hour differs substantially across

countries.

These claimed regularities do certainly not fit all developed countries

equally well. Although Solow’s growth model (Solow, 1956) can be seen as the

first successful attempt at building a model consistent with Kaldor’s “stylized

facts”, Solow once remarked about them: “There is no doubt that they are

stylized, though it is possible to question whether they are facts” (Solow,

1970). Yet, for instance the study by Attfield and Temple (2010) of US and

UK data since the Second World War concludes with support for Kaldor’s

“facts”. Recently, several empiricists4 have questioned “fact” 5, however,

referring to the inadequacy of the methods which standard national income

accounting applies to separate the income of entrepreneurs, sole proprietors,

and unincorporated businesses into labor and capital income. It is claimed

that these methods obscure a tendency in recent decades of the labor income

share to fall.

The sixth Kaldor fact is, of course, generally accepted as a well docu-

mented observation (a nice summary is contained in Pritchett, 1997).

Kaldor also proposed hypotheses about the links between growth in the

different sectors (see, e.g., Kaldor 1967):

a. Productivity growth in the manufacturing and construction sec-

tors is enhanced by output growth in these sectors (this is also known as

Verdoorn’s Law). Increasing returns to scale and learning by doing are the

main factors behind this.

3Kaldor presented his six regularities as “a stylised view of the facts”.
4E.g., Gollin (2002), Elsby et al. (2013), and Karabarbounis and Neiman (2014).
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10 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

b. Productivity growth in agriculture and services is enhanced by out-

put growth in the manufacturing and construction sectors.

Kongsamut et al. (2001) and Foellmi and Zweimüller (2008) offer theoret-

ical explanations of why the Kuznets facts and the Kaldor facts can coexist.

1.4 Concepts of income convergence

The two most popular across-country income convergence concepts are “

convergence” and “ convergence”.

1.4.1  convergence vs.  convergence

Definition 1 We say that  convergence occurs for a given selection of coun-

tries if there is a tendency for the poor (those with low income per capita or

low output per worker) to subsequently grow faster than the rich.

By “grow faster” is meant that the growth rate of per capita income (or

per worker output) is systematically higher.

In many contexts, a more appropriate convergence concept is the follow-

ing:

Definition 2 We say that  convergence, with respect to a given measure of

dispersion, occurs for a given collection of countries if this measure of disper-

sion, applied to income per capita or output per worker across the countries,

declines systematically over time. On the other hand,  divergence occurs, if

the dispersion increases systematically over time.

The reason that  convergence must be considered the more appropri-

ate concept is the following. In the end, it is the question of increasing

or decreasing dispersion across countries that we are interested in. From a

superficial point of view one might think that  convergence implies decreas-

ing dispersion and vice versa, so that  convergence and  convergence are

more or less equivalent concepts. But since the world is not deterministic,

but stochastic, this is not true. Indeed,  convergence is only a necessary,

not a sufficient condition for  convergence. This is because over time some

reshuffling among the countries is always taking place, and this implies that

there will always be some extreme countries (those initially far away from

the mean) that move closer to the mean, thus creating a negative correla-

tion between initial level and subsequent growth, in spite of equally many
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1.4. Concepts of income convergence 11

countries moving from a middle position toward one of the extremes.5 In

this way  convergence may be observed at the same time as there is no 

convergence; the mere presence of random measurement errors implies a bias

in this direction because a growth rate depends negatively on the initial mea-

surement and positively on the later measurement. In fact,  convergence

may be consistent with  divergence (for a formal proof of this claim, see

Barro and Sala-i-Martin, 2004, pp. 50-51 and 462 ff.; see also Valdés, 1999,

p. 49-50, and Romer, 2001, p. 32-34).

Hence, it is wrong to conclude from  convergence (poor countries tend

to grow faster than rich ones) to  convergence (reduced dispersion of per

capita income) without any further investigation. The mistake is called “re-

gression towards the mean” or “Galton’s fallacy”. Francis Galton was an

anthropologist (and a cousin of Darwin), who in the late nineteenth century

observed that tall fathers tended to have not as tall sons and small fathers

tended to have taller sons. From this he falsely concluded that there was

a tendency to averaging out of the differences in height in the population.

Indeed, being a true aristocrat, Galton found this tendency pitiable. But

since his conclusion was mistaken, he did not really have to worry.

Since  convergence comes closer to what we are ultimately looking for,

from now, when we speak of just “income convergence”,  convergence is

understood.

In the above definitions of  convergence and  convergence, respectively,

we were vague as to what kind of selection of countries is considered. In

principle we would like it to be a representative sample of the “population”

of countries that we are interested in. The population could be all countries

in the world. Or it could be the countries that a century ago had obtained a

certain level of development.

One should be aware that historical GDP data are constructed retrospec-

tively. Long time series data have only been constructed for those countries

that became relatively rich during the after-WWII period. Thus, if we as our

sample select the countries for which long data series exist, what is known as

selection bias is involved which generates a spurious convergence. A country

which was poor a century ago will only appear in the sample if it grew rapidly

over the next 100 years. A country which was relatively rich a century ago

will appear in the sample unconditionally. This selection bias problem was

5As an intuitive analogy, think of the ordinal rankings of the sports teams in a league.

The dispersion of rankings is constant by definition. Yet, no doubt there will allways be

some tendency for weak teams to rebound toward the mean and of champions to revert

to mediocrity. (This example is taken from the first edition of Barro and Sala-i-Martin,

Economic Growth, 1995; I do not know why, but the example was deleted in the second

edition from 2004.)
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12 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

pointed out by DeLong (1988) in a criticism of widespread false interpreta-

tions of Maddison’s long data series (Maddison 1982).

1.4.2 Measures of dispersion

Our next problem is: what measure of dispersion is to be used as a useful

descriptive statistics for  convergence? Here there are different possibilities.

To be precise about this we need some notation. Let

 ≡ 


 and

 ≡ 




where  = real GDP,  = employment, and  = population. If the focus

is on living standards,  is the relevant variable.6 But if the focus is on

(labor) productivity, it is  that is relevant. Since most growth models

focus on  rather than  let os take  as our example.

One might think that the standard deviation of  could be a relevant

measure of dispersion when discussing whether  convergence is present or

not. The standard deviation of  across  countries in a given year is

 ≡
vuut1



X
=1

( − ̄)2 (1.8)

where

̄ ≡
P

 


 (1.9)

i.e., ̄ is the average output per worker. However, if this measure were used,

it would be hard to find any group of countries for which there is income

convergence. This is because  tends to grow over time for most countries,

and then there is an inherent tendency for the variance also to grow; hence

also the square root of the variance,  tends to grow. Indeed, suppose that

for all countries,  is doubled from time 1 to time 2 Then, automatically,

 is also doubled. But hardly anyone would interpret this as an increase in

the income inequality across the countries.

Hence, it is more adequate to look at the standard deviation of relative

income levels:

̄ ≡
s
1



X


(


̄
− 1)2 (1.10)

6Or perhaps better,  where  ≡  ≡  − − Here,  denotes net

interest payments on foreign debt and  denotes net labor income of foreign workers in

the country.
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1.4. Concepts of income convergence 13

This measure is the same as what is called the coefficient of variation, 

usually defined as

 ≡ 

̄
 (1.11)

that is, the standard deviation of  standardized by the mean. That the two

measures are identical can be seen in this way:



̄
≡

q
1


P
( − ̄)2

̄
=

s
1



X


(
 − ̄

̄
)2 =

s
1



X


(


̄
− 1)2 ≡ ̄

The point is that the coefficient of variation is “scale free”, which the standard

deviation itself is not.

Instead of the coefficient of variation, another scale free measure is often

used, namely the standard deviation of ln , i.e.,

ln  ≡
s
1



X


(ln  − ln ∗)2 (1.12)

where

ln ∗ ≡
P

 ln 


 (1.13)

Note that ∗ is the geometric average, i.e., ∗ ≡ 
√
12 · · ·  Now, by a

first-order Taylor approximation of ln  around  = ̄, we have

ln  ≈ ln ̄ + 1
̄
( − ̄)

Hence, as a very rough approximation we have ln  ≈ ̄ =  though

this approximation can be quite poor (cf. Dalgaard and Vastrup, 2001).

It may be possible, however, to defend the use of ln  in its own right to

the extent that  tends to be approximately lognormally distributed across

countries.

Yet another possible measure of income dispersion across countries is the

Gini index (see for example Cowell, 1995).

1.4.3 Weighting by size of population

Another important issue is whether the applied dispersion measure is based

on a weighting of the countries by size of population. For the world as a

whole, when no weighting by size of population is used, then there is a slight

tendency to income divergence according to the ln  criterion (Acemoglu,
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14 CHAPTER 1. INTRODUCTION TO ECONOMIC GROWTH

2009, p. 4), where  is per capita income (≡ ). As seen by Fig. 4 below,

this tendency is not so clear according to the  criterion. Anyway, when

there is weighting by size of population, then in the last twenty years there

has been a tendency to income convergence at the global level (Sala-i-Martin

2006; Acemoglu, 2009, p. 6). With weighting by size of population (1.12) is

modified to

ln  ≡
sX



(ln  − ln ∗)2

where

 =



and ln ∗ ≡

X


 ln 

1.4.4 Unconditional vs. conditional convergence

Yet another distinction in the study of income convergence is that between

unconditional (or absolute) and conditional convergence. We say that a

large heterogeneous group of countries (say the countries in the world) show

unconditional income convergence if income convergence occurs for the whole

group without conditioning on specific characteristics of the countries. If

income convergence occurs only for a subgroup of the countries, namely those

countries that in advance share the same “structural characteristics”, then

we say there is conditional income convergence. As noted earlier, when we

speak of just income “convergence”, income “ convergence” is understood.

If in a given context there might be doubt, one should of course be explicit

and speak of unconditional or conditional  convergence. Similarly, if the

focus for some reason is on  convergence, we should distinguish between

unconditional and conditional  convergence.

What the precise meaning of “structural characteristics” is, will depend

on what model of the countries the researcher has in mind. According to

the Solow model, a set of relevant “structural characteristics” are: the aggre-

gate production function, the initial level of technology, the rate of technical

progress, the capital depreciation rate, the saving rate, and the population

growth rate. But the Solow model, as well as its extension with human cap-

ital (Mankiw et al., 1992), is a model of a closed economy with exogenous

technical progress. The model deals with “within-country” convergence in

the sense that the model predicts that a closed economy being initially be-

low or above its steady state path, will over time converge towards its steady

state path. It is far from obvious that this kind of model is a good model

of cross-country convergence in a globalized world where capital mobility

and to some extent also labor mobility are important and some countries are
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Remarks: Germany is not included in  GDP per worker. GDP per worker is missing for 
Sweden and Greece in  1950, and for Portugal in 1998. The EU comprises Belgium, 
Denmark, Finland, France, Greece, Holland, Ireland, Italy, Luxembourg, Portugal, Spain, 
Sweden, Germany, the UK and Austria. 
Source: Pwt6, OECD Economic Outlook No. 65 1999 via Eco Win and World Bank Global 
Development Network Growth Database. 

Figure 1.4: Standard deviation of GDP per capita and per worker across 12 EU

countries, 1950-1998.

pushing the technological frontier further out, while others try to imitate and

catch up.

1.4.5 A bird’s-eye view of the data

In the following no serious econometrics is attempted. We use the term

“trend” in an admittedly loose sense.

Figure 1.4 shows the time profile for the standard deviation of  itself for

12 EU countries, whereas Figure 1.5 and Figure 1.6 show the time profile

of the standard deviation of log  and the time profile of the coefficient of

variation, respectively. Comparing the upward trend in Figure 1.4 with the

downward trend in the two other figures, we have an illustration of the fact

that the movement of the standard deviation of  itself does not capture

income convergence. To put it another way: although there seems to be

conditional income convergence with respect to the two scale-free measures,

Figure 1.4 shows that this tendency to convergence is not so strong as to

produce a narrowing of the absolute distance between the EU countries.7

7Unfortunately, sometimes misleading graphs or texts to graphs about across-country
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0

0,04

0,08

0,12

0,16

0,2

0,24

0,28

0,32

0,36

0,4

1950 1960 1970 1980 1990 2000

Dispersion 

Dispersion of the log of GDP 
 per capita 

Dispersion of the log of GDP per 
worker  

Year

Remarks: Germany is not included in GDP per worker. GDP per worker is missing for Sweden and 
Greece in 1950, and for Portugal in 1998. The EU comprises Belgium, Denmark, Finland, France, 
Greece, Holland, Ireland, Italy, Luxembourg, Portugal, Spain, Sweden, Germany, the UK and 
Austria. 
Source: Pwt6, OECD Economic Outlook No. 65 1999 via Eco Win and World Bank Global 
Development Network Growth Database. 

Figure 1.5: Standard deviation of the log of GDP per capita and per worker across

12 EU countries, 1950-1998.
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Figure 1.6: Coefficient of variation of GDP per capita and GDP per worker across

12 EU countries, 1950-1998.

Figure 1.7 shows the time path of the coefficient of variation across 121

countries in the world, 22 OECD countries and 12 EU countries, respectively.

We see the lack of unconditional income convergence, but the presence of con-

ditional income convergence. One should not over-interpret the observation

of convergence for the 22 OECD countries over the period 1950-1990. It is

likely that this observation suffer from the selection bias problem mentioned

in Section 1.4.1. A country that was poor in 1950 will typically have become

a member of OECD only if it grew relatively fast afterwards.

1.4.6 Other convergence concepts

Of course, just considering the time profile of the first and second moments

of a distribution may sometimes be a poor characterization of the evolution

of the distribution. For example, there are signs that the distribution has

polarized into twin peaks of rich and poor countries (Quah, 1996a; Jones,

income convergence are published. In the collection of exercises, Chapter 1, you are asked

to discuss some examples of this.
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Figure 1.7: Coefficient of variation of income per capita across different sets of

countries.

1997). Related to this observation is the notion of club convergence. If in-

come convergence occurs only among a subgroup of the countries that to

some extent share the same initial conditions, then we say there is club-

convergence. This concept is relevant in a setting where there are multiple

steady states toward which countries can converge. At least at the theoret-

ical level multiple steady states can easily arise in overlapping generations

models. Then the initial condition for a given country matters for which of

these steady states this country is heading to. Similarly, we may say that

conditional club-convergence is present, if income convergence occurs only

for a subgroup of the countries, namely countries sharing similar structural

characteristics (this may to some extent be true for the OECD countries)

and, within an interval, similar initial conditions.

Instead of focusing on income convergence, one could study TFP conver-

gence at aggregate or industry level.8 Sometimes the less demanding concept

of growth rate convergence is the focus.

The above considerations are only of a very elementary nature and are

only about descriptive statistics. The reader is referred to the large existing

literature on concepts and econometric methods of relevance for character-

8See, for instance, Bernard and Jones 1996a and 1996b.
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izing the evolution of world income distribution (see Quah, 1996b, 1996c,

1997, and for a survey, see Islam 2003).
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Chapter 2

Review of technology and
factor shares of income

The aim of this chapter is, first, to introduce the terminology concerning
firms’technology and technological change used in the lectures and exercises
of this course. At a few points I deviate somewhat from definitions in Ace-
moglu’s book. Section 1.3 can be used as a formula manual for the case of
CRS.
Second, the chapter contains a brief discussion of the notions of a repre-

sentative firm and an aggregate production function. The distinction between
long-run versus short-run production functions is also commented on. The
last sections introduce the concept of elasticity of substitution between cap-
ital and labour and its role for the direction of movement over time of the
income shares of capital and labor under perfect competition.
Regarding the distinction between discrete and continuous time analysis,

most of the definitions contained in this chapter are applicable to both.

2.1 The production technology

Consider a two-factor production function given by

Y = F (K,L), (2.1)

where Y is output (value added) per time unit, K is capital input per time
unit, and L is labor input per time unit (K ≥ 0, L ≥ 0). We may think of
(2.1) as describing the output of a firm, a sector, or the economy as a whole.
It is in any case a very simplified description, ignoring the heterogeneity of
output, capital, and labor. Yet, for many macroeconomic questions it may
be a useful first approach. Note that in (2.1) not only Y but also K and L
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represent flows, that is, quantities per unit of time. If the time unit is one
year, we think of K as measured in machine hours per year. Similarly, we
think of L as measured in labor hours per year. Unless otherwise specified, it
is understood that the rate of utilization of the production factors is constant
over time and normalized to one for each production factor. As explained
in Chapter 1, we can then use the same symbol, K, for the flow of capital
services as for the stock of capital. Similarly with L.

2.1.1 A neoclassical production function

By definition, K and L are non-negative. It is generally understood that a
production function, Y = F (K,L), is continuous and that F (0, 0) = 0 (no in-
put, no output). Sometimes, when specific functional forms are used to repre-
sent a production function, that function may not be defined at points where
K = 0 or L = 0 or both. In such a case we adopt the convention that the do-
main of the function is understood extended to include such boundary points
whenever it is possible to assign function values to them such that continuity
is maintained. For instance the function F (K,L) = αL + βKL/(K + L),
where α > 0 and β > 0, is not defined at (K,L) = (0, 0). But by assigning
the function value 0 to the point (0, 0), we maintain both continuity and the
“no input, no output”property.
We call the production function neoclassical if for all (K,L), with K > 0

and L > 0, the following additional conditions are satisfied:

(a) F (K,L) has continuous first- and second-order partial derivatives sat-
isfying:

FK > 0, FL > 0, (2.2)

FKK < 0, FLL < 0. (2.3)

(b) F (K,L) is strictly quasiconcave (i.e., the level curves, also called iso-
quants, are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous
substitution possibilities between K and L and the marginal productivities
are positive, but diminishing in own factor. Thus, for a given number of ma-
chines, adding one more unit of labor, adds to output, but less so, the higher
is already the labor input. And (b) says that every isoquant, F (K,L) = Ȳ ,
has a strictly convex form qualitatively similar to that shown in Figure 2.1.1

1For any fixed Ȳ ≥ 0, the associated isoquant is the level set
{(K,L) ∈ R+| F (K,L) = Ȳ

}
.
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When we speak of for example FL as the marginal productivity of labor, it
is because the “pure” partial derivative, ∂Y/∂L = FL, has the denomina-
tion of a productivity (output units/yr)/(man-yrs/yr). It is quite common,
however, to refer to FL as the marginal product of labor. Then a unit mar-
ginal increase in the labor input is understood: ∆Y ≈ (∂Y/∂L)∆L = ∂Y/∂L
when ∆L = 1. Similarly, FK can be interpreted as the marginal productiv-
ity of capital or as the marginal product of capital. In the latter case it is
understood that ∆K = 1, so that ∆Y ≈ (∂Y/∂K)∆K = ∂Y/∂K.

The definition of a neoclassical production function can be extended to
the case of n inputs. Let the input quantities be X1, X2, . . . , Xn and consider
a production function Y = F (X1, X2, . . . , Xn). Then F is called neoclassical if
all the marginal productivities are positive, but diminishing, and F is strictly
quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix
A).
Returning to the two-factor case, since F (K,L) presumably depends on

the level of technical knowledge and this level depends on time, t, we might
want to replace (2.1) by

Yt = F t(Kt, Lt), (2.4)

where the superscript on F indicates that the production function may shift
over time, due to changes in technology. We then say that F t(·) is a neoclas-
sical production function if it satisfies the conditions (a) and (b) for all pairs
(Kt, Lt). Technological progress can then be said to occur when, for Kt and
Lt held constant, output increases with t.
For convenience, to begin with we skip the explicit reference to time and

level of technology.

The marginal rate of substitution Given a neoclassical production
function F, we consider the isoquant defined by F (K,L) = Ȳ , where Ȳ
is a positive constant. The marginal rate of substitution, MRSKL, of K for
L at the point (K,L) is defined as the absolute slope of the isoquant at that
point, cf. Figure 2.1. The equation F (K,L) = Ȳ defines K as an implicit
function of L. By implicit differentiation we find FK(K,L)dK/dL +FL(K,L)
= 0, from which follows

MRSKL ≡ −
dK

dL |Y=Ȳ
=
FL(K,L)

FK(K,L)
> 0. (2.5)

That is, MRSKL measures the amount of K that can be saved (approxi-
mately) by applying an extra unit of labor. In turn, this equals the ratio
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Figure 2.1: MRSKL as the absolute slope of the isoquant.

of the marginal productivities of labor and capital, respectively.2 Since F
is neoclassical, by definition F is strictly quasi-concave and so the marginal
rate of substitution is diminishing as substitution proceeds, i.e., as the labor
input is further increased along a given isoquant. Notice that this feature
characterizes the marginal rate of substitution for any neoclassical production
function, whatever the returns to scale (see below).
When we want to draw attention to the dependency of the marginal rate of

substitution on the factor combination considered, we write MRSKL(K,L).
Sometimes in the literature, the marginal rate of substitution between two
production factors, K and L, is called the technical rate of substitution (or
the technical rate of transformation) in order to distinguish from a consumer’s
marginal rate of substitution between two consumption goods.
As is well-known from microeconomics, a firm that minimizes production

costs for a given output level and given factor prices, will choose a factor com-
bination such that MRSKL equals the ratio of the factor prices. If F (K,L)
is homogeneous of degree q, then the marginal rate of substitution depends
only on the factor proportion and is thus the same at any point on the ray
K = (K̄/L̄)L. That is, in this case the expansion path is a straight line.

The Inada conditions A continuously differentiable production function
is said to satisfy the Inada conditions3 if

lim
K→0

FK(K,L) = ∞, lim
K→∞

FK(K,L) = 0, (2.6)

lim
L→0

FL(K,L) = ∞, lim
L→∞

FL(K,L) = 0. (2.7)

2The subscript
∣∣Y = Ȳ in (2.5) indicates that we are moving along a given isoquant,

F (K,L) = Ȳ . Expressions like, e.g., FL(K,L) or F2(K,L) mean the partial derivative of
F w.r.t. the second argument, evaluated at the point (K,L).

3After the Japanese economist Ken-Ichi Inada, 1925-2002.
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In this case, the marginal productivity of either production factor has no
upper bound when the input of the factor becomes infinitely small. And the
marginal productivity is gradually vanishing when the input of the factor
increases without bound. Actually, (2.6) and (2.7) express four conditions,
which it is preferable to consider separately and label one by one. In (2.6) we
have two Inada conditions for MPK (the marginal productivity of capital),
the first being a lower, the second an upper Inada condition for MPK. And
in (2.7) we have two Inada conditions for MPL (the marginal productivity
of labor), the first being a lower, the second an upper Inada condition for
MPL. In the literature, when a sentence like “the Inada conditions are
assumed”appears, it is sometimes not made clear which, and how many, of
the four are meant. Unless it is evident from the context, it is better to be
explicit about what is meant.
The definition of a neoclassical production function we gave above is quite

common in macroeconomic journal articles and convenient because of its
flexibility. There are textbooks that define a neoclassical production function
more narrowly by including the Inada conditions as a requirement for calling
the production function neoclassical. In contrast, in this course, when in a
given context we need one or another Inada condition, we state it explicitly
as an additional assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by
the same factor? There may be different answers to this question, depending
on circumstances. We consider a production function F (K,L) where K > 0
and L > 0. Then F is said to have constant returns to scale (CRS for short)
if it is homogeneous of degree one, i.e., if for all (K,L) and all λ > 0,

F (λK, λL) = λF (K,L).

As all inputs are scaled up or down by some factor > 1, output is scaled up
or down by the same factor.4 The assumption of CRS is often defended by
the replication argument. Before discussing this argument, lets us define the
two alternative “pure”cases.
The production function F (K,L) is said to have increasing returns to

scale (IRS for short) if, for all (K,L) and all λ > 1,

F (λK, λL) > λF (K,L).

4In their definition of a neoclassical production function some textbooks add constant
returns to scale as a requirement besides (a) and (b). This course follows the alternative
terminology where, if in a given context an assumption of constant returns to scale is
needed, this is stated as an additional assumption.
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That is, IRS is present if, when all inputs are scaled up by some factor >
1, output is scaled up by more than this factor. The existence of gains by
specialization and division of labor, synergy effects, etc. sometimes speak in
support of this assumption, at least up to a certain level of production. The
assumption is also called the economies of scale assumption.
Another possibility is decreasing returns to scale (DRS). This is said to

occur when for all (K,L) and all λ > 1,

F (λK, λL) < λF (K,L).

That is, DRS is present if, when all inputs are scaled up by some factor,
output is scaled up by less than this factor. This assumption is also called
the diseconomies of scale assumption. The underlying hypothesis may be
that control and coordination problems confine the expansion of size. Or,
considering the “replication argument”below, DRS may simply reflect that
behind the scene there is an additional production factor, for example land
or a irreplaceable quality of management, which is tacitly held fixed, when
the factors of production are varied.

EXAMPLE 1 The production function

Y = AKαLβ, A > 0, 0 < α < 1, 0 < β < 1, (2.8)

where A, α, and β are given parameters, is called a Cobb-Douglas production
function. The parameter A depends on the choice of measurement units;
for a given such choice it reflects “effi ciency”, also called the “total factor
productivity”. As an exercise the reader may verify that (2.8) satisfies (a) and
(b) above and is therefore a neoclassical production function. The function
is homogeneous of degree α + β. If α + β = 1, there are CRS. If α + β < 1,
there are DRS, and if α + β > 1, there are IRS. Note that α and β must
be less than 1 in order not to violate the diminishing marginal productivity
condition. �
EXAMPLE 2 The production function

Y = min(AK,BL), A > 0, B > 0, (2.9)

where A and B are given parameters, is called a Leontief production function
or a fixed-coeffi cients production function; A and B are called the technical
coeffi cients. The function is not neoclassical, since the conditions (a) and (b)
are not satisfied. Indeed, with this production function the production fac-
tors are not substitutable at all. This case is also known as the case of perfect
complementarity between the production factors. The interpretation is that
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already installed production equipment requires a fixed number of workers to
operate it. The inverse of the parameters A and B indicate the required cap-
ital input per unit of output and the required labor input per unit of output,
respectively. Extended to many inputs, this type of production function is
often used in multi-sector input-output models (also called Leontief models).
In aggregate analysis neoclassical production functions, allowing substitution
between capital and labor, are more popular than Leontief functions. But
sometimes the latter are preferred, in particular in short-run analysis with
focus on the use of already installed equipment where the substitution pos-
sibilities are limited.5 As (2.9) reads, the function has CRS. A generalized
form of the Leontief function is Y = min(AKγ, BLγ), where γ > 0. When
γ < 1, there are DRS, and when γ > 1, there are IRS. �

The replication argument The assumption of CRS is widely used in
macroeconomics. The model builder may appeal to the replication argument.
This is the argument saying that by doubling all the inputs, we should always
be able to double the output, since we are just “replicating”what we are
already doing. Suppose we want to double the production of cars. We may
then build another factory identical to the one we already have, man it with
identical workers and deploy the same material inputs. Then it is reasonable
to assume output is doubled.
In this context it is important that the CRS assumption is about tech-

nology in the sense of functions linking outputs to inputs. Limits to the
availability of input resources is an entirely different matter. The fact that
for example managerial talent may be in limited supply does not preclude the
thought experiment that if a firm could double all its inputs, including the
number of talented managers, then the output level could also be doubled.
The replication argument presupposes, first, that all the relevant inputs

are explicit as arguments in the production function; second, that these are
changed equiproportionately. This, however, exhibits the weakness of the
replication argument as a defence for assuming CRS of our present production
function, F (·). One could easily make the case that besides capital and labor,
also land is a necessary input and should appear as a separate argument.6

If an industrial firm decides to duplicate what it has been doing, it needs a
piece of land to build another plant like the first. Then, on the basis of the
replication argument we should in fact expect DRS w.r.t. capital and labor
alone. In manufacturing and services, empirically, this and other possible

5Cf. Section 2.4.
6We think of “capital” as producible means of production, whereas “land” refers to

non-producible natural resources, including for example building sites.
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sources for departure from CRS may be minor and so many macroeconomists
feel comfortable enough with assuming CRS w.r.t. K and L alone, at least
as a first approximation. This approximation is, however, less applicable to
poor countries, where natural resources may be a quantitatively important
production factor.
There is a further problem with the replication argument. Strictly speak-

ing, the CRS claim is that by changing all the inputs equiproportionately
by any positive factor, λ, which does not have to be an integer, the firm
should be able to get output changed by the same factor. Hence, the replica-
tion argument requires that indivisibilities are negligible, which is certainly
not always the case. In fact, the replication argument is more an argument
against DRS than for CRS in particular. The argument does not rule out
IRS due to synergy effects as size is increased.
Sometimes the replication line of reasoning is given a more subtle form.

This builds on a useful local measure of returns to scale, named the elasticity
of scale.

The elasticity of scale* To allow for indivisibilities and mixed cases (for
example IRS at low levels of production and CRS or DRS at higher levels),
we need a local measure of returns to scale. One defines the elasticity of
scale, η(K,L), of F at the point (K,L), where F (K,L) > 0, as

η(K,L) =
λ

F (K,L)

dF (λK, λL)

dλ
≈ ∆F (λK, λL)/F (K,L)

∆λ/λ
, evaluated at λ = 1.

(2.10)
So the elasticity of scale at a point (K,L) indicates the (approximate) per-
centage increase in output when both inputs are increased by 1 percent. We
say that

if η(K,L)


> 1, then there are locally IRS,
= 1, then there are locally CRS,
< 1, then there are locally DRS.

(2.11)

The production function may have the same elasticity of scale everywhere.
This is the case if and only if the production function is homogeneous. If F
is homogeneous of degree h, then η(K,L) = h and h is called the elasticity
of scale parameter.
Note that the elasticity of scale at a point (K,L) will always equal the

sum of the partial output elasticities at that point:

η(K,L) =
FK(K,L)K

F (K,L)
+
FL(K,L)L

F (K,L)
. (2.12)

This follows from the definition in (2.10) by taking into account that
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Figure 2.2: Locally CRS at optimal plant size.

dF (λK, λL)

dλ
= FK(λK, λL)K + FL(λK, λL)L

= FK(K,L)K + FL(K,L)L, when evaluated at λ = 1.

Figure 2.2 illustrates a popular case from introductory economics, an
average cost curve which from the perspective of the individual firm (or plant)
is U-shaped: at low levels of output there are falling average costs (thus IRS),
at higher levels rising average costs (thus DRS).7 Given the input prices, wK
and wL, and a specified output level, Ȳ , we know that the cost minimizing
factor combination (K̄, L̄) is such that FL(K̄, L̄)/FK(K̄, L̄) = wL/wK . It is
shown in Appendix A that the elasticity of scale at (K̄, L̄) will satisfy:

η(K̄, L̄) =
LAC(Ȳ )

LMC(Ȳ )
, (2.13)

where LAC(Ȳ ) is average costs (the minimum unit cost associated with
producing Ȳ ) and LMC(Ȳ ) is marginal costs at the output level Ȳ . The
L in LAC and LMC stands for “long-run”, indicating that both capital and
labor are considered variable production factors within the period considered.
At the optimal plant size, Y ∗, there is equality between LAC and LMC,
implying a unit elasticity of scale, that is, locally we have CRS. That the long-
run average costs are here portrayed as rising for Ȳ > Y ∗, is not essential
for the argument but may reflect either that coordination diffi culties are
inevitable or that some additional production factor, say the building site of
the plant, is tacitly held fixed.
Anyway, we have here a more subtle replication argument for CRS w.r.t.

K and L at the aggregate level. Even though technologies may differ across
plants, the surviving plants in a competitive market will have the same aver-
age costs at the optimal plant size. In the medium and long run, changes in

7By a “firm”is generally meant the company as a whole. A company may have several
“manufacturing plants”placed at different locations.
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aggregate output will take place primarily by entry and exit of optimal-size
plants. Then, with a large number of relatively small plants, each produc-
ing at approximately constant unit costs for small output variations, we can
without substantial error assume constant returns to scale at the aggregate
level. So the argument goes. Notice, however, that even in this form the
replication argument is not entirely convincing since the question of indivis-
ibility remains. The optimal plant size may be large relative to the market
− and is in fact so in many industries. Besides, in this case also the perfect
competition premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed. Notwithstand-
ing the theoretical and empirical ambiguities, the assumption of CRS w.r.t.
capital and labor has a prominent role in macroeconomics. In many con-
texts it is regarded as an acceptable approximation and a convenient simple
background for studying the question at hand.
Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-
hand side of (2.13) equals unity);

(ii) if production factors are paid according to their marginal productivi-
ties, factor payments exactly exhaust total output so that pure profits
are neither positive nor negative (so the right-hand side of (2.12) equals
unity);

(iii) a production function known to exhibit CRS and satisfy property (a)
from the definition of a neoclassical production function above, will au-
tomatically satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always
FKL > 0, i.e., it exhibits “direct complementarity” between K and
L;

(v) a two-factor production function known to have CRS and to be twice
continuously differentiable with positive marginal productivity of each
factor everywhere in such a way that all isoquants are strictly convex to
the origin, must have diminishing marginal productivities everywhere.8

8Proofs of these claims can be found in intermediate microeconomics textbooks and in
the Appendix to Chapter 2 of my Lecture Notes in Macroeconomics.
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A principal implication of the CRS assumption is that it allows a re-
duction of dimensionality. Considering a neoclassical production function,
Y = F (K,L) with L > 0, we can under CRS write F (K,L) = LF (K/L, 1)
≡ Lf(k), where k ≡ K/L is called the capital-labor ratio (sometimes the cap-
ital intensity) and f(k) is the production function in intensive form (some-
times named the per capita production function). Thus output per unit of
labor depends only on the capital intensity:

y ≡ Y

L
= f(k).

When the original production function F is neoclassical, under CRS the
expression for the marginal productivity of capital simplifies:

FK(K,L) =
∂Y

∂K
=
∂ [Lf(k)]

∂K
= Lf ′(k)

∂k

∂K
= f ′(k). (2.14)

And the marginal productivity of labor can be written

FL(K,L) =
∂Y

∂L
=
∂ [Lf(k)]

∂L
= f(k) + Lf ′(k)

∂k

∂L
= f(k) + Lf ′(k)K(−L−2) = f(k)− f ′(k)k. (2.15)

A neoclassical CRS production function in intensive form always has a posi-
tive first derivative and a negative second derivative, i.e., f ′ > 0 and f ′′ < 0.
The property f ′ > 0 follows from (2.14) and (2.2). And the property f ′′ < 0
follows from (2.3) combined with

FKK(K,L) =
∂f ′(k)

∂K
= f ′′(k)

∂k

∂K
= f ′′(k)

1

L
.

For a neoclassical production function with CRS, we also have

f(k)− f ′(k)k > 0 for all k > 0, (2.16)

in view of f(0) ≥ 0 and f ′′ < 0. Moreover,

lim
k→0

[f(k)− f ′(k)k] = f(0). (2.17)

Indeed, from the mean value theorem9 we know that for any k > 0 there
exists a number a ∈ (0, 1) such that f ′(ak) = (f(k) − f(0))/k. For this a
we thus have f(k) − f ′(ak)k = f(0) < f(k) − f ′(k)k, where the inequality

9This theorem says that if f is continuous in [α, β] and differentiable in (α, β), then
there exists at least one point γ in (α, β) such that f ′(γ) = (f(β)− f(α))/(β − α).
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follows from f ′(ak) > f ′(k), by f ′′ < 0. In view of f(0) ≥ 0, this establishes
(2.16). And from f(k) > f(k) − f ′(k)k > f(0) and continuity of f (so that
limk→0+ f(k) = f(0)) follows (2.17).
Under CRS the Inada conditions for MPK can be written

lim
k→0

f ′(k) =∞, lim
k→∞

f ′(k) = 0. (2.18)

In this case standard parlance is just to say that “f satisfies the Inada con-
ditions”.
An input which must be positive for positive output to arise is called an

essential input ; an input which is not essential is called an inessential input.
The second part of (2.18), representing the upper Inada condition for MPK
under CRS, has the implication that labor is an essential input; but capital
need not be, as the production function f(k) = a+ bk/(1 + k), a > 0, b > 0,
illustrates. Similarly, under CRS the upper Inada condition forMPL implies
that capital is an essential input. These claims are proved in Appendix C.
Combining these results, when both the upper Inada conditions hold and
CRS obtain, then both capital and labor are essential inputs.10

Figure 2.3 is drawn to provide an intuitive understanding of a neoclassical
CRS production function and at the same time illustrate that the lower Inada
conditions are more questionable than the upper Inada conditions. The left
panel of Figure 2.3 shows output per unit of labor for a CRS neoclassical pro-
duction function satisfying the Inada conditions for MPK. The f(k) in the
diagram could for instance represent the Cobb-Douglas function in Example
1 with β = 1−α, i.e., f(k) = Akα. The right panel of Figure 2.3 shows a non-
neoclassical case where only two alternative Leontief techniques are available,
technique 1: y = min(A1k,B1), and technique 2: y = min(A2k,B2). In the
exposed case it is assumed that B2 > B1 and A2 < A1 (if A2 ≥ A1 at the
same time as B2 > B1, technique 1 would not be effi cient, because the same
output could be obtained with less input of at least one of the factors by
shifting to technique 2). If the available K and L are such that k < B1/A1

or k > B2/A2, some of either L or K, respectively, is idle. If, however, the
availableK and L are such that B1/A1 < k < B2/A2, it is effi cient to combine
the two techniques and use the fraction µ of K and L in technique 1 and the
remainder in technique 2, where µ = (B2/A2 − k)/(B2/A2 −B1/A1). In this
way we get the “labor productivity curve”OPQR (the envelope of the two
techniques) in Figure 2.3. Note that for k → 0, MPK stays equal to A1 <∞,
whereas for all k > B2/A2, MPK = 0. A similar feature remains true, when
we consider many, say n, alternative effi cient Leontief techniques available.

10Given a Cobb-Douglas production function, both production factors are essential
whether we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neo-
classical technology with Inada conditions for MPK satisfied; the graphical repre-
sentation of MPK and MPL at k = k0 as f ′(k0) and f(k0)−f ′(k0)k0 are indicated.
Right: a combination of two effi cient Leontief techniques.

Assuming these techniques cover a considerable range w.r.t. the B/A ratios,
we get a labor productivity curve looking more like that of a neoclassical CRS
production function. On the one hand, this gives some intuition of what lies
behind the assumption of a neoclassical CRS production function. On the
other hand, it remains true that for all k > Bn/An, MPK = 0,11 whereas
for k → 0, MPK stays equal to A1 < ∞, thus questioning the lower Inada
condition.

The implausibility of the lower Inada conditions is also underlined if we
look at their implication in combination with the more reasonable upper
Inada conditions. Indeed, the four Inada conditions taken together imply,
under CRS, that output has no upper bound when either input goes to
infinity for fixed amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often
take into account the existence of technological change. When technological
change occurs, the production function becomes time-dependent. Over time
the production factors tend to become more productive: more output for
given inputs. To put it differently: the isoquants move inward. When this is
the case, we say that the technological change displays technological progress.

11Here we assume the techniques are numbered according to ranking with respect to the
size of B.
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Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by
(2.4). Empirical studies often specialize (2.4) by assuming that technological
change take a form known as factor-augmenting technological change:

Yt = F (AtKt, BtLt), (2.19)

where F is a (time-independent) neoclassical production function, Yt, Kt,
and Lt are output, capital, and labor input, respectively, at time t, while At
and Bt are time-dependent “effi ciencies” of capital and labor, respectively,
reflecting technological change.
In macroeconomics an even more specific form is often assumed, namely

the form of Harrod-neutral technological change.12 This amounts to assuming
that At in (2.19) is a constant (which we can then normalize to one). So only
Bt, which is then conveniently denoted Tt, is changing over time, and we have

Yt = F (Kt, TtLt). (2.20)

The effi ciency of labor, Tt, is then said to indicate the technology level. Al-
though one can imagine natural disasters implying a fall in Tt, generally
Tt tends to rise over time and then we say that (2.20) represents Harrod-
neutral technological progress. An alternative name often used for this is
labor-augmenting technological progress. The names “factor-augmenting”
and, as here, “labor-augmenting” have become standard and we shall use
them when convenient, although they may easily be misunderstood. To say
that a change in Tt is labor-augmenting might be understood as meaning
that more labor is required to reach a given output level for given capital.
In fact, the opposite is the case, namely that Tt has risen so that less labor
input is required. The idea is that the technological change affects the output
level as if the labor input had been increased exactly by the factor by which
T was increased, and nothing else had happened. (We might be tempted to
say that (2.20) reflects “labor saving” technological change. But also this
can be misunderstood. Indeed, keeping L unchanged in response to a rise
in T implies that the same output level requires less capital and thus the
technological change is “capital saving”.)
If the function F in (2.20) is homogeneous of degree one (so that the

technology exhibits CRS w.r.t. capital and labor), we may write

ỹt ≡
Yt
TtLt

= F (
Kt

TtLt
, 1) = F (k̃t, 1) ≡ f(k̃t), f ′ > 0, f ′′ < 0.

12After the English economist Roy F. Harrod, 1900-1978.
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where k̃t ≡ Kt/(TtLt) ≡ kt/Tt (habitually called the “effective” capital in-
tensity or, if there is no risk of confusion, just the capital intensity). In
rough accordance with a general trend in aggregate productivity data for
industrialized countries we often assume that T grows at a constant rate, g,
so that in discrete time Tt = T0(1 + g)t and in continuous time Tt = T0e

gt,
where g > 0. The popularity in macroeconomics of the hypothesis of labor-
augmenting technological progress derives from its consistency with Kaldor’s
“stylized facts”, cf. Chapter 4.
There exists two alternative concepts of neutral technological progress.

Hicks-neutral technological progress is said to occur if technological develop-
ment is such that the production function can be written in the form

Yt = TtF (Kt, Lt), (2.21)

where, again, F is a (time-independent) neoclassical production function,
while Tt is the growing technology level.13 The assumption of Hicks-neutrality
has been used more in microeconomics and partial equilibrium analysis than
in macroeconomics. If F has CRS, we can write (2.21) as Yt = F (TtKt, TtLt).
Comparing with (2.19), we see that in this case Hicks-neutrality is equivalent
to At = Bt in (2.19), whereby technological change is said to be equally
factor-augmenting.
Finally, in a symmetric analogy with (2.20), what is known as capital-

augmenting technological progress is present when

Yt = F (TtKt, Lt). (2.22)

Here technological change acts as if the capital input were augmented. For
some reason this form is sometimes called Solow-neutral technological progress.14

This association of (2.22) to Solow’s name is misleading, however. In his fa-
mous growth model,15 Solow assumed Harrod-neutral technological progress.
And in another famous contribution, Solow generalized the concept of Harrod-
neutrality to the case of embodied technological change and capital of different
vintages, see below.
It is easily shown (Exercise I.9) that the Cobb-Douglas production func-

tion (2.8) (with time-independent output elasticities w.r.t. K and L) satisfies
all three neutrality criteria at the same time, if it satisfies one of them (which
it does if technological change does not affect α and β). It can also be shown
that within the class of neoclassical CRS production functions the Cobb-
Douglas function is the only one with this property (see Exercise ??).

13After the English economist and Nobel Prize laureate John R. Hicks, 1904-1989.
14After the American economist and Nobel Prize laureate Robert Solow (1924-).
15Solow (1956).
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Note that the neutrality concepts do not say anything about the source
of technological progress, only about the quantitative form in which it ma-
terializes. For instance, the occurrence of Harrod-neutrality should not be
interpreted as indicating that the technological change emanates specifically
from the labor input in some sense. Harrod-neutrality only means that tech-
nological innovations predominantly are such that not only do labor and
capital in combination become more productive, but this happens to man-
ifest itself in the form (2.20), that is, as if an improvement in the quality
of the labor input had occurred. (Even when improvement in the quality
of the labor input is on the agenda, the result may be a reorganization of
the production process ending up in a higher Bt along with, or instead of, a
higher At in the expression (2.19).)

Rival versus nonrival goods

When a production function (or more generally a production possibility set)
is specified, a given level of technical knowledge is presumed. As this level
changes over time, the production function changes. In (2.4) this dependency
on the level of knowledge was represented indirectly by the time dependency
of the production function. Sometimes it is useful to let the knowledge de-
pendency be explicit by perceiving knowledge as an additional production
factor and write, for instance,

Yt = F (Xt, Tt), (2.23)

where Tt is now an index of the amount of knowledge, while Xt is a vector
of ordinary inputs like raw materials, machines, labor etc. In this context
the distinction between rival and nonrival inputs or more generally the dis-
tinction between rival and nonrival goods is important. A good is rival if
its character is such that one agent’s use of it inhibits other agents’use of
it at the same time. A pencil is thus rival. Many production inputs like
raw materials, machines, labor etc. have this property. They are elements of
the vector Xt. By contrast, however, technical knowledge is a nonrival good.
An arbitrary number of factories can simultaneously use the same piece of
technical knowledge in the sense of a list of instructions about how different
inputs can be combined to produce a certain output. An engineering principle
or a farmaceutical formula are examples. (Note that the distinction rival-
nonrival is different from the distinction excludable-nonexcludable. A good
is excludable if other agents, firms or households, can be excluded from using
it. Other firms can thus be excluded from commercial use of a certain piece of
technical knowledge if it is patented. The existence of a patent concerns the
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legal status of a piece of knowledge and does not interfere with its economic
character as a nonrival input.).
What the replication argument really says is that by, conceptually, dou-

bling all the rival inputs, we should always be able to double the output,
since we just “replicate”what we are already doing. This is then an argu-
ment for (at least) CRS w.r.t. the elements of Xt in (2.23). The point is that
because of its nonrivalry, we do not need to increase the stock of knowledge.
Now let us imagine that the stock of knowledge is doubled at the same time
as the rival inputs are doubled. Then more than a doubling of output should
occur. In this sense we may speak of IRS w.r.t. the rival inputs and T taken
together.
Before proceeding, we briefly comment on how the capital stock, Kt,

is typically measured. While data on gross investment, It, is available in
national income and product accounts, data on Kt usually is not. One ap-
proach to the measurement of Kt is the perpetual inventory method which
builds upon the accounting relationship

Kt = It−1 + (1− δ)Kt−1. (2.24)

Assuming a constant capital depreciation rate δ, backward substitution gives

Kt = It−1+(1−δ) [It−2 + (1− δ)Kt−2] = . . . =
N∑
i=1

(1−δ)i−1It−i+(1−δ)NKt−N .

(2.25)
Based on a long time series for I and an estimate of δ, one can insert these
observed values in the formula and calculate Kt, starting from a rough con-
jecture about the initial value Kt−N . The result will not be very sensitive to
this conjecture since for large N the last term in (2.25) becomes very small.

Embodied vs. disembodied technological progress

There exists an additional taxonomy of technological change. We say that
technological change is embodied, if taking advantage of new technical knowl-
edge requires construction of new investment goods. The new technology is
incorporated in the design of newly produced equipment, but this equipment
will not participate in subsequent technological progress. An example: only
the most recent vintage of a computer series incorporates the most recent
advance in information technology. Then investment goods produced later
(investment goods of a later “vintage”) have higher productivity than in-
vestment goods produced earlier at the same resource cost. Thus investment
becomes an important driving force in productivity increases.
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We way formalize embodied technological progress by writing capital ac-
cumulation in the following way:

Kt+1 −Kt = qtIt − δKt, (2.26)

where It is gross investment in period t, i.e., It = Yt − Ct, and qt measures
the “quality”(productivity) of newly produced investment goods. The rising
level of technology implies rising q so that a given level of investment gives
rise to a greater and greater addition to the capital stock, K, measured
in effi ciency units. In aggregate models C and I are produced with the
same technology, the aggregate production function. From this together with
(2.26) follows that q capital goods can be produced at the same minimum
cost as one consumption good. Hence, the equilibrium price, p, of capital
goods in terms of the consumption good must equal the inverse of q, i.e.,
p = 1/q. The output-capital ratio in value terms is Y/(pK) = qY/K.
Note that even if technological change does not directly appear in the

production function, that is, even if for instance (2.20) is replaced by Yt
= F (Kt, Lt), the economy may experience a rising standard of living when q
is growing over time.
In contrast, disembodied technological change occurs when new technical

and organizational knowledge increases the combined productivity of the pro-
duction factors independently of when they were constructed or educated. If
theKt appearing in (2.20), (2.21), and (2.22) above refers to the total, histor-
ically accumulated capital stock as calculated by (2.25), then the evolution
of T in these expressions can be seen as representing disembodied technolog-
ical change. All vintages of the capital equipment benefit from a rise in the
technology level Tt. No new investment is needed to benefit.
Based on data for the U.S. 1950-1990, and taking quality improvements

into account, Greenwood et al. (1997) estimate that embodied technological
progress explains about 60% of the growth in output per man hour. So,
empirically, embodied technological progress seems to play a dominant role.
As this tends not to be fully incorporated in national income accounting at
fixed prices, there is a need to adjust the investment levels in (2.25) to better
take estimated quality improvements into account. Otherwise the resulting
K will not indicate the capital stock measured in effi ciency units.

2.3 The concepts of representative firm and
aggregate production function*

Many macroeconomic models make use of the simplifying notion of a rep-
resentative firm. By this is meant a fictional firm whose production “rep-
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resents” aggregate production (value added) in a sector or in society as a
whole.
Suppose there are n firms in the sector considered or in society as a

whole. Let F i be the production function for firm i so that Yi = F i(Ki, Li),
where Yi, Ki, and Li are output, capital input, and labor input, respectively,
i = 1, 2, . . . , n. Further, let Y = Σn

i=1Yi, K = Σn
i=1Ki, and L = Σn

i=1Li.
Ignoring technological change, suppose the aggregate variables are related
through some function, F ∗, such that we can write

Y = F ∗(K,L),

and such that the choices of a single firm facing this production function
coincide with the aggregate outcomes, Σn

i=1Yi, Σn
i=1Ki, and Σn

i=1Li, in the
original economy. Then F ∗(K,L) is called the aggregate production function
or the production function of the representative firm. It is as if aggregate
production is the result of the behavior of such a single firm.
A simple example where the aggregate production function is well-defined

is the following. Suppose that all firms have the same production function
so that Yi = F (Ki, Li), i = 1, 2, . . . , n. If in addition F has CRS, we have

Yi = F (Ki, Li) = LiF (ki, 1) ≡ Lif(ki),

where ki ≡ Ki/Li. Hence, facing given factor prices, cost-minimizing firms
will choose the same capital intensity ki = k for all i. From Ki = kLi then
follows

∑
iKi = k

∑
i Li so that k = K/L. Thence,

Y ≡
∑

Yi =
∑

Lif(ki) = f(k)
∑

Li = f(k)L = F (k, 1)L = F (K,L).

In this (trivial) case the aggregate production function is well-defined and
turns out to be exactly the same as the identical CRS production functions
of the individual firms. Moreover, given CRS and ki = k for all i, we have
∂Yi/∂Ki = f ′(ki) = f ′(k) = FK(K,L) for all i. So each firm’s marginal
productivity of capital is the same as the marginal productivity of capital on
the basis of the aggregate production function.
Allowing for the existence of different production functions at firm level,

we may define the aggregate production function as

F (K,L) = max
(K1,L1,...,Kn,Ln)≥0

F 1(K1, L1) + · · ·+ F n(Kn, Ln)

s.t.
∑
i

Ki ≤ K,
∑
i

Li ≤ L.

Allowing also for existence of different output goods, different capital
goods, and different types of labor makes the issue more intricate, of course.
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Yet, if firms are price taking profit maximizers and there are nonincreasing
returns to scale, we at least know that the aggregate outcome is as if, for
given prices, the firms jointly maximize aggregate profit on the basis of their
combined production technology (Mas-Colell et al., 1955). The problem is,
however, that the conditions needed for this to imply existence of an ag-
gregate production function which is well-behaved (in the sense of inheriting
simple qualitative properties from its constituent parts) are restrictive.
Nevertheless macroeconomics often treats aggregate output as a single ho-

mogeneous good and capital and labor as being two single and homogeneous
inputs. There was in the 1960s a heated debate about the problems involved
in this, with particular emphasis on the aggregation of different kinds of
equipment into one variable, the capital stock “K”. The debate is known
as the “Cambridge controversy”because the dispute was between a group of
economists from Cambridge University, UK, and a group from Massachusetts
Institute of Technology (MIT), which is located in Cambridge, USA. The for-
mer group questioned the theoretical robustness of several of the neoclassical
tenets, including the proposition that rising aggregate capital intensity tends
to be associated with a falling rate of interest. Starting at the disaggregate
level, an association of this sort is not a logical necessity because, with differ-
ent production functions across the industries, the relative prices of produced
inputs tend to change, when the interest rate changes. While acknowledging
the possibility of “paradoxical” relationships, the latter group maintained
that in a macroeconomic context they are likely to cause devastating prob-
lems only under exceptional circumstances. In the end this is a matter of
empirical assessment.16

To avoid complexity and because, for many important issues in growth
theory, there is today no well-tried alternative, we shall in this course most
of the time use aggregate constructs like “Y ”, “K”, and “L” as simplify-
ing devices, hopefully acceptable in a first approximation. There are cases,
however, where some disaggregation is pertinent. When for example the role
of imperfect competition is in focus, we shall be ready to disaggregate the
production side of the economy into several product lines, each producing its
own differentiated product. We shall also touch upon a type of growth models
where a key ingredient is the phenomenon of “creative destruction”meaning
that an incumbent technological leader is competed out by an entrant with
a qualitatively new technology.
Like the representative firm, the representative household and the aggre-

16In his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What
the ‘paradoxical’ comparative statics [of disaggregate capital theory] has taught us is
simply that modelling the world as having a single capital good is not a priori justified.
So be it.”
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gate consumption function are simplifying notions that should be applied
only when they do not get in the way of the issue to be studied. The im-
portance of budget constraints may make it even more diffi cult to aggregate
over households than over firms. Yet, if (and that is a big if) all households
have the same, constant marginal propensity to consume out of income, ag-
gregation is straightforward and the representative household is a meaningful
concept. On the other hand, if we aim at understanding, say, the interaction
between lending and borrowing households, perhaps via financial intermedi-
aries, the representative household is not a useful starting point. Similarly,
if the theme is conflicts of interests between firm owners and employees, the
existence of different types of households should be taken into account.

2.4 Long-run vs. short-run production func-
tions*

Is the substitutability between capital and labor the same “ex ante”and “ex
post”? By ex ante is meant “when plant and machinery are to be decided
upon”and by ex post is meant “after the equipment is designed and con-
structed”. In the standard neoclassical competitive setup, of for instance
the Solow or the Ramsey model, there is a presumption that also after the
construction and installation of the equipment in the firm, the ratio of the
factor inputs can be fully adjusted to a change in the relative factor price. In
practice, however, when some machinery has been constructed and installed,
its functioning will often require a more or less fixed number of machine op-
erators. What can be varied is just the degree of utilization of the machinery.
That is, after construction and installation of the machinery, the choice op-
portunities are no longer described by the neoclassical production function
but by a Leontief production function,

Y = min(AuK̄,BL), A > 0, B > 0, (2.27)

where K̄ is the size of the installed machinery (a fixed factor in the short
run) measured in effi ciency units, u is its utilization rate (0 ≤ u ≤ 1), and A
and B are given technical coeffi cients measuring effi ciency.
So in the short run the choice variables are u and L. In fact, essentially

only u is a choice variable since effi cient production trivially requires L =
AuK̄/B. Under “full capacity utilization”we have u = 1 (each machine is
used 24 hours per day seven days per week). “Capacity”is given as AK̄ per
week. Producing effi ciently at capacity requiresL = AK̄/B and the marginal
product by increasing labor input is here nil. But if demand, Y d, is less than
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capacity, satisfying this demand effi ciently requires u = Y d/(AK̄) < 1 and L
= Y d/B. As long as u < 1, the marginal productivity of labor is a constant,
B.
The various effi cient input proportions that are possible ex ante may be

approximately described by a neoclassical CRS production function. Let this
function on intensive form be denoted y = f(k).When investment is decided
upon and undertaken, there is thus a choice between alternative effi cient pairs
of the technical coeffi cients A and B in (2.27). These pairs satisfy

f(k) = Ak = B. (2.28)

So, for an increasing sequence of k’s, k1, k2,. . . , ki,. . . , the corresponding
pairs are (Ai, Bi) = (f(ki)/ki, f(ki)), i = 1, 2,. . . .17 We say that ex ante,
depending on the relative factor prices as they are “now”and are expected
to evolve in the future, a suitable technique, (Ai, Bi), is chosen from an
opportunity set described by the given neoclassical production function. But
ex post, i.e., when the equipment corresponding to this technique is installed,
the production opportunities are described by a Leontief production function
with (A,B) = (Ai, Bi).
In the picturesque language of Phelps (1963), technology is in this case

putty-clay. Ex ante the technology involves capital which is “putty” in the
sense of being in a malleable state which can be transformed into a range of
various machinery requiring capital-labor ratios of different magnitude. But
once the machinery is constructed, it enters a “hardened”state and becomes
”clay”. Then factor substitution is no longer possible; the capital-labor ra-
tio at full capacity utilization is fixed at the level k = Bi/Ai, as in (2.27).
Following the terminology of Johansen (1972), we say that a putty-clay tech-
nology involves a “long-run production function”which is neoclassical and a
“short-run production function”which is Leontief.
In contrast, the standard neoclassical setup assumes the same range of

substitutability between capital and labor ex ante and ex post. Then the
technology is called putty-putty. This term may also be used if ex post there
is at least some substitutability although less than ex ante. At the opposite
pole of putty-putty we may consider a technology which is clay-clay. Here
neither ex ante nor ex post is factor substitution possible. Table 2.1 gives an
overview of the alternative cases.

Table 2.1. Technologies classified according to

17The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as con-
structed this way from the neoclassical production function in the left-hand panel of the
figure.
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factor substitutability ex ante and ex post
Ex post substitution

Ex ante substitution possible impossible
possible putty-putty putty-clay
impossible clay-clay

The putty-clay case is generally considered the realistic case. As time
proceeds, technological progress occurs. To take this into account, we may
replace (2.28) and (2.27) by f(kt, t) = Atkt = Bt and Yt = min(AtutK̄t, BtLt),
respectively. If a new pair of Leontief coeffi cients, (At2 , Bt2), effi ciency-
dominates its predecessor (by satisfying At2 ≥ At1 and Bt2 ≥ Bt1 with at
least one strict equality), it may pay the firm to invest in the new technol-
ogy at the same time as some old machinery is scrapped. Real wages tend
to rise along with technological progress and the scrapping occurs because
the revenue from using the old machinery in production no longer covers the
associated labor costs.
The clay property ex-post of many technologies is important for short-run

analysis. It implies that there may be non-decreasing marginal productivity
of labor up to a certain point. It also implies that in its investment decision
the firm will have to take expected future technologies and future factor prices
into account. For many issues in long-run analysis the clay property ex-post
may be less important, since over time adjustment takes place through new
investment.

2.5 The neoclassical theory of factor income
shares

To begin with, we ignore technological progress and write aggregate output
as Y = F (K,L), where F is neoclassical with CRS. From Euler’s theorem
follows that F (K,L) = F1K + F2L = f ′(k)K + (f(k) − kf ′(k))L, where
k ≡ K/L. In equilibrium under perfect competition we have

Y = r̂K + wL,

where r̂ = r + δ = f ′(k) ≡ r̂(k) is the cost per unit of capital input and w
= f(k)−kf ′(k) ≡ w(k) is the real wage, i.e., the cost per unit of labor input.
We have r̂′(k) = f ′′(k) < 0 and w′(k) = −kf ′′(k) > 0.
The labor income share is

wL

Y
=
f(k)− kf ′(k)

f(k)
≡ w(k)

f(k)
≡ SL(k) =

wL

r̂K + wL
=

w/r̂
k

1 + w/r̂
k

, (2.29)
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where the function SL(·) is the income share of labor function, w/r̂ is the
factor price ratio, and (w/r̂)/k = w/(r̂k) is the factor income ratio. As r̂′(k)
= f ′′(k) < 0 and w′(k) = −kf ′′(k) > 0, the factor price ratio, w/r̂, is an
increasing function of k.
Suppose that capital tends to grow faster than labor so that k rises over

time. Unless the production function is Cobb-Douglas, this will under perfect
competition affect the labor income share. But apriori it is not obvious in
what direction. By (2.29) we see that the labor income share moves in
the same direction as the factor income ratio, (w/r̂)/k. The latter goes up
(down) depending on whether the percentage rise in the factor price ratio
w/r̂ is greater (smaller) than the percentage rise in k. So, if we let E`xg(x)
denote the elasticity of a function g(x) w.r.t. x, we can only say that

SL′(k) R 0 for E`k
w

r̂
R 1, (2.30)

respectively. In words: if the production function is such that the ratio of
the marginal productivities of the two production factors is strongly (weakly)
sensitive to the capital-labor ratio, then the labor income share rises (falls)
along with a rise in K/L.
Usually, however, the inverse elasticity is considered, namely E`w/r̂k (=

1/E`k wr̂ ). This elasticity indicates how sensitive the cost minimizing capital-
labor ratio, k, is to a given factor price ratio w/r̂. Under perfect competition
E`w/r̂k coincides with what is known as the elasticity of factor substitution
(for a general definition, see below). The latter is often denoted σ. In the
CRS case, σ will be a function of only k so that we can write E`w/r̂k = σ(k).
By (2.30), we therefore have

SL′(k) R 0 for σ(k) Q 1,

respectively.
The size of the elasticity of factor substitution is a property of the pro-

duction function, hence of the technology. In special cases the elasticity of
factor substitution is a constant, i.e., independent of k. For instance, if F is
Cobb-Douglas, i.e., Y = KαL1−α, 0 < α < 1, we have σ(k) ≡ 1, as shown
in Section 2.7. In this case variation in k does not change the labor income
share under perfect competition. Empirically there is not agreement about
the “normal” size of the elasticity of factor substitution for industrialized
economies, but the bulk of studies seems to conclude with σ(k) < 1 (see
below).

Adding Harrod-neutral technical progress We now add Harrod-neutral
technical progress. We write aggregate output as Y = F (K,TL), where F
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is neoclassical with CRS, and T = Tt = T0(1 + g)t. Then the labor income
share is

wL

Y
=

w/T

Y/(TL)
≡ w̃

ỹ
.

The above formulas still hold if we replace k by k̃ ≡ K/(TL) and w by w̃
≡ w/T. We get

SL′(k̃) R 0 for σ(k̃) Q 1,

respectively. We see that if σ(k̃) < 1 in the relevant range for k̃, then market
forces tend to increase the income share of the factor that is becoming rela-
tively more scarce, which is effi ciency-adjusted labor, TL, if k̃ is increasing.
And if instead σ(k̃) > 1 in the relevant range for k̃, then market forces tend
to decrease the income share of the factor that is becoming relatively more
scarce.
While k empirically is clearly growing, k̃ ≡ k/T is not necessarily so

because also T is increasing. Indeed, according to Kaldor’s “stylized facts”,
apart from short- and medium-term fluctuations, k̃ − and therefore also r̂
and the labor income share − tend to be more or less constant over time.
This can happen whatever the sign of σ(k̃∗) − 1, where k̃∗ is the long-run
value of the effective capital-labor ratio k̃. Given CRS and the production
function f, the elasticity of substitution between capital and labor does not
depend on whether g = 0 or g > 0, but only on the function f itself and the
level of K/(TL).
As alluded to earlier, there are empiricists who reject Kaldor’s “facts”

as a general tendency. For instance Piketty (2014) essentially claims that
in the very long run the effective capital-labor ratio k̃ has an upward trend,
temporarily braked by two world wars and the Great Depression in the 1930s.
If so, the sign of σ(k̃)− 1 becomes decisive for in what direction wL/Y will
move. Piketty interprets the econometric literature as favoring σ(k̃) > 1,
which means there should be downward pressure on wL/Y . This particular
source behind a falling wL/Y can be questioned, however. Indeed, σ(k̃) > 1
contradicts the more general empirical view referred to above.18

Immigration

Here is another example that illustrates the importance of the size of σ(k̃).
Consider an economy with perfect competition and a given aggregate capital
stock K and technology level T (entering the production function in the
labor-augmenting way as above). Suppose that for some reason, immigration,

18According to Summers (2014), Piketty’s interpretation relies on conflating gross and
net returns to capital.
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say, aggregate labor supply, L, shifts up and full employment is maintained
by the needed real wage adjustment. Given the present model, in what
direction will aggregate labor income wL = w̃(k̃)TL then change? The effect
of the larger L is to some extent offset by a lower w brought about by the
lower effective capital-labor ratio. Indeed, in view of dw̃/dk̃ = −k̃f ′′(k̃) > 0,
we have k̃ ↓ implies w ↓ for fixed T. So we cannot apriori sign the change in
wL. The following relationship can be shown (Exercise ??), however:

∂(wL)

∂L
= (1− α(k̃)

σ(k̃)
)w R 0 for α(k̃) Q σ(k̃), (2.31)

respectively, where a(k̃) ≡ k̃f ′(k̃)/f(k̃) is the output elasticity w.r.t. capital
which under perfect competition equals the gross capital income share. It
follows that the larger L will not be fully offset by the lower w as long as the
elasticity of factor substitution, σ(k̃), exceeds the gross capital income share,
α(k̃). This condition seems confirmed by most of the empirical evidence (see
Section 2.7).
The next section describes the concept of the elasticity of factor substitu-

tion at a more general setting. The subsequent section introduces the special
case known as the CES production function.

2.6 The elasticity of factor substitution*

We shall here discuss the concept of elasticity of factor substitution at a
more general level. Fig. 2.4 depicts an isoquant, F (K,L) = Ȳ , for a given
neoclassical production function, F (K,L), which need not have CRS. Let
MRS denote the marginal rate of substitution of K for L, i.e., MRS =
FL(K,L)/FK(K,L).19 At a given point (K,L) on the isoquant curve, MRS
is given by the absolute value of the slope of the tangent to the isoquant at
that point. This tangent coincides with that isocost line which, given the
factor prices, has minimal intercept with the vertical axis while at the same
time touching the isoquant. In view of F (·) being neoclassical, the isoquants
are by definition strictly convex to the origin. Consequently, MRS is rising
along the curve when L decreases and thereby K increases. Conversely, we
can let MRS be the independent variable and consider the corresponding
point on the indifference curve, and thereby the ratio K/L, as a function of
MRS. If we let MRS rise along the given isoquant, the corresponding value
of the ratio K/L will also rise.

19When there is no risk of confusion as to what is up and what is down, we use MRS
as a shorthand for the more precise expression MRSKL.
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Figure 2.4: Substitution of capital for labor as the marginal rate of substitution
increases from MRS to MRS′.

The elasticity of substitution between capital and labor is defined as the
elasticity of the ratio K/L with respect to MRS when we move along a
given isoquant, evaluated at the point (K,L). Let this elasticity be denoted
σ̃(K,L). Thus,

σ̃(K,L) =
MRS

K/L

d(K/L)

dMRS |Y=Ȳ
=

d(K/L)
K/L

dMRS
MRS |Y=Ȳ

. (2.32)

Although the elasticity of factor substitution is a characteristic of the tech-
nology as such and is here defined without reference to markets and factor
prices, it helps the intuition to refer to factor prices. At a cost-minimizing
point, MRS equals the factor price ratio w/r̂. Thus, the elasticity of fac-
tor substitution will under cost minimization coincide with the percentage
increase in the ratio of the cost-minimizing factor ratio induced by a one
percentage increase in the inverse factor price ratio, holding the output level
unchanged.20 The elasticity of factor substitution is thus a positive number
and reflects how sensitive the capital-labor ratioK/L is under cost minimiza-
tion to an increase in the factor price ratio w/r̂ for a given output level. The
less curvature the isoquant has, the greater is the elasticity of factor substitu-
tion. In an analogue way, in consumer theory one considers the elasticity of
substitution between two consumption goods or between consumption today
and consumption tomorrow. In that context the role of the given isoquant

20This characterization is equivalent to interpreting the elasticity of substitution as the
percentage decrease in the factor ratio (when moving along a given isoquant) induced by
a one-percentage increase in the corresponding factor price ratio.
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is taken over by an indifference curve. That is also the case when we con-
sider the intertemporal elasticity of substitution in labor supply, cf. the next
chapter.
Calculating the elasticity of substitution between K and L at the point

(K,L), we get

σ̃(K,L) = − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
, (2.33)

where all the derivatives are evaluated at the point (K,L). When F (K,L)
has CRS, the formula (2.33) simplifies to

σ̃(K,L) =
FK(K,L)FL(K,L)

FKL(K,L)F (K,L)
= −f

′(k) (f(k)− f ′(k)k)

f ′′(k)kf(k)
≡ σ(k), (2.34)

where k ≡ K/L.21 We see that under CRS, the elasticity of substitution
depends only on the capital-labor ratio k, not on the output level. We will
now consider the case where the elasticity of substitution is independent also
of the capital-labor ratio.

2.7 The CES production function

It can be shown22 that if a neoclassical production function with CRS has a
constant elasticity of factor substitution different from one, it must be of the
form

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (2.35)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0. This function has been used intensively in empirical studies and is
called a CES production function (CES for Constant Elasticity of Substitu-
tion). For a given choice of measurement units, the parameter A reflects
effi ciency (or what is known as total factor productivity) and is thus called
the effi ciency parameter. The parameters α and β are called the distribu-
tion parameter and the substitution parameter, respectively. The restriction
β < 1 ensures that the isoquants are strictly convex to the origin. Note that
if β < 0, the right-hand side of (16.32) is not defined when either K or L
(or both) equal 0.We can circumvent this problem by extending the domain
of the CES function and assign the function value 0 to these points when
β < 0. Continuity is maintained in the extended domain (see Appendix E).

21The formulas (2.33) and (2.34) are derived in Appendix D of Chapter 4 of Groth,
Lecture Notes in Macroeconomics..
22See, e.g., Arrow et al. (1961).
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By taking partial derivatives in (16.32) and substituting back we get

∂Y

∂K
= αAβ

(
Y

K

)1−β

and
∂Y

∂L
= (1− α)Aβ

(
Y

L

)1−β

, (2.36)

where Y/K = A
[
α + (1− α)k−β

] 1
β and Y/L = A

[
αkβ + 1− α

] 1
β . The mar-

ginal rate of substitution of K for L therefore is

MRS =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β > 0.

Consequently,
dMRS

dk
=

1− α
α

(1− β)k−β,

where the inverse of the right-hand side is the value of dk/dMRS. Substitut-
ing these expressions into (16.34) gives

σ̃(K,L) =
1

1− β ≡ σ, (2.37)

confirming the constancy of the elasticity of substitution. Since β < 1, σ > 0
always. A higher substitution parameter, β, results in a higher elasticity of
factor substitution, σ. And σ ≶ 1 for β ≶ 0, respectively.
Since β = 0 is not allowed in (16.32), at first sight we cannot get σ = 1

from this formula. Yet, σ = 1 can be introduced as the limiting case of (16.32)
when β → 0, which turns out to be the Cobb-Douglas function. Indeed, one
can show23 that, for fixed K and L,

A
[
αKβ + (1− α)Lβ

] 1
β → AKαL1−α, for β → 0.

By a similar procedure as above we find that a Cobb-Douglas function always
has elasticity of substitution equal to 1; this is exactly the value taken by
σ in (16.35) when β = 0. In addition, the Cobb-Douglas function is the
only production function that has unit elasticity of substitution whatever
the capital-labor ratio.
Another interesting limiting case of the CES function appears when, for

fixed K and L, we let β → −∞ so that σ → 0. We get

A
[
αKβ + (1− α)Lβ

] 1
β → Amin(K,L), for β → −∞. (2.38)

23For proofs of this and the further claims below, see Appendix E of Chapter 4 of Groth,
Lecture Notes in Macroeconomics.
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So in this case the CES function approaches a Leontief production function,
the isoquants of which form a right angle, cf. Fig. 2.5. In the limit there is no
possibility of substitution between capital and labor. In accordance with this
the elasticity of substitution calculated from (16.35) approaches zero when β
goes to −∞.
Finally, let us consider the “opposite”transition. For fixed K and L we

let the substitution parameter rise towards 1 and get

A
[
αKβ + (1− α)Lβ

] 1
β → A [αK + (1− α)L] , for β → 1.

Here the elasticity of substitution calculated from (16.35) tends to ∞ and
the isoquants tend to straight lines with slope −(1 − α)/α. In the limit,
the production function thus becomes linear and capital and labor become
perfect substitutes.

0 1 2 3 4 5 6 7
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2
A

2
A

2
Aα

2
A(1−α)

L

K

Figure 2.5: Isoquants for the CES function for alternative values of σ (A = 1.5,
Ȳ = 2, and α = 0.42).

Fig. 2.5 depicts isoquants for alternative CES production functions and
their limiting cases. In the Cobb-Douglas case, σ = 1, the horizontal and
vertical asymptotes of the isoquant coincide with the coordinate axes. When
σ < 1, the horizontal and vertical asymptotes of the isoquant belong to the
interior of the positive quadrant. This implies that both capital and labor
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are essential inputs. When σ > 1, the isoquant terminates in points on
the coordinate axes. Then neither capital, nor labor are essential inputs.
Empirically there is not complete agreement about the “normal”size of the
elasticity of factor substitution for industrialized economies. The elasticity
also differs across the production sectors. A thorough econometric study
(Antràs, 2004) of U.S. data indicate the aggregate elasticity of substitution
to be in the interval (0.5, 1.0). The survey by Chirinko (2008) concludes with
the interval (0.4, 0.6). Starting from micro data, a recent study by Oberfield
and Raval (2014) finds that the elasticity of factor substitution for the US
manufacturing sector as a whole has been stable since 1970 at about 0.7.

The CES production function in intensive form

Dividing through by L on both sides of (16.32), we obtain the CES production
function in intensive form,

y ≡ Y

L
= A(αkβ + 1− α)

1
β , (2.39)

where k ≡ K/L. The marginal productivity of capital can be written

MPK =
dy

dk
= αA

[
α + (1− α)k−β

] 1−β
β = αAβ

(y
k

)1−β
,

which of course equals ∂Y/∂K in (16.33). We see that the CES function
violates either the lower or the upper Inada condition for MPK, depending
on the sign of β. Indeed, when β < 0 (i.e., σ < 1), then for k → 0 both y/k
and dy/dk approach an upper bound equal to Aα1/β < ∞, thus violating
the lower Inada condition for MPK (see the right-hand panel of Fig. 2.3).
It is also noteworthy that in this case, for k → ∞, y approaches an upper
bound equal to A(1 − α)1/β < ∞. These features reflect the low degree of
substitutability when β < 0.
When instead β > 0, there is a high degree of substitutability (σ > 1).

Then, for k →∞ both y/k and dy/dk → Aα1/β > 0, thus violating the upper
Inada condition forMPK (see right panel of Fig. 2.6). It is also noteworthy
that for k → 0, y approaches a positive lower bound equal to A(1−α)1/β > 0.
Thus, in this case capital is not essential. At the same time dy/dk →∞ for
k → 0 (so the lower Inada condition for the marginal productivity of capital
holds). Details are in Appendix E.
The marginal productivity of labor is

MPL =
∂Y

∂L
= (1− α)Aβy1−β = (1− α)A(αkβ + 1− α)(1−β)/β ≡ w(k),
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from (16.33).
Since (16.32) is symmetric inK and L, we get a series of symmetric results

by considering output per unit of capital as x≡ Y/K = A
[
α + (1− α)(L/K)β

]1/β
.

In total, therefore, when there is low substitutability (β < 0), for fixed input
of either of the production factors, there is an upper bound for how much
an unlimited input of the other production factor can increase output. And
when there is high substitutability (β > 0), there is no such bound and an
unlimited input of either production factor take output to infinity.
The Cobb-Douglas case, i.e., the limiting case for β → 0, constitutes in

several respects an intermediate case in that all four Inada conditions are
satisfied and we have y → 0 for k → 0, and y →∞ for k →∞.
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a) The case of σ < 1.
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Figure 2.6: The CES production function in intensive form, σ = 1/(1− β), β < 1.

Generalizations

The CES production function considered above has CRS. By adding an elas-
ticity of scale parameter, γ, we get the generalized form

Y = A
[
αKβ + (1− α)Lβ

] γ
β , γ > 0. (2.40)

In this form the CES function is homogeneous of degree γ. For 0 < γ < 1,
there are DRS, for γ = 1 CRS, and for γ > 1 IRS. If γ 6= 1, it may be
convenient to consider Q ≡ Y 1/γ = A1/γ

[
αKβ + (1− α)Lβ

]1/β
and q ≡ Q/L

= A1/γ(αkβ + 1− α)1/β.
The elasticity of substitution between K and L is σ = 1/(1−β) whatever

the value of γ. So including the limiting cases as well as non-constant returns
to scale in the “family”of production functions with constant elasticity of
substitution, we have the simple classification displayed in Table 2.2.
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Table 2.2 The family of production functions
with constant elasticity of substitution.

σ = 0 0 < σ < 1 σ = 1 σ > 1
Leontief CES Cobb-Douglas CES

Note that only for γ ≤ 1 is (16.38) a neoclassical production function.
This is because, when γ > 1, the conditions FKK < 0 and FNN < 0 do not
hold everywhere.
We may generalize further by assuming there are n inputs, in the amounts

X1, X2, ..., Xn. Then the CES production function takes the form

Y = A
[
α1X1

β + α2X2
β + ...αnXn

β
] γ
β , αi > 0 for all i,

∑
i

αi = 1, γ > 0.

(2.41)
In analogy with (16.34), for an n-factor production function the partial elas-
ticity of substitution between factor i and factor j is defined as

σij =
MRSij
Xi/Xj

d(Xi/Xj)

dMRSij |Y=Ȳ

,

where it is understood that not only the output level but also all Xk, k 6= i, j,
are kept constant. Note that σji = σij. In the CES case considered in (16.39),
all the partial elasticities of substitution take the same value, 1/(1− β).

2.8 Literature notes

As to the question of the empirical validity of the constant returns to scale
assumption, Malinvaud (1998) offers an account of the econometric diffi cul-
ties associated with estimating production functions. Studies by Basu (1996)
and Basu and Fernald (1997) suggest returns to scale are about constant or
decreasing. Studies by Hall (1990), Caballero and Lyons (1992), Harris and
Lau (1992), Antweiler and Treffl er (2002), and Harrison (2003) suggest there
are quantitatively significant increasing returns, either internal or external.
On this background it is not surprising that the case of IRS (at least at in-
dustry level), together with market forms different from perfect competition,
has in recent years received more attention in macroeconomics and in the
theory of economic growth.
Macroeconomists’use of the value-laden term “technological progress”in

connection with technological change may seem suspect. But the term should
be interpreted as merely a label for certain types of shifts of isoquants in an
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abstract universe. At a more concrete and disaggregate level analysts of
course make use of more refined notions about technological change, recog-
nizing for example not only benefits of new technologies, but also the risks,
including risk of fundamental mistakes (think of the introduction and later
abandonment of asbestos in the construction industry).
Informative history of technology is contained in Ruttan (2001) and Smil

(2003). For more general economic history, see, e.g., Clark (2008) and Pers-
son (2010). Forecasts of technological development in the next decades are
contained in, for instance, Brynjolfsson and McAfee (2014).
Embodied technological progress, sometimes called investment-specific

technological progress, is explored in, for instance, Solow (1960), Greenwood
et al. (1997), and Groth and Wendner (2014). Hulten (2001) surveys the
literature and issues related to measurement of the direct contribution of
capital accumulation and technological change, respectively, to productivity
growth.
Conditions ensuring that a representative household is admitted and the

concept of Gorman preferences are discussed in Acemoglu (2009). Another
useful source, also concerning the conditions for the representative firm to be
a meaningful notion, is Mas-Colell et al. (1995). For general discussions of the
limitations of representative agent approaches, see Kirman (1992) and Galle-
gati and Kirman (1999). Reviews of the “Cambridge Controversy”are con-
tained in Mas-Colell (1989) and Felipe and Fisher (2003). The last-mentioned
authors find the conditions required for the well-behavedness of these con-
structs so stringent that it is diffi cult to believe that actual economies are
in any sense close to satisfy them. For a less distrustful view, see for in-
stance Ferguson (1969), Johansen (1972), Malinvaud (1998), Jorgenson et al.
(2005), and Jones (2005).
It is often assumed that capital depreciation can be described as geomet-

ric (in continuous time exponential) evaporation of the capital stock. This
formula is popular in macroeconomics, more so because of its simplicity than
its realism. An introduction to more general approaches to depreciation is
contained in, e.g., Nickell (1978).
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Chapter 3

Continuous time analysis

Because dynamic analysis is generally easier in continuous time, growth mod-

els are often stated in continuous time. This chapter gives an account of the

conceptual aspects of continuous time analysis. Appendix A considers sim-

ple growth arithmetic in continuous time. And Appendix B provides solution

formulas for linear first-order differential equations.

3.1 The transition from discrete time to con-

tinuous time

We start from a discrete time framework. The run of time is divided into

successive periods of equal length, taken as the time-unit. Let us here index

the periods by  = 0 1 2 . Thus financial wealth accumulates according to

+1 −  =  0 given,

where  is (net) saving in period 

3.1.1 Multiple compounding per year

With time flowing continuously, we let () refer to financial wealth at time

 Similarly, (+∆) refers to financial wealth at time +∆ To begin with,

let ∆ equal one time unit. Then (∆) equals () and is of the same value

as  Consider the forward first difference in  ∆() ≡ (+∆)− () It

makes sense to consider this change in  in relation to the length of the time

interval involved, that is, to consider the ratio ∆()∆ As long as ∆ = 1

with  = ∆ we have ∆()∆ = (+1 − )1 = +1 −  Now, keep

the time unit unchanged, but let the length of the time interval [ +∆)

59



60 CHAPTER 3. CONTINUOUS TIME ANALYSIS

approach zero, i.e., let ∆ → 0. When  is a differentiable function of , we

have

lim
∆→0

∆()

∆
= lim

∆→0
(+∆)− ()

∆
=

()




where () often written ̇() is known as the derivative of (·) at the
point  Wealth accumulation in continuous time can then be written

̇() = () (0) = 0 given, (3.1)

where () is the saving flow at time . For ∆ “small” we have the approx-

imation ∆() ≈ ̇()∆ = ()∆ In particular, for ∆ = 1 we have ∆()

= (+ 1)− () ≈ ()

As time unit choose one year. Going back to discrete time, if wealth

grows at a constant rate   0 per year, then after  periods of length one

year, with annual compounding, we have

 = 0(1 + )  = 0 1 2  . (3.2)

If instead compounding (adding saving to the principal) occurs  times a

year, then after  periods of length 1 year and a growth rate of  per

such period,

 = 0(1 +



) (3.3)

With  still denoting time measured in years passed since date 0, we have

 =  periods. Substituting into (3.3) gives

() =  = 0(1 +



) = 0

∙
(1 +

1


)
¸

 where  ≡ 




We keep  and  fixed, but let  → ∞ Thus  → ∞ Then, in the limit

there is continuous compounding and it can be shown that

() = 0
 (3.4)

where  is a mathematical constant called the base of the natural logarithm

and defined as  ≡ lim→∞(1 + 1) ' 2.7182818285....
The formula (3.4) is the continuous-time analogue to the discrete time

formula (3.2) with annual compounding. A geometric growth factor is re-

placed by an exponential growth factor,  and this growth factor is valid

for any  in the time interval (− 1  2) for which the growth rate of  equals
the constant  (1 and  2 being some positive real numbers).

We can also view the formulas (3.2) and (3.4) as the solutions to a differ-

ence equation and a differential equation, respectively. Thus, (3.2) is the so-

lution to the linear difference equation +1 = (1+), given the initial value
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0 And (3.4) is the solution to the linear differential equation ̇() = ()

given the initial condition (0) = 0 Now consider a time-dependent growth

rate, () The corresponding differential equation is ̇() = ()() and it

has the solution

() = (0)
 
0
()  (3.5)

where the exponent,
R 
0
() , is the definite integral of the function ()

from 0 to  The result (3.5) is called the basic accumulation formula in

continuous time and the factor 
 
0
() is called the growth factor or the

accumulation factor.

3.1.2 Compound interest and discounting

Let () denote the short-term real interest rate in continuous time at time .

To clarify what is meant by this, consider a deposit of  () euro on a drawing

account in a bank at time . If the general price level in the economy at time

 is  () euro, the real value of the deposit is () =  () () at time 

By definition the real rate of return on the deposit in continuous time (with

continuous compounding) at time  is the (proportionate) instantaneous rate

at which the real value of the deposit expands per time unit when there is

no withdrawal from the account. Thus, if the instantaneous nominal interest

rate is () we have ̇ () () = () and so, by the fraction rule in continuous

time (cf. Appendix A),

() =
̇()

()
=

̇ ()

 ()
− ̇ ()

 ()
= ()− () (3.6)

where () ≡ ̇ () () is the instantaneous inflation rate. In contrast to the

corresponding formula in discrete time, this formula is exact. Sometimes ()

and () are referred to as the nominal and real interest intensity, respectively,

or the nominal and real force of interest.

Calculating the terminal value of the deposit at time 1  0 given its

value at time 0 and assuming no withdrawal in the time interval [0 1], the

accumulation formula (3.5) immediately yields

(1) = (0)
 1
0

()

When calculating present values in continuous time analysis, we use com-

pound discounting. We reverse the accumulation formula and go from the

compounded or terminal value to the present value (0). Similarly, given a

consumption plan, (())1=0, the present value of this plan as seen from time
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0 is

 =

Z 1

0

() − (3.7)

presupposing a constant interest rate. Instead of the geometric discount

factor, 1(1 + ) from discrete time analysis, we have here an exponential

discount factor, 1() = − and instead of a sum, an integral. When the
interest rate varies over time, (3.7) is replaced by

 =

Z 1

0

() 
−  

0
()



In (3.7) () is discounted by − ≈ (1 + )− for  “small”. This might
not seem analogue to the discrete-time discounting in (??) where it is −1
that is discounted by (1 + )− assuming a constant interest rate. When
taking into account the timing convention that payment for −1 in period
 − 1 occurs at the end of the period (= time ) there is no discrepancy,

however, since the continuous-time analogue to this payment is ().

3.2 The allowed range for parameter values

The allowed range for parameters may change when we go from discrete time

to continuous time with continuous compounding. For example, the usual

equation for aggregate capital accumulation in continuous time is

̇() = ()− () (0) = 0 given, (3.8)

where () is the capital stock, () is the gross investment at time  and

 ≥ 0 is the (physical) capital depreciation rate. Unlike in discrete time, here
  1 is conceptually allowed. Indeed, suppose for simplicity that () = 0

for all  ≥ 0; then (3.8) gives () = 0
−. This formula is meaningful for

any  ≥ 0 Usually, the time unit used in continuous time macro models is
one year (or, in business cycle theory, rather a quarter of a year) and then a

realistic value of  is of course  1 (say, between 0.05 and 0.10). However, if

the time unit applied to the model is large (think of a Diamond-style OLG

model), say 30 years, then   1 may fit better, empirically, if the model

is converted into continuous time with the same time unit. Suppose, for

example, that physical capital has a half-life of 10 years. With 30 years as

our time unit, inserting into the formula 12 = −3 gives  = (ln 2) · 3 ' 2
In many simple macromodels, where the level of aggregation is high, the

relative price of a unit of physical capital in terms of the consumption good

is 1 and thus constant. More generally, if we let the relative price of the
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capital good in terms of the consumption good at time  be () and allow

̇() 6= 0 then we have to distinguish between the physical depreciation

of capital,  and the economic depreciation, that is, the loss in economic

value of a machine per time unit. The economic depreciation will be () =

() − ̇() namely the economic value of the physical wear and tear (and

technological obsolescence, say) minus the capital gain (positive or negative)

on the machine.

Other variables and parameters that by definition are bounded from below

in discrete time analysis, but not so in continuous time analysis, include rates

of return and discount rates in general.

3.3 Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make

a clear distinction between stocks (say wealth) and flows (say consumption

or saving). Recall, a stock variable is a variable measured as a quantity at a

given point in time. The variables () and () considered above are stock

variables. A flow variable is a variable measured as quantity per time unit

at a given point in time. The variables () ̇() and () are flow variables.

One can not add a stock and a flow, because they have different de-

nominations. What is meant by this? The elementary measurement units

in economics are quantity units (so many machines of a certain kind or so

many liters of oil or so many units of payment, for instance) and time units

(months, quarters, years). On the basis of these elementary units we can form

composite measurement units. Thus, the capital stock,  has the denomi-

nation “quantity of machines”, whereas investment,  has the denomination

“quantity of machines per time unit” or, shorter, “quantity/time”. A growth

rate or interest rate has the denomination “(quantity/time)/quantity” =

“time−1”. If we change our time unit, say from quarters to years, the value

of a flow variable as well as a growth rate is changed, in this case quadrupled

(presupposing annual compounding).

In continuous time analysis expressions like()+() or()+̇() are

thus illegitimate. But one can write (+∆) ≈ ()+(()−())∆ or

̇()∆ ≈ (()− ())∆ In the same way, suppose a bath tub at time 

contains 50 liters of water and that the tap pours 1
2
liter per second into the

tub for some time. Then a sum like 50  + 1
2
(/sec) does not make sense. But

the amount of water in the tub after one minute is meaningful. This amount

would be 50  + 1
2
· 60 ((/sec)×sec) = 80 . In analogy, economic flow

variables in continuous time should be seen as intensities defined for every

 in the time interval considered, say the time interval [0,  ) or perhaps

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



64 CHAPTER 3. CONTINUOUS TIME ANALYSIS
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Figure 3.1: With ∆ “small” the integral of () from 0 to 0+∆ is ≈ the hatched
area.

[0, ∞). For example, when we say that () is “investment” at time ,

this is really a short-hand for “investment intensity” at time . The actual

investment in a time interval [0 0 +∆)  i.e., the invested amount during

this time interval, is the integral,
R 0+∆

0
() ≈ (0)∆ Similarly, the flow

of individual saving, () should be interpreted as the saving intensity at

time  The actual saving in a time interval [0 0 +∆)  i.e., the saved (or

accumulated) amount during this time interval, is the integral,
R 0+∆

0
()

If ∆ is “small”, this integral is approximately equal to the product (0) ·∆,

cf. the hatched area in Figure 3.1.

The notation commonly used in discrete time analysis blurs the distinc-

tion between stocks and flows. Expressions like +1 = + without further

comment, are usual. Seemingly, here a stock, wealth, and a flow, saving, are

added. In fact, however, it is wealth at the beginning of period  and the

saved amount during period  that are added: +1 =  +  ·∆. The tacit

condition is that the period length, ∆ is the time unit, so that ∆ = 1.

But suppose that, for example in a business cycle model, the period length

is one quarter, but the time unit is one year. Then saving in quarter  is 
= (+1 − ) · 4 per year.
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3.4 The choice between discrete and contin-

uous time formulation

In empirical economics, data typically come in discrete time form and data

for flow variables typically refer to periods of constant length. One could

argue that this discrete form of the data speaks for discrete time rather than

continuous time modelling. And the fact that economic actors often think

and plan in period terms, may seem a good reason for putting at least mi-

croeconomic analysis in period terms. Nonetheless real time is continuous.

And, as for instance Allen (1967) argued, it can hardly be said that the

mass of economic actors think and plan with one and the same period. In

macroeconomics we consider the sum of the actions. In this perspective the

continuous time approach has the advantage of allowing variation within the

usually artificial periods in which the data are chopped up. And centralized

asset markets equilibrate very fast and respond immediately to new infor-

mation. For such markets a formulation in continuous time seems a better

approximation.

There is also a risk that a discrete time model may generate artificial

oscillations over time. Suppose the “true” model of some mechanism is given

by the differential equation

̇ =    −1 (3.9)

The solution is () = (0) which converges in a monotonic way toward 0

for →∞ However, the analyst takes a discrete time approach and sets up

the seemingly “corresponding” discrete time model

+1 −  = 

This yields the difference equation +1 = (1 + ), where 1 +   0 The

solution is  = (1 + )0  = 0 1 2     As (1 + ) is positive when  is

even and negative when  is odd, oscillations arise (together with divergence

if   −2) in spite of the “true” model generating monotonous convergence
towards the steady state ∗ = 0.
It should be added, however, that this potential problem can always be

avoided within discrete time models by choosing a sufficiently short period

length. Indeed, the solution to a differential equation can always be ob-

tained as the limit of the solution to a corresponding difference equation for

the period length approaching zero. In the case of (3.9) the approximating

difference equation is +1 = (1 + ∆) where ∆ is the period length,

 = ∆, and  = (∆) By choosing ∆ small enough, the solution comes
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arbitrarily close to the solution of (3.9). It is generally more difficult to go

in the opposite direction and find a differential equation that approximates

a given difference equation. But the problem is solved as soon as a differ-

ential equation has been found that has the initial difference equation as an

approximating difference equation.

From the point of view of the economic contents, the choice between

discrete time and continuous time may be a matter of taste. Yet, everything

else equal, the clearer distinction between stocks and flows in continuous

time than in discrete time speaks for the former. From the point of view

of mathematical convenience, the continuous time formulation, which has

worked so well in the natural sciences, is preferable. At least this is so in

the absence of uncertainty. For problems where uncertainty is important,

discrete time formulations are easier to work with unless one is familiar with

stochastic calculus.

3.5 Appendix A: Growth arithmetic in con-

tinuous time

Let the variables   and  be differentiable functions of time  Suppose

() () and () are positive for all  Then:

PRODUCT RULE () = ()()⇒ ̇()

()
=

̇()

()
+

̇()

()


Proof. Taking logs on both sides of the equation () = ()() gives ln ()

= ln() + ln (). Differentiation w.r.t. , using the chain rule, gives the

conclusion. ¤

The procedure applied in this proof is called logarithmic differentiation

w.r.t. 

FRACTION RULE () =
()

()
⇒ ̇()

()
=

̇()

()
− ̇()

()


The proof is similar.

POWER FUNCTION RULE () = () ⇒ ̇()

()
= 

̇()

()


The proof is similar.

In continuous time these simple formulas are exactly true. In discrete time

the analogue formulas are only approximately true and the approximation

can be quite bad unless the growth rates of  and  are small.
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3.6 Appendix B: Solution formulas for linear

differential equations of first order

For a general differential equation of first order, ̇() = (() ) with

(0) = 0 and where  is a continuous function, we have, at least for 

in an interval (−+) for some   0

() = 0 +

Z 

0

(() ) (*)

To get a confirmation, calculate ̇() from (*).

For the special case of a linear differential equation of first order, ̇() +

()() = () we can specify the solution. Three sub-cases of rising com-

plexity are:

1. ̇() + () =  with  6= 0 and initial condition (0) = 0 Solution:

() = (0 − ∗)−(−0) + ∗ where ∗ =





If  = 0 we get, directly from (*), the solution () = 0 + 1

2. ̇() + () = () with initial condition (0) = 0  Solution:

() = 0
−(−0) + −(−0)

Z 

0

()(−0)

Special case: () =  with  6= − and initial condition (0) = 0 

Solution:

() = 0
−(−0)+−(−0)

Z 

0

(+)(−0) = (0−


+ 
)−(−0)+



+ 
(−0)

3. ̇() + ()() = () with initial condition (0) = 0  Solution:

() = 0
−  

0
()

+ 
−  

0
()

Z 

0

()
 
0
()



1Some non-linear differential equations can be transformed into this simple case. For

simplicity let 0 = 0 Consider the equation ̇() = ()  0  0 given,  6= 0  6= 1

(a Bernoulli equation). To find the solution for () let () ≡ ()1− Then, ̇()
= (1 − )()− ̇() = (1 − )()−() = (1 − ) The solution for this is ()

= 0 + (1 − ) where 0 = 
1−
0  Thereby the solution for () is () = ()1(1−)

=
³

1−
0 + (1− )

´1(1−)
 which is defined for   −1−0 ((1− )
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Special case: () = 0 Solution:

() = 0
−  

0
()



Even more special case: () = 0 and () =  a constant. Solution:

() = 0
−(−0)

Remark 1 For 0 = 0 most of the formulas will look simpler.

Remark 2 To check whether a suggested solution is a solution, calculate

the time derivative of the suggested solution and add an arbitrary constant.

By appropriate adjustment of the constant, the final result should be a repli-

cation of the original differential equation together with its initial condition.
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Chapter 4

Skill-biased technical change.

Balanced growth theorems

This chapter is both an alternative and a supplement to the pages 60-64

in Acemoglu, where the concepts of neutral technical change and balanced

growth, including Uzawa’s theorem, are discussed.

Since “neutral” technical change should be seen in relation to “biased”

technical change, Section 1 below introduces the concept of “biased” tech-

nical change. Also concerning biased technical change do three different

definitions, Hicks’, Harrod’s, and what the literature has dubbed “Solow’s”.

Below we concentrate on Hick’s definition − with an application to how tech-
nical change affects the evolution of the skill premium. So the focus is on the

production factors skilled and unskilled labor rather than capital and labor.

While regarding capital and labor it is Harrod’s classifications that are most

used in macroeconomics, regarding skilled and unskilled labor it is Hicks’.

The remaining sections discuss the concept of balanced growth and present

three fundamental propositions about balanced growth. In view of the gen-

erality of the propositions, they have a broad field of application. Our propo-

sitions 1 and 2 are slight extensions of part 1 and 2, respectively, of what

Acemoglu calls Uzawa’s Theorem I (Acemoglu, 2009, p. 60). Our Proposi-

tion 3 essentially corresponds to what Acemoglu calls Uzawa’s Theorem II

(Acemoglu, 2009, p. 63).
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CHAPTER 4. SKILL-BIASED TECHNICAL CHANGE.

BALANCED GROWTH THEOREMS

4.1 The rising skill premium

4.1.1 Skill-biased technical change in the sense of Hicks:

An example

Let aggregate output be produced through a differentiable three-factor pro-

duction function ̃ :

 = ̃ (1 2 )

where is capital input, 1 is input of unskilled labor (also called blue-collar

labor below), and 2 is input of skilled labor. Suppose technological change

is such that the production function can be rewritten

̃ (1 2 ) =  ((1 2 )) (4.1)

where the “nested” function (1 2 ) represents input of a “human cap-

ital” aggregate. Let  be CRS-neoclassical w.r.t.  and  and let 

be CRS-neoclassical w.r.t. (1 2) Finally, let   0. So “technical

change” amounts to “technical progress”.

In equilibrium under perfect competition in the labor markets the relative

wage, often called the “skill premium”, will be

2

1
=

2

1
=

2

1
=

2(1 2 )

1(1 2 )
=

2(1 21 )

1(1 21 )
 (4.2)

where we have used Euler’s theorem (saying that if  is homogeneous of

degree one in its first two arguments, then the partial derivatives of  are

homogeneous of degree zero w.r.t. these arguments).

Time is continuous (nevertheless the time argument of a variable,  is in

this section written as a subscript ). Hicks’ definitions are now: If for all

21  0


³
2(121)

1(121)

´


2
1

constant
T 0 then technical change is⎧⎨⎩ skill-biased in the sense of Hicks,

skill-neutral in the sense of Hicks.

blue collar-biased in the sense of Hicks,

(4.3)

respectively.

In the US the skill premium (measured by the wage ratio for college

grads vis-a-vis high school grads) has had an upward trend since 1950 (see
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for instance Jones and Romer, 2010).1 If in the same period the relative

supply of skilled labor had been roughly constant, by (4.3) in combination

with (4.2), a possible explanation could be that technological change has

been skill-biased in the sense of Hicks. In reality, in the same period also the

relative supply of skilled labor has been rising (in fact even faster than the

skill premium). Since in spite of this the skill premium has risen, it suggests

that the extend of “skill-biasedness” has been even stronger.

Wemay alternatively put it this way. As the function is CRS-neoclassical

w.r.t. 1 and 2 we have 22  0 and 12  0 cf. Chapter 2. Hence, by

(4.2), a rising 21 without technical change would imply a declining skill

premium. That the opposite has happened must, within our simple model,

be due to (a) there has been technical change, and (b) technical change

has favoured skilled labor (which means that technical change has been skill-

biased in the sense of Hicks).

An additional aspect of the story is that skill-biasedness helps explain

the observed increase in the relative supply of skilled labor. If for a constant

relative supply of skilled labor, the skill premium is increasing, this increase

strengthens the incentive to go to college. Thereby the relative supply of

skilled labor (reflecting the fraction of skilled labor in the labor force) tends

to increase.

4.1.2 Capital-skill complementarity

An additional potential source of a rising skill premium is capital-skill com-

plementarity. Let the aggregate production function be

 = ̃ (1 2 ) =  (11 22) = (+11)
(22)

1− 0    1

where 1 and 2 are technical coefficients that may be rising over time.

In this production function capital and unskilled labor are perfectly substi-

tutable (the partial elasticity of factor substitution between them is +∞) On
the other hand there is direct complementarity between capital and skilled

labor, i.e., 2(2)  0

Under perfect competition the skill premium is

2

1
=

2

2
=
( +11)

(1− )(22)
−2

( +11)−11(22)1−
(4.4)

=
1− 



µ
 +11

22

¶
2

1


1On the other hand, over the years 1915 - 1950 the skill premium had a downward

trend (Jones and Romer, 2010).
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Here, if technical change is absent (1 and 2 constant), a rising capital

stock will, for fixed 1 and 2 raise the skill premium.

A more realistic scenario is, however, a situation with an approximately

constant real interest rate, cf. Kaldor’s stylized facts. We have, again by

perfect competition,




= ( +11)

−1(22)
1− = 

µ
 +11

22

¶−1
=  +  (4.5)

where  is the real interest rate at time  and  is the (constant) capital

depreciation rate. For  =  a constant, (4.5) gives

 +11

22
=

µ
 + 



¶− 1
1−
≡  (4.6)

a constant. In this case, (4.4) shows that capital-skill complementarity is

not sufficient for a rising skill premium. A rising skill premium requires that

technical change brings about a rising 21. So again an observed rising

skill premium, along with a more or less constant real interest rate, suggests

that technical change is skill-biased.

We may rewrite (4.6) as



22
= − 11

22


where the conjecture is that 11(22) → 0 for  → ∞ The analysis

suggests the following story. Skill-biased technical progress generates rising

productivity as well as a rising skill premium. The latter induces more and

more people to go to college. The rising level of education in the labor force

raises productivity further. This is a basis for further capital accumulation,

continuing to replace unskilled labor, and so on.

In particular since the early 1980s the skill premium has been sharply

increasing in the US (see Acemoglu, p. 498). This is also the period where

ICT technologies took off.

4.2 Balanced growth and constancy of key ra-

tios

The focus now shifts to homogeneous labor vis-a-vis capital.

We shall state general definitions of the concepts of “steady state” and

“balanced growth”, concepts that are related but not identical. With respect
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to “balanced growth” this implies a minor deviation from the way Acemoglu

briefly defines it informally on his page 57. The main purpose of the present

chapter is to lay bare the connections between these two concepts as well

as their relation to the hypothesis of Harrod-neutral technical progress and

Kaldor’s stylized facts.

4.2.1 The concepts of steady state and balanced growth

A basic equation in many one-sector growth models for a closed economy in

continuous time is

̇ =  −  =  −  −  ≡  −  (4.7)

where  is aggregate capital,  aggregate gross investment,  aggregate

output,  aggregate consumption,  aggregate gross saving (≡  −), and

 ≥ 0 is a constant physical capital depreciation rate.
Usually, in the theoretical literature on dynamic models, a steady state is

defined in the following way:

Definition 3 A steady state of a dynamic model is a stationary solution to

the fundamental differential equation(s) of the model.

Or briefly: a steady state is a stationary point of a dynamic process.

Let us take the Solow growth model as an example. Here gross saving

equals  where  is a constant, 0    1 Aggregate output is given by a

neoclassical production function,  with CRS and Harrod-neutral technical

progress:  =  () =  (̃ 1) ≡ (̃) where  is the labor

force,  is the level of technology, and ̃ ≡ () is the (effective) capital

intensity. Moreover,  0  0 and  00  0 Solow assumes () = (0) and

() = (0), where  and  ≥ 0 are the constant growth rates of the labor
force and technology, respectively. By log-differentiating ̃ w.r.t. 2 we end

up with the fundamental differential equation (“law of motion”) of the Solow

model: ·
̃ = (̃)− ( +  + )̃ (4.8)

Thus, in the Solow model, a (non-trivial) steady state is a ̃∗  0 such that,

if ̃ = ̃∗ then
·
̃ = 0 In passing we note that, by (4.8), such a ̃∗ must

satisfy the equation (̃∗)̃∗ = ( +  + ) and in view of  00  0 it is

unique and globally asymptotically stable if it exists. A sufficient condition

2Or by directly using the fraction rule, see Appendix A to Chapter 3.
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for its existence is that  +  +   0 and  satisfies the Inada conditions

lim̃→0 
0(̃) =∞ and lim̃→∞  0(̃) = 0

The most common definition in the literature of balanced growth for an

aggregate economy is the following:

Definition 4 A balanced growth path is a path ()∞=0 along which the
quantities  and  are positive and grow at constant rates (not necessarily

positive and not necessarily the same).

Acemoglu, however, defines (Acemoglu, 2009, p. 57) balanced growth

in the following way: “balanced growth refers to an allocation where output

grows at a constant rate and capital-output ratio, the interest rate, and factor

shares remain constant”. My problem with this definition is that it mixes

growth of aggregate quantities with income distribution aspects (interest rate

and factor income shares). And it is not made clear what is meant by the

output-capital ratio if the relative price of capital goods is changing over

time. So I stick to the definition above which is quite standard and is known

to function well in many different contexts.

Note that in the Solow model (as well as in many other models) we have

that if the economy is in a steady state, ̃ = ̃∗ then the economy features
balanced growth. Indeed, a steady state of the Solow model implies by

definition that ̃ ≡ () is constant. Hence  must grow at the same

constant rate as  namely  +  In addition,  = (̃∗) in a steady
state, showing that also  must grow at the constant rate  +  And so

must then  = (1 − ) So in a steady state of the Solow model the path

followed by ()∞=0 is a balanced growth path.
As we shall see in the next section, in the Solow model (and many other

models) the reverse also holds: if the economy features balanced growth,

then it is in a steady state. But this equivalence between steady state and

balanced growth does not hold in all models.

4.2.2 A general result about balanced growth

An interesting fact is that, given the dynamic resource constraint (4.7), we

have always that if there is balanced growth with positive gross saving, then

the ratios  and  are constant (by “always” is meant: independently

of how saving is determined and how the labor force and technology evolve).

And also the other way round: as long as gross saving is positive, constancy of

the  and  ratios is enough to ensure balanced growth. So balanced

growth and constancy of certain key ratios are essentially equivalent.

This is a very practical general observation. And since Acemoglu does not

state any balanced growth theorem at this general level, we shall do it here,
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together with a proof. Letting  denote the growth rate of the (positively

valued) variable  i.e.,  ≡ ̇ we claim:

Proposition 1 (the balanced growth equivalence theorem). Let ()∞=0
be a path along which ,  and  ≡  −  are positive for all  ≥ 0
Then, given the accumulation equation (4.7), the following holds:

(i) if there is balanced growth, then  =  =   and the ratios 

and  are constant;

(ii) if  and  are constant, then  and  grow at the same

constant rate, i.e., not only is there balanced growth, but the growth

rates of  and  are the same.

Proof Consider a path ()∞=0 along which ,  and  ≡  − 

are positive for all  ≥ 0 (i) Assume there is balanced growth. Then, by

definition,     and  are constant. Hence, by (4.7), we have that  =

 +  is constant, implying

 =   (*)

Further, since  =  + 

 =
̇


=

̇


+

̇


= 




+ 




= 




+ 




(by (*))

= 



+ 

 − 


=




( − ) +   (**)

Now, let us provisionally assume that  6=   Then (**) gives




=

 − 

 − 
 (***)

which is a constant since    and  are constant. Constancy of 

requires that  =   hence, by (***),  = 1 i.e.,  =  In view

of  =  + , however, this outcome contradicts the given condition that

  0 Hence, our provisional assumption and its implication, (***), are

falsified. Instead we have  = . By (**), this implies  =  =   but

now without the condition  = 1 being implied. It follows that  and

 are constant.

(ii) Suppose  and  are constant. Then  =  = , so that

 is a constant. We now show that this implies that  is constant.

Indeed, from (4.7),  = 1− so that also  is constant. It follows

that  =  =   so that  is constant. By (4.7),




=

̇ + 


=  + 
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so that  is constant. This, together with constancy of  and 

implies that also  and  are constant. ¤

Remark. It is part (i) of the proposition which requires the assumption   0

for all  ≥ 0 If  = 0 we would have  = − and  ≡  −  =  hence

 =  for all  ≥ 0 Then there would be balanced growth if the common
value of  and  had a constant growth rate. This growth rate, however,

could easily differ from that of Suppose  = 1−  =  and  = 

( and  constants). Then we would have  =  = −+(1−) which
could easily be strictly positive and thereby different from  = − ≤ 0 so
that (i) no longer holds. ¤

The nice feature is that this proposition holds for any model for which

the simple dynamic resource constraint (4.7) is valid. No assumptions about

for example CRS and other technology aspects or about market form are

involved. Note also that Proposition 1 suggests a link from balanced growth

to steady state. And such a link is present in for instance the Solow model.

Indeed, by (i) of Proposition 1, balanced growth implies constancy of 

which in the Solow model implies that (̃)̃ is constant. In turn, the latter

is only possible if ̃ is constant, that is, if the economy is in steady state.

There exist cases, however, where this equivalence does not hold (some

open economy models and some models with embodied technological change,

see Groth et al., 2010). Therefore, it is recommendable always to maintain

a distinction between the terms steady state and balanced growth.

4.3 The crucial role of Harrod-neutrality

Proposition 1 suggests that if one accepts Kaldor’s stylized facts (see Chapter

1) as a characterization of the past century’s growth experience, and if one

wants a model consistent with them, one should construct the model such

that it can generate balanced growth. For a model to be capable of generating

balanced growth, however, technological progress must be of the Harrod-

neutral type (i.e., be labor-augmenting), at least in a neighborhood of the

balanced growth path. For a fairly general context (but of course not as

general as that of Proposition 1), this was shown already by Uzawa (1961).

We now present a modernized version of Uzawa’s contribution.

Let the aggregate production function be

 () = ̃ (() () )   0 (4.9)

where  is a constant that depends on measurement units. The only tech-

nology assumption needed is that ̃ has CRS w.r.t. the first two arguments
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(̃ need not be neoclassical for example). As a representation of technical

progress, we assume ̃  0 for all  ≥ 0 (i.e., as time proceeds, un-

changed inputs result in more and more output). We also assume that the

labor force evolves according to

() = (0) (4.10)

where  is a constant. Further, non-consumed output is invested and so (4.7)

is the dynamic resource constraint of the economy.

Proposition 2 (Uzawa’s balanced growth theorem) Let  = ( () () ())∞=0,
where 0  ()   () for all  ≥ 0 be a path satisfying the capital accumu-
lation equation (4.7), given the CRS-production function (4.9) and the labor

force path in (4.10). Then:

(i) a necessary condition for this path to be a balanced growth path is that

along the path it holds that

 () = ̃ (() () ) = ̃ (() ()() 0) (4.11)

where () =  with  ≡  − ;

(ii) for any   0 such that there is a    +  +  with the property that

the production function ̃ in (4.9) allows an output-capital ratio equal

to  at  = 0 (i.e., ̃ (1 ̃−1 0) =  for some real number ̃  0), a

sufficient condition for ̃ to be compatible with a balanced growth path

with output-capital ratio , is that ̃ can be written as in (4.11) with

() = .

Proof (i)3 Suppose the path ( ()() ())∞=0 is a balanced growth path.
By definition,  and  are then constant, so that () = (0) and

 () =  (0)  We then have

 ()−  =  (0) = ̃ ((0) (0) 0) = ̃ (()− ()− 0) (*)

where we have used (4.9) with  = 0 In view of the precondition that ()

≡  ()−()  0 we know from (i) of Proposition 1, that  is constant

so that  =  . By CRS, (*) then implies

 () = ̃ (() − () − 0) = ̃ (() ( −)() 0)

3This part draws upon Schlicht (2006), who generalized a proof in Wan (1971, p. 59)

for the special case of a constant saving rate.
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We see that (4.11) holds for () =  with  ≡  − 

(ii) Suppose (4.11) holds with () =  Let  ≥ 0 be given such that
there is a    + +   0 with the property that

̃ (1 ̃−1 0) =  (**)

for some constant ̃  0 Our strategy is to prove the claim in (ii) by con-

struction of a path  = ( ()() ())∞=0 which satisfies it. We let  be

such that the saving-income ratio is a constant  ≡ (++) ∈ (0 1), i.e.,
 ()−() ≡ () =  () for all  ≥ 0 Inserting this, together with  () =
(̃())()(), where (̃()) ≡ ̃ (̃() 1 0) and ̃() ≡ ()(()())

into (4.7), rearranging gives the Solow equation (4.8). Hence ̃() is con-

stant if and only if ̃() satisfies the equation (̃())̃() = ( +  + )

≡  By (**) and the definition of  the required value of ̃() is ̃ which

is consequently the unique steady state for the constructed Solow equa-

tion. Letting (0) satisfy (0) = ̃(0) where  = (0) we thus have

̃(0) = (0)((0)(0)) = ̃ So that the initial value of ̃() equals the

steady state value. It follows that ̃() = ̃ for all  ≥ 0 and so  ()()
= (̃())̃() = (̃)̃ =  for all  ≥ 0 In addition, () = (1− ) ()

so that () () is constant along the path  As both  and  are

thus constant along the path  by (ii) of Proposition 1 follows that  is a

balanced growth path, as was to be proved. ¤

The form (4.11) indicates that along a balanced growth path, technical

progress must be purely “labor augmenting”, that is, Harrod-neutral. It is in

this case convenient to define a new CRS function, by  (() ()())

≡ ̃ (() ()() 0) Then (i) of the proposition implies that at least along

the balanced growth path, we can rewrite the production function this way:

 () = ̃ (() (0)() ) =  (() ()()) (4.12)

where (0) =  and () = (0) with  ≡  − 

It is important to recognize that the occurrence of Harrod-neutrality says

nothing about what the source of technological progress is. Harrod-neutrality

should not be interpreted as indicating that the technological progress em-

anates specifically from the labor input. Harrod-neutrality only means that

technical innovations predominantly are such that not only do labor and cap-

ital in combination become more productive, but this happens to manifest

itself at the aggregate level in the form (4.12).4

4For a CRS Cobb-Douglas production function with technological progress, Harrod-

neutrality is present whenever the output elasticity w.r.t capital (often denoted ) is

constant over time.
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What is the intuition behind the Uzawa result that for balanced growth to

be possible, technical progress must have the purely labor-augmenting form?

First, notice that there is an asymmetry between capital and labor. Capital

is an accumulated amount of non-consumed output. In contrast, in simple

macro models labor is a non-produced production factor which (at least in

the context of (4.10)) grows in an exogenous way. Second, because of CRS,

the original formulation, (4.9), of the production function implies that

1 = ̃ (
()

 ()

()

 ()
 ) (4.13)

Now, since capital is accumulated non-consumed output, it tends to inherit

the trend in output such that () () must be constant along a balanced

growth path (this is what Proposition 1 is about). Labor does not inherit the

trend in output; indeed, the ratio () () is free to adjust as time proceeds.

When there is technical progress (̃  0) along a balanced growth path,

this progress must manifest itself in the form of a changing () () in (13.5)

as  proceeds, precisely because () () must be constant along the path.

In the “normal” case where ̃  0 the needed change in () () is a

fall (i.e., a rise in  ()()) This is what (13.5) shows. Indeed, the fall in

() () must exactly offset the effect on ̃ of the rising  when there is a

fixed capital-output ratio.5 It follows that along the balanced growth path,

 ()() is an increasing implicit function of  If we denote this function

() we end up with (4.12) with specified properties (given by  and ).

The generality of Uzawa’s theorem is noteworthy. The theorem assumes

CRS, but does not presuppose that the technology is neoclassical, not to

speak of satisfying the Inada conditions.6 And the theorem holds for exoge-

nous as well as endogenous technological progress. It is also worth mentioning

that the proof of the sufficiency part of the theorem is constructive. It pro-

vides a method to construct a hypothetical balanced growth path (BGP from

now).7

A simple implication of the Uzawa theorem is the following. Interpreting

the () in (4.11) as the “level of technology”, we have:

COROLLARY Along a BGP with positive gross saving and the technology

level, () growing at the rate  ≥ 0 output grows at the rate  +  while

labor productivity,  ≡  and consumption per unit of labor,  ≡ 

grow at the rate 

5This way of presenting the intuition behind the Uzawa result draws upon Jones and

Scrimgeour (2008).
6Many accounts of the Uzawa theorem, including Jones and Scrimgeour (2008), presume

a neoclassical production function, but the theorem is much more general.
7Part (ii) of Proposition 2 is left out in Acemoglu’s book.
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Proof That  =  +  follows from (i) of Proposition 2. As to the growth

rate of labor productivity we have

 =
 (0) 

(0)
= (0)( −) = (0)

Finally, by Proposition 1, along a BGP with   0  ≡  must grow at

the same rate as  ¤
We shall now consider the implication of Harrod-neutrality for the income

shares of capital and labor when the technology is neoclassical and markets

are perfectly competitive.

4.4 Harrod-neutrality and the functional in-

come distribution

There is one facet of Kaldor’s stylized facts we have so far not related to

Harrod-neutral technical progress, namely the long-run “approximate” con-

stancy of both the income share of labor,  and the rate of return to

capital. At least with neoclassical technology, profit maximizing firms, and

perfect competition in the output and factor markets, these properties are

inherent in the combination of constant returns to scale, balanced growth,

and the assumption that the relative price of capital goods (relative to con-

sumption goods) is constant over time. The latter condition holds in models

where the capital good is nothing but non-consumed output, cf. (4.7).8

To see this, we start out from a neoclassical CRS production function

with Harrod-neutral technological progress,

 () =  (() ()()) (4.14)

With () denoting the real wage at time  in equilibrium under perfect

competition the labor income share will be

()()

 ()
=

 ()

()
()

 ()
=

2(() ()())()()

 ()
 (4.15)

In this simple model, without natural resources, (gross) capital income equals

non-labor income,  () − ()() Hence, if () denotes the (net) rate of

return to capital at time , then

() =
 ()− ()()− ()

()
 (4.16)

8The reader may think of the “corn economy” example in Acemoglu, p. 28.
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Denoting the (gross) capital income share by () we can write this ()

(in equilibrium) in three ways:

() ≡  ()− ()()

 ()
=
(() + )()

 ()


() =
 (() ()())− 2(() ()())()()

 ()
=

1(() ()())()

 ()


() =

 ()

()
()

 ()
 (4.17)

where the first row comes from (4.16), the second from (4.14) and (4.15), the

third from the second together with Euler’s theorem.9 Comparing the first

and the last row, we see that in equilibrium

 ()

()
= () + 

In this condition we recognize one of the first-order conditions in the rep-

resentative firm’s profit maximization problem under perfect competition,

since () +  can be seen as the firm’s required gross rate of return.10

In the absence of uncertainty, the equilibrium real interest rate in the

bond market must equal the rate of return on capital, () And () +  can

then be seen as the firm’s cost of disposal over capital per unit of capital per

time unit, consisting of interest cost plus capital depreciation.

Proposition 3 (factor income shares and rate of return under balanced

growth) Let the path (()  () ())∞=0 be a BGP in a competitive economy
with the production function (4.14) and with positive saving. Then, along the

BGP, the () in (4.17) is a constant,  ∈ (0 1). The labor income share
will be 1− and the (net) rate of return on capital will be  = −  where

 is the constant output-capital ratio along the BGP.

Proof By CRS we have  () =  (() ()()) = ()() (̃() 1)

≡ ()()(̃()) In view of part (i) of Proposition 2, by balanced growth,

 ()() is some constant, . Since  ()() = (̃())̃() and  00  0
this implies ̃() constant, say equal to ̃∗ But  ()() =  0(̃()) which

9From Euler’s theorem, 1 + 2 =  () when  is homogeneous of degree

one
10With natural resources, say land, entering the set of production factors, the formula,

(4.16), for the rate of return to capital should be modified by subtracting land rents from

the numerator.
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then equals the constant  0(̃∗) along the BGP. It then follows from (4.17)

that () =  0(̃∗) ≡  Moreover, 0    1 where 0   follows from

 0  0 and   1 from the fact that  =  = (̃∗)̃∗   0(̃∗) in view
of  00  0 and (0) ≥ 0 Then, by the first equality in (4.17), ()() ()
= 1− () = 1− . Finally, by (4.16), the (net) rate of return on capital is

 = (1− ()() ()) ()()−  =  −  ¤

This proposition is of interest by displaying a link from balanced growth

to constancy of factor income shares and the rate of return, that is, some

of the “stylized facts” claimed by Kaldor. Note, however, that although the

proposition implies constancy of the income shares and the rate of return,

it does not determine them, except in terms of  and  But both  and,

generally,  are endogenous and depend on ̃∗11 which will generally be
unknown as long as we have not specified a theory of saving. This takes us

to theories of aggregate saving, for example the simple Ramsey model, cf.

Chapter 8 in Acemoglu’s book.

4.5 What if technological change is embod-

ied?

In our presentation of technological progress above we have implicitly as-

sumed that all technological change is disembodied. And the way the propo-

sitions 1, 2, and 3, are formulated assume this.

As noted in Chapter 2, disembodied technological change occurs when new

technical knowledge advances the combined productivity of capital and labor

independently of whether the workers operate old or new machines. Consider

again the aggregate dynamic resource constraint (4.7) and the production

function (4.9):

̇() = ()− () (4.18)

 () = ̃ (() () ) ̃   0 (4.19)

Here  ()−() is aggregate gross investment, () For a given level of ()
the resulting amount of new capital goods per time unit (̇()+()), mea-

sured in efficiency units, is independent of when this investment occurs. It is

thereby not affected by technological progress. Similarly, the interpretation

of ̃  0 in (4.19) is that the higher technology level obtained as time

proceeds results in higher productivity of all capital and labor. Thus also

11As to  there is of course a trivial exception, namely the case where the production

function is Cobb-Douglas and  therefore is a given parameter.
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firms that have only old capital equipment benefit from recent advances in

technical knowledge. No new investment is needed to take advantage of the

recent technological and organizational developments.12

In contrast, we say that technological change is embodied, if taking ad-

vantage of new technical knowledge requires construction of new investment

goods. The newest technology is incorporated in the design of newly pro-

duced equipment; and this equipment will not participate in subsequent

technological progress. Whatever the source of new technical knowledge,

investment becomes an important bearer of the productivity increases which

this new knowledge makes possible. Without new investment, the potential

productivity increases remain potential instead of being realized.

As also noted in Chapter 2, we may represent embodied technological

progress by writing capital accumulation in the following way,

̇() = ()()− () (4.20)

where () is gross investment at time  and () measures the “quality”

(productivity) of newly produced investment goods. The increasing level of

technology implies increasing () so that a given level of investment gives

rise to a greater and greater additions to the capital stock,  measured

in efficiency units. As in our aggregate framework,  capital goods can be

produced at the same minimum cost as one consumption good, we have · =
1 where  is the equilibrium price of capital goods in terms of consumption

goods. So embodied technological progress is likely to result in a steady

decline in the relative price of capital equipment, a prediction confirmed by

the data (see, e.g., Greenwood et al., 1997).

This raises the question how the propositions 1, 2, and 3 fare in the case

of embodied technological progress. The answer is that a generalized version

of Proposition 1 goes through. Essentially, we only need to replace (4.7) by

(13.13) and interpret  in Proposition 1 as the value of the capital stock,

i.e., we have to replace  by ̃ = 

But the concept of Harrod-neutrality no longer fits the situation with-

out further elaboration. Hence to obtain analogies to Proposition 2 and

Proposition 3 is a more complicated matter. Suffice it to say that with em-

bodied technological progress, the class of production functions that are con-

sistent with balanced growth is smaller than with disembodied technological

progress.

12In the standard versions of the Solow model and the Ramsey model it is assumed that

all technological progress has this form - for no other reason than that this is by far the

simplest case to analyze.
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4.6 Concluding remarks

In the Solow model as well as in many other models with disembodied techno-

logical progress, a steady state and a balanced growth path imply each other.

Indeed, they are in that model, as well as many others, two sides of the same

process. There exist exceptions, however, that is, cases where steady state

and a balanced growth are not equivalent (some open economy models and

some models with embodied technical change). So the two concepts should

be held apart.13

Note that the definition of balanced growth refers to aggregate variables.

At the same time as there is balanced growth at the aggregate level, structural

change may occur. That is, a changing sectorial composition of the economy

is under certain conditions compatible with balanced growth (in a generalized

sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,

2001, and Acemoglu, 2009, Chapter 20).

In view of the key importance of Harrod-neutrality, a natural question is:

has growth theory uncovered any endogenous tendency for technical progress

to converge to Harrod-neutrality? Fortunately, in his Chapter 15 Acemoglu

outlines a theory about a mechanism entailing such a tendency, the theory of

“directed technical change”. Jones (2005) suggests an alternative mechanism.

4.7 References

Acemoglu, D., 2009, Introduction to Modern Economic Growth, Princeton

University Press: Oxford.

Barro, R., and X. Sala-i-Martin, 2004, Economic Growth, second edition,

MIT Press: Cambridge (Mass.)

Duffy. J., C. Papageorgiou, and F. Perez-Sebastian, 2004, Capital-Skill

Complementarity? Evidence from a Panel of Countries, The Review of

Economics and Statistics, vol. 86(1), 327-344.

Gordon, R. J., 1990. The Measurement of Durable goods Prices. Chicago

University Press: Chicago.

13Here we deviate from Acemoglu, p. 65, where he says that he will use the two terms

“interchangingly”. We also deviate from Barro and Sala-i-Martin (2004, pp. 33-34) who

define a steady state as synonymous with a balanced growth path as the latter was defined

above.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



4.7. References 85

Greenwood, J., Z. Hercowitz, and P. Krusell, 1997. Long-Run Implications

of Investment-Specific Technological Change. American Economic Re-

view 87 (3), 342-362.

Groth, C., K.-J. Koch, and Thomas Steger, 2010, When growth is less than

exponential, Economic Theory 44, 213-242.

Groth, C., and R. Wendner, 2014. Embodied Learning by Investing and

Speed of Convergence, J. of Macroeconomics (forthcoming).

Jones, C. I., 2005, The shape of production functions and the direction of

technical change. Quarterly Journal of Economics, no. 2, 517-549.

Jones, C. I., and D. Scrimgeour, 2008, The steady-state growth theorem:

Understanding Uzawa (1961), Review of Economics and Statistics 90

(1), 180-182.

Jones, C. I., and P. M. Romer, 2010, The new Kaldor facts: Ideas, insti-

tutions, population, and human capital, American Economic Journal:

Macroeconomics, vol. 2 (1), 224-245. Cursory.

Kongsamut, P., S. Rebelo, and D. Xie, 2001, Beyond balanced growth.

Review of Economic Studies 48, 869-882.

Perez-Sebastian, F., 2008, “Testing capital-skill complementarity across sec-

tors in a panel of Spanish regions”, WP 2008.

Schlicht, E., 2006, A variant of Uzawa’s theorem, Economics Bulletin 6,

1-5.

Stokey, N.L., 1996, Free trade, factor returns, and factor accumulation, J.

Econ. Growth, vol. 1 (4), 421-447.

Uzawa, H., 1961, Neutral inventions and the stability of growth equilibrium,

Review of Economic Studies 28, No. 2, 117-124.

Wan, H. Y. Jr., 1971, Economic Growth, Harcourt Brace: New York.

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.



86

CHAPTER 4. SKILL-BIASED TECHNICAL CHANGE.

BALANCED GROWTH THEOREMS

c° Groth, Lecture notes in Economic Growth, (mimeo) 2016.




